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CHAPTER 1

Introduction

Classical model theory is the study of elementary classes: classes of structures

which, like groups, rings, and partially ordered sets, can be characterized by theories

in first-order logic; that is, by sets of first-order sentences. While the field might

be said, in retrospect, to have had its beginnings in the downward Löwenheim-

Skolem theorem (1915), the completeness and compactness theorems (1930), or,

more conventionally, in the work of Tarski in the 50s, it did not emerge in its modern

form until 1965, with the advent of Morley’s Theorem ([21]). This result settled the

question of categoricity for countable languages: if an elementary class (theory) in

a countable language is categorical in one uncountable cardinality—if there is, up

to isomorphism, only a single model of that size—then the class is categorical in

all uncountable cardinalities. To put it another way, we associate with each theory

T a spectrum I(T, κ), with κ ranging over the infinite cardinals, which tells us for

each κ the number of isomorphism classes of models of size κ. Morley’s Theorem

gives all possible spectra for countable categorical theories: they are categorical

only in ℵ0, or in precisely the uncountable cardinals, or in all cardinals. Using the

machinery of stability theory, Saharon Shelah proved a generalization to uncountable

theories, where categoricity in any cardinal above the cardinality of the theory implies
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categoricity in all such cardinals. The next natural question, “If T isn’t categorical in

κ, how bad can I(T, κ) be?”, spawned Shelah’s project of classification theory (more

or less completed for countable theories in [24]) which has been an overwhelming

preoccupation of first-order model theory ever since.

There are reasons to move in a slightly different direction, though. While first-

order model theory has wide-ranging applications in mainstream mathematics (for an

early example, see Ax and Kochen’s work on Diophantine equations over local fields,

distilled in [19]), there are a number of perfectly natural mathematical structures that

it cannot properly analyze, by virtue of the fact that they cannot be satisfactorily

characterized in first-order logic. Naturally, any abstract theory of mathematical

structure that fails to encompass Banach spaces and the complex numbers with

exponentiation (to take two key examples, the the former being the subject of work

by Itai Ben Yaakov, C. Ward Henson, and Jose Iovino, and the latter being the

particular province of Boris Zilber, beginning in [27]) is poorer than one might like.

We are led, then, to consider the model theory of nonelementary classes—those

that must be described in, say, an infinitary logic (formulas may contain infinite

conjunctions and disjunctions, or infinitely many quantifiers), or a logic incorporating

the quantifier Q (“there exist uncountably many”). The driving questions here are

similar to the classical case: can we obtain results about the categoricity spectra

analogous to Morley’s Theorem? What can we say about the proliferation of types

over sets of each cardinality; that is, the stability spectra? To what extent do the

tools and results of first-order stability theory generalize to these contexts? To

address these logic-specific questions all at once, we consider classes of structures

that simultaneously generalize classes of models of theories in all of the above logics.

Of the notions currently in circulation, abstract elementary classes—AECs—seem to
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exhibit the best balance of generality and richness of structure.

Although a thorough treatment of the definitions and basic facts that we need

in connection with AECs will be provided in Section 2.1, we give the roughest of

introductions here. As we will doggedly maintain in the sequel, one would not go

far wrong in thinking of AECs as the category-theoretic hulls of elementary classes:

we abandon syntax entirely, but retain the essential properties of the elementary

submodel relation. In particular, an AEC is a class of structures K in a given

language, closed under isomorphism, that comes equipped with a strong substructure

relation ≺K (a partial order on K), and satisfies (among other axioms—see [2], or

Chapter 2 below):

• Closure under unions of ≺K-increasing chains.

• Coherence: If M0≺KM2 and M0 ⊆M1≺KM2, then M0≺KM1.

• Löwenheim-Skolem: There exists a cardinal LS(K) such that for any

M ∈ K and subset A ⊆M , there is an M0 ∈ K with A ⊆M0≺KM and

|M0| ≤ |A|+ LS(K).

An elementary class equipped with the elementary submodel relation is an AEC, as

are classes of models of sentences of Lω1,ω, L(Q), Lω1,ω(Q), and so on, given a suitable

choice of ≺K. Hence this is an ideal context in which to seek, among other things,

categoricity and stability spectra for the nonelementary classes we have chosen to

investigate. Accessible categories—the category theorist’s answer to the need for

such a context—are still more general but, as we will see, nonetheless provide us

with useful information in the relevant special cases.

To discuss stability (and stability spectra) in the context of AECs, we require

a notion of type. Given the purely algebraic nature of AECs, there is no chance

of resorting to the syntactic types to which logicians are most accustomed. One
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defines an alternative notion—Galois type—as follows: in any AEC K with the

amalgamation property, there is a monster model C. For all intents and purposes,

we may regard any structure in K as being a substructure of C. A Galois (1-)type

over a structure M is the orbit of an element of C under the automorphisms of C that

fix M (the analogy with Galois theory is instructive). An AEC is said to be λ-Galois

stable if there are at most λ Galois types over each structure of size λ. This notion

is certainly consistent with the syntax-free spirit of AECs and, as it happens, one

can still employ a near-classical toolkit of topological methods and rank functions to

analyze Galois types and Galois stability.

In Chapter 3, I define, for each structure M and cardinal λ, a topology on the

set of Galois types over M in which types over small substructures of M (i.e. size at

most λ) take on the role played by formulas in topologizing sets of syntactic types.

In particular, a basic clopen set consists of all types over M that extend a given type

over a small substructure. The topological properties of the resulting space, Xλ
M ,

are closely connected to the model-theoretic properties of M and K. Critically, the

property of χ-tameness of Galois types in a class K—for any distinct types p and q

over a structure M , there is a substructure M ′≺KM of size at most χ on which their

restrictions differ—emerges as a separation principle, namely the Hausdorff axiom,

for the appropriate spaces. Beyond giving a new way of understanding purely model-

theoretic properties of AECs, these spaces, peculiar as they are (the intersection of λ

open sets is open in Xλ
M , for example, meaning that it is astonishingly difficult to be

an accumulation point, and that none of the Xλ
M are compact), immediately give rise

to Cantor-Bendixson ranks, and motivate the definition of a family of Morley-like

ranks.

We give the definitions of these rank functions in Chapter 4, and provide a few of
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the most interesting consequences of their application to questions involving Galois

stability. Roughly speaking, and recalling the analogy between formulas and Galois

types over small structures, we first define an ordinal-valued Morley-like rank RMλ

(for each cardinal λ) on “formulas,” and then define it on “types” as a minimum of

the ranks of the constituent “formulas.” The RMλ are monotonic, invariant under

automorphisms of C, satisfy a (slightly weak) unique extension property, and relate

nicely to the topological structure: for example, if RMλ is ordinal valued on the

types over M , isolated points are dense in Xλ
M . If RMλ is ordinal-valued on all types

in an AEC K, we say that K is λ-totally transcendental, a notion that is the key to

a series of results concerning Galois stability in tame AECs. We begin with a proof

that stability in a cardinal λ satisfying λℵ0 > λ implies λ-total transcendence and, by

means of a series of results that use total transcendence to estimate the numbers of

Galois types over models, translate this into several upward stability transfer results.

The most interesting of these results, Theorem 4.26, establishes, among other things,

that a class K that is stable in a cardinal λ satisfying the condition above is stable

in any µ such that cf(µ) > λ provided that K is stable on an interval just below

µ. This is a significant generalization of a state-of-the-art result from [5]. In fact,

the theorem itself has a number of generalizations, many of which are of interest in

their own right. The most general form requires only weak tameness (the tameness

condition is required to hold only for types over saturated models), and a weaker

form of stability below κ which, although less than natural in a model theoretic

sense, does crop up naturally in a category theoretic context.

This is the sole thread remaining to be woven into the picture. As we have noted

above and will note again, abstract elementary classes represent, in a sense, the most

recent stage of a long, slow drift toward category-theoretic viewpoints and methods
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within abstract model theory. There is an answering movement from the other camp:

the last two decades have seen a new subfield—categorial model theory—emerge

from the work of a small group of individuals whose recent work is of a primarily

category-theoretic bent: Michael Makkai and Robert Paré (see, in particular, [20]),

and Jǐŕı Adamek and Jǐŕı Rosický (see [1]). Their investigations have led them to

the notion of accessible category, and have brought them within a stone’s throw of

those working in our corner of abstract model theory. Indeed, if one considers the

accessible categories with directed colimits described in [22] (as we will, briefly here

and in detail in Chapter 5), it seems that we have at last found a point at which

model theorists and category theorists may shake hands. That the deep affinity

between AECs and accessible categories has as yet gone unremarked upon outside of

the current author’s work is surprising, and we will devote Chapter 5 to remedying

this situation.

The barest of outlines: recall that a Scott domain is a poset that contains a set of

compact elements (x is compact if and only if for every directed system {xi | i ∈ D},

x ≤
∨
i∈D xi only if x ≤ xi for some i ∈ D), is closed under directed joins, and has the

property that every element can be obtained as a directed join of compact elements.

A λ-accessible category (λ a regular cardinal) is a generalization: it contains a set

of λ-presentable objects (X is λ-presentable if and only if each map from X into

a λ-directed colimit factors through one of the cocone maps, and the factorization

through any such map is essentially unique, in the sense that any two factorizations

through a particular cocone map are eventually identified in the λ-directed system),

it is closed under λ-directed colimits, and every object can be obtained as a λ-

directed colimit of λ-presentables. For any AEC K, we regard it as a category in

the only natural way: the objects are the structures in K and the morphisms are
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the ≺K-embeddings. The Löwenheim Skolem property for AECs guarantees that

every structure is the LS(K)+-directed union of its substructures of size LS(K), and

closure under unions of chains implies, by an easy exercise in category theory, that

K is, in fact, closed under all directed colimits. In particular, then, any AEC K is

LS(K)+-accessible and, as we will see, a structure M ∈ K is µ-presentable for regular

µ > LS(K) if and only if |M | < µ.

In [22], Jǐŕı Rosický devotes considerable attention to accessible categories with

directed colimits (without mentioning AECs) and, in so doing, arrives at several

notions and results that are of interest in our context. The full details of the corre-

spondence between his category-theoretic notions and the model theoretic properties

of AECs can be found in Chapter 5—here we focus only on what he calls weak λ-

stability. For our purposes, if an AEC with amalgamation K is weakly λ-stable, then

any M ∈ K of cardinality λ has a saturated extension of size λ. As it happens, this

is precisely the weaker stability condition required in the stability transfer result for

weakly tame AECs mentioned above. The remarkable thing is that any accessible

category is weakly stable (in the sense of Rosický) in infinitely many, and arbitrarily

large, cardinals. We postpone a detailed discussion of the result until Chapter 5.

Suffice it to say, for now, that our result, in conjunction with that of Rosický, gives

the beginnings of a stability spectrum for weakly tame AECs.

We close with an astonishing result which, although merely a curiosity at present,

may have the potential to help in the analysis of categorical AECs—perhaps even

in generating new categoricity transfer results. Taking a key result from [22] and

translating into the AEC context, we will see that in any categorical AEC (categorical

in cardinality λ, say), the sub-AEC consisting of structures of cardinality at least λ

is equivalent (in the category-theoretic sense) to a highly structured subcategory of
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the category of sets with actions of the monoid of endomorphisms of the categorical

model in K; that is, the monoid M = HomK(K,K), where K is the unique model

in K of size λ. The straightforwardness of the correspondence between models and

M -sets suggests that this peculiar representation theorem may be put to some use

in the future, if only as a translation of familiar—but hard—problems in categorical

AECs into radically new ones involving what are, theoretically at least, far simpler

algebraic entities.



CHAPTER 2

Preliminaries

We begin with a brief tour of the background material—basic definitions and

results—which will be used throughout this thesis. Section 2.1 lays out the model-

theoretic context: abstract elementary classes, the associated notion of Galois type,

and the host of properties thereof that will be invoked freely beginning in Chapter

3. Readers already familiar with these details may wish to skip to Section 2.2, which

introduces accessible categories—material that will be essential in understanding the

proceedings in Chapter 5.

2.1 AECs and Galois Types: Definitions and Basic Results

Naturally this exposition will not be exhaustive; readers interested in further de-

tails may wish to consult [2], and, for a presentation emphasizing the context in which

to situate these details, [10]. As suggested in the introduction, AECs can be seen as a

fundamentally category-theoretic generalization of elementary classes, where we ex-

cise syntactic considerations, and retain the purely diagrammatic, category-theoretic

properties of the elementary submodel relation. In particular:

Definition 2.1. Let L be a fixed finitary signature (one-sorted, for simplicity). A

class of L-structures equipped with a strong submodel relation, (K,≺K), is an abstract

elementary class (AEC) if it satisfies the following axioms:

9
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A0 The relation ≺K is a partial order.

A1 For all M , N in K, if M≺KN , then M ⊆L N .

A2 (Closure Under Isomorphism)

1. If M ∈ K, N is an L-structure, and M ∼=L N , then N ∈ K.

2. If Mi, Ni ∈ K for i = 1, 2, and there are L-structure isomorphisms

fi : Mi → Ni with f1 ⊂ f2, then if N1≺KN2, M1≺KM2.

A3 (Unions of Chains) Let (Mα|α < δ) be a continuous ≺K-increasing sequence.

1.
⋃
α<δMα ∈ K.

2. For all α < δ, Mα≺K
⋃
α<δMα.

3. If Mα≺KM for all α < δ, then
⋃
α<δMα≺KM .

A4 (Coherence) If M0,M1≺KM in K, and M0 ⊆L M1, then M0≺KM1.

A5 (Downward Löwenheim-Skolem) There exists an infinite cardinal LS(K) with the

property that for any M ∈ K and subset A of M , there exists M0 ∈ K with

A ⊆M0≺KM and |M0| ≤ |A|+ LS(K).

The prototypical example, of course, is the case in which K is an elementary

class—the class of models of a particular first order theory T—and ≺K is the ele-

mentary submodel relation. Given that the axioms above were designed to capture

the fundamental properties of elementary classes and elementary submodel, it comes

as no surprise that (K,≺K) is an AEC, with LS(K) = |T |. Naturally, the notion of

AEC is far more general. Given a sentence φ ∈ L∞,ω, K = Mod(φ), and ≺K the

relation of elementarity with respect to a fragment A of L∞,ω containing φ, (K,≺K)

is an AEC with LS(K) = |A|. Similarly for models of sentences in L(Q), provided
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we are careful in our choice of ≺K, in which case we have LS(K) = ℵ1. Notice that,

unlike in the elementary case, classes arising from such non-first-order logics need

not contain arbitrarily large models, even if they contain models in some infinite

cardinalities. For more concrete but nonetheless nonelementary examples: Artinian

commutative rings with unit form an AEC (under elementary submodel), as do the

classes of modules described in [3]. The class of Banach spaces is not quite an AEC,

not being closed under unions of countable chains, but the class of Banach spaces

and their metric subspaces (that is, the normed linear spaces) is an AEC.

We return to the task of laying out the basic terminology and notation. For any

infinite cardinal λ, we denote by Kλ the subclass of K consisting of all models of

cardinality λ (with the obvious interpretations for such notations as K≤λ and K>λ).

We say that K is λ-categorical if Kλ contains only a single model up to isomorphism.

For M,N ∈ K, we say that a map f : M → N is a K-embedding (or, more often,

a strong embedding) if f is an injective homomorphism of L(K)-structures, and

f [M ]≺KN ; that is, f induces an isomorphism of M onto a strong submodel of N . In

that case, we write f : M ↪→K N . Notice that we may now think of K as a concrete

category—a subcategory of the category of L-structures—an observation that first

appears in [12], is dealt with explicitly in [18], and will be the focus of Section 5.1 of

this thesis. In the meantime, we notice that the union of chains axiom, A3, gives us

closure of K not merely under unions of increasing sequences, but also under colimits

(direct limits) of chains of K-embeddings. By an easy exercise in universal algebra

(see, for example, Corollary 1.7 in [1]), this implies that K is closed under arbitrary

directed colimits.

Definition 2.2. Let K be an AEC.

1. We say that an K has the joint embedding property (JEP) if for any M1,M2 ∈
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K, there is an M ∈ K that admits strong embeddings of both M1 and M2,

fi : Mi ↪→K M for i = 1, 2.

2. We say that an K has the amalgamation property (AP) if for any M0 ∈ K and

strong embeddings f1 : M0 ↪→K M1 and f2 : M0 ↪→K M2, there are strong

embeddings g1 : M1 ↪→K N and g2 : M2 ↪→K N such that the following diagram

commutes:

M1
⊂

g1 - N

M

f1

∪

6

⊂

f2

- M2

g2

∪

6

In category theoretic terms, the joint embedding property guarantees that the

AEC contains cocones on all diagrams of the form (• •), while the amalgamation

property guarantees that it contains cocones on all diagrams of the form (• ← • → •).

Notice that both properties hold in elementary classes, as a consequence of the

compactness of first order logic. In this more general context, devised to subsume

classes of models in logics without any compactness to fall back on, both appear as

additional (and nontrivial) assumptions on the class. Indeed, it is often preferable

to assume less, working with classes that, for example, admit amalgamation only in

particular cardinalities. In our present investigations, however, we will assume the

unrestricted amalgamation property described above, as well as the joint embedding

property (unless otherwise indicated).

It is not immediately clear what we might embrace as a suitable notion of type

in AECs, as we have dispensed with syntax, and removed ourselves to a world of

abstract embeddings and diagrams thereof. The best candidate—the Galois type—

has its origins in the work of Shelah (first appearing in [25] and [26]). The allusion to
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Galois theory built into the terminology is instructive: just as the type of a complex

number x over a given number field F (or, to be precise, its set of realizations) is the

orbit of x under AutF (C), the group of automorphisms of C that fix F , we will come

to identify Galois types (in AECs with amalgamation) with orbits in a large model

under automorphisms that fix particular submodels. First, though, we present the

general definition, which makes sense in any AEC.

Definition 2.3. For triples (M,a1, N1), and (M,a2, N2), where M≺KNi and ai ∈ Ni

for i = 1, 2, we say that (M,a1, N1) ∼ (M,a2, N2) if there are strong embeddings

fi : Ni ↪→K N such that f1(a1) = f2(a2) and f1 and f2 agree on M ; that is, the

following diagram commutes:

N1
⊂

f1 - N

M
∪

6

⊂ - N2

f2

∪

6

Our aim is to define Galois types as equivalence classes under ∼. Here we are

faced with a potential difficulty: the relation ∼ need not be transitive for a general

AEC. One could simply work with the transitive closure of ∼, but we instead call

to the attention of the reader the easily-verified fact that the relation ∼ is transitive

when restricted to the class of triples (M,a,N) where N is a model over which we

are able to amalgamate. Since we are assuming AP, this is no restriction at all: ∼

itself is transitive and, moreover, an equivalence relation.

Definition 2.4. Let M,N ∈ K, M≺KN and a ∈ N . The Galois type of a over M

in N , denoted ga-tp(a/M,N), is the set of all triples ∼-equivalent to (M,a,N).

A simpler and more concrete characterization of Galois types is possible in our

context, but we first require a bit more model-theoretic background. In particular,
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we need a suitable notion of monster model.

Definition 2.5. 1. A model M ∈ K is λ-model homogeneous if for any N≺KM

and N ′ ∈ K<λ with N≺KN ′, there is an embedding of N ′ into M that fixes N .

We say that M is model homogeneous if it is |M |-model homogenous.

2. A model M ∈ K is strongly λ-model homogeneous if it is λ-model homogeneous

and for any N,N ′≺KM with |N |, |N ′| < λ, any isomorphism from N to N ′ ex-

tends to an automorphism of M . We say that M is strongly model homogeneous

if it is strongly |M |-model homogeneous.

Assuming amalgamation and joint embedding, we are assured of a supply of large

model homogeneous structures in K. Under additional assumptions about cardinal

arithmetic, the following result (Theorem 8.5 from [2]) suffices:

Theorem 2.6. For any µ satisfying µ<µ = µ and µ > 2LS(K), there is a strongly

model homogeneous (hence also model homogeneous) model of cardinality µ.

In fact, this argument may be reworked so as to avoid any extra set-theoretic

assumptions. A sketch of such a modified argument may be found in [2], immediately

following the statement of the theorem above. As in first order logic, we fix a single

such large strongly model homogeneous model—the monster model of K—which we

denote by C. We regard all models M ∈ K as submodels of C with |M | < |C|. Now,

we may effect the promised reinterpretation of the notion of Galois type. First:

Lemma 2.7. Triples (M,a1, N1) and (M,a2, N2) are ∼-equivalent if and only if there

is an automorphism of C that fixes M pointwise and maps a1 to a2.

Proof: (⇒) There exist embeddings gi : Ni ↪→K N for i = 1, 2 that agree on M ,

and satisfy g1(a1) = g2(a2). Consider the map g−1
2 ◦ g1: it fixes M pointwise, and
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maps a1 to a2. By strong model homogeneity of C, there is an automorphism of C

that extends it.

(⇐) Let f be such an automorphism. Let N≺KC be any model containing the set

N2 ∪ f [N1]. The embedding f � N1 : N1 ↪→K N and the inclusion N2 ↪→K N witness

that (M,a1, N1) ∼ (M,a2, N2). 2

We may now give the simpler (but still equivalent) definition of Galois type:

Definition 2.8. Let M ∈ K, and a ∈ C. The Galois type of a over M , denoted

ga-tp(a/M), is the orbit of a in C under AutM(C), the group of automorphisms of C

that fix M . We denote by ga-S(M) the set of all Galois types over M .

In this interpretation, the above-indicated connection with Galois theory is some-

what clearer. In case K is an elementary class with ≺K as elementary submodel, the

Galois types over M correspond to the complete syntactic types over M : map each

complete type to its set of realizations in C, and each orbit under AutM(C) to the

complete type over M of one of its members. In general, however, Galois types and

syntactic types do not match up, even in cases when the logic underlying the AEC

is clear (say, K = Mod(ψ), with ψ ∈ Lω1,ω). A crucial definition:

Definition 2.9. We say that an AEC K is λ-Galois stable if for every M ∈ Kλ,

|ga-S(M)| = λ.

To put Galois stability in its proper context, we note that |ga-S(M)| ≥ |M | for

all M , since each element a ∈M gives rise to a distinct orbit under automorphisms

of C fixing M (namely, the set {a}), hence also to a distinct Galois type over M .

Moreover,

Proposition 2.10. Let K be an AEC with amalgamation. For any M ∈ K with

|M | ≥ LS(K) + |L(K)|, |ga-S(M)| ≤ 2|M |.
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Proof: Let M ∈ K be of cardinality λ ≥ LS(K) + |L(K)|, and let q be a Galois

type over M . The type q is the orbit of some element a ∈ C under AutM(C). By the

Downward Löwenheim-Skolem Property, a is contained in a strong extension M ′ of

M of cardinality λ. As this holds for all types over M , we have

|ga-S(M)| ≤ |{M ′ ∈ Kλ |M ′�KM}| ≤ |Kλ|

Because the signature L(K) is finitary and λ ≥ |L(K)|, there can be at most 2λ

L(K)-structures of size λ, let alone elements of Kλ. Hence |ga-S(M)| ≤ 2λ. 2

To summarize, for M ∈ K of sufficiently large size, |M | ≤ |ga-S(M)| ≤ 2|M |. We

run through a few more basic definitions and notations:

Definition 2.11. Let K be an AEC with amalgamation, and C its monster model.

1. For any M , a ∈ C, and N≺KM , the restriction of ga-tp(a/M) to N , denoted

ga-tp(a/M) � N , is the orbit of a under AutN(C). This notion is well-defined:

the restriction depends only on ga-tp(a/M), not on a itself.

2. Let N≺KM and p ∈ ga-S(N). We say that M realizes p if there is an element

a ∈ M such that ga-tp(a/M) � N = p. Equivalently, M realizes p if the orbit

in C corresponding to p meets M .

3. We say that a model M is λ-Galois-saturated if for every N≺KM with |N | < λ

and every p ∈ ga-S(N), p is realized in M .

Henceforth, the word “type” should be understood to mean “Galois type,” unless

otherwise indicated. Moreover, when there is no risk of confusion (namely in Chap-

ters 3 and 4 below) we will omit the word “Galois” altogether, speaking simply of

types, λ-stability, and λ-saturation. We retain it for the present, however. Now, we

will have occasion to use the following fact (Theorem 8.14 in [2]), which holds under

the assumption of AP:
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Proposition 2.12. For λ > LS(K), a model M ∈ K is λ-Galois-saturated if and

only if it is λ-model homogeneous.

Proof: We sketch the argument, to give a sense of the extent to which certain

classical arguments (back and forth, unions of chains) carry over to AECs. The “if”

direction is easy: Suppose M is λ-model homogeneous, N≺KM with |N | < λ, and

consider a type p ∈ ga-S(N), say ga-tp(a/N). We must check that p is realized in

M . By the Löwenheim-Skolem Property (and the fact that λ > LS(K)) N has an

extension N ′≺KC with N ′ ⊇ N ∪ {a} and |N ′| < λ. By λ-model homogeneity of

M , there is an embedding f : N ′ ↪→K M that fixes N . One can easily see that

ga-tp(f(a)/N) = ga-tp(a/N), meaning that f(a) is the desired realization of p in M .

Now, suppose that M is λ-Galois-saturated, that N≺KM , and N ′�KN with

|N ′| = µ < λ. To establish the result, we must construct an embedding of N ′

into M over N . Enumerate N ′ \ N as {ai | i < µ}. We construct an increasing se-

quence of maps fi : Ni 'Mi, i < µ, where N≺KNi, N≺KMi≺KM , and ai ∈ Ni+1 for

each i < µ. The union of the fi, restricted to N ′, will be the desired embedding. Set

N0 = N , and let f0 be the identity on N0. Take unions at limit stages. Suppose we

have defined fi : Ni ↪→K Mi. If ai ∈ Ni, define Ni+1 = Ni, Mi+1 = Mi, and fi+1 = fi.

Otherwise, proceed as follows: By strong model homogeneity of C, fi extends to an

automorphism f̄i of C. Notice that the type of f̄i(ai) over f̄i[Ni] = Mi≺KM must be

realized by some b ∈ M , by λ-saturation, in which case there is an automorphism

g ∈ AutMi
(C) that takes f̄i(a) to b. Let Mi+1 be a strong submodel of M of cardinal-

ity λ that contains Mi and b, let Ni+1 = f̄i
−1 ◦g−1[Mi+1], and let fi+1 = g ◦ f̄i � Ni+1.

2

As in the result above, we will typically work at or above LS(K). Classical results

linking stability to the existence of saturated models that arise from union of chains
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arguments also transfer to this context. For example:

Proposition 2.13. If λ is a regular cardinal, λ > LS(K), and for every N ∈ K<λ,

|ga-S(N)| < λ, then every M ∈ K of cardinality λ has a saturated extension M ′ ∈ K

which is also of cardinality λ.

Proof: Let M ∈ Kλ, and take a filtration of M of length λ; that is, a continuous

≺K-increasing sequence (Mi | i < λ) with M =
⋃
i<λMi and |Mi| < λ. We define

a ≺K-increasing sequence (M ′
i | i < λ) such that, for all i < λ, Mi≺KM ′

i and M ′
i+1

realizes all types over M ′
i . The model M ′ =

⋃
i<λM

′
i will be the desired extension.

The construction proceeds as follows: set M ′
0 = M0. At stage i + 1, let M ′′

i be a

model of cardinality less than λ containing M ′
i ∪Mi+1. By our assumption about the

number of types over models in Kλ, there is a model of cardinality less than λ that

extends M ′′
i and realizes all types in ga-S(Mi). Make this M ′

i+1. At limit stages, take

the union: M ′
i =

⋃
j<iM

′
j. By regularity of λ, the union M ′

i will be of cardinality less

than λ. That this works is clear: given any N≺KM ′ :=
⋃
i<λM

′
i of cardinality less

than λ, N ⊆ M ′
i for some i by regularity of λ. By coherence (Axiom A4 of AECs),

N≺KM ′
i , meaning that for any p ∈ ga-S(N), all of its extensions to types over M ′

i

are realized in M ′
i+1. As there is at least one such, p is itself realized in M ′

i , and

therefore in M ′. 2

As in first order classification theory, one of the central preoccupations of those

working with AECs is the identification of “dividing lines,” in the sense of Shelah:

properties of classes which, when present, guarantee nice structural properties that

disappear—at least in particular examples—when one finds oneself on the wrong side

of a dividing line, only to be replaced by new misbehaviors; that is, “nonstructure.”

Certain of these properties for AECs (excellence, as described in [11], and the exis-

tence of good or semi-good frames, as considered in [23] and [16], respectively) echo
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classical dividing lines (simplicity, stability, and superstability), but we here concern

ourselves primarily with a property that has no particularly natural classical ana-

logue, first arising in the middle of a proof in [26] as a mysterious but necessary

hypothesis: tameness. Roughly speaking, tameness of an AEC means that types are

completely determined by their restrictions to small submodels, a condition slightly

reminiscent of the locality properties of syntactic types. A possible intuition (an

important one, in the sense that it motivates many of the definitions in Chapters

3 and 4) is the following: we may regard types over small models as playing a role

analogous to formulae in first order model theory, in which case tameness guarantees

that types are determined by their constituent formulae.

As usual, there are multiple formulations. We begin with the most general version:

Definition 2.14. 1. We say that K is (χ,λ)-tame if for every M ∈ Kλ, if p and

p′ are distinct types over M , then there is an N≺KM , |N | ≤ χ, such that

p � N 6= p′ � N .

2. We say that K is weakly (χ,λ)-tame if the condition above holds for every sat-

urated M ∈ Kλ.

As one would expect, we say that a class is (χ, ≤ λ)-tame if it is (χ,κ)-tame for

all κ ≤ λ, and so on for other such variations. We say that a class is (χ,∞)-tame if

it is (χ,λ)-tame for all λ. The case of (χ,∞)-tameness is of sufficient importance to

warrant a notation of its own:

Definition 2.15. 1. We say that K is χ-tame if for every M ∈ K, if p and p′ are

distinct types over M , there is an N≺KM , |N | ≤ χ, such that p � N 6= p′ � N .

2. We say that K is weakly χ-tame if the condition above holds for every saturated

M ∈ K.
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A few words about the significance of the assumption of tameness: although it

holds automatically in elementary classes (as well as in homogeneous classes, among

other settings), it fails in some natural mathematical contexts—[4] and [6], for ex-

ample, construct examples of non-tame AECs from Abelian groups. Moreover, it is

independent from the other properties one associates with well-behaved AECs. It is

established in [6], for example, that given an AEC with amalgamation, there is an

AEC without amalgamation with precisely the same tameness spectrum. Its utility

more than justifies the loss of generality involved in its assumption, though: it plays

an indispensable role in establishing all of the existing upward categoricity transfer

results (such as those of [13], [15], and [26]), and the downward transfer result in-

cluded in Chapter 14 of [2] hinges on weak tameness. The dependence is, if anything,

more pronounced in the analysis of the stability spectra of AECs: tameness appears

as a hypothesis for nearly all of the partial stability spectrum results of [5], [14], and

this thesis, although weak tameness occasionally suffices here and in [5]. At present,

attempts to produce results of this nature for non-tame classes have not met with

any success.

We close with a very brief introduction to two additional locality properties of

Galois types (readers interested in a more detailed discussion than that provided

here may wish to consult [2]).

Definition 2.16. Galois types in K are (κ, λ)-local if for every continuous ≺K-

increasing sequence (Mi | i < κ) with M =
⋃
i<κMi, |M | = λ, if q, q′ ∈ ga-S(M)

are distinct, there exists an i < κ such that q � Mi 6= q′ � Mi.

The final property we introduce is the following:

Definition 2.17. Galois types are (κ, λ)-compact in K if for every continuous ≺K-
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increasing sequence (Mi | i < κ) with M =
⋃
i<κMi, |M | = λ, and increasing se-

quence of types pi ∈Mi for i < κ, there exists a type p ∈ ga-S(M) with p � Mi = pi

for all i < κ.

In a sense, this notion provides a measure of the extent of compactness in AECs.

Whereas types in elementary classes are (∞,∞)-compact, by the compactness of

first order logic, far less is true in a general AEC. It is true, though, that in any AEC

with amalgamation, types are (ℵ0,∞)-compact (Theorem 11.1 in [2]). We will make

use of this result in Section 4.2.

2.2 Accessible Categories

Of the basic properties that we retain in passing to abstract elementary classes

from classes of structures born of syntactic considerations (classes of models of first

order theories, sentences in Lκ,ω, Lω1,ω(Q), and so on), two stand out as being of

particular importance. First, the union axioms ensure that the class is closed un-

der unions of chains, giving us the structure needed to run certain nearly-classical

model-theoretic arguments, a few examples of which we saw in the previous sec-

tion. Moreover, the Downward Löwenheim-Skolem Property for AECs guarantees

that any structure M ∈ K can be approximated by submodels of small size (can be

obtained, in particular, as the directed union of its submodels of cardinality at most

LS(K)) meaning that an AEC K is, in fact, generated from the set of all such small

models, KLS(K). Although accessible categories—the category theorists’ preferred

generalization of classes of structures, both elementary and nonelementary (see [1]

and [20])—involve a slightly greater degree of abstraction and hence greater general-

ity, they are also characterized by precisely these two traits: each accessible category

is closed under certain highly directed colimits (if not arbitrary directed colimits),
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and is generated from a set of “small” objects.

To flesh out what we mean by “small,” we require a notion of size that makes sense

in an arbitrary category. Since, in particular, we do not wish to restrict ourselves

to categories of structured sets, our notion will need to be more subtle than mere

cardinality. The solution to this quandary—presentability—first appeared in [8], and

has subsequently been treated in a more accessible fashion in [1] and [20], the latter

being a particularly good source of concrete examples. We begin with the simplest

and most mathematically natural case:

Definition 2.18. An object N in a category C is said to be finitely presentable if

the corresponding hom-functor HomC(N,−) preserves directed colimits.

Less cryptically, N is finitely presentable if for any directed poset I and diagram

D : (I,≤)→ C (that is, for any functor D whose domain is I regarded as a category,

where the objects are precisely the elements of I and there is a morphism i → j

precisely when i ≤ j) with colimit cocone (φi : D(i)→M)i∈I), any map f : N →M

factors through one of the maps in the colimit cocone: f = φi ◦ g for some i ∈ I and

g : N → D(i), as in the diagram below.

M

D(i)
D(i→ j)

-

φ i

-

D(j)

�

φ
j

N

f

-

.............
.............

.............
.............

............

g

-

Moreover, this factorization must be essentially unique, in the sense that for any two

such, say g and g′ from N to D(i) with f = φi ◦ g = φi ◦ g′, there is a j ≥ i in I such

that D(i→ j) ◦ g = D(i→ j) ◦ g′.

Examples:
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1. Consider the Scott posets mentioned in the introduction of this thesis. We may

regard any such poset as a category (in the manner of I above) in which, as

one can easily see, colimits correspond to joins, and vice versa. In this case,

the defining characteristic of a compact element—x is compact if and only if

whenever x ≤
∨
i∈I xi with the latter a directed join, x ≤ xi for some i ∈ I—

guarantees that we have precisely the kind of factorization described above,

meaning that any compact element is finitely presentable. Clearly, the converse

also holds.

2. In Set, the category of sets, an object X is finitely presentable if and only if it

is a finite set.

3. Let Σ be a finitary relational signature, and Rel(Σ) the category of Σ-structures

and maps that preserve the relations R ∈ Σ. An object M in Rel(Σ) is finitely

presentable if and only if |M | is finite and there are only finitely many Σ-edges

in M :
∑

R∈Σ |RM | < ℵ0.

4. In Grp, the category of groups and group homomorphisms, an object G is

finitely presentable if and only if it is finitely presented in the usual sense: G

has finitely many generators subject to finitely many relations. To see that any

finitely presented group G (with finite generating set X ⊆ G, say) is finitely

presentable, let G′ = Colimi∈I Gi be a directed colimit in Grp with colimit

cocone (φi : Gi → G′), and let f : G → G′ be a group homomorphism. The

set f [X] ⊆ G′ is finite and, since G′ is a directed union of the images φi[Gi], we

must have f [X] ⊆ φi[Gi] for some i ∈ I. For each x ∈ X, choose an element

ax ∈ φ−1
i (f(x)) ⊆ Gi, and define a map from X to Gi that takes each x ∈ X

to the associated ax. As the generators of G are subject to only finitely many
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relations, directedness of the colimit ensures that there exists a j ≥ i such that

the images of the ax under the diagram map Gi → Gj satisfy all the relations

appearing in the presentation ofG. The corresponding map ofX intoGj extends

to a homomorphism g : G→ Gj with the property that φj ◦ g = f , as required.

This factorization can be shown to be essentially unique. The converse is left

as an exercise.

As shown in [1], the same holds in any variety of finitary algebras.

Many more examples can be found in [1]. One more word about the category Grp:

every object of Grp—every group—can be obtained as the directed union (colimit)

of its finitely generated subgroups, hence as a directed colimit of finitely presentable

objects. Moreover, Grp is closed under arbitrary directed colimits. This means, in

short, that Grp is a finitely accessible category. The precise definition:

Definition 2.19. A category C is finitely accessible if

• C contains only a set of finitely presentable objects up to isomorphism, and

every object in C is a directed colimit of finitely presentable objects.

• C is closed under directed colimits.

Finitely accessible categories abound in mainstream mathematics: the category

Grp; Rel(Σ), under the conditions described above; Set, the category of sets; and

Pos, the category of posets and monotone functions. It should be noted that these

examples are not merely closed under directed colimits, but are also cocomplete;

that is, they are closed under all colimits. Categories satisfying this stronger closure

condition are called locally finitely presentable but, given that most of the categories

we consider in the sequel are not cocomplete, we will have little to say about this

special case.
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The notions of finite presentability and finite accessibility generalize in a natural

fashion. Let λ be an infinite regular cardinal. We first recall:

Definition 2.20. 1. A poset I is said to be λ-directed if for every subset X ⊆ I

of cardinality less than λ, there is an element i ∈ I such that for every x ∈ X,

x ≤ i.

2. A colimit in a category C is λ-directed if it is the colimit of a λ-directed diagram;

that is, a diagram of the form D : (I,≤)→ C, where I is a λ-directed poset.

Generalizing finitely presentable objects, we define:

Definition 2.21. An objectN is said to be λ-presentable if the corresponding functor

Hom(N,−) preserves λ-directed colimits.

We may unravel this definition just as we did when considering finitely presentable

objects: N is λ-presentable if for any λ-directed poset I and diagram D : (I,≤)→ C

with colimit cocone (φi : D(i)→M)i∈I , any map f : N →M factors through one of

the maps in the colimit cocone: f = φi ◦ g for some i ∈ I and some g : N → D(i) (as

in the diagram following Definition 2.18 above). Moreover, this factorization must

be essentially unique, in the same sense as before.

For any category C and infinite regular cardinal λ, we denote by Presλ(C) a full

subcategory of C consisting of one representative of each isomorphism class of λ-

presentable objects; that is, Presλ(C) is a skeleton of the full subcategory consisting

of all λ-presentable objects.

One should note that it is customary—and sometimes advantageous—to phrase

things in terms of λ-filtered (rather than λ-directed) diagrams and colimits, but the

two characterizations are fundamentally equivalent. See, in particular, Remark 1.21

in [1]. Now, the crucial definition:
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Definition 2.22. 1. Let λ be an infinite regular cardinal. A category C is λ-

accessible if

• C is closed under λ-directed colimits

• C contains only a set of λ-presentable objects up to isomorphism, and every

object in C is a λ-directed colimit of λ-presentables.

2. We say that a category C is accessible if it is λ-accessible for some λ.

A natural question: If a category is λ-accessible, will it be accessible in regular

cardinals µ ≥ λ and, if so, in which of these cardinals? As it happens, there is a

sufficient condition for upward transfer of accessibility, although it is rather subtle.

The following result appears as Theorem 2.11 in [1]:

Theorem 2.23. For regular cardinals λ < µ, the following are equivalent:

1. Each λ-accessible category is µ-accessible.

2. The category of λ-directed posets with order embeddings (which is λ-accessible)

is µ-accessible.

3. For each set X of less than µ elements the poset of subsets of size less than λ,

P<λ(X), has a cofinal set of cardinality less than µ.

4. In each λ-directed poset, every subset of less than µ elements is contained in a

λ-directed subset of less than µ elements.

Definition 2.24. For regular cardinals λ and µ, we say that λ is sharply less than

µ, denoted λ� µ, if they satisfy the equivalent conditions of the theorem above.

A few examples to give a sense of the relation �:

1. ω � µ for every uncountable regular cardinal µ.
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2. For every regular λ, λ� λ+.

3. For any regular cardinals λ and µ with λ ≤ µ, λ� (2µ)+.

4. Whenever µ and λ are regular cardinals with βα < µ for all β < µ and α < λ,

then λ� µ.

See 2.13 in [1] for more examples. The critical point, perhaps, is that for each set of

regular cardinals L, there are arbitrarily large regular cardinals µ with the property

that λ� µ for all λ ∈ L.

Of course, we are chiefly interested in accessible categories in their capacity as

very general environments in which to study abstract model theory. It is high time,

then, that we zero in on the connection between accessible categories and more

conventional classes of models, and consider the additional axioms we may wish to

impose on accessible categories to ensure that they suit our fundamentally model-

theoretic purposes. To begin, we notice:

Proposition 2.25. (Rosický, [22]) Given a first order theory T in language L(T ) and

Elem(T ) the category with objects the models of T and morphisms the elementary

embeddings, then for any regular µ > |L(T )| + ℵ0, Elem(T ) is µ-accessible, and

M ∈ K is µ-presentable if and only if |M | < µ.

Accessible categories are far more general than this, of course, and encompass

categories of models of basic sentences in any infinitary logic Lκ,λ, where we say

that a sentence is basic if it is a conjunction of sentences of the form ∀x(φ → ψ),

where φ and ψ are positive existential (that is, built from atomic formulas using

only conjunction, disjunction, and existential quantification). Moreover, they also

encompass many of the natural classes of mathematical structures that provided the

initial impetus for the study of nonelementary classes: for example, the category of
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Banach spaces with contractions as morphisms is an accessible category.

A certain amount of structural information may be lost in thinking of our cate-

gories of models as being simply accessible. In particular, if we regard a category

of the form Elem(T )—with T a first order theory in language L(T )—as being ac-

cessible in a regular cardinal λ > |L(T )| + ℵ0, we are accounting explicitly only for

the closure of Elem(T ) under λ-directed colimits. Since λ ≥ ℵ1, then, we are not

accounting for closure under directed colimits nor, consequently, for closure under

unions of chains. As the latter property is essential for our purposes, we will hence-

forth focus our attention on those accessible categories that do possess arbitrary

directed colimits. Categories of this nature were first considered in [22], and most

of the notions presented in the remainder of this section have their origins in that

paper.

As a start, [22] introduces category-theoretic analogues of two familiar properties:

joint embedding and amalgamation. Joint embedding for a category C amounts

to little more than a restatement of the corresponding property for AECs given in

Section 2.1: for any objects A and B in C, there is an object C with morphisms

A → C and B → C. The amalgamation property is precisely the same as well: for

any object A of C and morphisms f1 : A→ B1 and f2 : A→ B2, there is an object

C with morphisms g1 : B1 → C and g2 : B2 → C such that the following diagram

commutes:

B1

g1 - C

A

f1

6

f2

- B2

g2

6
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There follow a sequence of definitions from [22], for which we endeavor to provide

suitable motivation of a more conventional model-theoretic nature. When we return

to these notions in Chapter 5, we will work out explicitly what they mean in the case

that interests us most: abstract elementary classes. First,

Definition 2.26. A category C is λ-categorical if it contains a unique (up to iso-

morphism) object N which is λ+-presentable, but not µ-presentable for any µ < λ+.

C is said to be strongly λ-categorical if it contains a unique (up to isomorphism)

λ+-presentable object.

Consider the elementary case, where C = Elem(T ). Recall that for µ > |L(T )|+

ℵ0, an object of Elem(T ) is µ-presentable if and only if it is of cardinality less

than µ, by Proposition 2.25, meaning that Elem(T ) is λ-categorical if and only if

it contains (up to isomorphism) exactly one model of cardinality less than or equal

to λ, but not less than µ for any regular µ < λ. This implies, readily enough, that

Elem(T ) is λ-categorical if and only if it contains exactly one model of cardinality

λ; that is, it is λ-categorical in the usual sense. The category Elem(T ) is strongly

λ-categorical if and only if it contains exactly one model of cardinality at most λ (up

to isomorphism). More abstractly (and crucially, for the work in Section 5.4 below),

a category C is strongly λ-categorical when Presλ(C) is a one object category; that

is, a monoid.

Another notion that is obviously of model-theoretic provenance:

Definition 2.27. Let λ be a regular cardinal. An object M in a category C is said

to be λ-saturated if for any λ-presentable objects N,N ′ and morphisms f : N → M

and g : N → N ′, there is a morphism h : N ′ → M such that the following diagram
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commutes:

N ′

N -

-

M

................................-

This looks more like a homogeneity condition (and, to give a preview of what is

to come in Chapter 5, a great deal like the λ-model homogeneity defined above). As

one would expect, though, in an elementary class Elem(T ), for any λ > |L(T )|+ℵ0,

an object in Elem(T ) is λ-saturated in this sense precisely when it is λ-saturated in

the classical sense—it realizes all complete types over subsets of size less than λ.

Definition 2.28. Let λ be a regular cardinal. A morphism f : M → N in a category

C is said to be λ-pure if for any commutative square

C
g
- D

M

u

?

f
- N

v

?

in which C and D are λ-presentable, there is a morphism h : D → M such that

h ◦ g = u.

Abstractly, any split monomorphism is λ-pure. The converse, while true in Set,

does not hold in general. A necessary and sufficient condition for λ-purity can be

given provided we are working in a category of structures: let Σ be a λ-ary signature,

and Σ−Struct the category of Σ-structures and homomorphisms (preserving rela-

tions only in the forward direction). Given N in Σ−Struct and M a Σ-substructure,

M is a λ-pure substructure if for every positive primitive formula φ in Lλ,λ (that is,

for every φ of the form ∃ȳψ(x̄, ȳ), where ψ is a conjunction of atomic formulas) and
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ā ∈ M , M |= φ[ā] if and only if N |= φ[ā]. The reader may wish to consult [22] for

the justification of this claim, and for more concrete examples. In the finitary case,

this notion bears a certain resemblance to the concept of purity familiar from, say,

group theory, where one says that a subgroup H of a group G is a pure subgroup if

every element of H that has an nth root in G also has an nth root in H (of course,

if it has an nth root in H, it has one in G as well). More suggestively, H is a pure

subgroup of G if for each positive primitive formula of the form φ = ∃y(yn = x) and

a ∈ H, H |= φ[a] if and only if G |= φ[a]. A priori, ω-purity is a more stringent

condition, but the essential flavor is the same.

More generally, we consider what, in a category of the form Elem(T ), it might

mean for an elementary inclusion M ≺ N to be λ-pure. First, notice that any

complete type p over a submodel C of M is realized somewhere (if not in M itself),

and we may take a model D containing a realization a of p which is also of size less

than λ. If there is an embedding of D in N that makes the diagram in Definition 2.28

above commute (with the other maps in the square being the inclusions), then the

image of a in N is a realization of the original type p. By λ-purity of the inclusion

M ≺ N , there is an embedding of D in M that makes the upper triangle commute—

this again means that the image of a in M under this embedding is a realization of

p. That is, λ-purity implies that any type over a submodel of M of size less than λ

that is realized in N is already realized in M . This is, of course, only a necessary

condition, but may be useful as intuition. We will return to this issue in Chapter 5,

at which time we will carry out the argument (for AECs) in full detail.

We introduce another concept, which is of interest in certain contexts:

Definition 2.29. Let λ be a regular cardinal. An object M in a category C is said

to be λ-closed if every map with domain M is λ-pure.
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We note, however, that in any accessible category satisfying the amalgamation

property, saturation and closure coincide. That is, we have:

Theorem 2.30. (Rosicky, [22]) If C is a category with the amalgamation property,

an object M is λ-closed if and only if it is λ-saturated.

As we are now able to speak meaningfully of λ-saturation, and have access to the

notion of λ-purity which we may think of, in rough terms, as a condition involving

the realization of types, it is reasonable to think that we may be able to come up with

an analogue of stability for accessible categories (or, in fact, for arbitrary categories).

One such analogue, introduced in [22], will be the subject of a great deal of attention

in Chapter 5:

Definition 2.31. Let λ be a regular cardinal. A category C is said to be weakly

λ-stable if for any λ+-presentable N and morphism f : N → M , f factors as N
g→

M ′ h→M , where M ′ is λ+-presentable, and h is λ-pure.

To get a sense of what this involves, we again consider the category of models of a

first order theory, Elem(T ). Weak λ-stability of Elem(T ) would mean that for any

N with |N | ≤ λ (λ+-presentable, that is) and elementary extension M , there is an

intermediate extension N ′, N ≺ N ′ ≺M , with |N ′| ≤ λ and such that the inclusion

N ′ ≺ M is λ-pure; that is, every type over a subset of N ′ of cardinality less than λ

that is realized in M is also realized in N ′. In other words, N has an extension of

size at most λ that is λ-saturated relative to M . It is relatively easy to see, then,

that if the theory T is λ-stable in the standard type-counting sense of the term, the

category Elem(T ) is weakly λ-stable.

We will have a good deal more to say about weak λ-stability in Chapter 5. For

now, we call to the reader’s attention the following remarkable fact (Proposition 2
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in [22]):

Proposition 2.32. Let C be a λ-accessible category, and µ a regular cardinal such

that λ�µ and |Presλ(C)mor| < µ (where Presλ(C)mor denotes the set of morphisms

in Presλ(C), the skeleton of the subcategory of λ-presentable objects in C). Then C

is weakly µ<µ-stable.

From the discussion of the relation of sharp inequality above, this means that any

accessible category is weakly stable in infinitely many, arbitrarily large cardinals.

As we will see in Section 5.3, this surprising result, in conjuction with one of the

theorems from Section 4.3, will give us the beginnings of a stability spectrum for

weakly tame AECs.



CHAPTER 3

Galois Types and Topology

Let K be an abstract elementary class. We assume throughout that K contains a

monster model, say C. All work is done in, and all types are orbits of elements of,

the model C. For any λ ≥ LS(K) and M ∈ K, consider the set

SλM = {N≺KM : |N | ≤ λ}

We define a topology on ga-S(M) as follows: for each N ∈ SλM and p ∈ ga-S(N), let

Up,N ⊆ ga-S(M) be given by

Up,N = {q ∈ ga-S(M) : q � N = p}

Claim 3.1. The Up,N form a basis for a topology on ga-S(M).

Proof: It is easy to see that any q ∈ ga-S(M) is contained in one of the Up,N . In

particular, for any N ∈ SλM , q ∈ Uq�N,N .

Suppose now that q ∈ Up1,N1 ∩ Up2,N2 ; that is, that q � N1 = p1 and q � N2 = p2. As

λ ≥ LS(K), there is a model N≺KM containing N1 ∪ N2 which is of cardinality at

most λ, and which is therefore contained in SλM . Obviously q ∈ Uq�N,N . Moreover,

for any q′ ∈ Uq�N,N (hence satisfying q′ � N = q � N),

q′ � N1 = (q′ � N) � N1 = (q � N) � N1 = q � N1 = p1

and, similarly, q′ � N2 = p2. Hence q ∈ Uq�N,N ⊆ Up1,N1 ∩ Up2,N2 , and we are done. 2

34
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Notation 3.2. We denote by Xλ
M the set ga-S(M) endowed with the topology gen-

erated by the sets Up,N .

Consider the special case in which K is an elementary class equipped with the

elementary submodel relation. Recall that the Galois types over a model M ∈ K

correspond to the complete first order types over M . Hence we have a more familiar

topology to which to compare those just defined: the syntactic topology. Given

the profoundly abstract context in which we defined our topologies, one would not

necessarily expect any relation whatsoever. As it happens, there is a relationship.

Moreover, it is a remarkably simple one:

Proposition 3.3. The topology of Xλ
M refines the syntactic topology on S(M)

Proof: Take any basic open set in the syntactic topology, say Uφ, the set of types

over M containing the formula φ. We wish to show that this set is also open in Xλ
M .

To that end, let q be a type in Uφ. Let N be an elementary submodel of M of size at

most λ that contains all the parameters in φ, and consider the basic open set Uq�N,N .

Certainly q ∈ Uq�N,N . For any q′ ∈ Uq�N,N , q′ has the same restriction to N as q, and

must therefore contain the same formulas with parameters in N as q does. Hence

φ ∈ q′, and q′ ∈ Uφ. Since this holds for arbitrary q′ ∈ Uq�N,N , we have Uq�N,N ⊆ Uφ,

thereby establishing the proposition. 2

There is actually another topology on syntactic types to be considered in this

context, which has been little considered but is implicit in the notion of ℵ0-isolation

defined in Section 3.1 of [7]. In this case the topology is induced not by formulas, but

by restrictions to finite subsets of the domain. In particular, for any set A, we define

a basis of open sets for S(A) as follows: for each finite B ⊆ A and type p ∈ S(B),
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take

Up = {q ∈ S(A) | q � B = p}

where we here mean restriction in the syntactic sense. The induced topology is, on

its face, more closely related to those of the Xλ
M . In fact, by a pair of arguments

much like the one given above,

Proposition 3.4. The topology induced by restriction to finite subsets refines the

syntactic topology, and is refined by the topologies on the spaces Xλ
M .

It is very nearly a special case of our topologies, in fact, but not quite: the

purported bases for the Xλ
M are sure to be bases only if we work with λ ≥ LS(K)

(to ensure that the intersection axiom holds), hence with λ infinite. As a result, we

cannot—in our framework—generate a topology from the types with finite domains.

Turning away from the elementary case, and refocusing on the spaces that will

be our primary concern here, notice that if |M | ≤ λ, the space Xλ
M is discrete.

We will be concerned exclusively with the more interesting case, when |M | > λ.

Ideally, there would be some connection between the spaces Xλ
M obtained as we vary

the parameters M and λ. In reality, there is: this scheme for topologizing sets of

types over models M ∈ K—the assignment (M,λ) 7→ Xλ
M—is functorial in both

arguments. We begin with functoriality in the first argument:

Lemma 3.5. Given any M,M ′ ∈ K, M≺KM ′, the natural restriction map rM ′,M :

ga-S(M ′)→ ga-S(M) is a continuous surjection from Xλ
M ′ to Xλ

M .

Proof: To see that the map rM ′,M : ga-S(M ′) → ga-S(M) is surjective, notice that

for any p ∈ ga-S(M), p = ga-tp(a/M) for some a ∈ C. Hence p = ga-tp(a/M) =

rM ′,M(ga-tp(a/M ′)). To verify continuity, take any basis element Up,N ⊆ Xλ
M . We
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then have

r−1
M ′,M(Up,N) = {q ∈ ga-S(M ′) : q � M � N = p}

= {q ∈ ga-S(M ′) : q � N = p}

= Up,N

where the latter is now the basic open set in Xλ
M ′ (since N ∈ SλM ⊆ SλM ′ , this makes

sense). At any rate, r−1
M ′,M(Up,N) is certainly open in Xλ

M ′ , so we are done. 2

One can easily see that rM ′,M : ga-S(M ′) → ga-S(M) is not merely a continuous

surjection, but in fact a quotient map.

We now turn to the assertion of full functoriality in the first argument. Let

M,M ′ ∈ K, and let f : M → M ′ be a K-embedding. We obtain an induced

map f ∗ : ga-S(M ′) → ga-S(M) as follows: the map f extends to an automorphism

f̄ : C→ C. The map f ∗ is given by the following composition:

ga-S(M ′)
rM′,f [M ]−→ ga-S(f [M ])

φ−→ ga-S(M)

q = (a,M ′) 7→ (a, f [M ]) 7→ (f̄−1(a),M)

It is simple enough to verify that φ is independent of the choice of f̄ , and that it is

defined on types.

Proposition 3.6. The map f ∗ is a continuous surjection from Xλ
M ′ to Xλ

M .

Proof: Naturally, f [M ]≺KM ′, so Lemma 3.5 above implies that the first map in this

composition is a continuous function from Xλ
M ′ onto Xλ

f [M ], so it suffices to consider

only the second, which we are calling φ.

The map φ has an obvious inverse on representatives and, by an argument essentially

indistinguishable from that given for φ, this φ−1 is a well-defined map from ga-S(M)

to ga-S(f [M ]). It follows that φ is bijective.

To verify continuity, consider an arbitrary basic open set Up,N ⊆ Xλ
M . Take q ∈ Up,N

with representative, say, (a,M). Notice that f [N ]≺Kf [M ], |f [N ]| = |N | ≤ λ, and
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thus f [N ] ∈ Sλf [M ]. Hence q′ = φ−1(q), the type represented by (f̄(a), f [M ]), is

contained in the basic open set Uq′|f [N ],f [N ] ⊆ Xλ
f [M ]. That is, φ−1(Up,N) ⊆ Uq′|f [N ],f [N ].

Given any q′′ ∈ Uq′|f [N ],f [N ], on the other hand, we have q′′ � f [N ] = q′ � f [N ], which

is to say that given any representative (b, f [M ]) of q′′, there is a g ∈ Autf [N ](C) with

g(b) = f̄(a). Notice that the images φ(q′) = q and φ(q′′) have representatives (a,M)

and (f̄−1(a),M), respectively. By the now familiar yoga, f̄−1gf̄ ∈ AutN(C) and

f̄−1gf̄(f̄−1(b)) = f̄−1g(b) = f̄−1(f̄(a)) = a

meaning that (f̄−1(b),M) and (a,M) are equivalent over N , from which it follows

that φ(q′) � N = q � N = p. So φ(q′) ∈ Up,N , q′ ∈ φ−1(Up,N), and ultimately

Uq′|f [N ],f [N ] ⊆ φ−1(Up,N). Coupled with the reverse inclusion established above, we

have φ−1(Up,N) = Uq′|f [N ],f [N ]. Finally, we conclude that φ is a continuous map from

Xλ
f [M ] to Xλ

M .

Now, the map f ∗ : Xλ
N → Xλ

M , being a composition of continuous surjections (actu-

ally, a quotient map and a homeomorphism), is itself a continuous surjection (quo-

tient map).

Notice that when f : M → N is simply an inclusion, f ∗ is precisely the restriction

map rN,M . In particular, for any identity map IdM : M → M , Id∗M is the identity

map on Xλ
M . Moreover, it takes minimal effort to see that for any K-embeddings

f : M → N and g : L→M , (fg)∗ = g∗f ∗. Hence we do indeed have functoriality of

the sort claimed above. 2

As it happens, the far easier fact of functoriality in the cardinal parameter proves

to be considerably more interesting. First:

Proposition 3.7. For any µ > λ, the set-theoretic identity map Idµ,λ : Xµ
M → Xλ

M

is continuous.
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Proof: Consider a basic open set Up,N ⊆ Xλ
M , where N ∈ SλM and p ∈ ga-S(N).

Since λ < µ, SλM ⊆ S
µ
M , and we therefore have N ∈ SµM . Hence Up,N is in the basis

of Xµ
M , and certainly open. 2

What this means is that for each M ∈ K, we obtain a well-behaved spectrum of

topological spaces ranging from X
LS(K)
M to X

|M |
M (at which point the spaces become

discrete, as we noted earlier), all of which are connected by continuous bijections;

that is, we have

X
LS(K)
M ←− X

LS(K)+

M ←− · · · ←− Xλ
M ←− · · · ←− X

|M |
M ←−

As we will see, there is a close correspondence between topological properties of the

spaces in the spectrum and model-theoretic properties of the model M and of K, the

ambient AEC.

3.1 Isolated Types and λ-Saturation

We begin with a very simple example of such a correspondence between topology

and model theory which, while far less significant than those found in the ensuing

sections, captures some of the charm of this setup. In particular, we discover a

sufficient condition for isolated points to be dense in Xµ
M : saturation of M in a

cardinal λ > µ. We also extract a partial converse. To begin,

Claim 3.8. A type q ∈ Xλ
M is an isolated point if and only if there is an N ∈ SλM

and p ∈ ga-S(N) such that q is the unique extension of p to a type over M .

Proof: If q is isolated, {q} is open. Thus q ∈ Up,N ⊆ {q} for some basis element

Up,N . Naturally, we then have {q} = Up,N ; that is, q is the unique extension of p, as

claimed. The converse is trivial. 2

We might say that in the above situation, p isolates q. By the final section

of this chapter, we will be able to give a far more interesting (and far less trivial)



40

characterization of isolated points in the spaces Xλ
M , but this will do for the moment.

We turn, then, to the connection between types isolated in Xλ
M and types realized

in M , and draw out a few simple consequences:

Claim 3.9. A type of the form ga-tp(a/M) with a ∈M is isolated in every Xµ
M .

Proof: Say q = ga-tp(a/M) with a ∈ M . Take N ∈ SµM such that a ∈ N , and

consider the type p = q � N . We must verify that q is the unique extension of p

in ga-S(M). Clearly q is such an extension. Given any other, say q = (a′,M), we

have q′ � N = q � N , and thus there is an automorphism h ∈ AutN(C) such that

h(a′) = a. Since a ∈ N , though, this means that a = a′. Hence q′ = q, and we are

done. 2

Proposition 3.10. If M is λ-saturated, isolated points are dense in Xµ
M for all

µ < λ.

Proof: Suppose M is λ-saturated. Consider a basic open neighborhood Up,N in Xµ
M

with µ < λ, where N ∈ SµM and p ∈ ga-S(N). By λ-saturation of M , p is realized in

M , meaning that there is an element a ∈ M such that ga-tp(a/M) � N = p. Hence

ga-tp(a/M) ∈ Up,N and, from the claim above, ga-tp(a/M) is an isolated point of

Xλ
M . We have shown, then, that any basic open set in Xµ

M contains an isolated point,

from which it follows that isolated types are dense, as claimed. 2

In words: if a model M is λ-saturated, then isolated points are dense in all of the

spaces in the spectrum for M below Xλ
M . There is a partial converse to this result:

if the types of elements of M are dense in the spaces Xµ
M on an interval just below

λ, M is λ-saturated. To be precise:

Proposition 3.11. If there is a cardinal κ < λ such that {ga-tp(a/M) | a ∈ M} is

a dense subset of each Xµ
M with κ ≤ µ < λ, M is λ-saturated.
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Proof: Let p ∈ ga-S(N), N≺KM with |N | = χ < λ. Take µ ≥ χ with κ ≤ µ < κ.

By density of {ga-tp(a/M) | a ∈ M} in Xµ
M , there is a type q ∈ Up,N of the form

q = ga-tp(a/M), where a ∈M . The fact that q ∈ Up,N implies that q � N = p, which

is to say that ga-tp(a/N) = p. This means, of course, that p is realized in M . 2

As a special case:

Corollary 3.12. If {ga-tp(a/M) | a ∈ M} is a dense subset of Xλ
M , M is λ+-

saturated.

Whereas Proposition 3.10 allowed us to translate a model-theoretic condition into

information about the spectrum associated with the model M , these results go in the

opposite direction: given particular information about the spectrum (here, that the

types of elements of M are dense in the spaces just below Xλ
M) we are able to deduce

something about the structure of the model itself (here, that M is λ-saturated). In

the ensuing sections, we will further analyze the ways in which the spaces Xλ
M encode

information about K and the models contained therein, obtaining correspondences a

good deal deeper than the toy results above.

3.2 Separation and Tameness

In fact, we turn immediately to the correspondence that forms the centerpiece of

this chapter, and which motivated the definition of the topologies on the spaces Xλ
M .

Recalling that types over small models play the role of formulas in generating the

aforementioned topologies, and also recalling our intuition that tameness means that

distinct types over potentially large models may be distinguished by such “formulas,”

it should come as little surprise that tameness translates into a separation condition.

In particular:
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Claim 3.13. The AEC K is (χ,λ)-tame if and only if for all M ∈ Kλ, Xχ
M is

Hausdorff.

Proof: (⇒) Suppose that K is (χ,λ)-tame, and that M ∈ Kλ. Let q, q′ ∈ Xχ
M ,

q 6= q′. By tameness, there is an N ∈ SχM with the property that q � N 6= q′ � N .

Certainly q ∈ Uq�N,N and q′ ∈ Uq′�N,N . Furthermore, Uq�N,N ∩ Uq′�N,N = ∅: if we had

q′′ ∈ Uq�N,N ∩ Uq′�N,N , then we would have q′′ � N = q � N and q′′ � N = q′ � N ,

whence q � N = q′ � N , contradicting our choice of N .

(⇐) Suppose Xχ
M is Hausdorff for all M ∈ Kλ. If q, q′ ∈ ga-S(M), q 6= q′, then there

are open sets U 3 q and U ′ 3 q′ with U ∩ U ′ = ∅. Given the way the topology

was defined, we have, moreover, that for some N1, N2 ∈ SχM , p1 ∈ ga-S(N1), and

p2 ∈ ga-S(N2), q ∈ Up1,N1 and q′ ∈ Up2,N2 , with Up1,N1 ∩ Up2,N2 = ∅. In particular,

q′ 6∈ Up1,N1 , meaning that, whereas q � N1 = p1, q′ � N1 6= p1. So q � N1 6= q′ � N1.

Since the same argument works for any M ∈ K of size λ, the class K must be

(χ,λ)-tame. 2

In reality, though, the separation axioms T0 and T1 are equivalent to the Haus-

dorff axiom in all Xλ
M , regardless of the semantic properties of the class:

Proposition 3.14. Let K be an AEC, M ∈ K, and λ ≥ LS(K). The space Xλ
M is

Hausdorff if and only if it is T0.

Proof: (⇒) Trivial.

(⇐) Suppose Xλ
M is T0. Given distinct q, q′ ∈ Xλ

M , then, there is an open set

U ⊆ Xλ
M containing q but not q′. Indeed, we may take U to be a basis element, Up,N .

That is, there is an N ∈ SλM and p ∈ ga-S(M) such that q � N = p but q′ � N 6= p.

Hence Up,N and Uq′�N,N are disjoint open neighborhoods of q and q′, respectively. 2

It follows, of course, that in such spaces the T1 axiom amounts to the same thing



43

as the two in the previous proposition. So,

Corollary 3.15. The AEC K is (χ,λ)-tame if and only if for all M ∈ Kλ, Xχ
M is

T0 (T1, Hausdorff).

As a consequence, we have, among other things, the following topological spectrum

result:

Claim 3.16. If K is (χ,λ)-tame, Xµ
M is Hausdorff for all M ∈ Kλ and µ ≥ χ.

Proof: The antecedent holds if and only if for any M ∈ Kλ, Xχ
M is Hausdorff.

For any µ > χ, the map Idµ,χ : Xµ
M → Xλ

M is a continuous injection, from whose

existence it follows that Xµ
M is also a Hausdorff topological space. 2

Notice that the less parametrized notion of χ-tameness corresponds to the prop-

erty that for every M ∈ K, Xχ
M is Hausdorff (T0, T1). Functoriality and basic

topology (as in the proof of Claim 3.16 above) guarantee that χ-tameness implies

that the spaces Xµ
M are Hausdorff for all µ ≥ χ. This also means that K is µ-tame

for all µ ≥ χ, as one would hope.

Actually, we can say a bit more along these lines. The basic open sets Up,N are, in

fact, clopen:

(Up,N)C = ga-S(M) \ Up,N = {q ∈ ga-S(M) : q � N 6= p}

=
⋃
p′∈(ga−S(N)\{p})Up′,N

where the final union is, quite obviously, open in Xλ
M . This means, of course, that

every Xλ
M has a basis of clopen sets. Hence, by Claim 3.13,

Proposition 3.17. An AEC K is (χ,λ)-tame if and only if Xχ
M is totally discon-

nected for every M ∈ Kλ.

By the same token,
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Proposition 3.18. If K is (χ,λ)-tame, Xµ
M is totally disconnected for every M ∈ Kλ

and µ ≥ χ.

Naturally, there is an analogous result for χ-tameness, where we simply remove the

restriction on the cardinality of the model M . Here again we have found an elegant

correspondence between model-theoretic properties and the properties of spaces in

the topological spectra for individual models: tameness ensures that the spaces are

totally disconnected. In short, they are very nearly Stone spaces, with compactness

being the only (potentially) missing ingredient. The natural question—whether they

are in fact compact—will be addressed in Section 3.4 below. First, though, we need

a bit more information about the spaces Xλ
M .

3.3 Uniform Structure

Up to now, we have studiously ignored the fact that the sets ga-S(M) support a

natural notion of closeness: types with the same restriction to N ∈ SλM might be said

to be N -close, and might be reckoned to be closer still if they are N ′-close for some

N ′ ∈ SλM with N≺KN ′. In fact, this way of thinking gives a uniform structure on

ga-S(M), with respect to which we may speak sensibly of Cauchy nets, convergence,

and completeness. The great virtue of this perspective is that it provides a formal

grounding for the intuition that (roughly speaking) (κ, λ)-compactness and (κ, λ)-

locality relate to the convergence behavior of (Cauchy) sequences of types. Indeed,

since the topology induced by this uniform structure is precisely the same as the one

employed in the previous section, nothing is lost by these considerations. In fact, a

considerable amount of additional information about the Xλ
M is gained.

Given M ∈ Kκ, and λ ≥ LS(K), we define a uniform structure on ga-S(M) as
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follows: for each N ∈ SλM define

UN = {(q, q′) ∈ ga-S(M)× ga-S(M) | q � N = q′ � N}

Notice that N≺KN ′ implies UN ′ ⊆ UN .

Let B be the set of all such UN . We now define:

Uλ
M = {U ⊆ ga-S(M)× ga-S(M) |U ⊇ UN for some N ∈ SλM}

That is, Uλ
M is the uniformity generated by B. Of course, we must verify

Claim 3.19. B is the basis for a uniformity on ga-S(M)

Proof: Each UN ∈ B, obviously contains the diagonal ∆M ⊆ ga-S(M) × ga-S(M).

Moreover, the converse of any UN is simply UN itself, and is therefore included in

B. We must also check that for any UN there is a V ∈ B with the property that

V ◦V ⊆ UN—notice that UN ◦UN = UN , meaning that we can simply take V = UN .

Finally, let UN and UN ′ be elements of B. We must show that there is an N ′′ ∈ SλM

such that UN ′′ ⊆ UN ∩ UN ′ . Let N ′′ be any submodel of cardinality at most λ that

contains the union of N and N ′. Whenever (q, q′) ∈ UN ′′ , q � N ′′ = q′ � N ′′,

from which it follows that q � N = q′ � N and q � N ′ = q′ � N ′, in which case

(q, q′) ∈ UN ∩ UN ′ . 2

The uniform topology on ga-S(M) is defined as follows: V is open only if for every

q ∈ V there is a U ∈ Uλ
M such that the set U [q] = {q′ ∈ ga-S(M) | (q, q′) ∈ U} is

contained in V . For any such U there is an N ∈ SλM such that UN ⊆ U , and we then

have UN [q] ⊆ V . Noticing that UN [q] is precisely Uq�N,N , we have found a basic open

set of Xλ
M containing q and completely contained in V . As we can do the same for

any q ∈ V , it must be the case that V is open in Xλ
M . Reversing the argument, one

discovers that the uniform topology is exactly the same as the one defined above.

By a familiar result (see [17], for example), we have
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Corollary 3.20. For any M ∈ K and λ ≥ LS(K), Xλ
M is completely regular.

Now that we have a notion of closeness in Xλ
M , we may discuss Cauchyness and

convergence: a net {qn |n ∈ D} (D a directed set) is Cauchy if and only if for every

U ∈ Uλ
M there is an n ∈ D such that for all i, j ≥ n, (qi, qj) ∈ U . Equivalently, such

a net is Cauchy if and only if for every N in SλM , there is an n ∈ D such that for

all i, j ≥ n, (qi, qj) ∈ UN ; that is, qi � N = qj � N . Similarly, a net {qn |n ∈ D}

converges to q ∈ Xλ
M if and only if for every N ∈ SλM , there is an n ∈ D such that

for all i ≥ n, (qi, q) ∈ UN ; that is, qi � N = q � N . We now turn to the promised

examination of (κ, λ)-compactness in this framework, after a quick lemma:

Lemma 3.21. Suppose K is (χ,≤ λ)-tame. If for any M ∈ Kλ the space Xµ
M is

complete for some µ in the range χ ≤ µ < cf(κ), then for any increasing chain

(Mi)i<κ with union M and increasing chain of pi ∈ ga-S(Mi), there is a type q ∈

ga-S(M) with q � Mi = pi for all i < κ.

Proof: For each i < κ, choose qi ∈ ga-S(M) extending pi. This gives a net {qi | i <

κ}. Indeed, it is Cauchy: for any N ∈ SµM , we must have N ⊆ Mi for some i (since

|N | ≤ µ < cf(κ)). For any m,n ≥ i,

qm � Mi = (qm � Mm) � Mi

= pm � Mi

= pi

= pn � Mi

= (qn � Mn) � Mi

= qn � Mi

Hence for any m,n ≥ i, qm � N = qn � N , so (qm, qn) ∈ UN , and the net is Cauchy.

By completeness of Xµ
M , it must therefore converge in Xµ

M , meaning that there is
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some q ∈ Xµ
M with the property that for all N ∈ SµM , there is i < κ such that for all

n ≥ i, q � N = qn|N . We wish to show that q � Mi = pi for all i < κ.

Fix i < κ. Given any N≺KMi of size at most µ, N ∈ SµM and we therefore know

that for large enough n < κ and, in particular, for some n > i,

q � N = qn � N = ((qn � Mn) � Mi) � N = (pn � Mi) � N = pi � N

Since this holds for absolutely any N≺KMi of size at most µ, tameness implies that

q � Mi = pi. 2

From the lemma, we have

Theorem 3.22. [Completeness, (κ, λ)-Compactness] If K is (χ,≤ λ)-tame and for

all M ∈ Kλ there exists µ with χ ≤ µ < cf(κ) such that Xµ
M is complete, then K is

(κ, λ)-compact.

The fact of the matter is that there does not seem to be any semblance of a con-

verse (a measure of completeness following from a measure of type-theoretic com-

pactness). This is attributable to the fact that completeness of Xλ
M is related to

collatibility of arbitrary directed systems of types, not chains. To be precise,

Proposition 3.23. The space Xµ
M is complete if and only if for any compatible

system of types pN ∈ ga-S(N) over substructures N of size no greater than µ, there

is a type q ∈ ga-S(M) with the property that q � N = pN for all N .

Proof: (⇐) Suppose that {qn |n ∈ D} is a Cauchy net. Given any N ∈ SµM , the

fact that the net is Cauchy implies that the qn eventually have the same restriction

to N . Let pN be this common restriction. I claim the types obtained in this fashion

constitute a compatible system. This is simple enough: let N,N ′ ∈ SµM , N≺KN ′.

The qn eventually restrict to pN ′ on N ′, hence also eventually restrict to pN ′ � N
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on N . By our initial choice, it must be the case that pN ′ � N = pN . There must,

therefore, be a type q ∈ ga-S(M) with q � N = pN for all N ∈ SµM . For any such N ,

it is clear that q eventually agrees with the net there, so (q, qn) ∈ UN for sufficiently

large n. Hence q is a limit of the net.

(⇒) Suppose we have a compatible family of types pN . For each pN , choose an

extension qN ∈ ga-S(M). The qN form a net (the index set here is not merely

directed, but µ+-directed) which, I claim, is Cauchy. The proof is identical to the

one given in the chain case above, and is therefore omitted. By completeness, the net

has a limit q ∈ ga-S(M). The proof that this q satisfies q � N = pN for all N ∈ SµM

is also similar to the one above, although we needn’t concern ourselves with matters

of tameness: since q is a limit of the net there is, for every N ∈ SµM , an N ′ ∈ SµM

with the property that for all N ′′�KN ′, q � N ′′ = qN � N ′′. In particular, we can

take such an N ′′ that contains both N and N ′. We then have

q � N = qN ′′ � N

= (qN ′′ � N ′′) � N

= pN ′′ � N

= pN

So we are done. 2

The connection between topology and locality is a good deal simpler. To begin,

Lemma 3.24. Let M ∈ Kλ. If there is a µ < cf(κ) such that Xµ
M is T0, then for

any increasing chain (Mi)i<κ with union M and increasing chain of pi ∈ ga-S(Mi),

if two types q, q′ ∈ ga-S(M) satisfy q � Mi = q′ � Mi for all i < κ, q = q′.

Proof: Take any such increasing chain of structures, and corresponding chain of

types. Given q and q′ distinct, there is a basic open set Up,N in Xµ
M that contains q
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but not q′. That is, q � N 6= q′ � N . Naturally, N ⊆ Mi for some i < κ, meaning

that q � Mi 6= q′ � Mi as well. 2

With no effort at all,

Theorem 3.25. [Separation, Locality] If for every M ∈ Kλ there exists a µ < cf(κ)

such that Xµ
M is T0, K is (κ, λ)-local.

Once again, there isn’t really a nice converse to the theorem above, for the same

reason as before. As before, it seems that satisfaction of the separation axioms in

individual Xµ
M is a matter of the unique or nonunique collatibility of directed systems

of types over structures N ∈ SµM . To be precise,

Proposition 3.26. The space Xµ
M is T0 if and only if for any compatible system of

types pN ∈ ga-S(N) over structures N ∈ SµM there is at most one type q ∈ ga-S(M)

with the property that q � N = pN for all N .

Proof: This proposition is a trivial rewriting of the earlier result regarding the

equivalence between separation and tameness. 2

To further drive home a point made in the first section—that the assignment

(M,λ) 7→ Xλ
M

is nicely functorial—and to provide additional evidence that (κ, λ)-compactness and

(κ, λ)-locality have implications on the topological side, we have

Theorem 3.27. Let K be (κ, λ)-compact and (κ, λ)-local. If M =
⋃
i<κMi is a

continuous increasing chain with |M | = λ, then for any µ < cf(κ),

Xµ
M = Limi<κX

µ
Mi

in the category of topological spaces (uniform spaces).
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As we will have no further use for this result, we omit the argument (which is both

long and entirely straightforward). It is noteworthy, perhaps, that if one removes

the locality assumption, one still obtains Xµ
M as a weak limit of the diagram.

3.4 Noncompactness

As one would expect, given the paucity of compactness available in AECs, the

spaces Xλ
M need not be compact. As it happens, the picture is a good deal worse:

more as an artifact of this particular way of topologizing types than as a consequence

of any lack of logical or Galois type-theoretic compactness, we have a wholesale failure

of compactness in the Xλ
M . Indeed, as we will see, they cannot even be countably

compact if the ambient AEC is sufficiently tame. To begin, we notice:

Proposition 3.28. Let K be an arbitrary AEC, M ∈ K, and λ ≥ LS(K). The space

Xλ
M is not compact.

Proof: Suppose that Xλ
M is compact, and consider the open cover {Up,N | p ∈

ga-S(N)} for some fixed infinite N ∈ SλM . We must have a finite subcover, say

{Up1,N , . . . , Upr,N}

Notice that for any p ∈ ga-S(N), there is at least one type q ∈ Xλ
M with the property

that q|N = p. Notice also that this q lies in Up,N , but not in Up′,N for any other

p′ ∈ ga-S(N). It follows that, if the set above is to be a cover, every p ∈ ga-S(N)

must appear in the list {p1, . . . , pr}; that is, ga-S(N) must be finite. But of course

|ga-S(N)| ≥ |N | ≥ ℵ0. Contradiction. 2

In light of the foregoing, we must abandon all hope that (κ, λ)-compactness will

translate in a straightforward way to compactness of any particular Xµ
M . As it

happens, though, things are less dire than one might think. In particular,
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Theorem 3.29. [Topological Compactness, (κ, λ)-Compactness] Suppose K is (κ, λ)-

compact, and let M ∈ K≥λ. Given any family of basic open sets Upi,Ni ⊆ Xµ
M , i < κ,

where the Ni form a continuous ≺K-increasing sequence with union of cardinality λ,

if the family has the finite intersection property,
⋂
i<κ Upi,Ni is nonempty.

Proof: The argument hinges on the easily established fact that if the Upi,Ni satisfy

the finite intersection property, it must be the case that pj � Ni = pi for all i ≤ j < κ.

By (κ, λ)-compactness, there is a type p over N =
⋃
i<κNi such that p � Ni = pi for

all i < κ. Naturally, N≺KM , by one of the union of chains axioms. Let q ∈ ga-S(M)

be an extension of p. Clearly, q � Ni = pi for all i < κ, so q ∈
⋂
i<κ Upi,Ni . 2

The condition in the conclusion of the result above is not particularly natural,

topologically speaking. Consequently, if we seek a result in the other direction (say,

a condition resembling compactness on the various spaces Xµ
M which is sufficient to

guarantee (κ, λ)-compactness of K) what we get is also less than natural. Recall,

though, that we have, at the very least, the implication captured in Theorem 3.22,

from completeness of the Xµ
M to compactness of Galois types in K.

We now turn to the matter of countable compactness, or the failure thereof. For

this purpose, we make extensive use of the following extraordinary property of the

spaces at hand:

Proposition 3.30. For any M ∈ K and λ ≥ LS(K), the intersection of any λ open

subsets of Xλ
M is open.

Proof: Let {Ui | i < λ} be a family of open subsets of Xλ
M , and let q ∈

⋂
i<λ Ui.

We wish to show that there is a basic open set containing q that is itself contained

in
⋂
i<λ Ui. For any i < λ, there is a basic open set Upi,Ni with q ∈ Upi,Ni ⊆ Ui.

Since
⋂
i<λ Upi,Ni ⊆

⋂
i<λ Ui, it suffices to find a basic open set containing q that is
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contained in
⋂
i<λ Upi,Ni . The union of the Ni is of cardinality λ so, by the Downward

Löwenheim Skolem Property, there is a submodel N ↪→K M that contains it. By

coherence, Ni ↪→K N for all i. Consider the basic open neighborhood Uq�N,N . It

certainly contains q. For any q′ ∈ Uq�N,N , moreover,

q′ � Ni = q′ � N � Ni = q � N � Ni = q � Ni = pi

Hence q′ is contained in
⋂
i<λ Upi,Ni and, since this holds for any q′ ∈ Uq�N,N , Uq�N,N ⊆⋂

i<λ Upi,Ni , and we are done. 2

Recalling from Corollary 3.20 that the spaces Xλ
M are completely regular, we are

led to consider the following generalization of the notion of p-space, familiar from

general topology:

Definition 3.31. For any infinite cardinal λ ≥ ℵ0, we say that a topological space

X is a pλ-space if it is completely regular and the intersection of any collection of up

to λ many open sets is open.

The normal notion of a p-space (covered in [9], for example) occurs in the special

case that λ = ℵ0. Now, as we pile separation conditions on a pλ-space, interesting

things happen. The general topology first, then implications in the current context:

Proposition 3.32. Let X be a T1 pλ-space. Any set S ⊆ X with |S| ≤ λ is closed

and discrete.

Proof: We begin by showing that such an S is closed. This is easy: from the

assumption that X is T1, it follows that for every x ∈ S, the singleton {x} is closed

in X. As S is a union of at most λ such closed sets, it is itself closed in X. To see

that S is discrete, fix an element x ∈ S. Since X is T1, for every y ∈ (X \{x}) there

is an open neighborhood Uy of x in X that does not contain y. Take the intersection
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of all such Uy; that is, U :=
⋂
y∈(S\{x}) Uy. Because X is a pλ-space, U is open in X.

Naturally, it contains x, but misses all the other elements of S. As {x} = S ∩U , {x}

is open in the subspace topology on S. The result follows. 2

More or less immediately, we have:

Corollary 3.33. Let X be a T1 pλ-space. No subset of X of size less than or equal

to λ has an accumulation point in X.

Proof: Let S ⊆ X, with |S| ≤ λ. Suppose that S has an accumulation point x ∈ X.

By Proposition 3.32, S is closed, meaning that the accumulation point x must lie in

S. By the same result, though, S is discrete. Contradiction. 2

Corollary 3.34. Let X be a T1 pλ-space. Then X is countably compact only if it is

finite.

Proof: Recall that a topological space is countably compact only if it is limit point

compact (see, for example, [17]). If X is infinite, it contains a subset S of cardinality

ℵ0. Since |S| ≤ λ, the proposition immediately above ensures that S has no accu-

mulation point in X. Hence X is not limit point compact and, consequently, not a

countably compact space. 2

Now, fix an AEC K. We know that Xλ
M is a pλ-space for all M ∈ K and λ ≥

LS(K). Given what we have discerned of the relationship between tameness and the

separation axioms—including T1—in the spaces of types, we may now infer:

Proposition 3.35. Let K be (χ,λ)-tame. Then for any M ∈ Kλ and any µ ≥ χ,

Xµ
M is not countably compact.

Proof: Suppose that Xµ
M is countably compact for some M ∈ Kλ and µ ≥ χ. We

learned in Section 3.2 that (χ,λ)-tameness of K implies that the space Xµ
M is T1. By
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Corollary 3.34, then, Xµ
M is finite. But this is absurd: |Xµ

M | = |ga-S(M)| ≥ |M | = λ,

and is therefore infinite. 2

We know, then, that in the topological spectrum for any model of size λ, we will

not find any countably compact spaces above the tameness cardinal χ. It is strange

that our desire for tameness of Galois types should preclude the possibility of even

a modicum of topological compactness, but this is undoubtedly a sacrifice worth

making.

We close with another consequence of Proposition 3.32:

Proposition 3.36. Let K be (χ,λ)-tame. Then for any M ∈ Kλ and any µ ≥ χ, a

type q ∈ Xµ
M is an accumulation point of a set S ⊆ Xµ

M only if every neighborhood

of q contains strictly more than λ elements of S.

Proof: Let U be a neighborhood of q with |U ∩S| ≤ λ. The intersection is discrete,

meaning that there is a neighborhood V of q that does not meet U ∩ S in any other

point. But then U ∩V is a neighborhood of q with (U ∩V )∩S = {q}, meaning that

q cannot be an accumulation point of S. 2

In short, it is very difficult to be an accumulation point of types. This fact

motivates the definition of the family of ranks for Galois types with which we will

occupy ourselves in the next chapter.



CHAPTER 4

Morley-like Ranks for Tame AECs

We have seen that if an AEC K is χ-tame, then for any λ ≥ χ (and, of course,

λ ≥ LS(K)), the criterion for a type q ∈ ga-S(M) to be an accumulation point of a

family of types in Xλ
M is quite stringent: every neighborhood must contain more than

λ types in the given family. This condition inspires the definition of the following

Morley-like ranks:

Definition 4.1. [RMλ] Assume K is χ-tame for some χ ≥ LS(K). For λ ≥ χ, we

define RMλ by the following induction: for any q ∈ ga-S(M) with |M | ≤ λ,

• RMλ[q] ≥ 0.

• RMλ[q] ≥ α for limit α if RMλ[q] ≥ β for all β < α.

• RMλ[q] ≥ α+1 if there exists a structure M ′�KM such that q has strictly more

than λ extensions to types q′ over M ′ with the property that

RMλ[q′ � N ] ≥ α for all N ∈ SλM ′

For types q over M of arbitrary size, we define

RMλ[q] = min{RMλ[q � N ] : N≺KM, |N | ≤ λ}.

55



56

Before we proceed, a bit of motivation for this longwinded definition: in topolo-

gizing ga-S(M) as Xλ
M , we essentially allowed the types over substructures of size at

most λ to play a role analogous to that typically played by formulas in the definition

of the topology on syntactic types. In defining the ranks RMλ, we first define the

rank of these “formulas” and subsequently define the rank on types extending them

as the minimum of the ranks of their constituent “formulas,” just as in the definition

of Morley rank in classical model theory.

There is something to check here, though. The types over models of cardinality

at most λ whose ranks were defined by the inductive clause are also covered by the

second clause. We must ensure that there is no possibility of conflict between the

two. Let RMλ
∗ denote the ranks assigned to such types using only the inductive

clause.

Lemma 4.2. The ranks RMλ
∗ are monotone: for any N,N ′ ∈ K≤λ, N ′≺KN , and

any q ∈ ga-S(N), RMλ
∗ [q] ≤ RMλ

∗ [q � N ′].

Proof: We show that for any ordinal α, RMλ
∗ [q] ≥ α implies RMλ

∗ [q � N ′] ≥ α. We

proceed by an easy induction on α. The zero case is trivial, by the first bullet point.

The limit cases follow from the induction hypothesis. For the successor case, notice

that if RMλ
∗ [q] ≥ α + 1, the extension M�KN that witnesses this fact is also an

extension of N ′ and witnesses that RMλ
∗ [q � N ′] ≥ α + 1. 2

So we needn’t worry that the rank assigned to a type q ∈ ga-S(M) with M ∈ K≤λ

under the second clause (RMλ[q] = min{RMλ[q � N ] : N≺KM, |N | ≤ λ}) will differ

from the rank of p under the first clause. Hence the ranks RMλ are well-defined. In

fact, we can now restate the third bullet point above in a more compact form: for

q ∈ ga-S(M) with M ∈ K≤λ,
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• RMλ[q] ≥ α+1 if there exists a structure M ′�KM such that q has strictly more

than λ many extensions to types q′ over M ′ with RMλ[q′] ≥ α.

We will invariably use this formulation in the sequel.

4.1 Properties of RMλ

We now consider the basic properties of the ranks RMλ, beginning with an exten-

sion of our partial monotonicity result, Lemma 4.2.

Proposition 4.3. [Monotonicity] If M≺KM ′ and q ∈ ga-S(M ′), then RMλ[q] ≤

RMλ[q � M ].

Proof: Trivial, from the second clause of the definition. 2

Bear in mind that “p is a restriction of q” corresponds to the first order “q ` p,”

so this is indeed an appropriate analogue of the monotonicity result for the classical

Morley rank.

Proposition 4.4. [Invariance] Let f be an automorphism of the monster model C,

let q ∈ ga-S(M), and let M ′ = f [M ]. Then the type f [q] ∈ ga-S(M ′) satisfies

RMλ[f [q]] = RMλ[q].

Proof: We again proceed by induction, and once again the zero and limit cases are

trivial. It remains to show that whenever RMλ[q] ≥ α + 1, RMλ[f [q]] ≥ α + 1, with

the converse following by replaying the argument with f−1 in place of f . As before,

if RMλ[q] ≥ α + 1, then each N ∈ SλM has an extension MN over which q � N has

more than λ many extensions of rank at least α. Notice that for any N ′ ∈ SλM ′ ,

N ′ = f [N ] for some N ∈ SλM and, moreover, that

f [q] � N ′ = f [q] � f [N ] = f [q � N ]
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The extensions of q � N to MN of rank at least α map bijectively under the auto-

morphism f to extensions of f [q] � N ′ to types over f [MN ] and, by the induction

hypothesis, these image types are also of rank at least α. As a result, for any

N ′ ∈ SλM ′ , RMλ[f [q] � N ′] ≥ α + 1. Thus RMλ[q] ≥ α + 1, as desired. 2

Trivially,

Proposition 4.5. [≤ λ-Local Character] For any q ∈ ga-S(M), there is an N ∈ SλM

with RMλ[q � N ] = RMλ[q].

Slightly less trivially,

Proposition 4.6. [Relations Between RMλ] Whenever λ ≤ µ, RMµ[q] ≤ RMλ[q].

Proof: By induction, with the zero and limit cases still trivial. If RMµ[q] ≥ α + 1,

then for every N ∈ SµM , q � N has more than µ extensions to types of RMµ-rank at

least α over some MN�KN . In particular, there are more than λ such extensions

and, by the induction hypothesis, they are all of RMλ-rank at least α. Noticing that

SλM ⊆ S
µ
M , one sees that the same holds for all N ∈ SλM , meaning that, ultimately,

RMλ[q] ≥ α + 1. 2

The ranks RMλ[−] also have the following attractive property: letting CBλ[q]

denote the topological Cantor-Bendixson rank of a type q ∈ Xλ
M , where M is the

domain of q,

Proposition 4.7. For any q (say q ∈ ga-S(M)), CBλ[q] ≤ RMλ[q].

Proof: We show by induction that CBλ[q] ≥ α implies RMλ[q] ≥ α. The zero and

limit cases are not interesting. If CBλ[q] ≥ α + 1, q is an accumulation point of

types of CBλ-rank at least α. This means, by Proposition 3.36, that every basic

open neighborhood of q contains more than λ such types, which is to say that each

q � N with N ∈ SλM has more than λ many extensions to types over M of CBλ-rank
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at least α. By the induction hypothesis, these types are of RMλ-rank at least α, and

for each N ∈ SλM witness the fact that RMλ[q � N ] ≥ α + 1. Naturally, it follows

that RMλ[q] ≥ α + 1. 2

A quick fact about CBλ, incidentally:

Proposition 4.8. If every q ∈ Xλ
M has ordinal CBλ-rank, isolated points are dense

in Xλ
M .

Proof: Consider a basic open set Up,N in Xλ
M . Let q ∈ Up,N be of minimal rank,

say CBλ[q] = α. There exists a neighborhood Up′,N ′ of q that contains no more than

λ types of CBλ-rank at least α (otherwise, the rank of q would be strictly larger

than α). Let N ′′ be a structure of size λ containing N ∪ N ′, and let p′′ = q � N ′′.

We then have Up′′,N ′′ ⊆ Up,N containing no more than λ types of rank ≥ α (because

Up′′,N ′′ ⊆ Up′,N ′) and, since these were the only kinds of types in Up,N to begin with,

|Up′′,N ′′ | ≤ λ. It is therefore discrete (by Proposition 3.32), and q must be an isolated

point. 2

In particular, then, if all of the types over a model M ∈ K have ordinal RMλ-

rank, isolated points are dense in Xλ
M . Now, one of the great virtues of the classical

Morley rank is that types have unique extensions of same Morley rank: if p ∈ S(A)

has RM[p] = α and B ⊇ A, there is at most one type q ∈ S(B) that extends p and

has RM[q] = α. While we do not have a unique extension property for the ranks

RMλ, we do have a very close approximation, Proposition 4.10 below. First, we

notice:

Lemma 4.9. Let M≺KM ′, q ∈ ga-S(M) with an ordinal RMλ-rank. There are at

most λ extensions q′ ∈ ga-S(M ′) with RMλ[q′] = RMλ[q].

Proof: For the sake of notational convenience, say RMλ[q] = α. Let S = {q′ ∈
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ga-S(M ′) | q′ � M = q, and RMλ[q′] = α}, and suppose that |S| > λ. For any

N ∈ SλM , each q′ is an extension of q � N , meaning that RMλ[q � N ] ≥ α + 1 for all

such N . But then RMλ[q] ≥ α + 1. Contradiction. 2

It is worth noting here that we have made no use of tameness in the discussion

above—not in the definition of the ranks RMλ, nor in the proofs of the properties

thereof—and have merely made use of the fact that λ ≥ LS(K). From now on,

however, it will often be critically important that we have the ability to separate

distinct types, leading us to restrict attention to those RMλ with λ ≥ χ, the tameness

cardinal of the AEC at hand. We will be very explicit in making this assumption

whenever it is necessary, beginning with the following essential property of the RMλ:

Proposition 4.10. [Quasi-unique Extension] Let K be χ-tame with χ ≥ LS(K),

and let λ ≥ χ. Let M≺KM ′, q ∈ ga-S(M), and say that RMλ[q] = α. Given any

rank α extension q′ of q to a type over M ′, there is an intermediate structure M ′′,

M≺KM ′′≺KM ′, |M ′′| ≤ |M | + λ, and a rank α extension p ∈ ga-S(M ′′) of q with

q′ ∈ ga-S(M ′) as its unique rank α extension.

Proof: Again, let S = {q′′ ∈ ga-S(M ′) | q′′ � M = q, and RMλ[q′′] = α}. From the

lemma, |S| ≤ λ, meaning that S is discrete (by tameness and Corollary 3.35). Thus

there is some N ∈ SλM ′ with the property that q′ � N satisfies Uq′�N,N∩S = {q′}. Take

M ′′ ∈ K containing both M and N and with |M ′′| ≤ |M |+ |N |+ LS(K) ≤ |M |+ λ,

and set p = q′ � M ′′. Notice that, by monotonicity,

α = RMλ[q′] ≤ RMλ[p] ≤ RMλ[q] = α

so RMλ[p] = α. Naturally, q′ is a rank α extension of p. Any such extension q′′ of

p is also a rank α extension of q, hence in S, and also an extension of q′ � N . By

choice of N , then, we must have q′′ = q′. 2
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A possible gloss for this complicated-looking result: while a type p ∈ ga-S(M)

of RMλ-rank α may have many extensions of rank α over a model M ′�KM , we

need only expand its domain ever so slightly (adding at most λ elements of M ′) to

guarantee that the rank α extension is unique. As innocuous as this proposition may

seem, it is the linchpin of the analysis of stability in this framework, and will see

extensive use in Section 4.3. Of course, quasi-unique extension applies only to types

with ordinal RMλ-rank. To take the fullest possible advantage of this property, then,

we would be wise to confine our attention to AECs where RMλ is ordinal-valued on

all types associated with the class.

4.2 Stability and λ-total transcendence

In classical model theory, we call a first order theory totally transcendental if all

types over subsets of the monster model are assigned ordinal values by the Morley

rank. We now define analogous notions for Galois types in AECs, one for each

Morley-like rank RMλ.

Definition 4.11. We say that K is λ-totally transcendental if for every M ∈ K and

q ∈ ga-S(M), RMλ[q] is an ordinal.

Proposition 4.12. If K is λ-totally transcendental, it is µ-totally transcendental for

all µ ≥ λ.

Proof: See Proposition 4.6, the result concerning the relationship between the var-

ious Morley ranks. 2

Putting this proposition together with Propositions 4.7 and 4.8, we have:

Proposition 4.13. If K is λ-totally transcendental, then for any M and µ ≥ λ,

isolated points are dense in Xµ
M .
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As a nice special case, if LS(K) = ℵ0, and K is ℵ0-tame and ℵ0-totally tran-

scendental, then isolated points are dense in each space Xℵ0M . This bears a certain

resemblance to the classical result linking total transcendence to the density of iso-

lated points in the spaces of syntactic types.

Under the assumption of total transcendence, we also get an interesting (and

peculiar) new characterization of λ-saturation:

Proposition 4.14. If K is µ-totally transcendental and λ > µ, then M is λ-saturated

iff the following condition holds for all κ with µ ≤ κ < λ:

q ∈ Xκ
M is isolated if and only if q = ga-tp(a/M) for some a ∈M

Proof: (⇒) Suppose that M is λ-saturated. Let q be isolated in Xκ
M with µ ≤ κ < λ,

say by the basic open set Up,N . From the proof of Proposition 3.10, {ga-tp(a/M) | a ∈

M} is a dense subset of Xκ
M , meaning that there is one such type in Up,N = {q}.

Hence q = ga-tp(a/M) for some a ∈M . The converse holds, by Claim 3.9.

(⇐) In light of Proposition 4.13, isolated points are dense in Xκ
M for κ ≥ µ.

Since every isolated point is of the form ga-tp(a/M) for some a ∈ M , the set

{ga-tp(a/M) | a ∈ m} is dense in Xκ
M . As this holds for all κ with µ ≤ κ < λ,

we conclude (by Proposition 3.11) that M is λ-saturated. 2

In short, a model M is λ-saturated if in any space Xκ
M between Xχ

M and Xλ
M in

the spectrum for M , the only types isolated in Xκ
M are those that come by their

isolation honestly—they are actually the types of elements of M .

As interesting as these results may be, the true power of the notion of λ-total

transcendence lies in the leverage it provides in rather a different area: bounding

the number of types over models. We will take advantage of this in Section 4.3

below to prove a variety of results related to Galois stability. Before we give any
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further thought to λ-totally transcendental AECs, though, it seems natural to inquire

whether the notion is, in fact, a meaningful one; that is, whether one can actually

find λ-totally transcendental AECs. One can, as the following proposition suggests:

Theorem 4.15. If K is χ-tame for some χ ≥ LS(K), and is λ-stable with λ ≥ χ

and λℵ0 > λ, then K is λ-totally transcendental.

Proof: Suppose that RMλ is unbounded; that is, suppose that there is a type p over

some N≺KC with RMλ[p] = ∞. Indeed, we may assume that |N | ≤ λ (if there is a

type of rank ∞ over a larger structure, consider one of its restrictions). We proceed

to construct a K-structure N̄ of size λ over which there are λℵ0 many types, thereby

establishing that K is not λ-stable. We first need the following:

Claim 4.16. For any λ, there exists an ordinal αC such that for any q over M≺KC,

RMλ[q] =∞ just in case RMλ[q] ≥ α.

Proof: The number of all such types can be bounded in terms of |C|, meaning that

the set of their ranks cannot be cofinal in the class of all ordinals. 2 (Claim)

We construct N̄ as follows:

Step 1: Set p∅ = p. Since p∅ satisfies RMλ[p∅] = ∞, RMλ[p∅] > α. Hence there

is an extension M�KN over which p∅ has more than λ many extensions of rank at

least α and thus of rank ∞. Take any λ many of them, say {qi ∈ ga-S(M) | i < λ}.

This set is discrete in Xλ
M , meaning that for each i < λ, there is an N

′
i ∈ SλM with

the property that qj � N
′
i 6= qi � N

′
i whenever j 6= i. Let N∅ be a K-substructure of

M containing N ∪ (
⋃
i<λNi), |N∅| = λ. For each i < λ, define pi = qi � N∅. Notice

that:

• RMλ[pi] ≥ RMλ[qi] =∞

• We have pi � N = (qi � N∅) � N = qi � N = p∅.
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• If pi = pj, then

qi � Ni = (qi � N∅) � Ni = pi � Ni = pj � Ni = (qj � N∅) � Ni = qj � Ni,

in which case we must have i = j. That is, the pi are distinct.

So we have a family {pi ∈ ga-S(N∅) | i < λ} of distinct extensions of p∅, all of rank

∞.

Step n + 1: For each σ ∈ λn, we have a structure Nσ of size at most λ and a

family of distinct types {pσi ∈ ga-S(Nσ) | i < λ}, all of rank ∞. For each i < λ,

apply the process of step 1 to each pσi. By this method, we obtain (for each i < λ)

an extension Nσi�KNσ with |Nσi| = λ and a family {pσij ∈ ga-S(Nσi) | j < λ} of

distinct extensions of pσi, all of rank ∞.

Step ω: Notice that for each τ ∈ λω, the sequence N∅, Nτ�1, . . . , Nτ�n, . . . is in-

creasing and, moreover, ≺K-increasing (by coherence and the fact that everything

embeds strongly in C). It follows that Nτ :=
⋃
n<ωNτ�n is in K. Notice also that

the pτ�(n+1) ∈ ga-S(Nτ�n) for n < ω form an increasing sequence of types over the

structures in this union. By (ω,∞)-compactness of AECs (see the remark at the end

of Section 2.1), there is a type pτ ∈ ga-S(Nτ ) with the property that for all n < ω,

pτ � Nτ�n = pτ�(n+1). Let N̄ be a structure of size λ containing the union⋃
σ∈λ<ω

Nσ

(which is possible, since the union is of size at most λ · λ<ω = λ · λ = λ). For each

τ ∈ λω, let qτ be an extension of pτ to a type over N̄ . There are λℵ0 many such types,

all over N̄—it remains only to show that they are distinct. To that end, suppose

that τ, τ ′ ∈ λω, τ 6= τ ′. It must be the case that for some σ ∈ λ<ω, τ = σi . . . and

τ ′ = σj . . . with i 6= j. Then

qτ � Nσ = (qτ � Nτ ) � Nσ = pτ � Nσ = pσi
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Similarly, we have

qτ ′ � Nσ = (qτ ′ � Nτ ′) � Nσ = pτ ′ � Nσ = pσj

Since pσi and pσj are distinct by construction, qτ 6= qτ ′ , and the types are distinct as

claimed. By our assumption that λℵ0 > λ, then, K is not stable in λ. 2

So the notion of λ-total transcendence is far from vacuous: totally transcendental

AECs exist. Indeed, they exist in great abundance.

4.3 Transfer Results

As promised, we will now employ λ-total transcendence as a tool to analyze the

proliferation of types over models in AECs. In fact, we introduce two methods of

bounding the number of types over large models, the first of which is captured by

the following result:

Theorem 4.17. Let K be χ-tame for some χ ≥ LS(K), and λ-totally transcendental

with λ ≥ χ+ |L(K)|. Then for any structure M with |M | > λ, |ga-S(M)| ≤ |M |λ.

Proof: Take q ∈ ga-S(M), RMλ[q] = α. It must be the case that RMλ[q � N ] = α

for some N ∈ SλM whence, by Proposition 4.10, there is an N ′�KN with |N ′| ≤ λ

such that q � N ′ has rank α and has a unique rank α extension q over M . Hence

|{q ∈ ga-S(M) |RMλ[q] = α}| ≤ |{p over N ∈ SλM |RMλ[p] = α}|

and thus

|ga-S(M)| = |
⋃
α{q ∈ ga-S(M) |RMλ[q] = α}|

≤ |
⋃
α{p over N ∈ SλM |RMλ[p] = α}|

= |{p over N ∈ SλM}|
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By Proposition 2.10, for any N ∈ SλM , |ga-S(N)| ≤ 2λ. Hence

|ga-S(M)| ≤ 2λ · |SλM |

≤ 2λ · |M |λ

= |M |λ

So we are done. 2

A major consequence of this theorem is:

Corollary 4.18. If K is χ-tame for some χ ≥ LS(K), and λ-totally transcendental

with λ ≥ χ+ |L(K)|, then for any µ satisfying µλ = µ, K is µ-stable.

In light of Theorem 4.15, we may eliminate any mention of λ-total transcendence

and translate the corollary above into a pure upward stability transfer result:

Proposition 4.19. If K is χ-tame for some χ ≥ LS(K), and λ-stable with λ ≥

χ+ |L(K)| and λℵ0 > λ, then K is stable in every µ with µλ = µ.

Proof: Under the assumptions on λ, stability in λ implies λ-total transcendence of

K (by the theorem invoked above). We are then in the situation of Corollary 4.18,

and the result follows. 2

It should be noted that this result is weaker than one found in [14], obtained by

other methods, which dispenses with the assumption that λℵ0 > λ, inferring stability

in µ with µλ = µ from stability in any λ larger than the tameness cardinal. The

potential advantages of our method become slightly clearer if we reinvent Proposi-

tion 4.19 in such a way as to make clear the larger project for which it should be the

jumping off point:

Theorem 4.20. Let K be χ-tame for some χ ≥ LS(K), and λ-stable with λ ≥ χ

and λℵ0 > λ. Then there exists κ ≤ λ such that K is µ-stable in every µ satisfying

µκ = µ.
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Recall that if K is stable in such a λ, it is λ-totally transcendental, and we may

take

κ = min{ν | K is ν-totally transcendental}.

For this to be an actual improvement on existing results, of course, one would need to

be able to give a meaningful bound on κ, the cardinal at which total transcendence

first occurs, that places it well below λ. Given that there is something of an analogy

between this cardinal and the cardinal parameter of nonforking in elementary classes,

there is some hope that this can be achieved, transforming the theorem above into a

stability spectrum result reminiscent of those familiar from first order model theory.

There is a different tack to be taken, though. We introduce a second method for

bounding the number of types over models of size larger than the cardinal of total

transcendence:

Theorem 4.21. Let K be χ-tame for some χ ≥ LS(K), and λ-totally transcendental

with λ ≥ χ. For any M ∈ K with cf(|M |) > λ,

|ga-S(M)| ≤ |M | · sup{|ga-S(N)| |N≺KM, |N | < |M |}.

Proof: Take a filtration of M :

M0≺KM1≺K . . .≺KMα≺K . . .≺KM

for α < |M |, with |Mα| < |M | for all α and M =
⋃
α<|M |Mα. Let q ∈ ga-S(M).

By λ-total transcendence, RMλ[q] = β for some ordinal β and, moreover, this is

witnessed by a restriction to a small submodel of M . That is, there is a submodel

N ∈ SλM with RMλ[q � N ] = β. By Proposition 4.10, there is an intermediate

extension N≺KN ′≺KM with |N ′| = λ such that q � N ′ has unique rank β extension

q over M . Since cf(|M |) > λ, N ′ ⊆ Mα for some α (and, by coherence, N ′≺KMα).
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Clearly, the type q � Mα has q as its only rank β extension over M . By a computation

similar to that found in the proof of Proposition 4.17, then, we have

|ga-S(M)| ≤ |M | · sup{|ga-S(Mα)| |α < |M |}

The inequality in the statement of the theorem is a trivial consequence. 2

In essence, the theorem asserts that for models M of cardinality µ with cf(µ) > λ,

the equality |ga-S(M)| = µ fails only if there is a submodel N≺KM with |N | < µ

and |ga-S(N)| > µ. To ensure that this does not occur—that we have, in short,

stability in µ—we need considerably less than full stability in the cardinals below µ.

To be precise:

Theorem 4.22. Let K be χ-tame for some χ ≥ LS(K) and λ-totally transcendental

with λ ≥ χ, and let µ satisfy cf(µ) > λ. If for every M ∈ K<µ, |ga-S(M)| ≤ µ, K is

µ-stable.

Proof: For any M ∈ Kµ,

|ga-S(M)| ≤ |M | · sup{|ga-S(N)| |N≺KM, |N | < |M |} ≤ |M | · |M | = |M |. 2

We may tighten the statement up a bit, once we notice the following:

Lemma 4.23. If there is a set S of cardinals cofinal in an interval [κ, µ) which has

the property that for every M ∈ K with |M | ∈ S, |ga-S(M)| ≤ µ, then |ga-S(M)| ≤ µ

for every M ∈ K<µ.

Proof: Let M ∈ K<µ. If |M | ∈ S, we are done. If not, take ν ∈ S with ν > |M |,

and let M ′ be a strong extension of cardinality ν, M ↪→K M ′ ↪→K C. By assumption,

|ga-S(M ′)| ≤ µ. Every type over M has an extension to a type over M ′, and, of

course, distinct types must have distinct extensions. Hence

|ga-S(M)| ≤ |ga-S(M ′)| ≤ µ. 2
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So Theorem 4.22 becomes

Theorem 4.24. Let K be χ-tame for some χ ≥ LS(K) and λ-totally transcendental

with λ ≥ χ, and let µ satisfy cf(µ) > λ. If there is a set S of cardinals cofinal

in an interval [κ, µ) which has the property that for every M ∈ K with |M | ∈ S,

|ga-S(M)| ≤ µ, K is µ-stable.

The assumption on the number of types over models of cardinality less than µ in

the theorem above is very weak—it is certainly more than sufficient to assume that

K is ν-stable for each ν in a cofinal set below µ. In particular, we have:

Corollary 4.25. If K is χ-tame for some χ ≥ LS(K) and λ-totally transcendental

with λ ≥ χ, µ satisfies cf(µ) > λ, and K is stable on a set of cardinals cofinal in an

interval [κ, µ), then K is µ-stable.

Using Theorem 4.15 again, we may recast the corollary as a stability transfer result

that makes no mention of total transcendence. Though the product of this rewriting

is a trivial consequence of the foregoing discussion (and, indeed, an extremely special

case of Theorem 4.24), it nonetheless generalizes a state-of-the-art result: Theorem

2.1 in [5]. First, the statement of the theorem:

Theorem 4.26. If K is χ-tame for some χ ≥ LS(K) and λ-stable with λ ≥ χ and

λℵ0 > λ, then for any µ with cf(µ) > λ, if K is stable on a set of cardinals cofinal in

an interval [κ, µ), K is µ-stable.

If we restrict our attention to the special case in which the AEC is ℵ0-stable, and

assume more stability below µ than we need, strictly speaking, we have:

Corollary 4.27. If K has LS(K) = ℵ0 and is ℵ0-tame and ℵ0-stable, then for any

µ with cf(µ) > ℵ0, if K is κ-stable for all κ < µ, K is µ-stable.
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In other words: in an AEC satisfying the hypotheses of the corollary, a run of

stability will never come to an end at a cardinal µ of uncountable cofinality; it

will, in fact, include µ, then µ+, then µ++, and so on. This remarkable fact is the

aforementioned result of [5] (which also appears as Theorem 11.11 in [2]). What

we have discerned by our method—and distilled in Theorem 4.26—is that it is not

stability in ℵ0 which is critical, but rather stability in any cardinal λ satisfying

λℵ0 > λ. Moreover, it is not necessary to have stability in every cardinality below

the cardinal of interest, µ, but rather to have stability (or, indeed, somewhat less

than stability) in a cofinal sequence of cardinals below µ.

We now shift our frame of reference. Thus far we have limited ourselves to AECs

that are tame in some cardinal χ. The time has come to consider how this picture

may differ in an AEC that is weakly χ-tame, rather than χ-tame. The most essential

difference is that the argument for Theorem 4.15 no longer works, meaning that we

can no longer infer total transcendence from stability. In a sense, then, we must

treat total transcendence as a property in its own right, independent from the more

conventional properties of AECs. On the other hand, the argument for Theorem 4.21

still goes through, provided the model in question is saturated. That is,

Proposition 4.28. Let K be weakly χ-tame for some χ ≥ LS(K), and µ-totally

transcendental with µ ≥ χ. If M ∈ K is a saturated model with cf(|M |) > µ, then

|ga-S(M)| ≤ |M | · sup{|ga-S(N)| |N≺KM, |N | < |M |}

We can use this to get bounds on the number of types over more general (that is,

not necessarily saturated) models, provided that there are enough small saturated

extensions in K. In particular, if we can replace a model M ∈ Kλ with a saturated
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extension M ′ ∈ Kλ, we have

|ga-S(M)| ≤ |ga-S(M ′)|

where the latter is governed by the bound in the proposition above. Given an ad-

equate supply of such extensions, then, we can prove results similar to those found

above, but now for weakly tame AECs. The existence of saturated extensions also

has the following consequence:

Lemma 4.29. If every model in Kλ has a saturated extension in Kλ, then for any

M ∈ K<λ, |ga-S(M)| ≤ λ.

Proof: Take M ∈ K<λ. Let M ′ be a strong extension of M of cardinality λ. By

assumption, M ′ has a saturated extension M̄ of cardinality λ. This model, M̄ ,

realizes all types over submodels of size less than λ, hence realizes all types over the

original model, M . It follows that |ga-S(M)| ≤ |M̄ | = λ. 2

Notice that this is precisely the type-counting condition from which we are able

to infer stability using the bound in Proposition 4.28. Hence we have

Theorem 4.30. Let K be weakly χ-tame for some χ ≥ LS(K), and µ-totally tran-

scendental with µ ≥ χ. Suppose that λ is a cardinal with cf(λ) > µ, and that every

M ∈ Kλ has a saturated extension M ′ ∈ Kλ. Then K is λ-stable.

Proof: Let M ∈ Kλ. By assumption, we may replace M with a saturated extension

M ′ of cardinality λ, over which there can be at most λ types, by Proposition 4.28

and Lemma 4.29. As noted above, |ga-S(M)| ≤ |ga-S(M ′)|, and we are done. 2

As a simple special case:

Corollary 4.31. Suppose K is weakly χ-tame for some χ ≥ LS(K) and µ-totally

transcendental with µ ≥ χ, and suppose that λ is a regular cardinal with λ > µ. If

K is stable on an interval [κ, λ), K is λ-stable.
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Proof: Let M ∈ K be of cardinality λ. By Proposition 2.13, M has a saturated

extension M ′ ∈ K which is also of cardinality λ. Using the bound in Proposition 4.28,

we get |ga-S(M ′)| = λ, whence λ = |M | ≤ |ga-S(M)| ≤ λ, and thus |ga-S(M)| = λ.

The result follows. 2

In particular,

Corollary 4.32. Suppose K is weakly χ-tame for some χ ≥ LS(K), µ-totally tran-

scendental with µ ≥ χ, and λ-stable with λ ≥ µ. Then K is λ+-stable.

This is weaker than a result of [5], which infers λ+-stability from λ-stability in any

AEC that is weakly tame in χ ≤ λ, with no additional assumptions. The methods of

[5]—splitting, limit models—are better adapted to the task of proving local transfer

results of this form in the context of weakly tame AECs. The machinery of ranks

and total transcendence provides us with leverage of a different sort, well suited to

the task of producing partial spectrum results of a more global nature.

At any rate, we saw in Theorem 4.30 that in a µ-totally transcendental AEC,

even if merely weakly tame, we may infer stability in λ given an adequate supply

of saturated extensions of cardinality λ. As it happens, the category-theoretic no-

tion of weak λ-stability covered in Section 2.2 ensures that this requirement is met.

Hearkening back to Proposition 2.32 (and anticipating the discussion in Chapter 5),

we note that any AEC is weakly λ-stable for many cardinals λ. If it is totally tran-

scendental, it is in fact λ-stable—λ-Galois stable—for many such λ. As we will see,

these considerations yield a partial stability spectrum for weakly tame AECs.



CHAPTER 5

Accessible Categories and AECs

Given an AEC K (with or without the amalgamation and joint embedding prop-

erties), we regard it as a category in the only natural way: the objects are the

models M ∈ K, and the morphisms are precisely the strong embeddings. Since

there is no serious risk of confusion, we will also refer to the category thus obtained

as K. In the next few pages, we spare a thought for the ways in which certain

category-theoretic notions—especially ones associated with the study of accessible

categories—manifest themselves in such categories, and the ways in which they in-

teract with model-theoretic properties of the associated AEC.

5.1 AECs as Accessible Categories

The first step in our analysis involves showing the following:

Theorem 5.1. Let K be an AEC. Then K is µ-accessible for every regular cardinal

µ > LS(K). In particular, K is LS(K)+-accessible.

Our task, then, is to show that for each regular cardinal µ > LS(K), K contains a

set (up to isomorphism) of µ-presentable objects, every model in K can be obtained

as a µ-directed colimit of µ-presentable objects, and K is closed under µ-directed

colimits. We accomplish this through a series of easy lemmas. First:

73
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Lemma 5.2. Let M ∈ K. For any regular µ > LS(K), M is a µ-directed union of

its strong submodels of size less than µ.

Proof: Consider the diagram consisting of all submodels of M of size less than µ

and with arrows the strong inclusions. To check that this diagram is µ-directed,

we must show that any collection of fewer than µ many such submodels have a

common extension also belonging to the diagram. Let {Mα |α < ν}, ν < µ, be such

a collection. Since µ is regular, sup{|Mα| |α < ν} < µ, whence

∣∣∣ ⋃
α<ν

Mα

∣∣∣ ≤ ν · sup{|Mα| |α < ν} < ν · µ = µ

This set will be contained in a submodel M ′≺KM of cardinality less than µ, by the

Downward Löwenheim Skolem Property. For each α < ν, Mα≺KM and Mα ⊆ M ′.

Since M ′≺KM , coherence implies that Mα≺KM ′. So we are done. 2

Moreover,

Lemma 5.3. For any regular cardinal µ > LS(K), a model M ∈ K is µ-presentable

if and only if |M | < µ. In particular, M is LS(K)+-presentable if and only if

|M | ≤ LS(K).

Proof: (⇒) Suppose that M is µ-presentable, and consider the identity map M ↪→K

M . As we saw in the previous lemma, M is a µ-directed union of its submodels

of size strictly less than µ. By µ-presentability of M , the identity map must factor

through one of the inclusions M ′ ↪→K M in the colimit cocone. Since all maps in

the category are injective, M can have cardinality no greater than that of the model

M ′. Hence |M | < µ.

(⇐) Suppose |M | = ν < µ. Let M ′ be a µ-directed colimit, say

M ′ = Colimi∈IMi



75

with I a µ-directed poset, connecting maps φij : Mi ↪→K Mj for i ≤ j, and colimit

cocone maps φi : Mi ↪→K M ′. That is, for each i ≤ j in I, we have the commutative

triangle

M ′

Mi
φij

-

φ i

-

Mj

�

φ
j

Consider an embedding f : M ↪→K M ′. The image f [M ] is a strong submodel

of M , and is of cardinality ν < µ. Since K is a concrete category, the submodels

φi[Mi] of M ′ cover M ′, meaning that for each m ∈ f [M ] we may choose a φim [Mim ]

containing it. By µ-directedness of I, there is a j ∈ I with j ≥ im for all m ∈ f [M ].

By the commutativity condition above, one can see that φim [Mim ] ⊆ φj[Mj] for all

m, meaning that f [M ] ⊆ φj[Mj] and, by coherence, f [M ]≺Kφj[Mj]. Hence the

embedding f : M ↪→K M ′ factors through φj : Mj ↪→K M ′ as

M
φ−1
j ◦f−→ Mj

φj−→M ′.

This factorization is unique: for any other factorization map g : M → Mj, we have

φj ◦ (φ−1
j ◦ f) = φj ◦ g and, since φj is a monomorphism, it follows that φ−1

j ◦ f = g.

This means, of course, that M is µ-presentable. 2

The punchline of all this is:

Lemma 5.4. For any regular µ > LS(K), K contains a set of µ-presentables, namely

K<µ, and every model in K is a µ-directed colimit of objects in K<µ.

Recall the following fact, which we remarked upon in Section 2.1 above:

Lemma 5.5. K is closed under directed colimits.
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Since every µ-directed diagram is, in particular, directed, we can complete the

proof the theorem:

Lemma 5.6. For any regular cardinal µ > LS(K), K is closed under µ-directed

colimits.

One often encounters assertions (here and elsewhere) to the effect that AECs are

the result of extracting the purely category-theoretic content of elementary classes,

preserving the essence of the elementary submodel relation while dispensing with

syntax and certain properties—such as compactness—that are typically derived from

the ambient logic. We obtain very definite confirmation of this claim if we compare

Theorem 5.1 above with the result of Rosický cited in Section 2.2, which is, for

reference:

Proposition 5.7. (Rosický, [22]) Given a first order theory T in language L(T ) and

Elem(T ) the category with objects the models of T and morphisms the elementary

embeddings, then for any regular µ > |L(T )|, Elem(T ) is µ-accessible, and M ∈ K

is µ-presentable if and only if |M | < µ.

At the most fundamental level, then, AECs and elementary classes do have the

same category-theoretic structure.

There is still more to the story, as we must also consider the way in which an

AEC K sits inside the ambient category of L(K)-structures, whose objects are L(K)-

structures and whose morphisms are precisely the injective L(K)-homomorphisms

(which both preserve and reflect the relations in L(K)). The goal is to produce a

category-theoretic axiomatization that, in any category L−Struct, picks out all the

subcategories corresponding to AECs in the signature L. A very elegant axiom-

atization of this form appears in [18], although the scope of that piece is slightly
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broader—one considers realizations of the axioms in base categories that general-

ize (but still closely resemble) categories of the form L−Struct, with the aim of

generalizing not only AECs, but also abstract metric classes. We note that, while

we will not pursue this line of inquiry, our axiomatization is equally well suited for

this purpose and is, in fact, perfectly equivalent. It has the added benefit, though,

of condensing a number of axioms from [18] under the heading of accessibility, and

thereby making clear the connection between AECs and the existing body of work on

accessible categories. This perspective also clarifies, for example, that the abstract

notion of size laid out in the aforementioned piece corresponds to the pre-existing

and well-understood notion of presentability.

For our axiomatization, we introduce two definitions, the second of which is drawn

from [18]:

Definition 5.8. Fix a category B and subcategory C.

• We say that C is a replete subcategory of B if for every M in C and every

isomorphism f : M → N in the larger category B, both f and N are in C.

• We say that C is a coherent subcategory of B if for every commutative diagram

M2

M1
g

-
....

....
....

....
....

....
....

...

f

-

N

h

-

with h and g (hence also their domains and codomains) in C and with f in B,

then in fact f is in C.

Purely from Theorem 5.1 and the axioms for AECs,
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Proposition 5.9. An AEC K is a replete, coherent subcategory of L(K)−Struct

which is µ-accessible for all µ > LS(K) and has all directed colimits. Moreover, the

directed colimits are computed as in L(K)−Struct.

Now, consider a category L−Struct, L a finitary signature, consisting of L-

structures and injective L-homomorphisms, as before. The natural question: given

a replete, coherent subcategory of L−Struct with all directed colimits (computed

as in L−Struct) that is µ-accessible for all µ strictly larger than some cardinal λ,

can it be regarded as an AEC? The answer is yes: for any such subcategory C, con-

sider the class consisting of its objects (call it C as well), with relation ≺C defined

by the condition that M≺CN if and only if M ⊆L N and the inclusion map is a

C-morphism.

Claim 5.10. The class C is an AEC.

Proof: As in the proof of Lemma 4 in [18], the verification of most of the AEC

axioms is trivial. The relation ≺C is transitive, and certainly refines the substructure

relation. Coherence and closure under isomorphism hold by assumption, and the

union of chains axioms are easily verified as well. As for the Löwenheim-Skolem

property, let M ∈ C, and let A ⊆ M . Consider µ = |A| + λ. The cardinal µ+ is

regular and µ+ > λ, meaning that C is µ+-accessible. This means, in turn, that

every object M is a µ+-filtered colimit of µ+-presentable objects, and thus the µ+-

directed union of the images of these µ+-presentable objects under the cocone maps.

All of these images are, of course, strong submodels of M . Since |A| ≤ |A|+λ < µ+,

the µ+-directedness of the union implies that A is contained in one of the structures

in the union, say N . As N is µ+-presentable, it is, by the proof of the “only if”

direction of Lemma 5.3 above, of cardinality at most µ = |A|+λ. One can see, then,



79

that λ will do as LS(C). 2

If we replace L−Struct with a particular category of metric L-structures (as in

[18]), our axioms completely describe the abstract metric classes in the signature L.

5.2 Model Theory and Category Theory: Correspondences

We turn our attention now to the task of providing a dictionary between the

language of accessible categories and that of AECs. We will primarily be interested

in examining the translations of the category theoretic notions introduced in Sec-

tion 2.2, but originally defined in [22]. The latter piece is, of course, concerned with

accessible categories with directed colimits—almost AECs, as we now know. That

piece contains no explicit mention of AECs, however, so our work is very much still

to be done.

First, we note that the amalgamation and joint embedding properties for AECs

(see Definition 2.1) and the amalgamation and joint embedding properties for ar-

bitrary categories introduced in Section 2.2 are identical: K has the amalgamation

property as an AEC if and only if it satisfies the category-theoretic analogue, and

similarly for joint embedding. We noticed as much when presenting these analogues

in Section 2.2.

Before we proceed to more interesting correspondences, we lay out two basic facts

that will come in handy in simplifying the diagrams that crop up in our investigations

and will, in particular, allow us to replace (without loss of generality) certain strong

embeddings by strong inclusions.

Remark 5.11. 1. Any strong embedding f : M0 ↪→K M factors as an isomorphism

M0 ↪→K f [M0] followed by the strong inclusion f [M0] ↪→K M.

2. Given a strong embedding f : M0 ↪→K M , there is an extension M1 of M0
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isomorphic to M . Moreover, we may take the isomorphism g : M → M1 to be

inverse to f on f [M0]; that is, g ◦ f : M0 ↪→K M1 fixes M0.

Now we may begin. Unless otherwise specified, λ is understood to be a regular

cardinal. We first consider λ-saturation of the sort introduced in Section 2.2.

Proposition 5.12. For any AEC K and M ∈ K, M is λ-saturated if and only if it

is λ-model homogeneous.

Proof: (⇒) Let N≺KM and N≺KN ′, with |N | and |N ′| strictly less than λ. Notice

that, by Lemma 5.3, N and N ′ are λ-presentable. Then, by λ-saturation of M , there

is a strong embedding h : N ′ ↪→K M such that the following diagram commutes:

N ′

N ⊂ -
⊂

-

M

⊂

h

-

with N ↪→K N ′ and N ↪→K M the inclusions. This says precisely that h is an

embedding of N ′ into M fixing N . So M is λ-model homogeneous.

(⇐) Using one application of each of the facts in Remark 5.11, one can see that it

suffices to consider diagrams of strong inclusions

N ′

N ⊂ -
⊂

-

M

with N , and N ′ λ-presentable. Then N,N ′ ∈ K<λ and λ-model homogeneity of M

guarantees the existence of a strong embedding h : N ′ ↪→K M fixing N , and therefore

making the relevant diagram commute. Hence M is λ-saturated. 2

Recalling that λ-model homogeneity implies λ-Galois-saturation in any AEC, and

that the converse holds in AECs with amalgamation (see Proposition 2.12), we get
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Corollary 5.13. For any AEC K, λ > LS(K), and M ∈ K, if M is λ-saturated,

then M is λ-Galois-saturated. Moreover, if K has the amalgamation property, M is

λ-saturated if and only if M is λ-Galois-saturated.

In Section 2.2, we considered the manifestations of λ-purity in several contexts,

but most notably in elementary classes, where we observed that an elementary in-

clusion of a model M in a model M ′ is λ-pure only if for every A ⊆M with |A| < λ

and every p ∈ S(A), if p is realized in M ′, then it also realized in M . That is, M is

λ-saturated relative to M ′. We will obtain a similar result for AECs, but first note

that relative λ-model homogeneity is a more obvious analogue in our context. In

particular:

Proposition 5.14. For λ ≥ LS(K), a strong inclusion M ↪→K M ′ is λ-pure if and

only if M is λ-model homogeneous relative to M ′: for any N≺KM and N≺KN ′≺KM ′

with N,N ′ ∈ K<λ, there is an embedding of N ′ into M fixing N .

Proof: (⇒) Suppose that M ↪→K M ′ is a λ-pure inclusion. Let N≺KM with

|N | < λ and N ′ with N≺KN ′≺KM ′ and |N ′| < λ. The various inclusions yield the

commutative square

N ⊂ - N ′

M
?

∩

⊂ - M ′
?

∩

By λ-purity of the bottom inclusion, there is a strong embedding h : N ′ ↪→K M that

makes the upper triangle of

N ⊂ - N ′

M
?

∩

⊂ -
�

h

⊃

M ′
?

∩
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commute. This commutativity condition simply means that h : N ′ ↪→K M fixes N ,

so we are done.

(⇐) First, a little diagram wrangling: in light of Remark 5.11, given a diagram of

the form in the definition of λ-purity, we may reinvent it as

u[N ] ⊂
v ◦ g ◦ u−1

- v[N ′]

M
?

∩

⊂ - M ′
?

∩

where the vertical maps are strong inclusions (as is the bottom map, by assumption).

If we can produce a map h′ : v[N ′] ↪→K M that makes the upper left hand triangle

commute—that is, such that h′ ◦ (v ◦ g ◦ u−1) is just the inclusion of u[N ] in M—the

map h′ ◦ v will serve the same purpose in the original diagram. So, really, it suffices

to consider diagrams of the form

N - N ′

M
?

∩

⊂ - M ′
?

∩

with the bottom and vertical morphisms strong inclusions. In that case, of course,

the upper map must be an inclusion as well (and strong, by coherence), so we may

as well take all maps to be strong inclusions.

With this reduction, the proof becomes trivial: for any N≺KM with |N | < λ

and N ′ with N≺KN ′≺KM ′ and |N ′| < λ, if M is λ-model homogeneous relative to

M ′, there is an embedding h : N ′ → M that fixes N . But, as noted above, this is

equivalent to making the upper left triangle of

N ⊂ - N ′

M
?

∩

⊂ -
�

h

⊃

M ′
?

∩
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commute. Hence the inclusion M ↪→K M ′ is λ-pure. 2

Proposition 5.15. For λ > LS(K), a strong inclusion M ↪→K M ′ is λ-pure only if

M is λ-Galois-saturated relative to M ′: every type over N≺KM with |N | < λ that

is realized in M ′ is realized in M .

Proof: By Proposition 5.14, λ-purity of M ↪→K M ′ implies that M is λ-model

homogeneous relative to M ′. Let N≺KM , N ∈ K<λ, and let p be any type over N

that is realized in M ′, say by a. Take N ′≺KM ′ containing N ∪ {a}, N ′ ∈ K<λ. By

relative λ-model homogeneity, there is an embedding h : N ′ ↪→K M that fixes N .

Thus any extension of h to an automorphism of C lies in AutN(C), and witnesses

that a and h(a) have the same Galois type over N . Since h(a) ∈M , we are done. 2

Thus far we have only characterized λ-purity of inclusions. As a first step in

generalizing to arbitrary strong embeddings, we show:

Proposition 5.16. A strong embedding f : M ↪→K M ′ is λ-pure if and only if the

inclusion f [M ] ↪→K M ′ is λ-pure.

Proof: The abbreviated version of the proof is: compositions (pre- or post-) of

isomorphisms with λ-pure maps are λ-pure. If we consider suitable factorizations

of the morphisms involved, the proposition follows. The longer and more concrete

proof amounts to more diagram wrangling.

(⇒) Suppose f : M ↪→K M ′ is λ-pure. Consider a commutative square

N
g
- N ′

f [M ]

u

?
⊂ - M ′

v

?
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with N,N ′ ∈ K<λ. Then the following diagram also commutes:

N
g
- N ′

M

f−1 ◦ u

?
⊂

f
- M ′

v

?

By λ-purity of f , there is a map h′ : N ′ ↪→K M such that h′ ◦ g = f−1 ◦ u. Define

h = f ◦ h′ : N ′ ↪→K f [M ]. Then h ◦ g = u, and h is the desired diagonal map for the

original commutative square.

(⇐) Suppose f [M ] ↪→K M ′ is λ-pure, and that N,N ′ ∈ K<λ. If we have a com-

mutative diagram as below on the left, we can transform it into the one on the

right

N
g
- N ′ N

g
- N ′

M

u

?

f
- M ′

v

?

f [M ]

f ◦ u

?
⊂ - M ′

v

?

By λ-purity of f [M ] ↪→K M ′, there is a map h′ : N ′ ↪→K f [M ] such that h′◦g = f ◦u.

Set h = f−1 ◦ h′ : N ′ ↪→K M . One can see that this map witnesses λ-purity of

f : M ↪→K M ′. 2

We may now characterize λ-purity for arbitrary strong embeddings.

Corollary 5.17. For λ > LS(K), a strong embedding f : M ↪→K M ′ is λ-pure

if and only if f [M ] is λ-model homogeneous relative to M ′. A strong embedding

f : M ↪→K M ′ is λ-pure only if f [M ] is λ-Galois-saturated relative to M ′.

Unfortunately, there seems to be no reason to think that the converse of the

second statement holds for general M ′, but as an easy special case (and assuming

amalgamation):
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Proposition 5.18. Let K be an AEC with amalgamation. For λ > LS(K), if M ′

is λ-model homogeneous (or, equivalently, λ-Galois-saturated), a strong embedding

M ↪→K M ′ is λ-pure if and only if M is λ-model homogeneous (or, equivalently,

λ-Galois-saturated).

In particular,

Corollary 5.19. Let K be an AEC with amalgamation. For λ > LS(K), a strong

embedding M ↪→K C is λ-pure if and only if M is λ-model homogeneous (or, equiva-

lently, λ-Galois-saturated).

On a related note, recall that an object M is said to be λ-closed if every morphism

with domain M is λ-pure.

Corollary 5.20. If K is an AEC with amalgamation and λ > LS(K), M ∈ K is

λ-closed if and only if M is λ-model homogeneous (λ-Galois-saturated).

Proof: The “if” direction is clear, by perusal of the diagram defining λ-purity. For

the “only if” clause, notice that embeddings of M into C are λ-pure, so λ-model

homogeneity follows by Corollary 5.18. 2

Hence λ-closed and λ-saturated objects coincide in AECs with amalgamation.

This will not come as a surprise: as we noted in Section 2.2, this occurs in any

category satisfying the amalgamation property.

We turn now to the category-theoretic property most indispensable for our pur-

poses: weak λ-stability. Recall from Definition 2.31 that a category is said to be

weakly λ-stable if every morphism f : M → M ′ with M a λ+-presentable object

factors as

M - M̄
g
- M ′
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where M̄ is λ+-presentable and g is λ-pure. We saw that in the elementary case,

weak λ-stability of Elem(T ) follows from λ-stability of the first order theory T . We

have yet to see how weak λ-stability relates to the proliferation of Galois types over

models in AECs. First, we notice the following:

Proposition 5.21. Let K be an AEC with amalgamation. For any λ ≥ LS(K), if

K is weakly λ-stable, then any M ∈ K of cardinality λ has a saturated extension M̄

which is also of cardinality λ.

Proof: If M ∈ Kλ, it is λ+-presentable. Hence the embedding M ↪→K C fac-

tors as M ↪→K M̄ ↪→K C, where M̄ is λ+-presentable (hence M̄ ∈ K≤λ, and since

|M̄ | ≥ |M | = λ, M̄ ∈ Kλ) and the second map in the factorization is λ-pure. By

Corollary 5.19, the claim follows. 2

Proposition 5.22. Let K be an AEC with amalgamation. For any λ ≥ LS(K), if

K is weakly λ-stable, then for any M ∈ K<λ, |ga-S(M)| ≤ λ.

Proof: This follows from the previous proposition and from Lemma 4.29. 2

One would hope that λ-Galois stability of an AEC would imply weak λ-stability

of the associated category, but there appears to be no reason to think that this is the

case. The chief problem is that λ-purity of a strong inclusion M ↪→K M ′ implies λ-

Galois saturation of M relative to M ′, but the converse need not be true. It is possible

to give a reasonably model-theoretic condition sufficient to guarantee weak λ-stability

(and we will, in Theorem 5.24 below), but it is vaguely unsatisfying and bears no

obvious relation to Galois stability. On the other hand, notice that the condition

in the consequent of Proposition 5.21—the existence of saturated extensions of size

λ—is precisely the condition from which we are able, by Theorem 4.30, to conclude λ-

stability in a weakly χ-tame and µ-totally transcendental AEC, provided that λ ≥ χ
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and cf(λ) > µ. That is, weak λ-stability actually implies full λ-Galois stability in

this context.

We will return to this point in a moment, but pause to give a sufficient condition

for weak λ-stability, as promised.

Lemma 5.23. Let λ be a regular cardinal with λ > LS(K), and assume that for

all N ∈ K<λ, N has fewer than λ strong extensions of size less than λ (up to

isomorphism over N). Then for any M ∈ K≤λ and M ′ ∈ K with M≺KM ′, there

is an intermediate extension M̄ ∈ K≤λ that is λ-model homogeneous relative to M ′.

That is, M ↪→K M ′ factors as

M ↪→K M̄ ↪→K M ′

where the latter inclusion is λ-pure.

Proof: Enumerate M as {ai | i < |M |}. We construct M̄ as the union of a continuous

≺K-increasing chain of length λ consisting of models of size less than λ, each of which

collects small extensions of the preceding ones. In detail, we proceed as follows:

• i = 0: Take N0≺KM , |N0| < λ.

• i = j + 1: We have Nj≺KM ′, |Nj| < λ. By our assumption, Nj has fewer than

λ many strong extensions in M ′ of size strictly less than λ, up to isomorphism

over Nj. Select a representative from each isomorphism class. The union of Nj

and all such representatives is of size strictly less than λ (by regularity). Hence

we may take a model Ni≺KM ′ with |Ni| < λ that contains the aforementioned

union and the element aj. Notice that Nj≺KNi, by coherence.

• i limit: Define Ni =
⋃
j<iNj. Notice that |Nα| < λ, by regularity of λ.

Let M̄ =
⋃
i<λNi. Notice that M̄ ⊆M ′, whence M̄≺KM ′ by coherence.



88

In order to see that M̄ has the desired property, let N≺KM , |N | < λ, and let

N ′ be a model of size less than λ with N≺KN ′≺KM ′. By regularity of λ, N ⊆ Ni

for some i < λ. Take a model N ′′≺KM ′ of size less than λ that contains Ni ∪ N ′.

This is a small extension of Ni in M ′, and so, by construction, there is an N ′′′

collected in the next model in the chain, Ni+1, that is isomorphic to N ′′ over Ni,

say via f : N ′′ ↪→K N ′′′. In particular, the isomorphism f fixes N≺KNi. Now,

N ′′′ ⊆ Ni+1≺KM̄ and, by coherence, N ′′′≺KM̄ . The composition

N ′ ↪→K N ′′
f

↪→K N ′′′ ↪→K M̄

is the desired embedding of N ′ in M̄ fixing N . 2

Theorem 5.24. If λ is a regular cardinal and for all N ∈ K<λ, N has fewer than

λ strong extensions of size less than λ (up to isomorphism over N), K is weakly

λ-stable.

Proof: Let M be λ+-presentable (hence an element of K≤λ), and let f : M ↪→K M ′

be an arbitrary embedding. Recall that f factors as

M
f
' f [M ] ↪→K M ′

Naturally, |f [M ]| ≤ λ. By the lemma, there is an intermediate extension f [M ]≺KM̄≺KM ′

with |M̄ | ≤ λ (hence M̄ λ+-presentable) such that the inclusion M̄ ↪→K M ′ is λ-pure.

But then

M
f

↪→K M̄ ↪→K M ′

is precisely the kind of factorization of f needed to witness λ-stability. 2

5.3 Implications for Galois Stability

We now return to the subject broached after Propositions 5.21 and 5.22: in weakly

tame and totally transcendental AECs with amalgamation and joint embedding, for
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certain cardinals λ, weak λ-stability suffices to ensure λ-Galois stability. What makes

this result so interesting is that, thanks to the result of Rosický presented here as

Proposition 2.32, we have, for each AEC K, an infinite list of cardinals λ in which

it is weakly λ-stable. We work this out in detail below. For reference, though, the

result in question was:

Proposition 5.25. Let C be a λ-accessible category, and µ a regular cardinal such

that µ� λ and µ > |Presλ(C)mor|. Then C is weakly µ<µ-stable.

We now analyze the import of this proposition in the context of AECs. To simplify

the notation, for any AECK and cardinal λ we replace the bulky Presλ(K) withA<λ;

that is, we denote by A<λ a full subcategory of K consisting of one representative of

each isomorphism class of models in K<λ.

Corollary 5.26. Let K be an AEC, λ > LS(K) a regular cardinal, and µ a regular

cardinal with µ� λ and µ > |(A<λ)mor|. Then K is weakly µ<µ-stable.

Proof: By Theorem 5.1, K is λ-accessible. The result then follows directly from the

proposition above. 2

We are now finally in a position to apply Theorem 4.30:

Theorem 5.27. Let K be weakly χ-tame for some χ ≥ LS(K), and κ-totally tran-

scendental with κ ≥ χ. If λ > LS(K) is a regular cardinal, and µ is a regular cardinal

with µ > χ+ κ, µ� λ, and µ > |(A<λ)mor|, then K is µ<µ-stable.

Proof: By the assumptions on µ, K is weakly µ<µ-stable by Corollary 5.26. We

show that the conditions of Theorem 4.30 are satisfied, thereby concluding that K is

not merely weakly µ<µ-stable, but in fact µ<µ-Galois stable.

Since µ is regular and µ > κ, cf(µ<µ) ≥ µ > κ. Moreover, µ<µ > χ. From

Proposition 5.21, we know that every M ∈ K(µ<µ) has a saturated extension M ′ ∈
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K(µ<µ). By the aforementioned theorem, then, we can indeed infer Galois stability

in µ<µ. 2

The trick is that we cannot turn this into an upward stability result in the vein of

Theorem 4.26, as the proof of the implication from stability to total transcendence

in Section 4.2 requires that we have full tameness in the background—the argument

breaks down if we attempt to generalize to weakly tame AECs. And, to be clear, the

theorem is interesting only in the context of weakly tame AECs: in the special case

in which K is χ-tame and we are able to make use of the aforementioned result, the

proposition becomes:

Corollary 5.28. Let K be χ-tame for some χ ≥ LS(K) and κ-Galois stable with

κ > χ and κℵ0 > κ, and let λ be a regular cardinal, λ > LS(K). If µ is a regular

cardinal such that µ > χ, λ� µ and |(A<λ)mor| < µ, then K is µ<µ-Galois stable.

This is not particularly interesting. Consider the cardinals µ<µ in which we are

guaranteed stability by the corollary above. Since µ > κ, it must be the case that

(µ<µ)κ = µ<µ. But we already have stability in all cardinals satisfying this exponen-

tial condition, by Proposition 4.18 (or the more general result in [14]).

Although it is slightly awkward that total transcendence cannot be eliminated as

an assumption, we nonetheless have a partial stability spectrum result for weakly

tame AECs and, moreover, the only partial spectrum result that is not limited to

local transfer of the kind covered in [5] and in Corollary 4.32 above. What is most

remarkable, perhaps, is the fact that it was derived by almost entirely category-

theoretic means, and the way in which it reveals that the proliferation of types over

large structures is controlled by the structure of (A<λ)mor (or, if A<λ contains only

a single isomorphism class, say with representative C, by the structure of its monoid

of endomorphisms, HomK(C,C)). This seems, in fact, to be one of the strengths of
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the accessible category viewpoint: it provides new ways of analyzing classes in terms

of their smallest structures and the mappings between them. Indeed, this analysis

leads to a structure theorem for AECs (categorical ones, at least), to which we now

turn.

5.4 A Structure Theorem For Categorical AECs

We have saved one correspondence between category-theoretic and model-theoretic

properties until the end. Recall the notions of λ-categoricity and strong λ-categoricity

for arbitrary categories that were introduced in Definition 2.26. Their analogues are

precisely what one would expect:

Corollary 5.29. For any AEC K, λ-categoricity of the corresponding category is

equivalent to λ-categoricity in the usual sense. K is strongly λ-categorical if and only

if it contains only a single model of size less than λ+ (up to isomorphism).

In [22], Jiri Rosický proves a structure theorem for strongly λ-categorical λ+-

accessible categories, which has, as an interesting special case, a structure theorem

for large models in categorical AECs. For the sake of concreteness, we work things

out only in this special case, and point interested readers to [22] for the general result

(although, in reality, it differs only notationally from our work here).

Let K be a λ-categorical AEC. Denote by K′ the class K≥λ, with ≺K′ simply the

restriction of ≺K. Notice that K′ is still an AEC, albeit with LS(K′) = λ. It is also

worth noting that (K′,≺K′) gives rise to precisely the same category as (K≥λ,≺K): for

any M,M ′ ∈ K′ (that is, K≥λ), HomK′(M,M ′) = HomK(M,M ′). It is λ+-accessible

(by Theorem 5.1), and strongly λ-categorical in the sense of Definition 2.26. Now,

let C be a representative of the unique isomorphism class of models of cardinality

λ, and note that (K′)λ is equivalent to the one object category consisting of C and
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the set of its endomorphisms. We use M to refer both to this one object category

and to the corresponding monoid, where the operation on HomK′(C,C) is simply

composition: f · g = f ◦ g. We will show that K′, the class of large models in K, is

equivalent to a highly structured subcategory of the category of sets with M -actions.

First, we fix our terminology:

Definition 5.30. Let M be a monoid. An M-set is a pair (X, ρ), where X is a set

and ρ : M ×X → X is an action (which we typically write using product notation)

satisfying the following conditions for all a, b ∈M and x ∈ X:

1 · x = x (ab) · x = a · (b · x)

A map h : (X1, ρ1) → (X2, ρ2) is an M-set homomorphism if for all a ∈ M and

x ∈ X,

h(a · x) = a · h(x)

where the actions on the left and right hand sides of the equation are ρ1 and ρ2,

respectively.

Definition 5.31. Let M be a monoid. We denote by M-Set the category of M -sets

and M -set homomorphisms. For any regular cardinal λ, we denote by (M,λ)-Set

the full subcategory of M-Set consisting of all λ-directed colimits of copies of M ,

where the latter is considered as an M -set in the obvious way.

Recall also the notion of equivalence with which we will be working:

Definition 5.32. An equivalence between categories C and D is given by a pair

of functors F : C → D and G : D → C with natural isomorphisms F ◦ G ' 1D

and G ◦ F ' 1C. Under these conditions, the functors F and G are referred to as

equivalences of categories.
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Any equivalence of categories F : C→ D is full and faithful (that is, bijective on

Hom-sets), and is essentially surjective, in the sense that for any object D in D, there

is an object C in C with F (C) ' D. In short, equivalent categories are structurally

identical, as long as we are interested in objects only up to isomorphism.

We now produce the desired equivalence of categories. Recall that for any category

C, the category of presheaves on C, denoted SetCop

, consists of all contravariant

Set-valued functors on C and all natural transformations between them. First, we

show:

Lemma 5.33. The AEC K′ is equivalent to the full subcategory of SetM
op

consisting

of λ+-directed colimits of HomK′(−, C).

Proof (sketch): We define a functor F : K′ → SetM
op

as follows: for any N in K′,

F (N) = HomK′(−, N),

the functor that takes C to F (N)(C) = HomK′(C,N) and takes any endomorphism

g : C ↪→K C to the set map F (N)(g) : HomK′(C,N) → HomK′(C,N) that sends

each h ∈ HomK′(C,N) to h ◦ g. The equivalence F takes any any strong embedding

f : N → N ′ to the map F (f) : HomK′(−, N)→ HomK′(−, N ′), where F (f)(g) = f◦g

for any g ∈ HomK′(C,N). Every object in the image of F is (isomorphic to) a λ+-

directed colimit of copies of HomK′(−, C) for the following reason: Any N ∈ K′ is a

λ+-directed colimit of copies of C, say N = Colimi∈I C. By λ+-presentability of C,

HomK′(C,N) = HomK′(C,Colimi∈I C) ' Colimi∈I HomK′(C,C)

meaning that

HomK′(−, N) ' Colimi∈IHomK′(−, C)

as functors on the category M , which has C as its only object.
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Similar considerations yield the functor G in the other direction, which forms the

second part of the equivalence. Any H in the subcategory of SetM
op

in which we are

interested is a λ+-directed colimit of copies of HomK′(−, C), say

H = Colimi∈I HomK′(−, C)

where the maps in the I-indexed diagram (which lives in SetM
op

) are natural trans-

formations φij : HomK′(−, C) → HomK′(−, C) for i ≤ j in I. We show that this

diagram arises (morphisms and all) from a diagram in K′. By the Yoneda Lemma,

the functor F is full, meaning that each φij is F (fij) for some fij : C → C. To see

that the maps fij form a valid I-indexed diagram, we must verify that for i ≤ j ≤ k

in I, fjk ◦ fij = fik. To that end, notice that

F (fjk ◦ fij) = F (fjk) ◦ F (fij) = φjk ◦ φij = φik = F (fik).

The Yoneda Lemma also guarantees that F is faithful, meaning that fjk ◦ fij = fik,

as desired.

By λ+-presentability of C, again,

Colimi∈I HomK′(C,C) ' HomK′(C,Colimi∈I C)

where the latter colimit is that of the diagram in K′ mentioned above. Since K′ is

closed under λ+-directed colimits, N = Colimi∈I C is in K′, and we define G(H) = N .

The proof that the compositions of F and G are naturally isomorphic to the identity

functors on C and D—which amounts to no more than the checking of details—is

left as an exercise. 2

As an aside, for absolutely any AEC K and regular cardinal λ > LS(K), K is

equivalent to the category of presheaves on A<λ that are λ-directed colimits of rep-

resentable functors (that is, λ-directed colimits of functors of the form HomK(−, N),
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where N is an object of A<λ). The categoricity assumption under which we are cur-

rently operating merely guarantees that A<λ+ is a monoid, allowing us to conclude

the following:

Theorem 5.34. Under the hypothesis above, the AEC K′, regarded as a category in

the usual way, is equivalent to the category (M op, λ+)-Set.

Proof: We first note an equivalence of categories between SetM
op

and M op-Set

(which holds for any monoid M), in which any functor H : M op → Set is sent to

the M op-set (H(C), ρH), where for any a ∈M and x ∈ H(C), the action is given by

a · x = H(a)(x). Explicitly, we have already shown that K′ is equivalent to the full

subcategory of SetM
op

consisting of all λ+-directed colimits of HomK′(−, C). Un-

der the equivalence at hand, HomK′(−, C) maps to the set HomK′(C,C) (roughly

speaking: M op), with M op acting by precomposition, whereas for arbitrary N ∈ K′,

HomK′(−, N) maps to the set HomK′(C,N), again with action of HomK′(C,C) by

precomposition. One can easily see that the image is precisely the full subcate-

gory consisting of λ+-directed colimits of M op considered as an M op-Set in the way

indicated above. 2

To emphasize, the equivalence between K′ and (M op, λ+)-Set is given by:

N ∈ K′ 7→ (HomK′(C,N), ρN)

where the action ρN is given, for any a ∈ HomK′(C,C) and x ∈ HomK′(C,N), by

a · x = x ◦ a

A strong embedding f : N ↪→K N ′ is mapped to the M op-set homomorphism f ∗ :

HomK′(C,N) → HomK′(C,N
′) that takes any g ∈ HomK′(C,N) to f ◦ g. That the

map f ∗ thus defined is in fact a homomorphism of M op-sets is easily checked: for
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any h ∈M op = HomK′(C,C),

f ∗(h · g) = f ∗(g ◦ h) = f ◦ (g ◦ h) = (f ◦ g) ◦ h = h · (f ◦ g) = h · f ∗(g).

The upshot is this: for any λ-categorical AEC, we may identify K′ = K≥λ with

a category of relatively simple algebraic objects, representing each model by a set

equipped with an action of M op = HomK′(C,C), the monoid of endomorphisms of the

unique structure in cardinality λ, and replacing the abstract embeddings of K with

concrete homomorphisms between such sets. This gives us a radically different—and

perhaps simpler—context in which to consider questions originally posed in relation

to AECs. The conjectures concerned with the upward transfer of categoricity, in

particular, involve an analysis of the sub-AEC consisting of the structures whose car-

dinalities are greater than or equal to the cardinal at which categoricity first occurs;

that is, a suitable K′ of the form described above. The hope is that the translation

described above provides a simplification not merely in appearance, but in the sense

of providing genuine traction in addressing such problems. Given that we have re-

duced something as complex and general as an AEC to a category whose properties

are determined entirely by the structure of the monoid HomK′(C,C) (which is just

HomK(C,C), remember), there is some reason to believe that this will be the case.
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