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CHAPTER I

Introduction

The Standard Model (SM) has been one of the great triumphs of science. It has consis-

tently predicted all collider phenomenology thus far. However, the Higgs particle, which

is responsible for mass, has not yet been observed and is not completely understood. One

difficulty of the SM is associated with the Higgs’ scalar nature. In a quantum theory, the

mass of a scalar particle will receive corrections that are proportional to the scale where

any new physics arises. Because the cut-off scale of the SM is the Planck scale, MPl,

the natural mass of the SM Higgs boson ”should be” of order the Planck scale. A Higgs

particle of this mass cannot replicate experimental predictions. The data prefers a Higgs

mass similar to the electroweak scale. This disparity between the preferred experimental

and theoretical Higgs mass in the SM is known as the hierarchy problem. To remedy this

instability of the Higgs mass, there must be some new physics at or around 1TeV. If the

scale of new physics is larger than 1 TeV, the quantum corrections become large and the

hierarchy problem still exists.

Cosmology presents other challenges to our current understanding of the universe. Of

the energy budget of the universe, approximately five percent is composed of known parti-

cles, with the majority of this energy being in baryons. Although baryons make up a very

small percentage of the total energy budget, it is not known why there are so many. This

large abundance can only be achieved if some mechanism is able to create an asymmetry

1
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between baryons and anti-baryons in the early universe. The other seventy five percent of

the energy budget is either dark energy or dark matter for which there is no good candi-

dates in the SM. However, supersymmetry provides a good candidate for dark matter of

the weakly interacting massive particle (WIMP) type[1].

1.1 The Hierarchy Problem of the Standard Model

There are two main techniques for stabilizing the Higgs mass at or around the elec-

troweak scale: increasing the number of dimensions or extending the symmetries of the

SM[2]. With extra dimensions, the Planck scale can be pushed down to around a TeV. A

Planck scale this small means the effective theory of gravity is only defined up to the TeV

scale. An effective theory with a cut around a TeV gives acceptably small corrections to

the Higgs mass. The other technique for stabilizing the hierarchy (symmetry) protects the

Higgs mass from the radiative corrections of the high scale physics, i.e. gravity.

Supersymmetry, a symmetry capable of stabilizing the hierarchy, relates fermions and

bosons. The minus sign appearing in fermion loop calculations leads to a cancellation

with contributions from boson loops. To see how this cancellation arises we look at some

of the properties of supersymmetry. The generators of a supersymmetric transformation

interchange bosons and fermions as follows

Q|Fermion〉 = |Boson〉 Q|Boson〉 = |Fermion〉.(1.1)

Because the generators of supersymmetry exchange fermions and bosons without changing

their representation under the other symmetries, a supersymmetric theory will have bosons

and fermions with the exact same quantum numbers. This means every fermion in the SM

must have a corresponding boson with the same representation under the SM gauge groups.

In the case of matter fermions, this partner is a spin zero boson, for the spin 1 bosons,
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Figure 1.1: This figure contains the Feynman diagrams for, a) a fermionic contribution to the Higgs
mass, b) a scalar contribution to Higgs mass.

this partner particle is a spin 1/2 fermion. For local supersymmetry (supergravity), there

is also a spin 3/2 fermion (gravitino) and a spin 2 boson (gravition).

For the Lagrangian of supersymmetry to be invariant under supersymmetric transfor-

mations, the couplings of the bosons and fermions must be related. If this were not the

case, there would exist some supersymmetric transformation (interchanging bosons and

fermions) that would give a Lagrangian with different couplings and thus it would not be

invariant. The relationship among the couplings forced by supersymmetry leads to a can-

cellation among the diagrams. For example, in supersymmetry the diagrams like those in

Fig. 1.1 would cancel exactly if the fermion and boson in these loops had equal masses. In

fact, all diagrams that contribute to the mass of the Higgs have some sort of cancellation

and the hierarchy is stable.

To preserve the invariance of the SUSY Lagrangian, the masses of the supersymmetric

particles must also be related. The bosons and fermions of a given multiplet turn out to have

the same masses. Experiment has not as of yet seen any evidence of these supersymmetric

particles. If they exist, these superpartners must be heavier than their corresponding

SM counterpart in order to evade experimental constraints. The broken degeneracy of

the fermion and boson masses required by experiment forbids supersymmetry from being

an exact symmetry of nature. Instead, supersymmetry must be broken at the electroweak

scale. However, certain forms of broken supersymmetry can stabilize the hierarchy. Having

a stable hierarchy will place strong constraints on the SUSY breaking mechanism. A broken
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supersymmetry with a stable hierarchy has been softly broken. Supersymmetry is softly

broken by the introduction of any or all of the following operators to the Lagrangian

Lsoft = −1
2

(
Maλ

aλa + Aijkφiφjφk + Bijφiφj

)
+ c.c.−mj

iφ
i∗φj(1.2)

where the couplings Aijk, Bij and mj
i are only constrained by gauge invariance. These

couplings introduce new diagrams contributing to the mass of the Higgs. However, these

new diagrams are only logarithmically sensitive to higher mass scales. With this logarithmic

sensitivity, the Higgs mass is still sufficiently protected1. The diagrams involving only

supersymmetry preserving interactions from the superpotential, which give the quadratic

divergences, are modified as well. Fortunately, this modification does not disrupt the

cancellation of the quadratic divergences. The lack of observed superpartners with masses

. 100GeV then places a lower bound on the soft masses in Eq. (1.2).

An obvious first try for breaking supersymmetry would be a Higgs type mechanism

involving only renormalizable interactions[3]. In this case, the soft masses arise from

directly coupling fields that break supersymmetry to minimal supersymmetric standard

model (MSSM) fields. The difficulty with this mechanism is that it leads to scalars that

are lighter then their fermionic partners. This can be seen by examining the mass matrices

of supersymmetry. The mass matrices are as follows: the fermion mass matrix is

(1.3) M1/2 =




Wab −√2gBDBa

−√2DAb 0


 ,

for the state
1Here we have assumed that the highest possible cut off for the SM is the Planck scale.
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Ψ =




ψa

λA


(1.4)

and the scalar mass matrix is

(1.5) M2
0 =




M †
1/2M1/2 + Da

ADAb + Da
AbDA W †abcWc + Da

ADb
A

WabcW
†c + DAaDAb M1/2M

†
1/2 + DAaD

b
A + Db

AaDA


 ,

W is the superpotential, and DA = gAQ†
a(TA)a

bQ
b. The above scalar mass matrix is for the

state

Φ =




Qa

Q†
a


 .(1.6)

The subscripts (superscripts) a, b, c etc. correspond to derivatives with respect to the fields

Q†
a (Qa). As an example, we consider the mass matrix of the up type squarks in the basis

(ũ, ũ†). The off-diagonal components of the scalar mass matrix will be zero because mass

terms of the type ũũ are forbidden by the gauge symmetries. With the gauge groups of

the standard model preserved, 〈DAb〉 = 〈Da
A〉 = 0. Examining the fermion and scalar

mass matrices with these constraints we see they differ by a term Da
AbDA = gAT a

b DA. If

ũaT
a
b = −|λ|ũb, which will be the case for at least one particle, the mass of the scalar

will be less than the corresponding fermion. Scalar particles lighter than their fermionic

partner are excluded for all flavors except possibly the top.

Clearly, a renormalizable low-scale supersymmetric theory cannot meet the necessary

conditions placed on supersymmetry breaking. This difficulty can be evaded by introduc-

ing a hidden sector. In this hidden sector, supersymmetry breaking occurs and is then
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transmitted to the visible sector through non-renormalizable operators. This hidden sec-

tor, where supersymmetry breaking occurs, cannot be charged under the gauge groups of

the SM. Otherwise, we are back to the situation with light scalars.

Without any knowledge of the hidden sector or high-scale physics, it is still possible to

write a Lagrangian with non-renormalizable interactions leading to SUSY breaking in the

visible sector. A generic set of SUSY breaking contributions to the Lagrangian are

∆L =
∫

d4θ

{
(zQ)i

j

M2
X†XQ†Q + · · ·

+
b

M
XHuHd +

b′

M
X†XHuHd + h.c.

}

+
∫

d2θ
[ s1

M
XWα

1 W1α + · · ·
]

+ h.c.(1.7)

+
∫

d2θ
[aij

M
XQiHu(U c)j + · · ·

]
.

When the F term of the X field obtains a vacuum expectation value (vev), these terms

will be exactly those found in Eq. (1.2) with the masses being of order MSUSY ∼ 〈FX〉/M

1.2 Minimal Supersymmetric Standard Model

The simplest supersymmetric model (minimal matter content) capable of reproducing

the SM predictions is known as the minimal supersymmetric standard model (MSSM).

This is an effective theory that contains only the particles of the standard model (SM)

and their superpartners, plus an extra Higgs boson. The extra Higgs boson is needed for

anomaly cancellation. The superpotential for the MSSM is

(1.8) W = µHuHd + λl
ijLiej + λd

ijQidjHd + λu
ijQiujHu

where Qi, Li, ui, di, , ei are matter chiral superfields with obvious notation, and Hu,

Hd are the Higgs bosons. In the supersymmetric limit the MSSM only has one more
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coupling than the SM, µ. However, each of these fields will have a soft mass and possibly a

trilinear coupling that breaks supersymmetry and introduces many more free parameters.

Because there is no symmetry to prevent flavor mixing in these couplings, flavor violation

will be quite large in a generic MSSM. Only approximately diagonal scalar masses at the

electroweak scale will give acceptable flavor violation.

1.3 Flavor Changing Neutral Currents of Supersymmetric Theories

Although the soft breaking terms of supersymmetry are constrained by gauge invariance,

they are still quite generic. They can still lead to observations that contradict experimental

findings. Besides a lower bound on the size of the scalar masses, there are constraints on

the off-diagonal components.

Flavor changing neutral currents in supersymmetry can arise from non-diagonal soft

masses [5]. These non-diagonal scalar mass matrices lead to a misalignment between the

interaction basis and mass basis of the scalar particles. This misalignment allows the scalars

to change flavor as they propagate. With flavor violating propagators, loop diagrams

will lead to flavor violation in the decay of SM leptons. The difficulty with large off-

diagonal components of the slepton mass matrices is flavor changing neutral currents such

as `i → `jγ. In the SM, lepton flavor violating amplitudes are quite small because they are

suppressed by (mν/mW )2 [4], where mν is the neutrino mass and mW is the mass of the

W . With the neutrinos having eV scale masses and the W being of order 100GeV, lepton

number is only marginally violated in the SM. These dangerously large flavor violating

processes can be suppressed by either taking very large soft masses, or by some sort of

alignment of the soft masses at the low scale. Models of supersymmetry breaking such

as gauge mediation are specifically designed to suppress these flavor changing processes.

Because supersymmetry breaking in these models occurs through gauge interactions, the

sfermion mass matrices are diagonal when the SM fermions are in the interaction basis.
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In these models, the only flavor violation present at the electroweak scale will be due to

renormalization group (RG) running. With the Yukawa matrices of the SM approximately

diagonal2, the sfermion masses remain diagonal in the course of renormalization group

evolution (RGE) and no new flavor violation emerges.

Another possibility for creating diagonal low scale sfermion masses, discussed in more

detail later, is no-scale type models. In no-scale type models, the sfermion mass matrices are

zeroed at some high scale boundary. The low scale masses are then entirely the consequence

of renormalization group (RG) running. Because the dominant contribution to the RG

running of the sfermions is from the gauginos, the induced sfermion mass matrices are

predominantly diagonal. One complication of pure no-scale models is that the lightest

super partner is charged (LSP).

1.4 R Parity and Dark Matter

A supersymmetric theory that is natural and constrained only by gauge invariance

will have problems with proton stability. Unless there is some symmetry to prevent the

following operators from appearing in the superpotential [6],

(1.9) WRp/ = −εiLi ·H2 +
1
2
λijkLi · LjĒk + λ′ijkLi ·QjD̄k +

1
2
λ′′ijkŪiD̄jD̄k,

the lifetime of the proton will be too small3 . Several combinations of interactions from

the previous equations can produce diagrams leading to proton decay. These amplitudes

have tree level diagrams that are proportional to λλ′′ or λ′λ′′, where the indices have

been suppressed. There are three possible symmetries that forbid these interactions and

stabilize the proton: baryon conservation (B), lepton conservation (L), and R parity. If

lepton number is conserved then λ, λ′ = 0, and if baryon number is conserved λ′, λ′′ = 0.
2The Yukawa coupling of the quarks are not diagonal. However, if the corrections to the scalars are proportional

to the Yukawa couplings, they will give acceptable amounts of flavor changing neutral currents. This is referred to
as minimal flavor violation.

3Other dangerous processes from these terms are: n− n̄ oscillation, large neutrino masses, neutrinos less β decay,
etc.[6]
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Imposing R parity, discussed below, excludes all couplings in Eq. (1.9). It is interesting

to note that if R parity is imposed, the perturbative superpotential conserves both baryon

number and lepton number. At this point, it may be unclear which of these symmetries

is best. However, the best candidate is R parity. If R parity is conserved, supersymmetry

can also explain the dark matter of the universe.

R parity distinguishes the particles of the SM from their superpartners. Every particle

of the SM model has a positive R parity, and every superpartner has a negative R parity.

Under the assumption of R parity conservation, only operators with positive R parity

are allowed in the Lagrangian. Because the Higgs is the only scalar field of the SM, it

is the only scalar with positive R parity. This allows it to be paired with SM fermions

for the Yukawa terms. Other Yukawa terms, and any trilinear terms not involving the

Higgs, will be forbidden. With R parity imposed, a good way to determine the interactions

allowed by supersymmetry is to take the SM interactions and replace two of the particles

by superpartners. The interactions that involve an odd number of superpartners will

not be allowed. Because of this, the scalar particles of supersymmetry can only decay

to a SM particle and a superpartner particle. Due to kinematic constraints, the lightest

superpartner (LSP) is then stable and cannot decay. In certain regions of parameter space,

this LSP has the right relic abundance to be dark matter.

1.5 The Vacuum Structure of Supersymmetry

In the SM, there is only one fundamental scalar particle: the Higgs boson. This leads

to a fairly simple potential. Because scalar particles are singlets under the Lorentz trans-

formation, they can obtain a vacuum expectation value (vev) without breaking Lorentz

invariance. However, the Higgs is not a singlet under SU(2)×U(1) and its vev breaks the

electroweak symmetry.

Supersymmetry, on the other hand, has many scalar particles. These scalar particles
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lead to a very complicated potential. This complexity can lead to many minima that are

deeper than the SM minimum [7, 8, 9, 10, 11, 12]. These minima are generated by either

negative cubic terms coming from the trilinear soft breaking terms, or large negative soft

masses. If these soft terms lead to deep minima with squark and/or slepton vevs, the true

minimum of SUSY will break SU(3) and/or U(1)em. These minima are referred to as charge

and color breaking (CCB) minima. For transitions to these CCB minima which are second

order, or very weakly first order, the universe would have quickly transitioned to the true

minimum. In this case, the ground state would not be symmetric under SU(3)× U(1)em.

Models with these type of minima and phase transitions can be excluded. However, if the

transition is strongly first order, it may take longer than the age of the universe and these

points cannot be excluded.

1.6 Higgs Exempt No-Scale Supersymmetry

Here, we study the phenomenology of the minimal supersymmetric standard model

(MSSM) subject to vanishing scalar soft mass terms (no-scale boundary conditions). With

vanishing scalar soft terms, the low scale scalar masses are generated through renormal-

ization group (RG) running. Because only the gauginos have large boundary masses, the

dominant RG contribution to the scalar masses will be to the diagonal components. This

running leads to scalar mass matrices with diagonal components that are much larger

than the off-diagonal components. Unless the scalar masses are large, this approximate

diagonality is needed to suppress the supersymmetric contribution to the flavor violation.

The Higgs bosons are flavorless and do not lead to flavor mixing. This allows us to gen-

eralize the study of no-scale boundary conditions by including non-vanishing Higgs boson

soft masses, as well as a Higgs boson bilinear B term. Inspired by grand-unified theories,

we take our input scale to be MGUT , and demand universal gaugino masses at this scale.4

4For the case of non-universal gaugino masses but vanishing Higgs soft terms, see [13].
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In these type of models, electroweak symmetry breaking is due to radiative corrections.

After imposing consistent electroweak symmetry breaking, the independent parameters of

this theory, which we call Higgs Exempt No-Scale (HENS) supersymmetry[14], are

M1/2, tanβ, m2
Hu

, m2
Hd

, sgn(µ),(1.10)

where M1/2 is the universal gaugino mass at MGUT , tan β is the ratio of the Higgs boson

expectation values, m2
Hu

and m2
Hd

are the soft Higgs masses at MGUT , and sgn(µ) is the

sign of the supersymmetric Higgs bilinear µ term. More details about this model are

contained in Chapter II.

First, we will outline the parameter space of HENS models by imposing constraints

from electroweak symmetry breaking, b → sγ, and the LEP bounds on the Higgs mass.

We will also emphasize the regions of parameter space that have a neutralino LSP, and

determine in which regions this LSP could be a good candidate for thermal dark matter.

Because the scalar masses are small at the high scale, the sleptons in these models tend

to be quite light. The light sleptons lead to large cross sections for reactions producing

leptons. In fact, HENS models will have a distinctively large 4` signal.

By including right-handed neutrinos, flavor violation is reintroduced. However, unlike

other models, HENS models can suppress this new source of flavor violation by taking

m2
Hu

→ 0. In mSUGRA models for example, m2
0 and A0 must be small in order to prevent

large flavor violation. However, this tends to lead to a stau LSP. Inclusion of these right-

handed neutrinos in the HENS model also has an up side. Right-handed neutrinos provide

a mechanism for explaining the baryon asymmetry through leptogenesis.

Because much of the parameter space of HENS models have large negative Higgs masses,

it is plagued by unbounded from below (UFB) directions, and charge and color breaking

(CCB) minima. Requiring the SM vacuum to be stable on time scales longer than the age

of the universe will lead to strong constraints on the parameter space, especially for large
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tanβ.



CHAPTER II

Low-Scale Higgs Exempt No-Scale Supersymmetry

2.1 Generating Small Scalar Soft Terms

The motivation for examining models with vanishing scalar masses is primarily data

driven. These type of models provide a simple and elegant explanation for the small

amount of flavor violation in supersymmetry. Even though our choice of boundary masses

are experimentally driven, they can arise from several theoretical constructions. In this

chapter we describe some of these theoretical models and discuss how they can be modified

to allow for non-vanishing soft masses for the Higgs bosons.

2.1.1 No-Scale Supergravity

We start by considering a model with all scalar masses small. After which, we will

consider methods to generalize to non-zero Higgs masses. Vanishing scalar soft terms have

traditionally been associated with no-scale models [15]. These models are attractive be-

cause the gravitino mass, and therefore the scale of supersymmetry breaking, is determined

dynamically. The basic assumption underlying no-scale constructions is that the effective

superspace Kähler density and superpotential have the form [16, 17, 18, 19]

F = −3M2
Pl + f(X) + f †(X†) + g(Φ,Φ†),(2.1)

W = W (Φ),

13
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where X is a hidden sector field, Φ represents a visible sector field, and W is a holomorphic

cubic function. To see how this Kähler density and superpotential leads to vanishing scalar

masses, we derive the potential for this setup[15]. For this analysis, we take MPl = 1. The

Kähler potential from the above functions is

(2.2) G = 3 ln
(
−3 + f(X) + f †(X†) + g(Φ,Φ†)

)
+ F (Φ) + F †(Φ†),

where F (Φ) = lnW. The scalar potential in terms of a generic Kähler potential is

(2.3) V = −e−G
(
3 + Gi(G−1)j

iGj

)
,

where

Gi = ∂G
∂φi

, Gi = ∂G
∂φ̄i

, Gj
i = ∂2G

∂φ̄i∂φi
.(2.4)

In the above expression, we denote {X, Φ} by φl, with φ1 = X. Using the no-scale Kähler

potential, we can simplify this generic expression for the potential. For convenience, we

define the derivative of the Kähler potential with respect to the function f(X) as Gf , which

obeys the relationships

(2.5) G2
f = 3Gff = 3Gff∗ .

Using these relationships, the derivatives in Eq. (2.4) of the no-scale Kähler potential

become

Gi = Gf (fi + gi) + Fi(Φ),

Gj = Gf

(
f∗i + g∗i

)
+ F i†(Φ†),

Gj
i = 1

3GiGj + Gfgj
i .

(2.6)

It will also be useful to define the projection operator

(2.7) αi =
Gf

Gff∗

f i

|fX |2 .
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This projection operator’s only non-vanishing term is the one corresponding to the X

direction. From this projection operator, we find that

(2.8) αiGi
j = Gj − F †j ,

which can be manipulated to the form

(2.9) Gj(G−1)i
j = αi + F †j(G−1)i

j .

Contracting the remaining index in the above expression gives

(2.10) Gj(G−1)i
jGi + 3 = F †j(G−1)i

jGi.

Taking the complex conjugate of Eq. (2.7) and doing a similar analysis as above, leads to

F †j(G−1)i
jGi = F †j(G−1)i

jFi. This then gives the potential

(2.11) V = −e−GF †j(G−1)i
jFi.

If we chose g(Φ,Φ†) =
∑

i ΦiΦ†i, the potential can be further simplified to give

(2.12) V = e−2/3G0
∑

i

∣∣∣∣
∂W
∂φi

∣∣∣∣
2

where G0 is the same as G without the superpotential contribution.

With the definition in Eq. (2.1), there are no supersymmetry breaking terms in Eq. (2.12),

and the potential is flat in the X direction. Although the scalar masses are zero in this

construction, the gaugino masses can be non-zero as long as the gauge kinetic function

is non-trivially dependent on X. The gaugino mass term for a non-trivial gauge kinetic

function is

(2.13) e−1LFM =
1
4
e−G/2G`(G−1)k

` f
∗
αβ,kλ̄

α
Rλβ

R =
e−G/2

4
GX∗

GXX∗

(
∂fαβ

∂X

)
λ̄α

Rλβ
R.

From the above expression, we see that the gaugino masses should be of order the gravitino

mass, m3/2 = e−G/∈, which is not yet determined. However with a gaugino mass term,
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there are one-loop corrections to the potential. These corrections lift the potential in the

X direction and fix the value of m3/2 to lie close to the electroweak scale. Furthermore, no

scalar masses arise at the tree level. In this scenario, the electroweak scale is determined

dynamically by the large top Yukawa coupling [17].

It is difficult to maintain m3/2 ∼ MW in no-scale models if there are other larger scales

in the theory. Because of the radiative corrections, the physics at these larger scales can

contribute to the effective potential for m3/2 [19]. If such large scales exist, such as in a

GUT, the heavy sector must be completely sequestered from the supersymmetry breaking,

since in the supersymmetric limit, they must not alter the effective potential. Within a

GUT where the Higgs superfields are components of complete multiplets that also contain

heavy fields, it is therefore essential to prevent these GUT multiplets from obtaining a

supersymmetry breaking mass. Having separated the Higgs boson in this way, it is natural

to sequester the other chiral multiplets as well. This is the origin of the vanishing scalar

soft terms in no-scale models. Gaugino masses can be induced by a non-minimal kinetic

function for those and only those components of the GUT vector multiplet that remain

light. Thus if the Higgs multiplets are components of a larger GUT multiplet, of which

some components develop GUT scale masses, it is not possible to generate soft masses for

the Higgs fields without destabilizing m3/2. On the other hand, soft Higgs masses might

be possible in more general unification scenarios in which the Higgs fields do not belong to

complete GUT multiplets [20].

The form of the no-scale Kähler density and superpotential, Eq. (2.1), is an input to

these models. Such a form does arise to lowest order in several string- and M-theory

constructions, but is typically corrected at higher orders [21]. More generally, a superspace

Kähler density in which the visible and hidden sectors appear as disjoint terms, as in

Eq. (2.1), is said to be sequestered [22]. A sequestered Kähler density and superpotential
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guarantees that no direct soft terms are generated. This is a necessary ingredient for

anomaly mediation [22].

2.1.2 Gaugino Mediation

It is possible to suppress scalar masses using extra dimensions. This is done by constrain-

ing the SM model matter fields and hidden sector fields to reside on spatially separated

branes. Because these branes are spatially separated, they cannot directly communicate

with each other. Once supersymmetry is broken on the hidden sector brane, the only way

to communicate it to the visible sector is through loops containing fields from the bulk. In

this case, the scalar masses are loop suppressed relative to the messenger particles living

in the bulk.

In gaugino mediation[23], the gauge fields live in the bulk and are the messengers of

supersymmetry breaking. Supersymmetry breaking in the hidden sector takes the form of

a gaugino mass. Note, this mass term is only relevant on the hidden sector brane. The

loops contributing to the supersymmetry breaking masses must then traverse the bulk

between the hidden sector and the visible sector. This bulk propagator will lead to an

exponential suppression. (This fact will be relevant when we calculate the scalar masses.)

The contribution to the action from the mass term for the gauginos is

(2.14) S =
∫

dnxδ(y − L)
∫

d2θ

[
X

M
WαWα + h.c.

]
,

where the delta function arises because X is constrained to live on the hidden sector brane.

It also plays a role in supersymmetry breaking through a non-zero F term. Integrating

over the extra dimensions, the gaugino kinetic term becomes non-canonical. Redefining

the guagino fields brings the kinetic term back to a canonical form. We now discuss the

simplest example of 5 dimensions. If supersymmetry breaking is to be communicated from

the hidden sector to the visible sector, the gaugino profile must be non-zero on both branes.

These boundary conditions can only be satisfied if the Kaluza Klein (KK) decomposition of
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the gaugino is purely a cosine, assuming flat extra dimensions. The zero mode of a cosine

expansion is flat. When the integral over this flat profile is done, the kinetic term gets an

L coefficient where L is the size of the extra dimension. To return the Lagrangian to a

canonical form, the gaugino fields are redefined as λ0
4 → λ0

4/L−1/2. Because the integral

over the gaugino mass term has a delta function, the gaugino mass term is unaffected

by the integration. The redefinition of the gaugino fields then leads to a 1/L coefficient

multiplying the gaugino mass term. The 4-d gaugino mass term is then

(2.15) mλ̃ =
FS

M

1
ML

.

Next, we show that the scalar masses are loop suppressed relative to this value.

To understand why the scalar masses are suppressed, we examine their loop contribu-

tions. An important factor in the loop calculation is the bulk propagator of the gauginos.

To calculate the propagator, we will need to determine the free field Green’s function

〈0|ψψ̄|0〉. To find this Green’s function we need to first determine the form of the 5-d free

fermion field for the gauginos. Since the gauginos mass is constrained to the hidden sector

brane, the field equations for the gauginos in the bulk are for a massless fermion. They

have the form

(2.16) γM∂MΨ = 0,

where γM with M = µ = 0, 1, 2, 3 are the standard gamma matrices, and M = 4 is the

matrix γ5 = γ0γ1γ2γ3. To solve this equation, we break the gaugino spinor into its left and

right handed components,

(2.17) Ψ =




χα

ψ̄α̇


 .
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With this decomposition, Eq. (2.16) becomes a set of coupled differential equations

−iσ̄µ∂µχn − ∂5ψ̄n = 0,(2.18)

−iσµ∂µψ̄n + ∂5χn = 0.

To further simplify these equations, we will assume that the expression for the gaug-

ino fields can be separated into a function of the extra dimension multiplied by a four

dimensional function as

∑
n

gn(y)χn(x),(2.19)

∑
n

fn(y)ψ̄n(x).

Note that the left and right handed components can have different profiles in the extra

dimension. This is not only allowed, but will be necessary to meet the boundary conditions

of the Z2 orbifold we impose. The spinor structure is all contained in the 4-d fields. Because

we wish ψ̄n, χn to behave like the familiar massive 4-d fermions, we impose the following

equations of motion

−iσ̄µ∂µχn + mnψ̄n = 0,(2.20)

−iσµ∂µψ̄n + mnχn = 0.

With these equations imposed, the fn(y) and gn(y) satisfy the following equations of motion

g′n −mnfn = 0,(2.21)

f ′n + mngn = 0.

After decoupling these equations, they can be solved giving

gn(y) = An cos(mny) + Bn sin(mny),(2.22)

fn(y) = Bn cos(mny)−An sin(mny).(2.23)
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As previously mentioned, the Z2 parity of the orbifold in the extra dimension will

impose boundary conditions on the above fields. By requiring that the left and right

handed components of the fermions transform differently under this Z2 parity, the right

handed spinor vanishes on the SM brane. The profile of the right-handed fermion must be

zero on the SM brane because the 4-d gaugino is a Majorana fermion and not a full Dirac

fermion. The boundary conditions forced by these requirements gives the extra dimensional

profile

fn(y) =

√
2
L

cos(mny),(2.24)

gn(y) =

√
2
L

sin(mny).(2.25)

To find the other coefficient, we have also normalized the fields.

Because we imposed Eq. (2.21), the expression for the 4-d fermion fields will be in the

familiar form which can be found in [24]. Combining the previous expressions for the extra

dimensional profiles with what we know about 4-d fermions, the 5-d free fermion field is

Ψ(x, y) =
∑

n,s

√
2
L [PL cos(mny) + PR sin(mny)](2.26)

× ∫ d3p
(2π)3

1√
Ep

(
as

p,nus(p)e−ipx + bs†
p,nvs(p)eipx

)
.

Since the 5-d field is separable, the Green’s functions will also be separable. Using this

expression for the fermion fields, the bulk propagator for the gauginos will be

P(q, x, y) = 〈0|ΨΨ̄|0〉 =
∑

n,m

√
2
L

[
PL

cos(mny)
√

2
δn,0 + PR sin(mny)

]
(2.27)

× δm,n(q/+mn)
q2−m2

n

√
2
L

[
PR

cos(mmy)
√

2
δm,0 + PL sin(mmy)

]
.

Performing the sum, we find[37]

(2.28) P(q; 0, L) =
PLq/

q sinh(qL)
.

Now that we have the bulk propagators for the fermions, we approximate the loop diagrams

leading to the soft masses in the visible sector. This contribution to the soft masses will
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be of the form

(2.29) g2
5

(
FS

M2

)2

×
∫

d4q

2π4
Tr

[
1
q/
P(q; 0, L)CPT (q; , L, L)C−1P(q;L, 0)

]
.

where C is the charge conjugation matrix. Because the propagators in the above expression

are exponentially suppressed, any numerical factors arising from integrating will be at most

order one and are likely smaller. With only one mass scale in Eq. (2.29), we can then

approximate the size of the scalar mass

(2.30) m2
φ̃
∼ g2

5

16π2

(
FS

M2

)2 1
L3

=
g2
4

16π2
m2

λ̃
.

The last equality comes from the relation between the 4-d and 5-d couplings g2
5/L = g2

4.

From the above expression, it is clear that the scalar masses in gaugino mediation are

indeed loop suppressed relative to the gaugino masses.

With just the gauginos in the bulk, the Higgs masses are suppressed. However if the

Higgs bosons are moved into the bulk, they can be given a mass term on the hidden brane.

The Higgs masses then become a free parameter of the effective 4-d theory as well.

2.1.3 Conformal Sequestering

Another way to achieve HENS type boundary conditions is through conformal running.

The suppression of the scalar masses, in this case, is realized in a four dimensional setup

through strongly-coupled conformal dynamics. The strongly-coupled theory is hidden from

the visible sector by conformal running [25, 26]. The conformal running suppresses the

interactions between the hidden and visible sector. This effectively sequesters the hidden

sector. In a strongly-coupled theory near a fixed point, the wave function renormalization

will run towards Z = 1 in the IR. Because the visible sector is weekly coupled, it is

equivalent to a small perturbation of the strongly-coupled sector. In this case, the visible

sector fields can be viewed as background fields. The non-renormalizable operators between
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these background fields and the hidden sector fields lead to the soft breaking terms. Because

the visible fields are just background fields, they can be subsumed into the wave function

renormalization of the strongly coupled fields. The soft masses are then suppressed as the

conformal running dampens out any perturbations away from Z = 1. To make this more

clear, we will give an example [26] of a theory with an IR fixed point. In this example,

we find that the soft masses are suppressed. This toy model will also highlight when the

conformal dynamics are incapable of suppressing the soft masses.

Our discussion will follow in part the appendix of [26]. The starting point is the La-

grangian of supersymmetric QCD with N colors and F flavors in the holomorphic basis,

(2.31) Lhol = ZQ†
holQhol|D + (τWαWα)|F ,

whose one loop gauge coupling is

τ(µ) = τ(M) +
b

8π2
ln

( µ

M

)
, b = 3N − F.(2.32)

From the above Lagrangian, it may appear that the only possible conformal theory

would be for 3N − F = 0. The fact that other conformal theories exist becomes apparent

through the rescaling, Qhol → Z−1/2Q and Q†
hol → Z−1/2Q†. Because this rescaling is

anomalous, the gauge coupling is shifted by − F
8π2 lnZ due to the Konishi[28] anomaly. In

the basis where the fields are canonical, the gauge coupling is then

(2.33) τ(µ) = τ(M) +
b

8π2
ln

( µ

M

)
− F

8π2
ln Z(µ).

With the wave function renormalization

Z(µ) = Z(M)
( µ

M

)2γQ

, 2γQ = 3N−F
F ,(2.34)

the gauge coupling, τ(µ), is scale independent and we see that we have a conformal theory.

In this basis, it appears that the entire kinetic term is suppressed and not just the pertur-

bations away from Z = 1. To see how the soft masses are sequestered as compared to the
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kinetic term, it will be easier to start in a basis where the kinetic terms are normalized.

With the kinetic terms canonical, the only running parameter is the gauge coupling. A

theory is conformal at a point where its beta function goes to zero. This point is known

as a fixed point.

The beta functions can be expanded about the couplings fixed point values as follows

(2.35) β = β′∗(τ − τ∗) + · · · .

For the fixed point to be stable, β′∗ ≥ 0. Using this expansion of the beta function, the

coupling is found to be

(2.36) τ(µ) = τ(M) +
( µ

M

)β′∗
(τ(M)− τ∗) .

In this expression, τ∗ is the gauge coupling at the fixed point, and M is the renormalization

scale. With this expression for the coupling, the Lagrangian in a basis having canonically

normalized fields is

(2.37) L =
(
Q†Q

)∣∣∣
D

+
([

τ(M) +
( µ

M

)β′∗
(τ(M)− τ∗)

]
WαWα

)∣∣∣∣
F

.

Near the IR fixed point, the theory will become conformal. By redefining the fields in the

previous expression, we can change to a basis where the coupling is constant. When the

fields are redefined as Q =
√

RQ′ and Q† =
√

RQ′†, the coupling in the previous expression

is shifted by F
8π2 ln(R) because of the Konishi[28] anomaly. Because the R now appears in

the coupling, the running of the coupling, τ(µ), can be cancelled by R. The R that gives

a constant coupling τ∗ is

(2.38) R(µ) = [R(M)](
µ
M )β′∗

.

The Lagrangian, with the above wave function renormalization, is

(2.39) L = [R(M)](
µ
M )β′∗ (

Q†Q
)
|D + (τ∗WαWα) |F .
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In this basis, it is clear that the coupling is constant or conformal. However, it is less clear

what happens to the coefficient of the kinetic term. If the wave function renormalization

is expanded about its canonical value, we find

(2.40) R(µ) = 1 +
( µ

M

)β′∗
(R(M)− 1) .

In this basis, it is clear that the conformal running in the hidden sector tends to suppress

any deviations from a canonical kinetic term.

The consequences of this can be seen by considering the following
∫

d4θ term

(2.41)
∫

d4θ

(
1 +

c(µ0)
M

Φ†Φ
)

Q†Q.

In the above equation, M is the messenger scale, Q is a hidden sector field, and Φi is a

visible sector field. If we now regard the terms in front of the Q†Q as the wave function

renormalization, the expansion in Eq. (2.40) gives

(2.42)
∫

d4θ ZQ ∗
(

1 +
c(µ0)
M

( µ

M

)β′∗
Φ†Φ

)
Q†Q.

This tells us that the approximate running of the coupling c(µ) will be

(2.43) c(µ) ' c(µ0)
( µ

M

)β′∗
.

In order for c(µ) to be sufficiently squashed, strong dynamics are needed. Otherwise, the

exponent β′∗ would be too small, and the suppression of c(µ) would be insufficient.

If there is a global non-anomalous symmetry in the hidden sector, the sequestering dis-

cussed above may break down. To understand this, we must consider a more complicated

hidden sector with many fields. The lack of sequestering from this global symmetry be-

comes apparent from the expansions of the anomalous dimension and beta function. The
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expansion of the anomalous dimensions about the fixed point value of the couplings can

be written as

(2.44)
d

dt
∆lnZi =

∂γi

∂αk

∣∣∣∣
∗
∆αk,

with

(2.45) d
dt∆lnZi = γi − γ∗i , ∆lnZi = lnZi − γ∗i t, ∆αk = αk − α∗k.

In the above expression, αk are the gauge couplings of the conformal theory, t = lnµ, and

γi is the anomalous dimension. The deviation of the couplings from the fixed point value,

∆αk, can be expressed in terms of ∆ lnZi. This is done by expanding the beta function

about the anomalous dimension at the fixed point and then integrating. If this is done, we

get

(2.46) ∆αi =
∂βi

∂γj

∣∣∣∣
∗
∆lnZj .

Combining this expression with that found in Eq. (2.44), we find a set of coupled first

order differential equations for the wave function renormalization of

(2.47)
d

dt
∆lnZi =

∂γi

∂αk

∣∣∣∣
∗

∂βk

∂γj

∣∣∣∣
∗
∆lnZj = Lij∆lnZj .

This set of equations is solved by diagonalizing the matrix Lij and then integrating. Each

wave function renormalization runs as ∆ lnZk ∝ eλit, where the λi’s are the eigenvalues of

Lij , and t = ln(µ). If the matrix Lij in the previous expression has a zero eigenvalue, there

will be some combination of fields whose wave function renormalization will not be affected

by the conformal running. This combination of fields is not sequestered. The interaction

of these non-sequestered fields will leave some of the soft masses generic and large. These

zero eigenvalues in the matrix Lij arise from unbroken non-anomalous global symmetries

in the hidden sector(See last two references of [25].).
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Next, the mass hierarchies from conformal sequestering are examined. Recently it was

pointed out that the Higgs mass, unlike the other scalar masses, is not suppressed in

conformally sequestered theories[27, 29]. Instead, it is the combination m2
Hu,d

+ µ2 which

is sequestered1. This gives

(2.48) m2
Hu,d

= −µ2.

In order to explain the origin of the above relationship, the appendix of[27] will be

reviewed below. A fairly general Lagrangian with one chiral super field, or one linear

combination of chiral super fields, and one real super field interacting with the hidden

sector is

(2.49)
∫

d4θH†H
(

1 + x
χ

M∗
+ x†

χ

M∗
+ x†x

χ†χ
M2∗

+ r
R

M2∗

)

where χ is a hidden sector chiral super field with complex coupling x, and R is a real super

field with real coupling r.

These contributions to the Lagrangian can be factorized giving

(2.50)
∫

d4θH̃†H̃
(

1 + r
R

M∗

)

with terms of order
(

χ
M∗

)3
neglected and

(2.51) H̃ = H

(
1 + x

χ

M∗

)
.

If we redefine the fields according to the previous expression, the only supersymmetry

breaking in Eq. (2.50) will be from R. The Lagrangian in Eq. (2.50) is the same as that

from Eq. (2.41). Taking a strongly coupled hidden sector as in Eq. (2.41), the coupling r

will run like

(2.52) r(µ) ' r(M∗)
(

µ

M∗

)β′∗
.

1This result is model independent for any conformal running that suppresses the scalar masses but not the gauginos
masses [29].
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If the strongly coupled conformal running occurs over a large enough energy range,

and β′∗ is order one, the coupling r will be negligible. The Lagrangian in this case is well

approximated by Eq. (2.50) with r = 0. When r = 0, the supersymmetry breaking mass

for H is m2
H̃

= 0. To determine the supersymmetry breaking mass of H, m2
H , we return

to the H basis

(2.53)
∫

d4θH†H
(

1 + x
χ

M∗
+ x†

χ

M∗
+ x†x

χ†χ
M2∗

)
.

In this form, it may appear that the H field has both a supersymmetry breaking scalar

mass, and supersymmetry preserving mass. However, the mass contribution from χ
M∗

cancels with the mass term from χ†χ
M2∗

. Just as expected, the total mass for H cancels.

Even though the two mass terms cancel, the trilinear term arising from χ
M∗ is non-zero.

Although we only considered one Higgs field, this calculation generalizes to a two Higgs

boson scenario and gives the result found in Eq. (2.48). In the two Higgs boson scenario

there are also Bµ terms. These turn out to be suppressed.

Another way to sequester the scalar masses through conformal running is to include

contact terms in the superpotential that have hidden and visible sector fields. In this

set up, a partial sequestration of soft terms, as well as an explanation for the Yukawa

hierarchy, can also be obtained from the direct interaction of the strong conformal dynamics

with the visible sector [30, 31, 32]. In these constructions, there is a new gauge group

Gc that approaches a strongly-coupled fixed point in the IR. The MSSM fields are not

charged under Gc, but they do couple to fields that are in the form of a cubic Yukawa

operators in the superpotential. As the theory flows towards the fixed point, the MSSM

fields develop large anomalous dimensions which suppress their corresponding (physical)

Yukawa couplings. Since different (linear combinations of) fields develop distinct anomalous

dimensions, related to their effective superconformal R charges, a Yukawa hierarchy can be

generated in this way [30]. The conformal running also produces a general suppression of
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the soft scalar masses, as well as a hierarchy of trilinear A terms that mirrors the Yukawa

couplings [30, 31, 32, 33]. Conversely, the gaugino masses are largely unaffected because

they do not couple directly to the strongly-coupled sector. The third generation multiplets

and the Higgs multiplets must also be shielded from the conformal running effects to avoid

suppressing the top quark Yukawa coupling. As a result, the third generation and the

Higgs soft masses do not get suppressed. Thus, the spectrum from visible sector conformal

running is similar to one we shall consider, but augmented by third generation soft masses

and A terms. There may also be additional contributions to the soft masses if there are

non-anomalous, continuous, abelian global symmetries. We expect the phenomenology of

both scenarios of conformal sequestering to be similar over much of the allowed parameter

space.

2.1.4 The Scale of Mc

From the discussion above, we see that a Higgs Exempt No-Scale (HENS) soft mass

spectrum can arise from gaugino mediation with the Higgs multiplets in the bulk, or

from conformal running in the hidden sector up to additional contributions to the third

generation states. Before proceeding, however, let us comment on our choice of MGUT as

the input scale for the soft spectrum. In gaugino mediation, the input scale is on the order

of the compactification scale, Mc.2 For visible-sector conformal running, the input scale

for the soft spectrum is the scale at which the conformal running ceases, which we will also

call Mc. Our motivation to set Mc = MGUT is partly conventional, but is also motivated

by gauge unification and our wish to strongly suppress the scalar soft masses.

In both cases, gauge unification can be preserved with Mc < MGUT ∼ 2×1016 GeV, but

the process will be more complicated than in the standard picture. In gaugino mediation,

Kaluza-Klein states appear above Mc and can lead to an accelerated power-law running [34].
2Mc := 1/R, is less than the cutoff of the theory.
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With conformal dynamics in the visible sector, the SM gauge coupling beta functions will

be modified by the large anomalous dimensions of the MSSM fields. Gauge unification

will still occur, albeit at a lower scale, provided the conformal dynamics respects a global

symmetry into which the SM gauge group can be embedded [35]. Thus, in each case having

Mc below MGUT can induce an effective unification of the SM gauge couplings below the

apparent unification scale MGUT ' 2 × 1016 GeV. This is problematic for many GUT

completions of the MSSM, which predict baryon and lepton number violation. Typically,

some additional structure is needed if Mc is much smaller than MGUT . This motivates us

to consider Mc ≥ MGUT .

It is clear that gauge unification can also be maintained with Mc ≥ MGUT . If Mc is

larger than MGUT , the renormalization group running from Mc down to MGUT will induce

non-vanishing (flavor-universal) soft masses at MGUT . The size of these corrections from

running above MGUT depends on the precise GUT completion of the theory, but even for

minimal GUT models they can be significant, on the order of [36]

∆A ' 2αG

π
CA ln

(
Mc

MGUT

)
M1/2,(2.54)

∆m2 ' 2αG

π
Cm2 ln

(
Mc

MGUT

)
M2

1/2,

where αG ' 1/24 is the GUT coupling, and CA and Cm2 are dimensionless constants on

the order of or slightly larger than unity. These contributions can be large enough for an

acceptable low-energy spectrum to be obtained [36].

On the other hand, in both gaugino mediation and conformal sequestering, Mc cannot

be more than about an order of magnitude above MGUT because the suppression of soft

terms (and Yukawa couplings) requires a separation of scales. Let Min be the scale at which

conformal running begins in the case of conformal dynamics, or the UV cutoff of the extra-

dimensional gauge theory in gaugino mediation. Presumably Min ≤ MPl = 2.4×1018 GeV.

The amount of suppression of the soft scalar terms from conformal running is expected to
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be an order-one power of Mc/Min, whereas the required suppression is typically on the

order of 10−4 [31]. An even stronger upper bound on Mc can be obtained if the conformal

dynamics are responsible for the small electron Yukawa coupling as in Ref. [30]. The

condition for this is

ye '
(

3× 10−6

cosβ

)
'

(
Mc

Min

)(γL+γE)/2

,(2.55)

where γi denote the anomalous dimensions of L and Ec, which are generally smaller than

2. If we take this bound seriously, Mc can be at most only slightly larger than MGUT . In

gaugino mediation, flavor-mixing contact interactions between the MSSM chiral multiplets

and hidden sector operators, arising from bulk states with masses above the UV cutoff

scale, are suppressed by a factor of exp(−Min/Mc) [37]. Again this factor must be less

than about 10−4 to avoid various experimental flavor constraints, which translates into Mc

being within an order of magnitude larger than MGUT (for Min = MPl).

Given the above considerations, we will set Mc = MGUT , and not concern ourselves

with the precise mechanism by which the scalar soft terms are suppressed. While beyond

the scope of the present work, it also interesting to speculate that the breaking of the GUT

symmetry is related to the geometry of the extra dimension, or the escape from conformal

running. Such a construction would further justify our choice of Mc = MGUT . Finally, let us

also note that within particular models there is typically some residual flavor violation due

to an incomplete suppression of the scalar terms at Mc. The amount of flavor suppression

can be close to the level probed by current experiments. However, without specifying a

particular model, it is not possible to perform an analysis of the constraints due to flavor

physics. Thus, we assume as our starting point that at the scale Mc = MGUT , all scalar

masses except those of the Higgs bosons are precisely zero and that corrections to that

assumption are inconsequential to the phenomenology discussed below.
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2.2 Mass Spectrum and Constraints

2.2.1 One-Loop Analysis

The essential features of the HENS mass spectrum are well illustrated by a simple one-

loop analysis. At this order, the ratio Ma/g2
a, a = 1, 2, 3, is scale invariant for all three

gaugino masses. If the gauge couplings unify and the gaugino masses are universal at

MGUT , it follows that at lower scales Q, Ma(Q) = [ga(Q)/gGUT ]2M1/2. For Q = 1 TeV,

this gives

M1 ' (0.43)M1/2, M2 ' (0.83)M1/2, M3 ' (2.6)M1/2.(2.56)

The one-loop running of the scalar soft masses is given by [2, 38]

(4π)2
dm2

i

dt
' Xi − 8

∑
a

Ca
i g2

a |Ma|2 +
6
5

g2
1 Yi S,(2.57)

where Xi depends on the soft masses and A terms and is usually proportional to Yukawa

couplings, Ca
i is the quadratic Casimir for the representation i under gauge group a, and

S = (m2
Hu
−m2

Hd
) + trF (m2

Q − 2m2
U + m2

E + m2
D −m2

L),(2.58)

with the trace above running over flavors.

At one-loop order, the RG equation for the S term is particularly simple,

(4π)2
dS

dt
=

66
5

g2
1 S.(2.59)

Because of this simple form, the effect of the S-term on the low-scale soft masses is to

simply shift the value they would have with S = 0 by the amount

∆m2
i = −Yi

11

[
1−

(
g1

gGUT

)2
]

SGUT ' −(0.052)Yi SGUT ,(2.60)

where SGUT = (m2
Hu
−m2

Hd
) evaluated at MGUT .

Neglecting Yukawa effects, the low-scale slepton soft masses at Q = 1 TeV are

m2
L ' [

(0.68)M1/2

]2 +
1
2
(0.052)SGUT ,(2.61)

m2
E ' [

(0.39)M1/2

]2 − (0.052)SGUT .(2.62)
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If mixing effects are small, the physical slepton masses will be close to
√

m2
L and

√
m2

E ,

up to the U(1)Y D-term contributions. The mass of the lightest neutralino is usually close

to M1 (under the assumption of gaugino universality) unless µ is relatively small.

Comparing Eq. (2.61) with Eq. (2.56), we see that for SGUT ≥ 0, m2
E is less than M1 and

the lightest superpartner tends to be a mostly right-handed slepton. On the other hand, if

SGUT < 0, the right-handed slepton soft mass is pushed up relative to M1, allowing for a

mostly Bino neutralino LSP. For SGUT very large and negative, the LSP can be a mostly

left-handed slepton. Relative to the sleptons and the electroweak gauginos, the squarks

and gluino are very heavy because the SU(3)c gauge coupling grows large in the infrared.

2.2.2 Parameter Space Scans

To confirm the simple analysis given above, we have performed a scan over the HENS

parameter space using SuSpect 2.34 [39]. This code performs the renormalization group

running at two-loop order with one-loop threshold effects, and includes radiative and mixing

corrections to the physical particle masses. We take αs(MZ) = 0.118 [40] and mt =

171.4 GeV [41] in our analysis. For each model parameter point we require consistent

electroweak symmetry breaking, and superpartner masses above the LEP II and Tevatron

bounds (mχ0
1
, mν̃ > 46 GeV, ml̃ > 90 GeV, mχ±1

> 104 GeV). We also impose the

lower-energy constraints

∆ρ ∈ [−8, 24]× 10−4 [40](2.63)

BR(b → sγ) ∈ [3.0, 4.0]× 10−4 [42]

∆aµ ∈ [−5, 50]× 10−10 [40]

These ranges correspond approximately to the 95% c.l. allowed values, although we have

allowed a slightly larger range for ∆aµ. The constraint from the muon magnetic moment is

particularly interesting in HENS scenarios, and we shall discuss it more extensively below.
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Figure 2.1: Allowed parameter regions for tan β = 10 and M1/2 = 300 GeV. The differently colored
regions in the figure indicate the identity of the lightest superpartner. The quantities
m2

Hu
and m2

Hd
are evaluated at the input scale MGUT .

In the immediate analysis we do not include the LEP II bound on the lightest Higgs boson

mass. We will discuss this constraint below as well.

Figures 2.1, 2.2, and 2.3 show the allowed regions of m2
Hu

(MGUT ) and m2
Hd

(MGUT ),

for (tanβ, M1/2) equal to (10, 300GeV), (10, 500 GeV), and (30, 500 GeV), subject to the

constraints described above. The soft Higgs masses in these plots are re-expressed in terms

of the more convenient combinations SgnSqrt(m2
Hu
−m2

Hd
)(MGUT ) = SGUT /

√
|SGUT |, and

SgnSqrt(m2
Hu

+m2
Hd

)(MGUT ), where SgnSqrt denotes the signed square root (SgnSqrt(x) =

sign(x)
√
|x|). Also shown in these plots is the identity of the lightest superpartner at each

allowed parameter point.

These figures confirm our previous approximate analysis. When SGUT is positive or

zero, the LSP is a mostly right-handed stau or selectron. As SGUT becomes more negative,

a neutralino becomes the LSP, while for very large and negative values of SGUT the LSP

is a sneutrino. For extremely large positive or negative values of SGUT , one of the slepton
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Figure 2.2: Allowed parameter regions for tan β = 10 and M1/2 = 500 GeV. The differently colored
regions in the figure indicate the identity of the lightest superpartner. The quantities
m2

Hu
and m2

Hd
are evaluated at the input scale MGUT .

soft masses becomes tachyonic. The allowed parameter region is cut off at larger positive

values of (m2
Hu

+m2
Hd

)(MGUT ) because |µ|2 only has a negative solution, implying that

electroweak symmetry breaking is not possible.3 Note that in Fig. 2.2, there is a thin strip

along the upper border of the allowed region in which the LSP is a neutralino. In this

strip, the µ term is smaller than M1 and the neutralino LSP is mostly Higgsino. For larger

negative values of (m2
Hu

+m2
Hd

)(MGUT ), M2
A0 → 0 and the parameter space gets cut off by

the bound from BR(b → sγ). As (m2
Hu

+m2
Hd

)(MGUT ) becomes even smaller, electroweak

symmetry breaking ceases to occur.

The effects of the τ Yukawa coupling and left-right mixing can be seen by comparing

Figs. 2.2 and 2.3. In the models we are considering, the value of the Yukawa-dependent

term in Eq. (2.57) for the right-handed stau soft mass is

XE3 ' 2|yτ |2 m2
Hd

.(2.64)

3In fact, the parameter space is cut before µ reaches zero by the BR(b → sγ) and the chargino mass constraints.
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Figure 2.3: Allowed parameter regions for tan β = 30 and M1/2 = 500 GeV. The differently colored
regions in the figure indicate the identity of the lightest superpartner. The quantities
m2

Hu
and m2

Hd
are evaluated at the input scale MGUT .

The left-right mixing is also proportional to the τ Yukawa. As tanβ increases, so too

does the τ Yukawa, and therefore also the Yukawa effect on the running and the mixing.

Left-right mixing tends to push the lighter stau mass lower, and for this reason it is more

difficult to obtain a neutralino LSP at larger values of tanβ. However, there is also a

competing effect from the influence of the τ Yukawa on the running of m2
E3

. When m2
Hd

is large and negative, the XE3 term increases the value of m2
E3

at low energies. Thus, a

selectron or an electron sneutrino is the LSP in some parts of the parameter space.

2.2.3 Constraints from (g − 2)µ

Since the sleptons in HENS models are relatively light, the corrections to the anomalous

magnetic moment of the muon, aµ = (g−2)µ/2 can be significant [43]. Currently, the

measured value of aµ exceeds the SM prediction by about two standard deviations [40],

∆aµ = aexp
µ − aSM

µ = (22± 10)× 10−10.(2.65)

This result is suggestive of new physics.
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Figure 2.4: ∆aSUSY
µ as a function of M1/2 for several ranges of tan β, and sgn(µ) > 0. The spread

of points come from scanning over the acceptable input values of m2
Hu

and m2
Hd

. The
red points indicate tan β ∈ [5, 10), the green points tan β ∈ [10, 20), the blue points
tan β ∈ [20, 30), and the magenta points tan β ∈ [30, 50). The dashed line represents a
contribution to the anomalous magnetic moment that is 3σ large than the experimental
value.

In the MSSM, there are additional contributions to (g−2)µ from loops involving a

virtual chargino and muon sneutrino, and loops with a virtual neutralino and smuon.

For the HENS scenarios we are studying, in which all masses scale predominantly with

M1/2 and the gaugino masses are universal (and assumed real and positive), the leading

supersymmetry contribution to aµ is proportional to tanβ, scales roughly as M−2
1/2, and

has a sign equal to the sign of the µ term, sgn(µ) [44]. Given the tension between the

measured value of ∆aµ and the SM prediction, sgn(µ) > 0 is strongly favored. Indeed,

we find that negative sgn(µ) is only possible for very large values of M1/2. Conversely, if

sgn(µ) is positive the new supersymmetric contribution can help to explain this possible

discrepancy between the SM prediction and experiment.

The value of ∆aSUSY
µ is shown as a function of M1/2 in Fig. 2.4. In generating this

figure, we have taken sgn(µ) > 0, and have scanned over input values of m2
Hu

and m2
Hd
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Figure 2.5: Scatter plot in the M1/2−tan β plane of solutions that respect the bounds of ∆aSUSY
µ <

50 × 10−10 and mh > 114.4GeV. Due to uncertainty in the top quark mass, and the
theoretical uncertainty in the computation of mh, a more conservative constraint on
this theoretically computed value of mh is 110 GeV, which is also shown in the figure.

at MGUT . The distribution for sgn(µ) < 0 looks the same, except the sign of ∆aµ is

opposite. With sgn(µ) > 0, the new physics contribution is frequently too large, and from

this we obtain a lower bound on M1/2 as a function of tanβ. For tanβ = 10, this bound

is M1/2 & 250 GeV, while for tanβ = 30, it increases to M1/2 & 400 GeV.

2.2.4 Constraints from the Higgs Boson Mass

A further constraint on HENS models, and one we have not yet imposed, is that the

SM Higgs boson mass should exceed the LEP II bound [45],

mh > 114.4 GeV.(2.66)

This bound also applies to the lightest CP-even Higgs boson in much of the parameter space

of the MSSM. However at tree-level in the MSSM, the lightest CP-even Higgs boson has

a mass below MZ . It is only because of large loop corrections to the mass, predominantly

due to the scalar tops, that this Higgs state can be raised above the LEP II bound. With
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vanishing input scalar soft masses, the stop masses scale predominantly with M1/2. The

Higgs boson mass bound therefore imposes a further lower bound on the universal input

gaugino mass.4

The combined bounds on M1/2 as a function of tanβ from the conditions ∆aµ < 50×

10−10 and mh > 110.0 (114.4) GeV are shown in Fig. 2.5. We impose a slightly weaker

110GeV lower bound on the Higgs boson mass than the 114 GeV LEP II bound to account

for various uncertainties associated with the theoretical computation of mh. We have taken

mt = 171.4 GeV in our analysis5. At smaller tanβ, less than about 15, the Higgs mass

bound imposes the stronger constraint, while the upper bound on ∆aµ is more significant

for values of tanβ > 15. For any value of tanβ, M1/2 must be greater than about 300 GeV

if we impose the weaker Higgs mass bound (mh > 110.0 GeV), and larger than about

500 GeV to satisfy the stronger bound (mh > 114.4 GeV). Note that as M1/2 grows, the

phenomenological constraints on the model tend to weaken, but usually at the cost of

increased fine-tuning in the Higgs sector [47].

4One could increase the Higgs mass by introducing a SM singlet Higgs field to the spectrum, but this introduces
tensions with grand unification [46].

5Larger values of mt would increase the loop contribution to the mass of the Higgs boson and weaken the bound
on M1/2



CHAPTER III

Dark Matter

In order to give a more complete picture of the HENS model, the work of a collaborator

on dark matter is included here[59]. In a previous chapter, we found that much of the

HENS parameter space allowed by other constraints was plagued by a slepton or sneutrino

LSP. If R parity is conserved, the relic abundance of these particles as the LSP would

be too large to meet experimental constraints. The experimental constraints for a stable

charged particle are quite strong [48]. Although neutral, the sneutrino is also ruled out

as a dark matter candidate. The direct detection rates for a sneutrino LSP in this case

would be much too high if mν̃ ∼ 100GeV [49]. If the gravitino is the LSP, and a slepton

is the next to lightest superpartner (charged or not), it could still give a consistent picture

of dark matter [51]. We will briefly discuss this possibility below. However, our focus will

be on standard cosmology and we will thus concentrate on a neutralino LSP [50].

The neutralino relic density for various points in the HENS parameter space were de-

termined using DarkSUSY 4.1 [52]. The computation is fully relativistic and includes

coannhilation.

In Figures 3.1 and 3.2, the relic density of a neutralino LSP in the HENS model is plotted

for tanβ = 10, µ > 0, and M1/2 = 300, 500 GeV respectively. The Higgs masses are free

parameters and are scanned over their allowed ranges. The standard cosmological picture

is examined. The black points in the figures do not have a neutralino LSP and will be

39
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Figure 3.1: Neutralino LSP relic density for tanβ = 10, M1/2 = 300 GeV, and sgn(µ) > 0. The
region in which the lightest neutralino is not the LSP is denoted by the black plus signs.
The red triangles indicate parameter points where the neutralino LSP relic density is
less than Ω h2 < 0.11. In the blue and green regions, the neutralino LSP relic density
exceeds this value.

discussed later. The red triangles are points with an acceptably small relic abundance for

the LSP, Ωh2 < 0.11. This is to be compared with the observed dark matter density [53],

Ωh2 = 0.1045+0.0072
−0.0095 (WMAP only).(3.1)

The other plotted points have a relic abundance that is too large. However, a late-time

injection of entropy could reduce relic abundance of these points and they could still give

acceptable amounts of neutralino dark matter [54].

The contours of constant relic abundance seen in Figs. 3.1-3.2 can be understood in

terms of the mass spectrum of the HENS model. The LSP in the plotted regions is pre-

dominantly Bino except for a small strip on the upper border where the LSP is mostly

Higgsino. With a Bino LSP, the most efficient annihilation cross section will be χχ → ff̄

through a t channel sfermion f̃ . Because the sleptons are light in the HENS model, this

scattering cross section will be largest for sleptons. The other possible decay channels for a
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Figure 3.2: Neutralino LSP relic density for tanβ = 10, M1/2 = 500 GeV, and sgn(µ) > 0. The
region in which the lightest neutralino is not the LSP is denoted by the black plus signs.
The red triangles indicate parameter points where the neutralino LSP relic density is
less than Ω h2 < 0.11. In the blue, green, and magenta regions, the neutralino LSP relic
density exceeds this value.

neutralino LSP require a large Higgsino or Wino component. With the LSP mostly Bino,

the other annihilation channels are inefficient because they are suppressed by small com-

ponents in the mixing matrices. The small annihilation cross section leads to a neutralino

relic density that is quite large.

On the left and right borders, other processes for suppressing the neutralino relic abun-

dance become possible. In these border regions, the LSP and slepton mass have similar

sizes. Because their masses are nearly degenerate, they will freeze out at approximately

the same time and temperature. Similar freeze out temperatures will lead to similar freeze

out densities. The total scattering cross section for a Bino like LSP and slepton is much

larger than that for two Bino like LSP’s. This enhanced cross section, along with similar

number densities for the Bino like LSP and sleptons, allow the LSP’s to be annihilated

efficiently. This reduction of the LSP number density puts the relic density at or below the
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Figure 3.3: Neutralino LSP relic density for tanβ = 30, M1/2 = 500 GeV, and sgn(µ) > 0. The
region in which the lightest neutralino is not the LSP is denoted by the black plus signs.
The red triangles indicate parameter points where the neutralino LSP relic density is
less than Ω h2 < 0.11. In the blue, green, and magenta regions, the neutralino LSP relic
density exceeds this value.

experimental limits. As is seen in the figures, if their mass difference becomes too large,

this reduction in the LSP number density from co-annihilation ceases and the relic density

is too large.

The strip along the upper boarder has a relic density that is sufficiently small as well.

In this region the µ parameter becomes small. As µ becomes small, the LSP develops a

significant Higgsino component. In this case, the LSP can annihilate through a t channel

gauge boson and in some regions co-annihilate as well. Since the annihilation through

gauge bosons is much more efficient, the correct relic density can be obtained.

Even though a slepton LSP would annihilate quickly, the regions having a slepton

LSP (labelled by black plus signs in Figs. 3.1-3.2) are still problematic. Even with their

large annihilation rates, the relic abundance, which will be of order Ωh2 ∼ 10−3−10−2,

would be too large. This very small relic abundance is ruled out for charged particles like
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sleptons [48]. If the LSP is the sneutrino, a neutral particle, it can be ruled out by direct

searchs for dark matter [55].

These points, with a slepton lighter than the lightest neutralino, may still be acceptable

if the true LSP is a gravitino. Because the gravitino couples very weakly, the lightest

slepton would still freeze out as though it were the LSP. Once a sufficient amount of time

passes, the slepton would decay to the gravitino. In this case, the LSP relic density is

related to the next to lightest superpartner (NLSP) density as [51]

Ωdecay
3/2 h2 =

m3/2

ml̃

Ωl̃h
2,(3.2)

where m3/2 is the gravitino mass. In the regions we are considering, the dark matter

produced from these subsequent decays is too small to account for all the dark matter.

However, these points are no longer excluded because of too much dark matter. The

gravitino could still be the dominant source of dark matter for these points if there were

other sources such as thermal production after inflationary reheating [56], or non-thermal

production through heavy particle decays [57]. If the gravitino is the LSP, and the NLSP

is a slepton, the gravitino mass is constrained. A gravitino mass m3/2 & 100 MeV would

disrupt big-bang nucleosynthesis and thus can be ruled out1 [58].

Lastly, we examine the effect of changing tanβ on the dark matter predictions. For

smaller values of tanβ, the change is minimal. However, for larger values there is no longer

a region with a mostly Higgsino LSP. This occurs because the large Yukawa coupling drives

the stau slepton mass down unless m2
Hd

is large and negative. The regions where the lightest

neutralino is mostly Higgsino only occur for small values of m2
Hu,d

. This region now has a

stau LSP. The only possible way to enhance the LSP cross section for large tanβ is from

co-annihilation. This enhancement will occur on the border between the slepton LSP and

neutralino LSP as it did before, and can be seen in Fig. 3.3.
1The constraints for a sneutrino NLSP are not quite so strong.



44

The cross sections for direct and indirect detection of a neutralino LSP were also cal-

culated. They were found to be outside of the current experimental limits. However,

some regions of parameter space were found to be within reach of the next generation

experiments[59]



CHAPTER IV

Collider Phenomenology

In HENS scenarios, the sleptons and the electroweak gauginos are generally very light

relative to the squarks and the gluino. If the lightest neutralino is the LSP, which we

assume throughout this section, the distinguishing feature of these scenarios at colliders

are multi-lepton events with missing ET . In this section we discuss the prospects for

discovery and identification of HENS models at the Tevatron and the LHC.

4.1 Trilepton Signature at the Tevatron

The most promising search channel at the Tevatron is the trilepton signal with missing

transverse energy (ET ) [60, 61, 62]. This can be induced, for example, by the electroweak

production of χ0
2 χ±1 , with subsequent cascades of the form χ0

2 → ˜̀∗
L `− → χ0

1 `+ `+ and

χ+
1 → ν̃`′ `

′+ → χ0
1 ν`′ `

′+. For M1/2 ≥ 300 GeV, the significant source of SUSY events

comes from the electroweak production of gauginos, making this channel a copious and

clean one. In HENS scenarios, the χ0
2 and χ±1 states tend to be mostly Wino and have

two-body decays into left-handed sleptons. Because of this feature, the branching fractions

of the abovementioned decay cascades can be significant, leading to a sizeable trilepton

cross-section. Indeed, the mass spectrum derived from HENS models is close to being

optimal for trilepton production.

To estimate the effective Tevatron trilepton cross-sections, we have simulated SUSY

45
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production from pp̄ collisions at
√

s = 1.96 TeV using ISAJET 7.74 [63]. Following the

treatment in Ref. [62], we use the ISAJET subroutines CALSIM and CALINI (in the

ISAPLT package) as a simple detector model with coverage in the range −4 < η < 4, and

calorimeter cells of size ∆η×∆φ = 0.1×0.262. To simulate energy resolution uncertainties,

the electromagnetic calorimeter cells are smeared by an amount 0.15/
√

E/GeV, while the

hadronic calorimeter cells are smeared by an amount 0.7/
√

E/GeV. We define jets as

hadronic clusters with ET > 15 GeV within a cone of size ∆R = 0.7, and use the GETJET

subroutine to perform the clustering. Isolated leptons are defined to be e’s or µ’s having

pT > 5 GeV, with net visible hadronic activity ET < 2 GeV within a cone of size ∆R = 0.4

about the lepton direction.

We focus on a particular set of cuts, corresponding to the HC2 set in Ref. [62], that is

well-suited to the HENS mass spectrum [61, 64]. In each event, we require three isolated

leptons with pT (`1,2,3) > 20, 15, 10 GeV, and |η(`1,2,3)| < 2.5. In addition to this, the total

missing ET must exceed 25 GeV, the invariant mass of same-flavor opposite-sign dileptons

must lie in the range 12 GeV < m`` < 81 GeV, and the transverse invariant mass between

each lepton and the missing ET vector must lie outside the range 60 GeV < mT (`, /ET ) <

85 GeV. The dilepton invariant mass veto is designed to remove background events from

off-shell Z and γ decays, while the mT veto removes leptons from W decays. With these

cuts, the SM background is estimated to be 0.49 fb [62], and is due mostly to the remaining

W ∗Z∗ and W ∗γ∗ events in which both off-shell gauge bosons decay leptonically.

In Fig. 4.1 we show the trilepton cross-section subject to the cuts for M1/2 = 300 GeV

and tanβ = 10. This value of M1/2 is about as small as possible within the model given

the lower bound on the light Higgs boson mass, and represents a best-case scenario at

the Tevatron. Note that for considerably larger values of tanβ, the constraint from the

anomalous magnetic moment of the muon requires larger values of M1/2 as well, as can
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Figure 4.1: Trilepton cross-sections after HC2 cuts at the Tevatron for M1/2 = 300 GeV and
tan β = 10. The estimated background is 0.49 fb [62].

be seen in Fig. 2.5. Like in the previous plots, the values of m2
Hu

and m2
Hd

in Fig. 4.1 are

those at the input scale, Mc = MGUT .

The dependence of the trilepton cross-section on m2
Hu

and m2
Hd

can be understood in

terms of the mass spectrum. Except in the upper-right portion of the allowed parameter

space, the effective cross-section increases smoothly from bottom to top as the value of µ

decreases. In most of the parameter space, µ is larger than M2 and the χ0
2 and χ±1 states

are mostly Wino. As µ approaches M2, these states develop a larger Higgsino fraction and

their masses are reduced by the mixing. The heavier chargino and neutralino states become

lighter as well. On account of these effects, the total gaugino cross section is increased

leading to more trilepton events. This pattern is broken in the upper right corner of the

parameter space because the mass of the χ0
2 state approaches the left-handed slepton masses

from above, again due to Higgsino mixing. When this mass difference becomes small, the

branching fraction for χ2
0 → ˜̀

L` goes down. The leptons produced by the cascades become
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relatively soft as well. Since this decay mode plays a prominent role in the trilepton signal

subject to the HC2 cuts, the effective cross-section falls off rapidly when the decay fraction

is suppressed. The effective cross-section in this region can be increased by using slightly

weaker lepton pT cuts, such as the SC2 set discussed in Ref. [62], but at the expense of an

increase in background.

The effective trilepton cross-sections shown in Fig. 4.1 fall within the range of 0.2−0.5 fb.

Given the estimated background of 0.49 fb, the signal significance level is marginal. For

example, the Poisson probability Pp for a total of ten events, corresponding to the maximal

expected signal and background with 10 fb−1, is about Pp = 0.016. While this is unfortu-

nately not enough for a discovery, an excess of clean trilepton events at the Tevatron would

provide a tantalizing hint of a light HENS scenario. We also note that other event signa-

tures involving leptons can be searched for in these scenarios. Of particular noteworthiness

is the same-sign dilepton signature, which has small standard model background.

4.2 Signals at the LHC

If nature is supersymmetric and has a HENS spectrum, the prospects for discovery at

the LHC with 10 fb−1 of data are excellent provided M1/2 is less than about 700 GeV.

To quantify this, we focus on six inclusive LHC SUSY search channels, classified by the

number of isolated leptons in the event: 0`+ /ET + jets; 1`+ /ET + jets; 2` OS + /ET + jets;

2` SS + /ET + jets; 3` + /ET + jets; ≥ 4` + /ET + jets [65, 66]. (Here, OS and SS refer to

opposite-sign and same-sign dileptons, respectively.) Besides an excess of events in these

channels, which is expected in many SUSY scenarios, the relative numbers of events within

different channels can point towards small input scalar soft masses.

Supersymmetric events at the LHC were simulated using ISAJET 7.74 [63]. We use

the ISAJET subroutines CALSIM and CALINI (in the ISAPLT package) as a simple

detector model with coverage in the range |η| < 5, and calorimeter cells of size ∆η×∆φ =
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0.05 × 0.05. A gaussian smearing of the calorimeter cells is included to simulate energy

resolution uncertainties. The electromagnetic calorimeter cells are smeared by an amount

0.1/
√

E/GeV⊕ 0.01, where ⊕ denotes addition in quadrature. Hadronic calorimeter cells

are smeared by an amount 0.5/
√

E/GeV ⊕ 0.03 for |η| < 3, and 1.0/
√

E/ GeV ⊕ 0.07 for

|η| > 3. We define jets as clusters with ET > 100 GeV and |η| < 3 within a cone of size

∆R = 0.7, and use the GETJET subroutine to perform the clustering. Isolated leptons

are defined to be e’s or µ’s having pT > 10 GeV and |η| < 2.5, with total visible activity

ET < 5 GeV within a cone of size ∆R = 0.3 about the lepton direction.

For all channels studied, we choose a cut energy Ec
T = 200 GeV and demand that each

event have at least two hard jets, nj ≥ 2, with ET > Ec
T , as well as missing transverse

energy /ET > Ec
T . This cut substantially reduces the SM backgrounds relative to the SUSY

signals.1 We also require that the transverse sphericity of the event satisfies ST > 0.2 to

reduce the dijet background [67]. In zero-lepton events, we demand that the transverse

angle between the missing momentum vector and the nearest jet must lie in the range

30◦ < ∆φ( /ET , j) < 90◦. In the one-lepton channel, we require a single isolated lepton with

pT > 20 GeV, as well as MT (`, /ET ) > 100 GeV to reduce the leptonic W background. For

events with two or more isolated leptons, we demand that pT (`1,2) > 20 GeV for the two

hardest leptons.

The cross sections after cuts for M1/2 = 500 GeV and tanβ = 10 are given in Fig. 4.2

for five sample points. For comparison, the SM backgrounds are estimated to be about

400 fb, 26 fb, 9 fb, 0.25 fb, 0.1 fb, and 0.002 fb for the 0`, 1`, 2` OS, 2` SS, 3`, and 4`

channels respectively [65, 66]. The locations of the sample points, A, B, C, D, and E, in

the m2
Hu

(MGUT )−m2
Hd

(MGUT ) plane are listed in Appendix A, and are also indicated in

Figs. 4.3 and 4.4. Among the five sample points, A and C have a neutralino relic density
1A larger value of Ec

T would be preferable to reduce the large SM backgrounds in the 0 ` channel. However, the
0` SUSY signal is still easily distinguishable from the large background for the parameter points we consider here.
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Figure 4.2: Inclusive signal cross-sections after cuts at the LHC for M1/2 = 500 GeV and tan β = 10
for the five sample points described in the text. For comparison, the SM backgrounds
are estimated to be about 400 fb, 26 fb, 9 fb, 0.25 fb, 0.1 fb, and 0.002 fb for the 0`,
1`, 2` OS, 2` SS, 3` and 4` channels respectively [65, 66].

within the WMAP allowed range, while the other points lead to relic densities that are too

large (but could be acceptable with a non-standard cosmology). At point E, the µ term

is on the same order as M2 ' 2M1, but it is greater than 750 GeV at the other sample

points. Thus, except for point E, the LSP is a mostly Bino neutralino, while the lightest

chargino and the next-to-lightest neutralino are predominantly Wino. At point E where

µ < M2, all the chargino and neutralino states are fairly light and have significant Higgsino

components, which, as we shall discuss below, is the reason for the increase in the 3` and

4` rates.

In each of the six search channels, the SUSY signal is easily distinguishable from the

background with 10fb−1 of luminosity at the LHC. A more challenging task beyond an

initial discovery is to distinguish this class of models from other (SUSY) scenarios and to

deduce the model parameters. The number of leptonic events relative to the number of 0 `
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Figure 4.3: 3` cross-sections after cuts at the LHC for M1/2 = 500 GeV and tan β = 10. The
estimated background is 0.1 fb.

events is useful in this regard. Compared to a generic mSUGRA input spectrum with m0 >

0, the ratio of 1 ` events to 0 ` events is much larger for a given value of M1/2. For example,

in mSUGRA with (m0, M1/2, A0, tanβ, sgn(µ)) = (200 GeV, 500GeV, 0, 10, +), the ratio

of 0 ` to 1 ` events is greater than four, whereas this ratio is close to unity for all five

sample points considered. The ratio of the number of 0 ` events to the number of 2 `

events is also much larger in a generic mSUGRA framework than it is here. This is the

consequence of having left-handed sleptons lighter than the χ0
2 and χ±1 states, which are

in turn light enough to be generated by squark decays. For example, cascade chains such

as q̃ → χ0
2 q → ˜̀∗

L `− q → χ0
1 `+ `− q have a significant branching probability, and are a rich

source of leptons.

The dependence of the effective 3` cross-section on the input Higgs soft mass parameters

is shown in Fig. 4.3. For the most part, this dependence is fairly mild except in the upper

right portion of the allowed region. Here, the µ term approaches the Bino mass M1, and
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Figure 4.4: 1` cross-sections after cuts at the LHC for M1/2 = 500 GeV and tan β = 10. The
estimated background is 26 fb.

in the thin tail extending to the right, µ even falls below M1. In this region, all the

neutralinos and charginos are significantly lighter than the squarks and gluinos. As a

result, the decay cascades initiated by the strong superpartners are frequently very long,

involving several chargino and neutralino states. At each step in the cascade chain there

is a chance of producing a lepton, and thus the total fraction of events containing multiple

leptons is very high. For example, the decay chain ũR → χ0
3 u → ˜̀∗

R `− u → χ0
1 `+ `− u

is kinematically allowed when µ is small, and has a significant branching fraction. The

preponderance of leptons can be so high that the number of 0` and 1` events (and even

to some extent some 2` events) are significantly suppressed. This can be seen in Fig. 4.4,

which shows the 1` effective cross section for M1/2 = 500 GeV and tanβ = 10. Note that

the small µ region is strongly constrained by direct and indirect searches for dark matter,

and will be probed by upcoming experiments, as was discussed above.

In the leftmost portion of the allowed region of Fig. 4.3, there is also a net decrease
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in the cross section, which occurs in the other leptonic channels as well. Within this

region, leptons typically originate from decays of the mostly Wino χ0
2 and χ±1 states into

left-handed sleptons and sneutrinos, which subsequently decay into the neutralino LSP.

However, these left-handed states are only slightly heavier than the LSP, so the lepton

emitted from the slepton decays tends to be soft, making it less likely to pass the lepton

pT cuts.

A particularly distinctive signature of the HENS models are inclusive 4` events. We

find effective cross-sections above 0.5 fb for tanβ = 10 and M1/2 = 500 GeV, which is

sufficient for a 10 fb−1 LHC discovery given the SM background of about 0.002 fb [66].

There is a sharp increase in the 4` cross-section in the small µ region at the upper right of

the parameter space. The dominant sources of this increase are cascades initiated by right-

handed squarks of the type described previously. Furthermore, because the left-handed

sleptons are lighter than χ0
3 but heavier than χ±2 and χ0

4 in this region, superpartner

cascades such as ũL → χ±2 → ν̃ → χ0
3 → ˜̀

R → χ0
1 accompanied by many leptons have a

non-trivial branching fraction and can produce three leptons from the single squark parent.2

As a result, 4` rates greater than 5 fb can occur. We have also investigated the exclusive

clean trilepton channel. It does not appear to be as promising as the inclusive channels.

Varying tanβ does not qualitatively affect our findings. The cross sections after cuts for

M1/2 = 500 GeV and tanβ = 30 are given in Fig. 4.5 for five sample points, A′, B′, C ′, D′ , E′.

Details of these sample points are given in Appendix A. The cross sections in all six chan-

nels are similar to those in Fig. 4.2 with tanβ = 10. In particular, the ratio of 0` to

1` events is still close to unity, and the 3` and 4` rates are observably large. The main

difference that occurs at larger values of tanβ is that there is no small µ region.

Since the entire mass spectrum in HENS models scales with M1/2, so too do the event

2The final lepton in this cascade tends to be quite soft because the mass difference (ml̃R
−mχ0

1
) is very small in

this part of the parameter space. However, the other two leptons in the cascade tend to be quite hard.
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Figure 4.5: Inclusive signal cross-sections after cuts at the LHC for M1/2 = 500 GeV and tan β = 30
for the five sample points described in the text. For comparison, the SM backgrounds
are estimated to be about 400 fb, 26 fb, 9 fb, 0.25 fb, 0.1 fb, and 0.002 fb for the 0`,
1`, 2` OS, 2` SS, 3` and 4` channels respectively [65, 66].

rates. We have checked that for M1/2 as large 700 GeV, corresponding to a gluino mass

of mg̃ ' 1600GeV, the inclusive event rates in all channels other than the 0` and 4` are

large enough that a discovery with 10fb−1 of LHC data is feasible. On the other hand, the

event rates become even larger for smaller values of M1/2, making discovery even easier.



CHAPTER V

Neutrino Higgs Exempt No-Scale Supersymmetry

While the HENS model is phenomenologically enticing, it does not explain the observa-

tion of neutrino oscillations [68]. This shortcoming can be resolved by supplementing the

model with three heavy singlet right-handed neutrino chiral superfields, with the superpo-

tential couplings

W = W0 + NYνLHu +
1
2
NMNN,(5.1)

where W0 is the MSSM superpotential, N are the right-handed neutrinos, MN is their

Majorana mass matrix, and Yν is the neutrino Yukawa matrix. By taking the singlet

neutrino masses MNi much larger than the electroweak scale, very small masses can be

generated for the left-handed neutrinos by the seesaw mechanism [68]. Integrating out the

heavy neutrino states yields the effective superpotential coupling

Weff = W0 − 1
2
(Y T

ν M−1
N Yν)ij(LiHu)(LjHu).(5.2)

For MN ∼ 1012 GeV, this interaction can generate correct light neutrino masses at the

weak scale with the neutrino Yukawa couplings on the order of unity, Yν ∼ 0.1.

Adding heavy right-handed neutrinos to the HENS scenario also introduces a new flavor-

mixing problem to the model. In running the soft parameters in the full theory (Eq. (5.1))

from the input scale MGUT down to the heavy singlet neutrino scale MN , the neutrino

55
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Yukawa couplings generate non-universal contributions to the soft masses for the charged

leptons [69]. Such couplings are dangerous because they are a source of lepton flavor

violation (LFV) [69], for which the experimental bounds are extremely strong. This in

turn imposes stringent constraints on the heavy neutrino sector.

Although adding right-handed neutrinos to SUSY models can lead to problematic lepton

flavor violating (LFV) rates, such extensions also have some attractive collateral features.

One of these is the possibility of generating the baryon asymmetry via leptogenesis [70, 71].

The heavy right-handed neutrinos can fulfill the three Sakharov conditions for baryogene-

sis [74], which can be realized through the mechanism of leptogenesis. Each of these will

be discussed below.

Requiring that the neutrino-extended HENS (νHENS) model account for the baryon

asymmetry of the universe, while respecting the current bounds on LFV, leads to con-

straints on the structure of the neutrino Yukawa matrix and the right-handed neutrino

masses[75]. Previous studies that combine the requirements for leptogenesis with the

bounds from LFV can be found in Refs. [76, 77, 78, 79]. Compared to these previous

works, we study the constraints from LFV within the context of a specific model for which

the lack of flavor mixing outside the neutrino sector is well-motivated. An interesting result

along these lines is that the amount of LFV in the HENS model is largely controlled by the

value of m2
Hu

at the high input scale. Therefore, the degree to which the neutrino sector

parameters are constrained depends strongly on the size of m2
Hu

.

5.1 LFV in the HENS Model with Heavy Neutrinos

We begin by considering the constraints on the HENS model from LFV induced by the

inclusion of heavy right-handed neutrinos. These constraints depend strongly on the pa-

rameters in the neutrino sector such as the Majorana masses for the right-handed neutrinos

and the neutrino Yukawa matrix. Some of these neutrino sector parameters have been de-
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termined by the measurements of the light neutrino mass differences and mixings [80, 81].

In anticipation of computing the LFV constraints, we collect here our notation and as-

sumptions about the neutrino sector.

In terms of the couplings in the full superpotential of Eq. (5.1), the low-energy effective

superpotential of Eq. (5.2) implies that the light neutrino mass matrix is given by

mνij =
v2
u

2
(Y T

ν M−1
N Yν)ij(5.3)

This matrix can be diagonalized by the unitary PMNS matrix U [82, 83]. Following the

standard convention, we will parameterize the PMNS matrix with three real angles and

three phases according to

(5.4) U = O23(θ23) ΓδO13(θ13) Γ∗δ O12(θ12) × diag[eiα1/2, eiα2/2, 1]

where Γδ = diag(1, 1, eiδ), and Oij = [(cij , sij), (−sij , cij)] with cij = cos θij and sij =

sin θij .

It is convenient to make use of the known structure of the light neutrino mass matrix

to parameterize the neutrino Yukawa matrix Yν according to [84]

(5.5) Yν =
1
vu

√
MN R

√
mνdiag

U †

where R is a complex orthogonal matrix, MN is the diagonal right-handed neutrino mass

matrix, and mνdiag
is the diagonalized left-handed neutrino mass matrix. Here, and

throughout this paper, we will always work in a field basis such that the right-handed

neutrino and charged lepton mass matrices are diagonal. Since the R matrix is complex

orthogonal, we can parameterize it in terms of three complex angles according to

(5.6) R = diag(±1,±1,±1) O12(θ12R)O23(θ23R)O31(θ31R).

with Oij = [(cijR, sijR), (−sijR, cijR)], where cijR = cos θijR and sijR = sin θijR. Note that

since these angles are complex, the components of R are not bounded in magnitude. This
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means that some of the entries in the neutrino Yukawa matrix could be quite large, but

through cancellations among the see-saw contributions, still give rise to acceptably small

light neutrino masses. In order to avoid too much fine-tuning in this regard, we will only

consider R matrices with |Rij | < 10, which corresponds roughly to a tuning of less than

10% in the light neutrino mass matrix. Our choices for the light neutrino masses and

mixings are listed in Appendix B.

5.1.1 Off-Diagonal HENS Soft Terms from RG Running

Without heavy right-handed neutrinos, the HENS model is safe in terms of lepton-flavor

violation (LFV). With heavy right-handed neutrinos, lepton-flavor violating couplings can

arise among the scalar soft terms in the course of renormalization group (RG) running from

the input scale MGUT down to the electroweak scale . The strict experimental limits on

LFV will in turn lead to constraints on the neutrino Yukawa couplings and right-handed

neutrino masses. Since this new source of flavor changing neutral currents (FCNC) in

the HENS model arises from RG running, and not the SUSY breaking mechanism, its

amplitude will have a similar form to that found in mSUGRA models.

The dominant contributions to the off-diagonal flavor-mixing components can be ap-

proximated by expanding the beta functions about their GUT scale values as

(5.7) β(t) = β(tG) +
(

d

dtG
β(tG)

)
(t− tG) + · · · .

As long as the mass of the heavy right-handed neutrinos is not far from the GUT scale,

the second term, which is loop suppressed, will be subleading1. With the dominant contri-

bution to the beta function being constant, it can easily be integrated. In the case of the

HENS model where m2
f̃

= 0, m2
Hu

, m2
Hd
6= 0, the leading contribution to the off-diagonal

1The leading-log approximation breaks down for M1/2
>∼ 1000GeV and |m2

Hu
| . (100 GeV)2 [85]. To avoid this,

we include subleading terms (m2
Li 6=j

− m2

L
(0)
i 6=j

∼ Y 4
ν m2

Hd
) in our numerical analysis, where m2

L
(0)
i 6=j

is the leading

order contribution.
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�H̃ λ̃

l̃R or l̃L

λ̃ H̃
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γ

(a)
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Figure 5.1: All relevant diagrams for the anomalous magnetic moment that do not involve left-right
mixing are of this form. The H̃ can be either the charged or neutral Higgs and λ̃ is
either the bino, B̃, or wino, W̃±. l̃L represents either a sneutrino, ν̃ or a left-handed
slepton, ẽL and l̃R is a right-handed slepton.

components of the scalar masses is[69, 86]

m2
L̃i6=j

= − 1
8π2

m2
Hu

∑

k

Y ∗
νkiYνkj ln

(
MGUT

MNk

)
.(5.8)

To this order of approximation, the beta functions of the flavor non-diagonal elements in

the scalar trilinear soft couplings and the right-handed slepton soft masses vanish. This

procedure will also give corrections to the diagonal components of the scalar masses. When

the constraints on the neutrino Yukawa couplings from LFV are applied, the corrections to

the diagonal components of the scalar masses are numerically very small; less than about

5 GeV in most of the parameter space. However, when these corrections could be relevant

we have included them.

5.1.2 HENS LFV

The off-diagonal soft terms introduced by RG running, given in Eq. (5.8), will induce

LFV transitions of the type `i → `j γ through loop diagrams containing scalar particles.

Because the mass eigenstates are a mixture of different flavors, the scalar particles will

change flavor as they propagate. To better understand how this occurs, we will give a

simple two flavor example and show how the propagators in the mass eigenstate basis

are related to the propagators in the interaction basis (See last Ref. in [2]). A generic

propagator in the mass eigenstate basis can be written as
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(5.9) Bij =
∑

A

UiAU∗
Aj

q2 −m2
A

,

where mA are the eigenvalues of the mass matrix

m̃2 =




m̃2
1 ∆

∆ m̃2
2


 ,(5.10)

and UiA diagonalizes this matrix. If ∆ is small, the eigenvalues of this matrix can be

approximated as

m2
1 = m̃2

1 −
∆2

m̃2
2 − m̃2

1

= m̃2
1 − δm2

1,(5.11)

m2
2 = m̃2

2 +
∆2

m̃2
2 − m̃2

1

= m̃2
2 + δm2

1.(5.12)

Using these expressions for the masses, we expand the propagator about m2
1, remembering

Ui1U
∗
1j = −Ui2U

∗
2j . If we keep only term to order ∆2 we get

Bij =
1

q2 − m̃2
1

[
Ui1U

∗
1j(m

2
2 −m2

1)
] 1

q2 − m̃2
2

=
1

q2 − m̃2
1

δm2
ij

1
q2 − m̃2

2

.(5.13)

In this limit of small ∆, the off-diagonal components of U , the matrix that diagonalizes

m̃2, are found to be

(5.14) U12 = −U21 =
∆

m̃2
2 − m̃2

1

' ∆
m2

2 −m2
1

.

Combining these relations, we find that the propagator in the mass eigenstate basis is

related to the one in the interaction basis as

(5.15)
∑

A

UiAU∗
Aj

q2 −m2
A

' 1
q2 − m̃2

1

∆
1

q2 − m̃2
2

.



61

To leading order, the mass eigenstate propagator is equivalent to two interaction eigenstate

propagators separated by a mass insertion. This expression explicitly links the flavor

violation in the scalar mass matrices to the flavor violation in loop diagrams. It also helps

us understand how non-diagonal scalar mass matrices can lead to flavor violation in the

SM. Loops composed of these flavor violating propagators will link vertices of different

flavors. SM particles attached to the end of this type of propagator can have different

flavors.

The non-diagonal scalar masses are most dangerous in the lepton sector. These cou-

plings contributing to LFV are the most dangerous because of the tight experimental

constraints on `i → `j γ. The leading contributions to the branching fractions for these

transitions in the HENS model can be written as [86, 87, 88]

(5.16) B(`i → `jγ) =
α

4Γ(`i)
m5

`i
|A(ij)

L |2,

where Γ(`i) is the total decay width of lepton `i, and the amplitude A
(ij)
L has the schematic

form [86, 87]

A
(ij)
L = m2

L̃i 6=j
F

(ij)
L ,(5.17)

with F
(ij)
L a combination of loop functions that depend on the chargino, neutralino, and

slepton masses. These loop functions are such that the dominant contribution to B(`i →

`jγ) scales approximately as m2
L̃i6=j

tan2 β M−8
1/2. Note also that in this leading contribution

to the LFV branching fractions, the flavor violating term m2
L̃i 6=j

can be factored out. This

will allow us to discuss the effects of the neutrino sector and the supersymmetry breaking

sector separately.

The differences in the branching fractions of Eq. (5.16) for the HENS model as compared

to mSUGRA lie in the form m2
L̃i 6=j

and the low-scale sparticle masses. However, m2
L̃i 6=j

is

qualitatively similar in the two theories and will be of the same order of magnitude for
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both theories as long as m2
Hu

∼ m2
0 + a2

0. The loop functions F
(ij)
L are also qualitatively

similar, but differ in the masses of the gauginos and sleptons running in the loops. From

this this functional dependence, there can be a slight enhancement of the LFV rates in

HENS relative to mSUGRA because the slepton masses tend to be somewhat lighter in

the HENS model. On the other hand, the LFV rates can be reduced in the HENS model

relative to mSUGRA by arranging for m2
Hu

to vanish, which suppresses the leading source

of lepton flavor mixing given in Eq. (5.8). As shown in Ref. [14], it is often possible to

obtain a consistent phenomenology with m2
Hu

∼ 0, especially for tanβ . 30. To obtain a

similar suppression in mSUGRA, one would need both m0 and a0 to be quite small which

can be phenomenologically problematic [89, 90].

5.1.3 Constraints on the HENS Model from LFV

The possibility of inducing LFV places significant constraints on right-handed neutrino

extensions of the HENS model. The two strongest bounds on new sources of LFV come

from searches for µ → eγ and τ → µγ transitions:

B(µ → eγ) < 1.2× 10−11, [91](5.18)

B(τ → µγ) < 4.5× 10−8, [92, 93](5.19)

B(τ → eγ) < 1.1× 10−7, [94](5.20)

It was shown in Ref. [86] if these bounds are satisfied, the bounds on other experimentally

searched-for channels such as B(µ → 3e) will generally be satisfied as well.

In Fig. 5.2 we show the dependence of the LFV branching fraction B(µ → eγ) on the

high-scale input values of m2
Hu

and m2
Hd

in the HENS model with right-handed neutrinos.

The other HENS parameters are taken to be M1/2 = 300 GeV, tanβ = 10, and sgn(µ) = 1.

This value of M1/2 is about as small as is possible in the HENS model while still obtaining a

sufficiently heavy Higgs boson [14]. The points in this figure cover the region of the HENS
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Figure 5.2: B(µ → eγ) as a function of the HENS model parameters m2
Hu

and m2
Hd

at the high
input scale. The other model parameters are M1/2 = 300 GeV, tan β = 10, and
sgn(µ) = 1 as well as neutrino-sector parameters θ12R = θ13R = θ23R = π/4 + i ln(

√
2),

MN3 = 1012 GeV, MN2 = 1011 GeV, and MN1 = 1010 GeV. All points in this plot are
consistent with collider phenomenology constraints and have a neutralino LSP.

parameter space that is consistent with all collider and phenomenological constraints other

than from LFV, and that has a neutralino LSP. The neutrino-sector parameters are taken

to be MN3 = 1012 GeV, MN2 = 1011 GeV, MN1 = 1010 GeV, the light neutrino masses are

as described in Appendix B with m3 = 0.05 eV, and the R-matrix angles (see Eq. (5.6))

are equal to θ12R = θ13R = θ23R = π/4 + i ln(
√

2). These particular values of the neutrino

sector parameters were chosen for convenience, but we have checked that they lead to

typical amounts of LFV. The decreasing trend in B(µ → eγ) from bottom-left to top-right

in this figure corresponds largely to a decreasing value of m2
Hu

. This is not surprising given

Eq. (5.8), which shows that the leading contribution to lepton flavor mixing is proportional

to m2
Hu

.

Fig. 5.3 shows the dependence of the LFV branching fraction B(µ → eγ) on m2
Hu

and m2
Hd

for the same neutrino sector parameters as Fig. 5.2, but now with M1/2 =
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Figure 5.3: B(µ → eγ) as a function of the HENS model parameters m2
Hu

and m2
Hd

. The other
model parameters are M1/2 = 500 GeV and tan β = 10, as well as neutrino-sector
parameters θ12R = θ13R = θ23R = π/4 + i ln(

√
2), MN3 = 1012 GeV, MN2 = 1011 GeV,

and MN1 = 1010. All points in this plot are consistent with collider phenomenology
constraints and have a neutralino LSP.

500 GeV. Also as before, tanβ = 10, sgn(µ) = 1, and all points shown are consistent

with collider constraints and have a neutralino LSP. Compared to Fig. 5.2, the LFV rates

are considerably lower. This can be understood in terms of the general scaling of all the

superpartner masses with M1/2, and the fact that larger superpartner masses suppress the

loop functions appearing in Eq. (5.17). Aside from this scaling, the shapes of the contours

in the two figures are very similar, with the dominant variation in the branching fraction

due to the changing input value of m2
Hu

.

In Fig. 5.4 we illustrate the dependence of the LFV branching ratio B(µ → eγ) on m2
Hu

and m2
Hd

for tanβ = 30, M1/2 = 500 GeV, and sgn(µ) = 1 over the allowed parameter

space in the HENS model. All points in the plot satisfy collider phenomenology constraints

and have a neutralino LSP. The values of the neutrino sector parameters are the same as

in Figs. 5.2 and 5.3. The variation of B(µ → eγ) in this plot again tracks the value of
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Figure 5.4: B(µ → eγ) as a function of the HENS model parameters m2
Hu

and m2
Hd

. The other
model parameters are M1/2 = 500 GeV and tan β = 30, as well as neutrino-sector
parameters θ12R = θ13R = θ23R = π/4 + i ln(

√
2), MN3 = 1012 GeV, MN2 = 1011 GeV,

and MN1 = 1010. All points in this plot are consistent with collider phenomenology
constraints and have a neutralino LSP.

m2
Hu

. However, the overall values of the LFV branching ratio B(µ → eγ) are larger than

in the previous figures. There are two reasons for this. The first is that the expression

for B(µ → eγ) scales like tan2 β. The second reason for the relative enhancement in the

LFV rates is that larger values of tanβ also enhance the τ Yukawa coupling, making it

more likely to obtain a stau LSP. To obtain a neutralino LSP, which we demand as a

phenomenological constraint, m2
Hu

must be large in magnitude and negative in sign. This

limits the suppression of B(µ → eγ) that occurs in the HENS model as m2
Hu

becomes

small. With these two sources of relative enhancement at larger values of tanβ, we see

that in the present example there are very few parameter points consistent with the bound

on B(µ → eγ) listed in Eq. (5.18).

In the plots discussed above, the LFV rates depend most sensitively on the parameter

m2
Hu

. To better illustrate this relationship, we plot in Fig. 5.5 the same sets of points as in
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Figs. 5.2, 5.3, and 5.4 in terms of B(µ → eγ) as a function of m2
Hu

. These sets correspond

to tan β = 10 and M1/2 = 300 GeV, tanβ = 10 and M1/2 = 500 GeV, and tanβ = 30 and

M1/2 = 500 GeV respectively, with m2
Hd

scanned over. The values of the neutrino sector

parameters are the same as in the previous plots. As expected from Eq. (5.8), the LFV

rates drop precipitously as m2
Hu

→ 0. When this occurs, only the much smaller terms

beyond the leading order term given in Eq. (5.8) contribute to lepton flavor mixing. These

subleading terms scale like M1/2, and can not be zeroed out due to the phenomenological

lower bounds on M1/2. Fig. 5.5 also illustrates the scaling of B(µ → eγ) with M1/2, which

we expect to go like M−8
1/2, as well as the enhancement of the LFV rates for larger values of

tanβ. There is a dip in the branching fraction at m2
Hu

' (700)2 GeV2. This corresponds

to M1 ' µ, leading to a large mixing among the neutralinos and a cancellation between

contributions to the amplitude.

We have concentrated so far on the specific branching fraction B(µ → eγ). The related

branching fractions B(τ → µγ) and B(τ → eγ) both have a very similar dependence on

the HENS model parameters. Plots of these branching fractions as a function of m2
Hu

are

nearly identical in both shape and overall normalization to those in Fig. 5.5. However,

since the experimental upper bounds on the branching fractions of these τ modes are

more than a couple of orders of magnitude larger than the µ mode, they provide much

weaker constraints on the neutrino-enhanced HENS parameter space. We will therefore

concentrate most strongly on the µ → eγ mode in the present work, but will briefly mention

when the τ modes can be relevant.

Having studied the dependence of the LFV rates on the HENS model parameters for

a particular (but typical) set of neutrino sector parameters, let us next examine the de-

pendence of the LFV rates on the details of the neutrino sector. In Fig. 5.6 we show the

branching fraction B(µ → eγ) as a function of the heaviest right-handed neutrino mass
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Figure 5.5: B(µ → eγ) as a function of m2
Hu

at the high input scale for several values of M1/2

and tanβ. Values of m2
Hd

were scanned over, and all points are consistent with collider
phenomenology constraints and have a neutralino LSP. The neutrino sector parameters
are given by θ12R = θ13R = θ23R = π/4+ i ln(

√
2), MN3 = 1012 GeV, MN2 = 1011 GeV,

and MN1 = 1010 GeV. The dashed line in this figure corresponds to the experimental
LFV bound B(µ → eγ) < 1.2× 10−11.

MN3 . Of the heavy neutrino masses, this one usually plays the most important role in de-

termining the amount of LFV. The HENS model parameters for this plot are tanβ = 10,

M1/2 = 300 GeV, m2
Hu

= −(511 GeV)2 and m2
Hd

= −(668 GeV)2. These values produce

a phenomenologically consistent spectrum, which we list in Appendix C, and are not un-

usual in terms of LFV. The light neutrino masses are as described in Appendix B. The

remaining neutrino sector parameters were scanned over: heavy neutrino masses lie in the

range MN ∈ [107, 1014] GeV with no particular hierarchy between them, and the R matrix

angles range over Re(θ) ∈ [0, 2π] and Im(θ) ∈ [−2, 2]. Within the plot, the blue circles,

green squares, and red diamonds correspond to Max{|R|} ∈ [0, 2], Max{|R|} ∈ [2, 5], and

Max{|R|} ∈ [5, 10]. Recall that since R is a complex orthogonal matrix, its components

are unbounded, although large components require a fine-tuning to obtain small neutrino

masses.
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Figure 5.6: B(µ → eγ) as a function of the heaviest right-handed neutrino mass MN3 for the HENS
parameters m2

Hu
= −(668)2 GeV2, m2

Hd
= −(511)2 GeV2, tan β = 10, and M1/2 =

300 GeV. The blue circles, green squares, and red diamonds correspond to Max{|R|} <
2, 2 < Max{|R|} < 5, and 5 < Max{|R|} < 10, respectively. The dashed line represents
the experimental bound of B(µ → eγ) < 1.2× 10−11.

The two most important neutrino sector quantities for B(µ → eγ) are the structure of

the R matrix and the value of MN3 . The importance of both quantities can be seen in

Fig. 5.6. In general, smaller neutrino Yukawa couplings lead to less lepton flavor mixing

which is apparent from examining Eq. (5.8). In fact, the branching fraction will scale as

Y 4
ν ∼ M2

N3
. Thus, given Eq. (5.5), it is not surprising that smaller components in the

R matrix, and lower values of MN3 lead to lower values of B(µ → eγ). What is more

interesting is the wide range of values of this branching fraction for a given fixed value of

MN3 . This indicates that certain textures of the neutrino Yukawa matrix can greatly reduce

the amount of LFV. On account of these various sensitivities, it is difficult to demarcate

a region of parameter space consistent with the LFV bounds other than by what we have

illustrated in Fig. 5.6. Certain challenging sets of neutrino sector parameters require

MN3 < 1010 GeV, while for other neutrino parameters the requirement can be weakened



69

to MN3 < 1013 GeV. More concrete constraints can be derived in certain limits, such as

when the right-handed neutrinos are strongly hierarchical.

5.2 νHENS Leptogenesis with LFV Constraints

The primary motivation for heavy right-handed neutrinos is to explain the findings of

neutrino oscillation experiments. However, heavy neutrinos also provide a mechanism to

account for the baryon asymmetry, which is measured to be [95]

(5.21) YB =
nB − nB

s
= (8.7± 0.3)× 10−11.

With heavy right-handed neutrinos, this baryon asymmetry can be generated through the

process of leptogenesis [70, 71].

In the present section we investigate whether the HENS model with heavy right-handed

neutrinos can explain the baryon asymmetry through thermal leptogenesis while still sat-

isfying the constraints on the model from LFV discussed above. To be concrete, we fo-

cus on two particular points in the HENS parameter space. For these points, we study

many different structures of the neutrino sector, with the one simplifying assumption of

slightly hierarchical right-handed neutrino masses with MN1 . MN2,3/3. We will refer to

the two HENS model parameter sets as points A and B. Both points have tanβ = 10,

M1/2 = 300 GeV, and sgn(µ) > 0. For point A, the Higgs sector parameters at the in-

put scale are m2
Hu

= −(668)2 GeV2 and m2
Hd

= −(511)2 GeV2. The corresponding input

values for point B are m2
Hu

= −(100)2 GeV2, m2
Hd

= −(359)2 GeV2. The resulting low-

energy spectra for these two points are phenomenologically consistent, aside from LFV

constraints. We list their mass spectra in Appendix C. The crucial difference between the

two parameter points is that the input value of m2
Hu

is much larger for point A than for

point B.
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5.2.1 The Three Conditions for Baryogenesis

There are three necessary conditions for baryogenesis known as the Sakharov condi-

tions [74, 96]. The first, and most obvious, is that there must be baryon number violation

∆B 6= 0. Without baryon number violating interactions, it is impossible for the universe

to start with B = 0 and evolve to a state with B 6= 0.

A second condition for baryogenesis is C (charge) and CP (charge parity) violation.

Because the baryon asymmetry is contained mostly in protons which are charged, the

universe was either initially charged or C is not conserved. An initially charged universe

could accommodate but never fully explain the baryon asymmetry. Thus, it is usually

assumed, and we will assume it here, that the universe was initially neutral and through

charge violating interactions became charged. Otherwise, the universe which was originally

neutral could never evolve to a state with an excess of protons. If the CP symmetry was

not broken, matter and anti-matter would couple identically. If they couple identically,

the evolution of the universe would be symmetrical in matter and anti-matter, producing

no baryon asymmetry. Explicitly what this means is that the time evolution operator of

the universe does not commute with the C and CP operators. The evolution of the state

vector of the universe is as follows

(5.22) |φ(t)〉 = eiHt|φ0〉.

If [C,H] = [CP, H] = 0, the universe would still be an eigenstate of C and CP and no

baryon asymmetry would exist.

The last needed condition is non-equilibrium. If the universe remains in equilibrium,

chemical and thermal, all chemical potentials will be zero throughout the evolution of the

universe. The difference in the number density of particles and their anti-particle, when in

thermal equilibrium, can be written as[96]
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nX − nX̄ =





gXT 3

6π2

[
π2

(µX
T

)
+

( µ
T

)3
]

(T À mX)

2gX

(
mXT
2π

)2
sinh

(µX
T

)
exp

(−mX
T

)
(T ¿ mX)

.(5.23)

From this equation, it is clear that if the universe remains in chemical equilibrium, µX = 0,

no particle anti-particle asymmetry can be produced.

5.2.2 Baryogenesis from Leptogenesis

By introducing right-handed neutrinos to the SM, all the necessary elements for baryo-

genesis are present. The decay of right handed neutrinos violate C and CP , and the ex-

panding universe produces non-equilibrium. The baryon violation is through the sphaleron

which converts leptons into baryons. To get a better understanding of these features of

leptogenesis, we will include further explanation.

The U(1) global symmetries of the SM are baryon and lepton number conservation. It is

the anomalous behavior of these global symmetries that lead to baryon number violation.

These U(1) transformations lead to a non-trivial Jacobian in the functional integral. Unless

the sum of all the anomalies cancel, these symmetries will not be conserved. Because the

anomalies of the combination B − L cancel, baryon number and lepton number can only

be violated in the combination B + L. To understand this symmetry violation better[96],

we consider the effect of a general chiral transformation

(5.24) ψ → e(a+bγ5)θ(x)ψ.

Under this transformation, the variation of the action for a free massless fermion is

(5.25) δS0 =
∫

d4x
[
ψ̄γµ(a + bγ5)ψ∂µθ(x)

]
=

∫
d4xθ(x)∂µ

(
ψ̄γµ(a + bγ5)ψ

]
.

If no other terms proportional to θ(x) were produced, the current (Jµ = ψ̄γµψ) would

be conserved and ∂µJµ = 0. However, this rotation also produces a nontrivial Jacobian
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that will contribute to the variation of the action. For vector like particles, the anomalous

contribution to the action is

(5.26) δSanomaly =
∫
−α(x)

g2

16π
εαβµνFαβFµν .

This anomalous contribution arises from the field transformation

(5.27) ψ → eiα(x)γ5ψ = (1 + iα(x)γ5)ψ.

For chiral fields, this transformation is equivalent to the general transformation found in

Eq. (5.24). This can be seen by considering the infinitesimal form of the transformation

in Eq. (5.24)

eia(1 + γ5) = (1 + a)(1 + γ5) = (1 + aγ5)(1 + γ5) = eiaγ5(1 + γ5),(5.28)

eia(1− γ5) = (1 + a)(1− γ5) = (1− aγ5)(1− γ5) = e−iaγ5(1− γ5).(5.29)

The generalized transformation in Eq. (5.24) becomes

ψL → e−(a−b)γ5θ(x)ψL,

ψR → e(a+b)γ5θ(x)ψR.(5.30)

Because this generalized transformation on chiral fields is equivalent to the transformation

in Eq. (5.27) for vector fields, the anomaly for each chiral field will be equivalent to that

for the vector field with the modification to the coefficients as found in Eq. (5.30). The

anomalous contribution to the action from the transformation in Eq. (5.24) is then

δSanomaly =
∫

d4xθ(x)
1

16π2
[(a + b)(g2

1Y
2εαβµνF hy

αβF hy
µν )(5.31)

−(a− b)(g2
1Y

2εαβµνF hy
αβF hy

µν + εαβµνFweak
αβ Fweak

µν )].

To have a stationary action, the coefficient of θ(x) must vanish. This gives the equation of

current conservation

(5.32) ∂µ

(
ψ̄γµ(a + bγ5)ψ

)
=

a− b

8π2
TrF̃ (L)µνF (L)

µν +
a + b

8π2
TrF̃ (R)µνF (R)

µν ,
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where the gauge coupling has been absorbed into the definition of Fµν and F̃µν = 1/2εµναβFαβ.

To identify these symmetry transformations with baryon number or lepton number viola-

tion, we can chose a and b accordingly. Substituting a = 1/3 into the previous expression,

it corresponds to a baryon number violation. This gives the following relation for the

baryonic current, Jµ
B = 1/3

∑
q̄γµq,

(5.33) ∂µJµ
B = i

Nf

32π2
(−g2

2F
aµνF̃ a

µν + g2
1f

µν f̃µν).

If a = 1, we have the equation for the lepton number anomalous current, JL =
∑

(l̄γµl +

ν̄γµν), which is related to the baryonic current as follows

(5.34) ∂µJµ
B = ∂µJµ

L.

This relation is the reason that all the anomalies of the SM cancel. This equivalence also

preserves the B − L symmetry in the SM, but says nothing about the B + L symmetry.

If these equations have a background field solution with a non-zero value of
∫

d4x∂µJµ
B,L,

baryon number and lepton number will be violated while the combination B − L will be

preserved. Manipulating the right side of Eq. (5.33) [96], we find

(5.35) ∂µJµ
B = i

Nf

32π2
(−g2

2∂µKµ +−g2
1∂µkµ)

where

Kµ = 2εµναβ(∂νA
a
αAa

β −
1
3
g2εabcA

a
νA

c
αAc

β)(5.36)

kµ = 2εµναβ(∂νBαBβ).(5.37)

If either of these fields, kµ or Kµ, have non-zero surface terms
∫

dx4∂µJµ
B,L 6= 0, there

will be baryon number and lepton number violation. The operator that arises from this

non-perturbative effect is[97]

(5.38) OB+L =
3∏

i=1

qLiqLiqLi lLi ,
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and leads to interactions that can convert leptons to baryons and give the baryon asym-

metry.

To take advantage of the the sphaleron which converts leptons to baryons, we need to

create an excess of leptons. This can be done when right handed neutrinos are introduced

to the SM. Because the right-handed neutrinos are singlets under the gauge groups of the

SM, they can have a Majorana mass term. With this Majorana mass term, a fairly generic

neutrino sector can be written as

(5.39) WN = NYνLHu +
1
2
NMNN.

The Majorana mass matrix can be diagonalized by a field redefinition of N . The neutrino

Yukawa coupling, on the other hand, can only be simplified by the neutrino fields absorbing

three phases. This leaves 9 real parameters and 6 phases in the Yukawa matrices. These

phases will lead to a difference in the interactions of neutrinos and anti-neutrinos. This

can be seen from considering a simple Lagrangian,

(5.40) L = yφφ̄1φ2 + y∗φ∗φ̄2φ1,

where the first operator is an interaction for particles and the second is for anti-particles.

The CP operation on the above Lagrangian essentially interchanges the two operators but

not the couplings. In order for the Lagrangian to be CP invariant, the coupling y must be

real. If CP is violated and y is complex, the coupling of the fermions and anti-fermions are

different. The phases in the Yukawa matrix, which controls how large the complex part is,

give different couplings for neutrinos and anti-neutrinos. These different couplings make it

possible to produce a lepton asymmetry.

Thermal non-equilibrium is a consequence of the expanding universe. To maintain
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equilibrium, the particles must be able to react faster than the expansion of the universe

moves them away from each other. From this it may not seem to be difficult to maintain

equilibrium, but the expanding universe also affects the number density. When the tem-

perature drops below the mass of a given particle, the equilibrium number density becomes

exponentially suppressed as follows

(5.41) nEQ
X = gX

(
mXT

2π

) 3
2

exp
(
−mX

T

)
.

In order for particle X to maintain equilibrium, the number density of a particle X must

decrease very quickly in order to keep up with the exponentially decreasing equilibrium

number density. Because the reactions of the particles are unable to do this, the universe

departs from equilibrium.

5.2.3 νHENS Leptongenesis

We use the results of Ref. [98] to compute the baryon density due to thermal leptogenesis

in the HENS model, which does not differ significantly from the story for other supersym-

metric models. In our analysis, we take into account flavor effects [98, 99, 100, 101, 102]

arising from interactions of the charged Yukawa couplings. In the calculation of the baryon

asymmetry produced from the N1 decay, there are two important parameters: the CP and

L asymmetry εα and the effective neutrino mass m̃α for each lepton flavor α = e, µ, τ . In

the limit of MN1 ¿ MN2,3 , they are given by

εα ' −3MN1

16πv2
u

Im
[∑

i,j m
1/2
i m

3/2
j U∗

αiUαjR1iR1j

]
∑

k mk|R1k|2 ,(5.42)

m̃α ≡ |Yν1α|2v2
u

MN1

=

∣∣∣∣∣
∑

k

R1km
1/2
k U∗

αk

∣∣∣∣∣
2

.(5.43)
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Now for (1 + tan2 β) 109 GeV . MN1 . (1 + tan2 β) 1012 GeV, the two-lepton flavor ap-

proximation is appropriate and the resulting baryon density is [98]

(5.44) YB ' − 10
31g∗

[
ε2η

(
541
761

m̃2

)
+ ετη

(
494
761

m̃τ

)]
.

In this expression, g∗ is the usual number of relativistic degrees of freedom, and m̃2 ≡

m̃e + m̃µ and ε2 ≡ εe + εµ.

For lighter right-handed neutrino states, in the range (1 + tan2 β)105 . MN1 . (1 +

tan2 β)109, we must account for all three lepton flavors. The appropriate expression for

the final baryon asymmetry in this case is

(5.45) YB ' − 10
31g∗

[
εeη

(
93
110

m̃e

)
+ εµη

(
19
30

m̃µ

)
+ ετη

(
19
30

m̃τ

)]
.

In the above equations, the parameter η is the washout parameter which is given by

(5.46) η(m̃l) =

[(
m̃l

8.25× 10−3eV

)−1

+
(

0.2× 10−3eV

m̃l

)−1.16
]−1

.

Motivated both by the apparent hierarchy of light neutrino masses and the desire to

reduce the amount of washout of the lepton asymmetry generated by heavy neutrino decays,

we will focus on mildly hierarchical right-handed neutrino masses, with MN1 < MN2,3/3.

Within this mild hierarchy, the washout of MN2,3 have no effect on the asymmetry produced

from N1 interactions. It also allows us to use the well accepted N1 dominated scenario

of leptogenesis, even in the flavored case. Recently, this scheme was called into question

by [103]. In this work they considered flavor dependent leptogenesis, but only considered

decays and ∆L = 2 scattering. With this scenario, the washout of the lepton asymmetry

produced by N2 from inverse decays of N1 is suppressed by a projection operator Piα =

Γiα/Γi = |Yνiα|2/(YνY
†
ν )ii. Because of this projection operator, the asymmetry in N2 is not

always completely washed out like it is in the single flavor case. However, the washout from

interactions like Qtt ↔ `αN1 on the asymmetry produced by N2 was never considered. In
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the regime of MN2 > 3MN1 this washout can have a significant effect on lepton asymmetry

making it difficult for any asymmetry produced by N2 to survive. However, we have also

checked that using the approximation found in [103] still gives nearly identical result as we

have here. The reason for this is that the important interplay here is between the lower

mass bound set by leptogenesis and the upper bound set by FCNC. Even if N2 decays

completely account for the baryon asymmetry, they can only do so if they have a large

enough mass. In [103] they found that MN2 & 1011 GeV. Including Qtt ↔ `αN1 can only

push up this lower bound on mass scale. With the mild hierarchy we have chosen, MN2

can be pushed below this lower bound with the BAU coming from N1 interactions. In this

N1 dominated scenario, the lower bound on MN2 comes from the leptogenesis bounds on

MN1 & 1010 which gives MN2 & 3× 1010. With or without N2 interactions being relevant,

the smallest MN2 that will give an acceptable BAU comes from N1 dominated scenario.

In Fig. 5.7 we show the baryon density due to leptogenesis in the HENS model with

heavy right-handed neutrinos as a function of the lightest heavy neutrino mass MN1 . The

neutrino sector parameters were scanned over, with the blue circles, green squares, and red

diamonds corresponding to Max{|R|} < 2, 2 < Max{|R|} < 5, and 5 < Max{|R|} < 10,

respectively. The HENS model parameters were set to M1/2 = 300 GeV, tanβ = 10,

m2
Hu

= −(668 GeV)2, and m2
Hd

= −(511 GeV)2, although the resulting baryon asymmetry

is fairly independent of these values. The corresponding superpartner spectrum is phe-

nomenologically acceptable aside from LFV constraints. We will impose these constraints

in the next section.

Fig. 5.7 illustrates the well-known lower bound on MN1 if thermal leptogenesis is to be

the source of the baryon asymmetry of the universe. The minimal value of MN1 that works

is on the order of 1010 GeV, which is consistent with the results of Refs. [104, 105, 106].

This plot also shows that the final baryon asymmetry is reduced as the magnitudes of the
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Figure 5.7: Baryon density due to leptogenesis in the HENS model as a function of MN1 . The
HENS model parameter were set to m2

Hu
= −(668)2 GeV2, m2

Hd
= −(511)2 GeV2,

tan β = 10, and M1/2 = 300 GeV, and the neutrino sector parameters were scanned
over. The blue circles, green squares, and red diamonds correspond to Max{|R|} < 2,
2 < Max{|R|} < 5, and 5 < Max{|R|} < 10, respectively. The dashed line represents
the measured baryon density YB = (8.7± 0.3)× 10−11.

entries in the R matrix become larger. The reason for this is that larger values of |Rij |

increase the amount of washout. In the strong washout regime, which we find to be the

case throughout much of the relevant parameter space, the lepton asymmetry produced

in right-handed neutrino decays is thereby greatly diluted. To obtain a sufficiently large

lepton asymmetry to explain the baryon excess in this regime, MN1 must be larger than

about 1010 GeV. This can make it difficult to avoid the experimental constraints on LFV,

as we will discuss later.

Let us also make note of the fact that the lower bound on MN1 of about 1010 GeV

suggests that the reheating temperature after inflation was larger than this if thermal

leptogenesis is to explain the baryon asymmetry. In supersymmetric models, such large

reheating temperatures lead to the overproduction of gravitinos [107]. Within the HENS
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model with an input scale on the order of MGUT and an underlying gravity or gaugino

mediation of supersymmetry breaking, we expect gravitino masses on the order of the weak

scale [108]. Gravitinos of this mass decay during nucleosynthesis, and can ruin the ratios of

the light element abundances for TRH & 107±1 GeV [109]. A couple of possible approaches

to this problem are resonant enhancements of the lepton asymmetry as the heavy neutrinos

become nearly degenerate that allow MN1 to be lowered further [110, 111, 112, 113, 114],

or the non-thermal production of heavy right-handed neutrinos after inflation [115, 116].

5.2.4 Simultaneous Constraints

In Section 5.1 we found that LFV constraints favor smaller values of MN3 . On the other

hand, thermal leptogenesis prefers larger values of MN1 < MN3 . The tension between these

two requirements is illustrated in Fig. 5.8, where we plot points in the MN3-MN1 plane

that are consistent with LFV constraints, that generate enough of a baryon asymmetry

through thermal leptogenesis, or that satisfy both conditions. The left-hand panel of this

figure corresponds to point A described above, while the right-hand panel corresponds to

point B. In both panels, we have scanned over heavy neutrino masses MNi , as well as

the light neutrino masses and the values of the U and R mixing matrices subject to the

constraints listed in Appendix B. The blue squares in the figure are points that obey the

LFV constraints, the red circles are points that generate enough of a baryon excess, and

the green diamonds satisfy both requirements.

Only a very small subset of the points in Fig. 5.8 for set A are consistent with both the

LFV constraints and leptogenesis. This is primarily the result of the large value of m2
Hu

for

this parameter set, which leads to large LFV rates unless MN3 is very small. This in turn

pushes down the possible range of values of MN1 , making leptogenesis less effective. Only

for a small and special subset of the neutrino sector parameters can both requirements be

met. We will discuss these requirements in more detail below. In contrast, there are many
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Figure 5.8: HENS parameter points in the MN3-MN1 plane consistent with LFV constraints (blue
squares), baryogenesis through thermal leptogenesis (red circles), or both simultane-
ously (green diamonds). The panel on the left (a) is for HENS parameter set A, with
M1/2 = 300 GeV, tan β = 10, m2

Hu
= −(668)2 GeV2, and m2

Hd
= −(511)2 GeV2. The

panel on the right (b) is for HENS parameter set B, with M1/2 = 300GeV, tanβ = 10,
m2

Hu
= −(100)2 GeV2, and m2

Hd
= −(359)2 GeV2. In both plots we have scanned over

neutrino sector parameters.

points for parameter set B for which both the LFV and leptogenesis constraints are met.

Indeed, very few of the points that are consistent with generating the baryon asymmetry

through leptogenesis do not satisfy the LFV constraints. This is due to the LFV constraints

being very weak given the relatively small value of m2
Hu

for this parameter set.

5.2.5 Neutrino Yukawa Matrix Structures

We found above that only a small subset of the neutrino sector parameters allowed

for the HENS parameter set A to be consistent with the constraints from LFV while

generating the baryon asymmetry via thermal leptogenesis. The combination of these

two requirements selects a particular structure for the neutrino Yukawa matrix which

we describe here. Due to the assumed hierarchy among the right-handed neutrinos, the

Yukawa matrix will generally decrease in size from row three to row one. Thus, the leading

contributions to the off-diagonal components of m2
Lij

responsible for LFV are typically

(5.47) m2
L̃ij

= −m2
Hu

8π2
(Y ∗

ν3iYν3j t3 + Y ∗
ν2iYν2j t2) ,
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where ti = ln(MGUT /MNi). This feature selects out the Yν3i and Yν2i components of the

neutrino Yukawa matrix as being particularly important.

In Fig. 5.9 we show the dependence of the LFV branching fraction B(µ → eγ) on the

Yν3i and Yν2i components of the neutrino Yukawa matrix for the HENS model parameter

set A described above and in Appendix C. The points in this plot correspond to different

values of the R and U matrix elements, and (hierarchical) right-handed neutrino masses.

With the spectrum of parameter set A, the µ → eγ branching fraction can be written as

(5.48) B(µ → eγ) = (1400 GeV)−4 |m2
L̃21
|2.

With MN3 = 1011 GeV, for example, this translates into a constraint on the Yukawa

couplings of

(5.49) Y ∗
ν32Yν31 + Y ∗

ν22Yν21
t2
t3

< 9.6× 10−5

where ti = ln(MGUT /MNi). This constraint can be met in two different ways: both

|Yν32||Yν31| and |Yν22||Yν21| can be separately very small, or Y ∗
ν32Yν31 and Y ∗

ν22Yν21 can

cancel against each other. It is this cancellation that leads to the pointed structure in

Fig. 5.9.

The constraints on the neutrino Yukawa couplings become even stronger when we de-

mand successful leptogenesis as well. In Fig. 5.10 we show the equivalent plot to Fig. 5.9

for HENS parameter set A, but now restricted to points that are consistent with thermal

leptogenesis. Clearly, larger values of the Yukawa couplings are required for successful

leptogenesis. For these points to also be consistent with LFV constraints, there must be a

significant cancellation between Y ∗
ν32Yν31 and Y ∗

ν22Yν21 to suppress B(µ → eγ), as suggested

by Eq. (5.49).

With the present sensitivities, the bounds on LFV in τ decays do not significantly

constrain the allowed parameter space in this example. However, improved sensitivities
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Figure 5.9: B(µ → eγ) in the plane of |Yν32||Yν31| and |Yν22||Yν21| for the mass spectrum A
in Appendix C, corresponding to HENS parameters m2

Hu
= −(668)2 GeV2, m2

Hd
=

−(511)2 GeV2, tan β = 10, and M1/2 = 300GeV.

from current and future experiments could change this. To illustrate the effects of improved

experimental bounds, we also draw a dashed contour in Fig. 5.10 corresponding to the

parameter region that would be allowed with the stronger constraint B(τ → µγ) < 10−10.

The stronger bound on τ decays cuts of this pointed structure by placing an upper bound

on the overall size of the neutrino Yukawa couplings. This can be understand by examining

the off-diagonal component of the slepton mass matrix that governs these decays which

correspond to taking i = 3 and j = 2, 1 in Eq. (5.47). Each one of these contains a linearly

independent set of the neutrino Yukawa couplings. However, each component of the scalar

mass matrices depends on a neutrino Yukawa coupling that is in the other components.

Unless there is a miraculous tuning among the neutrino Yukawa couplings that suppresses

more than one of the components of m2
L̃ij

, a strong constraint on τ decays will place an

upper bound on the size of the the neutrino Yukawa couplings. The points with large

neutrino Yukawa coupling in Fig. 5.10 are then excluded. Such a level of sensitivity on τ
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Figure 5.10: B(µ → eγ) in the plane of |Yν32||Yν31| and |Yν22||Yν21| for the mass spectrum A in
Appendix C. All points in this figure can account for the baryon asymmetry through
thermal leptogenesis. The dashed line corresponds to the region that would still be
allowed if the bound on τ → µγ decay were improved to B(τ → µγ) < 10−10.

decays could potentially be achieved by super B factories [118]. Improving B(µ → eγ),

on the other hand, forces more fine tuning among the different neutrino Yukawa matrix

elements.

In Fig. 5.11 we show the allowed regions in the |Yν 32||Yν 31| and MN1,3 planes for HENS

parameter set A points requiring both consistency with the current LFV bounds as well as

successful thermal leptogenesis. We have scanned over the neutrino sector parameters in

the same way as in Fig. 5.10. In this plot we also show the regions of the parameter space

that would be allowed if the bounds on LFV were improved to B(µ → eγ) < 10−13 and

B(τ → µγ) < 10−10. As discussed above, strengthening the LFV bounds tends to push

the allowed range of MN3 to lower values making leptogenesis less effective.
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CHAPTER VI

Vacuum Stability

While these HENS models are compelling, the tachyonic Higgs soft masses at the bound-

ary scale lead to concerningly large tachyonic low-scale Higgs soft masses. These, com-

bined with the small (but positive) slepton soft masses, suggest that the true vacuum

of the theory might be a charge-and-color-breaking (CCB) minimum, or there may ex-

ist unbounded-from-below (UFB) directions that are only stabilized far out in field space

by higher-dimensional operators [7, 8, 9, 10, 11, 12]. The presence of such features need

not exclude these regions of the parameter space provided our SM electroweak vacuum is

metastable and long-lived relative to the age of the universe.

In this section we study the vacuum structure of HENS models, and compute the lifetime

of the SM vacuum state when it turns out to be metastable. We concentrate on the stability

of the SM vacuum at zero temperature with respect to vacuum tunneling. Thermal effects

in the early universe can also potentially induce thermal transitions between different

vacua, and modify the shape of the potential itself. However, these thermal effects tend

to stabilize the origin of the field space to which the SM vacuum is connected, favoring

this vacuum over others that lie further out in the field space [120]. Thermal effects are

especially effective in delaying the formation of vacua that break color due to the large

thermal corrections from the strong gauge and top quark Yukawa couplings [11, 120, 121].

Scalar field evolution during and after inflation may also populate non-standard vacua,
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although the precise result depends on the details of inflation and lies beyond the scope of

this paper [12, 11]. By focusing solely on the T = 0 constraints we obtain conservative and

unambiguous bounds on the HENS parameter space that do not depend on the cosmological

history.

6.1 UFB Directions and CCB Minima in the HENS Model

With the HENS model input parameters of Eq. (1.10), relatively small slepton soft

masses as well as large tachyonic Higgs soft masses obtain near the electroweak scale

in much of the phenomenologically allowed parameter space [14]. This spectrum of soft

parameters frequently implies the existence of UFB directions and CCB minima that are

much deeper than the standard electroweak vacuum. Indeed, we find that nearly the entire

allowed parameter space in the HENS model (before imposing vacuum stability constraints)

has at least one UFB direction. We investigate the existence and nature of such potentially

dangerous vacuum features in the present section.

Given the soft breaking spectrum that arises in the HENS scenario, the results of Ref. [9]

suggest that the most dangerous vacuum feature will be a sleptonic UFB-3[9] direction.

This direction has Hd = 0, with τ̃L, τ̃R, ν̃Li6=3
, and H0

u all non-zero. Turning on expectation

values for these fields, there exists a D- and F -flat direction that is only lifted by quadratic

supersymmetry breaking operators. To obtain F -flatness, only the F -term of Hd must be

cancelled. This can be arranged by taking

|τ̃ | = |τ̃L| = |τ̃R| =
√∣∣∣∣

µ

yτ
H0

u

∣∣∣∣,(6.1)

with the relative phase of τ̃L and τ̃R chosen appropriately. D-flatness is then obtained by

setting

|ν̃Li 6=3
|2 = −

(
4m2

Li

g2 + g′2

)
+ |τ̃ |2 + |H0

u|2,(6.2)
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and represents the lowest-energy F -flat field configuration provided

|H0
u| >

√∣∣∣∣
µ

2yτ

∣∣∣∣
2

+
4m2

Li

(g2 + g′2)
−

∣∣∣∣
µ

2yτ

∣∣∣∣ .(6.3)

The scalar potential along this direction in field space then becomes [9]

VUFB−3 = (m2
Hu

+ m2
Li

)|H0
u|2 +

∣∣∣∣
µ

yτ

∣∣∣∣ (m2
L3

+ m2
E3

+ m2
Li

) |H0
u| −

2m4
Li

g2 + g′2
.(6.4)

When (m2
Hu

+ m2
Li

) is negative, the potential becomes unbounded in the limit |H0
u| → ∞.

It will ultimately be stabilized by loop corrections or higher-dimensional operators (that

we have not included in Eq. (6.4)) at a location that is very deep and far out in field space

relative to the electroweak vacuum.

This sleptonic UFB-3 direction is particularly dangerous in the HENS models on account

of the large and negative values of m2
Hu

and the smaller values of m2
Li

and m2
Ei

that emerge

in the low-energy spectrum. These properties imply that the barrier against tunneling from

the electroweak vacuum near the origin out to the deeper UFB-3 direction, arising from

the linear term in |H0
u| in Eq. (6.4), will not be especially large. The barrier will be further

weakened by larger values of tanβ which enhance the coupling yτ = mτ/v cosβ. Other

similar UFB-3 directions may be present in the theory, but they will generally have larger

barriers due to the larger values of the squark soft masses or the smaller values of the first-

and second-generation lepton Yukawa couplings.

When |H0
u| does not satisfy the bound given in Eq. (6.3), the lowest-energy F -flat

direction in the potential has |ν̃Li 6=3| = 0, and is given by [9]

(6.5) VUFB−3 = m2
Hu
|H0

u|2 +
∣∣∣∣
µ

yτ

∣∣∣∣ (m2
τ̃L

+ m2
τ̃R

)|H0
u|+

1
8
(g2

1 + g2
2)

(
|H0

u|2 +
∣∣∣∣
µ

yτ

∣∣∣∣ |H0
u|

)2

.

This potential is no longer D-flat, and is stabilized at a finite value of |H0
u|. If this point

occurs with |H0
u| less than the bound of Eq. (6.3), it is a constrained local CCB minimum.

On the other hand, when this constrained local extremum has |H0
u| larger than the bound
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of Eq. (6.3), it represents a saddle point that is unstable under flowing to a non-zero value

of |ν̃Li6=3
|.

In practice, we find that for smaller values of |H0
u| the potential can be reduced further

by relaxing the F -flatness constraint of Eq. (6.1). The effect of dropping the F -flatness

constraint is that the minimal potential for a given value of |H0
u| is deformed slightly

away from the precise UFB-3 form of Eqs. (6.4,6.5), but that the same qualitative features

remain. In particular, there usually remains a local extremum at |H0
u| 6= 0 and |ν̃Li 6=3

| = 0.

We shall designate this local extremum as CCB-4. If this extremum occurs at smaller

values of |H0
u|, on the order of the electroweak scale, it can be a local CCB minimum.

When the CCB-4 extremum occurs with a value of |H0
u| much larger than the electroweak

scale, it is generally a saddle point that flows in the ν̃Li 6=3
direction to a genuine UFB-3

direction of the form given in Eq. (6.4). Even when it is only a saddle, the CCB-4 point

plays an important role in determining the tunneling rate from the electroweak minimum

to the UFB-3 direction, as we will discuss below.

A stable CCB-4 minimum with stops can also arise for smaller values of tanβ and a

correspondingly larger yt Yukawa coupling. In this case we have Hu = 0 while |t̃L| = |t̃R| =

|t̃| and H0
d are all non-zero. The relevant potential is

(6.6) VD = m2
Hd
|H0

d |2 + (m2
t̃L

+ m2
t̃R

)|t̃|2 + |µ Hd − ytt̃
2|2 +

g2 + g′2

8
(|Hd|2 + |t̃|2)2

.

This potential is generally stable against excursions in the |d̃| = |d̃Li6=3
| = |d̃Ri 6=3

| direction

on account of the larger squark soft masses that arise in the HENS model. With m2
Hd

< 0

at the low scale, this potential often has a CCB-4 minimum with both |H0
d | and |t̃| non-zero.

However, as we show below, the barrier to tunneling to this minimum from the standard

electroweak minimum to this CCB-4 minimum is usually safely large, again on account of

the larger values of the squark soft masses as well as the less negative values of m2
Hd

. For

similar reasons, we expect that the rate for tunneling to the other potential CCB minima
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discussed in Ref. [9] will typically be less constraining than the rate to tunnel to a stau

UFB-3 direction.

6.2 Computing the Vacuum tunneling Rate

The existence of vacua deeper than the standard electroweak minimum in HENS models

implies there is a danger of tunneling into one of these phenomenologically unacceptable

states. At the very least, the lifetime for this tunneling must be greater than the age

of the universe. The vacuum-to-vacuum transition rate associated with tunneling can be

calculated using path integral methods [127, 128]. In the semiclassical approximation, the

lifetime of the vacuum is found to be

(6.7)
1

τV
= Γ/V = Ae−Sb[φ̄]

where A is a dimension-four prefactor to be discussed below, φ̄i denotes the bounce solution

for the i-th field, and Sb is the Euclidean action,

(6.8) Sb[φ̄] =
∫

d4xE

(∣∣∇φ̄i

∣∣2 + U(φ̄1, ..., φ̄i)
)

= T [φ̄i] + V [φ̄i].

The bounce solution for the fields φ̄i is the extremum of the Euclidean action that is O(4)-

symmetric and obeys the the following boundary conditions:

dφ̄i(0)
dρ

= 0(6.9)

lim
ρ→∞ φ̄i(ρ) = φSM

i(6.10)

where ρ = (~x2+t2E)1/2 is the Euclidean distance. These boundary conditions correspond to

a field that begins in a metastable vacuum and tunnels through a barrier separating it from

a deeper vacuum state, emerging with zero kinetic energy. We focus on O(4) symmetric

solutions because these are expected to have the least action, and therefore dominate the

tunneling probability [129].
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Even with the simplification of an O(4) symmetry, the equation of motion for the bounce

cannot in general be solved analytically. We compute the bounce solution numerically using

the improved action method [130]. The details of this method will be discussed below. Even

more difficult to compute is the non-exponential pre-factor A in Eq. (6.7) [128]. On general

grounds, we expect it to be on the order of the mass scale setting the size of the potential

barrier. In low-energy supersymmetry, a good estimate for this number is (100 GeV)4,

which we take to be the case throughout the rest of this article. The precise value of this

pre-factor is unlikely to affect our qualitative conclusions as the multiplicative uncertainty

in its value is much more slowly-varying than the exponentiated large values of the action

that lead to acceptable lifetimes. Our choice for the pre-factor is also conservative, in that

choosing a larger number here would only exclude more points. With this pre-factor, it

is found that the lifetime of the SM vacuum will be greater than the age of the universe,

1/(Γ/V ) & t40, provided Sb[φ̄] > 400.

The value of the bounce action for tunneling between a pair of local vacua depends on

the relative depth of the minima, the number of distinct minima, the height of the barriers

between them, and the relative size of the field values within them. In general, the bounce

solution represents a configuration of fields that simultaneously minimizes these opposing

contributions, with the kinetic term favoring slowly varying fields, and the potential term

preferring to reach the deepest minimum as quickly as possible.

As expected, our analytic tunneling solution shows that the bounce action increases

with the size of the barrier. This solution also implies that the depth of the minimum to

which one is tunneling to ceases to matter once it becomes very deep. Thus, we can safely

compute the rate to tunnel into a UFB-3 direction without knowing where it is ultimately

stabilized provided the corresponding minimum is very deep relative to the height of the

barrier. On the other hand, the relative depth of the minima is relevant to the tunneling rate
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when they are nearly degenerate, as can be seen from the analytic thin-wall approximate

solution that can be safely applied in this case [127]. One important feature not captured

by our one-dimensional analytic tunneling solution is that the bounce action tends to also

increase when there are more independent fields involved in the tunneling process, as each

one of them contributes non-negatively to the kinetic portion of the bounce action. For

these reasons, numerical solutions are used to get the details correct.

6.2.1 The Improved Action Method

The bounce action is a stationary point of the Euclidean action given in Eq. (6.8) subject

to the boundary conditions of Eqs. (6.9,6.10). The corresponding equations of motion for

the O(4) symmetric solution are

(6.11)
d2φ̄i

dρ2
+

3
ρ

dφ̄i

dρ
=

∂

∂φ̄i
U(φ̄i).

where i runs over the independent fields. These equations are a set of non-linear coupled

differential equations with an a priori unknown starting point. These conditions together

make it a very difficult problem to solve and require numerical techniques [8, 130, 131].

The technique we use in the present work is called the improved action method [130].

In this method, additional terms are added to the action that are identically zero for

the bounce solution. The advantage of adding these terms is that they make the bounce

solution a minimum of this modified action and not just an extremum. The term that does

this is found by making the change of variable x → σx in Eq. (6.8). Because the bounce is

the extremum of the action, the first derivative of the scaled action with respect to σ will

be zero for σ = 1. This gives the following condition:

(6.12)
(
σ2T [φ̄i] + 2σ4U [φ̄i]

) |σ=1 = 0

This relation illustrates that the potential term must be negative. The kinetic term cannot

be negative because it is the integral of a sum of squares. Since the potential term scales
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as σ4 and the kinetic term scales as σ2, Eq. (6.12) defines a maximum. Thus, we have

determined the maximal direction of the saddle point. By adding to the action the absolute

value of this quantity to a positive power, the saddle point of the action can be turned into

a minimum. In this case the improved action is

(6.13) S[φ̄i] = T [φ̄i] + U [φ̄i] + λ
∣∣T [φ̄i] + 2U [φ̄i]

∣∣n

where λ and n are positive constants.

To solve for the bounce with this improved action, we take an initial profile for the vevs

φi with the kinetic and potential terms

T [φi] = 2π2∆4
L−1∑

m=1

(ρm+1 − ρm)ρ3
m

[
n∑

i

(φm+1
i − φm

i )2

2(ρm+1 − ρm)2∆2

]
(6.14)

U [φi] = 2π2∆4
L−1∑

m=1

(ρm+1 − ρm)ρ3
mU(φm

1 , ..., φm
n ).(6.15)

∆ is a parameter determined by Eq. (6.12). Inspired by the thin-wall approximation, we

take the following initial guess for the bounce solution

(6.16) φ(ρ) = a tanh(b(ρ− ρ0)) + c.

The coefficients a and c can be solved for by applying the boundary conditions φ(0) = φe

and φ(∞) = φf , where φf are the field values in the SM minimum and φe are the values

in the vacuum to which the tunneling connects. Since φe is a priori unknown, this leaves

φe, b, and ρ0 as free parameters. These parameters are determined by first substituting

the field profile in Eq. (6.16) into the modified action for each φi.

The φe will not in general be the field configuration of the minima, but rather some

field points inside the well. In the case of a UFB-3 direction there is no minimum, and φe

will be some point on the runaway downslope with a potential energy less than that at SM

minimum. The exact value of φe as well as b and ρ0 are determined using a minimization

routine that finds the coefficients that minimize the modified action. In Ref. [11] the
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authors used the thick-wall approximation as an initial guess. In our case, the guess given

in Eq. (6.12) works better numerically because it is adaptable to both thick- and thin-wall

potential profiles. Once the initial profile, coefficients and all, is determined, we randomly

vary each lattice site. The variations are stopped when further iterations do not reduce

the modified action. To ensure that we arrive at the bounce solution, we choose a value

of λ that ensures 0.999 < (−T [φi]/2/V [φi])1/2 < 1.001. The smallest value of λ able to

maintain this condition and used to optimize the code was close to 0.5 with n = 1.

6.3 Vacuum Stability Bounds on the HENS Parameters

The possibility of tunneling from the SM vacuum to a phenomenologically unaccept-

able vacuum places strong constraints on the parameter space of the HENS model. To

investigate these constraints, we have calculated the bounce action for tunneling to a

CCB-4 minimum or a UFB-3 direction for a series of representative HENS parameter

sets. Our strategy is to fix m1/2 and tanβ, and scan over the input values of m2
Hu

(Mc)

and m2
Hd

(Mc) that lead to an acceptable low energy spectrum. We focus on the values

m1/2 = 500, 1000GeV for tanβ = 30 and m1/2 = 300, 500GeV for tanβ = 10. In each

of these scans we have consider points that meet the phenomenological constraints laid

out in Ref. [14], including the current LEP lower bounds on the lightest Higgs boson. We

also keep the points with a charged slepton as the lightest MSSM superpartner found in

Ref. [14], noting that they would require a more complicated cosmology and likely R-parity

violation or a gravitino LSP [126]. By keeping such points, our results are also applicable

to minimal gaugino mediation subject to our assumptions about the gaugino masses and

the input (compactification) scale.

We first consider the cases with tanβ = 30, where the tau Yukawa coupling is enhanced.

This has the effect of opening up a CCB-4 minimum or CCB-4-like saddle point that flows

to a UFB-3 direction. In Fig. 6.1 we show ranges of the bounce action for tunneling out
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Figure 6.1: The bounce action for tunneling to a stau UFB-3 direction or a CCB-4 minimum as
a function of the HENS model high scale input parameters m2

Hu
(Mc) and m2

Hd
(Mc)

for m1/2 = 500 GeV and tan β = 30. All points shown are consistent with collider
phenomenology. The points enclosed below by the dash-dot line have a neutralino LSP.
The solid line separates the region with a CCB-4 minimum or saddle point (left) from
that which only has a UFB-3 (right). S > 400 is cosmologically safe.

of the SM vacuum to a CCB-4 minimum or a UFB-3 direction for m1/2 = 500 GeV as a

function of the input values of m2
Hu

(Mc) and m2
Hd

(Mc). All points to the left of the solid

line in this figure have either a CCB-4 minimum or saddle point. The points to the right

have either a stable SM vacuum or a UFB-3 direction with no CCB-4 stationary point. To

the left and the right of the solid line we show the bounce action for tunneling along the

direction leading to the CCB-4 stationary point or to the UFB-3 direction, whichever is

smaller.1 We emphasize the CCB-4 stationary point here, even when it is only a saddle

point, because we find that the most dangerous lowest-action tunneling path from the

electroweak minimum is typically one that passes near this point with ν̃Li6=3
= 0. The

dot-dashed line in Fig. 6.1 indicates the upper border of the portion of parameter space in

which the LSP is the lightest neutralino. (See Ref. [14] for more details.). In Fig. 6.2 we
1Except for those points very near the solid line, the CCB-4 extremum is a saddle point flowing to the UFB-3

direction.
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Figure 6.2: The bounce action for tunneling to a stau UFB-3 direction or a CCB-4 minimum as
a function of the high-scale HENS model input parameters m2

Hu
(Mc) and m2

Hd
(Mc)

for m1/2 = 1000 GeV, tan β = 30 and sgn(µ) = 1. All points shown are consistent
with collider phenomenology. The points enclosed below by the dash-dot line have a
neutralino LSP. The solid line separates the region with a CCB-4 minimum or saddle
point (left) from that which only has a UFB-3 direction. S > 400 is cosmologically safe.

show the same quantities as in Fig. 6.1 for m1/2 = 1000 GeV.

Both Fig. 6.1 and Fig. 6.2 show that for tanβ = 30 the lifetime for tunneling to a stau

UFB-3 direction or CCB-4 minimum is shorter than the age of the universe, corresponding

to Sb < 400, over a large portion of the otherwise acceptable parameter space. As expected,

the newly disallowed regions are those with large and negative values of m2
Hu

and m2
Hd

at

the input scale Mc. Of these two soft masses, only m2
Hu

appears in the potential relevant

for the UFB-3 direction or the CCB-4 minimum, and it has the stronger effect. Indeed, the

isocontours of Sb coincide roughly with lines of constant m2
Hu

for smaller values of m2
Hd

.

For smaller values of m2
Hu

the SM vacuum becomes sufficiently long-lived to describe our

universe. The bounce action for these points is much larger simply because the effective

width of the barrier is larger. Note that this stable region includes the minimal gaugino

mediation point, m2
Hu

= m2
Hd

= 0 at Mc.
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Figure 6.3:
The bounce action for tunneling to a stau UFB-3 direction as a function of the HENS
model parameters m2

Hu
and m2

Hd
. The other HENS parameters have been fixed to be

m1/2 = 500GeV, tan β = 10, and sgn(µ) = 1. All points shown are consistent with
collider phenomenology. The points between the two dash-dotted lines have a neutralino
LSP. S > 400 is cosmologically safe.

Comparing the plots for m1/2 = 500 GeV and m1/2 = 1000 GeV, we see that larger m1/2

tends to yield a slightly more stable SM vacuum. This arises simply because increasing the

input gaugino masses also increases the low-scale slepton soft masses through RG running.

On the other hand, larger gaugino masses also permit more negative values of m2
Hu

, so

there remain significant parameter regions in which the tunneling rate is too fast. From

Fig. 6.1, where m1/2 = 500 GeV, we see that nearly the entire region in which the lightest

superpartner is a neutralino is ruled out by our vacuum stability considerations. For

m1/2 = 1000 GeV, there is a small region in which the lightest superpartner is a neutralino

and the electroweak vacuum is sufficiently long-lived.

We turn next to the cases with tanβ = 10, for which the tau Yukawa coupling is

smaller. In Figs. 6.3 and 6.4 we show ranges of the bounce action for tunneling from the

SM vacuum to the UFB-3 direction for tanβ = 10 and M1/2 = 500, 300 GeV as a function
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Figure 6.4:
The bounce action for tunneling to a stau UFB-3 direction as a function of the HENS
model parameters m2

Hu
and m2

Hd
. The other HENS parameters have been fixed to be

m1/2 = 300GeV, tan β = 10, and sgn(µ) = 1. All points shown are consistent with
collider phenomenology. The points between the two dash-dot lines have a neutralino
LSP. S > 400 is cosmologically safe.

of the input values of m2
Hu

and m2
Hd

at Mc. No CCB-4 local extremum is found for any

of the points scanned over since the deviation from F -flatness is a sizeable effect in this

case. The dot-dashed lines in these plots enclose the portion of parameter space in which

the LSP is the lightest neutralino. (See Ref. [14] for more details.) From these plots we

see that the lifetime of the standard electroweak vacuum against tunneling to a UFB-3

direction is safely large for both m1/2 = 500, 300 GeV. This is the result of the smaller

value of the tau Yukawa coupling yτ , which gives rise to a larger barrier against tunneling,

Eq. (6.4). As before, with all else equal Sb increases with m1/2 and so higher values of

m1/2 remain safe.

At smaller values of tanβ the top quark Yukawa coupling grows larger, and we should

check that the tunneling rate to CCB-4 minima associated with the stops is adequately

small. As was previously discussed, this direction will only occur if m2
Hd

is large and
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negative. In Fig. 6.5 we show contours of the bounce action for tunneling to the stop

CCB-4 minimum, as well as the regions in which the SM minimum is the true minimum.

Only a very few points at the largest and most negative values of m2
Hd

are excluded, while

in the great majority of the parameter space the SM vacuum is the true minimum. We

find a similar result for m1/2 = 300 GeV.
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Figure 6.5:
The bounce action for tunneling to a stop CCB-4 minimum as a function of the HENS
model parameters m2

Hu
and m2

Hd
. The other HENS parameters are m1/2 = 500 GeV,

tan β = 10 and sgn(µ) = 1. All these points are consistent with collider phenomenol-
ogy. The points between the two dash-dot lines have a neutralino LSP. S > 400 is
cosmologically safe.



CHAPTER VII

Conclusions

Supersymmetry has been recognized as a viable theory of physics beyond the Standard

Model for many years now. It was quickly realized that it was not only viable, but also

potentially useful in the quest to understand stability of the electroweak potential, radiative

electroweak symmetry breaking, grand unification, dark matter, and baryogenesis. In

subsequent years, there has been much effort devoted to understanding how supersymmetry

breaking is to be achieved without creating additional phenomenological problems, such as

large amounts of FCNC.

There are two particularly simple alternatives that keep the good features of super-

symmetry while (mostly) dismissing the bad features. One approach is to raise the scalar

masses significantly higher than the supersymmetric fermion masses. This is the idea of

Split Supersymmetry discussed in the introduction. One drawback of this scenario is the

apparent finetuning in the electroweak sector.

The approach we pursue in this article is in some sense the opposite of Split Supersym-

metry. Here, rather than introduce a huge hierarchy of scalar masses over fermion masses,

we wish to zero out the superpartner scalar masses at some scale (i.e., “Splat Supersym-

metry”). The simplest model of all scalar masses having a zero boundary condition does

not work. However, applying a small alteration to the most minimal idea, namely that the

Higgs bosons are exempt from zero boundary condition requirement, preserves the good
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features of these theories, while satisfying the phenomenological requirements described in

the text.

This idea of Higgs Exempt No-Scale (HENS) supersymmetry has many phenomenolog-

ical implications worthy of consideration at current and future experimental facilities. For

example, we have found that the scenario can accommodate the tantalizing (but small)

deviation of (g−2) of the muon compared to the SM prediction. It also suggests a near

maximal leptonic signal for the Tevatron, and thus provides an excellent benchmark theory

for the Tevatron to either discover this form of supersymmetry or rule out large regions

of parameter space in a clean way. Furthermore, the LHC signatures are of many multi-

lepton events. Perhaps the most distinctive of them is the inclusive 4` channel which can

effectively rule out HENS models up to gaugino mass scales that are uncomfortably large

from the normal finetuning point of view. For the most part, this form of supersymmetry is

rather straightforward for the LHC to find. Because of the distinctively large 4` signal and

the small ratio of 0` to 1` signal, it should be quite easy to distinguish the HENS model

from other. An important exception is the lightest Higgs boson, whose mass is pressured in

this scenario to be low, and thus perhaps close to the current bound of 114 GeV. Given the

difficulties of finding a Higgs boson less than 120GeV [134], discovering the Higgs boson

might be one of the more challenging steps in confirming the complete structure of this

theory.

We also investigated the consequences of adding right-handed neutrinos to the HENS

model. This model provides a simple and phenomenologically consistent solution to the

supersymmetric flavor problem. Adding heavy right-handed neutrinos, lepton flavor mixing

can arise due to the neutrino Yukawa matrix in the course of RG running. We have studied

the constraints on the neutrino-extended HENS model that arise from the current bounds

on LFV. We have also investigated whether the baryon asymmetry can be explained by
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thermal leptogenesis induced by the heavy right-handed neutrinos.

We find that the neutrino-extended HENS model can be consistent with the existing

bounds on LFV in two ways. First, the neutrino Yukawa couplings that contribute to

lepton flavor mixing can be very small. In the context of a seesaw generating the light

neutrino masses, this corresponds to lower values of the right-handed neutrino masses,

below about 1011 GeV. The second way to suppress LFV in the HENS model to arrange

for m2
Hu

to be small at the input scale MGUT . It is this soft mass that combines with the

neutrino Yukawa couplings to source flavor mixing in the RG running. Taking m2
Hu

→ 0

therefore strongly suppresses LFV, even for larger values of the heavy neutrino masses.

In models with heavy right-handed neutrinos, the baryon asymmetry of the universe

can be successfully explained by (thermal) leptogenesis. For this mechanism to be effective

in the HENS model, the mass of the lightest right-handed neutrino must exceed about

1010 GeV. This implies a tension with the constraints from LFV. For both requirements to

be met, either m2
Hu

must be somewhat small or the neutrino Yukawa matrix must have a

special structure. These constraints will be strengthened by current and upcoming searches

for lepton flavor violation.

Our focus has been on enabling a theoretical idea (HENS) to be compatible with addi-

tional phenomenological requirements (neutrino masses and small LFV) and explanatory

opportunities (baryon asymmetry). However, it should be noted that even though the

HENS idea started out by minimizing LFV in low-scale supersymmetric theories, full com-

patibility with nature reintroduced flavor violations through neutrino Yukawa effects. This

is a generic feature of supersymmetric theories that explicitly incorporate neutrino masses

in the spectrum. As explained above, we find LFV bounds nontrivial to satisfy if the

baryon asymmetry of the universe originates from thermal leptogenesis with hierarchical

right-handed neutrinos. In our view, this highlights in yet another context the importance
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of making progress in LFV experiments whose non-zero signal upon reaching better sensi-

tivity will be complementary to the knowledge gained from high-energy LHC experiments

and will be necessary to unravel the underlying theory.

We also considered the constraints placed on the HENS model from vacuum stability.

Due to the large tachyonic Higgs soft masses that can emerge in this model, there often

arise local vacuum states deeper than the standard electroweak minimum. Many points

that are consistent with collider phenomenological constraints (described in Ref. [14]) are

ruled out because they lead to an overly short-lived SM vacuum.

The most dangerous vacuum feature is a UFB-3 direction involving the stau fields. We

have also found a new CCB-4 saddle point that facilitates tunneling to the UFB-3 direction.

As a result, vacuum tunneling rates tend to be too fast for larger values of tanβ. At lower

values of tanβ, tunneling to a CCB-4 direction involving stop fields rules out a very small

portion of the parameter space, with the rest of the parameter space being safely long-lived.

We conclude that the HENS models with a neutralino LSP and larger values of tanβ =

30 are mostly ruled out subject to our assumptions about the input scale and gaugino mass

universality. On the other hand, minimal gaugino mediation and the HENS models without

a neutralino LSP may still have a sufficiently long-lived electroweak vacuum state at larger

values of tanβ. For moderat values of tanβ, such as tanβ = 10, the constraints from

vacuum tunneling are much weaker, and most of the parameter space that is consistent

with collider lower-energy bounds remains viable.
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APPENDIX A

Sample Point Parameters

In this appendix, we list the relevant properties of the sample points A,B, C, D, E

chosen for tanβ = 10 and M1/2 = 500 GeV. The locations of these points in the

SgnSqrt(m2
Hu

± m2
Hd

) plane are shown in Figs. 4.3 and 4.4. We also list properties of

the points A′, B′, C ′, D′, E′ corresponding to tanβ = 30 and M1/2 = 500 GeV.
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A B C D E

SgnSqrt(−) -1480 -1103 -530 -1087 -712
SgnSqrt(+) -820 -921 -900 -2138 1197

µ 1150 1033 868 1523 278
MA0 1465 1156 764 854 1060
M1 210 210 210 210 209
M2 389 389 389 389 398

mχ0
1

209 209 209 210 193
mχ0

2
385 385 383 387 266

mχ0
3

1152 1034 871 1525 283
mχ0

4
1156 1040 878 1527 420

mχ±1
385 385 383 387 254

mχ±2
1157 1041 878 1528 419

mν̃e 223 274 315 281 304
mẽL

237 285 325 292 314
mẽR

384 312 223 308 249
mν̃τ 217 272 315 288 298
mτ̃1 221 261 214 261 233
mτ̃2 383 328 331 352 310
mg̃ 1156 1155 1152 1161 1151
mt̃1

901 875 837 1027 719
mt̃2

1069 1046 1017 1163 955
mũL 1019 1016 1012 1007 1020
mũR 933 952 969 943 972

Ωh2 0.098 0.687 0.096 0.642 0.134

Table A.1: Model parameters and particle masses for sample points A,B, C, D,E, all with tan β =
10 and M1/2 = 500 GeV. All dimensionful quantities in the table are listed in GeV
units. The Ωh2 values are valid computations for the assumption of standard thermal
cosmological evolution and stable lightest neutralino. Viability of points B and D
require alterations to the standard assumptions.
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A′ B′ C ′ D′ E′

SgnSqrt(−) -1595 -1019 -501 -1334 -1270
SgnSqrt(+) -3241 -2219 -1601 -2981 -2084

µ 2195 1547 1153 2003 1542
MA0 1031 768 522 826 1045
M1 212 211 211 212 211
M2 391 390 390 391 390

mχ0
1

212 211 210 212 211
mχ0

2
390 388 387 390 388

mχ0
3

2197 1549 1156 2005 1544
mχ0

4
2197 1550 1159 2006 1546

mχ±1
390 388 387 390 388

mχ±2
2197 1551 1159 2006 1547

mν̃e 220 287 318 256 260
mẽL 234 298 327 270 272
mẽR 403 296 219 353 342
mν̃τ 384 360 357 394 315
mτ̃1 320 272 233 324 232
mτ̃2 643 494 425 599 482
mg̃ 1168 1162 1154 1168 1161
mt̃1

1235 1043 924 1179 1038
mt̃2

1393 1165 1063 1321 1160
mũL

1004 1008 1008 1005 1009
mũR

908 946 964 926 935

Ωh2 0.105 0.521 0.0954 0.749 0.104

Table A.2: Model parameters and particle masses for sample points A′, B′, C ′, D′, E′, all with
tan β = 30 and M1/2 = 500 GeV. All dimensionful quantities in the table are listed
in GeV units. The Ωh2 values are valid computations for the assumption of standard
thermal cosmological evolution and stable lightest neutralino. Viability of points B′ and
D′ require alterations to the standard assumptions.
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APPENDIX B

Light Neutrino Parameters

Neutrino experiments have measured the value of two independent neutrino mass dif-

ferences: the solar neutrino mass, ∆m2¯, and the atmospheric neutrino mass, ∆m2
@. The

2σ ranges of these mass differences are [68]

∆m2
@ = |m2

ν3
−m2

ν2
| = (2.1− 2.7)× 10−3eV2(B.1)

∆m2
¯ = m2

ν2
−m2

ν1
= (7.3− 8.1)× 10−5eV2.(B.2)

Since the sign of the atmospheric mass difference is undetermined, the hierarchy of the

neutrino masses is unknown.

With two known mass differences and three light neutrinos, we can parametrize the

masses of all three neutrinos in terms of a single parameter m3. In the case of a normal

hierarchy (NH), we have

m3 = m3, m2 =
√

m2
3 −∆m2

@, m1 =
√

m2
3 −∆m2

@ −∆m2¯.(B.3)

Demanding that the mass of the lightest right-handed neutrino be real, we obtain a lower

bound on the heaviest left-handed neutrino of

(B.4) m3 =
√

∆m2
@ + ∆m2¯ ' (0.047−0.053)eV.

We focus on the normal hierarchy in the present work, but we expect our results will be

qualitatively the same for an inverted hierarchy (IH).
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Whenever we fix a set of low energy neutrino parameters in our analysis, we consider

the normal hierarchy with neutrino masses of

m1 = 9.0× 10−4 eV, m2 = 9.0× 10−3 eV, m3 = 5.0× 10−2 eV.(B.5)

For the mixing angles in the U -matrix, defined in Eq. (5.4), we use the central values of

θ12 and θ23, and set θ13 = 0.

θ12 = 35◦, θ13 = 0◦, θ23 = 45◦.(B.6)

These light neutrino parameters are the low-scale values. We do not consider additional

RG running of the light neutrino masses. As shown in [119], the RG effects will only make

a difference of 10− 15%. This will not qualitatively alter our results.
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APPENDIX C

Sample Mass Spectrum

We list in Table C.1 the high-scale input HENS model parameters for points A and B

discussed in the text. We also list some of the relevant low-scale model parameters ob-

tained by RG running using SuSpect 2.34 [39]. In Table C.2 we collect the relevant su-

perpartner masses corresponding to points A and B. Again, these were obtained using

SuSpect 2.34 [39].

Parameter A (GeV) B (GeV)
M1/2 300 300
tanβ 10 10

SgnSqrt(m2
Hu

) −668 −100
SgnSqrt(m2

Hd
) −511 −359

sgn(µ) + +
M1 123 122
M2 231 230
µ 666 401

MA0 851 566
m2

L̃1,2
148 192

m2
Ẽ1,2

221 140

Table C.1: High-scale HENS model input parameters and selected low-scale output parameters for
the sample points A and B discussed in the text.
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Particle A (GeV) B (GeV) Particle A (GeV) B (GeV)
mχ0

1
120 118 mν̃e 134 180

mχ0
2

230 219 mẽL
155 197

mχ0
3

667 407 mẽR 225 146
mχ0

4
673 425 mν̃τ 131 179

mχ±1
230 219 mτ̃1 136 132

mχ±2
674 425 mτ̃2 231 201

Table C.2: Low-scale superpartner masses for the sample points A and B discussed in the text.
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