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CHAPTER I

Introduction

In mathematical finance, the asset price fluctuations are usually modelled by var-

ious stochastic processes. Among them, diffusion processes have long served as the

most important class. As a special example, the geometric Brownian motion has

become a benchmark process to model the asset price dynamics thanks to the huge

success of the option pricing theory starting from Black and Scholes (1973). Decades

later, nonlinear diffusions, whose volatility is either a deterministic function of the

asset price level or driven by another exogenous process (see e.g. Dupire (1998)

and Heston (1993)), were employed to better model the empirical phenomenon ob-

served in the derivative market, for example the “skew/smile” pattern of the implied

volatility surface.

During the last decade, stochastic processes with jumps have become increasingly

popular tools in modelling the market fluctuations largely due to the following rea-

sons: (i) processes with jumps are more natural tools to model the catastrophic

events in the market; (ii) the increasingly accessible high frequency data indicates

the asset price trajectory is not continuous in small time scales; (iii) compared to

diffusion models, models using jump processes are able to produce rich structures

on the distribution of asset returns and option implied volatility surfaces (see Cont

1
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and Tankov (2004) Chapter 1); (iv) statistical evidence indicates the existence of

“small” jumps along with the diffusion component in the asset price dynamics (see

Äıt-Sahalia and Jacod (2009)).

Given their advantages, models using stochastic processes with jumps also intro-

duce difficulties. For the option pricing problem, one major difficulty is to handle

the non-local integral term in the infinitesimal generator of the jump processes. This

non-local integral term causes problems both theoretically and numerically. On the

one hand, the option price in jump models solves Partial Integro-Differential Equa-

tions (PIDE), instead of Partial Differential Equations (PDE) in diffusion models.

The regularity theory for PIDEs is not well established as it is for classical PDEs.

Therefore, a priori it is not clear whether the PIDE has classical solutions in order

to apply the Itô’s Lemma to confirm that the option price function is a solution of a

PIDE. On the other hand, because of the non-local integral term, the finite difference

method cannot be applied directly to solve the PIDE numerically in order to price

options for practical purposes. This thesis attempts to provide some approaches to

conquer this difficulty from both probabilistic and PDE perspectives.

1.1 Outline of the thesis

The detailed structure of the thesis is as follows. In Chapter II, the value function

of the optimal stopping problem for a process with Lévy jumps is studied. It is known

that the value function is a generalized solution of a variational inequality. Assuming

the diffusion component of the process is non-degenerate and a mild assumption on

the singularity of the Lévy measure (see Assumption (H5)), it is shown that the

value function is smooth in the continuation region, no matter whether the jumps

of the process have finite or infinite variation. Moreover, the global regularity of the



3

value function is derived. As a direct corollary of the global regularity, the smooth-

fit property of the optimal stopping problem is confirmed. These results confirms

the intuition that non-degenerate diffusion component dictates the regularity of the

value function in the optimal stopping problem for jump processes. This chapter

is based on Bayraktar and Xing (2009). Parts of this work as been presented at

Quantitative Products Laboratory, Deutsche Bank, February 23, 2009; Department

of Mathematics and Statistics, Boston University, February 19, 2009; Department

of Mathematics, Rutgers, February 17, 2009; Department of Mathematical Sciences,

University of Cincinnati, January 24, 2009. AMS Annual Meeting, Special Session

on Financial Mathematics, Washington D. C., January 8, 2009.

Chapter III investigates the regularity of the optimal exercise boundary/free

boundary of the American put option for jump diffusions with compound Poisson

jumps. It is proved that his optimal exercise boundary is continuously differentiable

before the maturity. This differentiability result has been established by Yang et al.

(European Journal of Applied Mathematics 17(1): 95 - 127, 2006) in the case where

the condition r ≥ q+λ
∫

R+
(ez − 1) ν(dz) is satisfied. When this condition fails, there

is a gap between the strike price and the limit of the optimal exercise boundary close

to the maturity. We extend the differentiability result to the case where the condition

on parameters fails via an unified approach that treats both cases simultaneously.

It is also shown that the boundary is infinitely differentiable under a regularity as-

sumption on the jump distribution (see Corollary 3.5.8). In particular, the optimal

exercise boundaries for the American put option in the models of Merton (1976) and

Kou (2002) are infinitely differentiable. This chapter is based on Bayraktar and Xing

(2008a). Parts of this work has been presented at Quantitative Products Labora-

tory, Deutsche Bank, February 23, 2009; Department of Mathematics and Statistics,
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Boston University, February 19, 2009; Department of Mathematics, Rutgers, Febru-

ary 17, 2009; Department of Mathematics, City University of Hong Kong, February

6, 2009; Department of Systems Engineering & Engineering Management, Chinese

University of Hong Kong, February 5, 2009; Department of Industrial Engineer-

ing and Logistics Management, Hong Kong University of Science and Technology,

February 3, 2009; Department of Mathematical Sciences, University of Cincinnati,

January 24, 2009; SIAM Conference on Financial Mathematics & Engineering, New

Burnswick, November 22, 2008; 2008 CNA Summer School, Carnegie Mellon, June

2, 2008.

In Chapter IV, the price of the American put option for jump diffusions with

compound Poisson jumps is approximated by a sequence of functions. Each of these

functions is the value function of an optimal stopping problem for diffusions. It is

shown that this approximation sequence converges to the price function uniformly

and exponentially fast. This result gives us an efficient numerical algorithm to price

American put option in jump diffusion models. Each approximation function is

computed iteratively using the classical finite difference methods. Moreover, the

convergence and stability of this numerical algorithm are proved. Examples are

presented to illustrate the numerical performance of this algorithm. This chapter

is based on Bayraktar and Xing (2008b). Parts of this work has been presented

at Department of Mathematics, City University of Hong Kong, February 6, 2009;

Department of Systems Engineering & Engineering Management, Chinese University

of Hong Kong, February 5, 2009; Department of Industrial Engineering and Logistics

Management, Hong Kong University of Science and Technology, February 3, 2009.

Along the line of Chapter IV, Chapter V studies the Asian option pricing prob-

lem in jump diffusion models. A sequence of functions, which are unique classical
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solutions of parabolic differential equations, are constructed to approximated the

Asian option value for jump diffusions. It is shown that the convergence is uniform

on compact sets and exponential fast. Using this approximation sequence, the price

function of Asian option is shown to be the unique solution of an integro-differential

equation. This result confirms the assumption in Večeř and Xu (2004). Compared

to Chapter IV, some major technical difficulties arise because the pay-off functions

may be unbounded and the approximation sequence is not monotonous. As in Chap-

ter IV, an efficient numerical algorithm is proposed to price Asian options in jump

diffusions. Numerical convergence and stability are proven and numerical examples

are presented. This chapter is based on Bayraktar and Xing (2007). Parts of this

work has been presented at 2008 AMS Central Section Meeting, Special Session on

Mathematical Finance, Western Michigan University, October 18, 2008; Department

of Mathematics, University of Michigan, September 20, 2007.



CHAPTER II

Regularity of the optimal stopping problem for Lévy

processes

2.1 Introduction

This chapter studies the finite horizon optimal stopping problem for an n-dimensional

jump diffusion process X. In a filtered complete probability space (Ω,F , P), such a

process X = {Xt; t ≥ 0} is governed by the following stochastic differential equation:

(2.1.1) dXt = b(Xt−, t) dt + σ(Xt−, t) dWt + dJt,

in which W = {Wt; t ≥ 0} is the d-dimensional standard Brownian motion under

P and J = {Jt; t ≥ 0} is a pure jump Lévy process independent of the Brownian

motion. This jump process J can be of finite/infinite activity with finite/infinite

variation. We denote the Lévy measure of J as ν (please refer to Section 2.2 for the

definition of J and its properties).

We investigate the problem of maximizing the discounted terminal reward g by

optimally stopping the process X before a fixed time horizon T . The value function

of this problem is defined as

(2.1.2) u(x, t) = sup
τ∈T0,T−t

E
[
e−rτg(Xτ)

∣∣X0 = x
]
,

in which T0,t is the set of all stopping times (with respect to the filtration (F)0≤s≤t)

valued between 0 and t. A specific example of such an optimal stopping problem is

6
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the American option pricing problem, where X models the logarithm of the stock

price process and g represents the pay-off function.

This value function satisfies, at least intuitively, a variational inequality with a

nonlocal integral term (see e.g. Chapter 3 of Bensoussan and Lions (1984)). In

general, the value function is not expected to be a smooth solution of the varia-

tional inequality. Therefore, notions of generalized solutions are needed to charac-

terize the value function. In the literature, different solution concepts were studied.

Pham (1998) showed that the value function of the optimal stopping problem for

a controlled jump process is a viscosity solution of a variational inequality using

the dynamic programming principle. Lamberton and Mikou (2008) proved that the

value function associated to the optimal stopping problem on Lévy processes can be

understood as the solution in the distribution sense.

When the jump process X has a nondegenerate diffusion component, intuition

tells us that the nondegenerate diffusion component should dominate the jump com-

ponent, in the sense that the value function can be characterized as a smooth func-

tion. This intuition has been confirmed for the partial integro-differential equations

associated to the Cauchy problem (e.g. the European option pricing problem) and

boundary value problems. For these problems, Sections 1-3 in Chapter 3 of Ben-

soussan and Lions (1984) and Garroni and Menaldi (1992) proved the existence and

uniqueness of second order partial integro-differential equations in both Sobolev and

Hölder spaces. These regularity properties ensure that the Cauchy problem and

boundary value problems have smooth solutions, as long as the diffusion component

is nondegenerate.

On the other hand, for variational inequalities associated to the optimal stopping

problems with either finite or infinite activity jumps, Bensoussan and Lions showed
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in Theorem 4.4 of Bensoussan and Lions (1984) pp. 250 that the solution of a

variational inequality on a bounded domain can be characterized as an element in

a certain Sobolev space. These types of variational inequalities were also studied in

Chapter 6 of Garroni and Menaldi (2002), where jumps are assumed to be restricted

in the bounded domain of the problem. The regularity results for the variational

inequality in Bensoussan and Lions (1984) are not enough to ensure the smooth-fit

property to hold. Later, these results were extended to variational inequalities on

unbounded domains in Jaillet et al. (1990) and Zhang (1994), where processes are

assumed to be diffusions or jump diffusions with finite activity jumps. Combining

with a probabilistic argument, Jaillet et al. (1990) and Zhang (1994) confirmed the

smooth-fit property when there may be finite activity jumps. In addition, assuming

jumps have finite activity, Yang et al. (2006) proved that the value function is the

unique classical solution of a variational inequality. Following Jaillet et al. (1990)

and Pham (1998), Pham (1997) studied the free boundary problem associated to the

variational inequality. Bayraktar (2009) also investigated the free boundary problem

with alternative techniques. In Pham (1997), Yang et al. (2006) and Bayraktar

(2009), the smooth-fit property was proved when the jump has finite activity.

In this chapter, we study the optimal stopping problem (2.1.2) which allows infi-

nite activity jumps. Using the regularity theory for parabolic differential equations,

we proved that the value function is the unique solution of a variational inequality,

on a unbounded domain, in a certain Sobolev space. The smooth-fit property follows

directly from our regularity results. Moreover, based on these regularity result, we

further show that the value function is smooth inside the continuation region, under

a mild assumption on the Lévy measure.

When the jump has infinite activity, the Lévy measure ν has a singularity. This
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singularity introduces difficulties in the analysis of the value function regularity.

When ν does not have such a singularity (the jump is of finite activity), after applying

the non-local integral operator, which appears in the infinitesimal operator of X, to

the value function, the resulting function is expected to have the same regularity

with the value function (see Yang et al. (2006)). However, when ν has a singularity,

the regularity of the resulting function is reduced compared to the regularity of

the value function. This reduction in the regularity gives trouble in defining the

resulting function, after applying the integral operator to the value function, in the

classical sense. When the jump has finite variation, this resulting function is still well

defined in the classical sense, thanks to the a priori regularity of the value function

coming from the probabilistic argument in Pham (1998). However, when the jump

has infinite variation, the a priori regularity no longer ensures that the resulting

function is well defined. We overcome this problem using a fixed point theorem and

the verification theorem in Lamberton and Mikou (2008). On the other hand, the

unbounded jumps also introduce difficulty in estimating the local regularity of the

value function. Because of the unbounded jumps, regularity of the value function

inside a bounded domain depends on the value function outside this domain (see

Lemmas 2.4.1 and 2.7.1 for more precise explanation). We solve this difficulty via

an interior estimate technique in Theorem 2.5.11.

The rest of the chapter is organized as follows. In Section 2.2, we introduce

the variational inequality and recall two notions of generalized solutions studied in

Pham (1998) and Lamberton and Mikou (2008). In Section 2.3 we discuss the finite

variation jump case and analyze the regularity of value function in the continuation

region. Section 2.4 is devoted to study the global regularity when jumps may have

infinite variation. The the global regularity (Theorem 2.4.5) is proved in Section 2.5.
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A key estimate, which is needed to prove Theorem 2.4.5 is showed in Section 2.7.

As a corollary of this global regularity result, the smooth-fit property is confirmed.

Moreover, based on Theorem 2.4.5, Theorem 2.4.8 shows that the value function is

C2,1 in the continuation region. At last, proofs of several auxiliary lemmas are listed

in Section 2.6.

2.2 The optimal stopping problem and the variational inequality

2.2.1 A priori regularity of the value function

Let us first define the pure jump component J in (2.1.1). According to the Lévy-

Itô decomposition (see e.g. Theorem 19.2 in Sato (1999)), J can be decomposed

as

(2.2.1) Jt = J ℓ
t + lim

ǫ↓0
J ǫ

t ,

in which

(2.2.2) J ℓ
t =

∫ t

0

∫

|y|>1

y µ(ds, dy), J ǫ
t =

∫ t

0

∫

ǫ≤|y|≤1

y µ̃(ds, dy),

represent large and small jumps respectively. Here µ is a Poisson random measure

on R+ × (Rn \ {0}). Its mean measure is the Lévy measure ν, which is a positive

Radon measure on Rn \ {0} with a possible singularity at 0. Even with this possible

singularity at 0, the measure ν still satisfies

(2.2.3)

∫

Rn

(|y|2 ∧ 1) ν(dy) < +∞.

Here, the norm | · | is the standard Euclidean norm: |y| , (
∑n

i=1(y
i)2)

1/2
. In (2.2.2),

µ̃(ds, dy) = µ(ds, dy) − ds ν(dy) is the compensated Poisson measure. It is also

worth noticing that the convergence in the last term of (2.2.1) is the almost sure

convergence. Moreover, the convergence is uniform in t on [0, T ].
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We assume that the drift and the volatility in (2.1.1) are bounded and Lipschitz

continuous, i.e., there exists a positive constant Lb,σ such that

|b(x, t) − b(y, t)| + |σ(x, t) − σ(y, t)| ≤ Lb,σ|x − y|, ∀x, y ∈ Rn,

moreover, |b(x, t)| and |σ(x, t)| are bounded on Rn × [0, T ].

(H1)

We name the solution of (2.1.1), with the initial condition X0 = x, as Xx. Thanks

to (H1), Xx has the following norm estimates.

Lemma 2.2.1. Let us assume b and σ satisfy (H1). Then there exists a positive

constant C such that for any τ ∈ S0,t with t ≤ T and x, y ∈ Rn,

(2.2.4) E |Xx
τ − Xy

τ | ≤ C |x − y| .

Moreover, if the Lévy measure satisfies

(H2)

∫

|y|>1

|y| ν(dy) < +∞,

then we have

E |Xx
τ | ≤ C,(2.2.5)

E |Xx
τ − x| ≤ C t1/2,(2.2.6)

E
[
sup0≤s≤t |Xx

s − x|
]
≤ C t1/2.(2.2.7)

Remark 2.2.2. Similar estimates were given in Lemma 3.1 of Pham (1998) under

a slightly stronger assumption on the large jumps:
∫
|y|>1

|y|2 ν(dy) < +∞. Us-

ing the equivalence between the norm |y| and the norm
∑n

i=1 |yi|, one could prove

Lemma 2.2.1 under assumption (H2). We give its proof in Section 2.6.

For the optimal stopping problem (2.1.2), let us assume the terminal reward

g : Rn → R to be a bounded and Lipschitz continuous function, i.e., there exist

positive constants K and L such that

(H3) 0 ≤ g(x) ≤ K and
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(H4) |g(x) − g(y)| ≤ L|x − y|, ∀x, y ∈ Rn.

Thanks to (H3), the value function u is uniformly bounded by K. Moreover, the

Lipschitz continuity of g in (H4) and norm estimates of X in Lemma 2.2.1 ensure

that the value function u has the following regularity properties, which follow from

the same proof of Proposition 3.3 in Pham (1998) once its Lemma 3.1 is replaced by

our Lemma 2.2.1.

Lemma 2.2.3. Let us assume that g satisfies (H3) and (H4). Then there exists a

constant Lx > 0 such that for any x1, x2 ∈ R, t ∈ [0, T ],

(2.2.8) |u(x1, t) − u(x2, t)| ≤ Lx|x1 − x2|.

Moreover, if the Lévy measure satisfies (H2), then there exists a constant Lt > 0

such that for any t1, t2 ∈ [0, T ], x ∈ R,

(2.2.9) |u(x, t1) − u(x, t2)| ≤ Lt |t1 − t2|1/2.

The Lipschitz continuity of u(·, t) and semi-Hölder continuity of u(x, ·) will be

useful to show further regularity properties of u in the next three sections.

For the optimal stopping problem, as usual we define the continuation region C

and the stopping region D as follows:

C , {(x, t) ∈ Rn × [0, T ) : u(x, t) > g(x)} and

D , {(x, t) ∈ Rn × [0, T ) : u(x, t) = g(x)} .

2.2.2 The variational inequality

Intuitively, one can expect from the Itô’s Lemma for Lévy processes (see e.g.

Proposition 8.18 in Cont and Tankov (2004) pp. 279) that the value function u,
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defined in (2.1.2), satisfies the following variational inequality:

min {(−∂t − L + r) u(x, t), u(x, t)− g(x)} = 0, (x, t) ∈ Rn × [0, T ),

u(x, T ) = g(x),

(2.2.10)

in which the integro-differential operator L, the infinitesimal generator of X, is de-

fined via a bounded test function φ as

(2.2.11)

Lφ(x, t) , LDφ(x, t)+Iφ(x, t), with LDφ(x, t) ,

n∑

i,j=1

aij(x, t)
∂2φ

∂xi∂xj
+

n∑

i=1

bi(x, t)
∂φ

∂xi
.

Here A = (aij)n×n , 1
2
σ(x, t)σ(x, t)T is a n × n matrix and the integral term

Iφ(x, t) ,

∫

Rn

[
φ(x + y, t) − φ(x, t) −

n∑

i=1

yi ∂φ

∂xi
(x, t) 1{|y|≤1}

]
ν(dy)

=

∫

Rn

[
φ(x + y, t) − φ(x, t) − y · ∇xφ(x, t) 1{|y|≤1}

]
ν(dy).

(2.2.12)

However, one does not know a priori that the value function u is sufficiently regular

(i.e., u ∈ C2,1(Rn × [0, T ))) to justify applying Itô’s Lemma. Moreover, the integral

term Iφ(x, t) is only well defined in classical sense when φ has certain regularity

properties. It is sufficient to require that φ(·, t) ∈ C1(Bǫ(x)), in which Bǫ(x) is an

open ball in Rn centered at x with some radius ǫ ∈ (0, 1), and that ∇xφ(·, t) to be

Lipschitz in Bǫ(x) uniformly in t, i.e., for t ∈ [0, T ) there exists a positive constant

LB such that

(2.2.13) |∇xφ(x1, t) −∇xφ(x2, t)| ≤ LB|x1 − x2|, for x1, x2 ∈ Bǫ(x).

Indeed, using these regularity properties of φ we have that

(2.2.14) Iφ(x, t) = Iǫφ(x, t) + Iǫφ(x, t), where
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(2.2.15)

Iǫφ(x, t) =

∫

|y|>ǫ

[φ(x + y, t) − φ(x, t)] ν(dy) −∇xφ(x, t) ·
∫

ǫ<|y|≤1

y ν(dy),

(2.2.16)

Iǫφ(x, t) =

∫

|y|≤ǫ

[φ(x + y, t) − φ(x, t) − y · ∇xφ(x, t)] ν(dy)

=

∫

|y|≤ǫ

n∑

i=1

yi (∂xiφ(zi, t) − ∂xiφ(x, t)) ν(dy) ≤
∫

|y|≤ǫ

LB |y|2ν(dy).

In (2.2.16), zi are some vectors in Rn with |zi−x| < |y| and the second equality follows

from the mean value theorem, while the inequality follows from the Cauchy-Schwartz

inequality and (2.2.13). Note that ǫ
∫

ǫ<|y|≤1
ν(dy) ≤

∫
ǫ<|y|≤1

|y| ν(dy) <
∫

ǫ<|y|≤1
ν(dy)

and
∫

ǫ<|y|≤1
ν(dy) ≤ 1

ǫ2

∫
ǫ<|y|≤1

|y|2 ν(dy) < +∞ from (2.2.3). These inequalities

imply that
∫

ǫ<|y|≤1
|y| ν(dy) < +∞. Hence, we have Iφ(x, t) < +∞.

However, given the regularity of u in Lemma 2.2.3, it is not clear that the value

function u has the Lipschitz continuous first derivative to ensure that Iu is well de-

fined in the classical sense in the first place. Yet, the value function u is a solution of

(4.3.3) in certain weak senses. In the literature different notions of generalized solu-

tions were explored. For example, Pham analyzed the value function of an optimal

stopping problem of controlled jump diffusion processes in Pham (1998) and proved

that the value function is a unique viscosity solution of a nonlinear variational in-

equality. In what follows we will introduce the notions that we will need from Pham

(1998). Let us define

C1(R
n × [0, T ]) ,

{
φ ∈ C0(Rn × [0, T ]) : sup

(x,t)∈Rn×[0,T ]

|φ(x, t)|
1 + |x| < +∞

}
.

We adapt the notion of viscosity solutions used in Definition 2.1 of Pham (1998) into

our context and give the following definition.

Definition 2.2.4. (i) Any u ∈ C0(Rn × [0, T ]) is a viscosity supersolution (subsolu-
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tion) of (4.3.3) if

(2.2.17) min {−∂tφ −Lφ + ru, u(x, t) − g(x)} ≥ 0 (≤ 0),

for any function φ ∈ C2,1(Rn × [0, T ]) ∩ C1(R
n × [0, T ]) such that u(x, t) = φ(x, t)

and u(x̃, t̃) ≥ φ(x̃, t̃) (u(x̃, t̃) ≤ φ(x̃, t̃)) for all (x̃, t̃) ∈ Rn × [0, T ).

(ii) u is a viscosity solution of (4.3.3) if it is both supersolution and subsolution.

Applying the result of Pham (1998) to our setting, we obtain the following result.

Proposition 2.2.5. If the Lévy measure ν satisfies (H2), the value function u(x, t)

is a viscosity solution of (4.3.3).

Proof. Let us first comment that under the assumption (H2), Iφ(x, t) is well defined

for φ ∈ C2,1(Rn × [0, T ]) ∩ C1(R
n × [0, T ]). Indeed, for φ ∈ C1(R

n × [0, T ]), we

have |φ(x + y, t) − φ(x, t)| ≤ C(1 + |y|) for some C independent of y. Therefore, in

(2.2.15)
∫
|y|>ǫ

[φ(x + y, t) − φ(x, t)] ν(dy) < +∞ as a result of (H2) and the analysis

after (2.2.16).

After replacing Lemma 3.1 of Pham (1998) by Lemma 2.2.1, the statement follows

from the same proof of Theorem 3.1 in Pham (1998).

Remark 2.2.6. As a corollary of Theorem 4.1 in Pham (1998), u is also the unique

viscosity solution in the sense of Definition 2.2.4. However, this uniqueness result is

not necessary for the later development.

Another notion of generalized solution was studied in Lamberton and Mikou

(2008). Lamberton and Mikou showed that u is the unique solution of (4.3.3) in

the distribution sense. We will summarize the results of Lamberton and Mikou

(2008) that will be used in the sequel. Let Ω be an open subset of Rn × (0, T ), and

let us denote by S(Ω) the set of all C∞ functions with the compact support in Ω,
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and by S ′(Ω) the space of distributions. If v ∈ S ′(Ω), and it is locally integrable,

then the action of the distribution v on the test function φ is given by

〈
v, φ
〉

=

∫

Ω

v(x, t)φ(x, t) dxdt.

Therefore, since the value function u is uniformly bounded, even though it is not

clear that u has enough regularity to define Iu(x, t) in classical sense, Iu(x, t) can

still be defined as a distribution,

(2.2.18)
〈
Iu, φ

〉
,

∫

Rn×(0,T )

u(x, t) I∗φ(x, t) dxdt, for φ ∈ S(Ω),

in which the adjoint operator I∗ is defined as

(2.2.19) I∗φ(x, t) =

∫

Rn

[
φ(x − y, t) − φ(x, t) + y · ∇xφ(x, t)1{|y|≤1}

]
ν(dy).

Note that since φ is infinitely differentiable with compact support, I∗φ is well defined

in the classical sense thanks to the analysis in (2.2.15) and (2.2.16).

Using the theory of the Snell envelope, Lamberton and Mikou proved the following

result in Theorem 2.8 of Lamberton and Mikou (2008).

Proposition 2.2.7. The value function u(x, t) is the only continuous and bounded

function on [0, T ] × Rn that satisfies the following conditions:

(i) u(x, T ) = g(x),

(ii) u ≥ g,

(iii) the distribution (∂t + L − r) u is a nonpositive measure on Rn × (0, T ), i.e.,

(∂t + L − r) u ≤ 0 in the distribution sense,

(iv) on the open set {(x, t) ∈ Rn × (0, T ) : u(x, t) > g(x)}, (∂t + L− r) u = 0.
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Remark 2.2.8. In Proposition 2.2.7, the inequality (equality) (∂t +L− r) u ≤ 0 (= 0)

is understood in the distribution sense, i.e., for any open set Ω ⊂ Rn × (0, T ) and

any nonnegative function φ(x, t) ∈ S(Ω),

(2.2.20)
∫

Ω

(∂t + L − r) u(x, t) φ(x, t) dxdt =

∫

Ω

u(x, t) (−∂t + L∗ − r) φ(x, t) dxdt ≤ 0 (= 0),

where the adjoint operator L∗ is defined as the adjoint operator of the differential

part of L plus the operator I∗ in (2.2.19), i.e.,

L∗φ(x, t) ,

n∑

i,j=1

∂2

∂xi∂xj
(aijφ) −

n∑

i=1

∂

∂xi
(biφ) + I∗φ(x, t).

2.2.3 The classical differentiability

We will apply the regularity theory of parabolic differential equations to analyze

the classical differentiability of u in the next three sections. We need foremost make

sure that Iu is defined in the classical sense. Throughout this chapter, we assume

that the Lévy measure ν has a density, which we will denote by ρ(y). Moreover,

There exists a positive constants M such that

(H5) ρ(y) ≤ M

|y|n+α
, for |y| ≤ 1 and some constant α ∈ [0, 2).

Remark 2.2.9. The Lévy measures ν, corresponding to Lévy processes widely used

in the financial modelling for the single asset case, satisfy (H5) with n = 1. In jump

diffusions models where ν is a probability measure, if the density ρ(y) is bounded,

(H5) is satisfied with sufficiently large M . Examples of this case are Merton’s model

and Kou’s model. On the other hand, if ρ(y) ∈ C0(B1(0) \ {0}) and ρ(y) → C/|y|β

with 0 < β < 1 as y → 0, (H5) is also fulfilled because 1
|y|1+α > 1

|y|β for any α ≥ 0

and |y| ≤ 1.
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Moreover, for Lévy processes that are the Brownian motion subordinated by tem-

pered stable subordinators, it follows from (4.25) in Cont and Tankov (2004) that

ρ(y) → C/|y|1+2β, with 0 ≤ β < 1, as y → 0. Therefore (H5) is satisfied by choosing

α = 2β and sufficiently large M . In particular, this class of Lévy processes contains

Variance Gamma and Normal Inverse Gaussian where β = 0 or 1/2 respectively.

Furthermore, for the generalized tempered stable processes (see Remark 4.1 in

Cont and Tankov (2004)) whose Lévy measure is

ρ(y) =
C−

|y|1+α−

e−λ−|x|1{x<0} +
C+

|y|1+α+
e−λ+x1{x>0},

with α−, α+ < 2, (H5) is satisfied by choosing α = max{α−, α+, 0} and M =

max{C−, C+}. In particular, CGMY processes in Carr et al. (2003) are special ex-

amples of generalized tempered stable processes. In the similar manner, one can also

check that the regular Lévy processes of exponential type (RLPE) in Boyarchenko

and Levendorskĭı (2002) also satisfy (H5).

In order to apply the regularity theory of parabolic differential equations to an-

alyze the regularity of u, let us recall the definition of Sobolev spaces and Hölder

spaces on pp. 5 and 7 of Ladyženskaja et al. (1968).

Definition 2.2.10. Let Ω be a domain in Rn, QT = Ω×(0, T ) and QT be the closure

of QT . C2,1(QT ) denotes the class of continuous functions on QT with continuous

classical derivatives on QT of the form ∂tv, ∂xiv and ∂2
xixjv for i, j ≤ n.

For any positive integer p ≥ 1, W 2,1
p (QT ) is the Banach space consisting of the

elements of Lp(QT ) having generalized derivatives of the form ∂tv, ∂xiv and ∂2
xixjv

for i, j ≤ n. The norm in it is defined as

‖v‖W 2,1
p (QT ) = ‖∂tv‖Lp +

n∑

i=1

‖∂xiv‖Lp +

n∑

i,j=1

‖∂2
xixjv‖Lp,
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where ‖v‖Lp =
(∫ T

0

∫
Ω
|v(x, t)|p dxdt

)1/p

. On the other hand, W 2,1
p, loc(QT ) is the

Banach space consisting of functions whose W 2,1
p -norm is finite on any compact

subset of QT .

For any positive nonintegral real number α, Hα,α/2
(
QT

)
is the Banach space of

functions v that are continuous in QT , together with continuous classical derivatives

of the form ∂r
t ∂

s
xv for 2r + s < α, and have a finite norm

‖v‖(α)

QT
= |v|(α)

x + |v|(α/2)
t +

∑

2r+s≤[α]

‖∂r
t ∂

s
xv‖(0), in which

‖v‖(0) = maxQT
|v|, ∂s

xv = ∂j1
xi1

· · ·∂jk

xik
v, with j1 + · · ·+ jk = s,

|v|(α)
x =

∑

2r+s=[α]

< ∂r
t ∂

s
xv >(α−[α])

x , |v|(α/2)
t =

∑

α−2<2r+s<α

< ∂r
t ∂

s
xv >

(α−2r−s
2

)
t ;

< v >(β)
x = sup

(x, t), (x′, t) ∈ QT

|x − x′| ≤ ρ0

|v(x, t) − v(x′, t)|
|x − x′|β , 0 < β < 1,

< v >
(β)
t = sup

(x, t), (x, t′) ∈ QT

|t − t′| ≤ ρ0

|v(x, t) − v(x, t′)|
|t − t′|β , 0 < β < 1,

where ρ0 is a positive constant.

On the other hand, Hα
(
Ω
)

is the Banach space whose elements are continuous

functions v(x) on Ω that have continuous derivatives up to order [α] and the following

norm finite

‖v‖(α)

Ω
=
∑

s≤[α]

‖∂s
xv‖(0)+

∣∣∂[α]
x v
∣∣(α−[α])

, in which |v|(β) = sup
x,x′∈Ω,|x−x′|≤ρ0

|v(x) − v(x′)|
|x − x′|β .

These Hölder norms depend on ρ0, but for different ρ0 > 0, the corresponding Hölder

norms are equivalent. Hence their dependence on ρ0 will not be noted in the sequel.
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2.3 Finite variation jumps and regularity in the continuation region

In this section, based on Pham’s result in Proposition 2.2.5, we will analyze the

regularity of the value function u when the jump of X has finite variation, i.e.,

(2.3.1)

∫

Rn

|y| ∧ 1 ν(dy) < +∞.

It is worth noticing that
∫
|y|≤1

|y| ν(dy) < +∞ is satisfied when we assume (H5) with

0 ≤ α < 1. As a result, the infinitesimal generator L can be rewritten as

Lφ(x, t) = Lf
Dφ(x, t) + Ifφ(x, t), where(2.3.2)

Lf
Dφ(x, t) =

n∑

i,j=1

aij(x, t)
∂2φ

∂xi∂xj
+

n∑

i=1

[
bi(x, t) −

∫

|y|≤1

yiν(dy)

]
∂φ

∂xi
,(2.3.3)

Ifφ(t, x) ,

∫

Rn

[φ(x + y, t) − φ(x, t)] ν(dy).(2.3.4)

Thanks to this reduced integral form and the Lipschitz continuity of u(·, t) (see

Lemma 2.2.3), Ifu(x, t) is well defined in the class sense. Indeed

Ifu(x, t) ≤
∫

R

|u(x + y, t) − u(x, t)| ν(dy) ≤ Lx

∫

R

|y| ν(dy) < +∞,

as a result of (2.3.1) and (H2). Moreover, assuming (H5) with 0 ≤ α < 1, we will

show that Ifu(x, t) is Hölder continuous in both variables in the following lemma.

Lemma 2.3.1. Let Ω be any compact domain in Rn. If the density ρ(y) of the

measure ν satisfies (H5) with 0 ≤ α < 1, then Ifu(x, t) is Hölder continuous in both

variables on Ω × [0, T ].

(i) For any (x1, t), (x2, t) ∈ Ω×[0, T ], there exist constants CΩ,β and CΩ independent

of x1, x2 and t, such that

(2.3.5)

when α = 0 :
∣∣Ifu(x1, t) − Ifu(x2, t)

∣∣ ≤ CΩ,β|x1−x2|1−β, for any β ∈ (0, 1);
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(2.3.6) when 0 < α < 1 :
∣∣Ifu(x1, t) − Ifu(x2, t)

∣∣ ≤ CΩ|x1 − x2|1−α.

(ii) For any (x, t1), (x, t2) ∈ Ω × [0, T ], there exist constants DΩ,β and DΩ indepen-

dent of t1, t2 and x, such that

(2.3.7)

when α = 0 :
∣∣Ifu(x, t1) − Ifu(x, t2)

∣∣ ≤ DΩ,β|t1 − t2|
1−β

2 , ∀β ∈ (0, 1);

(2.3.8) when 0 < α < 1 :
∣∣Ifu(x, t1) − Ifu(x, t2)

∣∣ ≤ DΩ|t1 − t2|
1−α

2 .

Proof. This proof is motived by Proposition 2.5 in Silvestre (2006). We will show

the Hölder continuity in x first. Let us break up the integral into two parts:

∣∣Ifu(x1, t) − Ifu(x2, t)
∣∣ ≤

∫

R

|u(x1 + y, t) − u(x1, t) − u(x2 + y, t) + u(x2, t)| ν(dy)

≤ I1 + I2,

(2.3.9)

in which

(2.3.10) I1 =

∫

|y|≤ǫ

[ |u(x1 + y, t) − u(x1, t)| + |u(x2 + y, t) − u(x2, t)| ] ν(dy),

(2.3.11) I2 =

∫

|y|>ǫ

[ |u(x1 + y, t) − u(x2 + y, t)|+ |u(x1, t) − u(x2, t)| ] ν(dy).

Here the constant ǫ ∈ (0, 1] will be determined later. Since x → u(t, x) is globally

Lipschitz (see Lemma 2.2.3), we have for i = 1, 2

|u(xi + y, t) − u(xi, t)| ≤ Lx|y|, |u(x1 + y, t) − u(x2 + y, t)| ≤ Lx|x1 − x2| and

|u(x1, t) − u(x2, t)| ≤ Lx|x1 − x2|.

Combining these inequalities with (H5), in which 0 ≤ α < 1, we obtain from (2.3.10)
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and (2.3.11) that

I1 ≤
∫

|y|≤ǫ

2Lx|y| ν(dy) ≤ 2LxM

∫

|y|≤ǫ

|y|1−n−αdy = 2LxM |S1(0)|
∫ ǫ

0

r−αdr

=
2LxM |S1(0)|

1 − α
ǫ1−α,

(2.3.12)

I2 ≤
∫

|y|>ǫ

2Lx|x1 − x2| ν(dy) ≤ 2Lx|x1 − x2|
∫

|y|>1

ν(dy) + 2LxM |x1 − x2|
∫

ǫ<|y|≤1

|y|−n−αdy

= 2Lx|x1 − x2|
∫

|y|>1

ν(dy) + 2LxM |S1(0)| |x1 − x2| ·





ǫ−α−1
α

if 0 < α < 1

− log ǫ if α = 0,

(2.3.13)

where |S1(0)| is the surface area of a unit ball in Rn. Now picking ǫ = |x1 − x2| ∧ 1

and noticing that 0 ≤ α < 1, we have

(2.3.14) ǫ1−α ≤ |x1 − x2|1−α, ǫ−α − 1 ≤ |x1 − x2|−α.

Moreover, when ǫ = |x1 − x2| < 1,

(2.3.15)

−log ǫ =

∫ 1

|x1−x2|

1

z
dz ≤

∫ 1

|x1−x2|

1

z1+β
dz =

1

β

(
|x1 − x2|−β − 1

)
≤ 1

β
|x1−x2|−β ∀β > 0.

Hence choosing ǫ = |x1 − x2| ∧ 1, we have − log ǫ ≤ 1
β
|x1 − x2|−β for any β > 0.

Combining (2.3.9) and (2.3.12) - (2.3.15), we conclude that

when 0 < α < 1 :

∣∣Ifu(x1, t) − Ifu(x2, t)
∣∣ ≤

[
2LxM |S1(0)|

α(1 − α)
+ 2Lxd

α

∫

|y|>1

ν(dy)

]
|x1 − x2|1−α,

when α = 0 :

∣∣Ifu(x1, t) − Ifu(x2, t)
∣∣

≤
[
2LxM |S1(0)| dβ +

2LxM |S1(0)|
β

+ 2Lxd
β

∫

|y|>1

ν(dy)

]
|x1 − x2|1−β,
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in which β ∈ (0, 1) and d = maxx,y∈Ω |x − y|.

Similarly, in order to show the Hölder continuity in t, we also break up the integral

term into two parts:

∣∣Ifu(x, t1) − Ifu(x, t2)
∣∣ ≤

∫

R

|u(x + y, t1) − u(x, t1) − u(x + y, t2) + u(x, t2)| ν(dy)

≤ I1 + I2,

(2.3.16)

in which

(2.3.17) I1 =

∫

|y|≤ǫ

[ |u(x + y, t1) − u(x, t1)| + |u(x + y, t2) − u(x, t2)| ] ν(dy),

(2.3.18) I2 =

∫

|y|>ǫ

[ |u(x + y, t1) − u(x + y, t2)| + |u(x, t1) − u(x, t2)| ] ν(dy).

The constant ǫ ∈ (0, 1] will be determined later. We can first bound I1 in (2.3.17)

using (2.3.12). Then it follows from the semi-Hölder continuity of t → u(t, x) (see

Lemma 2.2.3) that

I2 ≤
∫

|y|>ǫ

2 Lt|t1 − t2|
1

2 ν(dy) = 2 Lt|t1 − t2|
1

2

∫

ǫ<|y|≤1

ν(dy) + 2 Lt|t1 − t2|
1

2

∫

|y|>1

ν(dy)

≤ 2 Lt|t1 − t2|
1

2

∫

|y|>1

ν(dy) + 2 LtM |S1(0)| |t1 − t2|
1

2 ·





ǫ−α−1
α

, if 0 < α < 1

− log ǫ, if α = 0,

,

(2.3.19)

in which the second inequality follows from (H5) with 0 ≤ α < 1.

Now picking ǫ = |t1−t2|
1

2∧1, we have ǫ1−α ≤ |t1−t2|
1−α

2 and ǫ−α−1 ≤ |t1−t2|−
α
2 . A

calculation in (2.3.15) gives us that − log ǫ ≤ 2|t1−t2|−β/2/β for any β > 0. Therefore

(2.3.7) and (2.3.8) follow from combining (2.3.16), (2.3.12) and (2.3.19).

Having shown that the integral term Ifu is well defined in classical sense and

is Hölder continuous on compact domains, we will study the variational inequality
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(4.3.3) on a given compact domain inside the continuation region C. Let B be an

open ball in Rn with its closure B and B × (t1, t2) ⊂ C for some t1, t2 ∈ [0, T ). Let

us consider the following boundary value problem:

(−∂t −L + r) v(x, t) = 0, (x, t) ∈ B × [t1, t2),

v(x, t) = u(x, t), (x, t) ∈ Rn × [t1, t2] \ B × [t1, t2).

(2.3.20)

Due to Lemma 2.2.3, the boundary and terminal value u is continuous in B× [t1, t2].

The viscosity solution of this boundary value problem can be defined as follows (see

e.g. Definition 7.4 in Crandall et al. (1992), Definition 13.1 in Fleming and Soner

(2006) or Definition 12.1 in Cont and Tankov (2004)).

Definition 2.3.2. (i) Any v ∈ C0(B × [t1, t2]) is a viscosity subsolution of (2.3.20)

if

(2.3.21) (−∂t − L + r) φ(x, t) ≤ 0, for (x, t) ∈ B × [t1, t2),

(2.3.22)

min {(−∂t − L + r) φ(x, t), v(x, t) − u(x, t)} ≤ 0, for (x, t) ∈ ∂B× [t1, t2)∪B×t2,

(2.3.23) v(x, t) ≤ u(x, t), for (x, t) ∈ Rn × [t1, t2] \ B × [t1, t2],

for any function φ ∈ C2,1(Rn × [t1, t2]) ∩ C1(R
n × [t1, t2]) such that φ(x, t) = v(x, t)

and φ(x̃, t̃) ≥ v(x̃, t̃) for any (x̃, t̃) ∈ Rn × [t1, t2]. Any v ∈ C0(B × [t1, t2]) is a

viscosity supersolution of (2.3.20) if

(2.3.24) (−∂t − L + r) φ(x, t) ≥ 0, for (x, t) ∈ B × [t1, t2),

(2.3.25)

max {(−∂t − L + r) φ(x, t), v(x, t) − u(x, t)} ≥ 0, for (x, t) ∈ ∂B×[t1, t2)∪B×t2,
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(2.3.26) v(x, t) ≥ u(x, t), for (x, t) ∈ Rn × [t1, t2] \ B × [t1, t2],

for any function φ ∈ C2,1(Rn × [t1, t2]) ∩ C1(R
n × [t1, t2]) such that φ(x, t) = v(x, t)

and φ(x̃, t̃) ≤ v(x̃, t̃) for any (x̃, t̃) ∈ Rn × [t1, t2].

(ii) v is a viscosity solution of (2.3.20) if it is both a subsolution and a supersolu-

tion.

Following Definition 2.3.2, it is easy to check the following result.

Lemma 2.3.3. If the Lévy measure ν satisfies (H2), then u(x, t) is a viscosity solu-

tion of (2.3.20).

Proof. We will only show that u(x, t) is a viscosity subsolution. That u is a viscosity

supersolution can be checked similarly. For any (x, t) ∈ B × [t1, t2], let φ be a

test function satisfying conditions in Definition 2.3.2 for subsolutions. Noticing that

u(x, t) itself is the boundary and terminal value of (2.3.20), (2.3.22) and (2.3.23)

are automatically satisfied. On the other hand, the inequality (2.3.21) follows from

(2.2.17) and the fact that u(t, x) ≥ g(x).

In Definition 2.3.2, it is important to note that the test function φ is used in

evaluating the integral term Ifφ(t, x). However, thanks to Lemma 2.3.1, Ifu is well

defined in the classical sense. Therefore, we will consider the following parabolic

differential equation with an integral driving term

(−∂t −Lf
D + r) v(x, t) = Ifu(x, t), for (x, t) ∈ B × [t1, t2),

v(x, t) = u(x, t), for (x, t) ∈ ∂B × [t1, t2) ∪ B × t2,

(2.3.27)

where B is the same as in (2.3.20). The viscosity solution of (2.3.27) is defined as

follows.
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Definition 2.3.4. Any v ∈ C0(B × [t1, t2]) is a viscosity subsolution of (2.3.27) if

(2.3.28) (−∂t − Lf
D + r) φ(x, t) ≤ Ifu(x, t), for (x, t) ∈ B × [t1, t2),

min
{

(−∂t − Lf
D + r) φ(t, x) − Ifu(x, t), v(x, t) − u(x, t)

}
≤ 0,

for (x, t) ∈ ∂B × [t1, t2)B × t2

(2.3.29)

for any function φ ∈ C2,1(Rn× [t1, t2]) such that φ(x, t) = v(x, t) and φ(x̃, t̃) ≥ v(x̃, t̃)

for any (x̃, t̃) ∈ Rn × [t1, t2]. The supersolution is defined analogously. As usual, v is

a viscosity of (2.3.27) if it is both a subsolution and a supersolution.

Actually, it turns out the notion of viscosity solutions for (2.3.20) defined in

Definition 2.3.2 is equivalent to the notion of viscosity solutions for (2.3.27) defined

in Definition 2.3.4.

Lemma 2.3.5. The value function u is a viscosity solution of (2.3.20) in the sense

of Definition 2.3.2, if and only if u is a viscosity solution of (2.3.27) in the sense of

Definition 2.3.4.

Proof. The proof follows from the argument of Lemma 2.1 in Soner (1986). For the

completeness of this chapter, we will repeat this argument in Section 2.6.

Now we will apply the regularity theory of parabolic differential equation to an-

alyze the regularity of u in the continuation region C. We assume that there exist a

positive constant λ such that

(H6)
n∑

i,j=1

aij(x, t) ξiξj ≥ λ|ξ|2, ∀x, ξ ∈ Rn, t ≥ 0.

Additionally, for i, j ≤ n

(H7)

aij(x, t), bi(x, t) and r(x, t) are continuously differentiable in both variables on Rn×[0, T ].
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With these two assumptions, now we are ready to state the main theorem of this

section.

Theorem 2.3.6. Let us assume that the Lévy measure ν satisfies (H2) and (H5)

with 0 ≤ α < 1, moreover coefficients of (2.3.20) satisfy (H6) and (H7). Then the

value function u is the unique classical solution, i.e., u ∈ C2,1, of the boundary value

problem (2.3.20). Moreover, u ∈ C2,1(C).

Proof. It follows from Lemmas 2.3.3 and 2.3.5 that the value function u(x, t) is a

viscosity solution of (2.3.27) in the sense of Definition 2.3.4. For the boundary

value problem (2.3.27), its boundary and terminal values are continuous on ∂B ×

[t1, t2) ∪ B × t2, as a result of the continuity of u (see Lemma 2.2.3). On the other

hand, the driving term Ifu(x, t) is uniformly Hölder continuous in both variables in

B × [t1, t2] (see Lemma 2.3.1). Moreover, thanks to (H7), the coefficients in (2.3.27)

are bounded and Hölder continuous in B × [t1, t2]. Therefore, combining with the

nondegenerate assumption (H6), Theorem 9 in Friedman (1964) pp. 69 implies that

(2.3.27) has a unique classical solution u∗(x, t) ∈ C2,1(B × (t1, t2)). Since u∗ is

already a classical solution, u∗ is also a viscosity solution of (2.3.27). Therefore, it

follows from the Comparison Theorem for viscosity solutions for parabolic differential

equations with the driving term (see e.g. Theorem 7.5 in Crandall et al. (1992)) that

u(x, t) = u∗(x, t) for (x, t) ∈ B × (t1, t2). This ensures that the value function u is

the unique classical solution of (2.3.20). Since B × (t1, t2) is an arbitrary domain in

the continuation region C, we have u ∈ C2,1(C).

We have studied the regularity of the value function inside the continuation region

when jumps have finite variation. We still want to understand how the value function

cross the interface of the continuation region and the stopping region, even when
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jumps have finite variation. Moreover, we hope to study problems with infinite

variation jumps. These analysis depend on the global regularity of the value function,

which we shall study in the following section.

2.4 Infinite variation jumps and the global regularity

2.4.1 The integral term

When the jumps of X have infinite variation, i.e., (2.3.1) is not satisfied, the

integral term cannot be reduced to the form in (2.3.4). Therefore, throughout this

section we need to work with the integro-differential operator L and its integral part

I in the form of (5.4.54) and (2.2.12). However, given the regularity properties of

the value function u in Lemmas 2.2.3, it is not clear that u has Lipschitz continuous

first derivative to make sure Iu is well defined in the classical sense (see (2.2.16)).

Nevertheless, in the following lemma, we will show that given sufficient regularity

properties for the test function φ, Iφ(x, t) is Hölder continuous in both variables.

Later in this section, we will prove that the value function u does have these regularity

properties to guarantee Iu well defined in the classical sense.

Let Ω be a compact domain in Rn, Ωδ , {x ∈ Rn : x ∈ Bδ(y) for some y ∈ Ω}

for some δ > 0. For s ∈ (0, T ], let us denote Qs = Ω × [0, s] and Qδ
s = Ωδ × [0, s].

Moreover, we denote Ds , Rn × [0, s].

Lemma 2.4.1. Let us assume that the Lévy measure satisfies (H2) and (H5) with

α ∈ [1, 2).

(i) Let us choose φ with finite norms maxRn×[0,s] |φ| and maxRn×[0,s] |∇xφ|, moreover

|φ(x, t1) − φ(x, t2)| ≤ L̃t |t1 − t2|1/2 for any x ∈ R and t1, t2 ∈ [0, s]. If φ ∈

Hβ, β
2

(
Q1

s

)
for some β ∈ (α, 2), then Iu ∈ H

β−α
2

, β−α
4

(
Qs

)
. Additionally, there
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exists a constant CΩ > 0, depending on Ω, α, β and T , such that

(2.4.1) ‖Iφ‖(
β−α

2 )
Qs

≤ CΩ

(
max

Rn×[0,s]
|φ| + max

Rn×[0,s]
|∇xφ| + L̃t + ‖φ‖(β)

Q1
s

)
,

where the Hölder norm ‖ · ‖(γ)

Qs
is defined in Definition 2.2.10.

(ii) If φ ∈ Hβ, β
2 (Ds) for some β ∈ (α, 2), then Iφ ∈ H

β−α
2

, β−α
4 (Ds). Moreover, there

exists a constant C, depending on α, β and T , such that

(2.4.2) ‖Iφ‖(
β−α

2 )
Ds

≤ C ‖φ‖(β)
Ds

.

Proof. For the notational simplicity, the constant C denotes a generic constant in

different places in the proof.

1. Let us first estimate maxQs
|Iφ|. Following (2.2.12), for (x, t) ∈ Qs, we have

|Iφ(x, t)| ≤
∫

|y|≤1

∣∣∣∣∣φ(x + y, t) − φ(x, t) −
n∑

i=1

yi ∂xiφ(x, t)

∣∣∣∣∣ ν(dy)

+

∫

|y|>1

|φ(x + y, t) − φ(x, t)| ν(dy)

≤
∫

|y|≤1

n∑

i=1

∣∣yi ∂xiφ(zi, t) − yi ∂xiφ(x, t)
∣∣ ν(dy) + 2 max

Rn×[0,s]
|φ|
∫

|y|>1

ν(dy)

≤ ‖φ‖(β)

Q1
s

∫

|y|≤1

|y|βν(dy) + 2 max
Rn×[0,s]

|φ|
∫

|y|>1

ν(dy)

≤ C

(
max

Rn×[0,s]
|φ| + ‖φ‖(β)

Q1
s

)
.

(2.4.3)

In the second inequality of (2.4.3), zi are some vectors in Rn with |zi − x| < |y|.

Therefore, when x ∈ Ω, we have x + zi ∈ Ω1. The third inequality follows from the

Hölder continuity of ∂xiφ on Q1
s, i.e.,

∑n
i=1 |∂xiφ(zi, t) − ∂xiφ(x, t)| ≤ ‖φ‖(β)

Q1
s

|y|β−1.

TO get the last inequality, we applies (H5). Note that β > α, hence
∫
|y|≤1

|y|−n+β−αdy

is integrable.
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The proof of the Hölder continuity of x → Iφ(x, t) and t → Iφ(x, t) are similar

to the proof in Lemmas 2.3.1. Let us check the Hölder continuity in x first. For any

x1, x2 ∈ Ω and t ∈ [0, s], breaking up the integral term into three parts, we obtain

(2.4.4) |Iφ(x1, t) − Iφ(x2, t)| ≤ I1 + I2 + I3,

in which

I1(x, t) =

∫

|y|≤ǫ

[|φ(x1 + y, t) − φ(x1, t) − y · ∇xφ(x1, t)|

+ |φ(x2 + y, t) − φ(x2, t) − y · ∇xφ(x2, t)|] ν(dy),

I2(x, t) =

∫

ǫ<|y|≤1

[|φ(x1 + y, t) − φ(x2 + y, t)| + |φ(x1, t) − φ(x2, t)|

+|y| |∇xφ(x1, t) −∇xφ(x2, t)|] ν(dy),

I3(x, t) =

∫

|y|>1

[|φ(x1 + y, t) − φ(x2 + y, t)| + |φ(x1, t) − φ(x2, t)|] ν(dy).

Here the constant ǫ ≤ 1 will be determined later. Let us estimate each integral term

separately. An estimate similar to (2.4.3) shows that

(2.4.5) I1 ≤ 2‖φ‖(β)

Q1
s

∫

|y|≤ǫ

|y|βν(dy) ≤ 2M‖φ‖(β)

Q1
s

∫

|y|≤ǫ

|y|−n+β−αdy = C‖φ‖(β)

Q1
s

ǫβ−α.

Thanks to the Lipschitz continuity of x → φ(x, t) and the Hölder continuity of

x → ∂xi
φ(x, t), we can estimate I2 and I3 as

I2 ≤
∫

ǫ<|y|≤1

[
2 max

Rn×[0,s]
|∇xφ| |x1 − x2| + ‖φ‖(β)

Q1
s

|y| |x1 − x2|β−1

]
ν(dy)

≤ M

∫

ǫ<|y|≤1

[
2 max

Rn×[0,s]
|∇xφ| |x1 − x2| + ‖φ‖(β)

Q1
s

|y| |x1 − x2|β−1

]
|y|−n−αdy

= C max
Rn×[0,s]

|∇xφ| |x1 − x2|(ǫ−α − 1) + C ‖φ‖(β)

Q1
s

|x1 − x2|β−1 ·





ǫ1−α − 1 when 1 < α < 2,

− log ǫ when α = 1.

,

(2.4.6)

(2.4.7) I3 ≤ 2 max
Rn×[0,s]

|∇xφ| |x1 − x2|
∫

|y|>1

ν(dy).
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Now pick ǫ = |x1 − x2|1/2 ∧ 1. Note that 1 ≤ α < 2, we obtain ǫβ−α ≤ |x1 − x2|
β−α

2 ,

ǫ−α−1 ≤ |x1−x2|−
α
2 , ǫ1−α−1 ≤ |x1−x2|

1−α
2 and − log ǫ ≤ 1

δ
|x1−x2|−δ for any δ > 0

(see (2.3.15)). Since β > 1, we will choose δ = β−1
2

in the following. Concluding

from these inequalities and (2.4.4) - (2.4.7), we obtain

(2.4.8) |Iφ(x1, t) − Iφ(x2, t)| ≤ CΩ

(
max

Rn×[0,s]
|∇xφ| + ‖φ‖(β)

Q1
s

)
|x1 − x2|

β−α
2 ,

where CΩ is a sufficiently large constant independent of x1, x2 and t.

For the Hölder continuity of t → Iφ(x, t), since φ ∈ Hβ, β
2 (Q1

s), it follows from

Definition 2.2.10 that

n∑

i=1

|∂xi
φ(x, t1) − ∂xi

φ(x, t2)| ≤ ‖φ‖(β)

Qs
|t1 − t2|

β−1

2 , for x ∈ Ω and t1, t2 ∈ [0, s].

Picking ǫ = |x1 − x2|
1

4 ∧ 1, an estimation similar to Lemma 2.3.1 gives us

(2.4.9) |Iφ(x, t1) − Iφ(x, t2)| ≤ CΩ

(
L̃t + ‖φ‖(β)

Q1
s

)
|t1 − t2|

β−α
4 ,

where CΩ is a sufficiently large constant independent of x, t1 and t2.

Now the first part of the lemma follows from (2.4.3), (2.4.8) and (2.4.9).

2. Noting that maxDs |φ| ≤ ‖φ‖(β)
Ds

and maxt1,t2∈[0,s]
|φ(x,t1)−φ(x,t2)|

|t1−t2|
1
2

≤ s
β−1

2 ‖φ‖(β)
Ds

(see Definition 2.2.10), the second part of the lemma follows from the same argument

which we used in the first part of the proof.

Remark 2.4.2. When the Lévy measure ν is a finite measure on Rn, the integral form

∫
Rn φ(x + y, t) ν(y) has the same regularity as φ(x, t) (see Yang et al. (2006)). When

the Lévy measure has a singularity, as we have seen in Lemma 2.4.1, the regularity

of I φ decreases compared to the regularity of φ. Moreover, as we have seen in

(2.4.1), the Hölder norm of I φ depends on the Hölder norm of φ on a slightly larger

domain. This extension of domains will introduce a technical difficulty in estimating

the Sobolev norm of u. This estimation will be carried out in the following section.
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2.4.2 Solutions in the Sobolev sense

As we have seen in Proposition 2.2.5, if the Lévy measure ν satisfies (H2), the

value function u is the viscosity solution of the variational inequality (4.3.3). In

the following, we will apply the regularity results for partial differential equations to

show that u is also a solution of (4.3.3) in the Sobolev sense.

In this subsection, instead of (H7), we assume that

(H7’) aij , bi and r are constants for i, j ≤ n, and r ≥ 0.

Moreover, there exist positive constants λ and Λ such that

(H6’) λ|ξ|2 ≤
n∑

i,j=1

aij ξiξj ≤ Λ|ξ|2, ∀ξ ∈ Rn.

Remark 2.4.3. Actually, the following two assumptions

(H6”) λ|ξ|2 ≤
n∑

i,j=1

aij(x, t) ξiξj ≤ Λ|ξ|2, ∀(x, t) ∈ Rn × [0, T ] and ξ ∈ Rn, and

(H7”)

aij(x, t), b(x, t), r(x, t) ∈ Hℓ, ℓ
2 (Rn × [0, T ]), ∀ℓ ∈ (0, 1) and i, j ≤ n, and r(x, t) ≥ 0

are sufficient for all results in this section except Lemma 2.5.7, where the constant

coefficient assumption (H7’) is necessary.

In order to work with non-smooth payoff functions, we assume that there exists

a mollified sequence of g, denoted by {gǫ}ǫ∈(0,ǫ0)
for some constant ǫ0 < 1, such that

limǫ↓0 gǫ(x) = g(x) uniformly in compact subsets of Rn and

(H8) each gǫ(x) ∈ H2+ℓ(Rn) ∀ℓ ∈ (0, 1).

Moreover, there exist positive constants K, L and J independent of ǫ such that for

all x ∈ Rn

(H3’) 0 ≤ gǫ(x) ≤ K,
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(H4’) |∇gǫ(x)| ≤ L, and

(H9)

n∑

i,j=1

∂2
xixjgǫ(x) ξiξj ≥ −J |ξ|2, ∀ξ, x ∈ Rn.

Remark 2.4.4. Actually, for standard put option payoffs on multiple assets: g(x) =

[
K − 1

n

∑n
i=1 exi

]+
(the arithmetic average) and g(x) =

[
K − exp

(
1
n

∑n
i=1 xi

)]+
(the

geometric average), mollified sequences can be constructed to satisfy the assumptions

(H3’), (H4’), (H8) and (H9). Indeed, we can choose a sequence of functions Hǫ(y) ∈

C∞(R) (ǫ ∈ (0, ǫ0) with ǫ0 much smaller than K) such that 0 ≤ H
′

ǫ(y) ≤ 1, H
′′

ǫ (y) ≥ 0

and Hǫ(y) =





y, y ≥ ǫ

0, y ≤ −ǫ

. The mollified sequence {gǫ}ǫ∈(0,ǫ0)
can be constructed

by defining gǫ(x) = Hǫ

(
K − 1

n

∑n
i=1 exi

)
or gǫ(x) = Hǫ

(
K − exp

(
1
n

∑n
i=1 xi

))
. It

is clear that limǫ↓0 gǫ(x) = g(x) uniformly in R. Note that H
′

(y) > 0 only when

y > −ǫ, one can check that (H3’), (H4’), (H8) and (H9) are satisfied for both cases.

Given these assumptions, we are ready to state main result of this section.

Theorem 2.4.5. If (H6’), (H7’), (H3’), (H4’), (H8) and (H9) are satisfied, more-

over, the Lévy measure ν satisfies (H2) and (H5) with α ∈ [0, 2), then u ∈ W 2,1
p (Bρ(x0)×

(0, T − s)) for any integer p ∈ (1,∞), ρ, s > 0 and x0 ∈ Rn.

Before we prove this key estimate in Section 2.5, let us list some corollaries of this

result.

Corollary 2.4.6. If the assumptions in Theorem 2.4.5 are satisfied, then for any

ρ, s > 0 and x0 ∈ Rn

(i) u ∈ Hβ, β
2 (Bρ(x0) × [0, T − s]) where β = 2 − n+2

p
> 0. In particular, ∇xu ∈

C(Rn × [0, T )). Therefore the smooth-fit property holds.
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(ii) if the Lévy measure ν satisfies (H5) with α ∈ [1, 2), then Iu is well defined in the

classical sense in Bρ(x0)× [0, T ). Moreover, I u ∈ H
β−α

2
, β−α

4 (Bρ(x0)× [0, T −s])

for some β ∈ (α, 2).

Proof. (i) Combining the result in Theorem 2.4.5 and the Sobolev Inequality (see

e.g. Lemma 3.3 in Ladyženskaja et al. (1968) pp. 80), we have u ∈ Hβ, β
2 (Bρ(x0) ×

[0, T − s]), where β = 2− n+2
p

> 0. Choosing sufficiently large p such that β > 1, the

continuity of ∇xu follows from the definition of Hölder spaces in Definition 2.2.10

and the arbitrary choice of s.

(ii) It follows from the result in (i) for ρ + 1 and the estimation (2.4.3) that Iu

is well defined in Bρ(x0) × [0, T − s]. Then the first statement of (ii) follows, since

the choice of s is arbitrary. Choosing sufficiently large p such that β > α, the second

statement of (ii) follows from Lemma 2.4.1.

Thanks to Corollary 2.4.6 (ii), we can consider the following boundary value

problem with the driving term I u:

(−∂t − LD + r) v(x, t) = Iu(x, t), for (x, t) ∈ B × [t1, t2),

v(x, t) = u(x, t), for (x, t) ∈ ∂B × [t1, t2) ∪ B × t2,

(2.4.10)

where B×(t1, t2) ⊂ C is the bounded domain as in (2.3.20). The viscosity solution of

(2.4.10) is defined similarly as in Definition 2.3.4, with operators Lf
D and If replaced

by LD and I respectively.

Rather than extending Lemma 2.3.5 to the infinite variation jump case, the fol-

lowing relation between the solutions in the Sobolev sense and the viscosity sense

shows that the value function u is a viscosity solution of the boundary value problem

(2.4.10). See Corollary 3 in Lions (1983) or Theorem 9.15 (ii) in Karatzas (1998) for

its proof.
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Lemma 2.4.7. If u ∈ W 2,1
p (B × (t1, t2)) for p > n + 1 satisfies (2.4.10) at almost

every point in B × (t1, t2), then u is the viscosity solution of (2.4.10) in the sense of

Definition 2.3.4.

Thanks to Corollary 2.4.6, Lemmas 2.4.1 and 2.4.7, the argument in Theorem 2.3.6

also works for the infinite variation jump case.

Theorem 2.4.8. If the Lévy measure ν satisfies (H2) and (H5) with 1 ≤ α < 2, then

the value function u is the unique classical solution, i.e., u ∈ C2,1, of the boundary

value problem (2.3.20). Moreover, u ∈ C2,1(C).

Proof. Corollary 2.4.6 (ii) tells us that Iu(x, t) ∈ H
β−α

2
, β−α

4 (B× [t1, t2]). As the value

function u is shown to be a viscosity solution of (2.4.10) in Lemma 2.4.7, the rest

proof follows from the same proof for Theorem 2.3.6.

2.5 Proof of Theorem 2.4.5

Because the jump may have infinite variation, the proof of Theorem 2.4.5 needs

to conquer several technical difficulties. We will carry the proof of Theorem 2.4.5 in

a series of lemmas and point out the difficulties along the way.

Let us first define v(x, t) = u(x, T − t) for (x, t) ∈ Rn × [0, T ]. It is natural to

expect that v solves the following variational inequality

min {(∂t −LD − I + r) v(x, t), v(x, t) − g(x)} = 0, (x, t) ∈ R × (0, T ],

v(x, 0) = g(x).

(2.5.1)

In this section, we will show that v indeed solves (2.5.1) for almost every point

(x, t) ∈ Rn × [0, T ]. Moreover, its W 2,1
p -norm is bounded on bounded domains of

Rn × [0, T ]. In the following, we will only carry out the proof of Theorem 2.4.5

for the infinite variation jump case, i.e., the Lévy measure ν satisfies (H5) with
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1 ≤ α < 2. Since the integral operator has the reduced form If in (2.3.4) for the

finite variation jumps, the proof of 0 ≤ α < 1 case in Theorem 2.4.5 will be similar

and easier.

Motivated by Lemma 3.1 in Friedman (1982) pp. 24 and Yang et al. (2006), we

will study the following penalty problem for each ǫ ∈ (0, ǫ0), where ǫ0 is chosen before

(H8):

(∂t − LD − I + r) vǫ(x, t) + pǫ (vǫ − gǫ) = 0, (x, t) ∈ Rn × (0, T ],

vǫ(x, 0) = gǫ(x),

(2.5.2)

where the mollified sequence {gǫ}ǫ∈(0,ǫ0)
satisfies (H3’), (H4’), (H8) and (H9). Here

the penalty term pǫ(y) ∈ C∞(R) is chosen to satisfy following properties:

(i) pǫ(y) ≤ 0, (ii) pǫ(y) = 0 if y ≥ ǫ,

(iii) pǫ(0) = −nΛJ − |b|(0)L − |r|(0)K − J

∫

|y|≤1

|y|2ν(dy) − K

∫

|y|>1

ν(dy),

(iv) p
′

ǫ(y) ≥ 0, (v) p
′′

ǫ (y) ≤ 0 and (vi) lim
ǫ↓0

pǫ(y) =





0, y > 0

−∞, y < 0

.

(2.5.3)

Here constants Λ, K, L and J come from (H6”) (H3’), (H4’) and (H9) respectively.

Additionally, |b|(0) = maxRn×[0,T ] |b(x, t)| and |r|(0) = maxRn×[0,T ] |r(x, t)| are finite

due to (H7”). Moreover, pǫ(0) is also finite thanks to (2.2.3). It is also worth

noticing that pǫ(0) is independent of ǫ. These properties of pǫ will be useful in later

development. In particular, (2.5.3) (iii) will be essential for proofs of Lemma 2.5.9

and Corollary 2.5.10.

Let us recall the Schauder Fixed Point Theorem (see e.g. Theorem 2 in Friedman

(1964) pp. 189).

Lemma 2.5.1. Let Θ be a closed convex subset of a Banach space and let T be a

continuous operator on Θ such that T Θ is contained in Θ and T Θ is precompact.
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Then T has a fixed point in Θ.

For each ǫ ∈ (0, ǫ0), we will show that the penalty problem (2.5.2) has a classical

solution via the Schauder Fixed Point Theorem. Let us recall Ds = Rn × [0, s].

Lemma 2.5.2. If the Lévy measure ν satisfies (H2) and (H5) with 1 ≤ α < 2, then

for any ǫ ∈ (0, ǫ0) and β ∈ (α, 2), (2.5.2) has a solution vǫ ∈ H2+ β−α
2

,1+ β−α
4 (DT ).

Proof. We will first prove that (2.5.2) has a solution on a sufficiently small time

interval t ∈ [0, s] via the Schauder Fixed Point Theorem. Then we will extend this

solution to the interval [0, T ].

Let us consider the set Θ =
{
v ∈ Hβ, β

2 (Ds) with its Hölder norm ‖v‖(β)
Ds

≤ U0

}
,

where positive constants s and U0 will be determined later. It is clear that Θ is

a bounded, closed and convex set in the Banach space Hβ, β
2 (Ds). For any v ∈ Θ,

consider the following Cauchy problem for u − gǫ:

(∂t −LD + r) (u − gǫ)(x, t) = Iv(x, t) − pǫ(v − gǫ)(x, t) + (LD − r) gǫ(x),

(x, t) ∈ R × (0, s],

u(x, 0) − gǫ(x) = 0.

(2.5.4)

Via the solution u of (2.5.4), the operator T can be defined as u = T v. Let us check

the conditions for the Schauder Fixed Point Theorem in the sequel.

1. Tv is well defined. Note that v ∈ Hβ, β
2 (Ds) and β ∈ (α, 2), it follows from

Lemma 2.4.1 (ii) that Iv ∈ H
β−α

2
, β−α

4 (Ds) with

(2.5.5) ‖Iv‖(β−α
2

)

Ds
≤ C ‖v‖(β)

Ds
, for some constant C > 0 independent of s.

On the other hand, we can check that pǫ(v − gǫ) ∈ H
β−α

2
, β−α

4 (Ds). Indeed, pǫ(v −

gǫ) is bounded in Ds, since both v, gǫ ∈ Hβ, β
2 (Ds) (see (H8)) and pǫ(y) ∈ C0(R).
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Additionally, for any x1, x2 ∈ Rn, t ∈ [0, s]

|pǫ(v − gǫ)(x1, t) − pǫ(v − gǫ)(x2, t)| ≤ max
Ds

|p′

ǫ(v − gǫ)| |(v − gǫ)(x1, t) − (v − gǫ)(x2, t)|

≤ C̃|x1 − x2|.

Here maxDs |p
′

ǫ(v − gǫ)| is finite, which also follows from the boundness of v− gǫ and

pǫ ∈ C1(R). The positive constant C̃ depends on maxDs |p
′

ǫ(v − gǫ)| and the Hölder

norms of v and gǫ. Meanwhile, the Hölder continuity of pǫ(v−gǫ) in t can be checked

similarly. Furthermore, (LD−r) gǫ(x) ∈ H
β−α

2
, β−α

4 (Ds) as a result of (H8). Therefore,

thanks to (H6”) and (H7”), it follows from Theorem 5.1 in Ladyženskaja et al. (1968)

pp. 320 that (2.5.4) has a uniqueness solution u−gǫ ∈ H2+ β−α
2

,1+ β−α
4 (Ds). Note that

gǫ ∈ H2+ β−α
2

,1+ β−α
4 (Ds) (see (H8)), we have u = Tv ∈ H2+ β−α

2
,1+ β−α

4 (Ds).

2. T Θ ⊂ Θ. For u = Tv, appealing to Lemma 2 in Friedman (1964) pp. 193,

we obtain that there exists a positive constant Aβ, depending on β, such that

‖u − gǫ‖(β)
Ds

≤ Aβsγ
[
‖Iv‖(0) + ‖pǫ(v − gǫ)‖(0) + ‖(LD − r) gǫ‖(0)

]

≤ AβCsγ‖v‖(β)
Ds

+ Ã,

(2.5.6)

where γ = 2−β
2

, C is the constant in (2.5.5) and Ã is a sufficiently large constant

dependent on ‖gǫ‖(2+ℓ)
Rn for some ℓ ∈ (0, 1). Let us take sufficiently small s such that

τ , AβCsγ < 1/2. Moreover, let us take U0 = max{ 2 eA
1−2τ

, 2 ‖gǫ‖(β)
Ds

}. Note that

‖v‖(β)
Ds

≤ U0, it follows from (2.5.6) that

(2.5.7) ‖u‖(β)
Ds

≤ ‖u−gǫ‖(β)
Ds

+‖gǫ‖(β)
Ds

≤ τU0 +Ã+
U0

2
≤ τ U0+

1 − 2τ

2
U0 +

U0

2
= U0.

Therefore, u = T v ∈ Θ.

3. T Θ is a precompact subset of Hβ, β
2 (Ds). For any η ∈ (β, 2), similar

estimate as (2.5.6) shows that for any v ∈ Θ, we have ‖Tv‖(η)
Ds

≤ U1 for some constant

U1 depending on U0 and s. On the other hand, argument similar to Theorem 1 in
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Friedman (1964) pp.188 shows that bounded subsets of Hη, η
2 (Ds) are precompact

subsets of Hβ, β
2 (Ds). Therefore, T Θ is a precompact subset in Hβ, β

2 (Ds).

4. T is a continuous operator. Let vn be a sequence in Θ such that limn→∞ ‖vn−

v‖(β)
Ds

= 0, we will show limn→∞ ‖Tvn − Tv‖(β)
Ds

= 0. From (2.5.4), w , Tvn − Tv

satisfies the Cauchy problem

(∂t −LD + r) w(x, t) = I(vn − v)(x, t) − [pǫ(vn − gǫ) − pǫ(v − gǫ)] , (x, t) ∈ Rn × (0, s]

w(x, 0) = 0.

It follows again from Lemma 2 in Friedman (1964) pp. 193 that

‖T vn − T v‖(β)
Ds

= ‖w‖(β)
Ds

≤ Aβs
γ
[
‖I(vn − v)‖(0) + ‖pǫ(vn − gǫ) − pǫ(v − gǫ)‖(0)

]

≤ Aβs
γ

[
C‖vn − v‖(β)

Ds
+ max

Ds,n

∣∣∣p′

ǫ(vn − gǫ)
∣∣∣ ‖vn − v‖(0)

]

→ 0 as n → ∞.

Concluding from 2. - 4., we obtain a fixed point of operator T in Hβ, β
2 (Ds) as

a result of the Schauder Fixed Point Theorem. We denote this fixed point as vǫ.

Moreover, it follows from the result in 1. that vǫ = T vǫ ∈ H2+ β−α
2

,1+ β−α
4 (Ds).

Finally, let us extend vǫ to the interval [0, T ]. Choosing any ρ ∈ (0, T − s), we

replace gǫ(·) by vǫ(·, ρ) in (2.5.4). Note that the choice of s in 2. only depend on β

and C, but not on ρ. If ‖vǫ(·, ρ)‖(2+ β−α
2

)

Rn is finite, we can choose a sufficiently large

U0, depending on ‖vǫ(·, ρ)‖(2+ β−α
2

)

Rn , such that (2.5.7) holds on [ρ, ρ + s], moreover

‖vǫ(·, ρ + s)‖(2+ β−α
2

)

Rn is finite thanks to the result after 4.. Noticing that ‖gǫ‖(2+ℓ)
Rn is

finite for any ℓ ∈ (0, 1), one can extend the time interval by s each time, until the

time interval contains [0, T ]. Therefore we have the statement of the lemma.

Remark 2.5.3. Because of the regularity decreases after applying the integral operator

(see Remark 2.4.2), it is no longer straight forward to use the “bootstraping scheme”

which was used in Theorem 2.1 of Yang et al. (2006) to explore the higher regularity
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of vǫ. Instead, we will use a new technique to study the higher regularity of vǫ in the

proof of Lemma 2.5.7.

Thanks to the definition of the Hölder spaces, Lemma 2.5.2 also tells us that vǫ

is bounded in DT . In order to show that vǫ is the unique bounded classical solution

of the penalty problem (2.5.2), we need the following Maximum Principle for the

parabolic integro-differential operator. The proof of it is provided in Section 2.6.

(See Lemma 2.1 of Yang et al. (2006) for a similar Maximum Principle, where ν is

assumed to be a finite measure on R.)

Lemma 2.5.4. Let us assume that aij(x, t), bi(x, t) and c(x, t) are bounded in Rn ×

[0, T ] with A = (aij)n×n satisfying
∑n

i,j=1 aij(x, t) ξiξj > 0 for any ξ ∈ Rn \ {0},

moreover c(x, t) ≥ 0 and the Lévy measure satisfies (H2). If v ∈ C0([0, T ] × Rn) ∩

C2,1((0, T ] × Rn) satisfies (∂t − LD − I + c(x, t)) v(x, t) ≥ 0 in R × (0, T ] and there

exists a sufficiently large positive constant m such that v(x, t) ≥ −m for (x, t) ∈

Rn × [0, T ]. Then v(x, 0) ≥ 0 implies that v(x, t) ≥ 0 for (x, t) ∈ Rn × [0, T ].

As a corollary of this Maximum Principle, the bounded classical solution of the

penalty problem (2.5.2) is unique.

Corollary 2.5.5. For each ǫ ∈ (0, ǫ0), the penalty problem (2.5.2) has a unique

bounded classical solution.

Proof. Let us assume v1 and v2 are two bounded solutions of (2.5.2). Then v1 − v2

satisfies

(∂t −LD − I + r) (v1 − v2) + pǫ(v1 − gǫ) − pǫ(v2 − gǫ) = 0, (x, t) ∈ Rn × (0, T ],

(v1 − v2)(x, 0) = 0

(2.5.8)



41

On the other hand, it follows from the mean value theorem that pǫ (v1−gǫ)−pǫ(v2−

gǫ) = p
′

ǫ(y)(v1 − v2) for some y ∈ Rn. Moreover, p
′

ǫ(y) is bounded, say by M ,

thanks to the fact that pǫ ∈ C1(R) and v1, v2 and gǫ are all bounded. Now applying

Lemma 2.5.4 to the equation (2.5.8) and choosing c = r+M ≥ 0 (see (2.5.3) (iv)), we

have v1(x, t) ≥ v2(x, t) for (x, t) ∈ Rn × (0, T ]. The other direction of the inequality

follows from applying the same argument to v2 − v1.

Applying Lemma 2.5.4, we will analyze some universal properties of vǫ for all

ǫ ∈ (0, ǫ0) in the following three lemmas.

Lemma 2.5.6.

0 ≤ vǫ(x, t) ≤ K + 1, for (x, t) ∈ Rn × [0, T ].

Proof. Since the proof is similar to the proof of Lemma 2.2 in Yang et al. (2006), we

give it in the Section 2.6.

Lemma 2.5.7.

|∂xkvǫ(x, t)| ≤ L, for (x, t) ∈ Rn × [0, T ], 1 ≤ k ≤ n.

Proof. Intuitively, thanks to the constant coefficient assumption (H7’), it follows from

(2.5.2) that ∂xkvǫ satisfies

(∂t − LD − I + r)w + p
′

ǫ(v
ǫ − gǫ)(w − ∂xkgǫ) = 0, (x, t) ∈ Rn × (0, T ],

w(x, 0) = ∂xkgǫ(x),

(2.5.9)

where coefficients unchanged compared to (2.5.2). However, given the result in

Lemma 2.5.2, it is only known that vǫ has continuous derivatives of the form ∂2
xixjvǫ,

∂xivǫ and ∂tv
ǫ. While it is necessary for vǫ to have derivatives of higher orders to

ensure ∂xkvǫ as the classical solution of (2.5.9). Therefore, we will first prove that

∂xkvǫ is indeed the classical solution of (2.5.9).
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Let us consider the equation

(∂t −LD − I + r)w = −p
′

ǫ(v
ǫ − gǫ)(∂xkvǫ − ∂xkgǫ), (x, t) ∈ Rn × (0, T ],

w(x, 0) = ∂xkgǫ(x).

(2.5.10)

Thanks to Lemma 2.5.2 and (H8), −p
′

ǫ(v
ǫ − gǫ)(∂xkvǫ − ∂xkgǫ) is Hölder continuous.

Therefore, it follows from Theorem 3.1 in Garroni and Menaldi (1992) pp. 89 that

(2.5.10) has a unique classical solution. Let us call it w.

For any point (x, t) ∈ Rn×[0, T ], we will show that ∂xkvǫ(x, t) = w(x, t). As a vec-

tor in Rn, x = (x1, · · · , xn). Let us also denote x(z) , (x1, · · · , xk−1, z, xk+1, · · · , xn).

One can check that v(x, t) ,
∫ xk

0
w(x(z), t) dz + vǫ(x(0), t) is a classical solution of

the following Cauchy problem

(∂t − LD − I + r) v = −pǫ(v
ǫ − gǫ), (x, t) ∈ Rn × (0, T ],

v(x, 0) = gǫ(x).

(2.5.11)

Moreover, thanks to estimate (3.6) in Theorem 3.1 of Garroni and Menaldi (1992)

pp. 89, v is a bounded on Rn × [0, T ]. On the other hand, using Lemma 2.5.4

one can show that (2.5.11) has a unique bounded classical solution. Therefore, it

follows from Corollary 2.5.5 that v(x, t) = vǫ(x, t) for (x, t) ∈ Rn × [0, T ]. As a result

∂xkvǫ(x, t) = w(x, t) and ∂xkvǫ is a classical solution of (2.5.9).

The rest of the proof is same as the proof of Lemma 2.4 in Yang et al. (2006).

Thanks to Lemma 2.5.2, |∂xkvǫ| is already bounded on Rn × [0, T ]. We will show it

is bounded uniformly in ǫ in the following. Let u = L + ∂xkvǫ, u ∈ C0([0, T ]×Rn)∩

C2,1((0, T ] × Rn) and it satisfies

(∂t − LD − I + r) u + p
′

ǫ(v
ǫ − gǫ) u = p

′

ǫ(v
ǫ − gǫ)(∂xkgǫ + L) + r L,

u(x, 0) = L + ∂xkg(x).

(2.5.12)

Note (H4’) and (2.5.3) (iv), u(x, t) ≥ 0 follows from applying Lemma 2.5.4 to (2.5.12)
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by picking c = r + p
′

ǫ(v
ǫ − gǫ). The proof for the upper bound can be performed

similarly by picking u = L − ∂xkvǫ.

Remark 2.5.8. The constant coefficient assumption (H7’) makes sure that the coef-

ficient before u in (2.5.12) is nonnegative in order to apply the Maximal Principle

Lemma 2.5.4.

Lemma 2.5.9. For any ǫ ∈ (0, ǫ0), vǫ(x, t) ≥ gǫ(x) on Rn × [0, T ].

Proof. Let us first show that Igǫ(x) is uniformly bounded from below. Compared to

Yang et al. (2006) where ν is a finite measure, we will bound Igǫ(x) from below in

the following way.

Igǫ(x) =

∫

|y|≤1

[
gǫ(x + y) − gǫ(x) −

n∑

i=1

yi ∂

∂xi
gǫ(x)

]
ν(dy) +

∫

|y|>1

[gǫ(x + y) − gǫ(x)] ν(dy)

=

∫

|y|≤1

ν(dy)

∫ 1

0

dz(1 − z)
n∑

i,j=1

yiyj ∂2

∂xi∂xj
gǫ(x + zy) +

∫

|y|>1

[gǫ(x + y) − gǫ(x)] ν(dy)

≥
∫

|y|≤1

ν(dy)

∫ 1

0

dz(1 − z)
(
−J |y|2

)
− K

∫

|y|>1

ν(dy)

≥ −J

∫

|y|≤1

|y|2ν(dy) − K

∫

|y|>1

ν(dy),

(2.5.13)

where the first inequality follows from (H9) and (H3’).

On the other hand, thanks to (H6”) and (H9),
∑n

i,j aij(x, t) ∂2
xixjgǫ(x) is also

bounded from below. Note that
∑n

i,j aij(x, t) ∂2
xixjgǫ(x) = tr(AH(gǫ)), where H(gǫ)

is the Hessian of gǫ, i.e., H(gǫ)ij = ∂2
xixjgǫ(x). It follows from the first inequality in

(H6”) that A is a positive definite matrix. Then there exists a nonsingular matrix

C such that A = CC
′

. Therefore tr(AH(gǫ)) = tr(CC
′

H(gǫ)) = tr(C
′

H(gǫ)C).

Moreover, (H9) and (H6”) give us that

(Cξ)
′

H(gǫ) (Cξ) ≥ −J
(
ξ
′

C
′

C ξ
)

= −J
(
ξ
′

A ξ
)
≥ −JΛ|ξ|2, ∀ξ ∈ Rn.
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Hence C
′

H(gǫ) C + JΛ In is a non-negative definite matrix. As a result, we have

tr
(
C

′

H(gǫ) C
)

+ nJΛ = tr
(
C

′

H(gǫ) C + JΛIn

)
≥ 0, which implies

(2.5.14)
n∑

i,j=1

aij(x, t)
∂2

∂xi∂xj
gǫ(x) = tr (AH(gǫ)) ≥ −nJΛ.

Thanks to (2.5.13) and (2.5.14), we can bound (∂t − LD − I + r) gǫ(x) from above.

Indeed,

(∂t −LD − I + r) gǫ(x)

= −
n∑

i,j=1

aij(x, t)
∂2

∂xi∂xj
gǫ(x) −

n∑

i=1

bi(x, t)
∂

∂xi
gǫ(x) + r(x, t) gǫ(x) − Igǫ(x)

≤ nJΛ + |b|(0)L + |r|(0)K + J

∫

|y|≤1

|y|2ν(dy) + K

∫

|y|>1

ν(dy)

= −pǫ(0),

(2.5.15)

where the second equality follows from (2.5.3) (iii).

Now we will show vǫ ≥ gǫ via the Maximum Principle in Lemma 2.5.4. It follows

from (2.5.15) that

(∂t −LD − I + r) (vǫ − gǫ) = −pǫ (vǫ − gǫ) − (∂t − LD − I + r) gǫ

≥ −pǫ (vǫ − gǫ) + pǫ(0).

Combining with the mean value theorem, we obtain

(2.5.16)
(
∂t − LD − I + r + p

′

ǫ(y)
)

(vǫ − gǫ) ≥ 0,

where y ∈ Rn and p
′

ǫ(y) is bounded. Therefore the statement of the lemma follows

applying Lemma 2.5.4 to (2.5.16) and choosing c = r + p
′

ǫ(y) ≥ 0.

As an easy corollary, the penalty terms are uniformly bounded.

Corollary 2.5.10. pǫ (vǫ − gǫ) is bounded uniformly in ǫ ∈ (0, ǫ0).
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Proof. Thanks to Lemma 2.5.9 and (2.5.3) (i) and (iv), we have pǫ(0) ≤ pǫ (vǫ − gǫ) ≤

0. The statement follows noticing that pǫ(0) (in (2.5.3) (iii)) is independent of ǫ.

Thanks to Lemmas 2.5.2, 2.5.6, 2.5.7 and Corollary 2.5.10, we can apply the

following W 2,1
p -norm estimate for the parabolic integro-differential equation to each

solution vǫ of the penalty problem.

Since the proof of the following theorem is technical and independent of the

penalty problem, we will perform it in the Section 2.7.

Theorem 2.5.11. Let us assume the Lévy measure satisfies (H5) with α ∈ [0, 2), if

v is a W 2,1
p, loc solution of the following Cauchy problem for some positive integer p,

(∂t −LD − I + r) v = f(x, t), (x, t) ∈ Rn × (0, T ],

v(x, 0) = g(x),

(2.5.17)

where the coefficients satisfy (H6”), (H7”) and f ∈ Lp, loc(R
n × (0, T )), moreover |v|

is bounded on Rn× [0, T ] and |∇xv| is bounded on any compact domain of Rn× [0, T ].

Then for any domain Bρ(x0) × (s, T ) for any ρ > 0, s ∈ (0, T ) and x0 ∈ Rn

(2.5.18)

‖v‖W 2,1
p (Bρ(x0)×(s,T )) ≤ Cδ

[
max

Rn×[0,T ]
|v| + max

Bρ+δ/4+1(x0)×[0,T ]
|∇xv| + ‖f‖Lp(Bρ+δ/4(x0)×(δ/2,T ))

]
,

for some positive constant Cδ and δ < s.

Remark 2.5.12. The existence of the W 2,1
p solution for (2.5.17) was ensured by The-

orem 3.2 in Bensoussan and Lions (1984) pp.234. However, the norm estimation was

not given there. On the other hand, since the integral operator I is non-local, it is

important to study the Cauchy problem (2.5.17) on the entire domain Rn × [0, T ].

Otherwise, for the Cauchy problem on bounded domains of Rn × [0, T ] with some

boundary conditions, W 2,1
p solutions are not expected in general, see Gimbert and

Lions (1985) for a counterexample.
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A W 2,1
p -norm estimate, similar to (2.5.18), for the parabolic integro-differential

equation was proved in Theorem 3.5 in Garroni and Menaldi (1992) pp. 91. However,

the estimation in Garroni and Menaldi (1992) requires the jump restricted in a

bounded domain, i.e., if x ∈ Ω where Ω is a bounded domain in Rn, the jump size

z(x), which is state dependent, can only be chosen such that x+z(x) ∈ Ω (see (1.54)

in Garroni and Menaldi (1992) pp. 63). However, this restriction is not satisfied in

our case, where the jump size is unbounded and independent of the state variable x.

Applying Theorem 2.5.11 to each penalty problem (2.5.2), thanks to Lemmas 2.5.2,

2.5.6, 2.5.7 and Corollary 2.5.10, we have the following corollary.

Corollary 2.5.13. If the Lévy measure satisfies (H2) and (H5) with α ∈ [1, 2),

moreover (H6’), (H7’), (H3’), (H4’), (H8) and (H9) are also satisfied, then for any

domain Bρ(x0) × (s, T ) for any ρ > 0, s ∈ (0, T ) and x0 ∈ Rn, ‖vǫ‖W 2,1
p (Bρ(x0)×(s,T ))

are bounded uniformly in ǫ ∈ (0, ǫ0) for any integer p ∈ (1,∞), i.e., there is a

constant C independent of ǫ such that

(2.5.19) ‖vǫ‖W 2,1
p (Bρ(x0)×(s,T )) ≤ C.

Proof. It follows from Lemma 2.5.2 that vǫ ∈ W 2,1
p,loc(R

n × (0, T )). Thanks to Lem-

mas 2.5.6 and 2.5.7, both maxRn×[0,T ] |vǫ| and maxRn×[0,T ] |∇xv
ǫ| are also bounded

uniformly in ǫ. Moreover, picking f = −pǫ(v
ǫ − gǫ), it follows from Corollary 2.5.10

that f is also bounded uniformly in ǫ. Concluding from these facts, (2.5.19) follows

(2.5.18).

Remark 2.5.14. The estimate in Theorem 2.5.11 is essential for the proof of Corol-

lary 2.5.13. However, having infinite variation jumps presents two technical difficul-

ties to the proof of Theorem 2.5.11.
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First, as we shall see in Lemma 2.7.1, once the Lévy measure has a singularity, the

Lp-norm of Ivǫ depends on the W 2,1
p -norm of vǫ. Therefore, one could not consider

Ivǫ as a driving term directly and use the classical W 2,1
p -norm estimate for parabolic

differential equations (without the integral term) to bound the W 2,1
p -norm of vǫ by the

Lp-norm of I vǫ. When the Lévy measure is a finite measure as in Yang et al. (2006),

Lp-norm of Ivǫ only depends on L∞-norm of vǫ. Therefore, Lemma 2.6 in Yang

et al. (2006) follows from the classical W 2,1
p -norm estimate for parabolic differential

equations, i.e., the W 2,1
p -norm of vǫ is bounded by L∞-norm of vǫ.

Second, as we have seen in Remark 2.4.2 and we shall see it again in Lemma 2.7.1,

the regularity of Ivǫ actually depends on regularity of vǫ on a larger domain. This

extension of the domain is another technical difficulty we face in the proof of The-

orem 2.5.11, because the extension of domains implies that W 2,1
p -norm of vǫ on a

bounded domains depends on its W 2,1
p -norm on a slightly larger domain.

To conclude this section, in the following theorem we will find a limit v∗ of the se-

quence {vǫ}ǫ∈(0,ǫ0) such that v∗ is indeed the value function v defined at the beginning

of this section.

Theorem 2.5.15. Let us assume that (H6’), (H7’), (H3’), (H4’), (H8) and (H9)

are satisfied, moreover, the Lévy measure ν satisfies (H2) and (H5) with α ∈ [1, 2).

Then for any s, ρ > 0 and x0 ∈ Rn, there exists a subsequence {ǫk}k≥0 such that vǫk

converges uniformly to the limit v∗ uniformly in Bρ(x0)× [s, T ] as ǫk → 0. Moreover,

v∗ solves the variational inequality (2.5.1) for almost every point in Rn × [0, T ] and

v∗ ∈ W 2,1
p (Bρ(x0) × (s, T )) for any integer p ∈ (1,∞).

Proof. Thanks to Corollary 2.5.13, there exists a subsequence {ǫk} with ǫk → 0 and
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a function v∗ ∈ W 2,1
p (Bρ(x0) × (s, T )) such that

vǫk ⇀ v∗ in W 2,1
p (Bρ(x0) × (s, T )).

Here “ ⇀ ” represents weak convergence, please refer to Appendix D.4. in Evans

(1998) pp. 639 for its definition and properties. The rest of the proof is the same as

proof of Theorem 3.2 in Yang et al. (2006). It confirms that v∗ solves the variational

inequality (2.5.1) for almost every point in Rn × [0, T ].

Finally, thanks to the verification result Proposition 2.2.7, v∗ must be the v defined

at the beginning of this section. As a result, the 1 ≤ α < 2 case of Theorem 2.4.5

follows from Theorem 2.5.15 after reversing the time.

2.6 Proof of several lemmas in Sections 2.2, 2.3 and 2.4

Proof of Lemma 2.2.1. Throughout this proof, in order to distinguish the Eu-

clidean norm in Rn from the absolute value in R, we denote the Euclidean norm as

‖ · ‖ and the absolute value as | · |. Actually, the norm ‖ · ‖ is equivalent to the sum

of the norms | · | among all components, i.e.,

(2.6.1) ‖y‖ ≤
n∑

i=1

|yi| ≤ n ‖y‖, for any y ∈ Rn.

Thanks to (2.6.1), (2.2.4) - (2.2.7) can be showed under a slighter weaker assumption

(H2), compared to the assumption
∫
|y|>1

|y|2 ν(dy) in Lemma 3.1 of Pham (1998). We

will only prove (2.2.6) and (2.2.7) in the following.

Following from (2.1.1) and (2.2.2), we have for any τ ∈ T0,t that

(2.6.2) ‖Xx
τ − x‖ ≤

∥∥∥∥
∫ τ

0

b (Xx
s , s) ds

∥∥∥∥+

∥∥∥∥
∫ τ

0

σ (Xx
s , s) dWs

∥∥∥∥+
∥∥J ℓ

τ

∥∥+

∥∥∥∥limǫ↓0
J ǫ

τ

∥∥∥∥ .

Comparing to the proof of Lemma 3.1 in Pham (1998), the difference is on the

estimation on the large jump term. Therefore, we will focus on
∥∥J ℓ

τ

∥∥ in the following.
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First it follows from (2.2.2) and the triangle inequality that

(2.6.3)

E
∥∥J ℓ

τ

∥∥ = E

∥∥∥∥
∫ τ

0

∫

‖y‖>1

y µ(ds, dy)

∥∥∥∥ ≤ E

∥∥∥∥
∫ τ

0

∫

‖y‖>1

y µ̃(ds, dy)

∥∥∥∥+E

∥∥∥∥
∫ τ

0

ds

∫

‖y‖>1

y ν(dy)

∥∥∥∥ .

Let us estimate the right-hand-side of (2.6.3) separately. On the one hand,
∫ t

0

∫
‖y‖>1

y µ̃(ds, dy)

is a martingale because of (H2). Hence
∥∥∥
∫ t

0

∫
‖y‖>1

y µ̃(ds, dy)
∥∥∥ is a submartingale (see

e.g. Problem 3.7 in Karatzas and Shreve (1991) pp. 13). Noticing that τ ∈ T0,t, it

follows from the Optional Sampling Theorem that

(2.6.4) E

∥∥∥∥
∫ τ

0

∫

‖y‖>1

y µ̃(ds, dy)

∥∥∥∥ ≤ E

∥∥∥∥
∫ t

0

∫

‖y‖>1

y µ̃(ds, dy)

∥∥∥∥ .

Thanks to (2.6.1), we can estimate the right-hand-side of (2.6.4) as follows.

E

∥∥∥∥
∫ t

0

∫

‖y‖>1

y µ̃(ds, dy)

∥∥∥∥ ≤ E

n∑

i=1

∣∣∣∣
∫ t

0

∫

‖y‖>1

yi µ̃(ds, dy)

∣∣∣∣

≤ E

n∑

i=1

∣∣∣∣
∫ t

0

∫

‖y‖>1

yi µ(ds, dy)

∣∣∣∣+
n∑

i=1

∫ t

0

ds

∫

‖y‖>1

∣∣yi
∣∣ ν(dy)

≤ E

∫ t

0

∫

‖y‖≥1

n∑

i=1

∣∣yi
∣∣ µ(ds, dy) +

∫ t

0

ds

∫

‖y‖>1

n∑

i=1

∣∣yi
∣∣ ν(dy)

= 2

∫ t

0

ds

∫

‖y‖>1

n∑

i=1

∣∣yi
∣∣ ν(dy) ≤ 2 n

∫

‖y‖>1

‖y‖ ν(dy) · t.

(2.6.5)

Here the first and fourth inequalities follow from (2.6.1). Moreover, the third in-

equality follows since the Poisson random measure µ is a non-negative measure on

R+ ×Rn for each ω ∈ Ω. On the other hand, the second term on the right-hand-side

of (2.6.3) can be estimated similarly using (2.6.1).

Concluding from (2.6.3) - (2.6.5), we can find a positive constant C such that

E
∥∥J ℓ

τ

∥∥ ≤ C t for any τ ∈ T0,t. The other three terms on the right-hand-side of

(2.6.2) can be estimated in the same way as in Lemma 3.1 of Pham (1998). In

particular, the stochastic integral and the small jump terms are bounded by C t1/2.
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Moreover, compared to the estimate (3.3) in Pham (1998), the boundness of b and

σ ensures that the constant C in (2.2.6) is independent of x.

For (2.2.7), we will still focus on the large jump term. Instead of applying the

Doob’s inequality as in Lemma 3.1 in Pham (1998), we will use properties of µ to

derive the following estimate.

E

[
sup

0≤s≤t

∥∥J ℓ
s

∥∥
]

= E

[
sup

0≤s≤t

∥∥∥∥
∫ s

0

∫

‖y‖>1

y µ(du, dy)

∥∥∥∥
]
≤ E

[
sup

0≤s≤t

n∑

i=1

∣∣∣∣
∫ s

0

∫

‖y‖>1

yi µ(du, dy)

∣∣∣∣

]

≤ E

[
sup

0≤s≤t

∫ s

0

∫

‖y‖>1

n∑

i=1

|yi|µ(du, dy)

]
≤ E

[∫ t

0

∫

‖y‖>1

n∑

i=1

|yi|µ(du, dy)

]

=

∫ t

0

du

∫

‖y‖>1

n∑

i=1

∣∣yi
∣∣ ν(dy) ≤ n

∫

‖y‖>1

‖y‖ ν(dy) · t.

(2.6.6)

Here the first and fourth inequalities follow from (2.6.1), the second and the third

inequalities hold since µ is a non-negative measure for each ω ∈ Ω. The rest proof

of (2.2.7) follows from the same approach used in Lemma 3.1 of Pham (1998).

Proof of Lemma 2.3.5. Thanks to Lemma 2.3.1, the driving term Ifu in (2.3.27)

is well defined in the classical sense and Hölder continuous in both its variables. We

will only prove the statement for the subsolution. The statement for the supersolution

can be shown in the similar manner.

Given u as a subsolution of (2.3.27), we will show that u is a viscosity subsolution

of (2.3.20). According to Definition 2.3.2, for any (x0, t0) ∈ B × [t1, t2], the test

function φ(x, t) is chosen such that

u(x0, t0) − φ(x0, t0) = max
(x,t)∈Rn×[t1,t2]

[u(x, t) − φ(x, t)] .

Therefore u(x0 + y, t0) − u(x0, t0) ≤ φ(x0 + y, t0) − φ(x0, t0) for any y ∈ Rn. Since ν

is a positive measure, we have from (2.3.4) that

(2.6.7) Ifu(x0, t0) ≤ Ifφ(x0, t0).
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Here φ(x, t) is chosen in C1(R
n × [t1, t2]) so that Ifφ(x0, t0) is finite under the as-

sumption (H2). Thanks to (2.6.7), we obtain from (2.3.28) that

(−∂t −LD + r) φ(x0, t0) ≤ Ifu(x0, t0) ≤ Ifφ(x0, t0), for (x0, t0) ∈ B × [t1, t2].

Moreover, (2.3.22) and (2.3.23) are automatically satisfied because u(x, t) itself is

the boundary and terminal value (2.3.27). Therefore according to Definition 2.3.2,

u(x, t) is a subsolution of (2.3.20).

Conversely, let us assume that u(x, t) is a subsolution of (2.3.20), for any (x0, t0) ∈

B × [t1, t2], given any function φ(x, t) ∈ C2,1(Rn × [t1, t2]) such that φ(x0, t0) =

u(x0, t0) and φ(x, t) ≥ u(x, t) for all (x, t) ∈ Rn × [t1, t2], let us construct φǫ for

ǫ ∈ (0, 1) as follows.

φǫ(x, t) , φ(x, t)χǫ(x) + ũ(x, t) (1 − χǫ(x)) ,

where χǫ is a smooth function satisfying 0 ≤ χǫ ≤ 1, χǫ(x) = 1 when x ∈ Bǫ(x0)

and χǫ(x) = 0 when x ∈ Rn \ B2ǫ(x0). Moreover, ũ ∈ C∞(Rn × [t1, t2]) such that

u ≤ ũ ≤ u+ ǫ2 on Rn × [t1, t2], for example, the usual mollification ũ = u ∗ ζδ + ǫ2 for

sufficiently small δ (Please see Evans (1998) pp. 629 for the definition of the mollifier

ζδ).

Observe that u(x0, t0) = φ(x0, t0) = φǫ(x0, t0) and u(x, t)−φǫ(x, t) = (u−φ)χǫ(x)+

(u − ũ) (1 − χǫ(x)) ≤ 0 for (x, t) ∈ Rn × [t1, t2]. Moreover, ∂tφ
ǫ(x0, t0) = ∂tφ(x0, t0),

∂xi
φǫ(x0, t0) = ∂xiφ(x0, t0) and ∂2

xixjφǫ(x0, t0) = ∂2
xixjφ(x0, t0). Note that ũ is uni-

formly bounded, hence φǫ ∈ C1(R
n × [t1, t2]), therefore we choose φǫ(x, t) as the test

function in the Definition 2.3.2 and obtain from (2.3.21) that

(2.6.8) (−∂t − LD + r) φ(x0, t0) − Ifφǫ(x0, t0) ≤ 0,

where Ifφǫ(x0, t0) is well defined, because one can show φǫ(x, t0) is globally Lipschitz
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in x as a result of our choice of χǫ. On the other hand,

|φǫ(x0 + y, t0) − u(x0 + y, t0)|

≤ |φ(x0 + y, t0) − u(x0 + y, t0)|χǫ(x0 + y) + |ũ(x0 + y, t0) − u(x0 + y, t0)| (1 − χǫ(x0 + y))

≤ |φ(x0 + y, t0) − u(x0 + y, t0)| 1{|y|≤2ǫ} + ǫ2 1{|y|≥ǫ}

≤ [ |φ(x0 + y, t0) − φ(x0, t0)| + |u(x0 + y, t0) − u(x0, t0)| ] 1{|y|≤2ǫ} + ǫ2 1{|y|≥ǫ}

≤ (L̃x + Lx) |y| 1{|y|≤2ǫ} + ǫ2 1{|y|≥ǫ},

(2.6.9)

where L̃x = max|x−x0|≤2ǫ ∂xφ(t0, x) and Lx is the constant in Lemma 2.2.3. Due to

(2.6.9), (2.3.1) and (H2), we have

∣∣Ifφǫ(x0, t0) − Ifu(x0, t0)
∣∣ ≤ (L̃x + Lx)

∫

|y|≤2ǫ

|y| ν(dy) +

∫

|y|≥ǫ

ǫ2 ν(dy)

≤ (L̃x + Lx)

∫

|y|≤2ǫ

|y| ν(dy) + ǫ

∫

|y|≥ǫ

|y| ν(dy) → 0 as ǫ ↓ 0.

(2.6.10)

Then the statement that u is a viscosity solution of (2.3.27) follows from combining

(2.6.8) and (2.6.10).

Proof of Lemma 2.5.4. For any R0 > 0, let us consider the following function

w(x, t) =
m

f(R0)
[f (|x|) + C1 t] + v(x, t),

where f(R) = R2

1+R
and the positive constant C1 will be determined later. It is

clear that f(R) is an increasing function on (0, +∞) and limR→+∞ f(R) = +∞.

On the other hand, |∂xif (|x|)| ≤ |x| (2+|x|)
(1+|x|)2 < 1 for any i ≤ n. Moreover, one can

also check that lim|x|→+∞
∣∣∂2

xixjf(|x|)
∣∣ = 0 and lim|x|→0

∣∣∂2
xixjf(|x|)

∣∣ = 2 δij for any

i, j ≤ n. Therefore both ∂xif(|x|) and ∂2
xixjf(|x|) are bounded on Rn. Thanks to
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these properties, we can find an upper bound for |If(|x|)| as follows:

∣∣If(|x|)
∣∣ =

∣∣∣∣∣

∫

Rn

[
f (|x + y|) − f (|x|) −

n∑

i=1

yi ∂xif (|x|) 1{|y|≤1}

]
ν(dy)

∣∣∣∣∣

≤
∫

|y|≤1

ν(dy)

∫ 1

0

dz (1 − z)

n∑

i,j=1

∣∣yiyj
∣∣ ∣∣∂2

xixjf(|x + zy|)
∣∣

+

∫

|y|>1

ν(dy) |f(|x + y|) − f(|x|)|

≤ C

(∫

|y|≤1

|y|2ν(dy) +

∫

|y|>1

|y| ν(dy)

)
< +∞,

(2.6.11)

for some sufficiently large constant C > 0. Here the last inequality in (2.6.11) follows

from (2.2.3) and (H2).

Now, applying the parabolic integro-differential operator to w, we obtain

(∂t −LD − I + c) w(x, t)

≥ (∂t −LD − I + c)

[
m

f(R0)
(f(|x|) + C1 t)

]

=
m

f(R0)

[
C1 −

n∑

i,j=1

aij ∂2
xixj f (|x|) −

n∑

i=1

bi ∂xif(|x|) + c f(|x|) − If(|x|)
]

,

where the first inequality follows from the assumption that (∂t − LD − I + c) v(x, t) ≥

0. We can choose a sufficiently large constant C1 independent of R0 such that

(2.6.12) (∂t − LD − I + c) w(x, t) > 0, for (x, t) ∈ Rn × [0, T ].

This is because ∂2
xixj f(|x|), ∂xi f(|x|) and coefficients aij, bi, c are all bounded,

moreover c ≥ 0 and |If(|x|)| is bounded thanks to (2.6.11).

On the other hand, w(x, 0) = m
f(R0)

f(|x|) + v(x, 0) ≥ 0 thanks to the assumption

v(x, 0) ≥ 0. Moreover, when |x| = R0, w(x, t) = m
f(R0)

(f(R0) + C1 t) + v(x, t) ≥

m + v(x, t) ≥ 0 due to the assumption v(x, t) ≥ −m. Furthermore, when |x| > R0,

we also have w(x, t) ≥ m+v(x, t) ≥ 0 since f(R) is an increasing function. Therefore,

we claim that w(x, t) ≥ 0 for (x, t) ∈ BR0
× (0, T0]. Indeed, if there are some points
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(x, t) ∈ BR0
× (0, T0] such that w(x, t) < 0, w(x, t) must take its negative minimum

at some point (x0, t0) ∈ BR0
× (0, T0]. Noticing that w(x, t) ≥ 0 for |x| ≥ R0,

we have w(x0, t0) ≤ w(x, t) for all (x, t) ∈ Rn × (0, T ]. As a result, we obtain

∂tw(x0, t0) ≤ 0,
∑n

i=1 bi ∂xiw(x0, t0) = 0 and
∑n

i,j=1 aij ∂2
xixj w(x0, t0) ≥ 0 (see e.g.

Lemma 1 in Friedman (1964) pp. 34). Moreover, Iw(x0, t0) ≥ 0, since w achieves its

minimum at (x0, t0) and ∇x w(x0, t0) = 0. Therefore, we have

(∂t − LD − I + r) w(x0, t0) ≤ 0,

which contradicts with (2.6.12).

Now, for any point (x, t) ∈ Rn × (0, T ], taking R0 → +∞, we have v(x, t) ≥ 0

since limR0→+∞ f(R0) = +∞.

Proof of Lemma 2.5.6. First, thanks to Lemma 2.5.2, |vǫ| is bounded on Rn ×

[0, T ]. In the following, we will show it is bounded uniformly in ǫ. It follows from

(2.5.3) (i) that (∂t−LD−I +r) vǫ = −pǫ(v
ǫ−gǫ) ≥ 0. Note that vǫ(x, 0) = gǫ(x) ≥ 0

(see (H3’)), the first inequality in the statement follows from Lemma 2.5.4 directly.

On the other hand, defining u = K + 1 − vǫ, u satisfies

(2.6.13) (∂t −LD − I + r)u = r(K + 1) + pǫ(v
ǫ − gǫ), (x, t) ∈ Rn × (0, T ].

It follows from (H3’) and (2.5.3) (ii) that pǫ(K + 1 − gǫ) = 0 with ǫ ≤ ǫ0 ≤ 1.

Combining with (2.6.13) and the mean value theorem, we obtain

(∂t −LD − I + r)u + pǫ(K + 1 − gǫ) − pǫ(v
ǫ − gǫ) =

[
∂t −LD − I + r + p

′

ǫ(y)
]
u

= r (K + 1) ≥ 0,

(2.6.14)

for some y ∈ R. Note that both K +1−gǫ and vǫ −gǫ are bounded, p
′

ǫ is bounded in

any bounded domain. Therefore, we have that r + p
′

ǫ(y) is bounded and nonnegative
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(see (2.5.3) (iv)). Now apply Lemma 2.5.4 to u and pick c = r + p
′

ǫ(y), we obtain

u(x, t) = K + 1 − vǫ(x, t) ≥ 0 on Rn × [0, T ].

2.7 Proof of Theorem 2.5.11

In this Appendix, for notational simplicity, the constant C denotes a generic

constant in different places. Moreover, the center x0 of the ball Bρ(x0) will not be

noted in the sequel. For any positive integer p, let us first estimate the Lp-norm of

the integral term Iv.

Lemma 2.7.1. If the assumptions of Theorem 2.5.11 are satisfied, then for any

η > 0, there exists a positive constant C such that

‖Iv‖Lp(Bρ(x0)×(s,T ))

≤ Cη2−α‖v‖W 2,1
p (Bρ+η(x0)×(s,T )) + C

(
max

Rn×[s,T ]
|v| + max

Bρ+1(x0)×[s,T ]
|∇xv|

)
·





(1 + η1−α), α 6= 1

(1 − log η), α = 1

.

(2.7.1)
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Proof. Let us break the integral into three parts.

|Iv(x, t)| =

∣∣∣∣
∫

Rn

[
v(x + y, t) − v(x, t) − y · ∇xv(x, t)1{|y|≤1}

]
ν(dy)

∣∣∣∣

≤
∫

|y|≤η

ν(dy)

∫ 1

0

dz(1 − z)

n∑

i,j=1

∣∣∣∣y
iyj ∂2

∂xi∂xj
v(x + zy, t)

∣∣∣∣

+

∫

η<|y|≤1

ν(dy) |v(x + y, t) − v(x, t) − y · ∇xv(x, t)|

+

∫

|y|>1

ν(dy) |v(x + y, t) − v(x, t)|

≤
n∑

i,j=1

∫

|y|≤η

|y|2ν(dy)

∫ 1

0

dz

∣∣∣∣
∂2

∂xi∂xj
v(x + zy, t)

∣∣∣∣

+

∫

η<|y|≤1

ν(dy) |v(x + y, t) − v(x, t) − y · ∇xv(x, t)|

+

∫

|y|>1

ν(dy) |v(x + y, t) − v(x, t)|

,

n∑

i,j=1

Ii,j(x, t) + I2(x, t) + I3(x, t).

In the following, we will estimate the Lp-norm of each term respectively.

‖Iij(·, t)‖p
Lp(Bρ)

=

∫

Bρ

dx

[∫

|y|≤η

|y|2ν(dy)

∫ 1

0

dz
∣∣∂2

xixjv(x + zy, t)
∣∣
]p

≤
∫

Bρ

dx

∫ 1

0

dz

[∫

|y|≤η

ν(dy) |y|2
∣∣∂2

xixjv(x + zy, t)
∣∣
]p

≤ Mp

∫

Bρ

dx

∫ 1

0

dz

[∫

|y|≤η

dy |y|2−n−α
∣∣∂2

xixjv(x + zy, t)
∣∣
]p

≤ Mp

∫

Bρ

dx

∫ 1

0

dz

(∫

|y|≤η

dy |y|2−n−α

) p
q

·
(∫

|y|≤η

dy |y|2−n−α
∣∣∂2

xixjv(x + zy, t)
∣∣p
)

= Mp

(
|S1(0)| η2−α

2 − α

) p
q

·
∫ 1

0

dz

∫

|y|≤η

dy |y|2−n−α

∫

Bρ

dx
∣∣∂2

xixjv(x + zy, t)
∣∣p

≤ Mp

(
|S1(0)| η2−α

2 − α

) p
q

·
∫ 1

0

dz

∫

|y|≤η

dy |y|2−n−α
∥∥∂2

xixjv(·, t)
∥∥p

Lp(Bρ+η)

= Mp

(
|S1(0)| η2−α

2 − α

)p

·
∥∥∂2

xixjv(·, t)
∥∥p

Lp(Bρ+η)
.

(2.7.2)
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Here the first inequality follows from Fubini’s Theorem and Jensen’s inequality with

respect to the Lebesgue measure dz. The assumption (H5) is used in the second

inequality. The third inequality follows from Hölder inequality with 1/p + 1/q = 1.

In the second equality, |S1(0)| is the surface area of the unit ball in Rn. Note that

x + zy ∈ Bρ+η when x ∈ Bρ, z ∈ (0, 1) and |y| ≤ η, the fourth inequality follows.

For I2 and I3, noting that x + y ∈ Bρ+1 when x ∈ Bρ and |y| ≤ 1, we have

‖I2(·, t)‖Lp(Bρ) ≤ C · maxBρ+1×[s,T ] |∇xv| ·





(1 + η1−α), α 6= 1

(1 − log η), α = 1

and(2.7.3)

‖I3(·, t)‖Lp(Bρ) ≤ C · maxRn×[s,T ] |v| ·
∫
|y|>1

ν(dy).(2.7.4)

Combining (2.7.2) - (2.7.4), (2.7.1) follows from noting that

‖Iv‖Lp(Bρ×(s,T )) ,

[∫ T

s
‖Iv(·, t)‖Lp(Bρ) dt

]1/p

and ‖∂2
xixjv‖Lp(Bρ+η×(s,T )) ≤ ‖v‖W 2,1

p (Bρ+η×(s,T ))

(see Definition 2.2.10).

In (2.7.1), when α ∈ [0, 1) (finite variation jumps), the factors of η in both

terms on the right-hand-side converge to 0 as η → 0. Therefore, the Lp-norm of

Iv on the domain Bρ(x0) × (s, T ) essentially only depends on maxRn×[s,T ] |v| and

maxBρ+1×[s,T ] |∇xv|. This can also be confirmed by working with the reduced inte-

gral form Ifv in (2.3.4).

On the contrary, when α ∈ [1, 2) (infinite variation jumps), the factor 1+η1−α (or

1−log η) in (2.7.1) will blow up as η → 0 (a similar phenomenon was also observed in

Lemma 1.1 of Bensoussan and Lions (1984) pp.206 for Lp-norm on Rn). Therefore,

it is important to note that the Lp-norm of Iv on the domain Bρ(x0)×(s, T ) actually

depends on W 2,1
p -norm of v on a larger domain Bρ+η(x0) × (s, T ). Because of the

expansion of the domain, instead of using the boundary estimate in Theorem 9.1 in

Ladyženskaja et al. (1968) pp. 342, we will use the interior estimate technique in
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Figure 2.1: Domains used in the proof of Theorem 2.5.11

0
δ
2 δ T

Bρ Bρ+
δ

4

Bρ+
δ

2

Theorem 10.1 in Ladyženskaja et al. (1968) pp. 351 to prove Theorem 2.5.11 in the

following.

Proof of Theorem 2.5.11. Let us choose a cut-off function ζδ(x, t) such that

ζδ(x, t) =





1 (x, t) ∈ Bρ × (δ, T )

0 (x, t) ∈ Rn × (0, T ) \ Bρ+ δ
4

× ( δ
2
, T )

Here the constant δ ∈ (0, s) will be determined later. This cut-off function can be

chosen such that

(2.7.5)
∣∣∂xiζδ

∣∣ ≤ C1

δ
,
∣∣∂2

xixjζδ
∣∣ ≤ C2

δ2
and

∣∣∂tζ
δ
∣∣ ≤ C3

δ
,

for i, j ≤ n and some constants C1, C2 and C3. Please see Figure 2.1 for the domains

used in this proof.

Defining u(x, t) = ζδ(x, t)v(x, t), it satisfies

(∂t − LD + r) u(x, t) = ζδ · Iv(x, t) + ζδ · f(x, t) + h(x, t), (x, t) ∈ Bρ+ δ
4

× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Bρ+ δ
4

× (0, T ),

u(x, 0) = 0, x ∈ Bρ+ δ
4

,



59

in which h(x, t) , ∂tζ
δ · v −∑n

i,j=1 aij

(
∂2

xixjζδ · v + 2 ∂xiζδ · ∂xjv
)
−∑n

i=1 bi · ∂xiζδ ·

v. Appealing to Theorem 9.1 in Ladyženskaja et al. (1968) pp.341, there exists a

constant C such that

‖u‖W 2,1
p (B

ρ+ δ
4

×(0,T )) ≤C


∥∥ζδ · Iv

∥∥
Lp

+
∥∥ζδ · f

∥∥
Lp

+
∥∥∂tζ

δ · v
∥∥

Lp
+

∥∥∥∥∥

n∑

i,j=1

aij ∂2
xixjζδ · v

∥∥∥∥∥
Lp

+

∥∥∥∥∥

n∑

i,j=1

2 aij ∂xiζδ · ∂xjv

∥∥∥∥∥
Lp

+

∥∥∥∥∥

n∑

i=1

bi · ∂xiζδ · v
∥∥∥∥∥

Lp


 ,

(2.7.6)

in which all Lp-norms on the right-hand-side represent Lp

(
Bρ+ δ

4

× (0, T )
)
.

In the following, we will estimate the terms on the right-hand-side of (2.7.6)

respectively.

∥∥ζδ · Iv
∥∥

Lp(B
ρ+ δ

4

×(0,T ))

≤ ‖Iv‖Lp(B
ρ+ δ

4

×( δ
2
,T ))

≤ C

(
δ

4

)2−α

‖v‖W 2,1
p (B

ρ+ δ
2

×( δ
2
,T )) + C

(
1 +

(
δ

4

)1−α
)[

max
Rn×[0,T ]

|v| + max
B

ρ+ δ
4
+1

×[0,T ]
|∇xv|

]
.

(2.7.7)

Here the first inequality follows from the choice of the cut-off function ζδ, the second

inequality follows from Lemma 2.7.1 for α 6= 1 case by picking η = δ
4

and s = δ
2
.

When α = 1, we also have an estimate similar to (2.7.7). On the other hand, we

have

(2.7.8)
∥∥ζδ · f

∥∥
Lp(B

ρ+ δ
4

×(0,T ))
≤ ‖f‖Lp(B

ρ+ δ
4

×( δ
2
,T )) .
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Moreover, we obtain from (2.7.5) that

∥∥∂tζ
δ · v

∥∥
Lp(B

ρ+ δ
4

×(0,T ))
≤ max

Rn×[0,T ]
|v| ·

∥∥∂tζ
δ
∥∥

Lp(B
ρ+ δ

4

×(0,T ))

≤ max
Rn×[0,T ]

|v|



∫

B
ρ+ δ

4

×( δ
2
,T )\Bρ×(δ,T )

dt dx
Cp

3

δp




1

p

≤ C max
Rn×[0,T ]

|v| · δ
1−p

p .

(2.7.9)

Similarly, thanks to (H7”), we also have

∥∥∥
∑n

i,j=1 aij ∂2
xixjζδ · v

∥∥∥
Lp(B

ρ+ δ
4

×(0,T ))
≤ C maxRn×[0,T ] |v| · δ

1−2p
p ,(2.7.10)

∥∥∥
∑n

i,j=1 2 aij ∂xiζδ · ∂xjv
∥∥∥

Lp(B
ρ+ δ

4

×(0,T ))
≤ C maxB

ρ+ δ
4

×[0,T ] |∇xv| · δ
1−p

p and(2.7.11)

∥∥∑n
i=1 bi · ∂xiζδ · v

∥∥
Lp(B

ρ+ δ
4

×(0,T ))
≤ C maxRn×[0,T ] |v| · δ

1−p
p .(2.7.12)

Plugging (2.7.7) - (2.7.12) into (2.7.6) and noticing the choice of the cut-off function

ζδ, we obtain

‖v‖w2,1
p (Bρ×(δ,T ))

≤ ‖u‖w2,1
p (B

ρ+ δ
4

×(0,T ))

≤ C

(
δ

4

)2−α

‖v‖W 2,1
p (B

ρ+ δ
2

×( δ
2
,T )) + C

[
1 + δ1−α + δ

1−p
p + δ

1−2p
p

]

·
[

max
Rn×[0,T ]

|v| + max
B

ρ+ δ
4
+1

×[0,T ]
|∇xv|

]
+ ‖f‖Lp(B

ρ+ δ
4

×( δ
2
,T )) .

(2.7.13)

Multiplying δ2 on both hand side of (2.7.13) and defining

K(δ) = C
[
δ2 + δ3−α + δ

1+p
p + δ

1

p

]
·
[

max
Rn×[0,T ]

|v| + max
B

ρ+ δ
4
+1

×[0,T ]
|∇xv|

]
+δ2 ‖f‖Lp(B

ρ+ δ
4

×( δ
2
,T )) ,

we obtain

(2.7.14) δ2 ‖v‖w2,1
p (Bρ×(δ,T )) ≤ 4C

(
δ

4

)2−α

·
(

δ

2

)2

‖v‖w2,1
p (B

ρ+ δ
2

×( δ
2
,T )) + K(δ).



61

Let F (τ) , τ 2 ‖v‖w2,1
p (Bρ+δ−τ×(τ,T )). The inequality (2.7.14) gives us the following

recursive inequality

(2.7.15) F (δ) ≤ 4C

(
δ

4

)2−α

F (δ/2) + K(δ).

Since α < 2, we can choose sufficiently small δ such that 4C (δ/4)2−α ≤ 1
2
. Therefore,

we have from (2.7.15) that

(2.7.16) F (δ) ≤ 1

2
F (δ/2) + K(δ).

On the other hand, thanks to the assumption v ∈ W 2,1
p,loc(R

n × (0, T )), F (δ) is finite

for any δ ∈ (0, δ0). Iterating the recursive inequality (2.7.16) gives us

F (δ) ≤
∞∑

i=0

1

2i
K

(
δ

2i

)
≤

∞∑

i=0

1

2i
K(δ) = 2 K(δ),

where the second inequality follows from noticing that K(δ) is increasing in δ. There-

fore, it follows from the definitions of F (δ) and K(δ) that

‖v‖W 2,1
p (Bρ×(s,T ))

≤ ‖v‖W 2,1
p (Bρ×(δ,T ))

≤ 2 C
[
1 + δ1−α + δ

1−p
p + δ

1−2p
p

]
·
[

max
Rn×[0,T ]

|v| + max
B

ρ+ δ
4
+1

×[0,T ]
|∇xv|

]
+ ‖f‖Lp(B

ρ+ δ
4

×( δ
2
,T ))

≤ Cδ

[
max

Rn×[0,T ]
|v| + max

B
ρ+ δ

4
+1

×[0,T ]
|∇xv| + ‖f‖Lp(B

ρ+ δ
4

×( δ
2
,T ))

]
.



CHAPTER III

Regularity of the optimal exercise boundary of American

options

3.1 Introduction

Let (Ω,F , P) be a complete probability space hosting a Wiener process W =

{Wt; t ≥ 0} and a Poisson random measure N on R+ × R with the mean measure

λdt ν(dz) (in which ν is a probability measure on R) independent of the Wiener

process. Let F = {Ft}t∈[0,T ] be the (augmented) natural filtration of W and N . We

will consider a Markov process S = {St; t ≥ 0}, which follows the dynamics

(3.1.1) dSt = µSt−dt + σ̃(St−, t)St−dWt + St−

∫

R

(ez − 1)N(dt, dz),

as the stock price process. We will take µ , r − q + λ − λξ, in which

(3.1.2) ξ ,

∫

R

ezν(dz) < ∞,

as a standing assumption. We impose this condition on ξ so that the discounted

stock prices are martingales. The constant r ≥ 0 is the interest rate, q ≥ 0 is the

dividend. The volatility σ̃(S, t) is assumed to be continuously differentiable in both

S and t. Moreover, there are positive constants δ and ∆ such that

(3.1.3) 0 < δ ≤ σ̃(S, t) ≤ ∆, for all S, t ≥ 0.

62
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We should note that at the time of a jump the stock price moves from St− to St−eZ

in which Z is a random variable whose distribution is given by ν. When Z < 0

the stock price jumps down, when Z > 0 the stock price jumps up. In the classical

Merton jump diffusion model, Z is a Gaussian random variable.

In this framework, we will study the American put option pricing problem. The

value function of the American put option is defined by

(3.1.4) V (S, t) , sup
τ∈T0,T−t

E{e−rτ (K − Sτ )
+|S0 = S},

in which T0,T−t is the set of stopping times (with respect to the filtration F) taking

values in [0, T − t]. The value function V is the classical solution of a free boundary

problem (see Proposition 3.2.1). The main goal of this chapter is to analyze the

regularity of the free boundary. We will show that the free boundary is C1 except

at the maturity T , and C∞ with an appropriate regularity assumption on the jump

distribution ν. For notational simplicity we will first change variables and transform

the value function V into u and its free boundary s into b (see (3.2.4)) and state our

results in terms of u and b.

While the continuity of the free boundary for the American option in jump models

has been studied intensively in, for example, Pham (1997), Yang et al. (2006) and

Lamberton and Mikou (2008), the differentiability of the free boundary, even when

the geometric Brownian motion is the underlying process, is difficult to establish (see

the discussion on page 172 of Peskir (2005)) and has only recently been fully analyzed

by Chen and Chadam (2007). In the jump diffusion case, Yang et al. (2006) proved

that the free boundary is continuously differentiable before the maturity when the

parameters satisfy

(3.1.5) r ≥ q + λ

∫

R+

(ez − 1) ν(dz).
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When the condition (3.1.5) is violated, the free boundary of the American option

for jump diffusions exhibits a discontinuity at the maturity (see Theorem 5.3 in

Yang et al. (2006) and equation (3.3.20) in this chapter). This behavior of the

free boundary was also observed by Levendorskĭı (2004) and Lamberton and Mikou

(2008) in the exponential Lévy models. The purpose of this chapter is to extend the

regularity results of the free boundary to the case where (3.1.5) is not satisfied. We

will see that the same differentiability result of the free boundary still holds without

the condition (3.1.5).

There are two critical points in showing the differentiability properties without

the condition (3.1.5): 1) to show the Hölder continuity of the free boundary, 2) to

show that ∂2
SV (S, t) is strictly larger than 0 when the point (S, t) is close to the

free boundary in the continuation region. We achieve these two results in Theo-

rem 3.3.7 and Corollary 3.3.5 respectively. Combining these two properties and a

generalization of the result in Cannon et al. (1974) (see Lemma 3.4.2), we upgrade

the regularity of the free boundary from Hölder continuity to continuous differen-

tiability in Theorem 3.4.3. Then we analyze the higher order regularity of the free

boundary making use of a technique Schaeffer (1976) used for the free boundary of

a one dimensional Stefan problem on a bounded domain.

In our method, it is essential to have the value function V (S, t) as the classical

solution of the free boundary problem. In the jump diffusion models, this has been

shown by Pham (1997) under the condition that

(3.1.6) r > q + λ

∫

R+

(ez − 1) ν(dz).

This condition was removed in Yang et al. (2006) and also in Bayraktar (2009). In

the Lévy models with infinite activity jumps, the value function is not expected to be

a classical solution in general. Yet in the literature different notions of generalized
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solutions were explored. For example, Pham (1998) used the viscosity solution,

Achdou (2008) showed that the value function is the solution in the Sobolev sense

and Lamberton and Mikou (2008) proved that the value function is the solution in the

distribution sense. Moreover, the smooth-fit property (see (3.2.2)) is also necessary

in our analysis (see Theorem 3.4.3 and equation (3.5.1)). While this property may

not hold for general pay-off functions (see Peskir (2007)), it has been shown to hold

for the put option pay-off in Zhang (1994), Pham (1997) and Bayraktar (2009) in

the jump diffusion models. The analysis in this chapter also applies to the pay-off

functions which are continuously differentiable, bounded, convex on [0, +∞) and

equal to zero in [K, +∞) for some K > 0. However, the singularity at the strike of

the put option pay-off introduces technical difficulties. Therefore, we will focus on

the put option pay-off in this chapter and leave the investigation of general pay-off

functions to the future work.

The rest of the chapter is organized as follows: In Section 3.2, after changing

variables we will collect several useful properties of the value function, which will be

crucial in establishing our main results in the next three sections about the regularity

of its free boundary. In Section 3.3, we will introduce an auxiliary function and use it

to show that the the free boundary is Hölder continuous. In Section 3.4, we will prove

the continuous differentiability of the free boundary. In Section 3.5, we will upgrade

the regularity of the boundary curve and show that it is infinitely differentiable

under an appropriate regularity assumption on the jump distribution. Finally, in

Section 3.6, we will show that the approximation free boundaries, constructed in

Bayraktar (2009), have the similar regular properties with the original free boundary.

Proofs of some auxiliary results are presented in the Section 3.7.

Our main results are Theorems 3.3.7, 3.4.3 and 3.5.6. In Figure 3.1 we show the
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Figure 3.1: Our results and the relationships among them.
A → B means that statement A is used in the proof of statement B.
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Lemma 3.1

Lemma 3.3

Theorem 3.1

Lemma 4.1

Lemma 2.1

logical flow of the chapter, i.e. we show how several results proved in the chapter are

related to each other.

3.2 Properties of the value function

The value function V (S, t) of the American put option for jump diffusions solves

a free boundary problem with the free boundary s(t). In particular, Theorem 4.2 of

Yang et al. (2006) and Theorem 3.1 of Bayraktar (2009) state the following:

Proposition 3.2.1. V (S, t) is the unique classical solution of the following boundary

value problem:

∂V

∂t
+

1

2
σ̃(S, t)2S2∂2V

∂S2
+ µS

∂V

∂S
− (r + λ)V + λ

∫

R

V (Sez, t)ν(dz) = 0, S > s(t),

V (s(t), t) = K − s(t), t ∈ [0, T ),

V (S, T ) = (K − S)+, S ≥ s(T ).

(3.2.1)
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Moreover, the smooth fit property is satisfied, i.e.

(3.2.2)
∂

∂S
V (s(t), t) = −1, t ∈ [0, T ).

In the region {(S, t) : S < s(t), t ∈ [0, T )}, V (S, t) also satisfies the following in-

equality:

(3.2.3)
∂V

∂t
+

1

2
σ̃(S, t)2S2 ∂2V

∂S2
+ µS

∂V

∂S
− (r + λ)V + λ

∫

R

V (Sez, t)ν(dz) ≤ 0.

In the following, let us first change the variables to state (3.2.1)-(3.2.3) in a more

convenient form:

(3.2.4)

x = log(S), u(x, t) = V (S, T − t) , b(t) = log (s (T − t)) and σ(x, t) = σ̃(S, t).

It is clear from the assumptions of σ̃(S, t) that

σ is continuously differentiable in both variables and

there are positive constants δ and ∆ such that 0 < δ < σ(x, t) < ∆ for all (x, t) ∈ R × [0, T ].

(3.2.5)

While the first part of the assumption will be used in equation (5.4.6) and Lemma 3.4.2,

the second part will be necessary for Lemma 3.2.8, Corollary 3.5.5 and Theorem 3.5.6.

For the simplicity of the notation, we will omit the variables for σ in the sequel. In

terms of the new variables, (3.2.1) - (3.2.3) reduce to

Lu ,
∂u

∂t
− 1

2
σ2∂2u

∂x2
−
(

µ − 1

2
σ2

)
∂u

∂x
+ (r + λ)u − λ

∫

R

u(x + z, t)ν(dz) = 0, x > b(t),

u(b(t), t) = K − eb(t), t ∈ (0, T ],

u(x, 0) = (K − ex)+, x ≥ b(0),

(3.2.6)

(3.2.7)
∂

∂x
u(b(t), t) = −eb(t),
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(3.2.8) Lu(x, t) ≥ 0, x < b(t), t ∈ (0, T ].

Let us define the continuation region C and the stopping region D as follows

C , {(x, t) | b(t) < x < +∞, 0 < t ≤ T}, D , {(x, t) | −∞ < x ≤ b(t), 0 < t ≤ T}.

From Proposition 3.2.1, it is clear that the boundary value problem (3.2.6) has a

unique classical solution u(x, t) in C.

Remark 3.2.2. The integral term in (3.2.6) can also be considered as a driving term,

then the integro-differential equation (3.2.6) can be viewed as the following parabolic

differential equation with a driving term f(x, t) = λ
∫

R
u(x + z, t)ν(dz):

(3.2.9)
∂u

∂t
− 1

2
σ2 ∂2u

∂x2
−
(

µ − 1

2
σ2

)
∂u

∂x
+ (r + λ)u = f(x, t).

This point of view will be useful in the proof of some results in later sections.

In this section, we will study the properties of u in both the continuation and

the stopping regions. Let us start from the following proposition from Yang et al.

(2006). It shows that the time derivative of u is continuously differentiable across

the free boundary.

Proposition 3.2.3. ∂tu(x, t) is a continuous function in R × (0, T ]. In particular,

for any t ∈ (0, T ],

lim
x↓b(t)

∂

∂t
u(x, t) = 0.(3.2.10)

Proof. The proof is given in Theorem 5.1 in Yang et al. (2006), which summarized

Lemmas 2.8 and 2.11 in the same chapter and used a special case of Lemma 4.1 in

page 239 of Friedman (1976).

Moreover, we will show in the following that t → u(x, t) is strictly increasing

function in the continuation region.
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Proposition 3.2.4.

∂u

∂t
(x, t) > 0, (x, t) ∈ C.(3.2.11)

Proof. The inequality (3.2.11) is proved in Proposition 4.1 in Yang et al. (2006)

using the Maximum Principle for the integro-differential equations, which can be

found in Theorem 2.7 in Chapter 2 of Garroni and Menaldi (1992). However, it can

be proved using the ordinary Maximum Principle for parabolic differential equations

(see Corollary 7.4 in Lieberman (1996)). We know that w = ∂tu satisfies the following

equation in C,

LDw = λ

∫

R

w(x + z, t)ν(dz),(3.2.12)

Since w = ∂tu ≥ 0 in R × (0, T ), (3.2.12) implies that LDw ≥ 0. If there is a

point (x0, t0) ∈ C such that w(x0, t0) = 0 (i.e. w achieves its non-positive minimum

at (x0, t0) ), it follows from the strong Maximum Principle that w(x, t) = 0 in

C ∩ R × {0 < t ≤ t0}. Together with the fact that w(x, t) = 0 in D, we have that

w(x, t) = 0 in R × {0 < t ≤ t0}. As a result, from

u(x0, t0) − u(x0, 0) =

∫ t0

0

w(x0, s)ds = 0,

we obtain u(x0, t0) = (K − ex0)+. This contradicts with the definition of the free

boundary b(t), because b(t0) = max{x ∈ R : u(x, t0) = (K−ex)+} and x0 > b(t0).

Combining Propositions 3.2.3 and 3.2.4 with the Hopf’s Lemma for parabolic

integro-differential equations (see Theorem 2.8 in page 78 of Garroni and Menaldi

(1992)), we obtain that the free boundary is strictly decreasing.

Lemma 3.2.5. The function t → b(t) is strictly decreasing for t ∈ (0, T ].

Proof. The proof is given in Theorem 5.4 in Yang et al. (2006).
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In order to investigate the regularity of the free boundary in the later sections,

we need more properties of u, which we will develop in the following three lemmas.

Since the results of these lemmas are intuitive but proofs are technical, we will list

the proofs of these lemmas in the Section 3.7.1.

It has been proven in Bayraktar (2009) that V (S, ·) is uniformly Lipschitz in R+

and V (·, t) is uniformly semi-Hölder continuous in [0, T ]. The following lemma shows

the same properties also holds for u(x, t), the function that we obtained after the

change of variables in (3.2.4). (The globally Lipschitz continuity with respect to x is

not a priori clear and one needs to check whether ∂xu(x, t) is bounded.)

Lemma 3.2.6. Let u(x, t) be the solution of equation (3.2.6), then we have

|u(x, t) − u(y, t)| ≤ C|x − y|, x, y ∈ R, t ∈ [0, T ],(3.2.13)

|u(x, t) − u(x, s)| ≤ D|t − s| 12 , x ∈ R, 0 ≤ t, s ≤ T,(3.2.14)

where C and D are positive constants independent of x and t.

Proof. See Section 3.7.1.

In the rest of this section, we will investigate the boundness of ∂tu(x, t) and its

behavior when x → +∞. These two properties will be useful to show several results

in Sections 3.4 and 3.5 (see e.g. (3.4.2), proof of Lemma 3.4.2 and Remark 3.5.1).

Let us first recall the definition of the Hölder spaces on page 7 of Ladyženskaja et al.

(1968).

Definition 3.2.7. Let Ω be a domain in R, QT = Ω × (0, T ). We denote QT

the closure of QT . For any positive nonintegral real number α, Hα,α/2
(
QT

)
is the

Banach space of functions v(x, t) that are continuous in QT , together with continuous
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derivatives of the form ∂r
t ∂

s
xv for 2r + s < α, and have a finite norm

||v||(α) = |v|(α)
x + |v|(α/2)

t +
∑

2r+s≤[α]

||∂r
t ∂

s
xv||(0),

in which

||v||(0) = maxQT
|v|,

|v|(α)
x =

∑

2r+s=[α]

< ∂r
t ∂

s
xv >(α−[α])

x , |v|(α/2)
t =

∑

α−2<2r+s<α

< ∂r
t ∂

s
xv >

(α−2r−s
2

)
t ;

< v >(β)
x = sup

(x, t), (x′, t) ∈ QT

|x − x′| ≤ ρ0

|v(x, t) − v(x′, t)|
|x − x′|β , 0 < β < 1,

< v >
(β)
t = sup

(x, t), (x, t′) ∈ QT

|t − t′| ≤ ρ0

|v(x, t) − v(x, t′)|
|t − t′|β , 0 < β < 1,

where ρ0 is a positive constant.

On the other hand, Hα
(
Ω
)

is the Banach space whose elements are continuous

functions f(y) on Ω that have continuous derivatives up to order [α] and the following

norm finite

||f ||(α) =
∑

j≤[α]

∥∥dj
yf
∥∥(0)

+
∣∣d[α]

y f
∣∣(α−[α])

,

in which

|f |(β) = sup
y,y′∈Ω,|y−y′|≤ρ0

|f(y)− f(y′)|
|y − y′|β .

Here dj
yf is the jth derivative of f . These Hölder norms depend on ρ0, but for different

ρ0 > 0, the corresponding Hölder norms are equivalent hence their dependence on ρ0

will not be noted in the sequel.

Using the Hölder spaces and regularity results for parabolic equations, we have

the following result.
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Lemma 3.2.8. For any ǫ > 0, ∂tu(x, t) is uniformly bounded in R × [ǫ, T ].

Proof. See Section 3.7.1.

Remark 3.2.9. (i) In the statement of Lemma 3.2.8, t = 0 cannot be included,

i.e., limt→0 ∂tu(x, t) is not uniformly bounded in x ∈ R, because ∂tu = 1
2
σ2∂2

xu +

(
µ − 1

2
σ2
)
∂xu− (r + λ)u + λ

∫
R

u(x + z, t)ν(dz) and limt→0 ∂2
xu(x, t) is not bounded

as a result of non-smoothness of the initial value at x = log K.

In the following, we will use the previous lemma to analyze the behavior of ∂tu(x, t)

as x → +∞.

Lemma 3.2.10.

lim
x→+∞

∂tu(x, t) = 0, t ∈ (0, T ].

Proof. See Section 3.7.1.

Remark 3.2.11. Given the result in Lemma 3.2.10, it is clear from the differential

equation (3.2.9) that ∂2
xu is uniformly bounded in R × [ǫ, T ], since ∂xu is uniformly

bounded (see Lemma 3.2.6). Combining with semi-Hölder continuity of u(x, ·) in

Lemma 3.2.6, Lemma 3.1 in page 78 of Ladyženskaja et al. (1968) now tells us that

∂xu(x, ·) ∈ H1/2([ǫ, T ]). Therefore, combining with the smooth fit property and

Proposition 3.2.3, we have

u ∈ C1 (R × (0, T ]) .

In the following three sections we will use the properties of the value function we

have shown in this section to investigate the regularity of the free boundary b(t).
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3.3 The free boundary is Hölder continuous

3.3.1 An auxiliary function

Before we begin to analyze the regularity of the free boundary, let us introduce

the following important auxiliary function, which was also used in Lamberton and

Mikou (2008) to prove the continuity of the free boundary in an exponential Lévy

model:

(3.3.1) J(x, t) , qex−rK+λ

∫

R

[
u(x + z, t) + ex+z − K

]
ν(dz), x ∈ R, t ∈ [0, T ].

As a result of the assumption (3.1.2), J < ∞. Moreover, J is closely related to the

behavior of the value function u in the stopping region, since one can check that

(3.3.2) Lu(x, t) = −J(x, t), for x < b(t), t ∈ (0, T ],

(3.3.3)

Lg(x) = Lu(x, 0) = −
[
qex − rK + λ

∫

R

(
ex+z − K

)+
ν(dz)

]
= −J(x, 0), for x < log K,

in which g(x) , (K − ex)+. As we shall see in the rest of this section, the function

J(x, 0) is of special importance. We rename it as J0(x), i.e.,

(3.3.4) J0(x) , qex − rK + λ

∫

R

(
ex+z − K

)+
ν(dz).

Let us analyze the properties of J .

Lemma 3.3.1. (i) J(x, t) ≥ −rK, limx↓−∞ J(x, t) = −rK and limx↑+∞ J(x, t) =

+∞,

(ii) J(x, t) ∈ C1 (R × (0, T ]) ∩ C (R × [0, T ]) ,

(iii) The functions x → J(x, t) and t → J(x, t) are non-decreasing. If either either

q > 0 or

ν ((M, +∞)) > 0, for any M > 0;(3.3.5)
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then x → J(x, t) is a strictly increasing function. On the other hand, if

(3.3.6) v((0,∞)) > 0

(3.3.7) ∂tJ(x, t) > 0, x ≥ b(t), t ∈ (0, T ].

Proof. (i) The first statement follows from u(x + z, t) ≥ (K − ex+z)+ ≥ K − ex+z.

The two limit statements follow from the Bounded Convergence Theorem.

(ii) The continuity of u(x, t) on R × [0, T ] implies that J is continuous on the same

region. For the differentiability, since ∂xu and ∂tu are uniformly bounded in R×[ǫ, T ]

for any ǫ > 0 (see Lemmas 3.2.6 and 3.2.8), the Bounded Convergence Theorem gives

us

∂

∂x
J(x, t) = qex + λ

∫

R

[
∂

∂x
u(x + z, t) + ex+z

]
ν(dz) < +∞,

∂

∂t
J(x, t) = λ

∫

R

∂

∂t
u(x + z, t)ν(dz) < +∞.

(3.3.8)

These partial derivatives are also continuous in R×[ǫ, T ] as a result of Remark 3.2.11.

Then the statement in (ii) follows since the choice of ǫ is arbitrary.

(iii) It is clear that the functions x → J(x, t) and t → J(x, t) are nondecreasing

functions since x → u(x, t) + ex and t → u(x, t) are nondecreasing.

The condition (3.3.5) means that the support of the measure ν is not bounded

from above. As a result we have that the set A = {z : x+z ∈ C} has positive measure,

i.e., ν(A) > 0 for any x ∈ R. For any z ∈ A we have that ∂xu(x + z, t) + ex+z > 0,

which is equivalent to ∂SV (Sez, t) + 1 > 0. The latter follows from the convexity of

the function V and (3.2.2). If z /∈ A, then clearly ∂xu(x + z, t) + ex+z = 0. Using

these facts in the first equation in (3.3.8), we see that 3.3.5 yields ∂xJ(x, t) > 0

in R × [0, T ]. On the other hand, when q > 0 the condition assumed on ν can be

dropped.
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Moreover, when x ≥ b(t) (3.3.6) ensures that ν(A) > 0. Then (3.3.7) follows from

Proposition 3.2.4.

In the rest of the chapter, we will assume either (3.3.5) or q > 0 and (3.3.6) are

satisfied. Indeed, in the two well-known examples of jump diffusions, Kou’s model

and Merton’s model (see Cont and Tankov (2004) p.111), in which ν is the double

exponential and normal distribution respectively, condition (3.3.5) is fulfilled.

As the consequence of Lemma 3.3.1, the level curve

(3.3.9) B(t) , {x : J(x, t) = 0, t ∈ [0, T ]} .

is well defined. B(0), which is the unique solution of the integral equation,

(3.3.10) J0(x) = qex − rK + λ

∫

R

(
ex+z − K

)+
ν(dz) = 0.

will be crucial in describing the behavior of b(t) close to 0 (see Section 3.3.2).

Remark 3.3.2. When r = 0, Lemma 3.3.1 (i) implies that B(t) = −∞. On the other

hand, the proof in the following lemma tell us that B(t) ≥ b(t). Therefore b(t) = −∞

in this case. We will assume r > 0 in the rest of the chapter to exclude this trivial

case.

This level curve B(t) will be crucial in analyzing the regularity properties of the

free boundaries in the rest of this section. Let us analyze its properties first.

Lemma 3.3.3. (i) B(t) is non-increasing,

(ii) B(t) ∈ C1(0, T ] ∩ C[0, T ],

(iii) B(t) > b(t) for t ∈ (0, T ]. Here b(t) is the free boundary in (3.2.6).

Proof. (i) The proof follows from Lemma 3.3.1 (iii).

(ii) We have the continuity of B because J(x, t) is continuous and strictly increasing
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in x (see Lemma 3.3.1 (ii) and (iii)). Let us focus on the differentiability in the

following. It follows from Lemma 3.3.1 (ii) that J(x, t) is a C1 function in R× (0, T ].

Moreover, it follows from (3.3.7) and B(t) ≥ b(t) (which we will prove in the Step 1

in (iii)) that

∂tJ(x, t0)|x=B(t0) > 0, t0 ∈ (0, T0].

Therefore, the Implicit Function Theorem implies that there exists an open set U

containing t0 such that

B(t) ∈ C1(U).

Then the statement in (ii) follows after pasting different neighborhoods for all points

t ∈ (0, T ] together.

(iii) The proof consists of two steps:

Step 1: First we show that B(t) ≥ b(t). If these is a t0 ∈ (0, T ] such that

B(t0) < b(t0), from the definition of B(t) and the fact that x → J(x, t) is strictly

increasing, we obtain J(x, t0) > 0 for all x ∈ (B(t0), b(t0)). Combining with (3.3.2),

we have

Lu(x, t0) < 0, for any x ∈ (B(t0), b(t0)),

which contradicts with (3.2.8).

Step 2: Second, we show that B(t) 6= b(t), t ∈ (0, T ]. Since b(t) < log K (thanks

to Lemma 3.2.5) and t → B(t) is non-increasing, it is clear that B(t) > b(t) for any

t ∈ (0, t∗) where t∗ = T ∧ sup{t ∈ R+ : B(t) = log K}. Hence we only need to focus

on the region where B(t) < log K. If there is a t0 ∈ (0, T ] such that B(t0) = b(t0),

we will derive a contradiction in the following.

First, let us define the region Ω , {(x, t) |B(t) < x < log K, t ∈ (0, T ]}. Because
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of the result in Step 1, Ω ⊂ C. Hence u(x, t) satisfies

LDu(x, t) = λ

∫

R

u(x + z, t)ν(dz), (x, t) ∈ Ω.

Let us define ξ , x − B(t), ũ(ξ, t) , u(x, t) and g̃(ξ, t) , (K − eξ+B(t))+ = g(x). In

the region Ω̃ , {(ξ, t)| 0 < ξ < log K − B(t), t ∈ (0, T ]} we have

(3.3.11)

L̃Dũ ,
∂ũ

∂t
− 1

2
σ2∂2ũ

∂ξ2
−
(

µ + B′(t) − 1

2
σ2

)
∂ũ

∂ξ
+ (r + λ)ũ = λ

∫

R

ũ(ξ + z, t)ν(dz).

since B(t) ∈ C1(0, T ]. On the other hand,

L̃Dg̃ = −eξ+B(t)B′(t) +
1

2
σ2eξ+B(t) +

(
µ + B′(t) − 1

2
σ2

)
eξ+B(t) + (r + λ)

(
K − eξ+B(t)

)

= −
[
qeξ+B(t) − rK + λ

∫

R

(
eξ+B(t)+z − K

)
ν(dz)

]
.

(3.3.12)

Therefore, we obtain from (3.3.11) and (3.3.12) that

(3.3.13)

L̃D (ũ − g̃) (ξ, t) = qeξ+B(t)−rK+λ

∫

R

[
ũ(ξ + z, t) + eξ+B(t)+z − K

]
ν(dz) = J(ξ+B(t), t),

for (ξ, t) ∈ Ω̃. Note that J(x, t) > 0 when x > B(t). Therefore (3.3.13) yields

(3.3.14) L̃D (ũ − g̃) > 0, (ξ, t) ∈ Ω̃.

On the other hand, from our assumption ξ0 , b(t0)−B(t0) = 0. Moreover, there

clearly exists a ball B ⊂ Ω̃ such that 1) B ∩ {ξ = 0} = (ξ0, t0); 2) (ũ − g̃)(ξ, t) >

(ũ − g̃)(ξ0, t0) = 0 for all (ξ, t) ∈ B, since (ũ − g̃)(ξ, t) = (u − g)(x, t) > 0 when

x > B(t) ≥ b(t). Now apply Hopf Lemma (see Theorem 17 in page 49 of Friedman

(1964)) to ũ − g̃ in B, we obtain

(3.3.15)
∂

∂ξ
(ũ − g̃) (ξ0, t0) > 0,

which contradicts with the smooth fit property at (ξ0, t0), i.e., ∂ξ(ũ − g̃)(ξ0, t0) =

∂x(u − g)(b(t0), t0) = 0.
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Remark 3.3.4. In the proof of Lemma 3.3.3 (iii), the reason we work with the domain

Ω̃ instead of the domain Ω is that Ω may not satisfy the interior ball condition (see

Theorem 17 in page 49 of Friedman (1964)), which is a crucial assumption of the Hopf

Lemma. If one can show B(t) ∈ C2, the interior ball condition automatically holds

for Ω (see Remark in page 330 of Evans (1998)). However, B(t) ∈ C2 does not follow

directly from the Implicit Function Theorem, because J(x, t) is not expected to be

a C2 function in a neighborhood of the point (b(t0), t0), for any t0, as a result of the

discontinuity of ∂2
xu(x, t) across the free boundary b(t) (see the following corollary).

As a corollary of Lemma 3.3.3 (iii), ∂2
xu(x, t) does not cross the free boundary

continuously.

Corollary 3.3.5.

(3.3.16)
∂2

∂x2
u (b(t)+, t) , lim

x↓b(t)

∂2

∂x2
u(x, t) > −eb(t), t ∈ (0, T ].

(This is equivalent to limS↓s(t) ∂2
SV (S, t) > 0, t ∈ [0, T ).)

Proof. On the one hand, since B(t) > b(t) and x → J(x, t) is strictly increasing, we

have

(3.3.17) J(b(t), t) < 0, t ∈ (0, T ],

On the other hand, from the continuity of u, (3.2.7), (3.2.6) and Proposition 3.2.3,

it follows that

0 = lim
x↓b(t)

Lu(x, t)

= −1

2
σ2 lim

x↓b(t)

∂2

∂x2
u(x, t) − 1

2
σ2eb(t)

−
{

qeb(t) − rK + λ

∫

R

[
u(b(t) + z, t) + eb(t)+z − K

]
ν(dz)

}

= −1

2
σ2 lim

x↓b(t)

∂2

∂x2
u(x, t) − 1

2
σ2eb(t) − J(b(t), t).

(3.3.18)

The inequality (3.3.16) now follows from combining (3.3.17) and (3.3.18).
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3.3.2 The behavior of the free boundary close to maturity

We are ready to analyze the regularity of the free boundaries. The continuity of

the free boundaries for differential equations with or without integral terms have been

studied intensively, see e.g. Friedman (1975), Pham (1997), Yang et al. (2006) and

Lamberton and Mikou (2008). For the American option in jump diffusions, Pham

(1997) showed the continuity of the free boundary under the technical condition

(3.3.19) r > q + λ

∫

R+

(ez − 1) ν(dz).

In Yang et al. (2006), this condition was removed in the proof of the continuity.

Moreover, in their Theorem 5.3, they showed that

(3.3.20)

b(0+) , lim
t→0+

b(t) = min{log K, B(0)} =





log K, r ≥ q + λ
∫

R+
(ez − 1)ν(dz)

B(0), r < q + λ
∫

R+
(ez − 1)ν(dz)

,

in which B(0) is the unique solution of (3.3.10). The same result has been shown

for the exponential Lévy models in Lamberton and Mikou (2008).

3.3.3 Hölder continuity of the free boundary

In the following, the function J0(x) in (3.3.4) and the Maximum Principle will

play a crucial role in showing that t → b(t) is Hölder continuous.

Lemma 3.3.6. Let b(t) be the free boundary in Lemma 3.2.5. For any ǫ > 0, if there

exists δ > 0 such that for any t1 and t2 satisfying ǫ ≤ t1 < t2 ≤ T and t2 − t1 ≤ δ

one has

(3.3.21) u(b(t1), t) − u(b(t1), t1) ≤ Cǫ(t2 − t1)
α, t1 ≤ t ≤ t2,

in which 0 < α ≤ 1 and Cǫ is a constant that does not depend on t1 and t2, then
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there exists δ′ ∈ (0, δ] such that

(3.3.22) b(t1) − b(t2) ≤ C ′
ǫ(t2 − t1)

α
2 , 0 ≤ t2 − t1 ≤ δ′,

in which C ′
ǫ is another positive constant that is independent of t1 and t2.

Proof. This proof is motivated by Lemma 5.1 in Friedman and Shen (2002). For any

t1 and t2 such that ǫ ≤ t1 < t2 ≤ T and t2 − t1 ≤ δ, let us consider the domain

D , {(x, t) : b(t) < x < b(t1), t1 < t < t2}. (In what follows, we will choose t1 and

t2 close to each other, i.e. we will find an appropriate δ′ such that t2 − t1 ≤ δ′.) Let

D be the closure of the domain D.

In the following, we will show that the function

(3.3.23) χ(x) =

{[√
Cǫ(t2 − t1)

α
2 + β(x − b(t1))

]+}2

, b(t2) ≤ x ≤ b(t1)

satisfies χ(x) ≥ (u − g)(x, t) on the domain D for suitably chosen positive constant

β.

It is clear that χ(x) = 0, when x ≤ b(t1) −
√

Cǫ

β
(t2 − t1)

α
2 , ξ. We also have

χ(b(t1)) = Cǫ(t2−t1)
α ≥ u(b(t1), t)−g(b(t1)) for t1 ≤ t ≤ t2 because of the assumption

(3.3.21). On the other hand, χ(b(t)) ≥ 0 = u(b(t), t) − g(b(t)). Therefore on the

parabolic boundary of the domain D, we have that χ ≥ u − g. We will show that

this holds for all (x, t) ∈ D. To this end, we will compare Lχ with L(u − g) using

the Maximum Principle. Note that χ is carefully chosen so that it has a continuous

first derivative and a bounded second derivative. These properties of χ makes the

application of the Maximum Principle for weak solutions (see e.g. Corollary 7.4 in

Lieberman (1996)) possible.
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First, for (x, t) ∈ D let us estimate the integral term:

λ

∫

R

χ(x + z)ν(dz) = λ

∫

z≥ξ−x

{√
Cǫ(t2 − t1)

α
2 + β(x + z − b(t1))

}2

ν(dz)

≤ λ

∫

z≥ξ−x

{√
Cǫ(t2 − t1)

α
2 + βz

}2

ν(dz)

≤ 2λ

∫

z≥ξ−x

[
Cǫ(t2 − t1)

α + β2z2
]
ν(dz)

≤ 2λ
[
Cǫ(t2 − t1)

α + β2M
]
.

(3.3.24)

for a sufficiently large positive constant M independent of t1 and t2. To obtain the

first inequality, we used x < b(t1) for (x, t) ∈ D. The third inequality follows, because

∫
R

ezν(dz) < +∞ in (3.1.2) and z is bounded from below.

With the estimate (3.3.24), we can calculate Lχ inside the domain D.

Lχ(x) =

[
−σ2β2 −

(
µ − 1

2
σ2

)
2βχ

1

2 + (r + λ)χ

]
1{x>ξ} − λ

∫

R

χ(x + z, t)ν(dz)

≥ −
[
(µ − σ2/2)2

r + λ
+ σ2

]
β21{x>ξ} − 2λ

[
Cǫ(t2 − t1)

α + β2M
]

≥ −Eβ2 − F (t2 − t1)
α,

(3.3.25)

in which E ,
(µ−σ2/2)2

r+λ
+ σ2 + 2λM and F , 2λCǫ are positive constants.

Recall that for any ε > 0, b(ǫ) < min{log K, B(0)} and that the strictly increas-

ing function J0 defined in (3.3.4) satisfies J0(x) < 0 for x < B(0). Using these

observations and (3.3.3) it can be seen that for any x ≤ b(ǫ) we have

(3.3.26) Lg(x) = −J0(x) ≥ −J0(b(ǫ)) > 0.

Now choosing

(3.3.27) c = −J0(b(ǫ)) > 0

and δ′ = min{
(

c
2F

)1/α
, δ} and β ≤

√
c

2E
, we have that

Lχ(x)(x) ≥ −c ≥ L(u − g)(x, t), (x, t) ∈ D.
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Considering Ψ = χ − u + g, we have LΨ ≥ 0 in D and Ψ ≥ 0 on the parabolic

boundary of D. It follows from the Maximum Principle for weak solutions that

Ψ ≥ 0 in D, i.e.,

(3.3.28) χ(x) ≥ (u − g)(x, t), (x, t) ∈ D.

Observe that (u − g)(x, t) = 0 if x ≤ ξ. For any (x, t) ∈ D, since (u − g)(x, t) > 0,

we can see that x > ξ. This gives us

(3.3.29) inf
t1≤t≤t2

b(t) ≥ b(t1) −
√

Cǫ

β
(t2 − t1)

α
2 , 0 < t2 − t1 ≤ δ′.

We have shown the free boundary b(t) is continuous and strictly decreasing in

Lemma 3.2.5. Along with this fact, the inequality (3.3.29) gives us (3.3.22) with

C ′
ǫ =

√
Cǫ/β.

Now we are ready to state the main result of this section.

Theorem 3.3.7. Let b(t) be the free boundary in problem (3.2.6), then for any ǫ > 0

if ǫ ≤ t1 < t2 ≤ T , and t2 − t1 is sufficiently small, then

(3.3.30) b(t1) − b(t2) ≤ Cǫ(t2 − t1)
5

8 ,

in which Cǫ is a positive constant independent of t1 and t2.

Proof. The proof will follow by applying Lemma 3.3.6 twice. The first application

will show that b(t) is Hölder continuous with exponent 1
2
. Applying Lemma 3.3.6 for

the second time we will upgrade the Hölder exponent to 5
8
.

As a result of Propositions 3.2.3 and 3.2.4 for any ǫ > 0, t1 and t2 satisfying

ǫ ≤ t1 < t2 ≤ T we have that

(3.3.31) u(b(t1), t) − u(b(t1), t1) ≤ max
t1≤s≤t

∂u

∂t
(b(t1), s)(t − t1) ≤ C1(t2 − t1),
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where C1 = maxǫ≤s≤T ∂tu(b(t1), s) is a positive constant. Now as a result of Lemma 3.3.6,

we know that there exists a sufficiently small constant δ1 ∈ (0, T − ǫ] such that

(3.3.32) b(t1) − b(t2) ≤ C ′
1(t2 − t1)

1

2 , 0 ≤ t2 − t1 ≤ δ1,

in which C ′
1 is a positive constant that does not depend on t1, t2 and δ1.

It follows from Lemmas 2.8 and 2.11 in Yang et al. (2006) and the Sobolev Em-

bedding Theorem (see also (3.7.27) in Appendix A.3) that for any a < b < log K

and t ∈ [t1, t2],

(3.3.33)

∣∣∣∣
∂u

∂t
(x, t) − ∂u

∂t
(x, t)

∣∣∣∣ ≤ C̃ |x − x|
1

2 , x, x ∈ (a, b),

in which C̃ is a positive constant that does not depend on t. Taking x = b(t1) and

x = b(t) in (3.3.33) and using Proposition 3.2.3, we obtain

(3.3.34) 0 ≤ ∂u

∂t
(b(t1), t) ≤ C̃ |b(t1) − b(t)|

1

2 ≤ C̃|b(t1) − b(t2)|
1

2 , t1 ≤ t ≤ t2,

where the third inequality follows from b(t) being strictly decreasing in Lemma 3.2.5.

Combining (3.3.32) and (3.3.34), we get

(3.3.35) 0 ≤ ∂u

∂t
(b(t1), t) ≤ C2(t2 − t1)

1

4 , t1 ≤ t ≤ t2, 0 ≤ t2 − t1 ≤ δ1.

As a result

(3.3.36) u(b(t1), t) − u(b(t1), t1) ≤ max
t1≤s≤t2

∂u

∂t
(b(t1), s)(t2 − t1) ≤ C2(t2 − t1)

5

4 .

Applying Lemma 3.3.6 for the second time, we know that there exists δ2 ∈ (0, δ1]

such that

(3.3.37) b(t1) − b(t2) ≤ Cǫ(t2 − t1)
5

8 , 0 ≤ t2 − t1 ≤ δ2,

where Cǫ is a positive constant that does not depend on t1, t2 and δ2.
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3.4 The free boundary is continuously differentiable

In this section, we will investigate the continuous differentiability of the free

boundary. In Theorem 5.6 in Yang et al. (2006), the authors have shown b(t) ∈

C1(0, T ], with the extra condition

(3.4.1) r ≥ q + λ

∫

R+

(ez − 1) ν(dz).

Thanks to Corollary 3.3.5 and Theorem 3.3.7, we can show the continuous differen-

tiability of the free boundary without imposing this extra condition.

Remark 3.4.1. If condition (3.4.1) is not satisfied, we can see from (3.3.20) that there

is a gap between limt→0+ b(t) and b(0) = log K. Therefore it is impossible to have b(t)

to be even continuous at t = 0. But we shall see that it is continuously differentiable

for all t ∈ (0, T ].

Let us consider the time derivative ∂tu(x, t). Recall that u(x, t) is the solution of

(3.2.6). Using the assumption (3.2.5), the time derivative w = ∂tu(x, t) satisfies the

following partial differential equation

LDw = h(x, t), x > b(t), t ∈ (0, T ],

w(b(t), t) = 0, lim
x→+∞

w(x, t) = 0, t ∈ (0, T ],

w(x, 0) = lim
t→0

∂tu(x, t), x ≥ b(0),

(3.4.2)

in which

(3.4.3) h(x, t) , λ

∫

R

∂

∂t
u(x + z, t)ν(dz) + σ∂tσ

(
∂2u

∂x2
− ∂u

∂x

)
.

When x < b(t), we also have w(x, t) = 0. Given u(x, t) and b(t), (3.4.2) is a parabolic

differential equation for w(x, t). In this equation, the boundary conditions for w(x, t)

along b(t) and at the infinity follow from Proposition 3.2.3 and Lemma 3.2.10.
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In order to show the differentiability of the free boundary, we need to study the

behavior of ∂2

∂x∂t
u at the free boundary (by first making sure that the cross derivatives

exist in the classical sense), which is carried out in the following lemma.

Lemma 3.4.2. (i) As a function of t, ∂2

∂x∂t
u(b(t)+, t) , limx↓b(t)

∂2

∂x∂t
u(x, t) is con-

tinuous on (0, T ].

(ii) Moreover, the function ∂2

∂x∂t
u(x, t) is continuous for x > b(t), t ∈ (0, T ].

This lemma is a slight generalization of the result in Cannon et al. (1974) to

the parabolic integro-differential equation (3.4.2). Considering the integral term h

in (3.4.2) as the driving term, this lemma follows from using the same technique

presented in Section 1 of Chapter 8 in Friedman (1964). We will postpone this proof

to the Appendix 3.7.2. We are now ready to state and prove the main theorem of

this section.

Theorem 3.4.3. Let b(t) be the free boundary in the boundary value problem (3.2.6),

then b(t) ∈ C1(0, T ].

Proof. First, we will show b(t) is differentiable at t0 ∈ (0, T ]. Let us define ρ =

∂2
xu(b(t0)+, t0) + eb(t0). Corollary 3.3.5 implies that ρ > 0.

For sufficiently small ǫ > 0, it follows from (3.2.7) that

1

ǫ

[
∂

∂x
u(b(t0), t0) −

∂

∂x
u(b(t0 − ǫ), t0 − ǫ) + eb(t0) − eb(t0−ǫ)

]
= 0.

Applying the Mean Value Theorem yields

(3.4.4)
(

∂2

∂x2
u(b(t0) + y, t0) + eb(t0)+y

)
b(t0) − b(t0 − ǫ)

ǫ
= − ∂2

∂x∂t
u(b(t0 − ǫ), t0 − τ),

for some y ∈ (0, b(t0 − ǫ) − b(t0)) and τ ∈ (0, ǫ). Letting ǫ → 0 in (3.4.4) and using
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Lemma 3.4.2 (ii), we obtain

(3.4.5) lim
ǫ→0

b(t0) − b(t0 − ǫ)

ǫ
= −

∂2

∂x∂t
u(b(t0)+, t0)

∂2

∂x2 u(b(t0)+, t0) + eb(t0)
,

which implies that b(t) is differentiable since ρ > 0. Moreover, from (3.2.9) and

Proposition 3.2.3, we have

∂2

∂x2
u(b(t)+, t) =

2(r + λ)

σ(b(t), t)2
K +

(
2(µ − r − λ)

σ(b(t), t)2
− 1

)
eb(t) − 2

σ(b(t), t)2
f(b(t), t),

which is clearly a continuous function of t on t ∈ (0, T ], since b(t) is a continuous

function and σ(x, t) is continuous from our assumption (3.2.5). Along with Lemma

3.4.2 (i), we can see from (3.4.5) that b(t) ∈ C1(0, T ].

3.5 Higher order regularity of the free boundary

In the previous section, we have proved that the free boundary b(t) is continu-

ously differentiable. In this section, we will upgrade their regularity. Throughout

this section, for the simplicity of the notation, we will assume that σ is a positive

constant. In this case, h(x, t) = λ
∫

R

∂
∂t

u(x + z, t)ν(dz), which is bounded thanks to

Lemma 3.2.8. More generally, if σ = σ(x, t), h(x, t) is given in (5.4.6). If we assume

σ(x, t) ∈ C∞(R × [0, T ]) with all its derivatives bounded and δ ≤ σ ≤ ∆ for some

positive constants δ and ∆, the same arguments in this section can still be carried

through. Because of Lemmas 3.2.6 and 3.2.8, we can see from the equation (3.2.6)

that ∂2
xu(x, t) is also bounded in R × [ǫ, T ] for any ǫ > 0. Hence, h(x, t) is also

bounded in this general case.

First, let us derive an identity on b′(t). Since b(t) is differentiable, taking derivative

with respect to t on both sides of (3.2.7), we have

(3.5.1)
∂2

∂x2
u(b(t)+, t)b′(t) +

∂2

∂x∂t
u(b(t)+, t) = −eb(t)b′(t).
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The term ∂2
xu(b(t)+, t) can be represented as

(3.5.2)
∂2

∂x2
u(b(t)+, t) =

(
2(µ − r − λ)

σ2
− 1

)
eb(t) +

2(r + λ)

σ2
K − 2

σ2
f(b(t), t).

Plugging (3.5.2) back into (3.5.1) and recalling w = ∂tu, we obtain

(3.5.3) b′(t) = −
σ2

2
∂
∂x

w(b(t)+, t)

(µ − r − λ)eb(t) + (r + λ)K − f(b(t), t)
, t ∈ (0, T ].

We can see from equations (3.4.2) that w(x, t) is the solution of a formal Stefan

problem in the unbounded continuation regions C. Schaeffer (1976) gave a proof of

the infinite differentiability of the free boundary of a one dimensional Stefan problem

in a bounded domain. By introducing the new variable ξ = x
b(t)

, he reduced the

problem into a fixed boundary problem on a bounded domain. However, if we apply

the same change of variables we will have unbounded coefficients in the corresponding

fixed boundary problem. Instead, similar to the change of variables in the proof of

Lemma 3.3.3 (iii), we will define

ξ , x − b(t), v(ξ, t) , w(x, t),

in which b(t) is the free boundary in (3.2.6). The function v(ξ, t) satisfies the following

fixed boundary equation,

∂v

∂t
− 1

2
σ2∂2v

∂ξ2
−
(

µ + b′(t) − 1

2
σ2

)
∂v

∂ξ
+ (r + λ)v = h(ξ + b(t), t), (ξ, t) ∈ (0, +∞) × (0, T ],

v(0, t) = 0, t ∈ (0, T ],

v(ξ, 0) = w(ξ + b(0), 0), ξ ≥ 0.

(3.5.4)

Moreover, we have the following identity

(3.5.5) b′(t) = −
σ2

2
∂
∂ξ

v(0, t)

(µ − r − λ)eb(t) + (r + λ)K − f(b(t), t)
, t ∈ (0, T ].
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Remark 3.5.1. Since b(t) ∈ C1(0, T ], so for any ǫ > 0, b′(t) is continuous and bounded

in [ǫ, T ]. On the other hand, since ∂tu is bounded by Lemma 3.2.8, so h(ξ +b(t), t) =

λ
∫

R
∂tu(ξ + b(t) + z, t)ν(dz) is also bounded when (ξ, t) ∈ [0, +∞) × [ǫ, T ]. As a

result, it follows from Theorem 2.6 in page 19 of Ladyženskaja et al. (1968) that the

parabolic differential equation (3.5.4) with the initial condition v(ξ, ǫ) = w(ξ+b(ǫ), ǫ)

has at most one bounded classical solution. It follows from the proof of Lemma 3.4.2

(i) that ∂tu(x, t) is a bounded classical solution, so it is the unique bounded solution

of (3.5.4).

The following result for parabolic differential equations will be an essential tool

in the proof of the main result in this section.

Lemma 3.5.2. Let us assume w(ξ, t) ∈ H2α,α([0, +∞) × [δ, T ]) (for some α and

δ > 0) satisfies the following equation

∂w

∂t
− a

∂2w

∂ξ2
+ ℓ

∂w

∂ξ
+ cw = d

∫

R

φ(ξ + z, t)ν(dz), (ξ, t) ∈ ((0, +∞) × (δ, T ))

w(0, t) = g(t), t ∈ [δ, T ].

(3.5.6)

We assume that d
∫

R
φ(ξ + z, t)ν(dz) ∈ H2α,α([0, +∞) × [δ, T ]) and that coefficients

a, ℓ, c also belong to H2α,α([0, +∞) × [δ, T ]) with δ ≤ a ≤ ∆ for some positive con-

stants δ and ∆, moreover g(t) ∈ H1+α([δ, T ]). Then w(ξ, t) ∈ H2+2α,1+α([0, +∞) ×

[δ′, T ], for any δ′ > δ.

Proof. Consider a cut-off function η(t) ∈ C∞
0 ((0, T ]), such that η(t) = 0 when t ∈
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(0, δ] and η(t) = 1 for t ∈ [δ′, T ]. The function w̃(ξ, t) = η(t)w(ξ, t) satisfies

∂w̃

∂t
− a

∂2w̃

∂ξ2
+ ℓ

∂w̃

∂ξ
+ cw̃ = d

∫

R

η(t)φ(ξ + z, t)ν(dz) +
∂η

∂t
w(ξ, t),

(ξ, t) ∈ (0, +∞) × (δ, T ],

w̃(0, t) = η(t)g(t), t ∈ [δ, T ],

w̃(ξ, δ) = 0, ξ ≥ 0.

From our assumptions we have that

d

∫

R

η(t)φ(ξ + z, t)ν(dz) +
∂η

∂t
w(ξ, t) ∈ H2α,α([0, +∞) × [δ, T ]),

η(t)g(t) ∈ H1+α([δ, T ]).

Moreover, the coefficients of the above differential equation are all inside space

H2α,α([0, +∞)×[δ, T ]). In addition, this equation is uniformly parabolic as the result

of 0 < δ ≤ a ≤ ∆. It follows from regularity estimation for parabolic differential

equations (see Theorem 5.2 in page 320 of Ladyženskaja et al. (1968)) that w̃(ξ, t) ∈

H2+2α,1+α([0, +∞) × [δ, T ]), which implies w(ξ, t) ∈ H2+2α,1+α([0, +∞) × [δ′, T ]) by

the choice of η(t).

Remark 3.5.3. We will apply the previous lemma to w(x, t) = ∂tu(x, t). Because

the initial condition for w(x, t), limt→0 ∂tu(x, t), is not smooth, therefore we can not

apply Theorem 5.2 in page 320 of Ladyženskaja et al. (1968) to upgrade the regularity

of w directly. This is the reason we work with w̃ in the proof of the previous lemma.

In order to apply Lemma 3.5.2 to (3.5.4), we need Hölder continuous coefficients

and value functions. Let us first show that the coefficients in equation (3.5.4) are

Hölder continuous.

Lemma 3.5.4. Let b(t) be the free boundary in (3.2.6). Then b(t) ∈ H1+α([δ, T ])

with 0 < α < 1
2

for any δ > 0.
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Proof. For any δ > 0, since b(t) ∈ C1(0, T ] by Theorem 3.4.3, the coefficients in

equation (3.5.4) are bounded and continuous in [δ, T ]. On the other hand, because

∂tu(x, t) is bounded in R × [δ, T ] by Lemma 3.2.8, the function h(ξ + b(t), t) =

λ
∫

R

∂
∂t

u(ξ + b(t)+ z, t)ν(dz) is also bounded when (ξ, t) ∈ [0, +∞)× [δ, T ]. It follows

from Theorem 9.1 in page 341 of Ladyženskaja et al. (1968) that equation (3.5.4)

has a unique solution v(ξ, t) ∈ W 2,1
q ([0, M ] × [δ, T ]) for any q > 1 and M > 0.

By the Sobolev Embedding Theorem (see, for example, Theorem 2.1 in page 61

of Ladyženskaja et al. (1968)), for q > 3, we have v(ξ, t) ∈ Hβ,β/2([0, M ] × [δ, T ])

with β = 2 − 3
q

(1 < β < 2). as a result, we have

(3.5.7)
∂

∂ξ
v(0, t) ∈ H

β−1

2 ([δ, T ]), with 0 <
β − 1

2
<

1

2
.

Let us analyze the terms in the denominator on the right hand side of (3.5.5). We

have that b(t) ∈ C1([δ, T ]) and that

f(b(t), t) = λ

∫

R

u(b(t) + z, t)ν(dz) ∈ C1([δ, T ]),

since u(x, t) ∈ C1(R × [δ, T ]) (see Remark 3.2.11). Moreover, this denominator is

also bounded away from 0, because

(µ−r−λ)σ2eb(t) +(r+λ)K−f(b(t), t) =
σ2

2

(
∂2

∂x2
u(b(t), t) + eb(t)

)
> 0, t ∈ [δ, T ],

where the last inequality follows from Corollary 3.3.5. With (3.5.5) and (3.5.7), it is

clear that

b′(t) ∈ H
β−1

2 ([δ, T ]).

As a corollary of Lemmas 3.5.2 and 3.5.4, we can improve the regularity of the

functions u(x, t).
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Corollary 3.5.5. Let u(x, t) be the classical solution of the boundary value problem

(3.2.6). Then u(ξ + b(t), t) ∈ H2+2α,1+α([0, +∞) × [δ′, T ]) for any δ′ > 0, with

α ∈ (0, 1/2).

Proof. Let ξ = x−b(t), κ(ξ, t) = u(x, t) and φ(ξ+z, t) = u(ξ+b(t)+z, t). Then κ(ξ, t)

satisfies a differential equation of the form (3.5.6) in Lemma 3.5.2 with g(t) = K−eb(t)

(in fact κ satisfies (3.5.4) when h in the driving term is replaced by f). Moreover, by

Lemma 3.5.4, the coefficients in this equation (3.5.6) are inside space Hα([δ, T ]) for

any δ > 0, and g(t) ∈ H1+α([δ, T ]). In addition, thanks to the assumption (3.2.5),

the equation (3.5.6) is uniformly parabolic.

On the other hand, since u(x, t) is uniformly Lipschitz in x ∈ R and uniformly

semi-Hölder continuous in t ∈ [0, T ] (see Lemma 3.2.6), and b(t) is continuously

differentiable, it is not hard to see that
∫

R
u(ξ + b(t) + z, t)ν(dz) ∈ H2α,α([0, +∞)×

[δ, T ]). Moreover, u(ξ + b(t), t) ∈ H2α,α([0, +∞) × [δ, T ]) again because of Lemma

3.2.6. Now, the statement follows directly from Lemma 3.5.2.

Armed with Lemmas 3.5.2, 3.5.4 and Corollary 3.5.5, we can state and prove the

main theorem of this section.

Theorem 3.5.6. Let b(t) be the free boundary in (3.2.6). Assume that ν has a

density, i.e. ν(dz) = ρ(z)dz. Let α ∈ (0, 1/2). If ρ(z) satisfies
∫ u

−∞ ρ(z)dz ∈

H2α(R−), then b(t) ∈ H
3

2
+α([ǫ, T ]). On the other hand, if ρ(z) ∈ Hℓ−1+2α(R−) for

ℓ ≥ 1, then b(t) ∈ H
3

2
+ ℓ

2
+α([ǫ, T ]), for any ǫ > 0.

Proof. The proof consists of four steps.

Step 1. From Lemma 3.5.4 and Corollary 3.5.5, we have that b(t) ∈ H1+α([δ, T ])

and that u(ξ + b(t), t) ∈ H2+2α,1+α([0, +∞) × [δ′, T ]) for any δ′ > δ > 0 with α ∈

(0, 1/2), which implies that ∂tu(ξ + b(t), t) ∈ H2α,α([0, +∞)× [δ′, T ]) (see Definition
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3.2.7).

Step 2. Assume that there is a positive nonintegral real number β with 2β ≤

2α + ℓ, such that

b(t) ∈ H1+β([δ, T ]),(3.5.8)

∂

∂t
u(ξ + b(t), t) ∈ H2β,β([0, +∞) × [δ′, T ]),(3.5.9)

u(ξ + b(t), t) ∈ H2+2β,1+β([0, +∞) × [δ′, T ]),(3.5.10)

for δ′ > δ > 0. We will upgrade the regularity exponent from β to 1/2 + β, in steps

2 and 3.

Let us analyze ∂tu(ξ + b(t), t). For any integers r, s ≥ 0, 2r + s < 2β, since

∂tu(ξ + b(t) + z, t) = 0 when z ≤ −ξ, we have

∂s

∂ξs

∂r

∂tr

∫

R

∂

∂t
u(ξ + b(t) + z, t)ν(dz) =

∂s

∂ξs

∂r

∂tr

∫ +∞

−ξ

∂

∂t
u(ξ + b(t) + z, t)ρ(z)dz

= 1{s≥1}

s−1∑

i=0

∂i

∂ξi

∂r

∂tr
∂

∂t
u(ξ + b(t) + z, t)

∣∣∣∣
z↓−ξ

ds−1−i

dξs−1−i
ρ(−ξ)

+

∫ +∞

−ξ

∂s

∂ξs

∂r

∂tr
∂

∂t
u(ξ + b(t) + z, t)ρ(z)dz,

(3.5.11)

for any ξ ≥ 0.

When t is fixed, in the following, we will show

(3.5.12)
∂s

∂ξs

∂r

∂tr

∫

R

∂

∂t
u(ξ+b(t)+z, t)ν(dz) ∈ H2β−[2β]([0, +∞)), for 2r+s = [2β].
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For any ξ1 > ξ2 ≥ 0 such that ξ1 − ξ2 ≤ ρ0, we have

∣∣∣∣
∂s

∂ξs

∂r

∂tr

∫

R

∂

∂t
u(ξ1 + b(t) + z, t)ν(dz) − ∂s

∂ξs

∂r

∂tr

∫

R

∂

∂t
u(ξ2 + b(t) + z, t)ν(dz)

∣∣∣∣

≤ 1{s≥1}

s−1∑

i=0

∣∣∣∣∣
∂i

∂ξi

∂r

∂tr
∂

∂t
u(ξ + b(t) + z, t)

∣∣∣∣
z↓−ξ

∣∣∣∣∣

∣∣∣∣
ds−1−i

dξs−1−i

(
ρ(−ξ1) − ρ(−ξ2)

)∣∣∣∣

+

∫ +∞

−ξ2

∣∣∣∣
∂s

∂ξs

∂r

∂tr
∂

∂t

(
u(ξ1 + b(t) + z, t) − u(ξ2 + b(t) + z, t)

)∣∣∣∣ ρ(z)dz

+

∫ −ξ2

−ξ1

∣∣∣∣
∂s

∂ξs

∂r

∂tr
∂

∂t
u(ξ1 + b(t) + z, t)

∣∣∣∣ ρ(z)dz.

(3.5.13)

Let us analyze the right hand side of (3.5.13) term by term. When s > 1, since

s − 1 < 2β − 1 ≤ 2α + ℓ − 1, we have ρ(z) ∈ H2β−1(R−), which implies

1{s≥1}

s−1∑

i=0

∣∣∣∣∣
∂i

∂ξi

∂r

∂tr
∂

∂t
u(ξ + b(t) + z, t)

∣∣∣∣
z↓−ξ

∣∣∣∣∣

∣∣∣∣
ds−1−i

dξs−1−i

(
ρ(−ξ1) − ρ(−ξ2)

)∣∣∣∣

≤ C||∂tu||(2β)|ξ1 − ξ2|2β−[2β],

(3.5.14)

in which C is a positive constant and || · ||(2β) is the Hölder norm (see Definition

3.2.7). On the other hand, it follows from (3.5.9) that

∫ +∞

−ξ2

∣∣∣∣
∂s

∂ξs

∂r

∂tr
∂

∂t

(
u(ξ1 + b(t) + z, t) − u(ξ2 + b(t) + z, t)

)∣∣∣∣ ρ(z)dz

≤ ||∂tu||(2β)|ξ1 − ξ2|2β−[2β]

∫ +∞

−ξ2

ρ(z)dz ≤ ||∂tu||(2β)|ξ1 − ξ2|2β−[2β].

(3.5.15)

Moreover, because ρ(z) ∈ Hℓ−1+2α(R−) for ℓ ≥ 1 or
∫ u

−∞ ρ(z)dz ∈ H2α(R−), we have

∫ u

−∞ ρ(z)dz ∈ Hℓ+2α(R−) for ℓ ≥ 0. In particular, using 2β ≤ 2α + ℓ, we can see

∫ u

−∞ ρ(z)dz ∈ H2β−[2β](R−). As a result,

∫ −ξ2

−ξ1

∣∣∣∣
∂s

∂ξs

∂r

∂tr
∂

∂t
u(ξ1 + b(t) + z, t)

∣∣∣∣ ρ(z)dz

≤ ||∂tu||(2β)

(∫ −ξ2

−∞
ρ(z)dz −

∫ −ξ1

−∞
ρ(z)dz

)
≤ C̃||∂tu||(2β)|ξ1 − ξ2|2β−[2β],

(3.5.16)

where C̃ is also a positive constant. Plugging the estimates (3.5.14) - (3.5.16) into

(3.5.13), we observe that (3.5.12) holds.
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When ξ is fixed, using (3.5.11), it directly follows from (3.5.8) and (3.5.9) that

(3.5.17)

∂s

∂ξs

∂r

∂tr

∫

R

∂

∂t
u(ξ + b(t) + z, t)ν(dz) ∈ Hβ− 2r+s

2 ([δ′, T ]), for 2β − 2 < 2r + s < 2β.

Now, (3.5.12) and (3.5.17) imply that

(3.5.18)

∫

R

∂

∂t
u(ξ + b(t) + z, t)ν(dz) ∈ H2β,β([0, +∞) × [δ′, T ]).

Let v(ξ, t) be a bounded solution of the boundary value problem (3.5.4) with the

initial condition v(ξ, δ′) = ∂tu(ξ + b(δ′), δ′). The uniqueness in Remark 3.5.1 implies

that

(3.5.19) v(ξ, t) =
∂

∂t
u(ξ + b(t), t), (ξ, t) ∈ [0, +∞) × [δ′, T ].

As a result, the assumption (3.5.9) implies that

(3.5.20) v(ξ, t) ∈ H2β,β([0, +∞) × [δ′, T ]).

We will apply Lemma 3.5.2 to (3.5.4) with φ(ξ +z, t) = ∂tu(ξ + b(t)+z, t), a = σ2/2,

ℓ = − (µ + b′(t) − σ2/2), c = r + λ and d = λ. Thanks to (3.5.8), the coefficient

l belongs to Hβ([δ, T ]). The other coefficients already happen to reside there since

they are constants. Along with (3.5.18) and (3.5.20), Lemma 3.5.2 yields

(3.5.21) v(ξ, t) ∈ H2+2β,1+β([0, +∞) × [δ′′, T ]) for any δ′′ > δ′ > δ,

which implies that

(3.5.22)
∂

∂ξ
v(0, t) ∈ H

1

2
+β([δ′′, T ]),

and

(3.5.23)
∂

∂t
u(ξ + b(t), t) ∈ H2+2β,1+β([0, +∞) × [δ′′, T ]),
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by (3.5.19).

Using (3.5.5) and (3.5.22), we will improve the regularity of b(t) in the following.

From (3.7.1) we have

f(b(t), t) = λ

∫

R

u(b(t) + z, t)ν(dz)

= λ

∫ +∞

0

u(b(t) + z, t)ν(dz) + λ

∫ 0

−∞
(K − eb(t)+z)ν(dz).

(3.5.24)

Along with (3.5.8) and (3.5.10), we can see from (3.5.24) that

(3.5.25) f(b(t), t) ∈ H1+β([δ′′, T ]).

Together with (3.5.8), (3.5.22) and (3.5.25), we can see from the identity (3.5.5) that

b′(t) ∈ H
1

2
+β([δ′′, T ]) for any δ′′ > δ′. It in turn implies that

(3.5.26) b(t) ∈ H
3

2
+β([δ′′, T ]).

Step 3. Let us investigate u(ξ + b(t), t). For any r, s ≥ 0, 2r + s < 2 + 2β, we

have

∂s

∂ξs

∂r

∂tr

∫

R

u(ξ + b(t) + z, t)ν(dz)

=
∂s

∂ξs

∂r

∂tr

∫ +∞

−ξ

u(ξ + b(t) + z, t)ρ(z)dz +
∂s

∂ξs

∂r

∂tr

∫ −ξ

−∞
u(ξ + b(t) + z, t)ρ(z)dz

= 1{s≥1}

s−1∑

i=0

[
∂i

∂ξi

∂r

∂tr
u(ξ + b(t) + z, t)

∣∣∣∣
z↓−ξ

− ∂i

∂ξi

∂r

∂tr
u(ξ + b(t) + z, t)

∣∣∣∣
z↑−ξ

]
ds−1−i

dξs−1−i
ρ(−ξ)

+

∫ +∞

−ξ

∂s

∂ξs

∂r

∂tr
u(ξ + b(t) + z, t)ρ(z)dz +

∫ −ξ

−∞

∂s

∂ξs

∂r

∂tr
u(ξ + b(t) + z, t)ρ(z)dz,

for any ξ ≥ 0. It is worth noticing that ∂i
ξ∂

r
t u(ξ + b(t) + z, t)|z↓−ξ 6= ∂i

ξ∂
r
t u(ξ + b(t) +

z, t)|z↑−ξ for some i and r. Following the same arguments that lead up to (3.5.18),

we can show

(3.5.27)

∫

R

u(ξ + b(t) + z, t)ν(dz) ∈ H2+2β,1+β([0, +∞) × [δ′, T ]),
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given 1 + 2β ≤ 2α + ℓ − 1.

Now, we can apply Lemma 3.5.2 to the differential equation u(ξ + b(t), t) satisfies,

taking (3.5.10) and (3.5.26) into account. This results in

(3.5.28) u(ξ + b(t), t) ∈ H3+2β, 3
2
+β([0, +∞) × [δ′′′, T ]),

for any δ′′′ > δ′′. As a result, we have improved the regularities from (3.5.8), (3.5.9)

and (3.5.10) to (3.5.26), (3.5.23) and (3.5.28), respectively.

Step 4. For any ǫ > 0, we apply Steps 2 and 3 inductively starting from β = α in

Step 1. Let n be the number of time we apply Steps 2 and 3. Let δ′1 = δ′, in which

δ′ > 0 is as in Step 1. Running Step 2 and 3 once, we obtain two constants δ′′1 and

δ′′′1 such that (3.5.26), (3.5.28) hold with β = α. In the n-th time, n ≥ 2, we choose

δ′n = δ′′′n−1 and δ′′′n > δ′′n > δ′n, such that δ′′′n < ǫ for any n so that [ǫ, T ] ⊂ [δ′′′n , T ].

The application of Step 2 for the n-th time will give us that b(t) ∈ H1+α+ n
2 ([ǫ, T ]).

Applying Step 2 for ℓ + 1 and Step 3 for ℓ times the result follows.

Remark 3.5.7. (i) The previous proof has also shown the higher order regularity of

u(x, t), i.e. u(ξ + b(t), t) ∈ H2+2α+ℓ,1+α+ ℓ
2 ([0, +∞)× [ǫ, T ]), for any ǫ > 0, under

the assumptions of Theorem 3.5.6, .

(ii) Note that b(t) ∈ C1((0, T ]) without any assumption on the density ρ(z). If

ρ(z) ∈ H2m−1+2α(R−) for some m ≥ 1, then b(t) ∈ H
3

2
+m+α([ǫ, T ]). From

Definition 3.2.7 and the arbitrary choice of ǫ, we have that b(t) ∈ Cm+1((0, T ])

under this assumption.

As a corollary of Theorem 3.5.6, we have the following sufficient condition for the

infinitely differentiability of b(t).

Corollary 3.5.8. Let b(t) be the free boundary in (3.2.6). Assume that ν has a
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density, i.e. ν(dz) = ρ(z)dz. If ρ(z) ∈ C∞(R−) with dℓ

dzℓ ρ(z) bounded for each ℓ ≥ 1,

but not necessarily uniformly, then b(t) ∈ C∞((0, T ]).

Proof. For any m ≥ 1 with ρ(z) ∈ C2m+1(R−) and derivatives of ρ(z) up to order

2m + 1 are bounded, it follows from Definition 3.2.7 that ρ(z) ∈ H2m−1+2α(R−). As

a result of Remark 3.5.7 (ii), we have b(t) ∈ Cm+1((0, T ]).

Remark 3.5.9. There are two well-known examples of jump diffusion models in the

literature, Kou’s model and Merton’s model (see Cont and Tankov (2004), p.111), in

which the density ρ(z) is double exponential and normal, respectively. For both of

these densities, it is easy to see that the conditions for Corollary 3.5.8 are satisfied.

Therefore, the free boundaries in both models are infinitely differentiable.

3.6 The approximation problems

This section is completely independent of the regularity properties of the free

boundary b(t). We want to show that the approximating free boundaries bn(t),

constructed in Bayraktar (2009), have the similar regularity properties with the free

boundary b(t).

Bayraktar (2009) constructed a monotone increasing sequence {un}n≥0 that con-

verges to the unique solution u(x, t) of the parabolic integro-differential equation

(3.2.6), uniformly. In this sequence, u0(x, t) = (K − ex)+, and each un(x, t) (n ≥ 1)

is the unique classical solution of the following parabolic differential equation:

LDun ,
∂un

∂t
− 1

2
σ2∂2un

∂x2
−
(

µ − 1

2
σ2

)
∂un

∂x
+ (r + λ)un = fn(x, t), x > bn(t),

un(bn(t), t) = K − ebn(t), t ∈ (0, T ],

un(x, 0) = (K − ex)+, x ≥ bn(0),

(3.6.1)
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in which

(3.6.2) fn(x, t) , λ

∫

R

un−1(x + z, t)ν(dz),

and the free boundary bn(t) , log (sn (T − t)) is defined in terms of sn(·), which

is the approximating free boundary in Bayraktar (2009). Moreover, the smooth fit

property is also satisfied for each un, i.e.

(3.6.3)
∂

∂x
un(bn(t), t) = −ebn(t), t ∈ (0, T ].

In the region {(x, t)| x < bn(t), t ∈ (0, T ]}, one also has that

(3.6.4) LDun(x, t) − fn(x, t) ≥ 0.

For all n ≥ 1, we can define the approximating continuation regions Cn and the

stopping regions Dn as follows

Cn , {(x, t) | bn(t) < x < +∞, 0 < t ≤ T}, Dn , {(x, t)| −∞ < x ≤ bn(t), 0 < t ≤ T}.

Since {un}n≥0 is a monotone increasing sequence, the approximating free boundary

{bn}n≥1 is a monotone decreasing sequence. As a result, we have ∪n≥1Cn = C and

∩n≥1Dn = D.

The approximating sequences {un}n≥1 and {bn}n≥1 have the similar properties

with the value function u and its free boundary b. Proposition 3.2.4, Lemmas 3.2.5,

3.2.6 and 3.2.10 have their analogous versions for un and bn via the same proofs only

replacing the integral term f in (3.2.9) by fn in (3.6.2). While Proposition 3.2.3 and

Lemma 3.2.8 have slight modifications as follows:

Proposition 3.6.1. For all n ≥ 1,

(i) If ∂tun−1(x, t) is bounded in R× [ǫ, T ] for any ǫ > 0, then ∂tun(x, t) is continuous
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in R × (0, T ] and

lim
x↓bn(t)

∂

∂t
un(x, t) = 0.(3.6.5)

(ii) If limx↓bn(t) ∂tun(x, t) = 0 for t ∈ (0, T ] then ∂tun(x, t) is uniformly bounded in

R × [ǫ, T ], for any ǫ > 0.

Proof. See Appendix 3.7.3 for the proof of (i). Under the assumption that limx↓bn(t) u(x, t) =

0 for t ∈ (0, T ], we have ∂tu(x, t) is bounded in the domain {(x, t) | bn(t) ≤ x ≤

X0, ǫ ≤ t ≤ T} for any ǫ ≥ 0. Then the rest proof of (ii) is similar with the proof of

Lemma 3.2.8.

Remark 3.6.2. To show that assumptions in both (i) and (ii) are satisfied for all un,

n ≥ 1, we need to walk through (i) and (ii) successively. Starting from ∂tu0(x, t) = 0

(since u0(x, t) = (K − ex)+), (i) tells us that limx↓b1(t) ∂tu1(x, t) = 0. Then it follows

from (ii) that ∂tu1(x, t) is bounded in R× [ǫ, T ] for any ǫ > 0. This result feeds back

to (i) which shows the assumptions in both (i) and (ii) are fulfilled by induction.

Results similar to Lemmas 3.3.1, 3.3.3 and Corollary 3.3.5 can also be shown for

each un, n ≥ 1. Defining

Jn(x, t) , qex − rK + λ

∫

R

[
un−1(x + z, t) + ex+z − K

]
ν(dz), x ∈ R, t ∈ [0, T ],

Bn(t) , {x : Jn(x, t) = 0, t ∈ [0, T ]} .

we obtain the following:

(3.6.6) LDun(x, t) − λ

∫

R

un−1(x + z, t)ν(dz) = −Jn(x, t), x < bn(t), t ∈ [0, T ],

(3.6.7)

x → Jn(x, t) is strictly increasing and t → Jn(x, t) is non-decreasing for (x, t) ∈ R×[0, T ],

(3.6.8) Bn(t) > bn(t), t ∈ (0, T ],
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(3.6.9) lim
x↓bn(t)

∂2

∂x2
un(x, t) > −ebn(t), t ∈ (0, T ].

Moreover, as we can see in the following Proposition, the approximating free

boundaries bn have the same critical value with b when the time is close to maturity.

Proposition 3.6.3. For the approximating sequence bn(t), we have

(3.6.10)

bn(0+) , lim
t→0+

bn(t) = min{log K, B(0)} =





log K, r ≥ q + λ
∫

R+
(ez − 1)ν(dz)

B(0), r < q + λ
∫

R+
(ez − 1)ν(dz)

,

in which B(0) the unique solution of (3.3.10).

Proof. When x < bn(t)(t > 0), it follows from (3.6.4), (3.6.6) and (3.6.7) that

0 ≤ LDun(x, t) − λ

∫

R

un−1(x + z, t)ν(dz) = −Jn(x, t) ≤ −Jn(x, 0) = −J0(x).

The fact that J0(B(0)) = 0 and x → J0(x) is strictly increasing tells us x ≤ B(0),

hence bn(t) ≤ B(0) by the choice of x. It is also clear that bn(t) ≤ log K. Then we

obtain

(3.6.11) bn(0+) ≤ min{log K, B(0)}.

Now, the corollary results from combining (3.3.20) and (3.6.11), since {bn}n≥1 is an

monotone decreasing sequence.

Furthermore, the Hölder continuity in Theorem 3.3.7 also holds for bn, n ≥ 1. In

the proof of Lemma 3.3.6, we only need to replace c in (3.3.27) by

min {−2/σ2Jn(x, t)| bn(t) < x < Bn(t), ǫ ≤ t ≤ T} > 0. On the other hand, results

in Lemma 3.4.2 also hold for ∂xtun, n ≥ 1. Therefore, combining with (3.6.9), we

have from (3.6.3) that

Proposition 3.6.4. bn(t) ∈ C1(0, T ], n ≥ 1.
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Finally, using the following representation

(3.6.12) b′n(t) = −
σ2

2
∂2

∂x∂t
un(bn(t)+, t)

(µ − r − λ)ebn(t) + (r + λ)K − fn(bn(t), t)
, t ∈ (0, T ],

one can follow the proof of Lemma 3.5.4 to show that there is α ∈ (0, 1/2) such that

bn(t) ∈ H1+α([δ, T ]), for any δ > 0.

3.7 Proof of some auxiliary results

3.7.1 Proof of Lemmas 3.2.6, 3.2.8 and 3.2.10

Proof of Lemma 3.2.6. The inequality (3.2.14) is clear, because we have

|u(x, t) − u(x, s)| = |V (ex, T − t) − V (ex, T − s)| ≤ D|t− s| 12 .

In order to prove (3.2.13), it suffices to check that ∂xu(x, t) is uniformly bounded

in the domain R × [0, T ]. Choose a constant X > log K + 1, we will first prove

∂xu(x, t) is uniformly bounded in [X, +∞)× [0, T ]. Let us consider a cut-off function

η(x) ∈ C∞(R), such that η(x) = 0 when x ≤ X − 1 and η(x) = 1 when x ≥ X.

Using (3.2.9) we see that v(x, t) = η(x)u(x, t) satisfies

LDv = η(x)f(x, t) + f̃(x, t),

v(x, 0) = η(x)(K − ex)+,

where

(3.7.1)

f(x, t) = λ

∫

R

u(x + z, t)ν(dz), f̃(x, t) = −1

2
σ2

(
η′′u + 2η′∂u

∂x

)
−
(

µ − 1

2
σ2

)
η′u.

It is worth noticing that the term η′∂xu in the expression for f̃ vanishes outside a

compact domain. Since we also have that u(x, t) ≤ K, both f(x, t) and f̃(x, t) are

bounded in R × [0, T ].
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Let G(x, t; y, s) be the Green function corresponding to the differential operator

LD. We can represent v(x, t) in terms of G as

(3.7.2)

v(x, t) =

∫

R

dy G(x, t; y, 0)η(y)(K−ey)++

∫ t

0

ds

∫

R

dy G(x, t; y, s)
(
f(y, s)η(y) + f̃(y, s)

)
.

The first term on the right-hand-side of (3.7.2) will vanish by the choice of η(y). On

the other hand, Green function G(x, t; y, s) satisfies

|∂xG(x, t; y, s)| ≤ c(t − s)−1 exp

(
−c

|x − y|2
t − s

)
,

for some positive constant c, (see Theorem 16.3 in page 413 of Ladyženskaja et al.

(1968)). Since

∫
R

dy exp(−c (x−y)2

t−s
) ≤ d (t − s)

1

2 for some other positive constant d, we have that

∫ t

0

ds

∫

R

dy |∂xG(x, t; y, s)| ≤
∫ t

0

ds c̃(t − s)−
1

2 = 2c̃ t
1

2 ,

Using this estimate and the boundness of f and f̃ , the Dominated Convergence

Theorem implies that

∂xv(x, t) =

∫ t

0

ds

∫

R

dy ∂xG(x, t; y, s)(f(y, s)η(y) + f̃(y, s)),

which is uniformly bounded. On the other hand, ∂xv = η′u + η∂xu. By our choice

of η(x), we have that ∂xu(x, t) is uniformly bounded on [X, +∞) × [0, T ].

Moreover, in the stopping region D, we have ∂xu(x, t) = −ex. This implies that

0 > ∂xu(x, t) ≥ −eb(t) ≥ −K. On the other hand, since it is continuous ∂xu is also

bounded in the compact closed domain {(x, t)|b(t) ≤ x ≤ X, 0 ≤ t ≤ T}. As a result

we have that ∂xu(x, t) is uniformly bounded in R × [0, T ].

Proof of Lemma 3.2.8. Let us choose X0 such that X0 > log K. We will first

prove that ∂tu(x, t) is uniformly bounded in the domain [X0, +∞) × [0, T ]. Let
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k(x, t) ∈ C∞
0 (R × [0, T ]) be such that

∂xk(x, t)|x=X0
= ∂xu(x, t)|x=X0

, t ∈ [0, T ],

and that k(x, 0) = 0, x ∈ R. These two conditions on k are consistent since

∂xu(x, 0)|x=X0
= 0. The function v(x, t) , u(x, t) − k(x, t) satisfies

(3.7.3) ∂xv(x, t)|x=X0
= 0,

and

(3.7.4) LDv(x, t) = f(x, t) + g(x, t), x > b(t), t ∈ (0, T ],

in which g(x, t) = −LDk(x, t) and f is given by (3.7.1). Let us define the even

extension of v(x, t) with respect to the line x = X0 as

(3.7.5) v̂(x, t) ,





v(x, t) x ≥ X0,

v(2X0 − x, t) x < X0.

We similarly define f̂(x, t) and ĝ(x). From (3.7.3) and (3.7.5), we have v̂(x, t) ∈

C2,1(R × (0, T ]) and that it satisfies the equation

LDv̂ = f̂(x, t) + ĝ(x, t), (x, t) ∈ R × (0, T ],

v̂(x, 0) = 0, x ∈ R.

Here the initial condition follows from (3.2.6) and the choice of X0 and k(x, t).

It follows from (3.2.13) and (3.2.14) that f(x, t) is uniformly Lipschitz in x and

semi-Hölder coninuous in t. So for any x1 < x2, if we have either x2 ≤ X0 or X0 ≤ x1,

then
∣∣∣f̂(x1, t) − f̂(x2, t)

∣∣∣ ≤ λC(x2 − x1),
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for the same constant C as in (3.2.13). On the other hand, if x1 < X0 < x2, then

|f̂(x1, t) − f̂(x2, t)| ≤ |f̂(x1, t) − f̂(X0, t)| + |f̂(X0, t) − f̂(x2, t)|

≤ λC(X0 − x1) + λC(x2 − X0) = λC(x2 − x1).

As a result of the last two equations we observe that f̂(x, t) is uniformly Lipschitz in

its first variable. It is also clear that f̂(x, t) is semi-Hölder continuous in its second

variable. Thus, it follows from Definition 3.2.7 that

f̂(x, t) ∈ Hα, α
2 (R × [0, T ]), for some 0 < α < 1.

On the other hand, ĝ(x, t) ∈ Hα,α/2(R × [0, T ]), because k(x, t) ∈ C∞
0 (R × [0, T ]).

Combining with the assumption (3.2.5) on σ, the regularity property of parabolic

differential equation (see Theorem 5.1 in page 320 of Ladyženskaja et al. (1968))

implies that

v̂(x, t) ∈ H2+α,1+ α
2 (R × [0, T ]).

In particular, u(x, t) ∈ H2+α,1+α/2([X0, +∞) × [0, T ]). As a result, in [X0, +∞) ×

[0, T ], ∂tu(x, t) is uniformly bounded by the Hölder norm of u(x, t) . Now, the result

follows from the continuity of ∂tu(x, t) inside domain {(x, t) | b(t) ≤ x ≤ X0, ǫ ≤ t ≤

T} for any ǫ > 0 (see Proposition 3.2.3).

Proof of Lemma 3.2.10. Let X0 > log K be the same as in the proof of Lemma

3.2.8, again choose a cut-off function η(x) ∈ C∞(R), such that η(x) = 1 when

x ≥ 2X0 and η(x) = 0 when x ≤ X0. Then formally the function η(x)∂tu(x, t)

satisfies the following Cauchy problem

LDw = η(x)h(x, t) + h̃(x, t), (x, t) ∈ R × [t0, T ],

where

h(x, t) = λ

∫

R

∂tu(x+z, t)ν(dz), h̃(x, t) = −1

2
σ2 (2η′∂x∂tu + η′′∂tu)−

(
µ − 1

2
σ2

)
η′∂tu,
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and we choose η(x)∂tu(x, t0), for some t0 ∈ (0, T ), as the initial condition. It follows

from Theorem 3.1 in page 346 of Garroni and Menaldi (1992) that this Cauchy

problem has an unique classical solution, we call it w. On the other hand, we have

w(x, t) = η(x)∂tu(x, t). Indeed, it is easy to check that
∫ t

t0
w(x, s)ds is the unique

classical solution of the Cauchy problem

LDv =

∫ t

t0

ds
(
η(x)h(x, s) + h̃(x, s)

)
+ η(x)∂tu(x, t0), v(x, t0) = 0.

Note that η(x) [u(x, t) − u(x, t0)] is another classical solution. Therefore w(x, t) =

η(x)∂tu(x, t) by the uniqueness.

Using the Green function G(x, t; y, s) corresponding to the differential operator

LD, the solution w(x, t) can be represented as

(3.7.6)

w(x, t) =

∫

R

dy G(x, t; y, t0)w(y, t0) +

∫ t

t0

ds

∫

R

dy G(x, t; y, s)(η(y)h(y, s) + h̃(y, s)),

for all (x, t) ∈ R × (t0, T ]. Since the Green function satisfies

|G(x, t; y, s)| ≤ C(t − s)−
1

2 exp

(
−c(x − y)2

t − s

)
, (y, s) ∈ R × [0, t).

The first term in (3.7.6) is bounded, as long as w(y, t0) is uniformly bounded. The

contribution of η′∂x∂tu (in the expression for h̃) to w is given by,

−
∫

R

dy G(x, t; y, s)η′(y)
∂2

∂y∂s
u(y, s) =

∫

R

dy
∂

∂y
[G(x, t; y, s)η′(y)]

∂

∂s
u(y, s).

Now it follows from Lemma 3.2.8 that both w(x, t0) and h(x, t) are uniformly bounded

for x ∈ R, t ∈ [t0, T ]. We also have that η′ and η′′ vanish outside [X0, 2X0]. Since

limx→+∞ G(x, t; y, s) = 0 and it can easily be shown that limx→+∞ ∂yG(s, t; y, s) = 0,

the Dominated Convergence Theorem implies that

lim
x→+∞

w(x, t) = 0, t ∈ (t0, T ].

Then the statement follows from the choice of η.
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3.7.2 Proof of Lemma 3.4.2

We will first establish a one to one correspondence between solutions of (3.4.2)

and solutions of an integral equation of Volterra type.

Lemma 3.7.1. (i) Let G(x, t; y, s) be the Green function associated to the differential

operator LD and let us consider the following nonlinear integral equation of Volterra

type,

(3.7.7)
(

1 +
1

4
σ2(b(t), t)

)
v(t) = −

∫ t

t0

ds v(s)
1

2
σ2(b(s), s) ∂xG(b(t), t; b(s), s) +

2∑

i=1

Ni(t),

where t0 ≤ t ≤ T ,

N1(t) =

∫ +∞

b(t)

dy ∂xG(b(t), t; y, t0)w(y, t0) and

N2(t) =

∫ t

t0

ds

∫ +∞

b(s)

dy ∂xG(b(t), t; y, s)h(y, s).

There exists a unique solution v to (3.7.7). The function v(t) is continuous.

(ii) Let w(x, t) be a classical solution of the equation (3.4.2) on [t0, T ] with the

initial condition w(x, t0) = ∂tu(x, t0), such that t → ∂xw(b(t)+, t) is continuous.

Then there is a one to one correspondence between w(x, t) and v(t). Moreover

∂xw(b(t)+, t) = v(t), t0 ≤ t ≤ T .

The initial value of equation (3.4.2) may not be smooth. This is the reason we

take w(x, t0) = ∂tu(x, t0), 0 < t0 < T , as the initial condition of (3.4.2) and consider

the differential equation on t ∈ [t0, T ].

Remark 3.7.2. The correspondence in Lemma 3.7.1 is well known for the Stefan

problem on heat equation with Lipschitz continuous free boundary (see Section 1

Chapter 8 of Friedman (1964)). Along Friedman’s line of proof, we will extend the

correspondence to our parabolic differential equation with Hölder continuous free

boundary.
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Proof of Lemma 3.7.1.

Proof of (i). First, because G(b(t), t; b(s), s) and σ(b(s), s) are continuous for

s ∈ (0, t) (see (3.2.5)), it follows from the classical result on Volterra equations (see

Rust (1934)) that the integral equation (3.7.7) has a unique solution v(t) and it is

continuous with respect to t ∈ [t0, T ], as long as Ni(t), i = 1, 2, are continuous with

respect to t. It is not hard to show these functions are indeed continuous, using

the continuity of b(t) and the following estimates on the Green function G and its

derivatives:

|∂ℓ
xG(x, t; y, s)| ≤ C(t − s)−

1+ℓ
2 exp

(
−c

|x − y|2
t − s

)
,

|∂xG(x, t; y, s)− ∂xG(x, t̃; y, s)| ≤ C(t − t̃)
α
2 (t̃ − s)−

2+α
2 exp

(
−c

|x − y|2
t − s

)
,

|∂xG(x, t; y, s)− ∂x̃G(x̃, t; y, s)| ≤ C|x − x̃|α(t − s)−
2+α

2 exp

(
−c

|x′′ − y|2
t − s

)
,

where ℓ = 0, 1, s < t̃ < t, |x′′ − y| = |x− y| ∧ |x̃− y|, 0 < α < 1, C and c are positive

constants. These estimates are from Theorem 16.3 in page 413 of Ladyženskaja et al.

(1968).

Proof of (ii) Let us assume that w(x, t) is a classical solution of (3.4.2). As a result,

the following Green’s identity (see page 27 of Friedman (1964)) is satisfied

∂

∂y

(
1

2
σ2(y, s)G(x, t; y, s)

∂

∂y
w(y, s)− 1

2
σ2(y, s)w(y, s)

∂

∂y
G(x, t; y, s)

−w(y, s)G(x, t; y, s)σσy(y, s)) − ∂

∂s
(G(x, t; y, s)w(y, s))

+
∂

∂y

((
µ − 1

2
σ2(y, s)

)
G(x, t; y, s)w(y, s)

)
= −G(x, t; y, s)h(y, s),

(3.7.8)

where t0 ≤ s < t ≤ T , x > b(t) and y > b(s). Integrating both hand side of (3.7.8)
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over the domain b(s) < y < +∞, t0 < s < t − ǫ, we obtain

∫ t−ǫ

t0

ds lim
y→+∞

1

2
σ2(y, s) ∂yw(y, s) G(x, t; y, s)−

∫ t−ǫ

t0

ds
1

2
σ2(b(s), s) ∂yw(b(s)+, s) G(x, t; b(s), s)

−
∫ t−ǫ

t0

ds lim
y→+∞

1

2
σ2(y, s) w(y, s) ∂yG(x, t; y, s) +

∫ t−ǫ

t0

ds
1

2
σ2(b(s), s) w(b(s), s) ∂yG(x, t; b(s), s)

−
∫ t−ǫ

t0

ds lim
y→+∞

w(y, s) G(x, t; y, s) σσy(y, s) +

∫ t−ǫ

t0

ds w(b(s), s) G(x, t; b(s), s) σσy(b(s), s)

−
∫ +∞

b(t−ǫ)

dy [G(x, t; y, t − ǫ)w(y, t − ǫ) − G(x, t; y, t0)w(y, t0)]

+

∫ t−ǫ

t0

ds

[
lim

y→+∞

(
µ − 1

2
σ2(y, s)

)
w(y, s) G(x, t; y, s)

−
(

µ − 1

2
σ2(b(s), s)

)
w(b(s), s) G(x, t; b(s), s)

]

= −
∫ t−ǫ

t0

ds

∫ +∞

b(s)

dy G(x, t; y, s)h(y, s).

(3.7.9)

In the seventh term on the left of (3.7.9), we used w(x, t) = 0 when x < b(t). Using

the boundary and initial conditions for w(x, t) and the facts that limy→+∞ G(x, t; y, s) =

0 and limy→+∞ ∂yG(x, t; y, s) = 0, letting ǫ → 0, we can write

w(x, t) = −
∫ t

t0

ds ∂xw(b(s)+, s)
1

2
σ2(b(s), s) G(x, t; b(s), s) +

∫ +∞

b(t)

dy G(x, t; y, t0)w(y, t0)

+

∫ t

t0

ds

∫ +∞

b(s)

dy G(x, t; y, s)h(y, s)

, −M0(x, t) + M1(x, t) + M2(x, t).

(3.7.10)

Before differentiating both sides of (3.7.10) with respect to x, let us recall the

jump identity: if ρ(t), t0 ≤ t ≤ T , is a continuous function and b(t) is the Hölder

continuous with Hölder exponent α > 1
2
, then for every t0 ≤ t ≤ T ,

(3.7.11)

lim
x↓b(t)

∂

∂x

∫ t

t0

ds ρ(s)G(x, t; b(s), s) =
1

2
ρ(t) +

∫ t

t0

ds ρ(s) ∂xG(x, t; b(s), s)|x=b(t) .
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This identity can be proved in the similar way as in Lemma 1 in Chapter 8 of

Friedman (1964). As commented in the paragraph after Lemma 4.5 in Friedman

(1975), the proof of Lemma 1 can go through when we replace Lipschitz free boundary

with Hölder continuous free boundary with the Hölder exponent α > 1
2
.

Now we will take the derivative of (3.7.10) with respect to x to obtain

∂

∂x
w(x, t) =

2∑

i=0

∂

∂x
Mi(x, t)(3.7.12)

and let x ↓ b(t). Since ∂xw(b(s)+, s) and σ(b(s), s), t0 ≤ s < t, are continuous

and b(t) is Hölder continuous with exponent α > 1
2

(see Theorem 3.3.7), taking

ρ(s) = 1
2
σ2(b(s), s) ∂xw(b(s)+, s) in (3.7.11), we obtain

lim
x↓b(t)

∂

∂x
M0(t) = lim

x↓b(t)

∂

∂x

∫ t

t0

ds
1

2
σ2(b(s), s) ∂xw(b(s)+, s)G(x, t; b(s), s)

=
1

4
σ2(b(t), t) ∂xw(b(t)+, t) +

∫ t

t0

ds
1

2
σ2(b(s), s) ∂xw(b(s)+, s) ∂xG(b(t), t; b(s), s).

(3.7.13)

On the other hand, by Lemmas 3.2.6 and 3.2.8, w(y, t0) and h(y, s) are bounded in

R × [t0, T ]. Using the Dominated Convergence Theorem we get

lim
x↓b(t)

∂

∂x
M1(x, t) =

∫ +∞

b(t)

dy ∂xG(b(t), t; y, t0)w(y, t0) , N1(t),(3.7.14)

lim
x↓b(t)

∂

∂x
M2(x, t) =

∫ t

t0

ds

∫ +∞

b(s)

dy ∂xG(b(t), t; y, s)h(y, s) , N2(t),(3.7.15)

It follows from (3.7.12) - (3.7.15) that ∂xw(b(t)+, t) satisfies (3.7.7).

Let us prove the converse. For any solution v(t) of the integral equation (3.7.7),

we can define w(x, t) as follows

w(x, t) := −
∫ t

t0

ds v(s)
1

2
σ2(b(s), s) G(x, t; b(s), s) +

∫ +∞

b(t)

dy G(x, t; y, t0)w(y, t0)

+

∫ t

t0

ds

∫ +∞

b(s)

dy G(x, t; y, s)h(y, s), t0 ≤ t ≤ T, x ≥ b(t),

(3.7.16)
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and w(x, t0) := ∂tu(x, t0). We will show in the following that w(x, t) is a classical

solution of (3.4.2) and that t → ∂xw(b(t)+, t) is continuous.

Now we will show that w(x, t) defined in (3.7.16) is a classical solution of (3.4.2)

on [t0, T ] with initial condition ∂tu(x, t0). By definition w(x, t0) = ∂tu(x, t0). On

the other hand we have that limx→+∞ w(x, t) = 0, which follows from the facts

that limx→+∞ G(x, t; y, t0) = 0 and σ, v(s), w(y, t0) and h(y, s) are all bounded.

Furthermore, using the properties of the Green function and the definition of w (see

3.7.16), we also have that LDw(x, t) = h(x, t) for x > b(t), t ∈ [t0, T ]. Observe that

∂tw , ∂xw and ∂2
xw all exist and are all continuous in this domain.

In the following we will show that ∂xw(b(t)+, t) = v(t), which implies the con-

tinuity of ∂xw(b(t)+, t). We differentiate w(x, t) with respect to x and let x ↓ b(t).

Since v(t) and σ are continuous and b(t) is Hölder continuous with exponent α > 1
2
,

we can apply the jump identity (3.7.11) with ρ(s) = 1
2
σ2(b(s), s)v(s). Following the

steps that lead to (3.7.7) in the first part of the proof, we obtain

(3.7.17)

∂xw(b(t)+, t) = −1

4
σ2(b(t), t) v(t)−

∫ t

t0

ds v(s)
1

2
σ2(b(s), s) ∂xG(b(t), t; b(s), s)+

2∑

i=1

Ni(t).

Comparing (3.7.17) to (3.7.7), we see that ∂xw(b(t)+, t) = v(t), t0 ≤ t ≤ T .

Then it remains to show that w(b(t), t) = 0, t0 ≤ t ≤ T . To this end, since we have

already shown LDw = h, w satisfies the Green’s identity given by (3.7.8). Integrating

the identity (3.7.8) and using (3.7.16) and the fact that limx→+∞ w(x, t) = 0 we can

write

∫ t

t0

ds w(b(s), s)

[(
1

2
σ2(b(s), s) + σσx(b(s), s)

)
∂yG(x, t; b(s), s)

−
(

µ − 1

2
σ2(b(s), s)

)
G(x, t; b(s), s)

]
= 0, x > b(t), t0 ≤ t ≤ T.

(3.7.18)
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Let x > b(t). Integrating both sides of (3.7.18) on [x, +∞) and using the fact that

∂xG = −∂yG, we obtain

0 =

∫ t

t0

ds w(b(s), s)

[
−
(

1

2
σ2(b(s), s) + σσx

)∫ +∞

x

du ∂xG(u, t; b(s), s)

−
(

µ − 1

2
σ2(b(s), s)

)∫ +∞

x

du G(u, t; b(s), s)

]

=

∫ t

t0

ds w(b(s), s)

[(
1

2
σ2(b(s), s) + σσx

)
G(x, t; b(s), s)

−
(

µ − 1

2
σ2(b(s), s)

) ∫ +∞

x

du G(u, t; b(s), s)

]
.

Taking the derivative with respect to x, letting x ↓ b(t) and using the jump identity

(3.7.11) with

ρ(s) =
(

1
2
σ2(b(s), s) + σσx

)
w(b(s), s), we arrive at

1

2

(
1

2
σ2(b(s), s) + σσx(b(s), s)

)
w(b(t), t)

=

∫ t

t0

ds w(b(s), s)

[(
1

2
σ2(b(s), s) + σσx(b(s), s)

)
∂yG(b(t), t; b(s), s)

−
(

µ − 1

2
σ2(b(s), s)

)
G(b(t), t; b(s), s)

]
.

(3.7.19)

Since b(t) is Hölder continuous with exponent α > 1/2, we have

|∂yG(b(t), t; b(s), s)| ≤ C

(t − s)
3

2
−α

.

Therefore both ∂yG(b(t), t; b(s), s) and G(b(t), t; b(s), s) are integrable. Consequently,

it follows from (3.7.18), (3.7.19) and the Dominated Convergence Theorem that

w(b(t), t) = 0, t0 ≤ t ≤ T . �

Proof of Lemma 3.4.2. Proof of (i). Let v(t) be the unique continuous solution of

the Volterra equation (3.7.7). Define w(x, t) as in (3.7.16). The Lemma 3.7.1 shows

that w(x, t) is a classical solution to equation (3.4.2). Let us define

ũ(x, t) = u(x, t0) +

∫ t

t0

w(x, s)ds, x ≥ b(t), t0 ≤ t ≤ T.
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It is easy to check that ũ(x, t) is a classical solution of the equation (3.2.6) with initial

condition u(x, t0). Since (3.2.6) has a unique solution, we conclude that u(x, t) =

ũ(x, t), x ≥ b(t) and t0 ≤ t ≤ T . Lemma 3.7.1 also implies that

∂x∂tu(b(t)+, t) = ∂xw(b(t)+, t) = v(t), t0 ≤ t ≤ T,

which implies that ∂x∂tu(b(t)+, t), t0 ≤ t ≤ T , is continuous. The statement follows

since t0 > 0 is arbitrary.

Proof of (ii). Let (x, t) be such that x > b(t). Choosing t0 < t such that b(t0) < x,

we can see that
∫ t

t0
ds∂xG(x, t; b(s), s) < +∞. As a result, we have

∂

∂x
M0(x, t) =

∫ t

t0

ds
1

2
σ2(b(s), s) ∂xw(b(s)+, s)∂xG(x, t; b(s), s).

We have shown in part (i) that ∂xw(b(s)+, s) is continuous with respect to s. It is

easy to show ∂xM0(x, t) is continuous around a sufficiently small neighborhood of

(x, t). One can also show that the functions ∂xMi(x, t), i ∈ {1, 2} are also continuous

by similar means. Thus, it is clear from (3.7.12) that ∂x∂tu(x, t) is continuous in this

small neighborhood around (x, t). Therefore, the part (ii) of Lemma 3.4.2 follows,

because of the arbitrary choice of x and t.

3.7.3 Proof of Proposition 3.6.1 (i)

We will use the following result in Lemma 4.1 in page 239 of Friedman (1976):

Lemma 3.7.3. For any a < b < log K, 0 < t1 < t2 < T , if both u(x, t) and ∂tu(x, t)

belong to L2((t1, t2); L
2(a, b)), then u(t) belongs to C((t1, t2); L

2(a, b)).

In this lemma, L2((t1, t2); L
2(a, b)) is the class of L2 maps which map t ∈ (t1, t2)

to the Hilbert space L2(a, b). On the other hand C((t1, t2); L
2(a, b)) is the class of

continuous maps which map t ∈ (t1, t2) to L2(a, b).
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The proof of (3.6.5) is similar to that of (3.2.10): First, we will study the penalty

problem associated to the free boundary problem (3.6.1) - (3.6.3). Then, we will

list some key estimates for the solution of the penalty problem. And finally using

Lemma 3.7.3 we will conclude. We will give a sketch of this proof below.

Let us consider the following penalty problem

LDuǫ
n + βǫ(u

ǫ
n − gǫ) = f ǫ

n(x, t), x ∈ R, 0 < t < T,

uǫ
n(x, 0) = gǫ(x), x ∈ R,

(3.7.20)

in which 0 < ǫ < 1, gǫ(x) ∈ C∞(R) such that gǫ(x) = (K − ex)+ when x satisfies

|K − ex| ≥ ǫ. We define f ǫ
n(x, t) = ζǫ ∗ fn(x, t), where ζǫ is the standard mollifier

in x and t (see Evans (1998) Appendix C4 in page 629). As a result, we have

f ǫ
n(x, t) ∈ C∞(R×(0, T )). Moreover, because fn(x, t) is continuous, f ǫ

n(x, t) uniformly

converge to fn(x, t) on any compact domains as ǫ → 0. On the other hand, from our

assumption that ∂tun−1(x, t) is bounded for any ǫ > 0 and ν is a probability measure

on R, we obtain that

(3.7.21) ∂tfn(x, t) is bounded in R × [ǫ, T ], for any ǫ > 0.

Thanks to (3.7.21), it is easy to see that ∂tf
ǫ
n(x, t) are uniformly bounded for any

ǫ > 0. The penalty functions βǫ(x) is a sequence of infinitely differentiable, negative,

increasing and concave functions such that βǫ(0) = −Cε ≤ −(r + λ)K − rǫ. The

limit of the sequence is

lim
ǫ→0

βǫ(x) =





0, x ≥ 0,

−∞, x < 0.

It is well known that the penalty problem has a classical solution (see page 1009

of Friedman and Kinderlehrer (7475)). Moreover, a proof similar to that of the proof
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of Theorem 2.1 of Yang et al. (2006) shows that uǫ
n(x, t) ∈ C∞(R× (0, T ))∩L∞(R×

(0, T )).

On the other hand, uǫ
n(x, t) satisfy the following estimates for any a < b < log K,

0 < t1 < t2 ≤ T ,

∫ b

a

(
∂uǫ

n

∂t

)2

(x, t)dx ≤ C, t ∈ [t1, t2],(3.7.22)

∫ t2

t1

∫ b

a

(
∂2uǫ

n

∂x∂t

)2

dxdt ≤ C,(3.7.23)

∫ t2

t1

∫ b

a

(
∂2uǫ

n

∂t2

)2

dxdt +

∫ b

a

(
∂2uǫ

n

∂x∂t

)2

(x, t)dx ≤ C, t ∈ [t1, t2],(3.7.24)

in which C is a constant independent of ǫ. These estimates use similar techniques

to the ones used in the proofs of Lemmas 2.8, 2.10 and 2.11 in Yang et al. (2006),

since fn(x, t) satisfies (3.7.21). (Similar estimates can also be found in Friedman and

Kinderlehrer (7475)). We will give the proof for the inequality (3.7.24) below. The

other inequalities can be similarly obtained.

Proof of inequality (3.7.24). Let us consider wn(x, t) = ∂tu
ǫ
n(x, t). Since uǫ

n(x, t) ∈

C∞(R × (0, T )), it follows from (3.7.20) that wn(x, t) satisfies

(3.7.25) LDwn + β ′
ǫ(u

ǫ
n − gǫ)wn =

∂

∂t
f ǫ

n(x, t).

Let η(x, t) ∈ C∞
0 (R × (0, T )), such that η(x, t) = 1 for (x, t) ∈ [a, b] × [t1, t2], and

η(x, t) = 0 outside a small neighborhood of [a, b] × [t1, t2]. Multiplying both sides

of (3.7.25) by η2∂twn and integrating over the domain Ωt = R × (0, t) in which
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t1 ≤ t ≤ t2, we obtain

0 =

∫ ∫

Ωt

η2

(
∂wn

∂t

)2

dxds −
∫ ∫

Ωt

1

2
σ2η2∂2wn

∂x2

∂wn

∂t
dxds

−
∫ ∫

Ωt

(
µ − 1

2
σ2

)
η2∂wn

∂x

∂wn

∂t
dxds + (r + λ)

∫ ∫

Ωt

η2wn
∂wn

∂t
dxds

+

∫ ∫

Ωt

η2β ′
ǫ(u

ǫ
n − gǫ)wn

∂wn

∂t
dxds −

∫ ∫

Ωt

η2∂wn

∂t

∂

∂t
f ǫ

n(x, s)dxds

, I1 + I2 + I3 + I4 + I5 + I6,

where Ij is the j-th term on the left and σ = σ(x, t) satisfying the assumption (3.2.5).

In the following, we will estimate each Ij separately. In deriving these estimates we

will make use of the inequality

(3.7.26)
1

6
A2 + AB +

9

6
B2 ≥ 0,

for any A, B ∈ R. In the following estimations, C will represent different constants

independent of ǫ.

I2 = −1

2

∫ ∫

Ωt

σ2η2∂2wn

∂x2

∂wn

∂t
dxds

=
1

2

∫ ∫

Ωt

σ2η2∂wn

∂x

∂2wn

∂x∂t
dxds +

∫ ∫

Ωt

ση
∂ση

∂x

∂wn

∂x

∂wn

∂t
dxds

=
1

4

∫ ∫

Ωt

σ2η2 ∂

∂t

(
∂wn

∂x

)2

dxds +

∫ ∫

Ωt

ση
∂ση

∂x

∂wn

∂x

∂wn

∂t
dxds

=
1

4

∫

R

σ2η2

(
∂wn

∂x

)2

(x, t) dx − 1

2

∫ ∫

Ωt

ση
∂ση

∂t

(
∂wn

∂x

)2

dxds

+

∫ ∫

Ωt

ση
∂ση

∂x

∂wn

∂x

∂wn

∂t
dxds

≥ δ2

4

∫

R

η2

(
∂wn

∂x

)2

(x, t)dx − 1

2

∣∣∣∣ση
∂ση

∂t

∣∣∣∣
L∞

∫ ∫

Ωt

(
∂2uǫ

n

∂x∂t

)2

dxds

−9

6

∫ ∫

Ωt

(
σ

∂ση

∂x

)2(
∂2uǫ

n

∂x∂t

)2

dxds − 1

6

∫ ∫

Ωt

η2

(
∂wn

∂t

)2

dxds

≥ δ2

4

∫

R

η2

(
∂wn

∂x

)2

(x, t)dx − C − 1

6

∫ ∫

Ωt

η2

(
∂wn

∂t

)2

dxds.

The first four equalities follow from integration by part. The first inequality follows
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from the assumption (3.2.5) and the inequality (3.7.26) with A = η ∂wn

∂t
and B =

σ ∂ση
∂x

∂wn

∂x
. The last inequality follows from estimation (3.7.23).

For Ii (i=3, 4, 5), a similar procedure yields

I3 ≥ −C − 1

6

∫ ∫

Ωt

η2

(
∂wn

∂t

)2

dxds,

I4 ≥ −C − 1

6

∫ ∫

Ωt

η2

(
∂wn

∂t

)2

dxds,

I5 ≥ −C − 1

6

∫ ∫

Ωt

η2

(
∂wn

∂t

)2

dxds.

For I6, we have

I6 = −
∫ ∫

Ωt

η2∂wn

∂t

∂

∂t
f ǫ

ndxds ≥ −9

6

∫ ∫

Ωt

η2

(
∂

∂t
f ǫ

n

)2

dxds − 1

6

∫ ∫

Ωt

η2

(
∂wn

∂t

)2

dxds

≥ −C − 1

6

∫ ∫

Ωt

η2

(
∂wn

∂t

)2

dxds.

The first inequality can be obtained using (3.7.26), whereas to obtain the last in-

equality, we use the fact that ∂tf
ǫ
n(x, t) is uniformly bounded. Combining all these

estimates for Ij , we obtain

1

6

∫ ∫

Ωt

η2

(
∂wn

∂t

)2

dxds +
δ2

4

∫

R

η2

(
∂wn

∂x

)2

(x, t)dx ≤ C.

This completes the proof of (3.7.24). �

Using a similar proof to that of Lemma 2.2 of Yang et al. (2006), we can show

that uǫ
n(x, t) is uniformly bounded. Thus there is a subsequence that {uǫk

n } converges

weakly to un in L2((a, b); L2(t1, t2)) for any a < b < log K, 0 < t1 < t < t2 < T (see

Appendix D in Evans (1998) for an account of the concept of weak convergence).

On the other hand, it follows from the estimates in (3.7.22) - (3.7.24) that ∂uǫ
n

∂t
and

∂2uǫ
n

∂x∂t
are uniformly bounded in L2(a, b), ∂2uǫ

n

∂x∂t
and ∂2uǫ

n

∂t2
are uniformly bounded in

L2((t1, t2); L
2(a, b)). Therefore there exists a further subsequence satisfying

∂u
ǫkj
n

∂t
⇀

∂un

∂t
,

∂2u
ǫkj
n

∂x∂t
⇀

∂2un

∂x∂t
,

∂2u
ǫkj
n

∂t2
⇀

∂2un

∂t2
,
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where derivatives of un are defined in weak sense (see Appendix D in Evans (1998)).

Here, the convergences are weak convergences. Since ||u|| ≤ lim infj ||u
ǫkj
n || (see

Appendix D in Evans (1998) ) (3.7.22) - (3.7.24) imply that

∂un

∂t
∈ L∞((t1, t2); L

2(a, b)),
∂2un

∂t2
∈ L2((t1, t2); L

2(a, b)).

Then it follows from Lemma 3.7.3 that the derivative ∂tun exists and is inside the

space C((t1, t2); L
2(a, b)). On the other hand, for fixed t ∈ [t1, t2], it also follows

from (3.7.22) and (3.7.24) and the Sobolev Embedding Theorem (see, for example,

Theorem 4 in page 266 of Evans (1998)) that

(3.7.27)

∣∣∣∣
∂un

∂t
(x, t) − ∂un

∂t
(x̄, t)

∣∣∣∣ ≤ C|x − x̄|1/2, x, x̄ ∈ (a, b),

in which C is a positive constant that does not depend on t. We already know that

∂tun(·, t) is a continuous map with respect to t, therefore (3.7.27) implies that

∂un

∂t
∈ C((a, b) × (t1, t2)).

Therefore ∂tun ∈ C (R × (0, T ]) because the choice of a, b, t1 and t2 are arbitrary and

∂tun ∈ C ([log K, +∞) × (0, T ]) since [log K, +∞) × (0, T ] ∈ Cn. Moreover, we have

(3.7.28) lim
x↓b(t0)

∂un

∂t
(x, t0) = lim

t→t−
0

∂un

∂t
(b(t0), t) = 0,

because (bn(t0), t) is inside the stopping region for t < t0 as bn(t) is decreasing.



CHAPTER IV

Pricing American options for jump diffusions

4.1 Introduction

Jump diffusion models are heavily used in modelling stock prices since they can

capture the excess kurtosis and skewness of the stock price returns, and they can

produce the smile in the implied volatility curve (see Cont and Tankov (2004)). Two

well-known examples of these models are i) the model of Merton (1976), in which the

jump sizes are log-normally distributed, and ii) the model of Kou and Wang (2004),

in which the logarithm of jump sizes have the so called double exponential distri-

bution. Based on the results of Bayraktar (2009) we propose a numerical algorithm

to calculate the American option prices for jump diffusion models and analyze the

convergence behavior of this algorithm.

As observed by Bayraktar (2009), we can construct an increasing sequence of

functions, which are value functions of optimal stopping problems (see (4.2.8) and

also (4.2.11)), that converge to the price function of the American put option uni-

formly and exponentially fast. Because each element of this sequence solves an

optimal stopping problem it shares the same regularity properties, such as convex-

ity and smoothness, with the original price function. Even the corresponding free

boundaries have the same smoothness properties (when they have a discontinuity,

118
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which can only happen at maturity, the magnitude of the discontinuity is the same).

Therefore, the elements in this approximating sequence provide a good imitation to

the value function besides being close to it numerically (see Remark 4.2.1). On the

other hand, each of these functions can be represented as classical solutions of free

boundary problems (see (4.2.9)) for geometric Brownian motion, and therefore can

be implemented using classical finite difference methods. We build an iterative nu-

merical algorithm based on discretizing these free boundary problems (see (4.3.10)).

When the mesh sizes are fixed, we show that the iterative sequence we constructed is

monotonous and converges uniformly and exponentially fast (see Proposition 4.3.4).

We also show, in a rather direct way, that when the mesh sizes go to zero our algo-

rithm converges to the true price function (see Proposition 4.3.6).

The pricing in the context of jump models is difficult since the prices of options

satisfy integro-partial differential equations (integro-pdes), i.e. they have non-local

integral terms, and the usual finite-difference methods are not directly applicable

because the integral term leads to full matrices. Recently there has been a lot

of interest in developing numerical algorithms for pricing in jump models, see e.g.

Aitsahlia and Runnemo (2007), Almendral and Oosterlee (2007), Andersen and An-

dreasen (2000), Cont and Voltchkova (2005), d’Halluin et al. (2004), Hirsa and Madan

(2004), Jackson et al. (2008), Kou et al. (2005), Kou and Wang (2004), Metwally and

Atiya (2003), Zhang (1994), among them Almendral and Oosterlee (2007), Cont and

Voltchkova (2005), Hirsa and Madan (2004) and Jackson et al. (2008) treated specific

or general jump models with infinite activity jumps. These algorithms have been ex-

tensively discussed in Section 12 of Cont and Tankov (2004). In this chapter, relying

on the results of Bayraktar (2009) as described above, we give an efficient numerical

algorithm (and analyze its error versus accuracy characteristics) to efficiently com-
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pute American option prices for jump diffusion models with finite activity. One can

handle infinite activity models by increasing the volatility coefficient appropriately

as suggested on p. 417 of Cont and Tankov (2004).

An ideal numerical algorithm, which is most often an iterative scheme, *should

monotonically converge to the true price uniformly (across time and space) and

exponentially fast*, that is, the error bounds should be very tight. This is the only

way one can be sure that the price output of the algorithm is close to the true

price after a reasonable amount of runtime and without having to compare the price

obtained from the algorithm to other algorithms’ output. It is also desirable to obtain

a scheme **that does not deviate from the numerical pricing schemes, such as finite

difference methods, that were developed for models that do not account for jumps**.

Financial engineers working in the industry are already familiar with finite difference

schemes such as projected successive over relaxation, PSOR, (see e.g. Wilmott et al.

(1995)) and Brennan-Schwartz algorithm (see Brennan and Schwartz (1977) and

Jaillet et al. (1990)) to solve the partial differential equations associated with free

boundary problems, but may not be familiar with the intricacies involved in solving

integro-partial differential equations developed in the literature. It would be ideal

for them if they could use what they already know with only a slight modification

to solve for the prices in a jump diffusion model. In this chapter, we develop an

algorithm which establishes both * and **. We will name this algorithm, depending

on which classical method we use to solve the sparse linear systems in (4.3.10), as

either “Iterated PSOR” or “Iterated Brennan-Schwartz” in Section 4.4.

In the Section 4.2, we introduce a sequence of optimal stopping problems that

approximate the price function of the American options, and discuss their proper-

ties. In Section 4.3, we introduce a numerical algorithm and analyze its convergence
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properties. In the Section 4.4, we give numerical examples to illustrate the competi-

tiveness of our algorithm and price American, Barrier and European options for the

models of Kou and Wang (2004) and Merton (1976).

4.2 A sequence of optimal stopping problems for geometric Brownian
motion approximating the American option price for jump diffusions

We will consider a jump diffusion model for the stock price St with S0 = S, and

assume that return process Xt := log(St/S), under the risk neutral measure, is given

by

(4.2.1) dXt =

(
µ − 1

2
σ2

)
dt + σdWt +

Nt∑

i=1

Zi, X0 = 0.

In (5.4.35), µ = r + λ − λξ, r is the risk-free rate, Wt is a Brownian motion, Nt is a

Poisson process with rate λ independent of the Brownian motion, Zi are independent

and identically distributed, and come from a common distribution F on R, that

satisfies ξ :=
∫

R
ezF (dz) < ∞. The last condition guarantees that the stock prices

have finite expectation. We will assume that the volatility σ is strictly positive. The

price function of the American put with strike price K is

(4.2.2) V (S, t) := sup
τ∈Tt,T

E{e−r(τ−t)(K − Sτ )
+
∣∣St = S},

in which Tt,T is the set of stopping times with respect to the filtration generated

by X that belong to the interval [t, T ] (t it the current time, T is the maturity of

the option). Instead of working with the pricing function V directly, which is the

unique classical solution of the following integro-differential free boundary problem
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(see Theorem 3.1 of Bayraktar (2009))

∂

∂t
V (S, t) + AV (S, t) + λ ·

∫

R

V (ez · S, t)F (dz) − (r + λ) · V (S, t) = 0 S > s(t),

V (S, t) = K − S, S ≤ s(t),

V (S, T ) = (K − S)+ ,

(4.2.3)

in which, A is the differential operator

(4.2.4) A :=
1

2
σ2S2 d2

dS2
+ µS

d

dS
,

and t → s(t), t ∈ [0, T ], is the exercise boundary that needs to be determined along

with the pricing function V ; we will construct a sequence of pricing problems for the

geometric Brownian motion

(4.2.5) dS0
t = µS0

t dt + σS0
t dWt, S0

0 = S.

To this end, let us introduce a functional operator J , whose action on a test function

f : R+×[0, T ] → R+ is the solution of the following pricing problem for the geometric

Brownian motion: (S0
t )t≥0

(4.2.6)

Jf(S, t) = sup
τ∈T̃t,T

E

{∫ τ

t

e−(r+λ)(u−t)λ · Pf(S0
u, u)du + e−(r+λ)(τ−t)(K − S0

τ )
+
∣∣S0

t = S

}
,

in which

(4.2.7) Pf(S, u) =

∫

R

f(ez · S, u)F (dz) = E[f(eZS, u)], S ≥ 0,

for a random variable Z whose distribution is F , and T̃t,T is the set of stopping times

with respect to the filtration generated by W that take values in [t, T ]. Let us define

a sequence of pricing functions by

(4.2.8)

v0(S, t) = (K − S)+, vn+1(S, t) = Jvn(S, t), n ≥ 0, for all (S, t) ∈ R+ × [0, T ].
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For each n ≥ 1, the pricing function vn is the unique solution of the classical free-

boundary problem (instead of a free boundary problem with an integro-diffential

equation)

∂

∂t
vn(S, t) + Avn(S, t) − (r + λ) · vn(S, t) = −λ · (Pvn−1)(S, t), S > sn(t),

vn(S, t) = K − S, S ≤ sn(t),

vn(S, T ) = (K − S)+,

(4.2.9)

in which t → sn(t) is the free-boundary (the optimal exercise boundary) which needs

to be determined (see Lemma 3.5 of Bayraktar (2009)). Now starting from v0, we

can calculate {vn}n≥0 sequentially. For vn, the solution of (4.2.9) can be determined

using a classical finite difference method (we use the Crank-Nicolson discretization

along with Bernnan-Schwartz algorithm or PSOR in the the following sections) given

that the function vn−1 is available. The term on the right-hand-side of (4.2.9) can be

computed either using Monte-Carlo or a numerical integrator (we use the numerical

integration with the Fast Fourier Transformation (FFT) in our examples). Iterating

the solution for (4.2.9) a few times we are able to obtain the American option price

V accurately since the sequence of functions {vn}n≥0 converges to V uniformly and

exponentially fast:

(4.2.10)

vn(S, t) ≤ V (S, t) ≤ vn(S, t)+K
(
1 − e−(r+λ)(T−t)

)n
(

λ

λ + r

)n

, S ∈ R+, t ∈ (0, T ),

see Remark 3.3 of Bayraktar (2009). Note that the usual values of T for the traded

options is 0.25, 0.5, 0.75, 1 year.

Remark 4.2.1. The approximating sequence {vn}n≥0 goes beyond approximating the

value function V . Each vn and its corresponding free boundary have the same regu-

larity properties which V and its corresponding free boundary have. In a sense, for
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large enough n, vn provides a good imitation of V . Below we list these properties:

1) The function vn can be written as the value function of an optimal stopping

problem:

(4.2.11) vn(S, t) := sup
τ∈Tt,T

E{e−r(τ∧σn−t)(K − Sτ∧σn)+
∣∣St = S},

in which σn is the n-th jump time of the Poisson process Nt.

2) Each vn is a convex function in the S-variable, which is a property that is also

shared by V . Moreover, the sequence {vn}n≥0 is a monotone increasing sequence

converging to the value function V (see (4.2.10)).

3) The free boundaries s(t) and sn(t) have the same regularity properties (see

Chapter III):

a) They are strictly decreasing.

b) They may exhibit discontinuity at T : If the parameters satisfy

(4.2.12) r < λ

∫

R+

(ez − 1)F (dz),

we have

(4.2.13) lim
t→T

s(t) = lim
t→T

sn(t) = S∗ < K, n ≥ 1,

where S∗ is the unique solution of the following integral equation

(4.2.14) − rK + λ

∫

R

[
(K − Sez)+ − (K − Sez)

]
F (dz) = 0.

We will see such an example in Section 4.4, where the equation (4.2.14) can

be solved analytically for some jump distribution F .

c) Both s(t) and sn(t) are continuously differentiable on [0, T ).
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4.3 A numerical algorithm and its convergence analysis

4.3.1 The numerical algorithm

In this section, we will discretize the algorithm introduced in the last section and

give more details. For the convenience of the numerical calculation, we will first

change the variable: x , log S, x(t) , log s(t) and u(x, t) , V (S, t). u satisfies the

following integro-differential free boundary problem

∂

∂t
u +

1

2
σ2 ∂2

∂x2
u +

(
µ − 1

2
σ2

)
∂

∂x
u − (r + λ)u + λ · (Iu)(x, t) = 0, x > x(t)

u(x, t) = K − ex, x ≤ x(t)

u(x, T ) = (K − ex)+,

(4.3.1)

in which

(4.3.2) (Iu)(x, t) =

∫

R

u(x + z, t)ρ(z)dz,

with ρ(z) as the density of the distribution F . Similarly, un(x, t) , vn(S, t) satisfies

the similar free boundary problem where u in (4.3.1) is replaced by un in differential

parts and by un−1 in the integral part. In addition, it was shown in Theorem 4.2

of Yang et al. (2006) that the free boundary problem (4.3.1) is equivalent to the

following variational inequality

LDu(x, t) + λ · (Iu)(x, t) ≤ 0

u(x, t) ≥ g(x)

[LDu(x, t) + λ · (Iu)(x, t)] · [u(x, t) − g(x)] = 0, (x, t) ∈ R × [0, T ],

(4.3.3)

in which

LDu ,
∂

∂t
u +

1

2
σ2 ∂2

∂x2
u +

(
µ − 1

2
σ2

)
∂

∂x
u − (r + λ)u

g(x) = (K − ex)+ .
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Since the second spacial derivative of u does not exist along the free boundary x(t),

the variational inequality (4.3.3) does not have a classical solution. However, Theo-

rem 3.2 of Yang et al. (2006) showed that u is the solution of (4.3.3) in the Sobolev

sense. In the same sense, un(x, t) satisfies a similar variational inequality

LDun(x, t) + λ · (Iun−1)(x, t) ≤ 0

un(x, t) ≥ g(x)

[LDun(x, t) + λ · (Iun−1)(x, t)] · [un(x, t) − g(x)] = 0, (x, t) ∈ R × [0, T ].

(4.3.4)

Let us discretize (4.3.3) using Crank-Nicolson scheme. For fixed ∆t, ∆x, xmin

and xmax, let M∆t = T and L∆x = xmax − xmin. Let us denote xl = xmin + l∆x,

l = 0, · · · , L. By ũl,m we will denote the solution of the following difference equation

− θp−ũl−1,m + (1 + θp0)ũ
l,m − θp+ũl+1,m − b̃l,m ≥ 0

ũl,m ≥ gl

[
−θp−ũl−1,m + (1 + θp0)ũ

l,m − θp+ũl+1,m − b̃l,m
]
·
[
ũl,m − gl

]
= 0,

(4.3.5)

for m = M − 1, · · · , 0, l = 0, · · · , L, satisfying the terminal condition ũl,M = gl =

(K − exl)+ and Dirichlet boundary conditions. θ is the weight factor. When θ = 1,

the scheme (4.3.5) is the completely implicit Euler scheme; when θ = 1/2, it is the

classical Crank-Nicolson scheme. The coefficients p−, p+ and p0 are given by

p− =
1

2
σ2 ∆t

(∆x)2
− 1

2

(
µ − 1

2
σ2

)
∆t

∆x
,

p+ =
1

2
σ2 ∆t

(∆x)2
+

1

2

(
µ − 1

2
σ2

)
∆t

∆x
,

p0 = p− + p+ + (r + λ)∆t.

(4.3.6)

The term b̃ is defined by

b̃l,m =(1 − θ)p−ũl−1,m+1 + (1 − (1 − θ)p0)ũ
l,m+1 + (1 − θ)p+ũl+1,m+1

+ λ∆t ·
[
(1 − θ)(Ĩ ũ)l,m+1 + θ(Ĩ ũ)l,m

]
.

(4.3.7)
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Ĩ in (5.4.8) is the discrete version of the convolution operator I in (4.3.2). It will be

convenient to approximate this convolution integral using Fast Fourier Transforma-

tion (FFT). Discretizing a sufficiently large interval [zmin, zmax] into J sub-intervals.

For the convenience of the FFT, we will choose these J sub-intervals equally spaced,

such that J∆z = zmax − zmin. We also choose ∆x = α∆z, where α is a positive

integer, so that the numerical integral may have finer grid than the grid in x. Let

zj = zmin + j∆z, j = 0, · · · , J . Ĩ is defined by

(4.3.8)
(
Ĩ ũ
)l,m

=

J−1∑

j=0

ũinterp (xl + zj , m∆t) ρ(zj)∆z,

in which the value of ũinterp is determined by the linear interpolation ũ. That is if

there is some l′ satisfying

xl′ ≤ xl + zj ≤ xl′+1,

then

ũinterp (xl + zj, m∆t) = (1 − w)ũl′,m + wũl′+1,m,

for some w ∈ [0, 1]. On the other hand, if xl + zj is outside the interval [xmin, xmax],

the value of ũinterp is determined by the boundary conditions. Moreover, in (4.3.8)

we also assume

(4.3.9) ρ(zj) ≥ 0, for all j, and
J−1∑

j=0

ρ(zj) ≤ 1.

Now (4.3.8) can be calculated using FFT. See Section 6.1 in Almendral and Oosterlee

(2007) for implementation details.

Note that numerically solving the system (4.3.5) is difficult due to the contri-

bution of the integral term Ĩ ũ. Therefore, following the results in Section 4.2, we

will discretize (4.3.4) recursively (using the Crank-Nicoslon scheme) to obtain the

sequence {ũn}n≥0 recursively. Let ũl,m
0 = gl. For n ≥ 1, ũn is defined recursively by
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− θp−ũl−1,m
n + (1 + θp0)ũ

l,m
n − θp+ũl+1,m

n − b̃l,m
n ≥ 0

ũl,m
n ≥ gl

[
−θp−ũl−1,m

n + (1 + θp0)ũ
l,m
n − θp+ũl+1,m

n − b̃l,m
n

]
·
[
ũl,m

n − gl
]

= 0,

(4.3.10)

with the terminal condition ũl,M
n = gl and Dirichlet boundary conditions. Similar to

(5.4.8), b̃n is defined by

b̃l,m
n =(1 − θ)p−ũl−1,m+1

n + (1 − (1 − θ)p0)ũ
l,m+1
n + (1 − θ)p+ũl+1,m+1

n

+ λ∆t ·
[
(1 − θ)(Ĩ ũn−1)

l,m+1 + θ(Ĩ ũn−1)
l,m
]
.

(4.3.11)

For each n, we will solve the sparse linear system of equations (4.3.10) using the

projected PSOR method (see eg. Wilmott et al. (1995)).

Remark 4.3.1. We will iterate (4.3.10) to approximate the solution of (4.3.5), which

can be seen as a global fixed point iteration algorithm. This global fixed point

algorithm is different from the local fixed point algorithm in d’Halluin et al. (2004),

where d’Halluin et al. implemented the Crank Nicolson time stepping of a non-linear

integro-partial differential equation coming from an alternative representation (due

to the penalty method) of the American option price function. Also see d’Halluin

et al. (2005) for the case of European options. Note that discretizing the non-linear

PDE that arises from the penalized formulation introduces an extra error. We work

with the variational formulation directly.

Each ũn approximates un, which itself is the value function of an optimal stop-

ping problem, and as we have discussed in Remark 4.2.1 provides a good imitation

of the American option price function. Each of these iterations provide strictly de-

creasing free boundary curves with the same regularity and jump properties as the

free boundary curve for the American option price function, see Remarks 4.2.1 and
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4.4.2. The approximating sequence in d’Halluin et al. (2004) does not carry the same

meaning, it is a technical step to carry out the Crank Nicolson time stepping of their

non-linear integro-PDE.

4.3.2 Convergence of the numerical algorithm

In the following, we will show the convergence of the numerical algorithm for the

completely implicit Euler scheme (θ = 1). We first show that {ũn}n≥0 is a monotone

increasing sequence. Extra care has to be given to make the approximating sequence

monotone in the penalty formulation of d’Halluin et al. (2004) (see Remark 4.3 on

page 341), but the monotonicity comes out naturally in our formulation. Next, we

prove that the sequence {ũn}n≥0 is uniformly bounded above by the strike price K

and converges to ũ at an exponential rate. At last, we will argue that as the mesh

sizes ∆x and ∆t go to zero ũ converges to the American option value function u.

In the following four propositions, we let ∆t and ∆x to be sufficiently small so that

constants p− and p+ defined in (4.3.6) are positive.

Proposition 4.3.2. The sequence {ũn}n≥0 is a monotone increasing sequence.

Proof. When θ = 1, subtracting the third equality for n-th iteration in (4.3.10) from

the equality for (n + 1)-th iteration, we obtain

[
−p−ũl−1,m

n + (1 + p0)ũ
l,m
n − p+ũl+1,m

n − b̃l,m
n

] [
ũl,m

n+1 − ũl,m
n

]

+
{
−p−

(
ũl−1,m

n+1 − ũl−1,m
n

)
+ (1 + p0)

(
ũl,m

n+1 − ũl,m
n

)
− p+

(
ũl+1,m

n+1 − ũl+1,m
n

)

−
(
ũl,m+1

n+1 − ũl,m+1
n

)
− λ∆t ·

(
Ĩ (ũn − ũn−1)

)l,m
}[

ũl,m
n+1 − gl

]
= 0.

(4.3.12)



130

in which we used the linearity of the operator Ĩ. Let us define the vectors

em
n+1 =

(
ũ0,m

n+1 − ũ0,m
n , · · · , ũL,m

n+1 − ũL,m
n

)T

,

fm
n+1 =

([
(ũ0,m+1

n+1 − ũ0,m+1
n ) + λ∆t ·

(
Ĩ(ũn − ũn−1)

)0,m
] [

ũ0,m
n+1 − g0

]
, · · · ,

[
(ũL,m+1

n+1 − ũL,m+1
n ) + λ∆t ·

(
Ĩ(ũn − ũn−1)

)L,m
] [

ũL,m
n+1 − gL

])T

.

Equation (4.3.12) can be represented as

(4.3.13) A em
n+1 = fm

n+1,

in which the matrix A’s entries are

al,j =





−p−

(
ũl,m

n+1 − gl
)

j = l − 1

(1 + p0)
(
ũl,m

n+1 − gl
)

+
(
−p−ũl−1,m

n + (1 + p0)ũ
l,m
n − p+ũl+1,m

n − b̃l,m
n

)
j = l

−p+

(
ũl,m

n+1 − gl
)

j = l + 1

0 others.

On the other hand, using the first and second inequalities in (4.3.10) and the fact that

p− and p+ are positive, we see that A is an M-matrix, i.e. A has positive diagonals,

non-positive off-diagonals and the row sums are positive. As a result all entries of

A−1 are nonnegative.

Now we can prove the proposition by induction. Note that ũ1 ≥ ũ0 = g, as a result

of the second inequality in (4.3.10) and the definition of ũ0. Assuming ũn ≥ ũn−1,

we will show that ũn+1 ≥ ũn, i.e. ũl,m
n+1 − ũl,m

n ≥ 0 for all l and m, in the following.

First, the terminal condition of ũn gives us ũl,M
n+1−ũl,M

n = 0. Second,
(
Ĩ(ũn − ũn−1)

)l,m

is nonnegative from the assumption (4.3.9). Assuming ũl,m+1
n+1 − ũl,m+1

n nonnegative,

we have fm
n+1 in (4.3.13) as a nonnegative vector. Combining with the fact that all

entries of A−1 are nonnegative, the nonnegativity of ũl,m
n+1 − ũl,m

n follows from mul-

tiplying A−1 on both sides of (4.3.13). Then the result follows from an induction

m.
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Proposition 4.3.3. {ũn}n≥0 are uniformly bounded above by the strike price K.

Proof. When θ = 1, in the third equality of (4.3.10), there are some (l, m) such that

ũl,m
n = gl. Otherwise we have

(1 + p0)ũ
l,m
n = p−ũl−1,m

n + p+ũl+1,m
n + ũl,m+1

n + λ∆t
(
Ĩ ũn−1

)l,m

.

However, in both cases, we obtain the following inequality

(4.3.14)

(1+p0)
∣∣ũl,m

n

∣∣ ≤ p−Bm
n +p+Bm

n +Bm+1
n +λ∆tBn−1+r∆tK, 0 ≤ l ≤ L, 0 ≤ m ≤ M−1,

in which we define

Bm
n =

(
max

l

∣∣ũl,m
n

∣∣
)∨

K, Bn = max
m

Bm
n .

Note that the right hand side of (4.3.14) is independent of l. Moreover, (1 + p0)K is

also less than or equal to the right hand side of (4.3.14). Therefore, (4.3.14) gives us

(4.3.15) (1 + (r + λ)∆t) Bm
n ≤ Bm+1

n + λ∆tBn−1 + r∆tK.

Given Bm+1
n ≤ K and Bn−1 ≤ K, it clear from (4.3.15) that Bm

n ≤ K. Now the

proposition follows from double induction on m and n with initial steps ũM
n = g ≤ K

and ũ0 = g ≤ K.

As a result of Propositions 4.3.2, we can define

(4.3.16) ũl,m
∞ = lim

n→+∞
ũl,m

n , 0 ≤ l ≤ L, 0 ≤ m ≤ M.

It follows from Proposition 4.3.3 that ũl,m
∞ ≤ K. Letting n go to +∞, we can see

from (4.3.10) that ũ∞ satisfies the difference equation (4.3.5). Therefore,

(4.3.17) ũ∞ = ũ.

In the following, we will study the convergence rate of {ũn}n≥0.
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Proposition 4.3.4. ũn converges to ũ uniformly and

(4.3.18) max
l,m

(
ũl,m − ũl,m

n

)
≤
(
1 − ηM

)n
(

λ

λ + r

)n

K̃,

where η = 1
1+(λ+r)∆t

∈ (0, 1), K̃ is a positive constant.

Proof. Let us define

el,m
n = ũl,m − ũl,m

n , Em
n = max

l
el,m

n , En = max
m

Em
n .

Proposition 4.3.2 and (4.3.17) ensure that el,m
n is nonnegative. Moreover en satisfies

[
−p−ũl−1,m

n + (1 + p0)ũ
l,m
n − p+ũl+1,m

n − b̃l,m
n

]
el,m

n

+

{
−p−el−1,m

n + (1 + p0) el,m
n − p+el+1,m

n − el,m+1
n − λ∆t ·

(
Ĩel,m

n−1

)l,m
}[

ũl,m − gl
]

= 0.

(4.3.19)

We can drop the first term on the left-hand-side of (4.3.19) because of the first

inequality in (4.3.10) and el,m
n being nonnegative. It gives us the inequality

(4.3.20)

(1 + p0)e
l,m
n

[
ũl,m − gl

]
≤
[
p−el−1,m

n + p+el+1,m
n + el,m+1

n + λ∆tEn−1

] [
ũl,m − gl

]
,

in which we also used the assumption (4.3.9) to derive the upper bound for the

integral term.

If there are some (l, m) such that ũl,m = gl, since {ũn}n≥0 is an increasing sequence

from Proposition 4.3.2, we have ũl,m = ũl,m
n for all n. Therefore, el,m

n = 0 for these

(l, m). On the other hand, if ũl,m > gl for some (l, m), we can divide ũl,m − gl on

both sides of (4.3.20) to get

(1 + p0)e
l,m
n ≤ p−el−1,m

n + p+el+1,m
n + el,m+1

n + λ∆tEn−1

≤ p−Em
n + p+Em

n + Em+1
n + λ∆tEn−1.

(4.3.21)
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Since the right-hand-side of (4.3.21) does not depend on l, we can write

(4.3.22) Em
n ≤ ηEm+1

n + (1 − η)
λ

λ + r
En−1,

in which η = 1
1+(λ+r)∆t

∈ (0, 1). Note that (4.3.22) is also satisfied for all m, because

even if ũl,m = gl for some (l, m), el,m
n = 0 as we proved above. If follows from (4.3.22)

that

(4.3.23) Em
n ≤ ηM−mEM

m + (1 − η)(1 + η + · · ·+ ηM−m−1)
λ

λ + r
En−1.

Since the terminal condition of ũn, we have EM
n = 0. Now maximizing the right-

hand-side of (4.3.23) over m, we obtain that

En ≤ (1 − ηM)
λ

λ + r
En−1.

As a result,

(4.3.24) En ≤
(
1 − ηM

)n
(

λ

λ + r

)n

E0 → 0, as n → +∞.

Remark 4.3.5. As M → +∞

1 − ηM = 1 −
(

1

1 + (λ + r)T/M

)M

→ 1 − e−(r+λ)T ,

which agree with the convergent rate (4.2.10) in the continuous case.

Proposition 4.3.6.

(4.3.25) |u(xk, m∆t) − ũ(xk.m∆t)| → 0,

as ∆x, ∆t, ∆z → 0.
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Proof. Using the triangle inequality, let us write

|u(xk, m∆t) − ũ(xk, m∆t)|

≤ |u(xk, m∆t) − un(xk, m∆t)| + |un(xk, m∆t) − ũn(xk, m∆t)|

+ |ũn(xk, m∆t) − ũ(xk, m∆t)|

≤ K
(
1 − e−(r+λ)(T−m∆t)

)n
(

λ

λ + r

)n

+ n · O
(
(∆t) + (∆x)2 + (∆z)2

)

+ K̃
(
1 − ηM

)n
(

λ

λ + r

)n

,

(4.3.26)

for some positive constants K and K̃. The first and third terms on the right-hand-

side of the second inequality are due to (4.2.10) and (4.3.18). The second term

arises since the order of error from discretizing a PDE using implicit Euler scheme is

O((∆t) + (∆x)2), the interpolation and discretization error from numerical integral

are of order (∆x)2 and (∆z)2 and the total error made at each step propagates at

most linearly in n when we sequentially discretize (4.3.4).

Letting ∆t, ∆x, ∆z → 0 in (4.3.26), we obtain that

lim
∆t,∆x,∆z→0

|u(xk, m∆t) − ũ(xk, m∆t)| ≤
(
K + K̃

)( λ

λ + r

)n (
1 − e−(r+λ)T

)n
,

in which we used (5.5.6). Since n is arbitrary the result follows.

Remark 4.3.7. In Propositions 4.3.2 - 4.3.6, we have shown the convergence of the

algorithm for completely implicit Euler scheme (θ = 1). In order to have the time

discretization error as O((∆t)2), we will choose Crank-Nicolson scheme with θ = 1/2

in the numerical experiments in the next section. From numerical results in Table 4,

we shall see that Crank-Nicolson Scheme is also stable and the convergence is fast.

4.4 The numerical performance of the proposed numerical algorithm

In this section, we present the numerical performance of the algorithm proposed

in the previous section. First, we compare the prices we obtain to the prices obtained
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in the literature. To demonstrate our competitiveness we also list the time it takes to

obtain the prices for certain accuracy. We will use either the PSOR or the Brennan-

Schwartz algorithm to solve the sparse linear system in (4.3.10); see Remark 4.4.1.

All our computations are performed with C++ on a Pentium IV, 3.0 GHz machine.

In Table 1, we take the jump distribution F to be the double exponential distri-

bution

(4.4.1) F (dz) =
(
pη1e

−η1z1{z≥0} + (1 − p)η2e
η2z1{z<0}

)
dz.

We compare our performance with that of Kou and Wang (2004) and Kou et al.

(2005). Kou and Wang (2004) obtain an approximate American option price for-

mula, for by reducing the integro-pde equation V satisfied to a integro-ode following

Barone-Adesi and Whaley (1987). This approximation is accurate for small and large

maturities. Also, they do not provide error bounds, the magnitude of which might

depend on the parameters of the problem, therefore one might not be able to use

this price approximation without the guidance of another numerical scheme. A more

accurate numerical scheme using an approximation to the exercise boundary and

Laplace transform was later developed by Kou et al. (2005). Our performance has

the same order of magnitude as theirs. Our method’s advantage is that it works for a

more general jump distribution and we do not have to assume a double exponential

distribution for jumps as Kou and Wang (2004) and Kou et al. (2005) do.

In Table 2 we compute the prices of American and European options in a Merton

jump diffusion model, in which the jump distribution F is specified to be the Gaussian

distribution

(4.4.2) F (dz) =
1√

2πσ̃2
exp

(−(z − µ̃)2

σ̃2

)
dz.

We list the accuracy and time characteristics of the proposed numerical algorithm
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algorithm. We compare our prices to the ones obtained by d’Halluin et al. (2004,

2005). d’Halluin et al. (2004) used a penalty method to approximate the American

option price, while we analyze the variational inequalities directly (see (4.3.5) and

(4.3.10)). Moreover, our approximating sequence is monotone (see Proposition 4.3.2).

In Table 3, We also list the approximated prices of Barrier options. We compare

the prices we obtain with Metwally and Atiya (2003) where a Monte Carlo method is

used. We do not list the time it takes for the alternative algorithms in Tables 2 and

3 either because they are not listed in the original papers or they take unreasonably

long time.

In Table 4, we list the numerical convergence of the proposed algorithm algorithm

with respect to grid sizes. We choose Crank-Nicolson scheme with θ = 1/2 in (4.3.10)

and solve the sparse linear system by either the Bernnan-Schwartz algorithm or the

PSOR.

Remark 4.4.1. Here we will analyze the complexity of our algorithm. Let us fix

∆x/∆t as a constant and choose the number of grid point in x to be N . For each

time step, using the FFT to calculate the integral term in (4.3.10) costs O(N log N)

computations. On the other hand, the Brennan-Schwartz algorithm, which uses the

LU decomposition to solve the sparse linear system in (4.3.10) (see Jaillet et al.

(1990) pp. 283), needs 2N computations for each time step. However, PSOR needs

C ·N computations for each time step to solve (4.3.10) at each time step. Here, C is

the number of iterations PSOR requires to converge to a fixed small error tolerance

ǫ. We will see in the following that PSOR is numerically more expensive than the

Brennan-Schwartz algorithm.

For PSOR, the number of iterations C increases with respect to N . To see this,
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we start from the tri-diagonal matrix on the left-hand-side of (4.3.10)

A =





1 + θp0 −θp+

−θp− 1 + θp0
. . .

. . .
. . . −θp+

−θp− 1 + θp0





.

For the SOR (without projection), the optimal relaxation parameter ω is given by

(see Young (1971))

ω =
2

1 +
√

1 − ρ2
J

,

where ρJ is the spectral radius of the Jacobi iteration matrix J = D−1(A−D) with

D as the diagonal matrix of A. Since ρJ ≤ ‖J‖∞ = θ(p+ + p−)/(1 + θp0), we have

(4.4.3) ω ≤ ω0 =
2

1 +
√

1 − ‖J‖2
+∞

.

We will use ω0 as the optimal relaxation parameter in our numerical experiments.

On the other hand, since the largest eigenvalue λmax of the SOR iteration matrix is

bounded above by ω − 1, using (4.3.6) and (4.4.3) we obtain that

(4.4.4) C = min{c ≥ 0|(λmax)
c ≤ ǫ} = O(

√
N).

Since O(N3/2) dominates O(N log N), the complexity of the Iterated PSOR al-

gorithm at each time step will be O(N3/2). Therefore, with O(N) time steps, the

complexity for Iterated PSOR algorithm is O(N5/2). On the other hand, for the Iter-

ated Brennan-Schwartz algorithm, since O(N log N) dominates O(N), the complex-

ity at each time step will be O(N log N). Therefore, the complexity of the Iterated

Brennan-Schwartz algorithm is O(N2 log N) since we have O(N) time steps.

Please refer to Tables 1, 2, 3 and 4 for numerical performance of both algorithms.
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Next, we illustrate the behavior of the sequence of functions {vn(S, t)}n≥0 and

its limit V in Figures 1, 2 and 3. All the figures are obtained for an American put

option in the case of the double exponential jump with K = 100, S0 = 100, T = 0.25,

r = 0.05, σ = 0.2, λ = 3, p = 0.6, η1 = 25 and η2 = 25 (the same parameters are

used in the 8th row of Table 1) at a single run.

Remark 4.4.2. (i) In Figure 1, we show, how V (S, 0) depends on the time to ma-

turity, and that it fits smoothly to the put-pay-off function at s(0) (the exercise

boundary). The y-axis is the difference between the option price and the pay-off

function. As the time to maturity increases, the option price V (S, 0) increases

while the exercise boundary s(0) decreases. Even though the stock price process

has jumps, the option price smoothly fits the pay-off function at s(0), as in the

classical Black-Scholes case without the jumps.

(ii) In Figure 2, we illustrate the convergence of the exercise boundaries t → sn(t),

n ≥ 1. We can see from the figure that all sn(t) are convex functions. Also,

the sequence {sn}n≥1 is a monotone decreasing sequence, which implies that

the continuation region is getting larger, and that the convergence of the free

boundary sequence is fast.

Moreover, we notice that, when the parameters are chosen such that (4.2.12)

is satisfied, the free boundaries are discontinuous at the maturity time. In

addition, we have s(T−) = sn(T−) = S∗ < K, where S∗ is the unique solution

of (4.2.14). Furthermore, if F is the double exponential distribution as in (4.4.1),

the integral equation (4.2.14) can be solved analytically to obtain

(4.4.5) S∗ =

(
(η1 − 1)r

λp

)1/η1

· K.

With the parameters we choose, we get from (4.4.5) that S∗ = 98.39. It is close
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to our numerical result as one can see from Figure 2.

(iii) In Figure 3, we illustrate the convergence of the sequence of prices {vn(S, 0)}n≥0.

Observe that this is a monotonically increasing sequence and it converges to its

limit V (S, 0) very fast.
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Table 4.1:
Comparison between the proposed algorithm with the methods in Kou and Wang (2004)
and Kou et al. (2005)

The parameters are chosen as r = 0.05, S(0) = 100 and p = 0.6 as in Kou and Wang (2004) and
Kou et al. (2005). Amin’s price is calculated in Kou and Wang (2004) using the enhanced binomial
tree method as in Amin (1993). The accuracy of Amin’s price is up to about a penny. The KPW
5EXP price from Kou et al. (2005) is calculated on a Pentium IV, 1.8 GHz, while the iterated price
is calculated on Pentium IV, 3.0GHz, both using C++ implementation. Run times are in seconds.
For numerical algorithm we propose, the number of grid points in x is chosen as 26 and ∆t = ∆x.
The option prices from both Iterated Brennan-Schwartz and Iterated PSOR are the same. Below
“B-S” stands for the Brennan-Schwartz.

American Put Double Exponential Jump Diffusion Model

Parameter Values Amin’s KW KPW 5EXP Proposed Algorithm
K T σ λ η1 η2 Price Value Error Value Error Time Value Error B-S PSOR

Time Time

90 0.25 0.2 3 25 25 0.75 0.76 0.01 0.74 -0.01 3.21 0.75 0 0.08 0.12
90 0.25 0.2 3 25 50 0.65 0.66 0 0.65 0 3.25 0.66 0.01 0.08 0.12
90 0.25 0.2 3 50 25 0.68 0.69 0.01 0.68 0 2.97 0.69 0.01 0.08 0.12
90 0.25 0.2 3 50 50 0.59 0.60 0.01 0.59 0 2.89 0.59 0 0.12 0.12
90 0.25 0.3 3 25 25 1.92 1.93 0.01 1.92 0 2.40 1.93 0.01 0.09 0.13
90 0.25 0.2 7 25 25 1.03 1.04 0.01 1.02 -0.01 3.18 1.03 0 0.12 0.17
90 0.25 0.3 7 25 25 2.19 2.20 0.01 2.18 -0.01 2.97 2.20 0.01 0.12 0.20

100 0.25 0.2 3 25 25 3.78 3.78 0 3.77 -0.01 3.08 3.78 0 0.12 0.12
100 0.25 0.2 3 25 50 3.66 3.66 0 3.65 -0.01 3.29 3.66 0 0.10 0.12
100 0.25 0.2 3 50 25 3.62 3.62 0 3.62 0 2.88 3.63 0.01 0.09 0.12
100 0.25 0.2 3 50 50 3.50 3.50 0 3.50 0 3.00 3.50 0 0.13 0.12
100 0.25 0.3 3 25 25 5.63 5.62 -0.01 5.63 0 2.44 5.63 0 0.13 0.15
100 0.25 0.2 7 25 25 4.26 4.27 0.01 4.26 0 3.48 4.27 0.01 0.17 0.17
100 0.25 0.3 7 25 25 5.99 5.99 0 5.99 0 2.95 6.00 0.01 0.17 0.18

90 1 0.2 3 25 25 2.91 2.96 0.05 2.90 -0.01 2.43 2.92 -0.01 0.63 0.78
90 1 0.2 3 25 50 2.70 2.75 0.05 2.69 -0.01 2.38 2.70 0 0.69 0.81
90 1 0.2 3 50 25 2.66 2.72 0.06 2.67 0.01 2.55 2.68 0.02 0.64 0.82
90 1 0.2 3 50 50 2.46 2.51 0.05 2.45 -0.01 2.30 2.45 -0.01 0.68 0.82
90 1 0.3 3 25 25 5.79 5.85 0.06 5.79 0 2.48 5.77 -0.02 0.70 0.94



141

Table 4.2: Option price in Merton jump-diffusion model

K=100, T=0.25, r=0.05, σ = 0.15, λ = 0.1. Stock price has lognormal jump distribution with
µ̃ = −0.9 and σ̃ = 0.45. For the iterated jump schemes, the number of grid points in x is chosen as
27 and ∆t = ∆x. Below “B-S” stands for the Brennan-Schwartz.

Option Type a S(0) dFLVb Proposed Algorithm
Value Error LU(B-S) Time PSOR Time

American Put 90 10.004 10.004c 0 0.18 0.24
100 3.241 3.242 0.001
110 1.420 1.420 0

European Put 100 3.149 3.150 0.001 0.21 0.18
European Call 90 0.528 0.528 0 0.18 0.18

100 4.391 4.392 0.001
110 12.643 12.643 0

aThe option prices (for the same kind of option) for different S(0) are obtained from a single run.
bThe dFLV price comes from d’Halluin et al. (2004, 2005).
cthe option price is 10.001 using the iterated Brennan-Schwartz scheme.

Table 4.3: European down-and-out barrier call option with Merton jump-diffusion model

K=110, S(0)=100, T=1, r=0.05, σ = 0.25, λ = 2, rebate R=1, the Stock price has lognormal jump
distribution with µ̃ = 0 and σ̃ = 0.1. For the algorithm we propose the number of grid points in
x is chosen as 26 and ∆t = ∆x. Below we use the acronyms LU or SOR to tell wheher we use the
LU factorization or the SOR to solve for the sparse linear systems at each time step.

Barrier H MA Price a Proposed Algorithm
Value Error LU Time SOR Time

85 9.013 8.988 -0.025 0.52 0.71
95 5.303 5.290 -0.013 0.64 0.86

aThe MA price comes from Metwally and Atiya (2003)
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Table 4.4: Convergence of the numerical algorithm with respect to grid sizes

K=100, T=0.25, r=0.05, σ = 0.15, λ = 0.1, stock price has lognormal jump distribution with µ̃ =
−0.9 and σ̃ = 0.45 (the same parameters that are used in d’Halluin et al. (2004)). The differential
equation is discretized by the Crank-Nicolson scheme as (4.3.10) with θ = 1/2. The logarithmic
variable x = log S is equally spaced discretized on an interval [xmin, xmax] with ∆x = ∆t. The
numerical integral is truncated on the smallest interval [zmin, zmax], such that [x+µ̃−4σ̃, x+ũ+4σ̃]
will be inside [zmin, zmax] for any x ∈ [xmin, xmax]. The step length for the numerical integral is
chosen the same as the step length in x, i.e. ∆z = ∆x. The number of grid points for to implement
the FFT is chosen as an integral power of 2. The error tolerance for PSOR method is 10−8 and
for the global iteration is 10−6. Run times are in seconds. Each row in the “Difference” column of
the following table is vPSOR(L, M) − vPSOR(L/2, M/2). “B-S” stands for the Brennan-Schwartz
algorithm. The number of global iteration is 3 for all the following numerical experiments.

S(0) No. of grid No. of time B-S Value B-S PSOR Value Difference PSOR Max. No. of
points in x ( L ) steps ( M ) vB−S Time vPSOR Time PSOR iterations

90

64 30 10.00230 0.06 10.00573 n.a. 0.06 16
128 58 10.00142 0.21 10.00429 -0.00144 0.24 21
256 115 10.00192 0.84 10.00396 -0.00033 0.99 28
512 230 10.00218 3.51 10.00387 -0.00009 4.50 39

100

64 30 3.24074 0.06 3.24465 n.a. 0.06 16
128 58 3.24008 0.21 3.24180 -0.00285 0.24 21
256 115 3.24046 0.84 3.24115 -0.00065 0.99 28
512 230 3.24058 3.51 3.24103 -0.00012 4.50 39

110

64 30 1.42048 0.06 1.42146 n.a. 0.06 16
128 58 1.41941 0.21 1.41991 -0.00155 0.24 21
256 115 1.41958 0.84 1.41966 -0.00025 0.99 28
512 230 1.41962 3.51 1.41960 -0.00006 4.50 39

Using (4.4.4), the number of SOR iterations can be calculated. The calculation gives 11, 16, 22 and 31.
Comparing with the last column of above table, the maximum numbers of PSOR iteration are slightly
larger than these theoretical predicted SOR iteration times. Moreover, when L = 512 the the ratio between
the maximum number of PSOR iteration and

√

L is 1.72. This confirms the analysis in Remark 4.4.1 that
the maximal PSOR iteration time grows as the order of

√

L.
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The parameters for the following three figures are K = 100, S0 = 100, T = 0.25, r = 0.05, σ = 0.2,
λ = 3, the stock price has double exponential jump with p = 0.6, η1 = 25 and η2 = 25 (the same
parameters used in the 8th row of Table 1).

Figure 4.1: Smooth-fit

The option price function S → V (S, 0) smoothly fits the pay-off function (K −S)+ at s(0). V (S, 0)
increases and s(0) (V (S, 0) − (K − S)+ = 0 at s(0)) decreases as time to maturity T increases.
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Figure 4.2: Iteration of the exercise boundaries

sn(t) ↓ s(t), t ∈ [0, T ). Both sn(t) and s(t) will converge to S∗ < K as t → T .
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Figure 4.3: Iteration of the price functions

vn(S, 0) ↑ V (S, 0), S ≥ 0.
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CHAPTER V

Pricing Asian options for jump diffusions

5.1 Introduction

We develop an efficient numerical algorithm to price Asian options, which are

derivatives whose pay-off depends on the average of the stock price, for jump dif-

fusions. The jump diffusion models are heavily used in the option pricing context

since these models can capture the excess kurtosis of the stock price returns along

with the skew in the implied volatility surface (see Cont and Tankov (2004)). Two

well-known examples of these models are i) the model of Merton (1976), in which the

jump sizes are log-normally distributed, and ii) the model of Kou (2002), in which

the logarithm of jump sizes have the so called double exponential distribution. Here

we consider a large class of jump diffusion models including these two.

The pricing of Asian options is complicated because it involves solving a partial

differential equation (PDE) with two space dimensions, one variable accounting for

the average stock price, the other for the stock price itself. However, Večeř was

able to reduce the dimension of the problem in Večeř (2001) by using a change

of measure argument (also see Section 2.1). When the stock price is a geometric

Brownian motion, Večeř (2001) showed that the price of the Asian option at time

t = 0, which we will denote by S0 → V (S0), satisfies V (S0) = S0 · v(z = z∗, t = 0)

145
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for a suitable constant z∗, in which the function v solves a one dimensional parabolic

PDE. When the stock price is a jump diffusion, then under the assumptions that

vt, vz and vzz are continuous, Večeř and Xu (see their Theorem 3.3 and Corollary

3.4 in Večeř and Xu (2004)) showed that the function v solves a integro partial

differential equation using Itô’s lemma. However, a priori it is not clear that these

assumptions are satisfied. In this chapter, we show that for the jump diffusion

models these assumptions are indeed satisfied (see Theorem 5.2.1), i.e., we directly

show that v is the unique classical solution of the partial integro-differential equation

in Večeř and Xu (2004) (This integro-PDE is given in (5.2.17) and (5.2.17) in this

chapter). We do this by first showing that v is the limit of a sequence of functions

constructed by iterating a suitable functional operator, which we will denote by J .

This functional operator J takes functions with certain regularity properties into

the unique classical solutions of parabolic differential equations and gives them more

regularity. We show that v is the fixed point of the functional operator. Finally, we

show that v satisfies the certain regularity properties, which ensures that it is the

classical solution of the partial integro-differential equation in Večeř and Xu (2004).

This proof technique is similar to that of Bayraktar (2009), in which the regularity of

the American put option prices are analyzed. In this chapter, some major technical

difficulties arise because the pay-off functions we consider are not bounded and also

because the sequence of functions constructed is not monotonous (Bayraktar (2009)

was able to construct a monotonous sequence because of the early exercise feature

of the American options).

The iterative construction of the sequence of functions which converge to the Asian

option price naturally leads to an efficient numerical method for computing the price

of Asian options. We prove that the constructed sequence of functions converges to
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the function v uniformly (on compact sets) and exponentially fast. Therefore, after

a few iterations one can obtain an approximation of v within the desired level of

accuracy, i.e., the accuracy versus speed characteristics of our numerical method can

be controlled. On the other hand, since each element of the approximating sequence

solves a parabolic PDE (not an integro-differential equation), we can use one of the

classical finite difference schemes to determine it. We propose a numerical scheme

in Section 5.3 and analyze the performance of it in the same section.

Numerical methods for pricing Asian options for diffusion models were studied

extensively in the literature: various PDE methods were proposed in Večeř (2001),

Rogers and Shi (1995), Zhang (2001) and Zhang (2003), a single Laplace inversion

method was developed in Geman and Yor (1993), a spectral expansion approach was

investigated in Linetsky (2004), a double Laplace inversion method was discovered

in Cai and Kou (2007). Meanwhile, tight bounds for the Asian option prices were

obtained in Rogers and Shi (1995) and Thompson (1998). However, methods for

pricing Asian options in jump models are still under development. We should men-

tion that Cai and Kou (2007) also considered pricing Asian option for the double

exponential jump diffusion model of Kou.

The rest of the chapter is organized as follows: In Section 5.2.1, we summarize

the findings of Večeř and Xu (2004) in the context of jump-diffusion models. In

Section 5.2.2, we present our main theoretical results: Theorem 5.2.1 and Corol-

lary 5.2.2. We propose a numerical algorithm and analyze its convergence properties

in Section 5.3.1. Then we perform numerical experiments for two particular jump dif-

fusion models and analyze their performance in Section 5.3.2. Section 5.4 is devoted

to development of the proof of Theorem 5.2.1. In Sections 5.4.1 and 5.4.2 we develop

the properties of the functional operator J and the properties of the sequence ob-
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tained by iterating J , respectively. These results are used to prove Theorem 5.2.1 in

Section 5.4.3. A brief summary of our proof technique can be found in Section 5.2.2.

right after the definition of the operator J in (5.2.11). The proof of the numerical

convergence of our algorithm is given in Section 5.5.

5.2 A sequential approximation to price of an Asian option

5.2.1 Dimension reduction

Let (Ω,F , P) be a complete probability space hosting a Wiener process {Bt; t ≥ 0}

and a Poisson random measure N , whose mean measure is λν(dy)dt, independent

of the Wiener process. Let (Ft)t≥0 denote the natural filtration of B and N . In

this filtered probability space, let us define a Markov process S = {St; t ≥ 0} via its

dynamics as

(5.2.1) dSt = (r − µ)St− dt + σSt− dBt + St−

∫

R+

(y − 1)N(dt, dy),

in which r is the risk free rate, µ , λ(ξ−1), where ξ ,
∫

R+
yν(dy) < ∞. The process

S is the price of a traded stock, and under the measure P, the discounted stock price

(e−rtSt)t≥0 is a martingale. In this framework the stock price jumps at time t from

St− to St−Y , in which Y ’s distribution is given by ν. Y is a positive random variable

and note that when Y < 1 then the stock price S jumps down, when Y > 1 the stock

price jumps up. In Merton’s jump diffusion model (see Merton (1976)) Y = exp(X )

where X is a Gaussian random variable. In Kou’s model (see Kou (2002)) X has a

double exponential distribution.

To reduce the dimension of the Asian option pricing problem, Večeř and Xu in

Večeř and Xu (2004) introduced a new measure Q by

(5.2.2)
dQ

dP

∣∣∣∣
Ft

= e−rt St

S0
, t ∈ [0, T ].
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Here, T is the maturity of the Asian option. Večeř and Xu also introduced the

following process

(5.2.3) ZJ
t ,

Xt

St
, t ∈ [0, T ],

where X = {Xt; t ∈ [0, T ]} is a self-financing portfolio that replicates the pay-off of

the Asian forward contract with fixed strike K2. The dynamics of X are given by

(5.2.4) dXt = qt dSt + r(Xt− − qt St−) dt, X0 = x,

in which qt defined as

(5.2.5) qt ,
1

rT
(1 − e−r(T−t)), t ∈ [0, T ],

is the number of shares invested in the stock. The initial value of the portfolio process

X is given given in terms of q0 and K2 as

(5.2.6) x = q0S0 − e−rT K2.

Večeř and Xu showed in Večeř and Xu (2004) that the price of the continuously

averaged Asian option with floating strike K1 and fixed strike K2 defined by

(5.2.7) V (S0) , EP

{
e−rT

(
ζ ·
(

1

T

∫ T

0

Stdt − K1ST − K2

))+
}

can also be represented as

(5.2.8) V (S0) = S0 · EQ

0,ZJ
0

[
(
ζ · (ZJ

T − K1)
)+

],

in which ζ ∈ {−1, 1} indicates whether the option is a put or a call. Throughout this

chapter, the short hand notation E
Q
t,z represents the conditional expectation under

Q, given the value of the underlying process at time t is z. Under the measure Q, the

mean measure of the Poisson random measure is λν̃(dy)dt, in which ν̃(dy) = yν(dy).
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5.2.2 Main theoretical results

In this section we show that

(5.2.9) V (S0) = S0 · v(ZJ
0 , 0),

for some v that is the classical solution, i.e., v ∈ C2,1, of an integro-partial differen-

tial equation (see Theorem 5.2.1 and Corollary 5.2.2). We will also prove that v is

the limit of a sequence of functions constructed by iterating a functional operator,

which is defined in (5.2.11). We will show that each of the functions in this se-

quence are classical solutions of partial differential equations (not integro-differential

equations) and that they converge to v locally uniformly and exponentially fast (see

Theorem 5.2.1). The analytical properties of the functional operator (listed in the

lemmas of Appendix 5.4.1) used in the construction of the approximating sequence

plays an important role in proving our main mathematical result. We will summarize

the role of the functional operator below after we introduce it.

Let us introduce the following sequence of functions

(5.2.10)

v0(z, t) , (ζ · (z − K1))
+ , vn+1(z, t) , Jvn(z, t) n ≥ 0, for all (z, t) ∈ R×[0, T ],

in which the functional operator J is defined, through its action on a test function

f : R × [0, T ] → R+, as follows:

Jf(z, t) = E
Q
t,z

{
e−λξ(T−t) (ζ · (ZT − K1))

+ +

∫ T

t

e−λξ(s−t)λ · Pf(Zs, s) ds

}
,

(5.2.11)

in which Z = {Zt; t ≥ 0} is a diffusion process with the dynamics

dZt = −µ (qt − Zt) dt + σ (qt − Zt) dWt,
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and

Pf(Zt, t) =

∫

R+

f

(
Zt + (qt − Zt)

y − 1

y
, t

)
yν(dy)

∫

R+

f

(
Zt

y
+ qt

y − 1

y
, t

)
yν(dy).

(5.2.12)

We will show that the sequence of functions defined in (5.2.10) by iterating J

are classical solutions of PDEs thanks to the following analytical properties of the

operator J (which are developed in Appendix 5.4.1) : 1) J maps functions that are

Lipschitz continuous with respect to the z-variable (uniformly in the t-variable) and

Hölder continuous with respect to the t-variable into classical solutions of PDEs (see

Proposition 5.4.6), 2) J preserves Lipschitz continuity with respect to the z-variable

(see Lemma 5.4.1), 3) J transforms Lipschitz continuous functions, with respect to

the z-variable, that satisfy a linear (in the z-variable) growth condition (uniformly in

the t-variable) into Hölder continuous functions of the t-variable (see Lemma 5.4.5),

4) J preserves the linear growth condition in the z−variable (see Lemma 5.4.3 and

Remark 5.4.2). Therefore, the analytical properties of J can be summarized as “J

maps nice functions (set of functions with a few regularity properties), to nicer func-

tions (set of functions that are the classical solutions of partial differential equations,

and have the same regularity properties as functions before applying J).

It is a priori not clear that the sequence of functions defined in (5.2.10) has a

limit. Using the properties of the operator J we show that this sequence is Cauchy

(see Lemma 5.4.10) and therefore has a limit (in fact the sequence converges locally

uniformly and exponentially fast). We show that, the limit of this sequence, which

we denote by v∞, is a classical solution of an integro-PDE using 1) the fact that

it is a fixed point of the operator J (see Lemma 5.4.12), 2) the facts that it is

Lipschitz continuous with respect to the z-variable (uniformly in the t-variable) (see

Lemma 5.4.13) and Hölder continuous with respect to the t-variable (see Corollary
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5.4.14).

Finally, using a verification argument we will show that the limit v∞ is indeed the

function v in (5.2.9) (see Corollary 5.2.2).

The main theoretical results that are summarized above will be stated in the next

theorem and its corollary. The proof of Theorem 5.2.1 is given in Appendix 5.4.3

which uses the results of Appendix 5.4.1 and 5.4.2 as summarized above.

Theorem 5.2.1. (i) The sequence of functions defined in (5.2.10) has a pointwise

limit. Let us denote this limit by v∞(z, t).

(ii)For any compact domain D ⊂ R, vn(z, t) converges uniformly to v∞(z, t) for

(z, t) ∈ D × [0, T ]. Moreover,

(5.2.13) |v∞(z, t) − vn(z, t)| ≤ MD
(
1 − e−λη(T−t)

)n
,

where MD is a constant depending on D and η = max{ξ, 1}.

(iii) For n ≥ 0, the function vn+1 is the unique classical solution, i.e., vn+1 ∈ C2,1,

of

A(t)vn+1(z, t) − λξvn+1(z, t) + λ · (Pvn)(z, t) +
∂

∂t
vn+1(z, t) = 0(5.2.14)

vn+1(z, T ) = (ζ · (z − K1))
+,(5.2.15)

for (z, t) ∈ R × [0, T ]. The operator A(t) is defined as

(5.2.16) A(t) , −µ(qt − z)
∂

∂z
+

1

2
σ2(qt − z)2 ∂2

∂z2
.

(iv) The function v∞ is the unique classical solution, i.e., v∞ ∈ C2,1, of the following

partial integro-differential equation in Večeř and Xu (2004)

A(t)v∞(z, t) − λξv∞(z, t) + λ · (Pv∞)(z, t) +
∂

∂t
v∞(z, t) = 0(5.2.17)

v∞(z, T ) = (ζ · (z − K1))
+.(5.2.18)
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Proof. See Appendix 5.4.3.

The iterative procedure in (5.2.14) simply collapses to Vecer’s PDE (see Večeř

(2001)) when λ = 0, i.e., when the underlying asset is a geometric Brownian motion.

Therefore, the iteration in (5.2.14) is designed for the models in which the asset price

jumps.

Corollary 5.2.2. Let V (S0) be as in (5.2.7), i.e., V (S0) is the value of the Asian

option for jump diffusion S whose dynamics is given in (5.2.1). Then we have

(5.2.19) V (S0) = S0 · v∞(z, 0),

in which v∞(·, ·) is the unique solution of the integro-partial differential equation

(5.2.17) with terminal condition (5.2.18), and

(5.2.20) z =
X0

S0
=

1

rT

(
1 − e−rT

)
− e−rT K2

S0
.

Proof. Let us define

(5.2.21) Mt = v∞(ZJ
t , t), t ∈ [0, T ]

where ZJ , defined in (5.2.3), has the initial value ZJ
0 = z. It follows from (5.2.17)

and the Itô’s lemma that Mt is a Q-martigale, i.e., Mt = EQ{MT |Ft}. As a result

(5.2.22)

v∞(z, 0) = M0 = E
Q
0,z{MT} = E

Q
0,z{v∞(ZJ

T , T )} = E
Q
0,z{(ζ · (ZJ

T − K1))
+} =

V (S0)

S0

,

where the last identity follows from the representation (5.2.8).

5.3 Computing the prices of Asian options numerically

Note that numerically solving (5.2.17) and (5.2.18) is quite difficult due to the

contribution from the non-local integral term (i.e., the Pv∞ term). However, It fol-

lows from Theorem 5.2.1 that the sequence of functions (vn)n≥0 converges uniformly
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and exponentially fast to v∞ on any compact domain. Therefore, starting from v0,

a few iterations of (5.2.14) and (5.2.15) will produce an accurate approximation to

v∞. To perform the iterations we make use of the finite difference methods for PDEs

to solve (5.2.14) and (5.2.15) numerically. We describe this numerical method and

show its convergence in Section 5.3.1. In Section 5.3.2 we determine the performance

(the speed and accuracy characteristics) of our numerical method for the jump dif-

fusion models of Kou (2002) and Merton (1976). In the same section we take the

Monte-Carlo simulation results as a benchmark.

5.3.1 A numerical algorithm and its convergence

Our numerical algorithm is given by the following iterative scheme:

Step 1: Discretizing the PDEs. For any n ≥ 1, we discretize (5.2.14) using the

Crank-Nicolson method (see e.g. Wilmott et al. (1995) pp. 155). For fixed ∆t,

∆z, zmax and zmin, such that M∆t = T and K∆z = zmax − zmin, let us denote

zk , zmin + k∆z, k = 0, 1, · · · , K. By ṽn+1 we will denote the solution of the

difference equation

(1 + p0
k,m)ṽn+1(k, m) − p+

k,mṽn+1(k + 1, m) − p−k,mṽn+1(k − 1, m)

= p+
k,m+1ṽn+1(k + 1, m + 1) + p−k,m+1ṽn+1(k − 1, m + 1)

+ (1 − p0
k,m+1)ṽn+1(k, m + 1) +

1

2
λ∆t

[(
P̃ ṽn

)
(k, m + 1) +

(
P̃ ṽn

)
(k, m)

]
.

(5.3.1)

for m = M − 1, M − 2, · · · , 0, k = 0, 1, · · · , K, satisfying the terminal condition

ṽn+1(k, M) = (ζ · (zk −K1))
+ and boundary conditions ṽn+1(0, m) = (ζ · (zmin −

K1))
+ and ṽn+1(K, m) = (ζ · (zmax −K1))

+. The coefficients p+
k,m, p−k,m and p0

k,m
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in (5.3.1) are given by

p+
k,m =

1

4

[
σ2

(
qm∆t − k∆z

∆z

)2

− µ
qm∆t − k∆z

∆z

]
∆t,

p−k,m =
1

4

[
σ2

(
qm∆t − k∆z

∆z

)2

+ µ
qm∆t − k∆z

∆z

]
∆t,

p0
k,m = p+

k,m + p−k,m +
1

2
λξ∆t.

(5.3.2)

The numerical integral term P̃ ṽn in (5.3.1) will be described in Step 2.

Step 2: Numerical Integration. Let x = log y, the integral term Pvn (choosing

f = vn in (5.2.12)) can be rewritten as

(5.3.3) Pvn(z, t) =

∫

R

vn

(
z

ex
+ qt

ex − 1

ex
, t

)
exF (dx),

in which F (dx) is the distribution of a random variable X, such that the distri-

bution of eX is given by the jump measure ν. We approximate the integral in

(5.3.3) by trapezoidal rule as follows.

Discretizing a sufficiently large interval [xmin, xmax] into L subintervals, we ob-

tain the grid xmin = x0 < x1 < · · · < xL = xmax. We choose unequally spaced

grids, so that the grid is finer where density of the distribution F is large. Start-

ing from ṽ0(k, m) = (ζ · (zk −K1))
+, the integral in (5.3.3) evaluated on the grid

point (zk, m∆t) is approximated by its discrete version

P̃ ṽn(zk, m∆t)

=

L−1∑

ℓ=0

1

2

[
ṽn

(
zk

exℓ
+ qm∆t

exℓ − 1

exℓ
, m∆t

)
exℓg(xℓ)

+ṽn

(
zk

exℓ+1

+ qm∆t
exℓ+1 − 1

exℓ+1

, m∆t

)
exℓ+1g(xℓ+1)

]
· (xℓ+1 − xℓ) + O((∆x)2),

(5.3.4)

where ∆x = maxℓ (xℓ+1 − xℓ) and g is the density of F . On the right-hand-side

of (5.3.4), the value of ṽn not on grid points are determined by the value of ṽn
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on grid points via the linear interpolation, i.e.,

ṽn

(
zk

exℓ
+ qm∆t

exℓ − 1

exℓ
, m∆t

)

=





(1 − w) ṽn(zk′, m∆t) + w ṽn(zk′+1, m∆t) + O((∆z)2),

if zk′ ≤ zk

exℓ
+ qm∆t

exℓ−1
exℓ

≤ zk′+1 for some k′,

(
ζ ·
(

zk

exℓ
+ qm∆t

exℓ−1
exℓ

− K1

))+
, if zk

exℓ
+ qm∆t

exℓ−1
exℓ

/∈ [zmin, zmax].

(5.3.5)

Here w is the linear interpolation weight.

Step 3: Solving the sparse system of linear equations. After evaluating the in-

tegral term P̃ ṽn on the grid points using (5.3.4), we solve the sparse system of

linear equations in (5.3.1) by using the SOR algorithm (see e.g. Wilmott et al.

(1995) pp. 150) to obtain ṽn+1.

Step 4: Updating n. Unless maxk |ṽn+1(k, 0) − ṽn(k, 0)| ≤ ǫ increase the value of n by

1 and go to Step 1. Here ǫ is the iteration error tolerance. In the numerical

experiments in Section 5.3.2, ǫ is chosen as 10−5.

The convergence of the above numerical algorithm is ensured by the following

proposition. We denote ṽ as the solution of the difference equation obtained by

discretizing (5.2.17) via the Crank-Nicolson scheme, i.e., ṽ satisfies (5.3.1) with both

ṽn+1 and ṽn replaced by ṽ. The following proposition shows that ṽn converges to ṽ as

n → ∞ and ṽ converges to v∞ as the mesh sizes go to zero. In this proposition, we

choose ∆t and ∆z sufficiently small such that p+
k,m, p−k,m and 1−p0

k,m are positive for

all (k, m). Moreover, for the simplicity of the presentation, in what follows we assume

that (P̃1)(k, m) ≤
∫

R+
yν(dy) = ξ (otherwise the order of error of the discretization

of the integral will have to be sufficiently small in the following proposition).



157

Proposition 5.3.1. (i) Let En = maxm,k |ṽ(k, m) − ṽn(k, m)|. Then

(5.3.6) En ≤
(
1 − θM

)n
E0 → 0 as n → ∞,

where θ ,
1−1/2·λξ∆t
1+1/2·λξ∆t

∈ (0, 1] with 1 − θM → 1 − e−λξT as M → ∞.

(ii)

(5.3.7) |v∞(zk, m∆t) − ṽ(k, m)| → 0, as ∆z, ∆t, ∆x → 0.

Moreover, the convergence rate is given by

(5.3.8)

|v∞(zk, m∆t)−ṽ(k, m)| ∼ O
[
∆2 log 1/∆2

]
, where ∆ ,

√
(∆t)2 + (∆z)2 + (∆x)2.

Proof. See Appendix 5.5.

5.3.2 Numerical results for Kou’s and Merton’s models

There are two well-known examples of jump diffusion in the literature, the double

exponential model as in Kou (2002) and the normal model as in Merton (1976). In

this section, we demonstrate our algorithm in Section 5.3.1 in pricing Asian options

for these two models. We will introduce the jump distributions chosen by Kou (2002)

and Merton (1976) next. Let X be a random variable whose probability distribution

function is equal to a given distribution F and let the jump measure ν be equal to the

distribution of the random variable eX . In Kou’s model, F is the double exponential

distribution whose density is

(5.3.9) F (dx) =
(
p η1e

−η1x1{x≥0} + (1 − p) η2e
η2x1{x<0}

)
dx.

In Merton’s model, F is the normal distribution whose density is

(5.3.10) F (dx) =
1√

2πσ̃2
exp

(−(x − µ)2

σ̃2

)
dx.
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In the following, we demonstrate the numerical performance of the algorithm

developed in Section 5.3.1. Since we could not find any numerical results on European

Asian options for jump diffusion models in the literature, we use the Put-Call parity

for Asian options as a consistency check for our results. For the European Asian

option with floating strike K1 and fixed strike K2, the put - call parity gives the

following identity between call and put option price

(5.3.11) C(S0, 0) − P (S0, 0) =
1

rT
(1 − e−rT )S0 − K1S0 − e−rT K2.

This identity does not depend on dynamics of the underlying process S. Using

our algorithm, we calculate the call and put option price independently. Then we

compare the difference between our call and put price with the difference predicted

by (5.3.11). In addition, we also compare our numerical results with the results from

Monte-Carlo simulations.

In Tables 1 and 2, we list the numerical results for the prices of European Asian

options for both Kou’s model and Merton’s model. Run times are in seconds. All

our computations are performed on a Pentium IV 3.0 GHz machine with C++ im-

plementation. In Tables 3, 4 and 5, we list the convergence results for the double

exponential jump model. We consider the effects of the truncation error in evaluating

(5.3.3) in Table 3. On the other hand, Table 4 demonstrates the convergence of the

price as the grid size used in the numerical integration becomes smaller. In table 5,

our focus is on the grid size used in the finite difference scheme. The parameters for

both call and put options in Tables 3, 4, and 5 are the same as the 7th row in Table

1, i.e., r = 0.15, S0 = 100, K1 = 0, K2 = 90, T = 1, σ = 0.2, λ = 1 and η1 = η2 = 25.

As we can see from these tables, our algorithm is stable with respect to all pa-

rameters and the convergence is fast. Moreover, our difference between call and put

option prices are within ±0.01 comparing to the difference predicted by put-call par-
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ity in (5.3.11). The call option prices are almost within the standard error of the

Monte Carlo results.

5.4 Mathematical analysis towards proving Theorem 5.2.2

The purpose of this section is to provide the necessary background to prove Theo-

rem 5.2.1. First, in Section 5.4.1 we analyze the properties of the functional operator

J : We study how J increases the regularity of certain class of functions. In Lem-

mas 5.4.1 - 5.4.5 and Proposition 5.4.6, we will see that J takes functions with certain

regularity properties into the unique solutions of parabolic differential equations and

gives them more regularity properties. Next, in Section 5.4.2, we develop the proper-

ties of the functions defined in (5.2.10) in a sequence of lemmas and corollaries using

the results developed in Section 5.4.1. These properties will then be used to prove

Theorem 5.2.1 in Section 5.4.3.

5.4.1 Properties of operator J

First, we will develop a representation of the functional operator J that is amenable

to regularity analysis, which is carried out in this section. Using the notation in page

8 of Pham (1998), we can rewrite J as

(5.4.1)

Jf(z, t) = EQ

{
e−λξ(T−t)

(
ζ ·
(
Zt,z

T−t − K1

))+
+

∫ T−t

0

e−λξsλ · Pf
(
Zt,z

s , t + s
)
ds

}
,

in which

(5.4.2) Pf
(
Zt,z

s , t + s
)

=

∫

R+

f

(
Zt,z

s

y
+ qt+s

y − 1

y
, t + s

)
yν(dy).

The process Zt,z = {Zt,z
s ; s ≥ 0} has the dynamics

(5.4.3) dZt,z
s = −µ(qt+s − Zt,z

s )ds + σ(qt+s − Zt,z
s )dWs, Zt,z

0 = z,
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where {Ws}s≥0 is a Wiener process under the measure Q. It is possible to determine

the solution to (5.4.3) explicitly. For this purpose it will be convenient to work with

the process Z̃s , qt+s −Zt,z
s . It follows from (5.4.3) that the dynamics of Z̃ are given

by

(5.4.4) dZ̃s = µZ̃sds − σZ̃sdWs + g(t + s)ds, Z̃0 = z̃ = qt − z,

in which g(t) = d
dt

qt. Now it is easy to obtain the solution of stochastic differential

equation (5.4.4) as

(5.4.5) Z̃s = z̃H0
s +

∫ s

0

H0
s−v g(t + v)dv for s ≥ 0,

in which

(5.4.6) H0
s , exp((µ − 1

2
σ2)s − σWs).

As a result we have that the solution of (5.4.3) is given by

(5.4.7) Zt,z
s = zH0

s + bs, s ≥ 0,

in which

(5.4.8) bs , qt+s − qtH
0
s −

∫ s

0

H0
s−v g(t + v)dv.

It follows from (5.4.7) that the solution of the stochastic differential equation (5.4.3)

is linear with respect to its initial value z. Inserting its solution (5.4.7) back into the

definition of the operator J in (5.4.1), we obtain

(5.4.9)

Jf(z, t) = EQ

{
e−λξ(T−t)

(
ζ ·
(
zH0

T−t + bT−t − K1

))+
+

∫ T−t

0

e−λξsλ · Pf(zH0
s + bs, t + s) ds

}
.

In the following, we will study the regularity properties of the operator J with

respect to both space and time. When the function f is Lipschitz continuous with



161

respect to its first variable, the following lemmas show Jf is not only Lipschitz with

respect to its first variable, but also Hölder continuous with respect to the second

variable.

Lemma 5.4.1. For any t ∈ [0, T ], let us assume the function f satisfies

(5.4.10) |f(z, t) − f(z̃, t)| ≤ D |z − z̃|, z, z̃ ∈ R,

for a positive constant D that only depends on T . Then Jf satisfies

(5.4.11) |Jf(z, t) − Jf(z̃, t)| ≤ E |z − z̃|, z, z̃ ∈ R,

with E = max{1, D}.

Proof. From the definition of operator J in (5.4.9), we have

|Jf(z, t) − Jf(z̃, t)|

≤ EQ

{
e−λξ(T−t)

∣∣∣
(
ζ ·
(
zH0

T−t + bT−t − K1

))+ −
(
ζ ·
(
z̃H0

T−t + bT−t − K1

))+∣∣∣

+

∫ T−t

0

ds e−λξsλ ·
∣∣Pf(zH0

s + bs, t + s) − Pf(z̃H0
s + bs, t + s)

∣∣
}

.

(5.4.12)

Let us obtain a bound on the right-hand-side of (5.4.12). First observe that

(5.4.13)
∣∣(ζ · (zH0

T−t + bT−t − K1))
+ − (ζ · (z̃H0

T−t + bT−t − K1))
+
∣∣ ≤ |z − z̃|H0

T−t,

and

∣∣Pf(zH0
s + bs, t + s) − Pf(z̃H0

s + bs, t + s)
∣∣

≤
∫

R+

∣∣∣∣f
(

zH0
s

y
+

bs

y
+ qt+s

y − 1

y
, t + s

)
− f

(
z̃H0

s

y
+

bs

y
+ qt+s

y − 1

y
, t + s

)∣∣∣∣ yν(dy)

≤
∫

R+

D |zH0
s − z̃H0

s | ν(dy)

= D |z − z̃|H0
s .

(5.4.14)
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On the other hand, from the definition of H0
s in (5.4.6), we have that

(5.4.15) EQ{H0
s} = eµs.

Inserting (5.4.13), (5.4.14) and (5.4.15) back into the equation (5.4.12), we have

|Jf(z, t) − Jf(z̃, t)| ≤ e−λξ(T−t) |z − z̃|EQ{H0
T−t} +

∫ T−t

0

ds e−λξs λ D |z − z̃|EQ{H0
s}

= |z − z̃|
(

e(µ−λξ)(T−t) + D

∫ T−t

0

ds λ e(µ−λξ)s

)

≤
(
D + (1 − D)e−λ(T−t)

)
|z − z̃|

≤ max{1, D} |z − z̃|.(5.4.16)

Remark 5.4.2. Let us define

Mf , sup
t∈[0,T ]

f(0, t),(5.4.17)

MJf , sup
t∈[0,T ]

Jf(0, t).(5.4.18)

It follows from the Lipschitz conditions (5.4.10) and (5.4.11) that both f and Jf

satisfy linear growth conditions, if Mf and MJf are finite, since for (z, t) ∈ R× [0, T ]

f(z, t) ≤ f(0, t) + D |z|,(5.4.19)

Jf(z, t) ≤ Jf(0, t) + E |z|.(5.4.20)

In the next two lemmas we will need the following moment estimates of Zt,z
s .

EQ
{
|Zt,z

s |
}

≤ C(1 + |z|),(5.4.21)

EQ
{
|Zt,z

s − z|
}

≤ C(1 + |z|)s 1

2 ,(5.4.22)

in which 0 ≤ s ≤ T and C is a constant depending on T . These estimates can be

found in Pham (1998) (Lemma 3.1).
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Lemma 5.4.3. We have that

(5.4.23) MJf ≤ U + α

(
Mf +

B

ξ

)
,

in which α = 1 − e−λξT < 1, and U , B are positive constants depending on T .

Proof. We will estimate MJf using the definition of the operator J in (5.4.1). First,

we have that

EQ
{
e−λξ(T−t)

(
ζ ·
(
Zt,0

T−t − K1

))+} ≤ EQ
{
e−λξ(T−t)

(∣∣Zt,0
T−t

∣∣ + K1

)}

= EQ
{
e−λξ(T−t) (|bT−t| + K1)

}
,

in which we obtain the last inequality using the expression of Zt,z in (5.4.7) with

z = 0. First, it follows from (5.4.21) with z = 0 that

(5.4.24) EQ{|bT−t|} = EQ{|Zt,0
T−t|} ≤ C.

Letting U , C + K1, which is a finite positive constant depending on T , we have

that

(5.4.25) EQ
{
e−λξ(T−t) (|bT−t| + K1)

}
≤ U.

Second, we will estimate the second term in the definition of J in (5.4.1). From

the definition of Pf in (5.4.2), we have

EQ
{
Pf(Zt,0

s , t + s)
}

= EQ

{∫

R+

f

(
Zt,0

s

y
+ qt+s

y − 1

y
, t + s

)
yν(dy)

}

≤ EQ

{∫

R+

(
f(0, t + s) + D

|Zt,0
s |
y

+ D qt+s
|y − 1|

y

)
yν(dy)

}

≤ ξf(0, t + s) + D qt+s(ξ + 1) + D EQ
{∣∣Zt,0

s

∣∣}

≤ ξf(0, t + s) + D qt+s(ξ + 1) + C · D.(5.4.26)

To obtain the first inequality we use the inequality (5.4.19), whereas the second

inequality follows from |y − 1| ≤ y + 1. To obtain the last inequality, we use the
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inequality (5.4.21) with z = 0. Now, using (5.4.26) we obtain

EQ

{∫ T−t

0

e−λξsλ · Pf
(
Zt,0

s , t + s
)

ds

}

≤
∫ T−t

0

e−λξsλ · [ξf(0, t + s) + D qt+s(ξ + 1) + C · D] ds.

(5.4.27)

Since 0 ≤ s ≤ T − t, we have qt+s ≤ 1
rT

. Let us define

(5.4.28) B ,

[
1

rT
(ξ + 1) + C

]
· D,

which is a finite positive constant depending on T . Now, we have the following

estimation on the left-hand-side of (5.4.27)

EQ

{∫ T−t

0

e−λξsλ · Pf(Zt,0
s , t + s) ds

}
≤

∫ T−t

0

e−λξsλ · [ξf(0, t + s) + B] ds

≤
(
1 − e−λξ(T−t)

)(
Mf +

B

ξ

)

≤
(
1 − e−λξT

)(
Mf +

B

ξ

)
, for t ∈ [0, T ].(5.4.29)

From inequalities (5.4.25) and (5.4.29), we conclude that

(5.4.30) Jf(0, t) ≤ U +
(
1 − e−λξT

)(
Mf +

B

ξ

)
.

Remark 5.4.4. Lemma 5.4.3 and Remark 5.4.2 indicate that

f(z, t) ≤ Mf + D |z| ≤ D̃(1 + |z|),(5.4.31)

Jf(z, t) ≤ U + α

(
Mf +

B

ξ

)
+ E |z| ≤ Ẽ(1 + |z|),(5.4.32)

in which D̃ = max{Mf , D} and Ẽ = max{U + α(Mf + B/ξ), E}. We will use these

linear growth properties to show a regularity property of the operator J with respect

to time in the next lemma.
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Lemma 5.4.5. Assume the function z 7→ f(z, t) satisfies

(5.4.33) |f(z, t) − f(z̃, t)| ≤ D |z − z̃|,

for z, z̃ ∈ R as in Lemma 5.4.1 and Mf < ∞. Then t 7→ Jf(z, t) satisfies

(5.4.34) |Jf(z, t) − Jf(z, s)| ≤ F (1 + |z|) (s − t)
1

2 , 0 ≤ t < s ≤ T,

in which F is a positive constant that only depends on λ, ξ, T and Mf .

Proof. For any h ∈ [t, T ], it follows from the definition of operator J in (5.4.1) and

the Markov property of Zt,z
s that

(5.4.35) Jf(z, t) = EQ

{∫ h−t

0

e−λξv λ · Pf(Zt,z
v , t + v) dv + e−λξ(h−t)Jf(Zt,z

h−t, h)

}
.

With h = s,

|Jf(z, t) − Jf(z, s)|

≤ EQ

{∫ s−t

0

e−λξvλ · Pf(Zt,z
v , t + v) dv + |e−λξ(s−t)Jf(Zt,z

s−t, s) − Jf(z, s)|
}

≤ EQ

{∫ s−t

0

e−λξvλ · Pf(Zt,z
v , t + v) dv + e−λξ(s−t)

∣∣Jf(Zt,z
s−t, s) − Jf(z, s)

∣∣

+
∣∣e−λξ(s−t) − 1

∣∣Jf(z, s)
}

.

(5.4.36)

In what follows we will bound the terms on the right-hand-side of this inequality.

Since the condition (5.4.33) holds, Lemma 5.4.1 applies. As a result it follows from

(5.4.11) that

(5.4.37) EQ
{
|Jf(Zt,z

s−t, s) − Jf(z, s)|
}
≤ E EQ

{
|Zt,z

s−t − z|
}

,
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Using the estimate in (5.4.31) we have that

EQ
{
Pf(Zt,z

v , t + v)
}

=

∫

R+

yν(dy) EQ

{
f

(
Zt,z

v

y
+ qt+v

y − 1

y
, t + v

)}

≤
∫

R+

yν(dy) D̃

(
1 +

1

y
EQ
{
|Zt,z

v |
}

+ qt+v
|y − 1|

y

)

≤ D̃
(
ξ + EQ

{
|Zt,z

v |
}

+ (ξ + 1)qt+v

)

≤ D̃

(
ξ +

1

rT
(ξ + 1) + C(1 + |z|)

)
.(5.4.38)

To obtain the last inequality we use the estimation (5.4.21) and the fact that qt+v ≤
1

rT
for v ∈ [0, s − t]. On the other hand, from (5.4.32), we have that

(5.4.39) |Jf(z, s)| ≤ Ẽ(1 + |z|).

In the inequalities above, the constants E, D̃ and Ẽ are as in Lemma 5.4.1 and

Remark 5.4.4.

Now, using (5.4.37), (5.4.38), (5.4.39) and the inequalities

(5.4.40) e−λξv < 1, and 1 − e−λξ(s−t) ≤ λξ(s − t),

we can bound (5.4.36) as follows:

|Jf(z, t) − Jf(z, s)|

≤ D̃ λ

(
ξ +

1

rT
(ξ + 1) + C(1 + |z|)

)
(s − t) + E EQ

{
|Zt,z

s−t − z|
}

+ λ ξ Ẽ (1 + |z|) (s − t)

≤ D̃ λ

(
ξ +

1

rT
(ξ + 1) + C(1 + |z|)

)
(s − t) + E · C (1 + |z|) (s − t)

1

2

+ λ ξ Ẽ (1 + |z|) (s − t)

≤ F (1 + |z|) (s − t)
1

2 ,

(5.4.41)

where F is a positive constant only depending on λ, ξ, T and Mf . In (5.4.41), to

obtain the second inequality, we use the moment estimates (5.4.22); to obtain the

third inequality, we use the fact that s − t ≤ T .
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In the following proposition we show that Jf satisfies a parabolic partial differ-

ential equation.

Proposition 5.4.6. Assume function f : R × [0, T ] → R+ satisfies the following

condition

(5.4.42) |f(z, t) − f(z̃, s)| ≤ D|z− z̃|+F (1+ |z|) |s−t| 12 , (z, t), (z̃, s) ∈ R× [0, T ],

in which D and F are constants, then the function Jf : R × [0, T ] → R+ is the

unique classical solution, i.e., Jf ∈ C2,1, of

A(t)Jf(z, t) − λξJf(z, t) + λ · Pf(z, t) +
∂

∂t
Jf(z, t) = 0(5.4.43)

Jf(z, T ) = (ζ · (z − K1))
+.(5.4.44)

Proof. It is clear from (5.4.1) that Jf satisfies the terminal condition. For any point

(z, t) ∈ R × [0, T ], let us take a rectangle R = [z1, z2] × [0, T ], so that (z, t) ∈ R.

Denote the parabolic boundary of R by ∂0R := ∂R − [z1, z2] × {0}. Consider the

following parabolic partial differential equation

A(t)u(z, t) − λξu(z, t) + λ · Pf(z, t) +
∂

∂t
u(z, t) = 0(5.4.45)

u(z, t) = Jf(z, t), on ∂0R.(5.4.46)

Because of the condition (5.4.42), z → f(z, t) is Lipschitz in its first variable uni-

formly in the second variable, it follows from Lemmas 5.4.1 and 5.4.5 that z →

Jf(z, t) is Lipschitz and t → Jf(z, t) is Hölder continuous. As a result Jf(·, ·) is a

continuous function on R × R+, in particular, continuous on ∂0R.
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On the other hand, for (z, t), (z̃, s) ∈ R, it follows from the condition (5.4.42) that

|Pf(z, t) − Pf(z̃, s)|

≤
∫

R+

∣∣∣∣f
(

z

y
+ qt

y − 1

y
, t

)
− f

(
z̃

y
+ qs

y − 1

y
, s

)∣∣∣∣ yν(dy)

≤
∫

R+

[
D|z − z̃| + D|qt − qs| |y − 1| + F (y + |z| + qt|y − 1|) |s − t| 12

]
ν(dy)

≤ D|z − z̃| + D(ξ + 1)
e−rT

T

∣∣∣∣
∫ s

t

erudu

∣∣∣∣+ F
(
ξ + qt(ξ + 1) + |z|

)
|s − t| 12

≤ D|z − z̃| + F̃ (1 + |z|)|s − t| 12 ,

(5.4.47)

in which F̃ only depends on T and ξ. Since R is a bounded domain, the factor 1+ |z|

in (5.4.47) is bounded in R, so z → Pf(z, t) is Lipschitz and t → Pf(z, t) is Hölder,

uniformly with respect to the other variable, in R. Now by Theorem 5.2 in Chapter

6 of Friedman (1964), the parabolic partial differential equation (5.4.45) and (5.4.46)

has a unique classical solution in the bounded domain R. Moreover this solution can

be represented by

u(z, t) = EQ

{
e−λξτJf(Zt,z

τ , τ + t) +

∫ τ

0

e−λξsλ · Pf(Zt,z
s , t + s) ds

}

= Jf(z, t),

in which the exit time τ , infs∈[0,T−t]{Zt,z
s = z1 or z2} ∧ (T − t), while the second

equality follows from the definition of the operator J in (5.4.1) and the strong Markov

property of Zt,z.

So far we have shown that Jf agrees with the unique classical solution of (5.4.45)

and (5.4.46) in the bounded domain R. Since this statement holds for arbitrary R,

it is clear that Jf is a solution of the parabolic partial differential equation (5.4.43)

and (5.4.44) for all (z, t) ∈ R × [0, T ].

The uniqueness of the solution for (5.4.43) and (5.4.44) follows from Corollary 4.4
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in Chapter 6 in Friedman (1964), since the coefficients of the derivative operators in

(5.2.16) satisfy linear and quadratic growth conditions respectively.

5.4.2 Properties of the sequence of functions defined in (5.2.10)

Our first goal is to prove z → vn(z, t) is Lipschitz and t → vn(z, t) is Hölder

continuous for all n. To this end we will apply Lemmas 5.4.1 and 5.4.5. To be able

to apply the latter lemma we need to show that

(5.4.48) Mn , sup
t∈[0,T ]

{vn(0, t)} < ∞, for n ≥ 0.

In the next lemma, we will dominate the sequence of constants (Mn)n≥0 by a universal

constant M∞, which depends only on T .

Lemma 5.4.7. Let us define the sequence of constants (Mn)n≥0 as in (5.4.48), then

Mn < M∞ ,
U

1 − α
+

α

1 − α

B

ξ
+ K1 < ∞,

in which the constants U , B and α are defined in Lemma 5.4.3.

Proof. When n = 0, by the definition of v0(·, ·) in (5.2.10), we have

M0 = sup
t∈[0,T ]

v0(0, t) = (ζ · (0 − K1))
+ ≤ K1,

in which the last inequality is saturated when ζ = −1. It follows from Lemma 5.4.3

that

(5.4.49) Mn+1 ≤ U + α

(
Mn +

B

ξ

)
, for n ≥ 0,

in which α < 1. It can be proven by induction that

(5.4.50) Mn ≤ U

(
n∑

i=0

αi − αn

)
+ α

(
n∑

i=0

αi − αn

)
B

ξ
+ αnK1, for n ≥ 0.

Since U , B and ξ are positive constants and 0 < α < 1, it is clear from (5.4.50) that

Mn ≤ U

1 − α
+

α

1 − α

B

ξ
+ K1 = M∞ < ∞.
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Lemma 5.4.8. Let (vn(·, ·))n≥0 be as in (5.2.10). We have that

(5.4.51) |vn(z, t) − vn(z̃, t)| ≤ |z − z̃| , z, z̃ ∈ R

and

(5.4.52) |vn(z, t) − vn(z, s)| ≤ Fn(1 + |z|) (s − t)
1

2 , 0 ≤ t < s ≤ T,

in which Fn are all finite constants depending on T .

Proof. From the definition of v0(·, ·) in (5.2.10), we have

(5.4.53) |v0(z, t) − v0(z̃, t)| =
∣∣(ζ · (z − K1))

+ − (ζ · (z̃ − K1))
+
∣∣ ≤ |z − z̃| .

Now, the inequality (5.4.51) follows from induction and Lemma 5.4.1. On the other

hand, (5.4.52) holds thanks to Lemma 5.4.5 which we can apply to each vn as a result

of Lemma 5.4.7.

As a corollary of Remark 5.4.4 and Lemma 5.4.7, we can show that (vn(z, t))n≥0

satisfies a linear growth condition in the z-variable, uniformly in the t-variable. This

will be used to show that this sequence has a limit.

Corollary 5.4.9. For any n ≥ 0,

(5.4.54) vn(z, t) ≤ M∞ + |z| , L(z), (z, t) ∈ R × [0, T ].

Proof. Combining (5.4.48) and (5.4.51), we have

vn(z, t) ≤ Mn + |z|, for n ≥ 0.

Now, the result follows from Lemma 5.4.7.

As a result of Corollary 5.4.9, next we show that, for a fixed (z, t) ∈ R × [0, T ],

the sequence {vn(z, t)}n≥0 is a Cauchy sequence.
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Lemma 5.4.10. For any (z, t) ∈ R × [0, T ] and n, m ≥ 0.

(5.4.55)

|vn+m(z, t) − vm(z, t)| ≤ 2M∞Am+2

(
1

rT

ξ + 1

ξ
+

C

ξ

)[ m∑

i=0

Am−iBi − Bm

]
+2|z|Bm,

where A = 1−e−λξ(T−t), B = 1−e−λ(T−t) and C is the same constant as in (5.4.21).

Proof. We will prove the estimation (5.4.55) by induction on m. When m = 0, it

follows from Corollary 5.4.9 that

|vn(z, t) − v0(z, t)| ≤ 2M∞ + 2|z|.

It is clear that (5.4.55) is satisfied in this case. Assuming (5.4.55) holds for the m

case, we will show that it holds when we replace m by m + 1. From the definition of

{vn(·, ·)}n≥0, we have

|vn+m+1(z, t)−vm+1(z, t)| ≤ EQ

{∫ T−t

0

ds e−λξsλ ·
∣∣Pvn+m(Zt,z

s , t + s) − Pvm(Zt,z
s , t + s)

∣∣
}

.

In the right hand side of above inequality, the induction assumption gives us

∣∣Pvn+m(Zt,z
s , t + s) − Pvm(Zt,z

s , t + s)
∣∣

≤
∫

R+

∣∣∣∣vn+m

(
Zt,z

s

y
+ qt+s

y − 1

y
, t + s

)
− vm

(
Zt,z

s

y
+ qt+s

y − 1

y
, t + s

)∣∣∣∣ yν(dy)

≤ 2ξM∞
(
1 − e−λξ(T−t−s)

)m

+ 2ξ

(
1

rT

ξ + 1

ξ
+

C

ξ

)[ m∑

i=0

(
1 − e−λ(T−t−s)

)i (
1 − e−λξ(T−t−s)

)m−i −
(
1 − e−λ(T−t−s)

)m
]

+ 2

∫

R+

( |Zt,z
s |
y

+ qt+s
|y − 1|

y

)(
1 − e−λ(T−t−s)

)m
yν(dy)

≤ 2ξM∞(1 − e−λξ(T−t))m

+ 2ξ

(
1

rT

ξ + 1

ξ
+

C

ξ

)[ m∑

i=0

(
1 − e−λ(T−t)

)i (
1 − e−λξ(T−t)

)m−i −
(
1 − e−λ(T−t)

)m
]

+ 2|Zt,z
s |
(
1 − e−λ(T−t)

)m
+

2

rT
(ξ + 1)

(
1 − e−λ(T−t)

)m
.

(5.4.56)
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In (5.4.56), the third inequality follows, because qt+s ≤ 1
rT

, and for m ≥ 1 and s ≥ 0

m−1∑

i=0

(
1 − e−λ(T−t−s)

)i (
1 − e−λξ(T−t−s)

)m−i ≤
m−1∑

i=0

(
1 − e−λ(T−t)

)i (
1 − e−λξ(T−t)

)m−i
.

On the other hand, from (5.4.7), we have

|Zt,z
s | ≤ |z|H0

s + |bs|,

where EQ{|bs|} = EQ{|Zt,0
s |} ≤ C from (5.4.21). Therefore we have

(5.4.57) EQ{|Zt,z
s |} ≤ |z|eµs + C.

Taking expectation on both side of (5.4.56) and plugging (5.4.57) back into (5.4.56),

we have

EQ
∣∣Pvn+m(Zt,z

s , t + s) − Pvm(Zt,z
s , t + s)

∣∣

≤ 2ξM∞Am + 2ξ

(
1

rT

ξ + 1

ξ
+

C

ξ

)[ m∑

i=0

Am−iBi − Bm

]

+ 2|z|eµsBm + 2

(
1

rT
(ξ + 1) + C

)
Bm.

(5.4.58)

Multiplying both sides of (5.4.58) with e−λξsλ and integrating with respect to s over

[0, T − t], and using the identity µ−λξ = −λ, we obtain the inequality (5.4.55) with

m replaced by m + 1.

As a result of the previous lemma we can define the pointwise limit for the sequence

(vn(·, ·))n≥0:

(5.4.59) v∞(z, t) , lim
n≥0

vn(z, t), (z, t) ∈ R × [0, T ].

Moreover, as a corollary of Lemma 5.4.10, we have

Corollary 5.4.11. For any compact domain D ⊂ R, vn(z, t) converges uniformly to

v∞(z, t) for (z, t) ∈ D × [0, T ]. Moreover,

(5.4.60) |v∞(z, t) − vm(z, t)| ≤ MD
(
1 − e−λη(T−t)

)m
,
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where MD is a constant depending on D and η = max{ξ, 1}.

Proof. Observing that the right hand side of (5.4.55) is independent of n and |z| is

uniformly bounded in D, the result follows from Lemma 5.4.10.

In the following, we will begin to study properties of v∞(·, ·).

Lemma 5.4.12. The function v∞ is a fixed point of the operator J .

Proof. For any s ∈ [0, T − t],

EQ
{
PL(Zt,z

s )
}

= EQ

{∫

R+

L

(
Zt,z

s

y
+ qt+s

y − 1

y

)
yν(dy)

}

≤ EQ

{∫

R+

[
M∞ +

|Zt,z
s |
y

+ qt+s
|y − 1|

y

]
yν(dy)

}

≤ ξM∞ +
1

rT
(ξ + 1) + C(1 + |z|).

(5.4.61)

As a result, we have

v∞(z, t) = lim
n≥0

vn+1(z, t)

= lim
n≥0

EQ

{
e−λξ(T−t)

(
ζ ·
(
Zt,z

T−t − K1

))+
+

∫ T−t

0

e−λξsλ · (Pvn)(Z
t,z
s , t + s) ds

}

= EQ

{
e−λξ(T−t)

(
ζ ·
(
Zt,z

T−t − K1

))+
+

∫ T−t

0

e−λξsλ · (P lim
n≥0

vn)(Zt,z
s , t + s) ds

}

= Jv∞(z, t),

(5.4.62)

where the third equality follows by applying dominated convergence theorem three

times. We can use the dominated convergence theorem due to Corollary 5.4.9 and

(5.4.61).

Using Lemma 5.4.8 and Corollary 5.4.11, we can show that z → v∞(z, t) is Lips-

chitz continuous and that t → v∞(z, t) is Hölder continuous.

Lemma 5.4.13. v∞(·, ·) satisfies

(5.4.63) |v∞(z, t) − v∞(z̃, t)| ≤ |z − z̃|, for (z, t), (z̃, t) ∈ R × [0, T ].
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Proof. For fixed z and z̃, let us choose a compact domain Dz,z̃ ⊆ R, so that z, z̃ ∈ Dz,z̃.

Then we have

|v∞(z, t) − v∞(z̃, t)| ≤ |v∞(z, t) − vn(z, t)| + |vn(z, t) − vn(z̃, t)| + |vn(z̃, t) − v∞(z̃, t)|

≤ 2
(
1 − e−λη(T−t)

)n
MDz,z̃

+ |z − z̃|.(5.4.64)

In order to obtain the last inequality, we use Lemmas 5.4.8 and Corollary 5.4.11.

Since n in the second inequality in (5.4.64) is arbitrary, the result follows.

Corollary 5.4.14. v∞(·, ·) satisfies

(5.4.65) |v∞(z, t) − v∞(z, s)| ≤ F∞ (1 + |z|) |t− s| 12 ,

in which constant F∞ < ∞ .

Proof. This is a direct application of Lemmas 5.4.5, 5.4.7 and 5.4.13. Note that

Lemma 5.4.7 is needed to show that supt∈[0,T ]{v∞(0, t)} < ∞, which is required by

Lemma 5.4.5.

5.4.3 Proof of Theorem 5.2.1

Proof of (i). This is a direct consequence of Lemma 5.4.10, which shows that

the sequence {vn(z, t)}n≥0 is a Cauchy sequence.

Proof of (ii). See Corollary 5.4.11.

Proof of (iii). Using the inequalities (5.4.51) and (5.4.52) in Lemma 5.4.8, we can

apply Proposition 5.4.6 to the function f = vn. It indicates Jvn(·, ·) is the unique

classical solution of the following equation

A(t)Jvn(z, t) − λξJvn(z, t) + λ · (Pvn)(z, t) +
∂

∂t
Jvn(z, t) = 0

Jvn(z, T ) = (ζ · (z − K1))
+,

(5.4.66)

for (z, t) ∈ R × [0, T ]. By the definition of the sequence (vn(·, ·))n≥0 in (5.2.10), we

have Jvn(·, ·) = vn+1(·, ·). So vn+1 is the unique solution of (5.2.14) and (5.2.15).
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Proof of (iv). Because of Lemma 5.4.13 and Corollary 5.4.14, we can apply Propo-

sition 5.4.6 to the function f = v∞. It shows Jv∞(·, ·) is the unique classical solution

of the following parabolic partial differential equation

A(t)Jv∞(z, t) − λξJv∞(z, t) + λ · (Pv∞)(z, t) +
∂

∂t
Jv∞(z, t) = 0(5.4.67)

Jv∞(z, T ) = (ζ · (z − K1))
+,(5.4.68)

However, Jv∞ = v∞ by Lemma 5.4.12. Therefore, v∞(·, ·) is the unique classical

solution of the integro-partial differential equation (5.2.17) and (5.2.18). �

5.5 Proof of Proposition 5.3.1

Proof of (i). We will first prove the statements in (i). Let us define en(k, m) ,

ṽ(k, m) − ṽn(k, m). Since P̃ is a linear operator, en will satisfy (5.3.1) when we

replace ṽn by en and ṽn+1 by en+1. Now let us define Em
n , maxk |en(k, m)| and

recall En = maxm,k |en(k, m)|. Since p+
k,m, p−k,m and 1 − p0

k,m are positive for all

(k, m), it follows from the difference equation of en that

(1 + p0
k,m) |en+1(k, m)|

≤ (p+
k,m + p−k,m)Em

n+1 + (p+
k,m+1 + p−k,m+1 + (1 − p0

k,m+1))E
m+1
n+1 + λ∆t ξEn

= (p+
k,m + p−k,m)Em

n+1 +

(
1 − 1

2
λξ∆t

)
Em+1

n+1 + λ∆t ξEn,

(5.5.1)

in which we used the assumption that (P̃1)(k, m) ≤ ξ. It follows from (5.5.1) that

(1 + p0
k,m) |en+1(k, m)| −

(
p0

k,m − 1

2
λξ∆t

)
Em

n+1 ≤
(

1 − 1

2
λξ∆t

)
Em+1

n+1 + λ∆t ξEn.

(5.5.2)

Let k∗ be such that |en+1(k
∗, m)| = Em

n+1. Since the right-hand-side of (5.5.2) does

not depend on k, we can take k = k∗ on the left-hand-side to write

(5.5.3) Em
n+1 ≤ θEm+1

n+1 + (1 − θ)En,
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in which θ = 1−1/2·λξ∆t
1+1/2·λξ∆t

∈ (0, 1], as a result of the assumption that p+
k,m, p−k,m and

1 − p0
k,m are positive for all (k, m). It follows from (5.5.3) that

(5.5.4) Em
n+1 ≤ θM−mEM

n+1 + (1 − θ)(1 + θ + · · · + θM−m−1)En.

Because of the terminal condition of ṽn, we have EM
n+1 = 0. In addition, (5.5.4) is

satisfied for all m we get that

(5.5.5) En+1 ≤ (1 − θM)En.

As a result (5.3.6) follows from iterating (5.5.5) on n.

On the other hand, as M → ∞

(5.5.6) 1 − θM = 1 −
(

1 − 1/2 · λξ · T/M

1 + 1/2 · λξ · T/M

)M

→ 1 − e−λξT ,

which shows that the convergence rate in (5.3.6) agrees with the convergence rate in

(5.2.13).

Proof of (ii). Using the triangle inequality let us write

|v∞(zk, m∆t) − ṽ(k, m)|

≤ |v∞(zk, m∆t) − vn(zk, m∆t)| + |vn(zk, m∆t) − ṽn(k, m)| + |ṽn(k, m) − ṽ(k, m)|

≤ C
(
1 − e−λη(T−m∆t)

)n
+ n · O((∆t)2 + (∆z)2 + (∆x)2) + C̃(1 − θM)n,

(5.5.7)

for some positive constants C and C̃. The first and the third terms in the right-hand-

side of the second inequality are due to (5.2.13) and (5.3.6). The second term arises

since the order of error from discretizing a PDE using a Crank-Nicolson scheme is

O((∆z)2 + (∆t)2), the interpolation and the discretization error from the numerical

integration are of order (∆z)2 and (∆x)2 and that the total error made at each step

propagates at most linearly in n when we sequentially discretize the PDEs in Step 1

of our numerical algorithm.
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Letting ∆t, ∆z → 0 in (5.5.7) we obtain that

(5.5.8) lim
∆t,∆z→0

|v∞(zk, m∆t) − ṽ(k, m)| ≤ C
(
1 − e−ληT

)n
+ C̃

(
1 − e−λξT

)n
,

in which we used (5.5.6). Since n is arbitrary the result follows.

On the other hand, in order to get the convergence rate in (5.3.8), we can choose

n = O(log(1/∆2)) in (5.5.7), which would guarantee that the first and the third

terms on the right-hand-side of (5.5.7) are of order O(∆2). This choice of n makes

the right-hand-side of (5.5.7) be on the order of ∆2 log(1/∆2). Note that this order

of convergence is better than that of O((∆t)2−γ +(∆z)2−γ +(∆x)2−γ) for any γ > 0.

�
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Table 5.1:
The approximated price for a continuously averaged European type Asian options in a
double exponential jump model.

r = 0.15, S0 = 100, T = 1, p = 0.6 and η1 = η2 = 25. Monte Carlo method uses 106 simulations
and 103 time steps.“C - P” is the difference between our approximated call and put option prices.
“Parity” is the difference predicted by the put-call parity (see (5.2.7)). Run times are in seconds.

European Asian option prices for a double exponential jump diffusion model

σ K2 λ
The algorithm of Section 5.3.1 Monte Carlo (Call Option)

Call Option (C) Put Option (P)
C - P Parity

Value Time Value Time Value Std. Err. Time

0.1

90
1 15.419 1.0 0.012 1.0 15.407

15.398
15.410 0.006 913

3 15.457 1.5 0.045 1.5 15.412 15.442 0.007 976

100
1 7.170 1.0 0.376 1.0 6.794

6.791
7.170 0.006 919

3 7.456 1.5 0.656 1.6 6.800 7.439 0.007 987

110
1 1.702 1.0 3.520 1.0 -1.818

-1.817
1.697 0.004 906

3 2.220 1.5 4.040 1.6 -1.820 2.207 0.004 981

0.2

90
1 15.699 1.0 0.292 1.0 15.407

15.398
15.686 0.012 908

3 15.802 1.5 0.390 1.6 15.412 15.806 0.012 983

100
1 8.540 1.0 1.745 1.0 6.795

6.791
8.540 0.010 935

3 8.790 1.5 1.994 1.6 6.796 8.784 0.010 996

110
1 3.723 1.0 5.541 1.0 -1.818

-1.817
3.721 0.007 921

3 4.045 1.6 5.864 1.6 -1.819 4.038 0.007 983

Table 5.2:
The approximated price for a continuously averaged European type Asian options in a
normal jump diffusion model.

r = 0.15, S0 = 100, T = 1, λ = 1, µ̃ = −0.1 and σ̃ = 0.3. Monte Carlo method uses 106 simulations
and 103 time steps. “C - P” is the difference between our approximated call and put option prices.
“Parity” is the difference predicted by the put-call parity. Run times are in seconds.

Prices of European Asian option with normal jumps

σ K2

The algorithm of Section 5.3.1 Monte Carlo (Call Option)
Call Option (C) Put Option (P)

C - P Parity
Value Time Value Time Value Std. Err. Time

0.1
90 16.997 0.5 1.601 0.5 15.396 15.398 16.991 0.014 913

100 10.062 0.5 3.272 0.5 6.789 6.791 10.046 0.013 910
110 4.836 0.5 6.653 0.5 -1.817 -1.816 4.834 0.011 915

0.2
90 17.346 0.5 1.950 0.5 15.396 15.398 17.339 0.017 919

100 10.959 0.5 4.170 0.5 6.789 6.791 10.968 0.015 917
110 6.303 0.5 8.120 0.5 -1.817 -1.816 6.310 0.012 913
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Table 5.3:
The convergence of the option prices with respect to the truncation length of the nu-
merical integral.

The parameters are the same as the parameters used in the 7th row in Table 1, i.e., r = 0.15,
S0 = 100, K1 = 0, K2 = 90, T = 1, σ = 0.2, λ = 1, p = 0.6 and η1 = η2 = 25.
As we introduced in (5.3.4), the integral term in (5.2.12) is approximated by the trapezoidal rule
on an interval [xmin, xmax] with xmin = x0 < x1 < · · · < xL = xmax. In this table, fixing ∆x, we
study the convergence with respect to the length of the truncation interval [xmin, xmax]. We choose
xmin = −N/η2 and xmax = N/η1. In (5.3.3), if the distribution F is the double exponential, when
N is large, the probability that the random variable X be outside the interval [−N/η2, N/η1] is
very small (for example, when N = 15 the probability is less than 10−6).

Convergence with respect to truncation length used in the numerical integration
N Call Option (C) Time Put Option (P) Time (C - P) - Parity
5 15.5832 0.500 0.2858 0.516 -0.1002
8 15.6953 0.765 0.2916 0.797 0.0061

10 15.6994 0.969 0.2921 1.000 0.0097
12 15.6995 1.141 0.2921 1.187 0.0098
15 15.6995 1.391 0.2921 1.500 0.0098a

aBecause we fix ∆x, the difference between the calculated value and predicted value in the last column does not
seem to converge to 0. But as ∆x → 0, the difference will converge to 0 as we will see in the next Table.

Table 5.4:
The convergence of the option prices with respect to the grid size of the numerical
integral.

In this table, we fix the truncation length of the numerical integral as xmin = −10/η2 and xmax =
10/η1, we will show the convergence with respect to the number of grids L in the discretization
of numerical integral in (5.3.4). Since the density of double exponential distribution has a cusp at
zero, we choose an unequaly spaced grid around zero. (The closer x is to zero, the finer the grid.)
Since the truncation interval [xmin, xmax] is fixed, choosing larger L gives a finer grid. We use the
same parameters as in Table 3.

Convergence with respect grid sizes used in the numerical integration
L Call Option (C) Time Put Option (P) Time (C - P) - Parity

200 15.7295 0.422 0.2926 0.422 0.0393
300 15.7103 0.578 0.2923 0.609 0.0204
400 15.7034 0.766 0.2924 0.797 0.0134
500 15.6944 0.969 0.2921 1.000 0.0097
600 15.6968 1.141 0.2920 1.172 0.0072
700 15.6954 1.344 0.2920 1.360 0.0058
800 15.6943 1.516 0.2920 1.562 0.0047
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Table 5.5:
The convergence of the option prices with respect to the grid sizes in the finite difference
scheme.

In this table we fix xmin = −10/η2 and xmax = 10/η1, L = 1000. Moreover, we fix zmin = z − 0.5
and zmax = z + 0.5 with z =

(
1 − e−rT

)
/(rT ) − e−rT K2/S0 defined in (5.2.20). We will show

the convergence with respect to time and space grid sizes that are used in implementing the finite
difference scheme. We use the same parameters as in Table 3.

Convergence with respect to grid sizes used in the finite difference scheme
Number of Time Steps Number of Space Steps Call Option Price Changes Time

10 40 15.7093 n.a. 0.438
25 100 15.6929 0.0164 1.890
50 200 15.688 0.0049 7.500

100 400 15.6864 0.0016 29.406
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