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ABSTRACT

MODELING DEFECT MEDIATED DOPANT DIFFUSION IN SILICON

by

Brian T. Puchala

Co-Chairs: Michael L. Falk and Krishnakamur R. Garikipati

The current understanding of dopant diffusion in silicon comes from the synthesis

of experimental and computational research. Dopant diffusion is mediated by de-

fects, and the relevant physical phenomena range over many time and length scales,

necessitating a multi-scale modeling approach. In this work, we focus on two essential

aspects, (1) the accuracy of atomistic methods for calculating defect parameters, and

(2) an accelerated kinetic Monte Carlo (KMC) method, which we use to investigate

the effects of percolating dopant-defect interactions on diffusion.

We use continuum linear elasticity to quantify the effects of boundary conditions

on atomistic calculations of defect energies and volume tensors. It predicts that

when using periodic boundary conditions with zero average stress, energies converge

with the inverse of system size and relaxation volume tensors are independent of

supercell size or symmetry. We verify the linear elastic prediction in the far field

of atomistic calculations by calculating the formation energy and volume tensor

for vacancy and interstitial defects in silicon using the Stillinger-Weber empirical

potential. In practice, both defect energies and relaxation volume tensors converge
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with the inverse of system size because changes in the bonding at the defect affect

the elastic moduli.

We also introduce an accelerated KMC method which automatically determines

which states comprise trapping energy basins, allowing simulations to reach very long

times compared to standard KMC simulations. We validate the accelerated method

by performing simulations of V-As cluster dissolution and comparing to standard

KMC simulations. Then we apply the method to highly time and concentration de-

pendent vacancy-mediated As diffusion in Si. At high As concentrations, percolating

dopant interactions lead to limited increased diffusivity, but the effect is limited in

magnitude and duration as immobile clusters form quickly. The energy basin algo-

rithms for accelerating KMC simulations may be very useful in a wide variety of

applications. By considering issues such as grouping isolated diffusing species and

collecting data when the exact location of the system within an energy basin is not

resolved, we provide an example that can be followed when applying this method to

other systems.
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CHAPTER 1

Introduction

Understanding diffusion in crystalline materials is critical in a wide range of tech-

nologically important systems. Lithium ion battery improvements, failure prevention

of irradiated materials in nuclear reactors, and semiconductor device fabrication all

depend on accurate prediction of diffusion. Besides its technological importance,

modeling diffusion is an interesting and challenging scientific problem. Accurate

diffusion models must account for physical phenomena on time scales ranging from

picoseconds for thermal vibrations to years of part operation. Similarly, length scales

range from the interatomic spacing for individual diffusive jumps to nanometers and

microns for semiconductor devices or centimeters for irradiated structural materi-

als. This necessitates a multi-scale modeling approach in which models of diffusion

mechanisms at small time or length scales are used to parameterize diffusion models

at larger time and length scales. In this work, we focus on two aspects of multi-scale

computational modeling applied to dopant diffusion in silicon.

The current understanding of diffusion in semiconductors has come from a combi-

nation of experimental and computational work. Because of the atomic nature of the

underlying mechanisms, experimental observations are often difficult or indirect, and

valuable contributions have come from direct atomistic computations. This chapter
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will provide a broad overview of dopant diffusion and the computational methods

used to model it. Later chapters will give a more detailed review of the experimental

and computational work that has led to this understanding.

1.1 Diffusion in Semiconductors

Diffusion is of critical importance in the fabrication of semiconductor devices such

as the transistors used in computer chips. An example of a 65 nm Intel transistor

with a strained silicon channel is shown in Figure 1.1. Device performance depends

on precisely controlling the location of impurity atoms, called dopants, implanted in

otherwise pure crystalline silicon. Atomic collisions during the implantation process

create point defects in the crystal lattice. Silicon or dopant atoms ending up off-

lattice between other atoms are called interstitials, and the empty spaces they leave

behind are called vacancies, see Figure 1.2. Crystal defects adversely affect electronic

conductivity and must be repaired by annealing at temperatures high enough to per-

mit significant atomic diffusion. Annealing allows vacancy and interstitial diffusion

so that they combine and annihilate or diffuse to sinks such as surfaces, interfaces,

or dislocations, but annealing also causes dopant diffusion. Accurate modeling of

dopant diffusion is important to guide device fabrication, especially as transistor di-

mensions have shrunk to the nanometer scale and high doping concentrations with

very abrupt doping profiles are required to keep electrical resistances low [4]. A

thorough review of dopant diffusion in silicon has been done by Fahey, Griffin, and

Plummer [5].

Atomic motion is driven by the kinetic energy of thermal vibrations and directed

by the forces between atoms. Diffusive motion on a crystal lattice involves the

transition of the system from one stable atomic configuration across a saddle point in
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Figure 1.1: Cross section TEM of an Intel 65 nm PMOS transistor, with a 35 nm gate. Dopant
implantation occurs in the source and drain, in this case SiGe. Dopant diffusion into
the strained silicon channel must be precisely controlled. From Tyagi [6].

the potential energy landscape into a different stable atomic configuration, as shown

in Figure 1.3. The individual transition rates are a function of the temperature and

the potential energy landscape, which is affected by the atomic configuration, stress,

and electronic charge.

Generally in crystal lattices, and particularly in silicon, the energy required for

neighboring atoms to swap places is quite large compared to the energy for mi-

gration of a pre-existing crystal defect. Therefore, at temperatures well below the

melting point most atomic diffusion is defect mediated. In silicon, vacancies and self-

interstitials are quite mobile, and tend to cluster with themselves and with dopants

due to electronic and stress mediated interactions. Dopants diffuse by jumping into

vacancies, or by being knocked off-lattice by an interstitial and then moving between

lattice locations until a new lattice position can be occupied, as in Figure 1.3. In this

manner, complexes of clustered defects and dopants may diffuse significant distances

through the material before breaking up. During complex formation, diffusion, and
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Figure 1.2: Schematic of vacancy and interstitial formation from perfect crystals.

breakup, there are many different possible atomic configurations and transition path-

ways.

Stress affects diffusion by modifying the free energy for defect formation and mi-

gration. When a defect forms or migrates in a crystal, the atoms in the surrounding

lattice will generally lower their energy by relaxing inwards or outwards, as in Fig-

ures 1.2 and 1.3. The resulting volume change does work in a stress field and must

be included in the formation or migration energy of the defect. Stress effects on

diffusion become increasing important in devices with features at very small scales

because stress gradients may be higher and dopant concentration profiles must be

very precise. Significant and complex stress states can arise from strain engineering,

lattice and thermal expansion coefficient mismatch, growth stresses, and defect con-

centrations [7]. Experiments showing the different effects of hydrostatic and biaxial

stress states on dopant diffusivity indicate that a full tensorial formulation for the

volume change is necessary [8].

By trapping and releasing electrons or holes, defects and dopants and their com-
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Figure 1.3: Schematic of transitions between stable states for a vacancy and an interstitial.

plexes may take different electronic charge states. This process is generally considered

faster than atomic diffusion, so that charge state among the collective defects will

equilibrate based on the Fermi level [5]. The electronic charge states can have several

consequences. Coulombic interactions may affect defect and dopant clustering. The

total carrier concentration, and thus device performance, may be affected. Different

atomic structures may be stable at different charge states. The equilibrium quantity

of defects and their jump rates may also vary.

All of these effects on individual jump rates modify the complex diffusion behavior

that occurs when populations of defects and dopants interact. The tendency of

defects and dopants to cluster results in time dependent diffusivity because larger

clusters tend to diffuse more slowly than small ones. The cluster diffusion rates are

modified by stress, and anisotropy of the individual jump rates caused by anisotropic

stresses may result in anisotropic cluster diffusion. Changes in dopant concentration

also affect the rate of cluster formation. At very high dopant concentrations, dopant-

defect interactions may percolate throughout the material in the sense that a defect
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might travel across the full length of the material by a path in which it is always

close enough to a dopant to have significant interactions. This makes it impossible to

identify distinct clusters and may lead to different diffusion behavior at high dopant

concentrations than low concentrations.

1.2 Multi-Scale Modeling Framework

The physical phenomena that must be accounted for in dopant diffusion models

range over many time and length scales, but we can roughly identify three scales. At

the smallest scales, individual or collective atomic jumps contribute to diffusion. At

intermediate scales, species interact with each other forming clusters, diffusing, and

breaking up. At the largest scales, average properties can describe the motion and

interactions of collections of diffusing species. In a multi-scale modeling approach,

the physics at the small scales is parameterized and used in the larger scale models.

Accuracy at each level of the model relies on accurate parameterization from the

previous level, which can come from experimental observations or computational

analysis. Our work has focused on aspects of the computational methodology at the

smallest and intermediate scales.

1.2.1 Atomistic parameterization of rare events

Diffusive motion on a crystal lattice generally involves the transition of the system

from one stable atomic configuration across a saddle point in the potential energy

landscape to a different stable atomic configuration. Often, the energy difference

between the stable and saddle states is significantly greater than the average energy

available from thermal vibrations. In these cases, the diffusive event can be con-

sidered a rare event because thermal fluctuations will provide the requisite energy
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infrequently compared to the time scale of thermal vibrations.

Transition state theory, discussed in Section 2.1, allows calculation of jump rates

from knowledge of the free energies in the stable and saddle states. The jump rates

include the effects of atomic vibrations, so if all of the relevant events can be identi-

fied and parameterized the vibrations do not need to be explicitly included in higher

level computations. Then the computational work is greatly reduced and much longer

times can be reached while reproducing the exact time evolution of the system. The

modeling problem is then one of identifying the active (low-energy) transition path-

ways and calculating the free energies of the stable and saddle states. The energies

of the stable states are important for determining the thermodynamic properties of

the system, and the differences between the stable and saddle states are important

for determining the kinetic properties of the system.

Atomistic calculations begin with approximation of the interaction potential used

to calculate potential energy, either using ab initio or empirical methods. Ab initio

methods use quantum mechanics to calculate electron distributions, so they allow

calculation of electronic properties and are more accurate, but at much more com-

putational expense. Ab initio calculations are usually limited to tens or hundreds of

atoms. Empirical methods approximate bonding energies and structures by fitting

to experimental observations, and may be less accurate. They are much less compu-

tationally expensive, allowing for calculations in systems up to millions of atoms.

The molecular dynamics (MD) method uses the interaction potential to calculate

the forces on individual atoms or molecules and uses Newton’s equations to directly

simulate motion. For the purpose of identifying all active diffusion pathways, MD has

the advantage that no restrictions or assumptions are made. It must resolve atomic

vibrations, typically at a time scale of 10−13 s, so it can only simulate nanoseconds
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of physical time even when using empirical potentials. This makes observing and

measuring rare events difficult, and often impossible if the accuracy of ab initio

methods is desired. There exist some MD methods that accelerate the occurrence of

rare events in a controlled way so that the normal dynamics can be determined, but

they are generally limited to empirical potentials [9].

Most often ab initio calculations use the molecular statics (MS) method to cal-

culate the potential energy of atomic configurations at 0 K. Energy minimization

techniques are used to adjust the atomic positions until the energies of stable states

and saddle states are found. If all transitions are accounted for and the free en-

ergy barriers are known, transition state theory can accurately reproduce the system

dynamics. The main drawback of MS is that exhaustive searches through configu-

ration space are impossible, so that unexpected important transition pathways may

be missed. Another drawback is that entropic effects, included in MD calculations

by their nature, must be determined explicitly in MS calculations.

1.2.2 Modeling collective diffusion behavior

Once the individual jump rates have been parameterized, the modeling problem

becomes one of calculating the diffusion behavior of collections of interacting species.

Dopant diffusion is defect mediated, so it depends on the concentrations defects and

dopants, and the rate at which defect-dopant complexes form, diffuse, and dissoci-

ate. These things can all be affected by stress in complex ways depending on the

anisotropy of the stress field and the lattice on which the species are diffusing. Silicon

has a diamond cubic crystal lattice, as depicted in Figure 1.4. Some simple cases,

such as vacancy or interstitial diffusion on cubic lattices in the dilute limit, can be

modeled as random walk processes [10]. Other approaches are used for diffusion on
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anisotropic lattices or diffusion of complexes under the effect of anisotropic stress

[11, 12, 13, 14].

Figure 1.4: The diamond cubic crystal structure of silicon. Figure from [15]

But the situation quickly becomes complicated when anisotropic stress or the pres-

ence of a dopant or another defect makes some jumps faster than others. Analytical

diffusivity calculations are also difficult for interstitials since they may have several

different low energy configurations, with different jump rates, off of the diamond

cubic lattice. And in clusters of only a couple defects or dopants there are many

configurations possible with complex transitions pathways between them. Especially

for highly non-equilibrium processes or at high concentrations when correlations be-

tween the diffusing species are important, it may be impossible to exactly calculate

the system’s evolution from the microscopic jump rates.

In these situations the kinetic Monte Carlo (KMC) method becomes essential.

The KMC method simulates the evolution of a system from state to state by numer-

ically sampling the master equation which describes the time evolution of the system

through its possible states [16, 17]. For atomic diffusion processes, this usually means
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the system evolves one atomic hop at a time and the trajectories of diffusing species

can be directly observed. Sometimes, direct simulation is used to measure concen-

tration evolution or dopant clustering. At other times, the KMC results may be

averaged and used to parameterize diffusivities or clustering rates for continuum

models.

1.3 Research Goals

As part of the effort to develop the multi-scale methodology for modeling dopant

diffusion including stress effects, the work in this dissertation focuses on two essential

aspects, (1) the accuracy of atomistic methods for calculating defect parameters, and

(2) an accelerated KMC method.

The overall accuracy of a multi-scale diffusion model depends on the accurate pa-

rameterization of microscopic jump rates. In purely atomistic calculations, a defect

is introduced into material with either free or periodic boundary conditions (FBC or

PBC). The atomistic system is allowed to relax and after mechanical equilibrium is

reached the resulting energy and volume change are measured. These are the defect

parameters that determine defect jump rates and equilibrium concentrations includ-

ing the effects of stress. For the finite sizes currently tractable, calculations using

FBC can have significant finite-size and surface effects. With PBC, we consider the

computational cell surrounded by an identical cell in the direction of the periodic

boundary. Effectively, the system is infinitely repeated and atoms on one side of the

cell interact with atoms on the other side. We use the term “supercell” for both the

infinite periodic system and the finite computational cell which is repeated. Calcu-

lations using PBC in three dimensions do not have finite-size and surface effects, but

instead the periodic supercell creates an infinite array of defects which may interact
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with each other and affect calculation accuracy. Our work is the first to formally

show the elastic effect of boundary conditions on the accuracy of typical atomistic

calculations. We model the point defect as a center of expansion or contraction via

a force dipole in a finite elastic body and use continuum linear elasticity to quantify

the effects of periodic images, supercell size, and symmetry. We verify the linear

elastic prediction in the far field of atomistic calculations by calculating the forma-

tion energy and volume tensor for vacancy and interstitial defects in silicon using

the Stillinger-Weber empirical potential. An empirical potential is useful for study-

ing elastic effects because there are no electrostatic interactions and it allows us to

simulate large systems approaching the far field.

1 2 3 4 

1 
2 3 

4 
G 

Figure 1.5: Schematic of a trapping energy basin. The low energy barrier between states 2 and
3 compared to the barriers out of the basin results in many transitions between those
states until the system escapes to states 1 or 4.

Defect and dopant clustering is a fundamental cause of concentration and time

dependent dopant diffusion. The complexity of the atomic picture due to the num-

ber of possible configurations during clustering or high concentration diffusion make

KMC simulations an essential tool for modeling the collective diffusion behavior.
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However, KMC simulations become very inefficient in systems in which the there

are trapping energy basins, such as the one shown in Figure 1.5. In a trapping

energy basin, many fast transitions will occur between the states separated by low

energy barriers before the system escapes from the basin over one of the larger bar-

riers. Standard KMC simulations evolve the system state by state so they become

trapped inside the basin and may spend many millions of events simply transition-

ing back and forth inside the trap. This situation is common in clusters of defects

and dopants. Significant simulation acceleration is achieved by solving the master

equation over the limited number of states comprising the trap and sampling that

solution to determine when and where the system escapes. This procedure can be

done without any approximation. We have developed an accelerated KMC algorithm

which automatically determines which states comprise trapping basins and should

be included in the acceleration calculation. We have used this algorithm to model

vacancy-mediated arsenic diffusion in silicon, and study the effect of high dopant

concentration on diffusivity.

1.4 Outline

In Chapters 2 and 3 we consider the accuracy of atomistic methods for calculat-

ing diffusive jump rates. In Chapters 4-7 we present the accelerated technique for

simulating defect and dopant diffusion using kinetic Monte Carlo (KMC) and apply

it to high concentration vacancy-mediated arsenic diffusion in silicon.
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CHAPTER 2

Atomistic Parameterization of Rare Events

Diffusion models depend on the accurate parameterization of individual or col-

lective atomic jumps. In this chapter we review diffusion in solids and transition

state theory, which allows calculation of diffusive jump rates from the energetics of

the system. Then we will review the experimental and computational work that

has been used to determine those parameters. Finally, we will consider some of the

factors that affect the accuracy of atomistic calculations of diffusion parameters.

2.1 Diffusion in Solids

As noted in Chapter 1, dopant diffusion is mediated by defects. The equilibrium

concentration of defects is

(2.1) Ce = CS exp(−Gf/kBT ),

where CS is the concentration of sites on which the defect can form, Gf is the Gibbs

free energy of formation, kB is the Boltzmann constant, and T is temperature. The

Gibbs free energy of formation is the change in free energy upon the formation of a

defect, as in Figure 1.2, and can be written

(2.2) Gf = Ef − ¯̄σ : ¯̄V f − TSf + qεF ,
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where Ef , ¯̄V f , and Sf denote the energy, volume, and entropy of migration, respec-

tively, q is the electronic charge of the defect and εF is the Fermi level. The formation

volume is a second order tensor quantity that gives the dependence of the Gibbs free

energy on the stress state and is defined by

(2.3) V f ≡ −∂G
f

∂ ¯̄σ
.

The tensor inner product, “:”, is defined:

(2.4) ¯̄σ : ¯̄V f =
∑
i,j

σijV
f
ij .

However, we are often interested in systems and processes in which the concentration

of defects is not at equilibrium. It these situations it is more likely that there is a

local equilibrium between the concentrations of dopants, defects and dopant-defect

complexes. When a complex forms, the Gibbs free energy of binding is

(2.5) Gb
AX = Gf

X −G
f
AX ,

where A indicates a dopant, X a defect, and AX a dopant-defect complex. Then, in

local equilibrium, the concentration of dopant-defect complexes is [5]

(2.6) CAX = mAX
CACX
CS

exp

(
−Gb

AX

kBT

)
,

where CA is the concentration of isolated dopants, CX is the concentration of un-

bound defects, and mAX is the number of orientations of a complex at a single site.

For example, mAX = 4 for substitutional dopants and vacancies in Si since for each

dopant the V could be in one of four nearest neighbor positions.

At a macroscopic level, gradients in chemical potential lead to diffusion. For

component i, the chemical potential, µi, is the change in Gibbs free energy, G, with

the number of moles ni of component i:

(2.7) dG = −SdT + V dp+
∑
i

µidni,
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where S is entropy, V volume, and p pressure. At equilibrium dG = 0, so if there

is any spatial variation in the chemical potential the system is not in equilibrium

and there will be atomic drift. The drift velocity, vi, is proportional to the chemical

potential gradient,

(2.8) v̄i = ¯̄Mi∇̄µi,

where ¯̄Mi is the mobility. The atomic flux vector, J̄i is the product of the concen-

tration, Ci, and the drift velocity,

J̄i = Civ̄i(2.9)

= Ci
¯̄Mi∇̄µi.(2.10)

Experimentally, chemical potential is not directly observable, but concentrations are

and diffusion is described by Fick’s Laws. The first,

(2.11) J̄i = − ¯̄DC
i ∇̄Ci,

relates the atomic flux vector to the concentration gradient through the chemical

diffusivity tensor ¯̄DC
i . The mobility can be related to the diffusivity by [18]

(2.12) ¯̄DC
i = ¯̄MikT

(
1 +

d ln γi
d lnCi

)
.

For ideal or dilute systems the activity coefficient, γi, is constant and the bracketed

“thermodynamic factor” is unity, giving

(2.13) ¯̄DC
i = ¯̄MikT.

As we will show in Section 4.1, if diffusion is isotropic and dominated by a single

mechanism, jump distances are constant, α, and the system is thermodynamically

ideal or concentrations dilute, then the diffusivity can be calculated as

(2.14) DC
i = fgα2Γi,
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Figure 2.1: A one dimensional illustration of a rare event in which the system equilibrates in the
first state (1) before crossing a transition state (2) into the final state (3).

where f is a correlation factor, g is a geometric factor which is 1
6

for three-dimensional

cubic lattices, and Γi is the total jump rate for particles of component i. If every

particle of component i has z possible jumps with rate Ri, then Γi = zRi. If a

substitutional dopant does not have a defect bound to it, it will not be able to jump,

therefore

(2.15) ΓA = z
CAX
CTot
A

RAX ,

where CTot
A = CAX + CA is the total concentration of dopant A.

The basis for parameterizing event rates, R, is transition state theory [9]. Tran-

sition state theory treats situations in which the temperature and energy landscape

are such that the system will spend a long enough time in one state that it loses

any memory of where it came from before transitioning to the next state. Then the

system will essentially equilibrate within a state, and one event is not correlated with

any other event. In this case the system will cross transition states with equilibrium

probability. Figure 2.1 is a one dimensional illustration, but in reality the system is

3N dimensional, N being the number of atoms. The transition rate, can be calcu-

lated from the probability of being in the transition state with momenta taking the
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system across the 3N − 1 dimensional dividing surface between the states:

(2.16) R =

∫
p̄∗

p̄

m
P (r̄∗, p̄)dp̄ =

∫
p̄∗

p̄
m

exp(−H(r̄∗, p̄)/kBT )dp̄∫ ∫
exp(−H(r̄, p̄)/kBT )dr̄dp̄

,

where r̄ and p̄ are the system position and momentum coordinates, an ∗ indicates a

position in the transition state and momenta taking the system out of the current

state, H is the Hamiltonian giving the system energy, kB is the Boltzmann constant,

and T is temperature. A common approximation is that the potential energy land-

scape is harmonic in the stable state and at the transition state in the direction of a

transition. In this case, Equation 2.16 becomes

(2.17) R = ν exp(−Gm/kBT ),

where the Gibbs free energy for migration, Gm, is the energy barrier height going from

the minimum of the stable state to the transition state, and the attempt frequency,

ν, is

(2.18) ν =

3N∏
i

νmini

3N−1∏
i

ν∗i

.

Here νmini are the normal mode frequencies at the minimum of the stable state, and

ν∗i are the normal mode frequencies at the transition state. The Gibbs free energy

for migration can be written as

(2.19) Gm = Em − ¯̄σ : ¯̄V m − TSm,

where ¯̄σ is the stress tensor, and Em, ¯̄V m, and Sm denote the energy, volume, and

entropy of migration, respectively. The migration volume is defined similarly as the

formation volume,

(2.20) V m ≡ −∂G
m

∂ ¯̄σ
.
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2.1.1 Review of experimental results

Examining the results of the previous section, we see that the parameters that

must be determined are the prefactors and Gf and Gm. Experimentally, diffusion

profiles are measured using a technique such as secondary ion mass spectroscopy

(SIMS). Then the chemical diffusivity is determined by fitting the profiles to the

appropriate solution of Fick’s laws. The prefactors and Arrhenious exponents can be

determined from diffusion profiles at different times and temperatures, but it is often

difficult to identify different mechanisms or the migration and formation energies

separately. Even if more than one diffusion mechanism is operating, experiments

in equilibrium may be well-described with a single activation energy. To obtain an

equilibrium dopant diffusivity we combine Equation 2.1, setting CS = mAXC
Tot
A , and

Equations 2.14, 2.15, and 2.17 to get

(2.21) De
A = fgα2zmAXν exp(−G∗/kBT ),

with activation energy G∗AX = Gf
AX + Gm

AX . Then, analogous to the migration and

formation free energies,

(2.22) G∗ = E∗ − ¯̄σ : ¯̄V ∗ − TS∗.

In experiments at zero stress, E∗ is determined from the Arrhenious exponent, and

the change with varying experimental pressure determines ¯̄V ∗. Entropic effects mod-

ify the prefactors and are often considered small and neglected.

2.1.1.1 Diffusion without stress

The equilibrium temperature dependence of the self-diffusion coefficient of silicon

has been determined by Bracht et al. from isotope heterostructure experiments using
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SIMS to observe diffusion profiles [19]. That work gives

De
Si =

(
530+250

−170

)
exp

(
−4.75± 0.04 eV

kBT

)
cm2s−1

which they show is in good agreement with previous experiments over more limited

temperature ranges, and it has also been confirmed by Ural et al. [20]. Vacancy-

mediated diffusion, interstitial-mediated diffusion, and direct exchange of silicon

atoms could all contribute to silicon self-diffusion and dopant diffusion. The rel-

ative contributions of these mechanisms are still somewhat uncertain and must be

determined in order to accurately predict non-equilibrium behavior.

A common approach for determining the contribution of each mechanism involves

injecting excess point defects by oxidation or nitridation and determining the change

in diffusivity for self-diffusion and dopant diffusion [5, 21, 22, 23]. With E standing

for the direct exchange mechanism, the change in diffusivity due to non-equilibrium

point defect concentrations is

DA = DAV
CAV
CTot
A

+DAI
CAI
CTot
A

+DAE

= DAV
Ce
AV

Ce
AV

CAV
CTot
A

+DAI
Ce
AI

Ce
AI

CAI
CTot
A

+DAE

DA

De
A

=
DAV

De
A

Ce
AV

CTot
A

CAV
Ce
AV

+
DAI

De
I

Ce
AI

CTot
A

CAI
Ce
AI

+
DAE

De
A

.

With the condition of local equilibrium and that CAX is much less than CA it holds

that [5],

CAX
Ce
AX

=
CX
Ce
X

.

Then, defining the component fractions of diffusion by∑
X

f eAX = 1, f eAX ≡
DAX

De
AX

Ce
AX

CTot
A

,

results in

(2.23)
DA

De
A

= f eAV
CAV
Ce
AV

+ f eAI
CAI
Ce
AI

+ f eAE.
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Using SIMS to measure profile evolution, the change in diffusivity of the species

can be measured, and under identical oxidation and nitridation treatments the excess

point defect concentrations are expected to be identical for silicon and for different

dopants. Then, with only conservative assumptions about the excess point defect

concentrations, an underdetermined system of equations can be solved for bounds

on the fractions of diffusion. Using this method, Ural et al. have shown that Si

self-diffusion and As dopant diffusion have contributions from both vacancy and in-

terstitial mechanisms and possibly, to a lesser extent, direct exchange. This method

has also shown that Sb diffusion is dominated by the vacancy mechanism, while B

and P diffusion are dominated by the intersitial mechanism [5, 20, 21, 22, 23]. In

those calculations the contribution of the direct exchange mechanism was assumed to

be zero because an ab initio calculation showed that it has a higher activation energy

than interstitial or vacancy mechanisms in B and P [24]. The fact that injection of

one of the defects retards diffusion for B, P and Sb shows experimentally that direct

exchange is not the dominant diffusion mechanism for these dopants [5]. Since one

mechanism dominates B, P, and Sb diffusion, the measured activation energy can be

considered a good estimation of the activation energy for the dominant mechanism.

As compiled by Fahey for diffusion under intrinsic conditions, the measured activa-

tion energy for B ranges from E∗B = 3.25 to 3.87 eV, for P from E∗P = 3.51 to 3.67

eV, for Sb from E∗Sb = 3.89 to 4.05 eV, and for As from E∗As = 4.05 to 4.34 eV. For

silicon self-diffusion and As diffusion, the activation energies of multiple mechanisms

need to be parameterized.

The activation energies of the vacancy and interstitial mechanisms for silicon self-

diffusion are still somewhat uncertain. From the silicon self-diffusion coefficient and

Au or Zn diffusion results [25, 26, 27], Bracht calculates G∗SiI = 4.84 to 4.95 eV and
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G∗SiV = 4.1 to 4.7 eV [28]. On the basis of the point defect injection experiments,

Ural et al. calculate G∗SiI = 4.68 eV and G∗SiV = 4.86 eV [20]. From those results,

and also measurements of defects in silicon crystal growth and vacancy profiles in

rapid thermal annealing (RTA) wafers, Voronkov and Falster calculate G∗SiI = 5.04

eV and G∗SiV = 4.5 eV [29].

The final step is to determine formation and migration energies, but observation

of silicon point defects and dopant-defect complexes is quite difficult so few experi-

mental results are available. At low temperatures, electron paramagnetic resonance

(EPR) can be used to determine migration energies. For dopant diffusion, studies

with EPR determined the B-interstitial migration energy to be Em
BI ≈ 0.6 eV, the

P-vacancy migration energy to be Em
PV = 0.94 eV, the As-vacancy migration energy

to be Em
AsV = 1.07 eV, and the Sb-vacancy migration energy to be Em

SbV = 1.28 eV

[30, 31, 32]. For Si self-diffusion, EPR studies found silicon vacancy and interstitial

migration energies to be Em
SiV,SiI ≤ 0.5 eV [33]. Voronkov and Falster [29] use this

data along with measurements of defect profiles resulting from high temperature

crystal growth and RTA to determine, with an estimated 30% uncertainty,

DSiV = (0.002) exp

(
−0.38eV

kBT

)
cm2s−1,

Ce
SiV = (2.4× 103) exp

(
−4.12eV

kBT

)
cm−3.

They deduce that the interstitial migration energy must be comparably small and

estimate,

DSiI = (0.004) exp

(
−0.3eV

kBT

)
cm2s−1,

Ce
SiI = (1.3× 106) exp

(
−4.74eV

kBT

)
cm−3.

Contradictory to these figures, Bracht et al. report proton radiation enhanced self-

diffusion (RESD) results at 780 to 872 ◦C that give vacancy formation and migration
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enthalpies of Ef
SiV = 2.1± 0.5 eV and Em

SiV = 1.8± 0.5 eV [27]. From Zn diffusion,

Bracht determined the high temperature interstitial migration enthalpy Em
SiI = 1.77±

0.12 eV, which gives Ef
SiI = 3.18 ± 0.15 eV [27]. They accept the low temperature

EPR studies as reliable and conclude that the migration enthalpies increase with

temperature as might be predicted by an extended defect [34]. Dannefaer et al.

reported positron annhilation experiments that gave Ef
SiV = 3.6 ± 0.2 eV, but this

could not be replicated in later studies because the vacancy concentration is lower

than the detection limit [35, 36, 37, 38].

To our knowledge, experimentally determined activation energies for intersti-

tial and vacancy mechanisms for As diffusion have not been reported separately,

though they might be deduced from the experimental results for As-vacancy com-

plex (VmAsn) formation and migration energies. Arsenic doping has received sig-

nificant attention because it becomes deactivated at high concentrations so that

the free-carrier concentration saturates at around 3 × 1020 cm−3 [39, 40, 41]. Fair

and Weber examined how the inactive As affected the solubility and diffusivity of

As donors and proposed the formation of V1As2 complexes. Arsenic deactivation

is proposed to occur when up to four arsenic atoms cluster around a vacancy so

that each As atom is only covalently bonded to three neighbors and it becomes

more energetically favorable for each As to keep its remaining two electrons [40, 42].

Arsenic-vacancy complexes are therefore important in determining both diffusion

and deactivation. For As diffusion, some information about formation and migration

energies has been reported by Ranki et al. from positron annihilation experiments

[35, 41]. Positrons become trapped at neutral and negatively charged vacancies due

to the missing positive ion core causing an increase in the average lifetime that gives

a concentration measurement. Electron momentum distribution shape depends on
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the valence and core electrons surrounding the vacancy and can be used to deter-

mine chemical composition. For 30 min anneals at temperatures from 300 to 900 K,

they find that V1As1 migrates and runs into other As to form V1As2 at 450 K or

higher and that V1As2 migrate to form V1As3 at 700 K or higher. From the tem-

peratures at which the clusters form they estimate the migration energies of V1As1

and V1As2 to be Em
V1As1

= 1.3± 0.2 eV and Em
V1As2

= 2.0± 0.2 eV [43]. The change

in complex concentration with temperature allows for a measurement of the forma-

tion energy, and concluding that complexes being measured are V1As1 they find that

Ef
V1As1

= 1.1 ± 0.2 eV. Using an V1As1 binding energy found from simulation they

found that Ef
SiV = 2.8 ± 0.3 eV [35, 44, 45]. Similar measurements showed that P

and Sb form di- and tri-dopant-vacancy complexes similarly, though formation and

migration energies were not reported [41].

2.1.1.2 Diffusion with stress

The last experimental data we review are measurements of stress dependent

dopant diffusion. There are an increasing number of studies of diffusion in strained

Si and Si1−xGex, but still few quantitative reports of activation volumes. The most

complete study to date is that of Aziz et al. on the stress dependence of B and

Sb diffusion in silicon [46, 47, 48]. They used high temperature, high pressure fluid

argon to create hydrostatic pressure in their B and Sb doped Si superlattice samples.

They also compare their results to measurements of B and Sb diffusion in biaxially

strained Si and Si1−xGex done by other groups [49, 50, 51, 52, 53]. In order to seper-

ate the effects of composition and strain, biaxial strain is controlled independently

of Ge concentration by depositing the diffusion heterostructure on top of a buffer

layer. Lower Ge concentration in the buffer will create compressive strained layers
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and higher Ge concentration in the buffer will create layers with tensile strain [51].

Aziz et al. report an apparent activation volume which includes the possible

effect of changes in the frequency factor and attempt frequency with pressure. In

the case that these are pressure independent, the apparent activation volume is

identical to the “true” activation volume. The scalar apparent activation volume is

the trace of the tensorial apparent activation volume. They found that hydrostatic

compression increases B diffusion and decreases Sb diffusion, with apparent scalar

activation volumes V ∗B = −3.2 ± 1 Å3 and V ∗Sb = 1.2 ± 0.8 Å3 (we calculated these

from the reported values and the atomic volume of silicon, Ω ≈ 20 Å3). The biaxial

strain studies report that compressive strains decrease B diffusion and increase Sb

diffusion perpendicular to the biaxial strain plane. Taking into account the form

of the full volume tensor, Aziz et al. find some agreement between the measured

hydrostatic and biaxial stress dependencies for Sb, but not for B. Nygren et al.

found that hydrostatic pressure increased the diffusivity of As in Si, characterized by

an activation volume ranging from -7.8 to -12.3 Å3 [54]. In other qualitative studies

on P and As diffusion in strained layers, their diffusivities decreased with compressive

biaxaial strain after accounting for Ge concentration [53, 55]. Additionally, Dilliway

et al. found increased As diffusion in tensile strained Si, though in their analysis

they did not recognize that strain can affect both formation and migration energies

[56].

This review of the experimental data available for defect and dopant diffusion is

meant to highlight a few main points. First, the most accurate and available exper-

imental data is of the equilibrium activation energies. Second, the type of intrinsic

point defects that mediate dopant and self-diffusion are known, but especially in

the case of As and Si self-diffusion, the relative contributions of each mechanism
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are somewhat uncertain. Third, even when it is known if diffusion is mediated by

vacancies or interstitials, there can be multiple diffusing species in multiple charge

states each with different formation and migration energies that depend on local

composition. Fourth, separately determining the formation and migration energies

of the diffusing species is difficult experimentally and is thus rather uncertain and

unavailable. Fifth, experimentally determining activation, formation, and migration

volumes is difficult due to the combination of uncertainties in stress measurements,

diffusivities, and separating formation and migration volume effects and thus the

data is mostly unavailable.

2.1.2 Review of computational results

Because of the experimental difficulties, simulation has found a significant role in

determining diffusion mechanisms, energies and volumes. Simulation helps explain

experimental results and fills gaps in the experimental data to allow for parameteri-

zation of process models. In atomistic simulations, E and ¯̄V are measured from the

change in energy and volume of a supercell, as shown in Figure 2.2. The formation

quantities are calculated with conservation of mass, which gives rise to the addition

or subtraction of the energy or volume of a single silicon atom. The without conser-

vation of mass, the change alone is called the relaxation energy, Er, or volume, ¯̄V r.

For zero-pressure simulations in the large supercell limit, the energy and volume of

the supercell is expected to approach the value for an isolated defect in an infinite

medium at zero-pressure. There have been many atomistics simulation studies done

to determine the structure and energetics of silicon vacancies and interstitials and

dopant-defect complexes using both ab initio methods and empirical potentials. In

the following sections we review the experimental and computational work done to
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Q(SiN ) Q(V ) + 1
N
Q(SiN )

+Qf
SiV

Qf
SiV = Q(V ) + 1

N
Q(SiN )−Q(SiN )

Q(SiN ) + 1
N
Q(SiN ) Q(I)

+Qf
SiI

Qf
SiI = Q(I)−Q(SiN )− 1

N
Q(SiN )(a) (b)

Q(A) Q(AV ) + 1
N
Q(SiN )

+Qf
AV

Qf
AV = Q(AV ) + 1

N
Q(SiN )−Q(A)

Q(A) + 1
N
Q(SiN ) Q(AI)

+Qf
AI

Qf
AI = Q(AI)−Q(A)− 1

N
Q(SiN )(c) (d)

Figure 2.2: Schematics showing the calculation of formation energies and volumes from a supercell.
The formation calculation is shown for an (a) isolated Si vacancy and (b) interstitial,
and for a dopant-defect complex in (c) and (d). In this case, the reference state is the
perfect crystal with dopant A in a substitutional position. Q = E or ¯̄V .

determine these parameters.

2.1.2.1 Silicon Vacancy

There have been many DFT calculations of the energetics of silicon vacancies and

interstitials. For instance, formation energies calculated by energy minimization at

0 K for the neutral vacancy range from about Ef
SiV = 3.1 to 4.1 eV, with most

falling between Ef
SiV = 3.2 and 3.7 eV. In agreement with experiment [33], ab initio

simulations that are large enough show that the relaxed vacancy undergoes a Jahn-

Teller distortion [57] in which neighboring atoms pair and move apart from each

other, reducing the symmetry of the vacancy. We have compiled ab initio data for

the neutral silicon vacancy in Table 2.1, including the largest supercell result from

each study. Unless mentioned in the notes accompanying Table 2.1, the simulated

vacancy has undergone the Jahn-Teller distortion. The migration energies, ranging
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from Em
SiV = 0.28 to 0.59 eV, are in good agreement with the low temperature EPR

studies of Watkins. Calculating an activation energy for Si diffusion by a vacancy

mechanism from the simulation results gives a range of E∗SiV = 3.5 to 4.3 eV. This

could be in agreement with the range of E∗SiV = 4.1 to 4.7 determined by Bracht et

al., except that from RESD they determined a migration energy Em
SiV = 1.8±0.5 eV

and a formation energy of Ef
SiV = 2.1 ± 0.7 eV, quite different from the simulation

results. They proposed a migration enthalpy increase with temperature due to an

extended defect, but this does not explain the discrepancy in the formation energies.

There are relatively few ab initio formation volume calculations for the isolated

silicon vacancy, and only one vacancy migation volume calculation. An early calcu-

lation by Antonelli and Bernholc found the formation volume for a neutral vacancy

to be V f
SiV = 15 Å3 and the neutral tetrahedral interstitial to be V f

SiIT
= −5.6 Å3

[58]. They also calculated the pressure dependence of the formation energy of those

defects in the doubly charged state and for bond-centered interstitials and the con-

certed exchange mechanism. Since then, the volume change of the defect has been

quantified by calculating the change in the volume of the tetrahedron of neighboring

atoms [24, 59, 60, 61, 62, 63], but this gives no information about the long-range elas-

tic relaxation. Antonelli et al. revisited the vacancy about ten years later and found

two distortions with similar energy at zero pressure, but different formation volumes

V f
SiV = -1.7 Å3 for the first and V f

SiV = 4.0 Å3 for the second [64]. These formation

volumes were calculated for hydrostatic pressure from supercell cells fixed to remain

cubic, and give no information on the anisotropy of the Jahn-Teller distortion.

To our knowledge there are two ab initio studies that have report the full volume

tensor for vacancies in Si, and only Centoni et al. report a full volume tensor for Si

interstitials [65]. Windl et al. performed constant-pressure minimization of supercells
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containing up to 1000 atoms and calculated the vacancy formation volume tensor to

be [66],

¯̄V f
SiV =


-9.3 0 0

0 -9.3 0

0 0 16.5

 Å
3
.

This shows that the Jahn-Teller distortion of the vacancy induces a strongly

anisotropic volumetric change in the surrounding material. They also examine the

change of bulk modulus with supercell size and find a 1/N form, N being the num-

ber of atoms, about ten times stronger for the vacancy than the 〈110〉 interstitial for

which they do not report a formation volume. In small supercells the bulk modulus

change is due to the high concentration of defects and could significantly affect the

formation volume. Centoni et al. calculated formation energies and scalar volumes

for defects in various charge states using constant volume calculations fit to an equa-

tion of state, but then they also calculated full volume tensors for neutral defects

by allowing all of the vectors defining the supercell to relax. Using the first method

they find V f
SiV = −1.4 Å3, which is in excellent agreement with the calculations of

Antonelli and Bernholc. After allowing full relaxation of the supercell vectors, they

find that tr[V f
SiV ] = −0.4 Å3, only a small change. The full relaxation allows them

to pick up the effect of the Jahn-Teller distortion and (transformed to Cartesian

coordinates) results in

¯̄V f
SiV =


-10.0 -0.1 0

-0.1 -10.0 0

0 0 19.6

 Å
3
.

This agrees quite well with the result of Windl et al.. The migration of a vacancy

occurs when a neighboring atom jumps into the vacancy, and it is intuitive that the
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saddle point of this process will occur when the atom is halfway between its original

position and its final position. This is called the “split vacancy” and can actually be

the stable position for doubly-negative charged vacancies, but for the neutral vacancy

it is the saddle point for migration. For a split vacancy along a [111] bond, Centoni

et al. report its relaxation tensor in terms of its principle directions, from which we

can calculate its formation tensor (transformed to Cartesian coordinates),

¯̄V f
SiV,split =


-2.1 -5.2 -5.2

-5.2 -2.1 -5.2

-5.2 -5.2 -2.1

 Å
3
.

The difference between the formation volume of the split vacancy and the lattice

vacancy allows us to calculate the strongly anisotropic migration volume for a [111]

vacancy jump,

¯̄V m
SiV =


-7.9 -5.1 -5.2

-5.1 -7.9 -5.2

-5.2 -5.2 -21.7

 Å
3
.

The strong anisotropy of the migration volume suggests strong anisotropy of the

diffusivity. However, much of the anisotropy comes from the orientation of the Jahn-

Teller distortion and El-Mellouhi et al. [67] calculate that the reorientation energy

is small, EJT,rot
SiV = 0.2 eV. This confirms an experimental result of EJT,rot

SiV = 0.23 eV.

In the experiment [68], vacancies are originally oriented by applying a stress at high

temperature. Then, the temperature is reduced to 20 K, the stress relieved, and the

reorientation of vacancies observed upon illumination. Therefore, at typical process-

ing temperatures the low barrier to reorientation is likely to decrease the anisotropic

effect of the Jahn-Teller distortion on the diffusivity, though the anisotropic effect of

the transition state formation volume would remain.
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(a) (b) (c)

Figure 2.3: The three lowest energy Si self-interstitial defects are the (a) 〈110〉 dumbbell, (b) hexag-
onal, and (c) tetrahedral interstitials.

2.1.2.2 Silicon self-interstitial

Several stable self-interstitial structures have been found in empirical and ab initio

simulations. We will consider the three structures, shown in Figure 2.3, that ab initio

simulations have found to be lowest in energy. The 〈110〉 dumbbell interstitial is

formed by placing two Si atoms aligned in a 〈110〉 direction astride a single lattice

point. The hexagonal interstitial is formed by placing an interstitial atom at the

center of one of the six-member rings in the Si lattice. In the cubic unit cell with

normalized lattice parameter and basis atoms at (0,0,0) and (1/4, 1/4, 1/4), one

such location is at (3/8, 5/8, 3/8). The tetrahedral interstitial is located at (1/2,

1/2, 1/2), where it is equally distanced from the four ’internal’ atoms in a diamond

cubic lattice. We have compiled ab initio data for the neutral silicon interstitial in

Table 2.2, including the largest supercell result from each study. The DFT studies

using the local density approximation (LDA) to the exchange and correlation function

result in lower energies than the generalized gradient approximation (GGA). Both

methods are in agreement that the 〈110〉 and hexagonal defects are similar in energy

to each other and lower in energy than the tetrahedral interstitial. One tight-binding

(TB) result is included in Table 2.2 that indicates that TB finds a formation energy

for hexagonal interstitials that is much larger than the formation energy for a 〈110〉

interstitial.
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Leung et al. reported a calculation using diffusion kinetic Monte Carlo (DMC) [69,

70]. DMC uses stochastic methods to solve the Schrödinger equation, making it much

more computationally intensive than DFT calculations, but it is expected to be more

accurate than using LDA or GGA. Currently DMC has not been used to relax atomic

positions, so Leung et al. found relaxed structures using LDA and then calculated

the energy of those structures with DMC. The resulting energies, Ef
SiI,〈110〉 = 4.96

eV, Ef
SiI,H = 4.82 eV, and Ef

SiI,T = 5.40 eV, are nearly 50% greater than the LDA

results. They also calculated a migration energy for transitions between the 〈110〉

and hexagonal sites that is quite low, Em
SiI ≤ 0.2 eV. Combining these results gives an

activation energy for interstitial diffusion that agrees well with the range of activation

energies determined experimentally by Bracht et al. or Voronkov, E∗SiI = 4.84 to 5.04

eV. Windl found that energy corrections for band gap and finite-size effects proposed

elsewhere might explain the difference between LDA and DMC results [71] He finds

that these corrections might not be necessary for the vacancy, but that there is too

much uncertainty in the defect bands of Jahn-Teller distorted vacancies to be sure.

If corrections are not necessary, the higher vacancy formation energy values reported

(Ef
SiV = 3.2 to 3.7 eV) combined with the calculated migration energy values (Em

SiV =

0.28 to 0.59 eV) would give an activation energy in good agreement with the lower

end of the range determined by Bracht et al. (E∗SiV = 4.1 to 4.7 eV). Additionally,

Leung et al. calculated the energy for concerted exchange to be E∗SiE = 5.78 eV.

This is in good agreement with the experimental result that concerted exchange is a

small contribution to Si self-diffuion.

The suggestion by Bracht et al. that migration enthalpies increase with temper-

ature can not be determined from the 0 K ab initio calculations reviewed up to this

point. Short ab initio MD simulations which might address this question were per-
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formed by Blochl et al. and Clark and Ackland, but the computational requirements

limited the studies to short times and high temperatures near the melting point

[72, 73]. Blochl et al. found that interstitial diffusion dominated, but could not di-

rectly calculate the migration energy. Clark and Ackland found the 〈110〉 interstitial

to be lowest in energy at 0 K and that the quenched structure of the transition state

was a hexagonal interstitial, which supports the 〈110〉 to hexagonal to 〈110〉 diffusion

path for Si self-interstitial diffusion. They could not calculate a high temperature

migration energy either.

Besides an older calculation by Antonelli and Bernholc [58] (the study with the

vacancy result revised 10 years later), the only formation volumes calculated for

isolated Si self-interstitials come from Centoni et al. Transforming their relaxation

volumes into formation volumes in Cartesian coordinates gives

¯̄V f
SiI,〈110〉 =


-0.8 5.6 0

5.6 -0.8 0

0 0 -4.9

 Å
3
,

¯̄V f
SiI,H =


-2.4 -0.3 -0.3

-0.3 -2.4 -0.3

-0.3 -0.3 -2.4

 Å
3
,

¯̄V f
SiI,T =


-4.3 0 0

0 -4.3 0

0 0 -4.3

 Å
3
.

Since the migration path seems to consist of jumps between 〈110〉 and hexagonal

sites, the differences in their formation volume might be used to estimate a migration

volume. However, Leung et al. report a transition energy for going between 〈110〉 and

hexagonal sites so that transition state might also determine the migration volume.
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2.1.2.3 Boron

Simulation work done to determine dopant diffusion mechanisms and energetics is

largely focused on B and As, with the goal of understanding transient enhanced diffu-

sion (TED) and electrical deactivation. TED is a phenomenon in which point defect

supersaturation due to ion implantation results in significantly enhanced dopant dif-

fusion until the point defect concentration re-equilibriates [74]. The implanted ions

create Frenkel pairs of vacancies and interstitial, but because the ions tend to take

substitutional positions interstitials dominate vacancies by the amount of the ion

dose. Dopants that diffuse by an interstitial mechanism (B, P, and to a lesser extent

As) can form many more mobile complexes than in equilibrium and their diffusivity

is greatly increased. It is desireable to know the formation, binding, and migration

energies of the mobile complexes in order to model TED.

The initial ab initio simulation results for B diffusion suggested a “kick-out”

mechanism in which a Si interstitial knocks a substitutional B atom, BS, into an

interstitial position, BI , where it diffuses rapidly until it returns to a substitu-

tional position by creating a new Si interstitial [24, 75]. These simulations were

limited to neutral defects, and found to accurately model B diffusion over a small

range of temperatures and annealing times [76]. The calculation was revisited by

Sadigh et al. and Windl et al. to include charged defects [76, 77]. These stud-

ies both found B to diffuse by the “interstialcy” mechanism, meaning as a B-

interstitial complex. Windl et al. found the diffusion path for neutral defects to

be BS+SiI,T → BI,H → BS+SiI,T , with a migration energy of Em
BI = 0.2 (0.4) eV,

for the GGA (LDA) method. For positively charge systems they found two compet-

ing diffusion paths, both BS+Si+1
I,T → BS+Si+1

I,T , but with different saddle points

and migration energies of Em
BI = 0.8 (1.2) eV or Em

BI = 1.0 (1.3) eV, respectively. For
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negatively charge systems the diffusion path was B−1
I,〈110〉 → B−1

I,〈100〉 → B−1
I,〈110〉 with

migration energy Em
BI = 0.6 (0.5) eV, where the 〈100〉 interstitial is a metastable

dumbbell position aligned in the 〈100〉 direction. The formation energy for the

neutral BS+SiI,T complex was Ef
BI = 2.8 (2.5) eV. The formation energies for the

charged complexes are Fermi-level dependent. Using the values from near midgap

and combining all the mechanisms, they report an activation energy of E∗BI = 3.2 to

3.6 eV, in excellent agreement with the experimental values of E∗BI = 3.25 to 3.87

eV, and a migration energy of Em
BI = 0.4 to 0.7 eV, also in excellent agreement with

the experimental value of Em
BI = 0.6 eV.

The simulation results of Windl et al. were qualitatively confirmed by ab initio

MD simulations at 1200 and 1500 K by Sadigh et al. Sadigh et al. also calculated

scalar activation volumes for the both the interstitialcy and kick-out mechanisms,

reporting values of V ∗BI,i = -3.0 (-2.2) Å3 and V ∗BI,k = -0.46 (0.12) Å3, respectively.

Compared with the experimental value found by Aziz et al. of V ∗BI,k = −3.2± 1 Å3,

this lends further support for the interstitialcy mechanism. An activation volume

tensor for B-interstitial diffusion was reported by Laudon et al. for the saddle point

which is B in a hexagonal position, referenced to isolated substitutional B [78],

¯̄V ∗BH =


-1.77 6.5 4.4

6.5 -1.77 0.3

4.4 0.3 -1.77

 Å
3
.

The trace, tr[ ¯̄V ∗BH ] = -5.3 Å3, compares well to the hydrostatic experimental results

and the fixed-cubic results of Sadigh et al., but if all jumps have similar anisotropy

it does not agree with the results of (100)-oriented biaxial strain tests that tend to

show diffusivity increasing with biaxial strain.

There have also been two recent studies of B diffusion under strain using the same
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migration paths as Windl et al. and Sandigh et al. The calculations of Dunham et

al. [79] are reported in terms of a concentration dependent induced strain instead of

volumes which makes comparison more difficult, but appear to show that the trace

of the activation volume tensor is positive and not aligned in the same direction

as the results of Laudon et al. The results of Lin et al. [80] are limited to biaxial

tension and show a reduction in migration energy within the plane. This is a positive

migration volume, opposite in sign from the negative activation volume. Therefore,

the effect of stress on diffusion is sensitive to whether or not defects can equilibrate

with a free surface. If they do equilibrate, then negative the activation volume will

decrease diffusion in tensile stress. If they do not equilibrate, the positive migration

volume will increase diffusion in tensile stress.

2.1.2.4 Arsenic

Understanding of As deactivation and diffusion improved thanks to several studies

that calculated formation and migration energies for As-vacancy clusters. From

experiments, discussed above, and simulation it is clear that there is a strong binding

energy between As and vacancies. Simulations show that each additional As around

a vacancy provides an energy reduction of about Eb
AsV = 1.2 to 1.5 eV [44, 45, 81, 82].

Three studies have reported migration energies for an As-vacancy complex. For the

As to diffuse, the vacancy starting at a 1st nearest neighbor (1NN) position has

to migrate around a six-member ring and approach the As from a new direction.

The saddle point for the ring mechanism is between the 2NN and 3NN. Pankratov

et al. calculated the formation energy to be Ef
AsV = 2.4 eV and the migration

energy to be Em
AsV = 0.81 eV [83]. Xie and Chen found the formation energy to be

Ef
AsV = 2.37 eV and the migration energy to be Em

AsV = 1.19 eV [45]. Nichols et
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al. found the formation energy to be Ef
AsV = 2.3 eV and the migration energy to be

Em
AsV = 1.07 eV [24]. Xie and Chen calculated migration energies for the case of a

vacancy diffusing between As atoms located at 5NN or 6NN positions from each other

and found that the migration barriers were significantly lowered to Em
AsV = 0.45 or

0.84 eV. This explained an experimental result that found significantly increased As

diffusion at high concentrations during short anneals [84]. Then, the As will quickly

cluster and the diffusivity decreases because the migration barrier for V1As2 diffusion

is calculated to be 2.0 eV [85]. At high enough temperatures, V1As2 will diffuse and

form V1As3 clusters, which judging from the positron annhilation experiments are

even more immobile since there is little evidence of V1As4 clusters.

While the defect injection experiments find that As-interstitial complexes con-

tribute significantly to As diffusion, few simulations have investigated the structure

or energetics. Harrison et al. reported that the lowest activation energy, 3.26 eV,

is for the neutral As-interstitial complex in a 〈110〉 dumbbell structure, with a for-

mation energy of 3.11 eV and a migration energy of 0.15 eV [86]. This is in good

agreement with the work of Nichols et al. that found a formation energy of 3.2 eV

and migration energy of 0.4 eV.

Dunham et al. calculated the energies of As-interstitial complexes and induced

strains for substitutional As and the As-interstitial and As-vacancy transition states.

They reported that the lowest energy interstitial is the 〈110〉 at Ef
AsI = 3.1 eV,

and found a migration energy of Em
AsI = 0.5 eV. They report an isotropic induced

strain for the As-interstitial transition state with activation volume tr[ ¯̄V ∗AsI ] = -1.4

Å3. They also wrote that they found “. . . that the AsV transition state is equivalent

to (the) vacancy transition state in self-diffusion, and can be treated as isotropic.”

However, we know from the results of Centoni et al., and intuition, that the vacancy
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transition state is quite anisotropic, aligned in the 〈110〉 jump direction. They re-

port an isotropic volume tensor because they do not allow the vectors defining their

supercell to deviate from orthonormality.

Sugino and Oshiyama calculated activation energies and pressure dependence for

P, As, Sb, and Si diffusion by vacancy mechanisms, and formation energies and

pressure dependence for P, As, and Sb dopant-intersitial complexes [59]. They de-

termined the activation energy for As diffusion by the vacancy mechanism to be

E∗AsV = 3.9 eV, and E∗AsI = 4.3 eV for the interstitial mechanism. These are high

compared to the other calculations, but in agreement with the range of reported

experimental values reviewed by Fahey et al. [5]. They also determined the change

in vacancy mechanism activation energy when a pressure of approximately 6 GPa is

applied by decreasing the lattice constant of the supercell by 2.0%. Following the

example of Aziz et al. [46], we can calculate the activation volume for the vacancy

mechanism from their activation energy change by including a +pΩ work term for

vacancy formation. This shows that their value corresponds to V ∗AsV = 4 Å3. They

also calculated the formation energy change with pressure for an As-interstitial pair

and found V ∗AsI = 1 Å3. Qualitatively similar results were obtained for the other

dopants and silicon. The As-vacancy result is qualitatively opposite the experimen-

tal results of Nygren et al. However, if we examine the pressure dependence of the

Si-vacancy activation enthalpy we find it has an activation volume of V ∗SiV = -9.4 Å3.

This is somewhat larger than the V ∗SiV = -6.3 Å3 calculated by Centoni et al., and

Table 2.1 shows that the migration and formation volumes disagree, suggesting that

Sugino and Oshiyama’s calculations might be best viewed qualitatively.
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2.1.2.5 Phosphorus and Antimony

There are relatively few simulation studies of P and Sb formation and migration

energies [24, 59, 87, 88] For P diffusion, Nichols et al. report activation energies

of E∗PI = 3.8 eV and E∗PV = 3.4 eV for the interstitial and vacancy mechanisms,

respectively, while Sugino and Oshiyama reported E∗PV = 4.2 eV for the vacancy

mechanism. More recently, Nelson et al. reported a neutral P-vacancy activation

energy of E∗PV = 3.69 eV, which is equivalent to their vacancy formation energy

because they found that the P-V binding energy and exchange energy are equal at

Eb
PV = Ex

PV = 1.05 eV. This seems to assume that the ring migration energy is less

than 1.05 eV, which is not reported but could not be more than 1.23 eV, the sum

of the binding energy and vacancy migration energy, Em
V = 0.18 eV. It is confirmed

by Liu et al. who calculated the ring migration energy to be 0.8 eV, and confirmed

the activation energy for the neutral case. However, they found a lower activation

energy for the negatively charged complex, E∗PV,(−1) = 3.4 eV. They suggest that

inaccuracies in the band structure due to GGA or LDA give a result that is too

low. Point defect injection experiments show that P diffusion is dominated by the

interstitial mechanism and Liu et al. found an activation energy for the P-interstitial

mechanism in the range E∗PI = 3.1 to 3.5 eV, depending on the charge state.

For Sb diffusion, Nichols et al. report activation energies of E∗SbI = 4.9 eV and

E∗SbV = 3.6 eV for the interstitial and vacancy mechanisms, respectively, while Sugino

and Oshiyama report E∗SbV = 3.9 eV for the vacancy mechanism. Nelson et al. only

report the vacancy binding energy, Eb
SbV = 1.45 eV, which gives a formation energy of

Ef
SbV = 2.24 eV. They find that since the Sb dopant is larger than the host Si atoms

the lowest energy position for the Sb-V complex is with the Sb half-way between

lattice points.
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Sugino and Oshiyama calculated activation volumes for vacancy diffusion of P

and Sb, finding V ∗PV = -4.0 Å3 and V ∗SbV = 1.3 Å3. The activation energy for Sb

diffusion is in very good agreement with the experimental value, V ∗SbV = 1.2 ± 0.8

Å3, of Aziz et al.

2.2 Factors Affecting Atomistic Simulations

As discussed by Probert and Payne [63] or Puska et al. [61], the observed vari-

ations in calculation results can come from differences in the exchange-correlation

functional, the psuedopotential used, the shape and size of the supercell, symme-

try restrictions, and the Brillouin zone sampling used. Probert and Payne elabo-

rate a methodology for obtaining well converged ab initio calculations which starts

by converging the basis-set size, followed by the Brillouin-zone integration, the su-

percell shape and size, and the calculated Hellmann-Feynman forces. When the

Hellmann-Feynmann forces are converged the atomic positions are relaxed and the

defect structure converged.

Due to interactions between the defect and its periodic images the finite supercell

size affects the calculated energy and volume, and it can also affect the symmetry

of the defect structure. For example, Zywietz et al. [89] and Puska et al. show

that the Jahn-Teller distortion of the vacancy becomes stable after increasing the

supercell size. It is most common to treat the size convergence by increasing the

supercell size until the energy, defect symmetry and atomic positions are converged

to some limit. However, this does not account for any systematic effects of periodic

boundary conditions and generally has not included a separate volume convergence,

which may be slower than energy convergence. Probert and Payne considered the

atomic displacements and observed that near the defect the difference in relaxation
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of successive atomic shells oscillates near the defect. They then treated the volume

relaxation by showing that with a large enough supercell there is some convergence of

the relaxation of successive shells of atoms before the shell farthest from the defect.

While the calculation is certainly not converged if this was not the case, it does

not guarantee that there are not systematic elastic effects causing convergence to

the wrong solution. By the nature of periodic boundary conditions the difference in

relaxation of successive shells diminishes to zero at the periodic boundary.

Probert and Payne also noted that supercell shape affects the convergence rate

of the formation energy of an unrelaxed silicon vacancy. The face-centered cubic

(FCC) supercells converge the most slowly, and the body-centered cubic (BCC)

supercells converge the most quickly. They wrote that “. . . if we simply order the

different possible supercells in terms of the total number of atoms (or equivalently,

the defect-image distance), we will be misled as the defect density will be changing

in a nonmonotonic manner. . . ” and provided plots of unrelaxed formation energy as

a function of number of atoms and defect density. However, this is backwards, it is

the defect-image distance and the number of images at that distance that changes

with supercell shape, not the defect density which is just (ΩN)−1 for an unrelaxed

defect. They demonstrated there is a defect-defect interaction which perturbs the

electronic charge density. If this perturbation aligns with the bonding, as it does in

the BCC supercell, there is less of a localized charge-density difference and hence less

of an effect on the unrelaxed formation energy. This explains the observed difference

in convergence rates for unrelaxed formation energies, but it does not give us any

indication of how supercell shape might affect energies or volumes through the elastic

fields of relaxed defects.

The convergence of basis-set size, Brillouin-zone integration and calculated Hellmann-
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Feynmann forces are particular to DFT calculations. The atomic relaxation and

convergence of the defect structure with supercell shape and size are sensitive to

quantum mechanical effects, but are also sensitive to longer-range elastic effects. For

example, the results of Centoni et al. showed that there is a change in the trace of

the volume tensor when the supercell is allowed to fully relax, and the vacancy mi-

gration volume tensor results of Dunham et al. showed that boundary conditions can

drastically change the volume tensor symmetry. The supercell approximation creates

a periodic array of defects, each defect surrounded by a strain field that it induces

in the bulk material. Near the defect the atomic relaxation is highly non-linear, but

farther away it is well-described by linear elasticity. For small supercells, the non-

linear relaxations near the defect interact with those of its periodic images and affect

the calculation of energies and volumes. As the supercell size increases those short

range interactions vanish, but there will still be a long-range elastic field that could

interact with the long-range elastic fields of its periodic images. It is not immedi-

ately apparent how these elastic fields couple with the shape and size of a supercell

to affect the calculated energy and volume, especially when considering anisotropic

defects. These questions are addressed in the work presented in Chapter 3.
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CHAPTER 3

Accuracy of Supercell Calculations

In this chapter we use continuum linear elasticity to quantify the effect of bound-

ary conditions on atomistic calculations to test the validity of formation energies

and volumes obtained using the supercell approximation. Then we compare linear

elasticity’s predictions to atomistic calculations using an empirical potential to reach

the far-field.

3.1 Continuum Elasticity Calculations

When a defect is created in a computational cell it induces relaxations in the

surrounding material. It is natural to treat the interactions between periodic images

of the defect in the supercell using continuum elasticity. Close to the defect atomic

relaxations depend significantly on the bonding changes and may be very non-linear,

but in the far-field the strain is well described by linear elasticity. Therefore, we use

linear elasticity to quantify the effects of the boundary conditions as follows. Within

linear elasticity point defects are modeled as centers of contraction or expansion

by an elastic dipole. The solution for stress and strain due to an elastic dipole in

an infinite linear elastic medium can be obtained using Green’s functions. Then,

through cutting and welding operations in the manner of Eshelby [90, 91], a solution

can be found for a defect in a body with arbitrary boundary conditions. This allows
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Figure 3.1: Schematic of an elastic dipole. Here the forces, F , are all the same magnitude, separated
by the same distance, d, and aligned with the orthonormal basis, e, so it is an isotropic
dipole.

us to determine the effect of PBC conditions on atomistically determined formation

or migration energies and volumes.

3.1.1 Elastic dipole

An elastic dipole is composed of balanced point forces separated by a small dis-

tance, as shown in Figure 3.1.1. The associated dipole tensor is

(3.1) ¯̄D =
3∑
i=1

F̄i ⊗ 2d̄i,

From the dipole, a Green’s function approach can be used to determine the resulting

displacement field. The Green’s function for an anisotropic, linear infinite body

satisfies

(3.2) Cijkl
∂2Gkm

∂xj∂xl
+ δimδ(x̄− x̄′) = 0,
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where Cijkl is the elastic stiffness tensor, Gkm is the k-component of the displacement

at the position x̄ due to a unit point force at x̄′ in the m direction, and δim is the

Kronecker delta. Then, the displacement field in the infinite body at x̄ given a point

force at x̄′′ is determined from the Green’s function by

(3.3) ū∞(x̄; x̄′′) =

∫
R3

¯̄D ¯̄G(x̄− x̄′)∇̄x̄′δ(x̄
′ − x̄′′)dV ′,

where x̄′ is the variable of integration. From this, the strain field can determined as

(3.4) ε∞il =
1

2

(
∂2Gij

∂xk∂xl
+

∂2Glj

∂xk∂xi

)
Djk,

and the stress field as σ∞ij = Cijklε
∞
kl . Evaluation of the infinite body displacement,

stress, and strain can be obtained using analytical expressions for ¯̄G and its deriva-

tives obtained by Barnett [92].

3.1.2 Formation Energy

From the solutions for stress and strain in an infinite body, the resulting strain

energy can be calculated from

(3.5) U∞ =

∫
R3

1

2
σ∞ij ε

∞
ij dV.

Let us split the infinite body into two regions, B0 with surface S0 enclosing the defect,

and B1 including the rest of the body. The two regions have strain energy U∞,B0 and

U∞,B1 , respectively. To compare the formation energies of atomistic calculations with

various boundary conditions we use U∞B0 as a reference state. Using the Divergence

Theorem since B1 is divergence-free, the volume integral above can be related to a

surface integral,

(3.6) U∞ = U∞B0 −
∫
S0

1

2
σ∞ij nju

∞
i dA,
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where n̄ is the unit outward normal to S0.

Free boundary conditions on B0 are obtained by holding the traction fixed at σ∞ij nj

on S0, cutting along the surface, and then applying the traction σFijnj = −σ∞ij nj to

S0. Then, UF,B0 , the strain energy in B0 with FBC is

(3.7) UF,B0 = U∞,B0 −
∫
B0

1

2
σFijε

F
ijdV.

Since σFij is divergence-free in B0, this can also be related to a surface integral,

(3.8) UF,B0 = U∞,B0 −
∫
S0

1

2
σFijnju

F
i dA,

where uFi is the displacement arising from the traction σFijnj.

An atomistic calculation with PBC and constant volume (CV) would correspond

to taking the FBC result and displacing the boundary by uPi = −(u∞i + uFi ), with

associated stress and strain, σPij and εPij. Therefore, the strain energy of B0 in the

PBC case is

(3.9) UP,B0 = UF,B0 +

∫
B0

1

2
σPijε

P
ijdV.

For similar reasons as above, this can also be written

(3.10) UP,B0 = UF,B0 +

∫
S0

1

2
σPijnju

P
i dA.

To obtain an average zero pressure PBC, an additional traction is applied equal to

the opposite of the average traction on each surface in the constant volume PBC

condition. In an atomistic calculation, the constant volume system would feel the

opposite uniform stress/strain field, σCVij = SijklεCVkl , which performs the return

transformation. Since the average stress in the relaxed supercell is zero, the average

stress measured in the constant volume supercell is σav.ij = σCVij . Therefore, the
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zero-stress PBC formation energy, Ef , can be related to the constant volume PBC

formation energy by

Ef = Ef,CV −
∫
B

1

2
σCVij εCVij dV,

Ef = Ef,CV − V ref 1

2
σav.ij Sijklσav.kl ,(3.11)

where V ref = B0, the volume of the finite body before the defect has been introduced

or any transformations performed.

Our collaborators have numerically evaluated the quantities UF,B0 and UP,B0 at

zero average pressure for cubic B0 using the finite element method. The value for ¯̄D

was obtained from atomistic calculations as described in the following section. The

results, shown in Figure 3.2 along with atomistic calculations described in Section 3.2,

demonstrate that both UF,B0 and UP,B0 converge to U∞ as the volume of the B0,

VB0 → ∞. This indicates that formation energies in atomistic calculations will

converge with system size.

3.1.3 Formation Volume

A somewhat similar process is used to determine the predicted continuum linear

elastic effect of boundary conditions on atomistically calculated relaxation volumes.

For any boundary conditions the observed tensorial volume change in a finite body,

B, from the original defect-free state, ∆Vkl, is

(3.12) ∆Vkl =

∫
B

εkldV.

From the stress-strain relation this is

(3.13) ∆Vkl = Sklij
∫
B

σijdV.
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Figure 3.2: Difference between the strain energy of vacancy formation in an infinite body, Uf
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strain energies of vacancy formation in a finite body, Uf
(·),B0

, using either periodic (PB)
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where Sklij is the constant compliance tensor. Note that Equation 3.13 is not directly

comparable to atomistic calculations because σij is the continuum stress field and

contains a singularity, which does not exist in atomistic calculations. To evaluate

the effect of boundary conditions we wish to use the divergence theorem to relate

this to a surface integral. Therefore we write Equation 3.13 as

(3.14) ∆Vkl = Sklij
∫
B

[
∂(xiσmj)

∂xm
− xi

∂σmj
∂xm

]
dV.

It will become useful to divide the finite body, B, into a region enclosing the center

of expansion or contraction, B0 and a region surrounding it, B1. In this case, the

body is finite so B1 is a finite region. Then we write

(3.15)

∆Vkl = Sklij


∫
B0

[
∂(xiσmj)

∂xm
− xi

∂σmj
∂xm

]
dV +

∫
B1

[
∂(xiσmj)

∂xm
− xi

∂σmj
∂xm

]
dV

 .

The equilibrium equation for the elastic dipole is

(3.16)
∂σjm
∂xm

+Djm
∂δ(x̄− x̄′)

∂xm
= 0.
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Substituting this in Equation 3.15 gives

(3.17)

∆Vkl = Sklij

−
∫
B0

xiDjm
∂δ(x̄− x̄′)

∂xm
dV +

∫
B

∂(xiσmj)

∂xm
dV −

∫
B1

xi
∂σmj
∂xm

dV

 .

We evaluate the first term using the standard result for the spatial derivative of the

Dirac-delta function, and the second term using the symmetry of the stress tensor

and the Divergence Theorem. The third term drops out due to the fact that σmj is

divergence-free over B1. Using these three results in Equation 3.17 we obtain

(3.18) ∆Vkl = SklijDij + Sklij
∫
S

xiσjmnmdA.

With FBC, the surface integral vanishes and the volume change defines the relaxation

volume tensor,

(3.19) ∆Vkl ≡ SklijDij.

The difference in ∆Vkl between FBC and arbitrary boundary conditions can be de-

termined by evaluating the integral in Equation 3.18. However, in atomistic calcula-

tions with PBC it is more convenient to compare with a volume integral. Therefore

we rewrite the second term of Equation 3.18 using a stress field 〈σjm〉, such that

〈σjm〉 = σjm in B1, and 〈σjm〉 is non-singular and divergence-free in B0. We then use

the fact that 〈σjm〉 so-defined is divergence-free over all of B to obtain the expression

(3.20) ∆Vkl = V r
kl + Sklij

∫
B

〈σij〉dV,

where V r
kl is the relaxation volume tensor. The field 〈σij〉 is a good model for an

atomistic stress field since it is non-singular and divergence-free over B and is equal

to the elastic field in B1. In what follows, we will use the virial formulation for 〈σij〉.

To compare Equation 3.20 to atomistic calculations with PBC we note that su-

percell relaxation occurs by changing the magnitude and direction of the vectors that
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define the supercell. The change in these vectors defines an average strain relative

to the perfect structure, so we find

(3.21) ∆Vkl = V refεav.kl = V r
kl + Sklijσav.ij V

ref .

The stress σav.ij is the average over B, as would be measured using the virial formu-

lation, and since Equation 3.21 is derived using the assumptions of linear elasticity

theory the integral is carried out over the entire undeformed volume, V ref . This

result shows that there are no elastic image effects, and it holds for defects of any

anisotropy, and supercells of any shape or size. The observed volume change in

atomistic calculations is the relaxation volume plus a correction term that arises if

the system is not allowed to fully relax. For PBC with zero average stress, linear

elasticity predicts that the observed volume change is exactly the relaxation volume.

For self-equilibrated stress states in parallelepiped-shaped supercells the average sur-

face stress must equal the resolved virial stress, so Equation 3.21 is equally valid if

σav.ij is measured from the forces crossing the supercell boundaries. Using this fact,

Equation 3.21 can also be derived for PBC by evaluating the surface integral in

Equation 3.18.

This results of this section are a validation that the supercell approach does not

introduce any systematic errors due to elasticity. In the following section we present

atomistic calculations to show that in practice system size does effect the observed

volume change. FBC introduce surfaces and PBC an infinite array of defects that

change the elastic moduli and result in deviations from elasticity’s prediction at small

cell sizes.
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3.2 Atomistic Calculations

We calculated the formation energy and volume tensor of a vacancy and a 〈110〉

dumbbell interstitial in Stillinger-Weber silicon by energy minimization using the

conjugate gradient method. The Stillinger-Weber potential is a commonly used

empirical potential for silicon [93, 94] and as such it is not as accurate as ab ini-

tio calculations near the defect, but is useful for our purposes since the decreased

computational costs allow us to use the large system sizes necessary to check the

predictions of continuum linear elasticity in the far-field.

3.2.1 Stillinger-Weber Potential

The Stillinger-Weber potential consists of two- and three-body terms:

Φ =
N∑
i<j

v2(rij) +
N∑

i<j<k

v3(r̄i, r̄j, r̄k),(3.22)

v2(rij) = ef2

(
rij
ξ

)
,(3.23)

v3(r̄i, r̄j, r̄k) = ef3

(
r̄i
ξ
,
r̄j
ξ
,
r̄k
ξ

)
,(3.24)

where the energy and length units e and ξ are chosen to give f2 a minimum value of

-1 if its argument is 21/6. The two-body function, f2, depends only on the distance

rij = |r̄i − r̄j| between a pair of atoms with position vectors r̄i and r̄j and has a

cut-off at r = a without discontinuities in any derivatives with respect to r:

(3.25) f2(r) =


A(Br−p − r−q) exp

(
1

r − a

)
r < a

0 r ≥ a

The three-body function, f3, depends on the scalar distances between the three atoms

and also on the angles subtended at the vertices of the triangle formed by the three

atoms. In the following relations Θjik is the angle subtended at vertex i between
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atoms with position vectors r̄j and r̄k:

(3.26) f3

(
r̄i
ξ
,
r̄j
ξ
,
r̄k
ξ

)
= h

(
rij
ξ
,
rik
ξ
,Θjik

)
+h

(
rji
ξ
,
rjk
ξ
,Θijk

)
+h

(
rki
ξ
,
rkj
ξ
,Θikj

)
,

(3.27)

h(r1, r2,Θ) =


λ exp

(
γ

r1 − a
+

γ

r2 − a

)(
cos Θ +

1

3

)2

r1 < a and r2 < a

0 otherwise

The equilibrium bond angle in the tetrahedral structure of silicon satisfies cos Θ =

−1/3. The energetic contribution of any bond angle distortions are thus represented

by the trigonometric term in h. The lattice spacing and bond energy of silicon at

0 K is obtained with ξ = 2.0951 Åand e = 2.3146 eV. Note that this follows other

work in multiplying the value of e in the original Stillinger-Weber paper by 1.068 to

match the cohesive energy of the experimental value [94, 95].

The optimized set of parameters for this potential is

A = 7.049556277 B = 0.6022245584

p = 4, q = 0 a = 1.80

λ = 21.0 γ = 1.20

3.2.2 Methods

We calculated formation energies and volumes for cubic systems ranging in size

from 64 to 262,144 atoms for the vacancy and 64 to 110,592 atoms for the interstitial.

Note that creating the defect changes the number of atoms by one, but we will refer

to system sizes by the number of atoms in a perfect crystal reference state. Separate

calculations were run with periodic and free boundary conditions. The vacancy

was constructed by removing an atom near the center of the simulation cell. The

relaxation around a vacancy is inwards, see Figure 3.3, so we relaxed the four nearest

neighbors to the vacancy towards the vacancy by 24% of the equilibrium atomic
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Figure 3.3: A vacancy in silicon viewed along the 〈100〉 direction. The open circles mark positions
of atoms in the perfect crystal; i.e., before vacancy formation. Displacements have been
scaled 10x for clarity.

distance to accelerate convergence and avoid the metastable configuration where

atoms remain in the perfect crystal configuration. The 〈110〉 dumbbell interstitial

was constructed by displacing an atom near the center of the simulation cell by (-

0.162, -0.162, +0.1325) unit cells and adding an interstitial that is displaced (+0.162,

+0.162, +0.1325) from the first atom’s original position. Upon relaxation the atoms

composing the dumbbell relax in the z direction away from the neighboring atoms in

the 〈110〉 chain, so to speed convergence the dumbbell atoms were given the initial

z displacement indicated above. The sign of the z displacement depends on which

atomic site the dumbbell is located.

The 〈110〉 dumbbell interstitial in Stillinger-Weber silicon was found to have two

different configurations with nearly equal formation energy, as shown in Figure 3.4.

The major difference between the two is that the lower energy configuration, which

we call (A), had non-zero V f
xz and V f

yz, while for the higher energy configuration,
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Figure 3.4: Structure of the relaxed Si 〈110〉 dumbbell interstitial with displacements scaled by 3x
for clarity. In configuration (A), the dipole tilts and breaks the symmetry about the
(110) plane, resulting in a slightly lower energy than in configuration (B). Both (A) and
(B) maintain symmetry about the (11̄0) plane.
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which we call (B), V f
xz and V f

yz are zero. As can be seen in Figure 3.4, the non-zero

V f
xz and V f

yz is manifested locally by the dumbbell tilting and breaking the symmetry

about the (100) plane. Both structures maintain symmetry about (11̄0). For both

FBC and PBC an initially perfect crystal with a defect, small random displacements,

and less than 512 atoms relaxed to (A), with 512 atoms the crystal relaxed to (A) or

(B), and with greater than 512 atoms the crystal became stuck in configuration (B).

We attempted several schemes of increasing complexity to ensure minimization to

the lower energy configuration (A) at large system sizes, and the successful method

involved taking a relaxed (A) configuration at one system size and adding atoms at

the surface to construct the next largest system size. The new atoms were positioned

according to the final average strain state of the previous system.

Three boundary conditions were used: FBC, PBC at constant pressure (PBC

CP), and PBC at constant volume (PBC CV) equal to the volume of the relaxed

defect-free system. We check that there are no elastic image effects by comparing

the FBC and PBC calculations, and check the second term in Equation 3.21 and

Equation 3.11 by comparing PBC CP and PBC CV calculations. We also imposed

small random initial displacements of approximately 1% of the atomic spacing on

all the atoms and created ten samples for each system size, except for the largest

vacancy systems for which there were five samples. The energy of the system was

then minimized from this starting configuration using the conjugate gradient method.

The minimization was considered complete when fourteen sequential iterations each

resulted in less than a 1 neV reduction in energy, with the last seven sequential

iterations also producing less than a 10−4 Å3 change in volume.

As noted in the previous section, at mechanical equilibrium with the parallelepiped-

shaped computational cells used, a relaxation to zero surface traction is identical to
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relaxation to zero average volumetric stress as measured by the virial formulation.

However, in practice we found it preferable to use the virial stress for two reasons.

First, in diamond cubic silicon before mechanical equilibrium is reached, xy-shearing

results in a state of alternating positive and negative stress between (001) planes

as the interpenetrating FCC lattices attempt to relax internally relative to each

other. If the stress is only calculated at a single boundary, this gives an inaccurate

measurement of the overall stress state and impedes convergence to zero average

stress. Second, given the same nominal stress convergence criteria, the virial stress

is stricter because it averages over the entire cell while the boundary stress only

averages over the boundary. At cell sizes from 64 up to 21,952 atoms the energies

and volumes measured using the zero virial stress condition matched the energies

and volumes resulting from using the zero average surface traction condition in the

periodic case or relaxation in the absence of constraints for free surface boundary

conditions. However, the spread in values was reduced when the zero virial stress

condition was employed. For these reasons we used the virial formulation to calcu-

late an average stress tensor in the computational cell and zero average stress (±10−2

Pa) was maintained by scaling atomic positions and, if present, periodic boundaries.

The elastic moduli of Stillinger-Weber silicon were used to adjust the strain on the

system in order to maintain zero average stress during the relaxation process. In

the FBC case, after the energy was minimized in this way, rescaling toward the zero

average stress condition was discontinued and the energy was again minimized to

reach a zero surface traction condition. We found that this method reduced scatter

in the formation volume of FBC samples.
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3.2.3 Measurements

As discussed previously, formation volume measurements are straightforward for

periodic boundary conditions. Strain is defined by the position of the periodic bound-

aries, and each component of the relaxation volume is determined by multiplying the

corresponding strain component by the perfect reference volume

(3.28) V r
ij = εav.ij V

ref .

Then, the formation volume is

(3.29) V f
ij = εav.ij V

ref ± 1

3
Ωδij,

where (+/−) is for a (vacancy/interstitial) defect. For FBC, the volume change of an

elastic body must be determined from the displacement of the surface of the sample

according by

(3.30) V f
ij =

∫
S

1

2
(uinj + ujni)dA±

1

3
Ωδij,

where u is the displacement, and n is the surface normal. In an atomistic simulation,

this is a finite sum of individual atomic displacements and the differential area is

the average surface area per surface atom. This method is not appropriate for PBC

because it does not take into account strain between atoms on either side of the

periodic boundary, which is small, but significant when multiplied over the area of

the boundary.

We calculated elastic moduli for defect-free Stillinger-Weber silicon by using a sin-

gle perfect unit cell with periodic boundaries. The bulk modulus, K, was calculated

by measuring the volume change under hydrostatic pressure of σh = −100 MPa and

σh = 100 MPa. Then,

(3.31) K =
σh

∆V
V (σ = 0).
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Additionally, σxy was measured for εxy = εyz = 0.001 so that C44 could be calculated,

(3.32) C44 =
σxy
2εxy

.

The diamond cubic structure can be thought of as two interpenetrating FCC lattices,

which can relax internally and produce an internal strain. We measured C44 with

internal strain because it does occur after a defect is introduced. We also calculated

the bulk and shear moduli as a function of system size for both FBC and PBC

systems with an interstitial. These systems were created for N = 216 to 110,592

atoms without any random initial displacements and tested as above, except stress

control had to be used for the FBC case. In this case the strains were calculated using

a relaxed system with an interstitial and the same number of atoms as a reference

state.

3.2.4 Results

As predicted by continuum linear elasticity, the formation energies and volume

tensors calculated with FBC and PBC, at both constant pressure and volume, con-

verge to the same value in the large-size limit, as shown in Figure 3.5 for the vacancy

and Figure 3.6 for the 〈110〉 interstitial (A). The trace of the formation volume is

shown, but each component of the volume tensor converged similarly. The 64 atom

FBC samples underwent surface reconstructions and are not included in the plots or

analysis. No other samples underwent surface reconstructions, and in the Stillinger-

Weber potential the equilibrium distance and angle is not coordination dependent,

so surface stress is not a factor in these results.

The formation energy converges more rapidly with PBC than FBC, as seen in

Figures 3.5(a) and 3.6(a). As predicted by continuum linear elasticity, and shown in
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Figure 3.5: The (a) formation energy and (b) trace of the formation volume converge in the large-
size limit for all boundary conditions. “PBC CV uncorrected” and “PBC CV” indicate
formation energies before and after using Equation 3.11.
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61



10
1

10
2

10
3

10
4

10
5

10
6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

<110> Interstitial (A): Ef

N

ab
s(

E
f,i

nf
−

E
f ) 

(e
V

)

FBC
PBC CP
PBC CV
PBC CV uncorrected

Figure 3.7: The 〈110〉 interstitial (A) formation energy converges in the large-size limit to
Ef,∞

SiI,〈110〉,(A) = 4.7091 eV for all boundary conditions. “PBC CV uncorrected” and
“PBC CV” indicate formation energies before and after using Equation 3.11.

Figure 3.7, formation energy converges in the large-size limit, with the error decreas-

ing as 1/N ,

(3.33) log[Ef (N)− Ef,∞] = const− log(N).

The analogous result for the vacancy is shown in Figure 3.2. The converged formation

energies, Ef,∞, were determined from the formation energies at a given system size,

Ef (N), by fitting the data to Equation 3.34. The converged energy for the vacancy

are Ef,∞
SiV = 2.8239 eV. The converged energies for the interstitial are Ef,∞

SiI,〈110〉,(A) =

4.7091 eV, and Ef,∞
SiI,〈110〉,(B) = 4.7122 eV. These quantities are with uncertainty no

greater than 10−4 eV.

The formation energies are in agreement with the values calculated elsewhere for

the Stillinger-Weber potential [94, 95, 96, 97]. Some of the literature seems to confuse

the 〈110〉 dumbbell and what is generally called the “extended” interstitial. The
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extended interstitial is lower energy than the 〈110〉 dumbbell in empirical calculations

[96, 98], but was found to be metastable in an ab initio calculation [75]. No other

Stillinger-Weber results are known for the full 〈110〉 formation volume tensor.

Contrary to the prediction of continuum linear elasticity, the formation volume

tensor was also found to converge with system size, the error decreasing as 1/N ,

as shown in Figure 3.8(a) for the 〈110〉 interstitial (A). The trace of the formation

volume tensor converges much more rapidly with PBC than FBC. The convergence

of each component of the volume tensor is not shown but similar. The converged

values of the formation volume tensor were determined similarly to the formation

energies, and are

¯̄V f,∞
SiV =


-4.633 0 0

0 -4.633 0

0 0 -4.633

 Å
3
,

¯̄V f,∞
SiI,〈110〉,(A) =


9.585 7.972 ±2.176

7.972 9.585 ±2.176

±2.176 ±2.176 -5.493

 Å
3
,

¯̄V f,∞
SiI,〈110〉,(B) =


8.871 7.296 0

7.296 8.871 0

0 0 -4.849

 Å
3
.

with uncertainty in the components of ¯̄V f,∞ no greater than 10−3 Å3. The (±)

for (A) indicates that it is physically equivalent for the tilt to be in either direction

since the sign of shear strains is arbitrary.

The principle axes of the 〈110〉 (A) formation volume tensor are tilted 7.5◦ off the

(001) plane. To our knowledge, this is the first report of the tilted 〈110〉 interstitial.

This may be due to a focus on the energy of the defect rather than on the structure
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of the relaxation in previous Stillinger-Weber studies. In a recent ab initio study [65]

there was not any tilting in the 〈110〉 interstitial, despite allowing the full relaxation

of the supercell, indicating that the tilt is likely to be an artifact of the Stillinger-

Weber potential.

Continuum linear elasticity’s inability to predict the formation volume tensor

convergence with system size is due to its assumption that the elastic moduli are

constant. The slow convergence of the formation volume tensor with FBC is caused

by the slow convergence of elastic moduli, as shown in Figure 3.8. Decreased coordi-

nation of surface atoms results in decreased stiffness. The similarity to the formation

volume convergence is apparent. Note that Figure 3.8 plots only the absolute values

of the convergence, therefore the direction of the convergence can not be determined

from the figure. We observed that in systems with FBC the elastic moduli increase

with system size, matching the observed decrease with system size in the magnitude

of the volume relaxation. In other words, as the moduli increase with system size

the outward relaxation around the interstitial decreases in order to reduce the strain

energy in the surrounding system. In systems with PBC, due to bonding changes at

the defect there is a slight decrease in the bulk modulus and a slight increase in the

shear modulus with increasing system size. The trace of the formation volume ten-

sor shows an increase in the magnitude of the relaxation around the interstitial with

increasing system size, corresponding to the decrease in the bulk modulus. Thus, the

convergence of the elastic moduli in the system with a defect to the elastic moduli

of the defect-free system is an indication of the convergence of the formation volume

tensor and a form for the error can be expected. The elastic moduli convergence is

in agreement with the results of Windl et al. [66] and suggests that either the preci-

sion of those calculations or electrostatic effects are hiding the associated formation
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volume convergence. Similar to the approach of Castleton and Mirbt [99], we can

use the convergence rate to estimate the final converged formation volume tensor.

At this convergence rate, with formation volume calculations for systems with N1

and N2 atoms, the estimated formation volume in the large-size limit is

(3.34) V f,∞(N2) =
N1V

f (N1)−N2V
f (N2)

N1 −N2

.

Figure 3.9 shows how this estimate converges with system size for the 〈110〉 intersti-

tial (A), allowing us to estimate the converged formation volume within the accuracy

of the measurements, 10−3 Å3, by extrapolating from the N1 = 512 and N2 = 1728

systems.

Finally, the agreement between calculations with PBC CP and PBC CV in Fig-

ures 3.5 and 3.6 demonstrates that correction terms calculated using linear elasticity

do hold, at least to a good approximation. When the system is not allowed to fully
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relax we can adjust the formation volume tensor by using Equation 3.21, and we

can adjust the formation energy to account for elastic strain energy by using Equa-

tion 3.11. At small system sizes, Figures 3.5 and 3.6 show that there are small

differences between PBC CP and PBC CV which can be attributed to using the

elastic moduli of a perfect system in Equations 3.21 and 3.11, rather than the actual

moduli of the system with a defect, to strain dependence of the moduli, or strain de-

pendence of the defect’s strength. As the system size increases these effects decrease

and the calculations converge in the large-size limit.

A nonlinear elasticity theory might be parameterized to model the convergence of

the volume tensors with cell size. Finite strains occur in the near field of the defect,

are rapidly varying, and are strongly dependent on the type of defect. Therefore, a

nonlinear elasticity model, most of which have only a small number of free param-

eters, would need to be fit afresh for each type of defect. The predictive capability

of commonly used nonlinear elasticity models therefore is somewhat limited in the

near field of defects. Rather than try to predict the convergence rate and extrapo-

late from fully atomistic calculations, it might be simpler to use a “hybrid” method

that links a fully atomistic calculation around the defect to a continuum mechan-

ics description of the surrounding material [100]. Currently, hybrid methods using

accurate density functional theory (DFT) descriptions of the atomistic region are

limited to metals [101], and semiempirical tight binding is used for non-metals [102].

The size-dependence of the elastic constants is also a reminder that defect density

affects elastic constants and that changes in elastic constants affect formation volume

tensors. At high defect concentrations, continuum simulations of defect formation

and diffusion may need to take this into account using data from calculations at high

defect densities.
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3.3 Conclusions

The work presented in this chapter validates the supercell approach for calculating

formation energies and volume tensors. We have formally shown that, according to

linear elasticity, the formation energy of converges with the system size and that the

calculated relaxation volume tensor of any anisotropic defect in any shape or size

supercell is not affected by PBC at zero average stress. This rigorously demonstrates

why the supercell approach can provide accurate calculations of defect parameters.

When the supercell is not allowed to fully relax, the average stress can be used to

calculate the relaxation volume tensor and formation energy. Atomistic calculations

verify linear elasticity’s predictions in the far-field for both an isotropic vacancy and

an anisotropic 〈110〉 interstitial in Stillinger-Weber silicon, and show that, in practice,

bonding changes at the defect result in elastic moduli changes. The observed 1/N

decrease of the error of the relaxation volume tensor is due to to the convergence of

the elastic moduli. Knowledge of this convergence rate allows for accurate estimation

of the relaxation volume tensor with relatively modest simulation sizes.
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CHAPTER 4

Modeling Collective Diffusion Behavior

As we noted in the introduction, KMC simulations are an essential tool for mod-

eling the complex behavior exhibited by collections of diffusing species. Dopant

diffusion is significantly affected by concentration, stress, time and the underlying

crystal lattice. In some cases, KMC simulations are used to calculate diffusivities

that can be used in continuum models. In other cases, KMC simulations are used to

directly determine dopant distributions. This may be especially relevant under non-

equilibrium conditions and at small scales where deviations from average behavior are

more important. In this chapter we will first discuss how continuum diffusivities are

calculated from microscopic hops rates and numerical simulations of atomic motion.

Then we will review the experimental and computational literature for dopant diffu-

sion as a function of concentration, time, and stress. Finally, we will parameterize a

model for vacancy-mediated As diffusion from ab initio literature and consider the

difficulties that occur when using the standard KMC method to calculate diffusivity.

4.1 Calculating Diffusivity

Although atomic motion is driven by chemical potential gradients rather than con-

centration gradients, it is concentration that is typically directly observable. Fick’s
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Figure 4.1: Random jumping on a square lattice. Figure as in [18].

first law,

(4.1) J̄ = − ¯̄DC∇̄C,

relates the atomic flux vector J̄ to the concentration gradient ∇̄C through the chem-

ical diffusivity tensor ¯̄DC .

Fick’s fist law essentially describes how random particle motion causes a net flux

down a concentration gradient. Equation 4.1, an empirical observation that holds

in many systems, can be derived by considering random atomic hopping on a cubic

lattice [10, 18]. Let there be two neighboring planes, as in Figure 4.1, one on the

left with a concentration n1 atoms per m2 and the other on the right with n2 atoms

per m2, separated by a distance α m. The atoms jump from plane to neighboring

plane with a jump rate Γ s−1, and Γ = 6R, where R is the transition rate of an

individual jump. Then, the number of atoms per m2 per s jumping from left to right is

J1→2 = 1
6
n1Γ, where the factor 1

6
comes from an assumption that in three dimensions

it is equally likely for an atom to jump in any of the six directions. Similarly, the

number of atoms per m2 per s jumping from right to left is J2→1 = 1
6
n2Γ. The net

flux of atoms per m2 per s from left to right is J = J1→2 − J2→1 = 1
6
(n1 − n2)Γ.
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The concentration of atoms per m3, C, is related to the number of atoms per m2 on

a plane by n = αC. Since the concentration gradient is ∂C/∂x = (C2 − C1)/α, it

follows that

(4.2) J = −
(

1

6
Γα2

)
∂C

∂x
.

This is Fick’s first law, with isotropic diffusivity

(4.3) DC =
1

6
Γα2,

and holds for any cubic lattice if α is the individual jump distance, as we’ll show

below following the example of Einstein [18, 10, 103]. In order to derive Equation 4.3

off a simple cubic lattice, we will relate the mean squared displacement of a discrete

random walker to that of the continuum solution for diffusion away from a point. This

exercise will also help illuminate the general approach for determining continuum

diffusivity from microscopic hops.

First, we calculate the squared displacement of a random walker that has made

n jumps, by

(4.4) R2
n =

(
n∑
i

r̄i

)2

,

where r̄i is the vector of magnitude ri for jump i. Multiplying out the sums and

regrouping the terms we can write

(4.5) R2
n =

n∑
i

r2
i + 2

n−1∑
j=1

n−j∑
i=1

r̄i · r̄i+j =
n∑
i

r2
i + 2

n−1∑
j=1

n−j∑
i=1

riri+j cos θi,i+j.

If each jump is of equal magnitude α, and we average over the ensemble of diffusing

particles, then the mean squared displacement is

(4.6) 〈R2
n〉 = nα2

(
1 +

2

n

〈
n−1∑
j=1

n−j∑
i=1

cos θi,i+j

〉)
.
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The term in parentheses is called the correlation factor, f ∗, and 〈 〉 indicates an

ensemble average. For random walkers on a cubic lattice each jump direction is

uncorrelated with the others and the average of the double sum will be zero, so that

f ∗ = 1 and

(4.7) 〈R2
n〉 = nα2.

Next, we determine the continuum solution for diffusion from a point. Mass

conservation is given by the condition

(4.8)
∂C

∂t
= −∇̄ · J̄ ,

which with Equation 4.1 gives Fick’s second law,

(4.9)
∂C

∂t
= ∇̄ ·

(
¯̄DC∇̄C

)
.

When there are multiple diffusing species Equation 4.9 is generalized

∂CA
∂t

= ∇̄ ·
(

¯̄DC
AA∇̄CA

)
+ ∇̄ ·

(
¯̄DC
AB∇̄CB

)
∂CB
∂t

= ∇̄ ·
(

¯̄DC
BA∇̄CA

)
+ ∇̄ ·

(
¯̄DC
BB∇̄CB

)
,(4.10)

where A and B indicate different species. When the chemical diffusivity is constant

with concentration, ¯̄DC = DC , Fick’s second law for a single species can be written

(4.11)
∂C

∂t
= DC∇2C,

where ∇2 is the Laplace operator. Consider a fixed concentration of particles located

at the origin r = 0 at time t = 0 which diffuse outward in three dimensions. It can

be verified that a solution to Equation 4.11 in this case is

(4.12) C(r, t) = (A/t3/2) exp(−r2/4DCt),
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where A is a constant. Then the probability of finding a particle at time t a distance

between r and r + dr from the origin is

(4.13) ρ(r, t)dr =
C(r, t)4πr2dr∫

V
C(r, t)

=
r2

2
√
π(DCt)3/2

exp(−r2/4DCt)dr.

The mean square displacement can be calculated as

(4.14) 〈r2〉 =

∫ ∞
0

r2ρ(r, t)dr = 6DCt.

Equating Equations 4.7 and 4.14 and substituting Γ = n/t returns the original result,

Equation 4.3. In this simple example of a random walker the continuum chemical

diffusivity is calculated from the microscopic jumps through the mean squared dis-

placements.

Of course, this derivation of Equation 4.3 does not hold when jumps are correlated.

Correlation effects may arise from anisotropy or non-random jumping. Even if each

individual hop rate is the same in a non-cubic lattice, the diffusion rates will be

different in different directions due to anisotropy [11, 13]. Similarly, correlation

effects arise when jump rates are anisotropic due to the lattice or anisotropic stress.

Correlation also occurs at high concentrations, when atoms can no longer be viewed

as isolated walkers on a lattice because some neighboring spots are occupied [12]. The

high concentration limiting case is when diffusion occurs by a vacancy mechanism.

In this case, jumping is not random because after an atom jumps into the vacancy it

is more likely for it to jump back into the vacancy again than to jump in a different

direction. Additionally, when the system is not thermodynamically ideal, gradients

in chemical potential will result in diffusion that is not random.

The standard approach [104, 105, 106] for generally determining the diffusion

coefficient in terms of microscopic hops is similar in concept, if not technique, to

the approach presented above. The continuum diffusivity is related to the dissipa-
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tion of a concentration fluctuation at equilibrium, because the same phenomenon,

thermally activated motion, is responsible for macroscopic transport and for the

concentration fluctuations that occur in equilibrium. This allows for use of the

fluctuation-dissipation theorem [107] to relate the generalized forces in the diffusion

equation, ∇2C, to time correlation functions of the concentration fluctuations. The

concentration fluctuation correlation functions are in turn related to individual par-

ticle trajectory correlation functions. A thermodynamic factor is included to account

for differences between the concentration gradient, which is more readily observed

experimentally, and the chemical potential gradient, which actually drives diffusion.

We simply present the results here and do not repeat the derivation.

The chemical diffusion coefficient is a function of the jump diffusion coefficient,

¯̄DJ , and the thermodynamic factor, Θ, which was defined in Section 2.1, by

(4.15) ¯̄DC = ¯̄DJΘ.

The diffusion coefficients and thermodynamic factor may be concentration depen-

dent. When the system is thermodynamically ideal or in the dilute limit Θ = 1. The

jump diffusion coefficient tensor is

(4.16) DJ
jk =

1

2t

〈
1

N

(
N∑
i

xj(i)

)(
N∑
i

xk(i)

)〉
,

where xj(i) is the j-component of the displacement vector x̄(i) of the i particle in

time t, and N is the number of particles. If the diffusion is isotropic, then

(4.17) DJ =
1

2dt

〈
1

N

(
N∑
i

x̄(i)

)2〉
,

where d is the dimension of the space. Another commonly used quantity is the tracer

diffusion coefficient, in tensor

(4.18) D∗jk =
1

2t

1

N

N∑
i

〈xj(i)xk(i)〉 ,
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or scalar form

(4.19) D∗ =
1

2dt

1

N

N∑
i

〈
x(i)2

〉
,

where x(i) is the magnitude of x̄(i). The values of DJ and D∗ are only equivalent

when the cross terms in Equation 4.17 average to zero, meaning there are no corre-

lations between different particles. The tracer diffusion coefficient can be related to

the chemical and jump diffusion coefficient through a correlation factor, f , by

(4.20) DC = DJΘ = fD∗Θ.

In this case the jumps are not restricted to all being the same magnitude, so f is not

exactly equivalent to f ∗ as defined in Equation 4.6.

For the interdiffusion of multiple species, Equation 4.15 can be generalized to

(4.21) DC
ABkl = DJ

ABklΘAB,

where A and B run over different diffusing species, and k and l run over the coordi-

nates. In this case, the thermodynamic factor is

(4.22) ΘAB =
1

kBT

∂µA
∂CB

,

and the jump diffusion coefficient becomes

(4.23) DJ
ABkl =

1

2tV

〈(
NA∑
i

xAk (i)

)(
NB∑
j

xBl (j)

)〉
,

where V is the volume.

With the results for the jump diffusion coefficient, the calculation of continuum

diffusivities depends on determining individual particle trajectories. The use of the

fluctuation-dissipation theorem in the derivation of these expressions relies on time

correlation functions in equilibrium at long time and extended length scales limit.
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Especially at the extremely small length scales and in the highly non-equilibrium

systems present in dopant diffusion, it is not clear how well these results for contin-

uum diffusivities hold up. In many cases, direct simulation of dopant distributions

may be desired. In either case, if continuum diffusivities or direct simulations are

desired, the task of computational methods becomes one of calculating the individual

particle trajectories.

4.2 The Master Equation

Since dopant diffusion is the result of many rare event transitions, it is natural

to model it as a discrete state system. The time evolution of a system through its

possible states is determined by the master equation

(4.24)
∂

∂t
Pj(t) =

∑
i

(Ri→jPi(t)−Rj→iPj(t)),

where i runs over all states except j; Pj is the probability of being in state j, and

is a function of time, t; and Ri→j is the jumping rate from state i to state j. The

solution of the master equation, Pj(t) for all j, gives the probability of being in

any state of the system as a function of time. At long times, the probability of

being in any state will equal the equilibrium probability, P eq
j . If we desire a direct

simulation of dopant distribution as a function of time, we could sample the states of

the system proportionally to Pj(t). If we desire continuum diffusivities, the solution

allows calculation of the ensemble averages needed for the jump diffusion coefficient.

For example, Equation 4.17 becomes

(4.25) DJ =
1

2dt

NS∑
j

P eq
j

NS∑
k

Pk(t|j, 0)

N

(
N∑
i

x̄j→k(i)

)2
 ,

where NS is the number of states in the system, P eq
j is the probability of being in

state j at equilibrium, Pk(t|j) is the probability of being in state j at time t given
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that the system was in state j at time t = 0, and x̄j→k(i) is the displacement vector

of particle i from state j to k.

Of course, in most interesting systems the number of possible states is too large to

allow for a full solution of the Pj(t). It can be solved for a limited number of states to

approximate correlation factors [11, 12]. Ishioka and Koiwa [108] presented a method

for determining diffusion coefficients from transition rates. Daw et al. [14] generalized

the work of Dederichs and Schroeder [13] to calculate stress-affected anisotropic

diffusivities for defects or defect-dopant clusters by expanding the master equation

in plane waves and looking at their evolution in the long time and extended length

scale limit. This is an alternative method for calculating continuum diffusivities from

the microscopic hops. It is limited to dilute systems and does not account for cluster

formation or dissolution.

4.3 Kinetic Monte Carlo Simulations

For direct simulations and situations too complex for analytical solutions, KMC

simulations are a useful way of numerically sampling the solution to the master

equation. With the standard KMC method [16, 17, 109, 110], each simulation is

one random sample of the possible trajectories through states of the system over

time. The trajectory is determined by advancing the system in time state by state

according to appropriate probabilities. The probability of jumping from state i to

state j is

(4.26) Pi→j =
Ri→j∑
k Ri→k

.

At each step, all of the possible events taking the system away from the current

state are enumerated and their rates are summed, Q =
∑

iRi. By choosing a random

number, rand1 ∈ (0, Q], the next event can be determined probabilistically by picking
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the event j such that

(4.27)

j−1∑
i=1

Ri < rand1 ≤
j∑
i=1

Ri.

Then, assuming the events are Poisson processes, the timestep ∆t is determined by

(4.28) ∆t = − ln(rand2)

Q
,

using a second random number, rand2 ∈ (0, 1]. By averaging over many particles,

or many simulations, diffusivities and other quantities can be calculated.

4.4 Concentration and Time Dependence

The interactions of many diffusing particles often leads to concentration and time

dependent diffusion behavior. In particular, concentration and time effects are im-

portant in modeling transient enhanced diffusion (TED) and understanding the con-

centration dependence of dopant diffusion at very high doping levels.

We briefly introduced the idea transient enhanced diffusion (TED) in Section 2.1.2.3

in the context of boron diffusion parameterization. Cowern and Rafferty [74] review

many of the causes and effects of TED. During ion implantation a supersaturation of

Si interstitials results in the formation of Si interstitial clusters, or extended rodlike

{311} defects in which Si interstitials cluster in 〈110〉 directions on {311} planes.

During annealing the clusters and {311} defects emit Si interstitials and eventually

dissolve. Until the dissolution is complete, the Si interstitial concentration remains

above the equilibrium level and there is a corresponding increase in B diffusion. Ad-

ditionally, Si interstitials can bind to multiple B atoms and form immobile clusters.

The binding with B is tighter than to other Si interstitials, so Si interstitials in those

clusters are emitted last. Small predominantly B clusters remain until they capture

Si interstitials and emit mobile B-interstitial pairs. In order to predict B diffusion
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the formation, and eventual dissolution of all of these clusters must be understood

and modeled as a function of implantation energy and dose, annealing time and tem-

perature, and device geometry. KMC simulations have been used for this purpose.

Pelaz et al. [111] and Caturla et al. [112] have performed KMC simulations of

the interaction and diffusion of B and interstitials after implantation. These models

are similar in that they model the diffusion and clustering of B and Si intersti-

tials and vacancies. The inputs include migration energies or rates for the different

species or complexes and reaction energies which are used to determine clustering

and dissociation rates. Pelaz et al. used a combination of ab initio calculations and

empirical fits to experimental observations to determine the energetics. Caturla et

al. used atomistic calculations to determine energetics and experimental data for

diffusion prefactors. Pelaz et al. and Caturla et al. used a implantation simulation

to determine the initial defect and dopant positions. Then the KMC simulations

determine the evolution of the species and complex concentration profiles. Pelaz et

al. found that BI2 clusters are important precursors to the formation of relatively

stable and immobile large B clusters. A BI2 cluster are not stable for long times,

but long enough that it captures other mobile B interstitials to create larger more

stable clusters. Caturla et al. showed that initially after implant about 56% of B

is in BI and BI2 clusters, and vacancies are in small clusters. Then, the vacancy

clusters dissolve and vacancies combine with the BI and BI2 clusters resulting in

about 98% of B taking substitutional positions. After the vacancies have all recom-

bined with interstitials or the surface, interstitial and B-interstial clusters form and

B diffusion greatly increases. This indicates that a significant amount of TED dif-

fusion may occur during the initial supersaturation of interstitials before extended

interstitial clusters form and then dissolve. Both groups found that they were able
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to reproduce experimental data from their calculations. These results demonstrate

that KMC simulations are useful for determining the active mechanisms in highly

non-equilibrium processes at scales that are difficult to observe experimentally. The

resulting B diffusion depends greatly on the concentration of B and intrinsic defects

and their evolution with time.

Concentration and time dependence is also important in dopant diffusion at very

high doping levels. Several experiments with different results have been made for

As diffusion as a function of dopant concentration. Fair and Weber [39] observed

increasing As diffusivity with As concentration up to about 3 × 1020 cm−3 when it

began to decrease. Their diffusion anneals were at 1000 ◦C for hours. Larsen et al.

[84] found that As diffusivity rapidly increased at P doping levels above 2 × 1020

cm−3. They used rapid thermal annealing at 1050 ◦C for 10 s. Solmi and Nobili

[113] reported As diffusivity remained constant or decreased for concentrations above

about 3× 1020 cm−3 for anneals at 1050 ◦C and 900 ◦C, respectively, for 15 min. to

1 hr. Data from these studies is plotted in Figure 4.2.

Mathiot and Pfister [114] considered that at high doping levels V may feel interac-

tions with multiple As, lowering their formation energy and migration barriers. The

combination of higher V concentrations and mobilities would lead to an increase in

diffusivity at the concentration when the dopant-V interactions begin to percolate

throughout the material. They showed if the dopant-V interaction ranges 3 nearest

neighbor positions this could occur at a dopant concentration of 320 cm−3 in dia-

mond cubic silicon which has a site concentration of 5 × 1022 cm−3. Xie and Chen

[85] reviewed these results and performed ab initio calculations of vacancy formation

and migration energies near As. Their results confirmed that placing a second As

nearby lowered the migration barriers for a vacancy to travel from one to the other.
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Figure 4.2: Literature results for As diffusivity as a function of dopant concentration. Lines for the
Solmi and Nobili data indicate the trend where many data points are reported.

They also found that the migration barrier for a V1As2 cluster is 2.0 eV, compared

to 1.19 eV for a V1As1 cluster. Therefore, they proposed that it is the combination

of the concentration and clustering over time that produces the observed differences

in diffusion behavior. Larsen et al. observed enhanced diffusivity because at very

short times low vacancy migration barriers due to percolating dopant-vacancy inter-

actions would enhance diffusivity. At longer times, such as in the experiments of Fair

and Weber clusters would form and the high migration barriers for clusters would

decrease diffusivity. The low temperature experiments of Solmi and Nobili would

behave similarly, but in the higher temperature experiments some of the clusters

could become mobile and keep diffusivity constant. Time dependent clustering and

decreasing diffusivity for larger clusters is consistent with the positron annihilation

experiments of Ranki et al. discussed in Section 2.1.1.1.

KMC simulations by Dunham and Wu [115] showed enhanced dopant diffusivity

at high dopant concentrations. Their simulations used random dopant placements
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and, based on those positions and the As-vacancy interaction energy, equilibrium

vacancy concentrations. They do not report simulation times, only noting that dif-

fusivity began to drop at longer times so the reported values are for short times.

List and Ryssel [116] performed longer time simulations (reported up to 4×106 1/f0,

f0 being the vacancy jump frequency in pure silicon, so likely on the order of 1

µs), and found dopant diffusivity dropped at high concentrations. Their simulations

attempted to use equilibrium dopant distributions and vacancy concentrations. It

is not necessarily clear that defect concentrations in the experiments are the equi-

librium values. More recently, Haley and Gronbech-Jensen [117] performed KMC

simulations for times up to milliseconds which varied the temperature, As concen-

tration, vacancy concentration, As-V concentration ratio, and the range of the As-V

interactions. Their results clearly show that increasing numbers of clustering over

time have significant effects on dopant diffusivity and that the type and number of

clusters strongly depends on the overall As and vacancy concentrations.

4.5 Vacancy-Mediated Arsenic Diffusion in Silicon

In order to study concentration and time dependent diffusivity, we have parame-

terized a KMC model for vacancy-mediated As diffusion in Si using ab initio energies

available in the literature. Vacancy jump rates are based on calculations by Xie and

Chen [45, 85] near As, and the isolated V migration energy, Em,iso = 0.28 eV, comes

from Centoni et al. [65]. We use those results, shown in Figure 4.3, for a V hopping

within 3 nearest neighbor (3NN) positions of a single dopant. When there are multi-

ple dopants within 3NN of a V, before or after it jumps, we calculate the formation

energy in the vacancy’s initial and final positions, Ef
final and Ef

init by summing the

binding energy of the V with all i As within 3NN, Ef =
∑

iE
b
i . Then the migration
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Eb (eV) 1NN 2NN 3rNN 3cNN ≥4NN
-1.21 -0.37 -0.25 -0.18 0.00

Em (eV) 1NN 2NN 3rNN 3cNN ≥4NN
1NN 0.55 0.92 - - -
2NN 0.08 - 0.35 0.46 -
3rNN - 0.23 - - 0.405
3cNN - 0.27 - - 0.37
≥4NN - - 0.09 0.19 0.28
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Figure 4.3: KMC parameterization of the KMC model for vacancy-mediated As diffusion in Si.
The binding and migration energies (row→column), listed in (a) are from ab initio
calculations [85, 45, 65]. The lattice is shown in (b); 3rNN indicates a position 3NN
around a hexagonal ring, and 3cNN is a position 3NN along a {011} chain. The state
connectivity is shown in (c), with gray states being saddle states that lead a different
V1As1 energy basin. The energy landscape is shown for a V moving from a 1NN position
with As to the 3rNN position in (d) (the dotted line indicates the path to a 1NN position
by a different direction), and to the 3cNN position in (e).
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Figure 4.4: Saddle point energy calculation approximation.

energy is calculated from the difference, ∆Ef = Ef
final − Ef

init, using the common

[115, 116, 117] approximation

(4.29) Em = max

[
max

[
0,∆Ef

]
,
∆Ef

2
+ Em,iso

]
.

As shown in Figure 4.4, this approximation is the result of assuming the barrier can

be calculated from a linear gradient between the states plus Em,iso. If that sum is less

than the higher energy state, then there is no barrier and the states are combined

into a single state. Arsenic only moves by exchanging with V, and we assume a

constant vacancy jump attempt frequency of ν = 1013 s−1. The vacancy jump rates

are calculated by

(4.30) R = νexp(−Em/kBT ).

4.6 Trapping Energy Basins in Kinetic Monte Carlo Simulations

Preliminary KMC simulations using the model presented in Section 4.5 imme-

diately demonstrate that standard KMC simulations are inadequate for modeling

anything but the initial stages of diffusion. The simulations become very inefficient

as soon as V-As clustering begins. To understand why, consider the diffusion of

a V1As1 pair. Pair diffusion takes place by a mechanism, shown in Fig. 4.5, in

which the V must traverses a hexagonal ring in order to approach the As from a
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Figure 4.5: Diffusion of V1As1 clusters occurs by the ring mechanism. The state and saddle point
energies are shown above, and schematics of the cluster configurations below. “E”
indicates a pathway for the vacancy to escape the As. Small arrows with “xn” indicate
that n symmetrically equivalent transitions are possible in the direction of the arrow.

different direction. The energy required to traverse the ring is much larger than

the energy required for the V-As exchange, see also Figure 4.3(c). Using Equa-

tion 4.26, the transition probabilities have been calculated at 800 ◦C and listed in

Table 4.1. The transition probability for V-As exchange, P1→1 = 0.948, is much

higher than the probability for a 1NN vacancy to traverse a ring in four direct

jumps, 3P1→2 × 2P2→3r × P3r→2 × P2→1 = 0.002. This is not an exact calculation of

the relative probabilities for exchange versus ring traversal; for that we would have

to include all possible transition pathways. But, it does indicate that V-As exchange

will occur many times before the V traverses the ring and a diffusive motion occurs.

At lower temperatures, ring traversal would be even more unlikely compared to V-As

exchange. We refer to any situation where the energy landscape, as in Figure 1.5,

determines that many fast transitions over low energy barriers will occur before im-

portant slow transitions over high energy barriers a “trapping energy basin”.

The situation is much more complicated for As2V , as shown in Figs. 4.6 and 4.7
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P 1NN 2NN 3rNN 3cNN ≥4NN
1NN 0.948 × 1 0.017 × 3 - - -
2NN 0.889 × 1 - 0.048 × 2 0.015 × 1 -
3rNN - 0.435 × 2 - - 0.065 × 2
3cNN - 0.496 × 1 - - 0.168 × 3

Table 4.1: Transition probabilities (row → column) for a V near As at T = 800 ◦C. The × indicate
the number of different pathways available.

for two of the six lowest energy configurations. For V1As2 there are more possible

diffusive pathways, but there are also more low energy configurations that act as

trapping energy basins. For example, the lowest energy configuration, shown in Fig.

4.6, is when the vacancy is in between both As. There is also a configuration in

which the As are on opposite sides of a hexagonal ring, with a vacancy in between,

shown in Fig. 4.7. Relative to the minimum energy states, rotation around the ring

requires at least 0.84 eV, while rearrangement to a different configuration off the

ring requires at least 1.24 eV. This causes standard KMC simulations to spend many

events simply rotating around the ring. Because the barriers inside the trapping

energy basin are low relative to the escape barriers, the timesteps associated with

the jumps are much smaller. This prevents the KMC simulation from reaching long

times. Larger clusters have more and deeper trapping energy basins, creating worse

efficiency problems. Therefore, to simulate As-V cluster diffusion in a reasonably

efficient manner it is necessary to use an accelerated KMC method to escape the

trapping basins.
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CHAPTER 5

Accelerated Kinetic Monte Carlo Theory

In Section 4.6, we observed that KMC simulations have difficulty reaching long

times in systems where the energy landscape determines that many fast transitions

between certain repeatedly visited states occur before important slower events. To

treat this situation, several methods [118, 119, 120, 121, 122, 123, 124, 125, 126],

ranging from exact to approximate, have been developed to accelerate the calculation

of escapes from trapping energy basins. There are also some related methods useful

for accelerating diffusion of rarely reacting species on a flat energy landscape [127,

128, 129], and others more generally used for transition path sampling [130, 131, 132].

The key idea behind the acceleration methods is that it is possible to fully solve the

master equation over the limited number of repeatedly visited states using Markov

chain analysis. By sampling the solution, a KMC event can be chosen which moves

the system out of the repeatedly visited states in one jump. Acceleration is achieved

if the calculation can be performed faster than explicitly moving between states until

the system escapes the basin. Lacking from the literature has been a systematic way

to identify, as the simulation runs and for any energy landscape, which states are in

the energy basin and should be included in the calculation for efficient acceleration.

Here we briefly review the acceleration methods, and introduce an algorithm that
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uses the energy landscape to create Markov chains. In Chapter 6 we will detail the

algorithms as applied to the model of vacancy-mediated arsenic diffusion in silicon

presented in Section 4.5.

5.1 Absorbing Markov Chain Analysis

A Markov process is one in which previous events have no bearing on the probabil-

ity of subsequent events. The current state of the system alone determines transition

probabilities. The master equation as presented in Equation 4.24 describes a Markov

process since the transition rates, Ri→j, are constant. Atomic diffusion in crystalline

materials is well modeled as a discrete state Markov process since the system tends

to equilibrate within a state and lose memory of where it came from before transi-

tioning to the next state. But even when some correlated jumps exist, the system

can be modeled as a Markov process if the correlations can be properly accounted for

in the transition rates. A Markov chain is the set of states that make up a Markov

process.

The standard KMC method becomes trapped in energy basins because it is limited

to choosing events that advance the system one state at a time. It then repeatedly

visits states inside the basin many times before reaching the states outside the basin.

It is much more efficient if the KMC events consist of moving the system from a state

within the basin to an external state outside of the basin. To correctly reproduce

the system dynamics, we need these accelerated events to properly account for the

probability and time when the system first exits the basin. By solving the master

equation for the states in the basin, with the condition that the system stops as

soon as it reaches an external state, we can determine the exact probabilities and

first passage time distributions. In the language of Markov processes, the repeatedly
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visited internal states are referred to as “transient states” and the external states are

called “absorbing states”; together they comprise an absorbing Markov chain.

5.1.1 First passage time analysis

We will refer to exact methods for solving the master equation of the absorb-

ing Markov chain as first passage time analysis (FPTA). This was initially used with

KMC by Novotny to study Ising model nucleation events at very low temperatures[118],

and has since been described for dislocation kink nucleation [120], and with a limited

number of states for vacancy diffusion in alloys [121].

The basic idea is that the system starts in the initial state, sinit, and then we

calculate the probability as a function of time that it is in each of the transient or

absorbing states. By sampling the probability distribution we can determine which

absorbing state the system enters at what time and use that as the next KMC event.

Unlike standard KMC with one state, here the accelerated exit time and event are

correlated. This is clear when you consider that at the very shortest times it must

be more likely to exit to an absorbing state from sinit than from other transient

states, because of the time it takes to travel between transient states. Since FPTA

is exact, for the sake of accuracy it does not matter which states are included in the

calculation. In Section 5.2 we will discuss how it does matter for KMC algorithm

efficiency.

Generally, the master equation can be written in terms of a state probability

vector, P̄ , and transition rate matrix, ¯̄M , as

∂P̄

∂t
= − ¯̄MP̄ ,(5.1)

Mij =

 −Rj→i if i 6= j∑
k Ri→k if i = j

.(5.2)
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For each transient state i, Ri→j is determined from the model, for example Equa-

tion 4.30. For each absorbing state i, Ri→j = 0. The solution of the system of

differential equations is

(5.3) P̄ (t) = e−
¯̄MtP̄ (0).

Moler and Van Loan [133] have written about the advantages and disadvantages

various ways to compute the exponential of a matrix, and it is the eigenvector ap-

proach that has been used previously [118, 120] for accelerating KMC. This approach

gives

(5.4) P̄ (t) = ¯̄V ¯̄Λ ¯̄V −1P̄ (0).

where ¯̄Λij = e−λitδij, λi being the eigenvalues of ¯̄M , and ¯̄V is the matrix whose

columns are the eigenvectors of ¯̄M with the ith column relating to λi.

The system starts in the initial transient state with probability one, and eventually

as t→∞ it will end up in an absorbing state. Therefore, the probability of being in

an absorbing state, P a, is a non-decreasing function with time and P a(t = 0) = 0 and

P a(t = ∞) = 1. We can sample the exit time, texit, by choosing a random number,

rand ∈ (0, 1] and solving for P a(texit) = rand. The transition rate matrix ¯̄M only

needs to include the transient states because by summing over the i transient states

we can calculate P a(t) = 1−
∑

i Pi(t). In practice, we find it convenient to combine

all the absorbing states into one for the purposes of FPTA and including it in ¯̄M so

that P a(t) can be calculated from that one state.

After choosing the exit time, we must choose which transition the system took

out of the transient states. The rate Ri→j at which the system exits from transient

state i by transition j must be weighted by the probability that the system is in the

transient state at the exit time. So we can calculate appropriately weighted rates
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by Pi(t
exit)Ri→j. By setting Q =

∑
i,j Pi(t

exit)Ri→j, Equation 4.27 can be used to

choose the next state. The chosen state and time texit comprise the next KMC event.

Figure 5.1 graphically demonstrates two cases of FPTA for a simple trapping

basin. In the case on the left (Case L, 6kBT ) the energy barriers between transient

states are lower than the case on the right (Case R, 9kBT ). The state and saddle

point energies are shown on the top in units of kBT . In the middle are the occupation

probabilities for being in each state as a function of time, Equation 5.4. On the

bottom are the probabilities of exiting to a particular absorbing state as a function

of time, P exit
j =

∑
i Pi(t)Ri→j/Q. The exit time can be chosen by picking a random

number, rand ∈ (0, 1], and following it across the occupation probability plot until

it intercepts the heavy line indicating the total probability of being in an absorbing

state. The exit state can be chosen by picking a random number, rand ∈ (0, 1], and

using the lower graph, finding which state’s area it falls in at the exit time. Arrows

indicating this process are shown with Case R.

In both cases, the system is initially located in state 1 with probability 1 and ends

up in the absorbing states with probability 1, as it must. In Case L, the probability

of the system moving between all three transient states is greater. Because of this,

there is a nearly equal probability of ending up in absorbing 4 or 10, while in Case

R it is more likely to end up in 4 than 10. This also causes Case L to be more likely

to escape to states 9 or 10 than it is in Case R. This occurs despite state 1 being

symmetrically equivalent to state 3, because the system has to travel through states

to get from one side of the basin to the other. This demonstrates that the probability

of exiting to a particular state does depend on the initial state. Additionally, the

exit probability plots clearly demonstrate how the exit state and time are correlated.

At short times there is a significantly greater probability of exiting to states 4 or 5
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Figure 5.1: First passage time analysis for a basin with three states. The figures on top show the
state connectivity and energies (kBT ). For the case on the right (Case R), the arrows
indicate how the exit time is chosen from the occupation probability plot and the exit
state is chosen from the exit probability plot.
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than to states 9 or 10.

5.1.2 Mean rate method

For a given absorbing Markov chain, it is possible to calculate the mean rate of

escape from the transient states to any absorbing state, and the exact probability

of exiting to each absorbing state without also calculating the full time distribution.

We will refer to any method that does this in full or in part as a mean rate method.

Various descriptions of this have been given in specific [122, 121] cases and in general

[119, 134], and the graph transformation method [123] also gives the same result.

The mean rate method is faster than FPTA because it replaces matrix exponential

calculation with one matrix inversion and simply uses the mean exit time instead

of iteratively solving for texit. After many events either just using the mean time

or always sampling from the time distribution, the resulting time will be the same

because the differences are a random variable with mean zero. However, it remains

unclear that using only mean rates instead of the full time distribution will never ef-

fect the simulation outcome. When measuring average quantities such as diffusivities

after many events our experience is that this always gives the same answer as FPTA,

but it is possible that under some situations it neglects important effects from time

correlated events.

Generally, the system will jump back and forth through the transient states before

escaping into an absorbing state. For a given absorbing Markov chain, the mean rate

method calculates τi, the mean time per escape spent in each transient state i. To

do this, we create the transition probability matrix, ¯̄T , with entries

(5.5) Tji =
Ri→j∑
k Ri→k

= τ 1
i Ri→j,

being the probabilities for exiting from transient state i to transient state j, where
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k runs over all transient and absorbing states and τ 1
i = (

∑
k Ri→k)

−1 is the mean

residence time in state i each time it is occupied. Then, the occupation probability

vector, Θ̄(m), which gives the probability of being in any transient state after jump

m and before jump m+ 1, is

Θ̄(m) = ¯̄TmΘ̄(0),(5.6)

Θi(0) =

 1 if i = sinit

0 otherwise

.(5.7)

Summing the occupation probabilities over all possible numbers of jumps gives

(5.8) Θ̄Tot =
∞∑
m=0

¯̄TmΘ̄(0) = (I − ¯̄T )−1Θ̄(0).

With the summed occupation probabilities known, multiplying by the mean residence

time gives the desired result,

(5.9) τi = τ 1
i ΘTot

i .

Once the τi are obtained, the mean rate of exiting to absorbing state j from

transient state i is

(5.10) 〈Ri→j〉 =
τi∑
k τk

Ri→j,

with k summing over all transient states. After summing over all possible exits,

setting Q =
∑

i→j〈Ri→j〉, the absorbing state occupied in the next KMC event is

determined in a way analogous to Equation 4.27, using the accelerated rates 〈Ri→j〉.

Finally, the mean escape time,
∑

i τi, is used for the KMC timestep.

5.1.3 Equilibrating basins

Unlike in FPTA or the mean rate method, the choice of transient states does

matter for the accuracy of the equilibrating basin approach. It is an O(n) calculation,
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n being the number of transient states, so it is much faster than the other methods.

This method [124, 125] assumes that it is so much more likely to transition between

all of the transient states than it is to exit to any absorbing state that the system will

equilibrate within the transient states before escaping. If this is the case, then the

probability of being in a particular state is determined by the Boltzmann distribution

and

(5.11) Pi(t) = Pi =
e−Ei/kT∑
j(e
−Ej/kBT )

,

where E is the energy of transient state i, kB is the Boltzmann constant, T is

temperature, and the summation runs over all j transient states.

As with FPTA, the escape rate from transient state i into the absorbing state j is

given by the product PiRi→j. With Q =
∑

i,j PiRi→j, the absorbing state occupied

in the next KMC event is determined using Eq. 4.27 with the escape rates PiRi→j.

Because the system is assumed to equilibrate within the transient states, the exit

time can be chosen using the standard approach of Eq. 4.28.

Because this method assumes the system equilibrates within the transient states

it tends to give increased diffusivities in the case that the system does not fully equili-

brate before exiting. The deeper the energy trap, the better the approximation. The

occupation and exit probability plots in Figure 5.1 show that the equilibrating basin

approximation would be a good approximation in Case L and a bad approximation

in Case R. In Case L, the steady state in the exit probability plot is reached when

the occupation probability plot indicates it is still about 90% likely for the system

to be in the transient states. In Case R, the steady state exit probabilities are not

reached until it is about 90% likely for the system to be in an absorbing state. We

are not aware of work describing how to quickly and accurately determine on-the-fly

when it is “safe” to use Equilibrating Basins. It would be useful to have a simple
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test that uses the energy landscape, connectivity geometry, and error tolerance in

order to decide when to use equilibrating basins and when to use FPTA or the mean

rate method.

5.2 Energy Basin Algorithm

In order to make efficient use of the methods described in the previous section

we need an algorithm to determine which states should be included in the absorbing

Markov chain. If too few states are included, the system will not escape the trapping

energy basin, because the most probable event will be to one inside the basin. If

states outside the basin are included, the calculation is larger than it needs to be

and, as shown in Section 6.3, the simulation efficiency decreases. We create absorbing

Markov chains by systematically identifying trapping energy basins. A “basic energy

basin” is defined as a group of states in which there is (i) a minimum energy saddle

point, and (ii) in moving away from the minimum the saddle point energies do not

decrease between successive moves. See Figure 5.2 for an example of energy basins.

Additionally, the system could have a “basin of basins” out of which it needs to

be accelerated. In that case we can merge two or more basins together to create a

larger basin. In the merged basins there will not necessarily be one minimum saddle

point moving away from which the saddle point energies are strictly non-decreasing.

In what follows, we use the term “basin” simply to indicate any set of states which

have been grouped together by one of the following algorithms. The states need not

form a true “basic energy basin” if we use FPTA or the mean rate method since

they calculate event probabilities and either the time distribution or mean timestep

exactly, but for efficiency that is the goal. In the rest of this section FPTA is assumed,

but the approach for the mean rate method is identical unless noted otherwise. We
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Figure 5.2: A “basic energy basin” is a collection of states in which there is a minimum energy
saddle point and in moving from the minimum to the other states the saddle point
energy does not decrease. Basic energy basins, like Basin 1 and 2, can be merged
into combined basins, in which the saddle point energies will no longer be strictly non-
decreasing moving away from the minimum.

have introduced equilibrating basins because they may be very useful in the right

circumstances, but because of the unknown approximation error we only use them

in one specific situation noted in Section 6.2.7.1 when the error can be demonstrated

to be very small.

Once basins are identified, FPTA is used on the states in the basin. As with any

KMC simulation, it is necessary to know all transition rates out of states the system

enters. However, we assume that it takes non-negligible time for the KMC program

to identify states and calculate transition rates as the computation proceeds. We

consider states to be “known” (K) if their energy and exit rates have been calculated

and saved in memory, all other states are considered “unknown” (UK). We assume

that it is not known which states a transition leads to unless the transition has

actually been made during the computation. Transitions that have not been taken

are considered UK, and when the system takes a transition it becomes K. For FPTA

on a basin, the states within a basin are the transient states, and transitions either

to unknown states (whether they are actually to states in or out of the current basin)

or to states in other basins are considered transitions to absorbing states. Within

each basin the acceleration calculation is performed once, and if the system returns
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to a previous basin we can reload the solution (eigenvalues and eigenvectors of the

rate matrix) from memory. Then the next escape time and event may be chosen

probabilistically without having to perform the full calculation again.

The three main ideas for basin identification are (1) that the saddle points within

energy basins are non-decreasing moving away from the minimum, (2) that it is likely

the system will transition to the bottom of a basin first, and (3) that the system is

not likely to visit states in the basin above the minimum energy escape transition.

To help identify the basin we set a variable, β, that gives the current direction of

the system through the states of the basin, either down (↓) or up (↑). When the

system first enters a new basin, β is usually set to ↓ because we assume it will head

down to the bottom. Each time we enter a new state we check if there are any UK

transitions that are lower energy than the energy of the transition the system entered

by. If there are, β remains ↓. If the minimum UK transition energy is greater than

or equal to the incoming transition energy, then the system is beginning to head up

and we set β = ↑. Once β = ↑, when the system enters a new state with an UK

transition energy less than or equal to the transition energy, we have left the previous

basin.

There are two cases when β is set to ↑ to begin a basin. The first case is when

there are more than one equally low minimum energy UK transitions from the first

state. Those transitions could lead to different basins with the current state being

a saddle state. By setting β = ↑ we begin a new basin if the system heads down

into one of those basins. The second case is when the minimum UK transition from

the first state is greater than the energy of the incoming transition. This usually

occurs when all of the states in a basic energy basin were not included initially,

either because a lower energy escape exists but the system has re-entered the basin,
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or because the system did not reach the bottom before beginning to head up the

basin.

We use two different methods to identify the basins. The first, which we call the

“jump-first” method, advances the system one state at a time, at each step using

FPTA, adding a single state to the current basin until we detect we have left it and

entered a new basin. The other approach, which we call the “look-first” method,

leaves the system in the initial state while it explores the surrounding states. At

each step the look-first method follows the lowest energy UK transition out of all

the states identified up to that point. Once it has identified the states in the basin,

FPTA is used once to escape. The jump-first method has the advantage that it does

not spend time in states that the system does not visit, but it performs more FPTA

calculations. The look-first method minimizes the number of FPTA calculations, at

the expense of possibly identifying more states than necessary and having a larger

FPTA calculation. In the following sections we will demonstrate the jump-first and

look-first methods on a simple system. In Sections 6.1.2 and 6.1.3 we will fully detail

the algorithms.

5.2.1 Jump-first method

We demonstrate the jump-first method for the case of a V1As1 cluster at 800 ◦C in

Figure 5.3. The system trajectory presented in Figure 5.3 was obtained directly from

one instance of the jump-first method. At each step, Figure 5.3 shows the starting

state of the system, β, the timestep until the next event, and the probability of

exiting to different types of states at that exit time. The probability of exiting to

different states of the same type is not equal and this is treated appropriately, but we

do not resolve the differences in the figure due to lack of space. The type of state the
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FPTA

FPTA

FPTA

FPTA

FPTA

FPTA

FPTA

FPTA

FPTA

FPTA

1) 3r ↑ ∆t = 1.18 P → 2 = 8.69E-01 X
P → 4 = 1.31E-01

2) 2 ↓ ∆t = 2.81
P → 1 = 8.89E-01 X
P → 3r = 9.60E-02
P → 3c = 1.46E-02

3) 1 ↓ ∆t = 342.99

P → 1 = 9.63E-01 X
P → 2 = 3.52E-02
P → 3r = 1.70E-03
P → 3c = 2.59E-04

4) 1 ↑ ∆t = 7532.68
P → 2 = 9.78E-01 X
P → 3r = 1.89E-02
P → 3c = 2.87E-03

5) 2 ↑ ∆t = 406.61
P → 2 = 9.48E-01 X
P → 3r = 4.55E-02
P → 3c = 6.92E-03

6) 2 ↑ ∆t = 0.17
P → 2 = 7.01E-05
P → 3r = 8.68E-01
P → 3c = 1.32E-01 X

7) 3c ↑ ∆t = 26525.38

P → 2 = 9.02E-01 X
P → 3r = 8.70E-02
P → 3c = 8.79E-03
P → 4 = 2.24E-03

8) 2 ↑ ∆t = 18271.25

P → 2 = 8.19E-01 X
P → 3r = 1.59E-01
P → 3c = 1.81E-02
P → 4 = 3.09E-03

9) 2 ↑ ∆t = 444.49

P → 2 = 6.71E-01 X
P → 3r = 2.89E-01
P → 3c = 3.58E-02
P → 4 = 4.08E-03

10) 2 ↑ ∆t = 78478.23
P → 3r = 8.78E-01 X
P → 3c = 1.11E-01
P → 4 = 1.13E-02

11) 3c ↑ . . . . . .

Figure 5.3: The jump-first method for a V1As1 cluster at 800 ◦C. At each step, the current state
of the system is indicated by a dot. The state connectivity graph is as in Figure 4.3.
The gray states indicate different basins. The # ↓ or # ↑ indicate the current state
and whether the system is heading down or up the basin. The probability for exiting to
different types of states, at the chosen timestep (∆t ν−1 s), is listed on the right, and
the chosen type of state indicated with a X.
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system actually transitions to is indicated with a X. It is useful to refer to Figure 4.3

in order to view the energy landscape while following the steps in Figure 5.3. The

state connectivity graphs in Figure 5.3 show the states that the system has visited

and are saved in memory. They are part of the larger connectivity graph, shown in

Figure 4.3(c). States are colored gray or white to distinguish separate basins.

The system begins in a 3rNN state, with a vacancy 3NN around a hexagonal

ring from an As, as shown in Figure 4.3(b). This is a saddle state between two

different energy basins, so initially β = ↑. For the first event, the FPTA calculation

is performed, but there is only one state so it is identical to standard KMC. The

system quickly jumps to a 2NN state by a -0.02 eV transition. Since there is a

lower (-0.29 eV) UK transition out of the 2NN state, the system is in a new basin

and β = ↓. The FPTA is performed, but again there is only one state in the new

basin, so it is identical to standard KMC. The system quickly jumps down to the

1NN state which is added to the basin. β remains ↓ because the minimum UK

transition is lower energy (-0.66 eV) than the incoming transition (-0.29 eV). Now

there are two states in the FPTA calculation, and the system makes the transition

to the other 1NN state by V-As exchange. At this point, step (4), the minimum

UK transition (-0.29 eV) is higher energy than the incoming transition (-0.66 eV) so

β = ↑. The next timestep obtained from FPTA, ∆t = 7532.68 ν−1 s, is significantly

greater. This event probably includes time spent by the system repeatedly visiting

the 1NN states, though the actual path is not resolved by FPTA. The following

event, (6→ 7), is a relatively improbable jump to a 3cNN state. Because the chosen

timestep is improbably small, it makes it very likely that the system never left the

2NN state and becomes much more probable that the system exits to a 3NN state, as

reflected in the exit probabilities. Next, the system returns to the basin and enters
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another 2NN state, step (8). This state is lower energy than the previous 3cNN state,

but the algorithm is looking at the incoming transition pathway (-0.29 eV), not the

last state energy, so β remains ↑ and the algorithm keeps identifying the current

basin. This continues for a few more steps until all of the 2NN states are included in

the basin and the system enters a 3rNN state in step (11). Here the minimum UK

transition (-0.02 eV) is equal to the incoming transition, so the algorithm determines

that the system has left the basin and a new basin is started with β = ↑.

The simulation proceeds in a similar manner. Whenever the system re-enters a

basin that has already been saved, a basin occupation counter is incremented. If two

neighboring basins are occupied more than some given number of times, the basins

are combined so that the system can escape the combined basin. In this manner the

system can accelerate out of complicated “basins of basins” automatically.

A few other observations can be made about the jump-first method in Figure 5.3.

First, the system did reach the bottom of the basin before escaping. Second, the

system did only reach one of the six higher energy 3cNN states before escaping by

a lower energy transition. While this is only one sample, it is representative of the

quality of those assumptions and is supported by the exit probabilities. Third, by

step (8) it is about 15% probable that the system escapes to a 3rNN state before

identifying the last two 2NN states. By step (9) it is about 30% probable that the

system escapes without finding the last 2NN state. As noted previously, the FPTA

calculation is done repeatedly for 1 to 9 states. If the 9 states were identified first

and one calculation done, it might be more efficient. However, if the system escaped

before entering all of those states, which we see is not too unlikely, some of the time

spent identifying all 9 states would be wasteful and the calculation would be larger

than necessary.
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5.2.2 Look-first method

We demonstrate the look-first method for a V1As1 cluster at 800 ◦C in Figure 5.4.

The system trajectory presented in Figure 5.4 was obtained directly from one instance

of the look-first method. The information presented is the same as for the jump-first

method, except while exploring the energy landscape inside a basin, where the UK

transition energies are presented rather than exit probabilities.

In the look-first method we keep the system in the initial state and explore the

energy landscape to identify the rest of the energy basin. At each step the algorithm

follows the lowest energy UK transition out of all the states identified up to that

point. Once it has identified the states in the basin, FPTA is used once to escape.

For the first step there are two equally low minimum UK transitions. In this case,

the algorithm does not try to guess which way the system would jump and considers

the single state the complete basin. FPTA is performed, time is incremented, and

the systems jumps into a 2NN state. This is a new basin and there is a lower energy

UK transition, so β = ↓. Now the system explores the basin by following the lowest

energy pathways without incrementing time. The original state is remembered and

indicated in Figure 5.4 with a circle on the state connectivity graph. When the system

reaches the second 1NN state in step (2c) there are no more lower UK transitions,

so β = ↑ and the system begins exploring up the basin. It visits and saves all of the

2NN states until in step (2i) it jumps into a new 3rNN state and has left the basin,

indicated with a �. It is returned to the original state, the state outside of the basin

is forgotten and FPTA is performed. The timestep, ∆t = 2.69 × 105 ν−1 s, is large

because it accounts for all the time the system spent in the basin. The exit state

begins a new basin and the simulation continues in a similar manner. The procedure

for counting the number of times a basin has been occupied and merging frequently
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FPTA

FPTA

1) 3r ∆t = 8.39 P → 2 = 0.869 X
P → 4 = 0.131

2a) 2 ↓ ∆t = 0
E → 1 = -0.29 X
E → 3r = -0.02
E → 3c = 0.09

2b) 1 ↓ ∆t = 0

E → 1 = -0.66 X
E → 2 = -0.29
E → 3r = -0.02
E → 3c = 0.09

2c) 1 ↑ ∆t = 0
E → 2 = -0.29 X
E → 3r = -0.02
E → 3c = 0.09

2d) 2 ↑ ∆t = 0
E → 2 = -0.29 X
E → 3r = -0.02
E → 3c = 0.09

2e - 2g) . . . 2 ↑ ∆t = 0
E → 2 = -0.29 X
E → 3r = -0.02
E → 3c = 0.09

2h) 2 ↑ ∆t = 0 E → 3r = -0.02 X
E → 3c = 0.09

2i) 3r � ∆t = 0 E → 2 = -0.02 �
E → 4 = 0.155

2j) 2 ∆t = 268921.20 P → 3r = 0.868 X
P → 3c = 0.132

3a) 3r ↑ . . . . . .

Figure 5.4: The look-first method for a V1As1 cluster at 800 ◦C. The state connectivity graph is
as in Figure 4.3. At each step, the current state of the system is indicated by a dot.
While exploring a basin, the original state is indicated with a circle. The gray states
indicate different basins. The # ↓ or # ↑ indicate the current state and whether the
system is heading down or up the basin. A � indicates the algorithm has determined
that the system left the current basin. The transition energy, E, or probability, P , for
exiting to different types of states, at the chosen timestep (∆t ν−1 s), is listed on the
right, and the chosen type of state indicated with a X.
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visited basins is identical for both jump-first and look-first methods.

It is clear that the look-first method has the advantage that it performs fewer

FPTA calculations than the jump-first method. Another advantage, discussed in

Section 6.2.7.1, is that there seem to be fewer very badly conditioned FPTA calcula-

tions when the look-first method is used. This may be a consequence of identifying

all the states in the basin and therefore not leaving leaks to absorbing states that

are orders of magnitude faster than other exits. However, the look-first method also

visits an extra state each basin in order to determine when it has left a basin. This,

along with larger than necessary FPTA calculations when the system would have left

the basin before visiting all of the states, are disadvantages to the look-first method.
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CHAPTER 6

Accelerated Kinetic Monte Carlo Algorithms

Implementation of an accelerated KMC method with the energy basin state saving

algorithm is significantly more involved than implementation of the standard KMC

method. Much of the complexity comes from bookkeeping involved with state and

basin saving and tracking dopant and defect clustering. In this chapter we first give

an overview of the algorithm for both the jump-first and look-first methods. Then we

will detail the data structures and functions used in our practical implementation.

Finally, the we validate the algorithm through simulations of V-As cluster dissolution.

6.1 Algorithm Overview

As with the standard KMC algorithm, the accelerated algorithm is a loop of

determining all of the possible events, calculating their rates, and then choosing

which event occurs at which time. The primary difference between the outline of

accelerated and standard algorithms is that after an event occurs there is a state

saving step in the accelerated algorithms. We found it more efficient to allow random

walks on a flat energy landscape than to use FPTA, so whenever V are isolated we

simply skip the state saving steps and perform standard KMC. Once a V interacts

with other defects we begin using the accelerated KMC algorithms. Before continuing

with the algorithms, it is necessary to be more specific with the definition of “states”
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in KMC.

6.1.1 Defect grouping

Usually for KMC simulations of particle systems, the state of the system is the

configuration of all particles. More generally, the states must include everything that

would affect jump rates out of the state, and in order to use the acceleration methods

presented in Chapter 5 the jump rates must not vary in time. For instance, this means

that external stress or electric fields that affect jump rates must be constant over the

time the system is in the transient states. If there are long range interactions between

particles such that moving one particle affects the energetics of every other particle,

then a state must be the configuration of all particles in the system. However, in

many systems interactions are short range and it may be possible to create separate

groups of interacting particles that are independent from every other group. This is

the case in the V-As model when there is a low enough V concentration that we can

identify groups of interacting V which are not affected by V outside of the group.

Then, a state is the configuration of V in a group and the As with which they are

interacting.

A KMC event is chosen for each group and the events are performed in order of

occurrence. The system time is set to the time at which the latest event occurred,

and each group time is set to when the last group event occurred. Until the group’s

event occurs, the group may transition between transient states and the accelerated

KMC method does not resolve which state it is actually in. Therefore, when two

groups approach each other it must be determined which transient state they are

in. The lagging group is evolved through its transient states until the group time

matches the leading group’s time. Once they are synced, they are grouped so that
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they will stay at the same time and can interact appropriately. As the total system

evolves the groups must be continually updated. Despite the additional bookkeeping

involved, it may be useful to break a system into smaller independent groups when

possible because it reduces the number of states that must be saved and gives smaller,

therefore faster, acceleration calculations.

Finally, it was noted in Section 4.5 that in cases when the migration energy

approximation, Equation 4.29, finds no barrier between states, they are combined

into a single state. In general, we refer to the stable state and all unstable states

that fall down to the stable state as a “superstate”. The system always jumps out

of a superstate in one event. It is possible for a state to be an unstable saddle

state between multiple superstates. Whenever the system jumps to or falls into an

unstable saddle state, we randomly choose which superstate it falls to. After every

event in which the system jumps into a state with unstable transitions up or down,

we must fully identify the superstate before continuing. In the following sections,

we will generally just use “state” and save the use of “superstate” for situations in

which having unstable states makes an important difference.

6.1.2 Jump-first method

A simplified outline of the jump-first method is presented in Algorithm 6.1. Spe-

cific details for each step will be given in Section 6.2. As discussed in Section 5.2

and demonstrated in Section 5.2.1, the jump-first method advances the system one

state at a time. At each step it uses FPTA and adds a single state to the current

basin until the algorithm detects the system has entered a new basin. Then it saves

the current state in a new basin and continues. The algorithm assumes that the

system will head down to the bottom of the basin and then will head up and out.
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Calculate event rates;1

Save first state, begin first basin, set β with Algorithm 6.3;2

Determine first event;3

repeat4

Perform next event, advance time;5

Update event rates;6

if In a previously saved state then7

Update state connectivity;8

if In a different basin then9

Update basin connectivity;10

Check if basins should be merged;11

end12

else13

Save new state;14

Update state connectivity;15

Decide if we are in the same basin, Algorithm 6.2;16

if Still in current basin then17

Add state to current basin;18

else19

Add state to new basin, set β with Algorithm 6.3;20

Update basin connectivity;21

end22

end23

Determine next event;24

until Simulation finishes ;25

Algorithm 6.1: A simplified outline of a KMC program using the jump-first method.
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The current direction of the system through the states of the basin, either down (↓)

or up (↑), is stored in the variable β. When the system enters a new state, β and

the energies of transitions out of the state are used in Algorithm 6.2 to determine

if the system is in the current basin or a new one. The criteria are based on the

non-decreasing nature of saddle point energies moving away from the minimum of

the basin, as shown in Figure 5.2. If the system is heading down, but the minimum

UK transition energy out of the new state is greater than or equal to the K transition

energy it entered by, then the system has reached the bottom of the basin and is

now heading up. If the system is heading up, but the minimum UK transition out of

the new state is less than or equal to the K transition it entered by, the system has

escaped the basin and entered a new one. The conditional criteria are set to “≤”

and “≥” so that basins are not saved on a flat energy landscape.

if β = ↑ and min[UK] ≤ K then1

In a different basin;2

else3

Still in current basin;4

if β = ↓ and min[UK] ≥ K then5

β = ↑;6

end7

end8

Algorithm 6.2: The criteria for determining if the system is still in the current basin. Known (K)
and unknown (UK) transitions are from the current state only.

Upon creating a new basin, β is set using the criteria of Algorithm 6.3. Usually,

β = ↓. There are two cases when β is set to ↑ to begin a basin. The first case is

when there are more than one equally low minimum energy UK transitions from the

first state (#min[UK] > 1). Those transitions could lead to different basins with

the current state being a saddle state. By setting β = ↑ we begin a new basin

if the system heads down into one of those basins. The second case is when the

minimum UK transition from the first state is greater than or equal to the energy of
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the incoming transition. This usually occurs when all of the states in a basic energy

basin were not included initially, either because a lower energy escape exists but the

system has re-entered the basin, or because the system did not reach the bottom

before beginning to head up the basin.

The jump-first algorithm includes checks after each KMC event to determine

whether the system is in a new state or a previously saved state. We need to track the

state connectivity in order to properly create the ¯̄M or ¯̄T matrices for the acceleration

calculation. If the system enters a saved state in the current basin from a new

transition pathway, then the state connectivity is updated for the next acceleration

calculation. If we did not check if the current state was already saved, the acceleration

calculation would still be correct, but we could not escape from “looped” basins, such

as in Figure 4.7. If the system enters a saved state that is in another basin, the state

connectivity is updated and the basin connectivity is updated. We need to track

basin connectivity to allow neighboring basins to merge. If the system is trapped

between basins and will repeatedly transition between them, they are merged into a

single basin. This process of creating basins, and then when necessary merging them

into larger basins allows the system to escape from any trap.

if #min[UK] > 1 or min[UK] ≥ K then1

β = ↑;2

else3

β = ↓;4

end5

Algorithm 6.3: The conditional setting of β upon creating a new basin. Known (K) and unknown
(UK) transitions are from the current state only.
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Calculate event rates;1

Save first basin, use Algorithm 6.5;2

Determine first event;3

repeat4

Perform next event, advance time;5

Update event rates;6

if In a previously saved state then7

Update state connectivity;8

if In a different basin then9

Update basin connectivity;10

Check if basins should be merged;11

end12

else13

Save new basin, use Algorithm 6.5;14

end15

Determine next event;16

until Simulation finishes ;17

Algorithm 6.4: A simplified outline of a KMC program using the look-first method.

6.1.3 Look-first method

A simplified outline of the look-first method is presented in Algorithm 6.4. The

outline is identical to the jump-first method, except that where the jump-first method

saves a single state, the look-first method saves an entire basin using Algorithm 6.5.

As discussed in Section 5.2 and demonstrated in Section 5.2.2, the algorithm follows

the lowest energy UK transition out of all the states identified up to that point. Once

it has identified the states in the basin, FPTA is used once to escape.

Generally β = ↓ to start. However, if the first state has multiple equally low

minimum energy UK transitions and they are less then the incoming K transition

energy, we do not want to guess which one the system would take, so we stop. If

they are greater than the incoming K transition energy, that means the basin was not

fully identified previously, perhaps due to another escape path, but now the system

has returned so it behooves us to finish going up the basin and β is set to ↑.

Like the jump-first method, the look-first method is an approximate method for

identifying basic energy basins because it stops as soon as the first exit to a different
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Save first state in new basin;1

stop = false;2

if #min[UK] > 1 and min[UK] ≤ K then3

stop = true;4

else if min[UK] ≥ K then5

β = ↑;6

else7

β = ↓;8

end9

while stop == false do10

Considering all states in current basin, take minimum energy UK transition;11

if In a previously saved state then12

Update state connectivity;13

if In a different basin then14

Update basin connectivity;15

stop = true;16

end17

else18

Update event rates;19

if β = ↑ and min[UK] ≤ K then20

stop = true;21

else22

if β = ↓ and min[UK] ≥ K then23

β = ↑;24

end25

Save state in current basin;26

Update state connectivity;27

end28

end29

end30

Place system in first state in current basin;31

Algorithm 6.5: The algorithm for identifying basins in the look-first method.
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basin is found. For a KMC simulation this is sensible because it is likely the system

will choose that exit. Time spent identifying the higher energy states in a basic

energy basin is often wasted. If it is desirable to include states above the minimum

energy exit, Algorithm 6.5 could be modified to only stop when the entire basin is

found. Or it could wait to stop when the minimum energy UK transition out of the

basin is a certain magnitude above the known minimum energy basin exit.

6.2 Algorithm Details

Algorithms 6.1 and 6.4 give an important outline of the accelerated KMC al-

gorithm, but there are many details lacking and complications left untreated. For

instance, we noted that groups of isolated vacancies must be regrouped continually

as the simulation runs. When regrouping is necessary, the groups must be synced in

time, then their saved states are deleted, then the groups are combined, and finally

the initial state (if jump-first) or basin (if look-first) is saved. Another example is

collecting data as the simulations run. In order to study time and concentration

dependent diffusion we desire data on the formation and diffusion of clusters of As

and V. Simply looking at the defect and dopant positions at some sampled times

is not sufficient because sampling errors occur when we are not in equilibrium and

some clusters exist for much shorter times than others. It is not trivial to determine

the exact amount of time spent in each type of cluster in an accelerated KMC sim-

ulation because FPTA does not resolve the amount of time spent in each transient

state. If the clustering changes within an energy basin, the amount of time spent in

different clusters can not be allocated appropriately. Also, determining the clusters

at every step can be very time consuming and ruin simulation efficiency if not done

intelligently. Finally, when there are many saved states, checking if the system is in
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a previously saved state can be very time consuming if the search is done by simply

checking all defect and dopant positions in all the saved states. We limit the maxi-

mum number of saved states and also perform some sorting to reduce the number of

comparisons necessary. In this section, we will detail the data structures we used to

save simulation data and show how these operations can be done efficiently. For some

of these operations there may be more highly optimized computer science solutions

available in the literature, but the solutions presented here were readily implemented

and “good enough”.

The jump-first and look first method are detailed in algorithmic form in Appen-

dices A and B. The algorithms contain references to where the steps are discussed

in this chapter. The algorithmic details are somewhat tailored to the specific needs

of our model for vacancy-mediated As diffusion in Si, but are readily generalized to

most crystalline systems. These methods are especially suitable for systems with a

low concentration of actively jumping defects but large variations in the energy land-

scape. Our V-As model does not include V-V interactions, but the KMC algorithms

are designed to include those interactions once the parameterization is included.

6.2.1 Lattice Representation and Binning

The V-As diffusion model is limited to Si, As, and V all on diamond cubic lattice

spots. All of our simulations have periodic boundary conditions, i.e. it is an endlessly

repeating computational cell in which jumping off one side brings a V back on the

other side. Only V move by themselves, and the energetics of their jumps are only

affected by As within 3NN jumps. Therefore, we represent the system by keeping a

list of all of the V and As positions and assuming Si atoms on every other lattice

spot. In the following we will use “defect” to refer to a species which could be either
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V or As, and if necessary specify that this refers to V or As only. Defect positions

are specified by seven values: (x1, x2, x3, s, j1, j2, j3), where x1, x2, x3 are the x, y, z

coordinates of the unit cell containing the defect, s is the index of the occupied lattice

spot within the unit cell, and j1, j2, j3 are the number of jumps the defect has made

across the periodic boundaries. Jumps in the positive direction are a +1 and jumps

in the negative direction are a −1. This allows for absolute displacements to be

measured across the periodic boundaries. Another list contains the possible moves

between lattice spots by specifying (∆x,∆y,∆z, s), the change in unit cell positions

and the new lattice spot. There are four possible neighbor jumps for any point on

the diamond cubic lattice, and eight possible lattice spots, so there are thirty-two

different moves specified. If off-lattice spots and jumps are desired, they can simply

be added to the list of positions and allowable moves.

This representation scheme makes it necessary to search through the list of defects

to find those that are close enough to interact and affect jump rates. To expedite

the search we bin defects by region of space. This entails dividing the computational

cell into regions of identical cubic size and creating a list containing all of the defects

in each region. When the bin size is greater than the interaction range, we can find

all possibly interacting defects by searching the 3× 3× 3 bin region surrounding and

including the defect under consideration. For our model with interactions ranging

3NN, bins can be as small as a single unit cell. Binning is done once initially before

the main loop of the algorithm and updated as defects move.

6.2.2 Grouping

If there are multiple V, prior to starting the main loop of the KMC algorithm

we find all the possibly mutually interacting V and place them in the same group.
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Each group consists of a data structure specifying which V are in the group, the

saved states belonging to the group, the basins belonging to the group, and some

of the information about the clustering of defects in the saved states. We check for

V-V interactions by using the bins. Each V has a 3× 3× 3 bin region of influence.

Any V with overlapping regions of influence are in the same group. A list of groups

is maintained and groups can be identified by their index in the list, g#. In order

to determine when two different groups are close enough that they might begin to

interact and must be merged, we track which group is influencing each bin and keep

a count of the number of influences for each bin. There is a +1 influence that comes

from each V in the current state of the system, but we also need to include a +1 in

the region of influence for each V in each saved transient state. Each time a state

is saved or deleted or a V switches bins in the current state of the system, the bin

influence count is modified. If a V begins to influence a bin already influenced by

another group those two groups must be synced in time (see Section 6.2.8), all their

saved states and basins deleted, and then merged. Provided that the bin length is

greater than the defect interaction range, the 3×3×3 bin region of influence provides

a buffer so that two defects belonging to different groups will not interact before the

groups are merged.

In the look-first method, two groups cannot be allowed to impinge upon each other

during basin identification. If an attempted move would cause impingement, then

the move is not made and basin identification is stopped. The system is replaced

in the original state, FPTA done, and the chosen move made. At that point, group

merging takes place as usual.

Groups are separated if the V belonging to the group move apart. For each V in

the group, we set grp = −1. Then grp is set to g# for the first V and it is checked

119



to see with which other V it shares an overlapping region of influence. Then grp is

set to g# for each of those, they are checked, and so on recursively. At the end, any

V with grp = −1 is in a different group and must be regrouped. The ungrouping

check does not need to be made every KMC event, that would just lower efficiency,

so it is done either upon group merging or after every 103 events.

6.2.3 Jump rate parameterization

Jump rates are parameterized using the model described in Section 4.5. Rates can

be determined efficiently by using a lookup table of migration and binding energies

created before the main loop of the KMC algorithm. When the jumping rates for

a specific V need to be determined, the 3 × 3 × 3 bin region surrounding it are

searched for other defects. The x,y,z displacement to the other defect i is used as

indices into the lookup table and a set of energy parameters saved into a list. The

energy parameters obtained from the lookup table include the appropriate Em from

Figure 4.3, the appropriate Eb from Figure 4.3 in the current state and after each

possible V jump, and the number NN jumps from the V to defect i. If the defect is

in a 1NN position we make a note of which defect and in which jump direction. If

the defect is another V the move is not allowed, and if it is an As then that As will

be swapped into the current V position if this jump is chosen.

After all the nearby defects have been found, the jump rates for the V can be

calculated as follows. A loop is performed over each possible jump, j. If there is

more than one defect within 3NN before or after jump j, then the formation energy

in the current state and each possible final state are calculated and Equation 4.29

is used to calculate Em. Otherwise, Em is used directly from Figure 4.3. Using the

value of Em, Rj can be calculated from Equation 4.30. The saddle point energies are
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the sum of the formation and migration energies. All of these quantities are saved

to the current V.

The jump rate parameterization must be done for every V before the main loop

of the KMC algorithm. During the simulation, the jump rates are only updated for

the V that jumped during the last move and any interacting V within the jumping

V’s 3× 3× 3 bin region.

6.2.4 States and superstates

6.2.4.1 State saving

States are saved within the group object as a separate object for each V in the

group. The saved state contains the V’s position, and the state connectivity: whether

the possible V jumps lead to UK or K states, if K then to which state, and if any

defects are in 1NN positions from the V. The saved state also includes the energy in

the state and the energy of the saddle point for each transition. In order to account

for the energy of all the vacancies in the group, the energy in the state is determined

from the migration energies and the zero point reference is the energy of the first

saved state.

The positions of As also need to be saved. To avoid saving the positions of every

As, we only save those As that have exchanged with V from this group since the first

state in the group was saved. When an As jumps for the first time we also save the

original position before it jumped. When we load a state from memory, we load in

the all of the saved As positions, and then place any As that jumped since the state

was saved in their original positions. The saved and original As positions are stored

in the group object. A limit is placed on the number of allowed jumped As, and

when the limit is exceeded, all the states are cleared from memory. Currently, we
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set the limit at max[20, 4NV (g#)], where NV (g#) is the number of V in the group.

We also limit the total number of saved states, in part to avoid using too much

memory, but mostly for efficiency when checking if the system is in a new state or a

previously saved state. If saving a new state would exceed the limit, we first delete

a basin as described in Section 6.2.5.2 and then save the state. Currently, we set the

limit at 50,000 states, but in practice this limit is never reached because the limit on

the number of basins is reach first.

6.2.4.2 State checking

When the system jumps into a new state by an UK transition, we need to check

if it is really in a new state, or has entered a previously saved state. If we did

not check if the current state was already saved, the acceleration calculation would

still be correct, but the system could not escape from “looped” basins, such as in

Figure 4.7. To help the efficiency of checking saved states, we bin them by V position.

A good binning spreads the states evenly among the bins. We assume that the V

position on the lattice will change the most often since it changes with every V jump,

so we use that to bin. If there are 3 or more V in the group, the bin indices are

(s(V1), s(V2), s(V3)). There are 512 bins total. If there are fewer than 3 V in the

group we use a combination of the V lattice spots and the V x1 and x2 positions

modulo 8. After narrowing the search down to the bin corresponding to the current

system, we simply compare all of the V and As positions in the saved state to the

current state.
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6.2.4.3 Superstates

After every event in which the system jumps into a state with unstable transitions

up or down, we must fully identify the superstate before continuing. A list of su-

perstates is kept in the group object. We identify the superstate using an algorithm

similar to the “look-first” method: moving down to the bottom and then moving

back up to the top. The difference is that for superstates we continue to the top

of the superstate so that all states and all exits are included and don’t stop when

we find the lowest exit. After all the states are identified we create a data structure

listing the states and which one is the stable state. Additionally, we check each state

to see if it is unstable to more than one superstate. If it is, we save to the state

object the index of each superstate it falls to, the probability that it will fall to each

superstate, and the probability it will fall to an UK exit. These probabilities are

necessary for properly determining the rates between superstates in the acceleration

calculations, as discussed in Section 6.2.7.

6.2.5 Basins

The basin data structure contains a list of the superstates in the basin, β, the

basin occupation count, and the basin connectivity: which basins are connected and

the saddle point energy of the connecting transition. It is possible for two basins to

be connected at more than one transition, but we only store the lowest saddle point

energy. The basin also saves FPTA or mean rate calculation results, as discussed in

Section 6.2.7, and a list of clustering as discussed in Section 6.2.6.3.
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6.2.5.1 Basin merging

Each time a basin is re-entered its occupation count is incremented. If the occupa-

tion count is greater than a certain number the occupation count is also checked for

the neighboring basin connected by the lowest energy transition. If the neighboring

basin’s occupation count is also greater than the limiting value, then the basins are

merged. Currently the merging limit is set at 100. When the basins are combined,

the occupation count of the new basin is set at the sum of the original basins. This

makes it quicker to fill in basins of basins, such as for the configuration in Figure 4.7.

6.2.5.2 Basin deleting

We limit the number of basins for similar reasons as the limiting the number of

saved states: space in memory and state checking efficiency. Currently the maximum

number of basins is set to 20. If saving a new basin would make the number of basins

exceed the limit, then one of the current basins is deleted. The best basin to delete is

the one that the system is least likely to revisit and does not break the overall basin

connectivity if it is deleted. To find this basin, we traverse the basin connectivity

graph beginning at the current basin and at each step following the lowest energy

basin connection. The last basin reached is deleted.

6.2.6 Clustering

In order to understand the time dependence of vacancy-mediated As diffusion, we

collected data on the clustering of V and As. A cluster is defined as all V and As that

are within nc = 1 NN jumps of each other, but the definition can be varied up to 4

NN jumps. The clustering is determined before the main loop of the KMC algorithm

begins, and then updated as defects move. Efficient cluster updating is facilitated
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by maintaining lists of cluster connections. Any two defects that are within nc NN

jumps of each other are said to have a cluster connection. Each defect has a list of

all its cluster connections. Each cluster has a list of each defect in the cluster. The

cluster can be considered a connected graph in which each defect in the cluster is a

node and each cluster connection is an edge. At the moment the cluster is formed,

the system time is saved to cluster data structure. When the cluster breaks up, the

total time the cluster has been active is saved according to type, where the type is

the number of V and As in the cluster.

It is important to note that clustering is independent of grouping. Two different

groups may be in the same cluster if there is a background of As connecting isolated

groups of V. Also, different clusters may be in the same group. All the vacancies in

the same group need not be within nc NN jumps of each other.

6.2.6.1 Finding and updating clusters

We found that for large, dense systems a recursive approach to identifying clusters

would result in errors. Instead, a stack approach was implemented as follows. A

loop iterates over every defect i. If defect i has not yet been added to a cluster, the

cluster index c# is incremented, and defect i is added to a stack of defects to search

for cluster c#. While there are defects in the stack, a defect j is added to cluster c#

and searched for connections. The search is done over the 3×3×3 bin region around

the defect, and a cluster connection connection is added between defect j and any

defect k found within nc NN jumps if the connection does not already exist. If that

defect k has yet not been added to a cluster, then it is also added to the stack. Once

the search of defect j’s 3× 3× 3 bin region is complete, the defect j is removed from

the stack.
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This process will find all of the clusters and create all the cluster connections,

but it is too computationally intensive to be done every step. Instead, after a defect

moves we check its cluster connections to see if any of them have broken and check

the surrounding 3 × 3 × 3 bin region to see if any new cluster connections should

be formed. If cluster connections form, they may be within the same cluster or

to a different cluster. If cluster connections break, the cluster may separate into

different clusters or the overall cluster connectivity may remain intact. So if there

are any cluster connectivity changes we need to check if the cluster has changed.

This is easy to check for new connections, because each defect saves which cluster

it is in. If two defects in different clusters become connected, then we merge those

clusters. In practice we check for connections, then perform any mergers, then check

for disconnections, then check for broken clusters, and finally separate any broken

clusters.

It is not trivial to check if a cluster has broken. After disconnections, we check

for cluster connectivity as follows. Call the moving defect d1. Then make a starting

list that includes every defect, ds, that d1 disconnected from. If we can traverse the

cluster connectivity graph from each ds back to d1, the cluster is still connected. If

we cannot traverse the graph back to d1, then in the process of trying we will identify

all of the defects in a new cluster.

A rather efficient way to traverse the graph is to perform a directed depth-first

search. At each step, the chosen connection is the one that maximizes the dot

product r̂(dc → d1) · r̂(dc → dk), where dc is the current defect, dk is each of the

possible connecting defects, and r̂(di → dj) is the unit vector connecting defect i and

j. While traversing the graph we set c#(dc) = −(s+ 1), where s is the index of ds in

the starting list, save dc in a list of traversed nodes called visit list, and remember

126



the previous node dprv. Indices all start with 0, so using −(s+ 1) assures that while

checking for connectivity we are using a negative number distinguishable from the

actual cluster numbers. If at any point we come to a node with a negative cluster

number that is not the current −(s+ 1), we know that we can stop looking because

some other ds has found d1. If a connection is to a defect with c# = −(s + 1), the

search has already been there and the move is not allowed. If no connections from a

node are allowed we return to dprv(dc) and continue the search.

At the end, if each ds found d1, the cluster is still connected and we reset c# for

every defect in visit list. Otherwise, the cluster has broken up. Then we can run

through the list of defects in the original cluster, and the defect’s current c# can be

used to create the new clusters.

6.2.6.2 Cluster connection saving

The different states within a superstate might have different clustering when we

use the nc NN jumps criteria. Therefore, we define that for a superstate there is a

cluster connection between two defects if they are within nc NN jumps of each other

in any state in the superstate. The clustering must be checked for changes after the

superstate is fully identified. If defects disconnect, we need to check if the cluster

broke by traversing the cluster graph from each ds to every defect that moved, dmove.

So in the algorithm above, the goal of finding d1 is replaced with a goal of finding

every dmove.

Whenever a superstate is completed and saved, the cluster connections are saved

to the superstate object. The number of cluster connections and which defect the

connection leads to is saved for each V in the group, and each As that has jumped

since the first state was saved. Then whenever the superstate is loaded, all the saved
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connections are added if they do not currently exist, and any current connections

that do not exist in the saved state are deleted.

6.2.6.3 Basin cluster saving

As noted at the beginning of Section 6.2, the acceleration calculations do not

resolve the amount of time spent in each transient state. If the clustering changes

within an energy basin, the amount of time spent in different clusters can not be

allocated appropriately. Therefore, every superstate must be checked to see if the

clustering changes. If it does, the basin is stopped prematurely and it can not be

merged with basins that have different clustering. This is an additional criteria added

to Line 1 or Algorithm 6.2 in the jump-first method, and Line 20 in Algorithm 6.5.

Prematurely stopping the basin identification and preventing basin merging can

cripple the efficiency of the accelerated algorithm. Therefore, we continue to prevent

basins from forming with different clustering initially, but save the clustering in the

basin so that it can be quickly loaded upon re-entering a basin. Additionally, we

allow basin merging as usual even if the clustering is different. In this case, the

clustering within the basin is defined similarly as within the superstates: if a cluster

connection exists between defects in any superstate in the basin, then the defects are

considered connected in the basin. The updated cluster connections are still saved

within each superstate object.

The method for saving and loading the clustering is fairly straightforward, and

similar to the method for saving As positions discussed in Section 6.2.4.1. When a

cluster breaks up or combines to form a new cluster, instead of deleting the old data

structure we simply make it inactive, store the time it was active for, and add it to

a list of changed clusters. We also record whether the cluster was active or inactive
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when the list started in the list active init. Then when a basin is saved, we also

save to the basin object the number of changed clusters, Ncc and the current state

(active/inactive) of the clusters in the changed clusters list. For each active cluster,

a counter in the cluster object, num saved, is also incremented +1. When the

system re-enters a basin, along with loading the cluster connections for the current

superstate, we set the state of each changed cluster. For each cluster i in the global

changed cluster list, if i < Ncc the state of cluster i is set by the basin’s saved cluster

activity list. For each cluster i ≥ Ncc the state of the cluster is set by active init.

The start time is set for each of the newly active clusters and for each defect in the

cluster we set c#. The total active time for each of the deactivated clusters is stored.

Whenever a basin is deleted num saved is decremented for each of the clusters that

were active when the basin was saved. If num saved reaches zero and the cluster

is not currently active it can be deleted. The size of the list of changed clusters

is limited and when that limit is reached, all the saved states, basins, and changed

clusters are cleared from memory. Currently the limit is set at 100. The changed

clusters list is also cleared any other time all the saved states and basins are cleared.

6.2.7 Accelerated event determination

When there are several independent groups of V a KMC event is chosen for

each group. Then in every loop of the KMC algorithm the next occurring event is

performed. After the event is performed that group’s next event is chosen. If all the

V in the group are isolated from other defects, then the standard KMC method in

Section 4.3 is used to determine the event. When the V interact with As we begin

saving states and using the accelerated methods.
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6.2.7.1 First passage time analysis

The FPTA method is used as introduced in Section 5.1.1. Each time FPTA is

calculated for a basin we create the ¯̄M matrix from the basin’s list of superstates

and the superstates’ list of states and state connectivity. All UK transitions from

superstates in the basin lead to a single absorbing state. All of the connections

between superstates are determined by checking the state connectivity to determine

which states they are connected to, and from that which superstates. Because a state

may be unstable to multiple superstates it is important to know which superstates

it is unstable to and with what probability it will fall to each superstate. These

are determined whenever the superstates are created. For example, assume state 1

in superstate A is connected to state 2 which unstably falls 50% to K superstate

B, 25% to K superstate C, and 25% to an UK exit. Then in the ¯̄M matrix, the

rate RA→B = 0.5RA→2, RA→C = 0.25RA→2, and RA→α = 0.25RA→2, where α is the

absorbing state. In this example, state 2 must not be in superstate A.

We use the LAPACK library [135] in order to calculate eigenvalues, eigenvectors,

and the inverse eigenvector matrix. When all of the saddle point energies are the same

for transitions in either direction detailed balance should hold within the transient

states, and we expect that all the eigenvalues should be real and positive. In practice,

precision errors can result in eigenvalues with very small imaginary components,

usually less than 10−14. Currently we carry the imaginary component through the

calculation as long as possible until a real valued time or probability is used, but we

have not observed a difference without it. After the eigenvalues, eigenvectors, and

inverse eigenvector matrix are calculated they are saved to the basin. Any time the

system returns to the basin, the FPTA solution can be used to choose a new KMC

event. However, if the system jumps out of the basin by an UK transition that leads
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back to the same basin, then the state connectivity must be updated and the FPTA

solution recalculated so that this jump does not occur again.

Sometimes, the differences between rates connecting different states range over

many orders of magnitude and create conditioning problems that can affect the state

probabilities. We check for these problems in a couple of different ways. At time

zero the system is in the initial state, init, with probability 1 and every other state

with probability 0, so we can write Equation 5.4 as

Pα(t) =
∑
i

aie
−λit,(6.1)

ai =
∑
j

Vα,jV
−1
j,init.

From this, and λα = 0, we can calculate the mean exit time,

(6.2) 〈texit〉 =

∑
i 6=α ai/λi∑
i 6=α ai

.

We know that Pα(∞) = aα = 1, Pα(0) =
∑

i 6=α ai = 0, and 〈texit〉 > 0, which gives

us three different requirements to check. These requirements are often not all met

when the problem is ill-conditioned.

In this situation there are two options. The first option is to rid the basin of the

fastest transitions by finding the states that are creating the problem and combining

them into a single state using the equilibrating basin approximation. The equilibrat-

ing basin approximation is only used (1) after there is an ill-conditioning error, and

(2) when we find a set of superstates between which transition rates are 107 times

faster than any transition rate to a superstate outside of the set. If the second con-

dition holds, the equilibrating basin approximation ought to be very good. Then the

set of superstates is replaced in the ¯̄M matrix with a single state, and the transition

rates to other states are adjusted by the equilibrium probability of Equation 5.11.
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When the equilibrating basin approximation can not be used, the second option is to

use the memory only method described in Section 6.2.7.3 to explicitly jump through

the basin until the system escapes. Although these problems happen infrequently in

comparison to the total number of events, being forced to use memory only in the

worst trapping basins can significantly decrease simulation efficiency.

Usually the exit time is determined by choosing a random number and solving

the equation

(6.3) rand ∈ (0, 1] =
∑
i

aie
−λit

exit

for texit. This is solved numerically by making a starting approximation texit = 〈texit〉

and iteratively improving the approximation until the bounds tmin < texit < tmax

satisfy

(6.4) 10−5 >
tmax − tmin

(tmax + tmin)/2
.

Convergence is typically attained in 20-30 steps using a bracketing and bisection

method [136]. We choose the exit event based on the exit time as described in

Section 5.1.1, but in two steps. The first step chooses which superstate the system

exits from. The second step chooses which state within the superstate the system

exits by, and which V jumps in what direction.

6.2.7.2 Mean rate method

The mean rate method is calculated for a basin as introduced in Section 5.1.2. As

in FPTA, we create the ¯̄T matrix from the basin’s list of superstates and superstates’

list of states and state connectivity. There are two options for determining the

solution. We can either (1) solve for only the solution given the particular initial

state the system is in, or (2) solve for the system starting in any state. Using
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Equation 5.8, it is quicker to just get the solution for our particular initial state by

solving for Θ̄Tot from

(6.5) (I − ¯̄T )Θ̄Tot = Θ̄(0).

But if we fully solve for (I − ¯̄T )−1 we get the solution for the system starting in any

state. We can use that solution any subsequent time the system re-enters the basin.

As in FPTA, if the system jumps out of the basin by an UK transition that leads back

to the same basin, then the state connectivity must be updated and the mean rate

solution recalculated so that this jump does not occur again. The optimal method,

(1) or (2), depends on how often the system re-enters basins and how often the

solution must be recalculated due to connectivity changes. Currently we use option

(1). We solve for Θ̄Tot using Gauss-Jordan elimination and conveniently (I − ¯̄T )

never has zeroes on the diagonal.

6.2.7.3 Memory only

In order to compare the efficiency gained from acceleration calculations to the

efficiency gained from reducing the number of jump rate calculations, we have intro-

duced the memory only method. This method explicitly evolves the system through

the states of the basin using the standard KMC method for choosing timesteps and

events. At each step we sum the timesteps in order to calculate the final escape time.

Once the system leaves the basin, the escape time and transition are chosen for the

next KMC event.

6.2.8 Updating group time

Occasionally, we have already chosen a group’s KMC event, but before the event

occurs something happens and we need to determine in which transient state the
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system is located at a given time. In our simulations this occurs when two groups

impinge upon each other or when we decide to output simulation data at a given

time.

6.2.8.1 Memory only

In the memory only method, the system is updated by evolving it through the

transient states as normal, but transitions into an absorbing state are not allowed.

If a timestep for a jump puts the group time past the desired stop time, then that

jump is not allowed and the system stays in the current transient state. Afterwards,

it is no longer valid to use the original KMC event because that was chosen without

taking into account where the system was located at the update time. The additional

constraint that the system was located in a given transient state at a certain time

changes the exit time and event probabilities. However, because the events are

Poisson processes we can calculate the next KMC event exactly as we normally

would using the updated state and time as the starting positions.

6.2.8.2 First passage time analysis

The updating procedure for FPTA is analogous to the updating procedure for

memory only. We calculate the state occupation probabilities as a function of time,

but do not allow any transitions to the absorbing state. Then we can use the state

occupation probabilities at the desired update time to randomly choose which tran-

sient state the system is in. Afterwards, a new KMC event is chosen by the normal

method using the updated state and time as the starting positions.
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6.2.8.3 Mean rate method

The mean rate method can not be used to determine updated system positions.

The mean occupation times it calculates for each transient state are not up to a

given time, but until the system escapes the basin. Consider the case in which

data is output at regular time intervals less than the mean escape time from the

current basin. Even if memory only or FPTA was used to update the group to the

output time, if the next event was determined using the mean rate method it would

never escape the basin. One solution is to use FPTA or memory only to update the

group time, allowing it to escape the current basin, and then use FPTA or memory

only to also calculate the next event after the output time. Instead, we make the

approximation that each group is still in the current basin’s initial state and do not

recalculate the group’s next KMC event. This should not affect average quantities

like diffusivities, because the affect of shortening one data output time interval just

increases the next and will average out over many samples and data points.

6.3 Results and Validation: Arsenic-Vacancy Cluster Dissolution

We have performed a series of accelerated KMC simulations of As-V cluster dis-

solution in Si to compare the results of the several acceleration and state-saving

methods. We performed simulations without acceleration and with FPTA, the mean

rate method, or the memory only method. For state-saving we used both the jump-

first and look-first methods as shown in Appendices A and B and described in this

chapter. We also used “n-jump-first” and “n-look-first” methods in which, rather

than stopping state-saving based on the energy landscape we always save n states,

with n varying from 2 to 50. Practically, in the unaccelerated simulations we still

need to save states to create superstates, so we use the memory only method with

135



n = 1-jump-first state saving. For the n-jump-first method, once the state limit is

reached we delete a state using the basin deleting algorithm in Section 6.2.5.2 before

saving a new state. For the n-look-first method, we save a new basin with n states

each step.

Cubic systems 8 unit cells on a side with periodic boundary conditions were ini-

tialized with 1 V surrounded by 1 to 3 As dopants in 1NN positions. The simulations

were run at 800 ◦C until the cluster completely dissolved as defined by every V or

As being more than 4NN jumps from every other. Once the cluster dissolved, the

final displacements, simulated KMC time (tKMC), elapsed CPU time (tCPU), and

number of KMC events were recorded. Simulation efficiency is defined by the ratio

tKMC :tCPU . All simulations of a given type were performed on the same computer

platform. Acceleration is calculated from the ratio of simulation efficiency obtained

using acceleration methods to the simulation efficiency obtained using KMC sim-

ulations with no acceleration or state-saving. The absolute acceleration number

depends very significantly on the simulation temperature; the lower the temperature

the greater the observed acceleration.

Acceleration results for V1As1 cluster dissolution are given in Figure 6.1. The

mean rate method is the fastest, followed by memory only and then FPTA. The fact

that memory only provides nearly as much acceleration as the mean rate method

indicates that efficiency loss in standard KMC simulations of this cluster is mostly

due to the repeated calculations of jumping rates in repeatedly visited states. The

automatic basin finding algorithms are generally faster than n-methods for any n.

The exception is memory only with jump-first state-saving, in which the basin finding

and n-methods are nearly equal. The n-methods generally peak at n = 8−10 states.

This corresponds to the 8 states in the energy basin of clustered V1As1: two 1NN
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states, and six 2NN states. The exception is jump-first FPTA, which peaks at n = 3.

Because FPTA is a more involved calculation and the V1As1 basin is not too deep at

800 ◦C, it is more disadvantageous to redo the FPTA each time a state is added than

it is to not include every state in the basin. In every case, the total acceleration falls

off as n passes the 8-10 states needed to fill the first basin. The look-first method

tends to fall of more steeply than the jump-first method because at large n it is

more likely to include many states that the system never visits. The memory only

jump-first method falls off very slowly at large n since the memory only calculation

does not increase with n if there are unvisited states.

Further analysis of the V1As1 dissolution results in Figure 6.2 confirms that the

acceleration methods are working properly. The plot of elapsed CPU time, tCPU , con-

firms the acceleration results of Figure 6.1. The plot of the number of KMC events

shows that using either the jump-first or look-first method with any acceleration

method produces the same distribution of number of KMC events. Additionally, by

counting the number of explicit jumps made through the transient states in the mem-

ory only simulations, we see that it exactly reproduces the distribution of number of

KMC events in unaccelerated simulations. Finally, the plot of simulated KMC time,

tKMC , shows that the distribution of cluster dissolution times is exactly reproduced

by the FPTA and memory only simulations. The distribution is not reproduced by

the mean rate method simulations, which are clustered near the mean. However, the

mean dissolution time is the same for all methods, indicated by the vertical lines that

all fall on top of each other. The accuracy of the acceleration methods in determin-

ing the vacancy and As displacements upon dissolution is confirmed in Figure 6.3.

The x-displacement upon dissolution is identical for all simulation methods, and by

crystal symmetry is the same for all three directions. The high probability for no As
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displacement shows that at 800 ◦C the V1As1 cluster dissolves more readily than it

diffuses as a complex.

The power of the KMC acceleration methods and the automatic basin finding

algorithms is more evident in the simulation of deeper trapping basins. Results for

the dissolution of V1As2 and V1As3 clusters are shown in Figures 6.4 and 6.5. These

results show that the accelerated KMC methods are orders of magnitude faster than

unaccelerated KMC, the value of the acceleration depending on the temperature. In

the deeper traps of V1As2 and V1As3, the advantage of FPTA and the mean rate

method over memory only becomes very significant, as most of the KMC inefficiency

comes from bouncing between trapping states rather than repeating rate calculations.

These results also show the significant advantage of the automatic basin finding state-

saving methods over the n-methods with fixed numbers of saved states. Particularly,

note the increase in efficiency that comes in the V1As2 dissolution simulations when

n = 24. This is due to the configuration of two As opposite each other around a

hexagonal ring, with a vacancy in between, as shown in Figure 4.7. As the vacancy

causes the As to rotate around the ring, there are 24 states in an energy basin com-

prising the entire rotational motion. Including all of these states in an acceleration

calculation provides a significant advantage. However, most other basins are smaller

so using 24 states all the time is undesirable. As the number of defects and dopants

in a cluster increases, the number of unique basins increases and the flexibility to

use just the right number of saved states becomes increasingly advantageous. For

completeness, figures of timing and displacement for V1As2 and V1As3 dissolution

analogous to Figures 6.2 and 6.3 have been included in Appendix C.
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Figure 6.1: Acceleration achieved during V1As1 dissolution. The basin identifying state-saving methods, look-first and jump-first, automatically
determine the number of saved states, so they are simply presented as straight lines for comparison with the n-methods. The look-first
and jump-first lines are the mean of 105 samples. Each data point for the n-methods is the mean of 104 samples. Acceleration is relative
to the mean of 105 unaccelerated samples.
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Figure 6.2: Timing and KMC event histograms for comparison for simulations of V1As1 dissolution. The labels “MR” = mean rate method, “MO”
= memory only, “No” = no acceleration, “L” = look-first, and “J” = jump-first. Vertical lines in the tKMC plot indicate means, and
all fall on top of each other. Magenta symbols in the “# KMC Events” plot are the number of unaccelerated events that would have
occurred in the memory only simulations.
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Figure 6.3: Histograms of vacancy and As displacement upon V1As1 dissolution. The labels “MR” = mean rate method, “MO” = memory only,
“No” = no acceleration, “L” = look-first, and “J” = jump-first.
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Figure 6.4: Acceleration achieved during V1As2 dissolution. The look-first and jump-first lines are the mean of 105 samples, and each data point for
the n-methods is the mean of 104 samples. Acceleration is relative to the mean of 105 unaccelerated samples.
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Figure 6.5: Acceleration achieved during V1As3 dissolution. The look-first and jump-first lines are the mean of 105 samples, except for memory only
which is the mean of 4× 103 samples. Each data point for the n-methods is the mean of 103 samples. The n-method with memory only
was too slow to be done. Acceleration is relative to the mean of 5 unaccelerated samples.
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CHAPTER 7

Percolation Effects on Vacancy-Mediated Dopant Diffusion
in Silicon

At large length scales and moderate to low concentrations, diffusion is often well-

described by continuum laws. But, at high concentrations and atomic length scales

continuum theories break down. In this chapter we use the accelerated KMC al-

gorithms presented in Chapter 6 to study one instance of this breakdown at high

concentration using the model for V mediated As diffusion in silicon presented in

Section 4.5.

7.1 Percolating Dopant Interactions

From the work reviewed in Chapter 2 and Section 4.4 we know that the pres-

ence of dopants in silicon can lower the formation energy of nearby-mediating de-

fects. In the case of As and V this interaction ranges at least three lattice spaces

[45, 83, 85, 117, 137], creates the tendency to cluster [42, 43, 138, 139, 140], and

leads to time and concentration dependent diffusivity [39, 84, 85, 113]. Mathiot and

Pfister [114] recognized that at high concentrations these interactions will percolate

throughout the material, and pair or cluster based diffusion models must fail because

there are no longer isolated pairs or clusters of V and As. They proposed that the

additional interaction with nearby As, as in Figure 7.1, will lower V formation ener-
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(a) (b)

Figure 7.1: The effect of nearby dopants, P, on V formation and migration energies. From [114].

gies, increasing the equilibrium number of V, and lower migration energies, allowing

a V to “freely diffuse” throughout the “infinite cluster”. With ab initio calculations,

Xie and Chen [85] confirmed that placing a second As 5 or 6 nearest neighbor (NN)

jumps away from the first lowers the migration barrier for a V to diffuse from one to

the other. They noted that this is consistent with experimental results showing en-

hanced diffusion for short times [84]. However, they also considered that more slowly

diffusing As2V clusters should quickly form as As find their neighbors, slowing dif-

fusion. This is consistent with longer time experiments which show As diffusivity

leveling off [113] or decreasing significantly [39] at high doping levels. Kinetic Monte

Carlo (KMC) simulations provide a direct way to test these ideas and determine

how much percolation of dopant interactions may enhance V diffusivity, how much

As diffusivity is increased in turn, and how long and over what distances such effects

persist.

Previous KMC work [115, 116, 117] has focused on setting equilibrium V concen-

trations based on the As concentration, but V may not be in equilibrium in many

systems of interest, and this makes it difficult to separate the effects of V concentra-

tion and V-V interactions from the effects of the percolating As interactions. In this
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work, we focus on the effects of percolating As interactions on V and As diffusivity

using a fixed V concentration and non-interacting V by performing simulations with

a single V. We determine diffusivities by averaging over hundreds or thousands of

identical simulations. KMC simulations in the literature have been limited to rel-

atively short times and may not account for all of the time dependent clustering

effects. By using the accelerated KMC algorithm of Chapter 6 we can perform these

simulations on timescales up to minutes of simulated time.

We use small-scale simulations of cluster diffusion to determine reaction rates for

cluster formation and breakup in a mean field model that describes well the low

As concentration time dependent diffusion in larger-scale simulations. Around the

critical As concentration identified in experiments, 2−3× 1020 cm−3, the mean field

model becomes inadequate to describe the diffusivity. We follow the trajectories of

individual V and find that at high As concentrations individual V do not diffuse

freely through the material, but rather become quickly bound in clusters.

All of our simulations have been run in cubic systems with periodic boundaries

at 800 ◦C. During the course of the simulations we keep track of dopant clustering,

using the methods described in Section 6.2.6. We define a cluster as all As and V

that are 1NN with each other. Varying this clustering definition up to 4NN can

affect the cluster formation and breakup reaction rates used in the mean field model,

but cause no qualitative differences, so for simplicity we use the 1NN definition and

only report those results here. Our simulations track the total time spent in each

type of cluster over the entire data output interval, which is important for avoiding

sampling errors. We report tracer diffusivities calculated as in Equation 4.19. Data

is collected at logarithmic intervals at the same time in every sample so that we can

calculate averages. All of the simulations used the look-first state saving method.
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7.2 Parameterization Simulations

In “Parameterization” simulations, we randomly placed one V and one to four As

into systems 8 unit cells on a side. The simulations with one to three As were run

long enough for equilibrium to be reached. The four As cluster simulations did not

equilibrate until past 105 s which made running a statistically significant number of

samples difficult even with the KMC acceleration. Statistics were collected from runs

of 10 s, at which point V1As3 clusters have formed and a quasi-steady state occurs.

The mean field model for clustering includes binary reactions of the form V1Asm+

Asn ←→ V1Asm+n, with forward and backward cluster reaction rates kfm and kbm,n,

to model the cluster population evolutions as

d[V1Asm]

dt
=

∑
0<i≤m

(kfm−i[V1Asm−i][Asi]− kbm−i,i[V1Asm]) +(7.1) ∑
0<n

(−kfm[V1Asm][Asn] + kbm,n[V1Asm+n]).

We included up to V1As4 clusters in the mean field model and solved the resulting

system of equations using ode15s in MATLAB [141].

However, to determine the cluster reaction rates from the results of the small

scale “Parameterization” simulations it is not possible to use Equation 7.1 directly.

The mean field model assumes that there is a continuum of cluster concentrations,

but the simulations are actually discrete. For example, in the one As simulations,

the defects can either be clustered or unclustered. In the two As simulations there

are four states: V1As2, or V1 & As2, or V1As1 & As1, or V1 & 2As1. Since it is a

discrete state system, the probability evolution of the system through the states can

be calculated using the same methods used for FPTA, but in this case there is no

absorbing state. The transition rates in the ¯̄M matrix that fit the simulation data

are the cluster reaction rates, kfm and kbm,n. To fit the reaction rates, we started with
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Figure 7.2: The fraction of time spent in various clusters as a function of simulated time during “Pa-
rameterization” simulations with (a) one to (d) four As. The solid lines are simulation
data and the dashed green lines is the mean field model fit.

the one As simulations. The steady state provides a ratio of forward to backwards

reaction rates and then the one remaining free parameter is fit to the transient curve,

as shown in Figure 7.2(a).

In the two As simulations the V1As1 + As1 → V1 + 2As1 rate should be the

same as the V1As1 → V1 + As1 rate in the one As simulations because it is simply

the V1As1 dissolution rate. We found the best fit for this dissolution rate varies

slightly, less than 10% between the one As and four As simulations. Similarly, the

V1 +As2 → V1As2 formation rate can be assumed identical to the V1 +As1 → V1As1
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formation rate because it depends on the V1 diffusivity. It is reasonable to consider

that the rates might differ if As2 presents a larger cross section to the V1, but we

found that the approximation that they are identical is good. The V1 + 2As1 →

V1As1 + As1 formation rate is twice the V1 + As1 → V1As1 formation rate because

the concentration of As1 is doubled. This leaves three rates left to be parameterized:

the V1As2 → V1 + As2 breakup rate, the V1As2 → V1As1 + As1 breakup rate, and

the V1As1 + As1 → V1As2 formation rate. They can be fit using the process of

determining forward to backward ratios from the steady state and then fitting the

transient curves. The resulting fit is shown in Figure 7.2(b). The deviations between

the data and model for the V1As2 curves arise from the binary reaction assumption.

The simulation data includes some reactions that are essentially V1 + As1 + As1 →

V1As2, but the model does not. The process was continued for the three and four

As simulations, shown in Figure 7.2(c,d).

Finally, the steady-state data was also used to calculate the cluster diffusivities

from

(7.2) DAs,V =
∑
m

fAs,VV1Asm
DV1Asm ,

where DAs,V is the overall (As,V) diffusivity, while DV1Asm is the diffusivity of the

V1Asm cluster and fAs,VV1Asm
is the fraction of (As,V) time spent in the V1Asm cluster.

The resulting values for kfm, kbm,n and DV1Asm , are listed in Table 7.1. Diffusivities

for V1As3 and V1As4 clusters were too small to be measured.

7.3 Standard Diffusion Simulations

In “Standard” simulations, we randomly placed one V and a varying number of

As, corresponding to As concentrations from 1019 to 1021 cm−3, into large systems

32 unit cells on a side. Diffusivity and clustering were measured in 102−103 samples
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Table 7.1: Cluster reaction rate and diffusivity results from the “Parameterization” simulations.

m kf
m (cm3s−1) kb

m,1 (s−1) kb
m,2 (s−1) kb

m,3 (s−1) kb
m,4 (s−1) DV1Asm

(nm2s−1)

0 1.354× 1012 7.5× 106 16 2× 10−5 9× 10−6 1.785× 1010

1 2.2× 107 4.0× 102 4.3× 10−2 5× 10−6 - 4.69× 105

2 2.6× 103 2.5× 10−2 ∼ 0 - - 90.3

each run for 103 s of simulated time.

Figure 7.3 shows the results of the “Standard” KMC simulations for clustering

compared to the mean field model predictions. The mean field model describes the

clustering well at low concentrations, and the results at 1×1019 cm−3 in Figure 7.3(a)

are representative. Clustering occurs with time in steps at well-defined average times

when the next largest cluster forms. At high concentrations, as in Figure 7.3(b),

larger clusters form more continuously in time and the mean field model predictions

do not fit as well.

Figure 7.4 shows the the results of the “Standard” KMC simulations for diffusivity

compared to the mean field model predictions. At low concentrations, diffusivity

drops with time in steps at well-defined average times corresponding to the formation

of the next largest cluster, and the mean field model predictions fit the KMC data

well. At high concentrations, diffusivity drops continuously with time as clusters

form continuously, and is higher than that predicted by the mean field model, except

at the longest times. Generally, diffusivity of both V and As drops with increasing

As concentration. For V diffusivity this results from binding more often, and for

As diffusivity this occurs because there is only one V to mediate diffusion and more

As to average over. Variations of V and As diffusivity above the mean field model

predictions increase at high As concentrations, and at some times (∼ 10−9 and 10−5

s) V diffusivity increases slightly with As concentration.
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Figure 7.3: The fraction of time spent by the V in various clusters as a function of simulated time
during “Standard” simulations. Thin green lines are mean field model predictions.
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Differences in Figure 7.4 between the mean field predictions and KMC results for

As diffusivity at the shortest times arise from V-As exchanges that do not contribute

to diffusion. In order for an AsV to diffuse, at least 1.19 eV is needed to move a V

around a hexagonal ring from a 1NN to at least a 3NN position and then back to a

different 1NN position. Simple V-As exchanges only require 0.66 eV but by them-

selves cannot contribute to diffusion. Similar effects also happen in larger clusters.

The KMC simulations measure the r2 displacements of the non-diffusive exchanges

which appear as high diffusivities because they happen at very short times. However,

the mean field model only includes diffusive motions, creating the discrepancy.

With a fixed concentration of non-interacting V, the “Standard” simulations are

designed to investigate the effect of percolating defect-dopant interactions on diffusiv-
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ity at a constant V concentration. In order to fully replicate experimental conditions

and results for As diffusivity as a function of dopant concentration, both V concen-

tration effects and V-V interactions must be included. The effect of V-V interactions

is unclear: they might decrease diffusivity due to formation of Vm clusters, but it

might also increase diffusivity if VmAsn clusters are more mobile than V1Asn clus-

ters. Ignoring V-V interactions, we can make a rough comparison to experimental

results by scaling the simulations results by the expected experimental V concen-

tration. The simulations have a V concentration of 2 × 1017 cm−3, which is high

compared to expected experimental values, especially at low As concentrations. The

plots would all shift up or down based on the actual V concentration. Additionally,

the V concentration can be expected to vary based on the As concentration. Increas-

ing donor concentration lowers the Fermi level and results in increasing equilibrium

negatively charged free V concentrations [5]. The equilibrium total V concentration

would also increase with As concentration since the V formation energy is lowered

near As. Therefore, it is reasonable to expect the equilibrium V concentration might

increase proportionally to the square of the dopant concentration. If we make this

assumption, and scale the As diffusivity results of Figure 7.4 (a) accordingly, we get

the results in Figure 7.5. In this figure the As diffusivity results are plotted as a

function of As concentration for the three times indicated in Figure 7.4 (a). The

experimentally observed trend that As diffusivity increases proportionally with As

concentration at concentrations below 2 × 1020 cm−3, see Figure 4.2, is only repro-

duced at the shortest times, as in line A, when diffusion is dominated by V1As1

clusters. In the experimental results of Fair et al. this trend persisted to times as

long as hours. In the simulations, once the lone V becomes trapped in a V1As2 or

larger cluster, on the order of a microsecond, this trend stops. However, in experi-
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ments, free vacancies could diffuse in to a region in which V1As2 or larger clusters

have formed so that the number of V1 and V1As1 is not depleted as in the simulations.

This could lead to a persistence of the increasing diffusivity trend to longer times as

observed experimentally. When V1As2 or V1As3 clusters form, this trend is no longer

observed, but as in line B and C, diffusivity enhancement above As concentrations

of 2× 1020 cm−3 is observed for a short period of time immediately after the average

time those clusters form. At longer times, As diffusivity drops with As concentration.

7.4 Short Diffusion Simulations

In order to understand what is happening at the highest concentrations we turn

to the results of the “Short” simulations. In “Short” simulations, we used the same

setup as for “Standard”, but only ran the simulation until the V found itself 1NN to

two or more As. We performed 105 such trials at each concentration, measuring the

r2 displacement, time elapsed, and maximum saddle point energy traversed starting

from when the V was first 1NN with one As to when it was 1NN with two or more

As.

When As are isolated it takes 1.21 eV for a V to unbind. Percolation enhanced

diffusion is proposed to occur when this energy is lowered due to a second As nearby.

Because the binding energies are additive in our simulations, if the V is 1NN to two

As it will take 1.21 eV for it to migrate to a position 1NN with a single As. This

is as great as the energy to fully unbind a V from an isolated As, so the potential

diffusion enhancement from percolating dopant interactions will be gone. Certainly,

additional As in 2NN and 3NN positions will also modify the migration energies, but

not to the extent of the 1NN As. For this reason, we consider the V becoming 1NN

to two or more As a stopping point for any percolation enhanced diffusion.
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Histograms in Figure 7.6 show the r2 displacement and time elapsed starting from

when the V was first 1NN with one As to when it was 1NN with two or more As.

We see that increasing the As concentration shortens the r2 displacements, since the

average distance between dopants is lower. But the finite nature of the lattice means

the displacements can not decrease forever, and near the critical concentrations 2−3×

1020 cm−3 the range of observed displacements is approaching the size of the unit cell.

Above this concentration, the histograms shift left as the displacement can not be

reduced much more, but the clustering time decreases, effectively a small diffusivity

increase. The tail of data to the left at very short times comes from V that find

As that are already clustered. Additionally, we see that increasingly the maximum

saddle point traversed is lower than the unbound maximum of 0.28 eV, a hallmark

of the percolation model. However, the small r2 values demonstrate that at high

concentrations the V do not diffuse freely through the material from As to As, but

instead either quickly find an existing As2 pair or rearrange existing single As into a

cluster. Qualitatively similar results, shifted to higher diffusivity, have been obtained

at 1000 ◦C and 1200 ◦C.

7.5 Conclusions

In conclusion, the work presented in this chapter shows that at low As concen-

trations a mean field model predicts well the diffusivity of V and As observed in

KMC simulations and can be used as a baseline for determining diffusivity changes

at high As concentrations. On short time scales, percolation of dopant interactions

does lead to limited increased diffusivity for individual V, and in turn this causes

increased As diffusivities. The effect is limited in magnitude and we do not observe V

“freely diffusing” through the material as a result of percolating dopant interactions,
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but rather observe quick local clustering that decreases diffusivity on timescales of

seconds to minutes.
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CHAPTER 8

Conclusions and Future Work

From the work we have reviewed, it is clear that the current understanding of

dopant diffusion in silicon comes from the synthesis of experimental and computa-

tional research. Atomistic calculations provide valuable understanding and param-

eterization of the mechanisms that contribute to diffusion. The relevant physical

phenomena range over many time and length scales, which necessitates a multi-scale

modeling approach. Our work has contributed to two different aspects of the effort to

model dopant diffusion, (1) the accuracy of atomistic methods for calculating defect

parameters, and (2) an accelerated KMC method, which we used to investigate the

effects of percolating dopant-defect interactions on diffusion.

By using continuum linear elasticity to formally show the effect of boundary condi-

tions on supercell calculations we have validated the supercell approach for atomistic

calculations. Our comparisons with empirical atomistic calculations verify the linear

elastic prediction in the far-field, and provide useful insights into the convergence of

atomistic calculations. For instance, we found that although linear elasticity predicts

periodic boundary conditions at zero average stress have no affect on relaxation vol-

ume tensor calculations, in practice bonding changes result in elastic moduli changes

that cause the relaxation volume tensor to converge as 1/N .
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For future atomistic calcuations, knowledge of this convergence rate allows for

accurate estimation of the relaxation volume tensor from modest simulation sizes.

The elastic moduli might also be measured and compared to the value expected for

a perfect crystal in order to gauge convergence. We have shown that the thermody-

namically relevant volume change is that of the entire body, so relaxation volumes

should be reported accordingly, rather than simply describing local relaxations. Ad-

ditionally, even if the computational cell is fixed at a constant volume the relaxation

volume tensor can be simply calculated from the average stress in the cell.

We have introduced an accelerated KMC method that automatically determines

which states comprise trapping energy basins. The accelerated KMC method has

allowed us to study the highly time dependent diffusion of arsenic in silicon. We

demonstrated the use of the accelerated method to determine cluster diffusivities and

reaction rates which were used in a mean field model. We observed that percolating

dopant interactions do lead to limited increased diffusivity, but that the effect is

limited in magnitude and duration as immobile clusters form quickly.

Future work on the accelerated KMC method could focus on several different

aspects. Perhaps the first thing to consider is optimizing the efficiency using the

current method. Several variables have been introduced without optimization, such

as the number of basins or saved states allowed, or the number of times basins

are occupied before merging. Since the optimal values may vary not only between

systems and simulations, but even for different situations within the same simulation,

it might worthwhile to vary them based on the current situation. It should be feasible

to vary the limits during the course of a simulation and automatically optimize

them using a Monte Carlo method. Some efficiency gains could also be realized by

improving on the bracketing and bisection method used to determine exit times in
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FPTA. There may also be improvements possible with the implementation of the

bracketing and bisection method. For instance, during the selection of the exit time

with FPTA, the probability of being in the absorbing state is calculated at several

different times. Saving those results in memory so that they can be used when the

system re-enters the basin could also increase efficiency.

Larger efficiency gains might be possible with an efficient method to characterize

how “trapping” a basin is, i.e. how good the equilibrating basin approximation is.

For instance, if simple information about a basin could be used to place bounds on

the errors introduced from using the equilibrating basin acceleration method, then it

might be used more often. We expect that it is a function of some generalized basin

width and depth. The fewer transitions it takes for the system to jump between all

the states in the basin, the “narrower” it is and the better the equilibrating basin

approximation should be. The higher the internal transition energies are compared

to the transitions to the absorbing states are, the “shallower” the basin is and the

worse the equilibrating basin approximation should be. The initial state of the

system within the basin is also important. The closer the system starts to the

transient state that it spends the most time in on average, the better the equilibrating

basin approximation should be. Similar information may provide an efficient way to

determine ahead of time which basins should be merged without waiting for the

system to repeatedly visit them. It might also help avoid ill-conditioning problems

in FPTA calculations by allowing the certain states to be merged into equilibrating

basins so that very large differences between rates in the absorbing Markov chain

can be avoided.

Future work may also attempt to use the accelerated method for systems with

high concentrations of diffusing defects. At high concentrations, many defects may
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interact with each other and result in a multitude of states that must be saved. The

acceleration methods can theoretically handle any number of states, but it remains

to be seen how many states are practically treatable before efficiency drops. The

accelerated algorithm’s success may depend on the system of interest and whether

the energy landscape consists of “wide”, “shallow” basins or “narrow”, “deep” basins.

At high concentrations and very large basins, there might also be more complications

collecting data. The larger the basin is, the more likely that relevant quantities vary

within the basin. It may be advantageous to segment the large basin into smaller

regions and perform FPTA on each of them separately. Data could be collected for

each of the regions and then the escape calculated for the overall basin. At some

point when the basin becomes very wide and shallow, this would begin to resemble

the first-passage time methods of DeVita et al. [127] and Opplestrup et al. [128].

In fact, a combination of those methods and our method may be very effective.

Our energy basin algorithm can be used to calculate cluster diffusivity and reaction

rates from simulations that include all of the atomic jumps. Then those rates could

be used with the DeVita or Opplestrup methods to simulate the motion of reacting

clusters. This kind of approach would likely be best at lower concentrations when

isolated diffusing clusters can be identified.

One final consideration is that the properties of energy basins may themselves

be valuable for describing a system. The eigenvalues calculated during the course

of FPTA provide information on the timescale of relevant mechanisms. This may

provide as much information on the onset of clustering or other phenomena as more

visually understandable, but practically difficult, criteria such as cluster connection

distances. By basing data collection on the underlying energy landscape the most

relevant mechanisms may be revealed and the basin finding algorithms will not be

162



slowed down.

The energy basin algorithms presented for accelerating KMC simulations may

be very useful in a wide variety of applications. Particularly in systems with low

concentrations of diffusing species but deep trapping energy basins, our accelerated

algorithm will allow simulations to reach very long times compared to standard

KMC simulations. This may be especially useful for determining the diffusivity or

dissolution rates of clusters of crystalline defects. By considering issues such as

grouping isolated diffusing species and collecting data when the exact location of the

system within an energy basin is not resolved, we have provided an example that

can be followed when applying this method to other systems.
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APPENDIX A

The Jump-First Method

165



Input defect positions and bin defects, see Section 6.2.1;1

Set initial system time;2

Determine the next output time;3

Determine the clustering, see Section 6.2.6.1;4

Determine the grouping, set initial group time, see Section 6.2.2;5

Create parameterization lookup tables and calculate jump rates, see Section 6.2.3;6

for Each group do7

Save the first state, see Algorithm A.2;8

Determine the group events, see Algorithm A.4;9

end10

repeat11

Choose the group with next occurring event;12

if The next event occurs past the next output time then13

if Using FPTA or Using memory only then14

Update all groups to the next output time, see Section 6.2.8;15

Re-determine the group events, see Algorithm A.4;16

end17

Output data and get the next output time;18

else19

Update the system time and chosen group time to the event time;20

if Move by a K transition then21

Load the state the system is jumping to, see Section 6.2.4.1;22

else23

Load the state the system is jumping from, see Section 6.2.4.1;24

Perform the move, Algorithm A.5;25

end26

if Impinging upon other groups then27

Update those groups to the system time, see Section 6.2.8;28

Update jump rates, see Section 6.2.3;29

Clear saved states and basins, and regroup, see Section 6.2.2;30

Save the state, see Algorithm A.2;31

else32

Update jump rates, see Section 6.2.3;33

Update the basin, see Algorithm A.7;34

end35

Determine group events for chosen group and any new groups, see Algorithm A.4;36

end37

until Simulation finishes ;38

Algorithm A.1: A detailed outline of a KMC program using the jump-first method.
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while Identifying states in the superstate, see Section 6.2.4.3 do1

if #States > limit then2

Delete a basin, see Section 6.2.5.2;3

end4

Save the state, see Section 6.2.4.1;5

if Grouping changes while identifying the superstate then6

if Heading up the superstate then7

Place the system in the stable state;8

end9

Clear saved states and basins, and regroup, see Section 6.2.2;10

Restart save state, this Algorithm;11

end12

if Too many As jump while identifying the superstate, see Section 6.2.4.1 then13

if Heading up the superstate then14

Place the system in the stable state;15

end16

Clear saved states and basins;17

Restart save state, this Algorithm;18

end19

end20

Place the system in the stable state;21

Create a superstate, save the list of states to the superstate, see Section 6.2.4.3;22

Update clusters, see Section 6.2.6.1;23

Save the cluster connections in the superstate, see Section 6.2.6.2;24

if First superstate then25

Create a new basin, see Section 6.2.5;26

Update basin connectivity, see Section 6.2.5;27

Set β, see Algorithm A.3;28

Save the current clusters to the basin, see Section 6.2.6.3;29

end30

Algorithm A.2: Save a superstate in the jump-first method.

if #min[UK] > 1 or min[UK] ≥ K then1

β = ↑;2

else3

β = ↓;4

end5

Algorithm A.3: The conditional setting of β upon creating a new basin. Known (K) and unknown
(UK) transitions are from the current state only.

167



if Falling to UK exit, see Algorithm A.7 then1

The UK exit is the next move and no time is incremented;2

else if No saved states, see Section 4.3 then3

Use standard KMC to pick the V, jump direction, and jump time;4

else if Using FPTA, see Section 6.2.7.1 then5

if FPTA solution does not exist for the current basin then6

Calculate the FPTA solution and save to the basin;7

end8

Use the FPTA solution to pick the event time;9

Use the event time to pick the escape move;10

else if Using the mean rate method, see Section 6.2.7.2 then11

Use the mean rate method to pick the escape move;12

Use the mean time for the event time;13

else if Using memory only, see Section 6.2.7.3 then14

Use standard KMC to move through the basin until the system escapes;15

Use the escape time, and move for the event;16

end17

Algorithm A.4: Determining group events for either the jump-first or look-first method.

Move V position and check V bin, see Section 6.2.1;1

Note any groups impinged upon, see Section 6.2.2;2

if Exchange with As then3

Move As position and check As bin, see Section 6.2.1;4

if This As is not already in the jumped As list, see Section 6.2.4.1 then5

if #Jumped As > limit then6

Add this As to the list, and record its original position;7

else8

Clear saved states and basins;9

end10

end11

end12

Algorithm A.5: Perform a V move in the jump-first method.

if (β = ↑ and min[UK] ≤ K) or Clustering changed then1

In a different basin;2

else3

Still in current basin;4

if β = ↓ and min[UK] ≥ K then5

β = ↑;6

end7

end8

Algorithm A.6: The criteria for determining if the system is still in the current basin. Known (K)
and unknown (UK) transitions are from the current state only.
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if Move was by UK transition then1

if In a previously saved state, see Section 6.2.4.2 then2

if Still in the same basin and Using FPTA then3

Clear FPTA solution, see Section 6.2.7.1;4

end5

end6

end7

if If K transition or In a previously saved state then8

Update state connectivity, see Section 6.2.4.1;9

Fall to either K superstate stable state or to UK exit, see Section 6.2.4.3;10

if Fall to UK exit then11

Load superstate cluster connections, see Section 6.2.6.2;12

Load basin clusters, see Section 6.2.6.3;13

else if Fall to K Superstate stable state then14

Load superstate stable state, see Section 6.2.4.3;15

Load superstate cluster connections, see Section 6.2.6.2;16

Load basin clusters, see Section 6.2.6.3;17

Update basin connectivity, see Section 6.2.5;18

Increment basin occupation count;19

Check if basins should merge, see Section 6.2.5.1;20

end21

else22

Occasionally check if still grouped, see Section 6.2.2;23

if Still grouped then24

if #Changed clusters > limit, see Section 6.2.6.3 then25

Clear saved states and basins;26

Save first state, see Algorithm A.2;27

else28

Save new state, see Algorithm A.2;29

Update state connectivity, see Section 6.2.4.1;30

Decide if we are in the same basin, Algorithm A.6;31

if Still in current basin then32

Add state to current basin;33

else34

if #Basins > limit then35

Delete a basin, see Section 6.2.5.2;36

end37

Add state to a new basin, see Section 6.2.5;38

Update basin connectivity, see Section 6.2.5;39

Set β, see Algorithm A.3;40

Save the current clusters to the basin, see Section 6.2.6.3;41

Update basin connectivity, see Section 6.2.5;42

end43

end44

end45

end46

Algorithm A.7: Updating the basin in the jump-first method.
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Input defect positions and bin defects, see Section 6.2.1;1

Set initial system time;2

Determine the next output time;3

Determine the clustering, see Section 6.2.6.1;4

Determine the grouping, set initial group time, see Section 6.2.2;5

Create parameterization lookup tables and calculate jump rates, see Section 6.2.3;6

for Each group do7

Save the first basin, see Algorithm B.2;8

Determine the group events, see Algorithm B.4;9

end10

repeat11

Choose the group with next occurring event;12

if The next event occurs past the next output time then13

if Using FPTA or Using memory only then14

Update all groups to the next output time, see Section 6.2.8;15

Re-determine the group events, see Algorithm B.4;16

end17

Output data and get the next output time;18

else19

Update the system time and chosen group time to the event time;20

if Move by a K transition then21

Load the state the system is jumping to, see Section 6.2.4.1;22

else23

Load the state the system is jumping from, see Section 6.2.4.1;24

Perform the move, Algorithm B.6;25

end26

if Impinging upon other groups then27

Update those groups to the system time, see Section 6.2.8;28

Update jump rates, see Section 6.2.3;29

Clear saved states and basins, and regroup, see Section 6.2.2;30

Save the basin, see Algorithm B.2;31

else32

Update jump rates, see Section 6.2.3;33

Update the basins, see Algorithm B.5;34

end35

Determine group events for chosen group and any new groups, see Algorithm B.4;36

end37

until Simulation finishes ;38

Algorithm B.1: A detailed outline of a KMC program using the jump-first method.
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Save first state, see Algorithm B.3;1

Update clusters, see Section 6.2.6.1;2

if #Basins > limit then3

Delete a basin, see Section 6.2.5.2;4

end5

Add state to new basin;6

Update basin connectivity, see Section 6.2.5;7

stop = false;8

if #min[UK] > 1 and min[UK] ≤ K then9

stop = true;10

else if min[UK] ≥ K then11

β = ↑;12

else13

β = ↓;14

end15

while stop == false do16

Considering all states in current basin, choose minimum energy UK transition;17

Perform a move, see Algorithm B.6;18

if In a previously saved state, see Section 6.2.4.2 then19

Update state connectivity, see Section 6.2.4.1;20

if In a different basin then21

Update basin connectivity, see Section 6.2.5;22

stop = true;23

end24

else25

Update jump rates, see Section 6.2.3;26

Save a state, see Algorithm B.3;27

Check if clustering changed, see Section 6.2.6.1;28

if (β = ↑ and min[UK] ≤ K) or Clustering changed or Groups impinged or Too29

many As jumped then
Delete the state;30

stop = true;31

else32

if β = ↓ and min[UK] ≥ K then33

β = ↑;34

end35

Update state connectivity, see Section 6.2.4.1;36

Save the state in the current basin;37

Save the cluster connections in the superstate, see Section 6.2.6.2;38

end39

end40

end41

Place system in first state in current basin;42

Save the current clusters to the basin, see Section 6.2.6.3;43

Algorithm B.2: The algorithm for identifying basins in the look-first method.
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while Identifying states in the superstate, see Section 6.2.4.3 do1

if #States > limit then2

Delete a basin, see Section 6.2.5.2;3

end4

Save the state, see Section 6.2.4.1;5

if Impinging upon other groups while identifying the superstate then6

if First superstate in the basin then7

Update impinged groups to the system time, see Section 6.2.8;8

Clear saved states and basins, and regroup, see Section 6.2.2;9

Re-start save the basin, see Algorithm B.2;10

else11

Delete the states in this superstate;12

Groups impinged in Algorithm B.2;13

Return;14

end15

end16

if Too many As jump while identifying the superstate, see Section 6.2.4.1 then17

if First superstate in the basin then18

Increase As jump limit;19

else20

Delete the states in this superstate;21

Too many As jumped in Algorithm B.2;22

Return;23

end24

end25

end26

Place the system in the stable state;27

Create a superstate, save the list of states to the superstate, see Section 6.2.4.3;28

Algorithm B.3: Save a superstate in the look-first method.

if Falling to UK exit, see Algorithm A.7 then1

The UK exit is the next move and no time is incremented;2

else if No saved states, see Section 4.3 then3

Use standard KMC to pick the V, jump direction, and jump time;4

else if Using FPTA, see Section 6.2.7.1 then5

if FPTA solution does not exist for the current basin then6

Calculate the FPTA solution and save to the basin;7

end8

Use the FPTA solution to pick the event time;9

Use the event time to pick the escape move;10

else if Using the mean rate method, see Section 6.2.7.2 then11

Use the mean rate method to pick the escape move;12

Use the mean time for the event time;13

else if Using memory only, see Section 6.2.7.3 then14

Use standard KMC to move through the basin until the system escapes;15

Use the escape time, and move for the event;16

end17

Algorithm B.4: Determining group events for either the jump-first or look-first method.
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if Move was by UK transition then1

if In a previously saved state, see Section 6.2.4.2 then2

if Still in the same basin and Using FPTA then3

Clear FPTA solution, see Section 6.2.7.1;4

end5

end6

end7

if If K transition or In a previously saved state then8

Update state connectivity, see Section 6.2.4.1;9

Fall to either K superstate stable state or to UK exit, see Section 6.2.4.3;10

if Fall to UK exit then11

Load superstate cluster connections, see Section 6.2.6.2;12

Load basin clusters, see Section 6.2.6.3;13

else if Fall to K Superstate stable state then14

Load superstate stable state, see Section 6.2.4.3;15

Load superstate cluster connections, see Section 6.2.6.2;16

Load basin clusters, see Section 6.2.6.3;17

Update basin connectivity, see Section 6.2.5;18

Increment basin occupation count;19

Check if basins should merge, see Section 6.2.5.1;20

end21

else22

Occasionally check if still grouped, see Section 6.2.2;23

if Still grouped then24

if #Changed clusters > limit, see Section 6.2.6.3 then25

Clear saved states and basins;26

end27

Save a new basin, see Algorithm B.2;28

end29

end30

Algorithm B.5: Updating the basins in the look-first method.

Move V position and check V bin, see Section 6.2.1;1

Note any groups impinged upon, see Section 6.2.2;2

if Exchange with As then3

Move As position and check As bin, see Section 6.2.1;4

if This As is not already in the jumped As list, see Section 6.2.4.1 then5

if #Jumped As > limit then6

Clear saved states and basins;7

else8

Add this As to the list, and record its original position;9

end10

end11

end12

Algorithm B.6: Perform a V move in the look-first method.
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APPENDIX C

V1As2 and V1As3 Dissolution Figures
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Figure C.1: Timing and KMC event histograms for comparison of simulations of V1As2 dissolution. The labels “MR” = mean rate method, “MO”
= memory only, “No” = no acceleration, “L” = look-first, and “J” = jump-first. Vertical lines in the tKMC plot indicate means, and
all fall on top of each other. Magenta symbols in the “# KMC Events” plot are the number of unaccelerated events that would have
occurred in the memory only simulations.
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Figure C.2: Histograms of vacancy and As displacement upon V1As2 dissolution. The labels “MR” = mean rate method, “MO” = memory only,
“No” = no acceleration, “L” = look-first, and “J” = jump-first. The additional maxima in vacancy displacement are due to vacancies
which cross the periodic boundaries before the As are completely dissolved.
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Figure C.3: Timing and KMC event histograms for comparison of simulations of V1As3 dissolution. The labels “MR” = mean rate method, “MO” =
memory only, “No” = no acceleration, “L” = look-first, and “J” = jump-first. Vertical lines in the tKMC plot indicate means, and all fall
on top of each other. Magenta symbols in the “# KMC Events” plot are the number of unaccelerated events that would have occurred
in the memory only simulations. There is a minimum possible probability for memory only because there are only 4× 103 samples. The
unaccelerated results are estimated from the number of explicit jumps in the memory only simulations.
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Figure C.4: Histograms of vacancy and As displacement upon V1As3 dissolution. The labels “MR” = mean rate method, “MO” = memory only,
“No” = no acceleration, “L” = look-first, and “J” = jump-first. There is a minimum possible probability for memory only because there
are only 4 × 103 samples. The additional maxima in vacancy displacement are due to vacancies which cross the periodic boundaries
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