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Chapter 1

Introduction

This dissertation consists of three essays studying various issues in applied mi-
croeconomic theory.

The second chapter proposes a model of two-party elections in which voters’ pref-
erences over candidates is affected by their perception of candidates’ sincerity. Un-
like valence, voters’ assessments of a candidate’s sincerity depend on his platform
choice for the current election because of his political baggage. In equilibrium, the
following properties are observed. First, when candidates seek to maximize their
winning-probability, higher baggage leads to more extreme platform choice from the
median, but valence shows no influence. Second, the equilibrium outcome is more
sensitive to the change in voters’ policy preference when candidates seek to maxi-
mize their chance of winning than their expected share of votes. Finally, in a tight
electoral race between share-maximizing candidates, the equilibrium outcomes that
obtain under simultaneous and sequential platform choice coincide and are com-

pletely insensitive to a small change in the voter distribution. Our results provide



an alternative explanation for the cause and extent of policy extremism and rigidity
in political competitions.

The third chapter considers optimal contracts when a principal obtains advice
from experts. When advisors have conditionally uncorrelated signals about an un-
known true state of nature, aggregating multiple signals can lead to a better outcome
than just choosing the single best signal. In this paper, we examine a principal’s de-
sign of an optimal compensation scheme to screen the type of each expert, or the
precision of his signal, for proper aggregation of multiple signals. Under a Gaussian
specification of information, we show that there exists a compensation scheme which
achieves the first best outcome: each expert is induced to honestly report his poste-
rior on the true state, to truthfully reveal his type, and is paid only his reservation
utility. Further, the optimal contract is a linear function with respect to a convex
function of the mean squared error. The optimal contract satisfies a single crossing
property with respect to the fixed wage component of the compensation and the
incentive component which depends on the prediction error. This result comes from
the cheap-talk feature of the professional advising, which implies that an agent’s
payoff solely depends on the transfer from a principal.

The fourth chapter considers the optimal employment problem faced by a mo-
nopolistic employer when potential employees are heterogeneous in ability and the
marginal contribution of an expert depends not only on his own ability, but also on

the abilities of the remaining employees. If an increasing submodular production



function of indivisible employees shows increasing difference in marginal production,
or decreasing concavity, and the reservation wage schedule is a fraction of the pro-
duction by single employee, the optimal employment portfolio can be described by a
cutoff element: all employees with greater ability than the cutoff level are hired and
the rest are not. Moreover, the efficiency in employment is achieved through myopic

decisions.



Chapter 2

Political Baggage and Electoral Competition

2.1 Introduction

Voting decisions are based in part on perceptions of candidates’ sincerity. When
a candidate announces his platform, voters often question whether the candidate is
really committed to that platform, and whether he has the expertise or ability to
implement it. The candidate’s political history influences voters’ perception about
his sincerity on the announced platform.!

For example, in the 2004 U.S. presidential election, a key difference between
George W. Bush and John Kerry was their stance on the Iraq war. During his
campaign, Kerry suffered from the accusation of flip-flopping over his position on
the war. Whether this accusation was correct or not, it influenced voters’ evalua-
tion of his commitment to his promised policies, even among voters who were not
completely happy with the policies of Bush at that time.

In this paper, the canonical model of two-party electoral competition (e.g. Downs

1For convenience, “he” is used as the pronoun for a candidate, and “she” for a voter.



(1957)) is extended to allow voters’ preferences to be affected by their assessment
of the candidates’ sincerity as well as their platform choice and valence. FEvery
candidate has a political history which includes, for example, his historical policy
platforms, experiences, name recognition, party affiliation, and successful delivery
of past promises. These comprise his political “baggage.” A candidate’s political
baggage can be considered a political liability for him. Because of such baggage,
voters may discount a candidate’s sincerity if the candidate changes his platform
from his historical one. Their belief in a candidate’s sincerity will be weaker if the
candidate has a larger baggage or changes his platform by a lot. On the other hand,
political baggage does not affect the evaluation of a candidate’s valence. This simple
but non-trivial addition of realism to the canonical two-party electoral competition
model leads to dramatic changes in various equilibrium properties, many of which
are unique to this model or more pronounced than in the previous literature.

We show the existence of a pure-strategy Nash equilibrium in which candidates’
platform choices do not converge. In this equilibrium, the following properties are
observed. First, when candidates seek to maximize their probability of winning,
the degree of policy extremism is not affected by the candidates’ valence but by
their baggage.? Second, the equilibrium outcomes are affected by candidates’ elec-
toral objectives: maximizing their probability of winning or expected share of votes.

The equilibrium outcome is sided to a favored candidate’s historical platform and

2We use policy extremism to refer to the distance from the median voters’ ideal to a candidate’s platform and use
policy rigidity to refer to the inertia in platform choice with the change of the voters’ policy preferences distribution.



fluctuates more with respect to a change in the voter distribution when candidates
seek to maximize their probability of winning. Finally, when candidates maximize
their expected share of votes in a tight electoral competition, the equilibrium out-
comes of simultaneous and sequential platform choice coincide and become com-
pletely insensitive to a small change of the median voter platform location. While
equilibrium policy choices fluctuate more with the change of voters” policy prefer-
ence under winning-probability maximization, policy rigidity is more salient under
expected share maximization.

The equilibrium platform choices reflect the trade-off between preserving a candi-
date’s perceived sincerity and aligning his platform with voters. Due to his political
baggage, a candidate’s perceived sincerity is greater when he stays around his his-
torical platform than when he is close to the median voter’s ideal. Suppose that
the candidate’s current platform is the median voter platform. At this platform, the
first derivative of the median voter’s utility with respect to platform change is zero.
Thus, a marginal departure toward his historical platform has no first-order effect on
the median voters’ utility from his platform but it strictly increases the evaluation
of his sincerity. Thus, the candidate has good reason to move away from the median
voter platform, toward his historical platform, if he wants to maximize the median
voter’s utility.

Note that only the marginal change of perceived sincerity, which is affected by

political baggage, affects the equilibrium platform choices. In other words, policy



extremism is affected only by the size of political baggage; valence has no influence.?
In equilibrium, for each candidate, the marginal increase of the median voters’ utility
from policy preference is equal to the marginal decrease of their utility from his per-
ceived sincerity. The candidate with greater baggage will choose a platform farther
from these voters’ ideal than his opponent.

Different electoral objectives affect the degree of policy extremism and rigidity in
policy choice, topics which are little investigated in the previous literature. Policy
extremism becomes more of an issue when a favored candidate seeks to maximize his
probability of winning. For a favored candidate, one more likely to earn the majority
of votes, the benefit of reaching more voters is lower under winning-probability max-
imization. He wants to secure his base by offering voters higher perceived sincerity
rather than reach more voters. His platform choice is, therefore, closer to his his-
torical platform than under expected share maximization.* On the other hand, an
unfavored candidate’s equilibrium choice shows the opposite pattern. Thus, the equi-
librium platform choices when candidates care about winning-probability are closer
to the favored candidate’s historical policy platform than when they care about the
expected share.

Policy rigidity becomes a more salient issue when candidates try to maximize
their expected share of votes in a tight electoral race. In this case, the equilibrium

platform choices become completely insensitive to a small change in the median voter

3Note that the size of baggage by itself does not predict which candidate chooses the more extreme platform.
4We refer to a candidate’s platform choice as more stubborn if it is closer to his historical platform.



platform. Further, the equilibrium outcomes of simultaneous and sequential platform
choice coincide. The optimal platform for the Stackelberg leader is actually located
at a kink in this case, which happens to be also the Nash equilibrium platform
choice. The Nash equilibrium platforms in this case are where each candidate’s best
response functions turn from strategic substitutes into strategic complements. Note
that this kind of insensitivity does not appear when candidates try to maximize
winning-probability where attracting the median voters is the dominant strategy.
This result also provides alternative explanations to the cause and extent of policy
rigidity as a result of political competition, without assuming influence from special
interest groups or continuation of a specific policy. While previous papers such
as Coate and Morris (1999) and Grossman and Helpman (1994) provide excellent
explanations of policy persistency, defined as continuation of a specific unpopular
policy, none of this previous work predicts the emergence of the complete insensitivity
of equilibrium platform choices with respect to voters’ policy preferences change.
The effect of a candidate’s valence on spatial electoral competitions has been
widely studied. Ansolabehere and Snyder Jr. (2000), Aragones and Palfrey (2002)
and Groseclose (2001) show that the difference in candidates’ valence leads to policy
platform divergence in equilibrium. In the setting of Kartik and McAfee (2007) and
Callander and Wilkie (2007), voters have uncertainty about a candidate’s character,
equivalent to valence, and interpret the candidate’s platform as a signal about his

character as well. Unique perfect Bayesian equilibrium appears when a candidate



type is interested only in securing office strategically mixes or obscures his platform
choices. Overall, as Bernhardt et al. (2008) note, the higher valence candidate chooses
a more moderate policy to increase his electability if each candidate’s valence is
publicly known to voters, as in the first three papers. Conversely, the higher valence
candidate chooses a more extreme policy to signal his valence if each candidate’s
valence is unknown to voters, as in the second two papers. Empirical evidence,
however, shows no definite support for either of these predictions.’

Our result predicts that candidates’ valence does not affect the degree of pol-
icy extremism.® It is a significant departure from the predictions of the previous
literature and possibly explains the non-consensus of the previous empirical studies.

When the evaluation of a candidate’s non-policy attributes, like sincerity in this
paper, is affected by his platform choice, an equilibrium outcome reflects a com-
promise between the needs for preserving the level of his non-policy attribute and

" For example, Berger et al.

aligning his policy platform with voters’ preferences.
(2000), Bernhardt and Ingberman (1985), and Wittman (2007) consider reputational

cost proportional to the distance between a reference platform and the one for the

current election, with a sequential move game structure and under the objective of

5For example, Fiorina (1973) shows evidence supporting the first three papers while Griffin (2006) provides counter

evidence and support the second two. See Groseclose (2001) and Bernhardt et al. (2008) for further information.
6Note, however, that the level of a candidate’s perceived sincerity affects the chance of winning and the margin

of victory.
"The cost of platform change is not a simple issue because the outcomes often critically depend on it. There are

other papers with different assumptions on the cost of platform change such as commitment with no cost (Aragones
and Palfrey, 2002), fixed cost (Callander and Wilkie, 2007; Kartik and McAfee, 2007), or cheap-talk (Ottaviani and
Sgrensen, 2006b). A recent empirical study by DeBacker (2008) provides evidence supporting the cost proportional
to the degree of platform change.



expected share maximization. Eyster and Kittsteiner (2007) propose a parliamentary
election model where political parties choose their platforms first, and then candi-
dates choose their own platforms. Distance from a candidate’s platform to her/his
party’s incurs cost to the candidate. Our model incorporates these observations and
provides additional findings about the equilibrium platform choices of winning prob-
ability maximizing candidates, in a sequential game with a different order of platform
choices, and in a simultaneous move game, questions not covered in their work.

In our model, candidates’ electoral objectives, either maximizing probability of
winning or expected share of votes, affect the equilibrium outcome. This result
provides a contrast with previous work such as Duggan (2000), Banks and Duggan
(2005), and Patty (2002), which takes a probabilistic voting approach and predicts
the equivalence of equilibrium platform choices under both objectives. Our model
violates one key assumption in these three papers: the independence of utility shocks
across voters. Our result is more in line with comparative institutions models such
as Persson and Tabellini (1999), Lizzeri and Persico (2001) and Persson et al. (2000),
which investigate the effect of political institutions difference on fiscal and redistri-
bution policies.

The rest of this paper is organized as follows. Section 2 outlines the model.
Section 3 characterizes equilibrium platform choice under both winning probability
maximization and expected share maximization. Section 4 compares equilibrium

outcomes, policy rigidity and extremism observed under different electoral objectives.
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Section 5 contains a discussion of the results and their applications.

2.2 Model

Consider an election that proceeds in two stages. First, each candidate chooses
a platform. At the second stage, voters observe policy platforms. In addition, there
may be external news, positive or negative, about each candidate. Each voter then
chooses the candidate giving her the higher utility. The candidate with the most
votes either wins the election or holds political power proportional to the share of

votes.

2.2.1 Players

There are two candidates. An incumbent (7) faces an election against a new en-
trant (e). Candidate j (j € {7, e}) chooses his platform w; along from a convex policy
set ©C R. A candidate’s political history is abstracted by his historical platform,
h; € ©. For example, the historical platform may represent the candidate’s expertise
or his platform choices in the past. Each candidate has political baggage, which is
a liability if he wants to alter his platform away from his historical platform. The
incumbent has larger political baggage compared with an entrant. That is, it is more
costly by the incumbent to move away from his historical platform.

Voters are distributed according to a symmetric, atomless distribution F'(#), with
a median m over ©. A voter has a single-peaked policy preference. Her ideal platform

0 € O is interpreted and defined as her type. She chooses a candidate who gives her

11



a higher utility.

We consider two cases: i) the candidates receive utility only from winning and
try to maximize their winning probability, and ii) where candidates maximize the
share of votes. We assume that the historical platform of each candidate is strictly
in the interior of ©. All information is public, and both acquiring information and
casting a vote are costless. Hence, there is no abstention and no “swing voter’s curse”

(Feddersen and Pesendorfer, 1996).

2.2.2 Voter’s Utility

The platform chosen by candidate j, w;, affects the utility of voters in two ways.
First, as is standard, the closer is candidate j’s platform w; to a voter’s ideal platform
6, the higher is the voter’s utility from her political preference. We define v(wj, )
to represent voter’s utility from the closeness of platform, termed policy preference,
which is single-peaked and symmetric at w; = 0.

Second, voters form an evaluation of candidate j’s non-policy attribute, proxied
as his sincerity s;(w;; hj), represents the voter’s utility from candidate j’s sincerity,
which is a function of his current platform w; and his historical platform h;. Note
that s; is independent of ¢: all types of voter have an identical assessment about
candidate j’s sincerity.

In addition to sincerity, there is another kind of non-policy attribute, termed as
valence which is not affected by political baggage. Voters’ evaluation of candidate

J's valence z; is, therefore, the same regardless of his platform choice and given as a

12



constant.

There exists a common utility shock ¢; to all voters about candidate j. This shock
reflects news about the candidate that may emerge between the time the platform
is chosen and the election day. This commonness implies that the realization of
randomness, €; and ., respectively, is perfectly correlated for all voters.

Note that the magnitude of the difference in candidates’ utility has no effect
on voters’ decision; only the sign of the difference, or who gives the higher utility,
matters. In other words, the voting behavior follows the Downsian approach.

A voter’s utility from candidate j, if elected, is defined by the sum of these ele-

ments as
(2.1) uj(wy,0,e5) = v (wy,0) + s;(wys; hy) + z; + ¢

As Feddersen and Pesendorfer (1997) note, a candidate’s policy platform can
be considered as a private value to voters while their evaluation of his non-policy
attributes like sincerity and valence as common values.

A candidate’s platform choice w; is assumed to be commonly known to all can-
didates and voters. There is no uncertainty for a voter’s policy preference on can-
didates. On the other hand, the common random shock ¢; is realized between the
time of platform choice and the actual votes. This uncertainty creates the positive
chance to win for a lesser regarded candidate, and removes the instable, knife-edge
characteristic of the canonical model’s prediction.

We make the following assumptions.

13



A.1 Each ¢; (5 € {i,e}) is independently drawn from an identical, well-defined, and
zero-mean distribution. Further, €; can be sufficiently high or low to lead to a

positive chance of winning at any platform.

Given assumption A.1, even a less favored candidate has a positive probability of
winning. This feature greatly reduces the set of equilibria.

We have a standard regularity assumption for v(-) as follows:

A.2 v(w;,0) = v(Jw; — 0]) is continuous, strictly concave, and twice differentiable.

We assume the following properties of sincerity s;(w;; h;).

A.3 i) Voters’ evaluation of sincerity s;(w;;h;) = s;(Jw; — hj|) is a differentiable
function with s < 0 and s} =0 at w; = h;.
ii) At any given distance d > 0 from a candidate’s historical platform, or d =
|we — he| = |w; — hy|, s < s and, consequently, 0 > s/ > s..
ii1) Se(hi; he) + ze < 8i(his hy) + zi, and se(he; he) + ze > 8i(he; hi) + 2.

iv) At any w; and 0, [s}| < [v]] is always satisfied.

In A.3, i) says that the wider gets the distance between h; and w;, the lower is
the voters’” evaluation of candidate j’s sincerity, s;(-). ii) states that the incumbent’s
baggage leads to a larger marginal cost for changing his platform. In other words,

the incumbent has greater baggage.® It is also a mathematical definition of greater

8Intuitively, once the incumbent has built his reputation at a certain historical platform, his political history is
less useful to evaluate him if he moves farther from this platform. On the other hand, the entrant may be relatively
free from this constraint due to lack of (or shorter) political history, or the challenging party may choose a politician
who fits better on a certain platform out of its candidate pool.

14



baggage in our model. iii) says that if both candidates choose their platforms at can-
didate j’s historical platform h;, candidate j has strictly greater perceived sincerity
than his opponent. Moreover, i) and iii) lead that within the range of @, there exists
a unique platform w which satisfies s.(w; h.) = s;(w; h;). Finally, iv) states that the
change in policy preference is always steeper than that in sincerity. Note that the
differences between an incumbent and an entrant exist only in ii) and nowhere else.
For this reason, any property for one candidate also holds for the other as long as ii)
is not required.

Finally, without loss of generality, we assume that the incumbent’s historical
platform, h;, is on the left of the median voter platform m, and the entrant’s, h,., is

on the right of m. That is, h; < m < he.

2.2.3 Platform Choice and the Envelope of Expected Utility

With the Downsian approach, if one candidate successfully attract voters of type
0, at least the whole voters on one side would also choose that candidate. This
property simplifies a candidate’s electoral objective as attracting a specific type of
voters (e.g. the median voters). We will investigate and use it further in the next
chapter.

A voter of type 0 has expected utility U; from choosing candidate j as

(2.2) Uj(0,w;) = Elu(w;, 0, ;)] = v(w;, 0) + s;(wy; hy) + z

With A.2 and A.3, we expect that U;(f,w,) is continuous, differentiable, single-

15



oU;(w;,0)

peaked and, therefore, the first order condition —%-~
J

= 0 must be satisfied at w; =

wf-, where wf- is defined as wf- € arg max,,ce U;(0,w;). In other words, candidate

7 maximizes the expected utility for the voters of type 6 when he chooses wf- as his

platform. The following proposition states that this is indeed true and this platform
0

wj is not 6.

Proposition 2.1. Candidate j’s (j € {i,e}) most appealing platform to the voter
of type 0, wf-, is (1) unique and falls between h; and 6 unless § = h;, and (i) a

monotone increasing and continuous function of 0.

Proposition 2.1 explains the reason why a candidate in general does not choose
his platform w; = 6 to give the highest expected utility to the voters of type 6. If
a voter has ideal point 6 # h;, then candidate j’s platform most appealing to that
voter of type 6 will never be € since a marginal departure from 6 will cause no first
order loss in v but will cause a first order gain in z. It is a crucial property that
leads to the non-convergence of equilibrium platform choices. The continuity of Uj
implies that any w; can be a platform that maximize a type 0 except for the small
fringe regions around the bounds of policy space ©, which do not need considering.

Proposition 2.1 also implies that U;(6, w?) is a continuous and differentiable func-
tion of § € ©. It is actually the envelope of the expected utility for candidate j. For
simplicity, we let U;(0) := U;(0,w?) and call U;(0) as candidate j’s envelope. Figure
2.1 graphically describes the expected utilities and envelopes. Envelope determines

which candidate is expected to win the majority of votes in the current election and

16



the boundary of the voters’ type a candidate is expected to attract. We investigate
further in the next chapter.

A candidate’s envelope specifies the range of types that a candidate cannot be ex-
pected to capture ex ante. For example, given the entrant’s platform w,, if U.(6, w,)
is higher than U, () at a platform 6, the voters of type 6 would not expected to

prefer the incumbent regardless of his platform choice w;.

Lemma 2.1. Candidate j’s envelope, Uj(e), decreases as 6 moves away from j’s

historical platform h;.

Figure 2.1: Expected utility and envelope

Finally, Favor in an election is defined to be used as follows in our model. As m
moves closer to candidate j’s historical platform, the election becomes more favorable

for 7.

17



2.3 Elections

In an election, each candidate chooses a platform to maximize their probability
of winning or expected share of votes, depending on his electoral objective. Without
loss of generality, we assume that the incumbent’s historical platform is on the left
of the entrant’s, or h; < h, and the median is in between.

We define the difference between the incumbent’s utility and the entrant’s utility

for voters of type 0, b(6; w;, w.), as

b(O;wi,we) = w(f,wi,e;) — u(f,we,ee)

= [v(Jwi —0]) + s; (wis hi) + 2 + €] — [V (Jwe — 0]) + Se (We; he) + 26 + €]

and the difference between expected utilities as

B(@, ws, we) = UZ (9, wi) - Ue (97 we) = E[b(@, Wi, we)]

= [v(Jw; = 0]) + si (wi; hi) + 2] — [v (|we = 0]) + sc (we; he) + 2]

As well as the difference in candidates’ utility, b(f) can also be interpreted as the
voters of type #’s inclination for the incumbent. With Downsian approach, voters of
type 0 would vote for the incumbent if 6(f) > 0 and for the entrant if b(0) < 0. With
probabilistic voting approach (Enelow and Hinich, 1981; Hinich, 1977), higher b(9)

implies that an individual voter have higher probability of choosing the incumbent.

18



2.3.1 Platform Choices under Winning-Probability Maximization

Each candidate’s objective is to maximize the probability of winning the majority
of votes. Remember that each candidate’s platform choice decision should be made
before the external common random utility shocks €; and €, respectively, are realized.

With Downsian approach, if one candidate can successfully attract the median vot-
ers, the rest of the voters on one side also choose that candidate. Therefore, given the
entrant’s platform w,, the incumbent’s objective is represented as max,,, Pr (b(m; w;, w.) > 0),
and, similarly, given w;, the entrant’s objective is represented as min,, Pr (b(m;w;, w.) > 0).
Each candidate tries to attract the median voters by maximizing the median vot-
ers’ expected utilities from choosing the incumbent, U; (m,w;), and the entrant,
Ue (m, w,), respectively.

The following proposition specifies the equilibrium platform choices of both can-

didates and their property.

Proposition 2.2. Under the objective of winning-probability maximization, it is a
strictly dominant strategy for candidate j (7 € {i,e}) chooses the platform which
mazimizes Uj(m,w;) from choosing him. Further, candidate j’s valence has no effect

on his equilibrium platform choice.

Because the first derivative, not the level, of candidate j’s sincerity affects his
choice, any non-policy value added, either positive or negative, to his sincerity does

not change his equilibrium platform choice as long as the non-policy value is not
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affected by w;. This result shows a good contrast with the previous literature about
the correlation between valence and policy extremism. The higher level of sincerity,
however, does lead to the greater chance of winning and the margin of victory in our
model.

Note that each candidate’s platform choice, w]" and w", is not affected by the
opponent’s platform. w!* and w!" are dominant platforms for each candidate who
wants to maximize his winning probability. Therefore, whether it is a simultaneous
move or a sequential move game, regardless who moves first, a candidate’s equilibrium
platform choice is always the same. Figure 2.2 describes this equilibrium. The
incumbent and the entrant’s equilibrium platform choices, w;" and w]* satisfy w;" <

m < w,".

\4

Figure 2.2: Equilibrium platform choice when candidates maximize their winning probability.

Proposition 2.3 states the comparative statics of policy extremism, which is de-

fined as the distance from the median voter platform to a candidate’s platform choice,
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and policy rigidity in equilibrium under winning-probability maximization.

Proposition 2.3. In equilibrium under winning-probability mazximization, we have
the following properties: i) greater baggage leads to greater policy extremism, ii) a
more favorable election leads to less policy extremism, and iii) greater baggage leads

to greater policy rigidity.

Note that Proposition 2.3 does not predict that the candidate with the greater
baggage always chooses the more extreme platform than his opponent. For example,
if the median voters are located sufficiently close to the historical platform of the
candidate with the greater baggage, his platform choice can be less extreme than his

opponent’s.

2.3.2 Platform Choices under Expected-Share Maximization

Candidates now try to maximize their expected share of votes because a larger
share of votes can lead to a bigger political power for the winning candidate, or
the political institution actually adopts a proportional system. We assume that
candidates are risk-neutral about the share of votes. Therefore, each candidate’s
platform choice is based only on the voters’ expected utilities from choosing him.

Unlike the electoral competition between candidates maximizing their winning-
probability, the game structure, simultaneous or sequential move game, now may
change the equilibrium platform choices because there is no dominant strategy when

candidates try to maximize their expected share. In the next chapter, however, we
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show that the equilibrium platform choices coincide for both sequential and simul-

taneous move games if the election is tight.
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Figure 2.3: Expected utility, envelope, threshold platform and border platform

Figure 2.3 graphically describes the utilities, envelopes and some important plat-
forms to understand equilibrium under expected share maximization. ¢* is the plat-
form at which both envelopes U, and U, intersect each other. A unique intersection
of the envelopes exists only if A.3 i), ii) and iii) are satisfied. We define the intersec-
tion of both envelopes, ¢* in Figure 2.3, as border platform. border platform ¢* can be
interpreted as the platform beyond which a candidate does not expect to attract the
voters. w; is the incumbent’s platform where the voters at the border platform have
the maximum utility from the incumbent and w? is the entrant’s platform where they
have the maximum utility from the entrant. In other words, w;} € arg max U;(c*, w;)
and w} € arg max U, (c*, w,).

We define threshold platform c(w;,w.) (¢ € ©) to be a platform where a voter at
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¢ becomes a threshold voter, one who is indifferent between the incumbent and
the entrant. In other words, we have u(w;, c,e;) = u(we,c,e.) and, therefore,
b(c;w;,we) = 0. We can also define expected threshold platform ¢ in the same
approach: U;(¢, w;) = U.(¢,w.) and B(¢; w;, w.) = 0. Obviously, ¢ (and ¢) is a func-
tion of both candidates’ platform choice w; and w,. For the later part of this paper,
we use threshold platform to indicate expected threshold platform.

The following lemma shows the existence and uniqueness of this threshold plat-

form.

Lemma 2.2. If both candidates’ platforms are not the same, there is a unique thresh-

old platform ¢(w;, w,).

Note the difference between the (expected) threshold platform ¢(w;, w.) and bor-
der platform ¢*. € is the intersection of both candidates’ expected and changes with
the platform choices and a function of both candidates’ platform choices. On the
other hand, ¢* is the intersection of the envelopes of their expected utilities and does
not change with the platform choices. While the voters of type ¢, or threshold voters,
swing their votes, these votes are not pivotal in general.

Without loss of generality, we investigate the case of the entrant as a first mover.
With Downsian model, a candidate’s objective is now choosing a platform that send
the expected threshold platform as far as possible. In other words, a candidate’s
objective is to maximize, or minimize the threshold platform €.

From A.3.iii) we can derive a platform w which satisfies s;(w; h;) +z; = s.(W; he) +
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Ze. 1t is obvious that B(A,w,w) = 0 at any 6 in this case. w can be interpreted as the
platform beyond which a candidate’s sincerity becomes lower enough that he cannot
be expect to attract any type of voters as a first mover. For example, if the entrant’s
platform choice w, is left of w, or w. < w, the incumbent can expect to attract all
types of voters by setting his platform at the entry platform (i.e. w; = w.). The
value of B(0;w;,w,) is positive for all § because the incumbent’s initial sincerity at
we is higher than the entrant’s, or r;(w; = w.) > r.(w.) for any w, < w. Therefore,
no equilibrium platform choice by the entrant includes the platform on the left of w.
The same logic is applied to the incumbent, too.

This situation can be compared to the Bertrand competition with asymmetric
cost structure; the incumbent can be considered as a lower cost seller. Therefore,
with Downsian approach, the incumbent’s best response is to set his platform at the
entrant’s entry platform and receives all of the votes, as the lower cost seller slightly
undercuts the opponent’s price and gets all of the customers. It is obvious that the
first-mover entrant should not choose his entry platform at w, < w in equilibrium.

Unlike Bertrand competition, however, there exists no pure strategy equilibrium
at w; = w, = W. No tie breaking-rule can lead (W, W) to a pure-strategy equilibrium.
We assume that in this case, the tie-breaking rule gives the second mover all of the

votes to preserve continuity of best responses in a sequential move game.

Lemma 2.3. There is no equilibrium in which w; = w, = w: no tie-breaking rule

that leads w; = w, =W to a pure-strateqy Nash equilibrium.
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In the case of w < w,, on the other hand, it is obviously impossible for the
incumbent to give higher expected utility to all types of voters. In other words,

there exists some 6 at which U; (6, w;) < U;(0) is satisfied.

Figure 2.4: Incumbent’s best response when candidates maximize their expected share. (F(c1) >
1—F(e2))

AN\

Figure 2.5: Incumbent’s best response when candidates maximize their expected share. (F(c1) <
1— F(co))

From our Downsian assumption, we expect that the incumbent, who wants to
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maximize the threshold platform, also wants to maximize the expected utility for
the voters of threshold platform, and this platform is expected to satisfy the first

order condition YW

aw.~ = 0. Figure 2.4 graphically describes this situation. If a

threshold platform @ is located as w; < ¢ < w, the incumbent’s share is F'(¢) and
the entrant’s is 1 — F'(¢). If w, < w; < ¢, the incumbent’s share is 1 — F(¢) and the

entrant’s share is F'(¢). Given w,, the incumbent’s objective is given as

(2.3) max|[max{ F'(¢ (w;, w.)), 1 — F(¢ (w;, we))}]

Wy

Figure 2.4 hints that there exist two platforms ¢; and ¢z (¢ < ¢o, ¢1, o € ©) where
Ue(er,we) = Us(cr) and U, (e, w,) = Usi(cy) as long as W < w,. Note that ¢; and ¢,
are solely determined by the entrant’s choice w, and can represented as a function of
We, ¢1(we) and ca(w,), respectively. Figure 2.4 also hints that the threshold platform
¢ be either ¢; or ¢; when entrant moves first. The following lemma gives a formal

proof for this claim.

Lemma 2.4. Suppose w; < W < w,. There exists two platforms ¢y and ¢y (c1 < ¢3)
where U,(c1,w.) = U;(c1) and U,(co, w.) = U;(ca), and the incumbent’s best response

leads the threshold platform ¢(w;, w,) to be either on ¢y or c;.

Figure 2.4 and Figure 2.5 describe the incumbent’s best response. Given the

entrant’s platform choice w, and corresponding ¢;(w.) and cz(w,), the incumbent’s

platform choice is now simply either w;* or w;*. Let cp := % Because of symmetry

of the voter distribution, F'(¢;) > 1 — F(¢y) can be satisfied if and only if m < cg.
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dU;(wj|e1)

Therefore, if m < cg, the incumbent chooses w;* which satisfies =~
7

=0. w; is
on the left of w, in this case. Otherwise, he will choose w;?, which is on the right of

We.

We now investigate the most important and unique property regarding a candi-
date’s best response. The incumbent’s best response is non-monotone even when
the location of median m still lets the incumbent take the share of votes on the
left of the median. The incumbent’s best response is strategic substitute when the
entrant’s platform is located between w < w, < w} while it is strategic comple-
ment when w} < w,. Therefore, w} is the entrant’s platform where the incumbent’s
best response changes from strategic substitute to strategic complement. The fol-
lowing lemma shows that, without loss of generality, a candidate’s best response is

non-monotone with his opponent’s platform.

Lemma 2.5. Whenm < cg, ifw < we < w}, the incumbent’s best response decreases

as we increases, and it increases when w; < w,.

Figure 2.6 shows an example of an incumbent’s best response when the entrant
platform is between w and w;.
We now investigate the entrant’s equilibrium platform choice as the first mover.

If m < cg, then F(c;) > 1— F(cy) and the incumbent will choose w;* which satisfies

dUi(wi‘E)

512 =0, and is on the left of w.. Otherwise, he will choose w;* which is on the

right of the entrant.
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Figure 2.6: Incumbent’s best response when w < w, < w}.

Expecting the incumbent’s best response, the entrant’s objective is given as

(2.4) min|[ max {F (¢ (w;, w.)), 1 — F(¢(w;, we))}]

We w;(we)

c*+c3
2

When the entrant’s platform choice w. = w}, we know that ¢; = ¢*. Let ¢, =
(¢* < ¢}) where ¢; and ¢}, are the corresponding ¢ and c¢g when w, = w}. As
the first mover, when cj; < m, the entrant chooses his platform further from his
historical platform than his choice under winning-probability maximization. On the

other hand, when m < ¢}, he does not follow the median any more. The following

proposition formally states the entrant’s platform choice as the first mover.

Proposition 2.4. Consider the game when the entrant moves first. If m < cj, the

entrant sets his platform at w} and the incumbent follows at w;. If cj; < m, the

entrant sets his platform w, so that cgp(w,) = w = m, and the incumbent
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chooses either w;' or w;> in equilibrium.

The same logic is applied when the incumbent moves first. With abuse of notation,

c1(w;) and cy(w;) (¢ < ca) now represent the intersections of U; (6, w;) and U..

Let CL(wi) = w and let Cz = citct

2

* *
where ¢ = ¢1(w]

) and ¢* = ¢ =

co(wy). Again, if w; is located between w; and w, the entrant’s best response increases

as w; decreases.

Proposition 2.5. Consider the game when the entrant moves first. If c; < m, the
platform choices are w; = w; and w, = w} in equilibrium. If m < cj, the incumbent

c1(wi)+ea(w;)
2

chooses his platform w; so that c¢;, = = m, and the entrant chooses either

wet or w2 in equilibrium.

Proof. Tt is just the mirror image of Proposition 2.4. O

The location of median voter platform can give an implication regarding how
competitive an election is as well as whether a candidate is favored or not. If the
median voter platform is closer to one candidate’s historical platform, he is expected
to be more strongly preferred among the majority of voters in equilibrium while
the other voters who prefer his opponent only slightly more to him. Therefore, the
candidate can expect the greater chance of victory or the larger share of votes. On
the other hand, when the median voter location gets closer to the border platform,
neither candidate can expect the greater chance of winning or larger share of votes as

before. The electoral race in this case would become more competitive, or tight. We
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call an election is one-sided when m < ¢} or cj < m: the former case is incumbent-
sided and the latter case is entrant-sided. When c¢; < m < ¢}, we call this election
tight.

In a one-sided election between candidates maximizing expected share, the seek-
and-hide behavior reappears; a favored candidate wants to hide from the opponent
while the opponent wants to manage a close, but not too far, distance. Note that it

does not exclude the existence of a mixed-strategy equilibrium.’

Lemma 2.6. In a one-sided election, there is no pure-strateqy equilibrium in a si-

multaneous move game.

In a tight election, however, a pure-strategy equilibrium exists for a simultaneous
choice game between expected share maximizing candidates. Proposition gives a for-
mal proof about the emergence of complete insensitivity of the equilibrium platform
choices with respect to the median voter platform change in a tight election between
candidates maximizing their expected share. Further, each candidate’s equilibrium
platform choice is the same regardless of the game structure or small change of the
median as long as the election remains tight. It provides alternative explanations to
the emergence of policy rigidity as a result of political competition, without assuming

influence from special interest politics.!?

9Theorem 5 in Dasgupta and Maskin (1986) suggests that there exists a mixed-strategy equilibrium. The formal
proof and analysis of its property, however, is not provided here.

10 Alesina and Holden (2008) provide an interesting prediction regarding the influence of special interest politics
on policy choice. The compromise between contributions from special interest groups and proximity to the median
voter platform leads to the emergence of platform ambiguity: announcement of a range of platforms instead of a

specific one.
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Proposition 2.6. In a tight election between candidates maximizing their expected
share, whether an election is a simultaneous or sequential move game, and regardless
of the median voter location, there exists a unique pure-strateqy equilibrium platform

choice (w},w?).

Figure 2.7 graphically describe this equilibrium. Lemma 2.5 tells us that this
equilibrium cannot be derived from a supermodular structure, which guarantees the
existence of a Nash equilibrium (Milgrom and Roberts, 1990). While a candidate’s
policy platform is a strategic component, his perceived sincerity is not. Thus, if both
candidates’ gain from the best response for the strategic component can be lower
than the loss of his non-strategic component value, candidates’ best responses may
not be monotone.

The non-monotonicity of best response in our model, however, actually helps the
coincidence of the equilibria for both simultaneous and sequential choice games. The
equilibrium platforms (w},w}) are actually where both candidates’ best response
functions turn from strategic substitutes to strategic complement and the order of
platform choice does not alter the equilibrium outcome for a sequential move game
and, therefore, a simultaneous move game.!!

The complete insensitivity in platform choices does not appear when candidates

try to maximize their winning probability because, in that case, wooing the median

1 The non-monotonicity of best responses is not a necessary condition for this coincidence of equilibrium outcomes.
There can be pathological cases where the coincidence happens with monotone best responses if the payoff structures

are different among players.
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Figure 2.7: Equilibrium in a tight electoral competition between expected share maximizing can-
didates
voters is the dominant strategy regardless of the opponent’s platform. It does not
mean, however, that the insensitivity necessarily appears under expected share max-
imization, nor a change of the voter distribution does not matter. When an election
is one-sided under expected share maximization and the favored candidate is a first

mover in a sequential choice game, no insensitivity happens, either. This is because

the first mover needs to set his platform so that ¢z (w;) (or cgr(we)) = m. Voters’

policy preferences distribution just affects which side of the opponent, left or right,

a candidate’s platform should be chosen at for his best response.
2.4 Probability of Winning Vs. Expected Share of Votes

As we have seen in the previous chapter, candidates’ electoral objectives, maxi-

mizing probability of winning or expected share of votes, affect the degree and extent
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of policy extremism and policy rigidity. In this chapter, we focus on the remaining
issues about the influence of electoral objectives on the equilibrium platform choices.

We refer that the incumbent is favored if m < c¢*, and the entrant is favored if
c* < m, where m is the median voter platform. In other words, when both candidates
choose the most appealing platform to the median voters, their expected utility from

choosing the favored candidate is greater than choosing the other.

Proposition 2.7. In any equilibrium under the expected-share maximization, the
favored candidate’s platform choice under winning-probability mazximization is closer
to his historical platform than his choice under expected share maximization while

the unfavored candidate’s platform choice shows the opposite characteristic.

Proposition tells us that both equilibrium platform choices are closer to a favored
candidate’s historical platform when candidates try to maximize their chance of
winning. Considering that the benefit of reaching more voters is important under
expected-share maximization, compared to winning-probability maximization, this
difference is in accordance with our intuition about the effect of electoral objectives.
Proposition , therefore, leads to the following conclusion about equilibrium outcome

fluctuation under different electoral objectives.

Corollary 2.1. Equilibrium platform choices fluctuate greater with respect to voters’
policy preferences change when candidates rather seek to maximize their probability

of winning than their expected share of votes.
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We now look at the policy rigidity and extremism in a tight election. Proposition
obviously states that policy rigidity is more salient when candidate try to maximize
their expected share of votes. Policy extremism, on the other hand, is a little more
complicated.

Proposition still implies that the unfavored candidate’s platform choice is always
more extreme under expected share maximization. The favored candidate’s equilib-
rium platform, however, may sometimes pass the median voter’s platform toward
the opponent’s platform, as we have seen at Proposition . In this case, the distance
between the equilibrium platform and the median voter’s ideal may be farther than
that under winning-probability maximization.!?

Still, based on Proposition , we have the following conclusion about policy ex-

tremism under different electoral objectives.

Corollary 2.2. When the median voters’ ideal platform m is located between w; and

*

W,

or w; < m < w}, the favored candidate shows greater policy extremism when
candidates maximize their probability of winning than expected share of votes. On

the other hand, an unfavored candidate shows the opposite characteristic.

2.5 Summary and Discussion

We consider a model of spatial electoral competition between two candidates

when voters care about each candidate’s sincerity as well as his policy platform. In

12We argue that policy extremism should be a lesser issue when the favored candidate’s equilibrium platform
overshoots the median voters’ ideal. Considering that the reason for the overshooting is to reach more voters, it
seems to be a little ironical to call this platform choice more extreme.
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equilibrium, a candidate’s political baggage leads to stubbornness in his platform
choices and the non-convergence of equilibrium platforms. More baggage leads to
greater stubbornness.

If each candidate maximizes his probability of winning, there exists a pure-strategy
equilibrium with differing platform choices. The entrant, the candidate with less bag-
gage, chooses a platform closer to the median voter than the incumbent regardless of
the game structure. The level of perceived sincerity does not affect the equilibrium
platform choices. This result differs from the conclusions of previous work dealing
with candidates’ valence (Aragones and Palfrey, 2002; Groseclose, 2001), which con-
cludes that the candidate with the higher valence chooses a relatively more moderate
platform than one with the lower valence. Our result is derived from the incumbent’s
stronger need to keep his expected sincerity greater than the entrant.

If each candidate instead maximizes his expected share of total votes, there exists a
pure-strategy Nash equilibrium with differing platform choices, provided the election
is tight. Each candidate’s best response then becomes completely insensitive to a
small change in the median voters’ policy preference. This property comes from
the non-monotonicity of best responses. The equilibrium platform choices occur
where candidates’ best responses switch from being strategic substitutes to strategic
complements. Moreover, these equilibrium choices (under either electoral objective)
are the same for both simultaneous and sequential move games. If an election is not

tight, we have pure-strategy equilibrium only for a sequential move game, and when
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an unfavored candidate moves first, the equilibrium platform choices happen to be
the same as in a tight electoral competition.

We have different equilibrium outcomes under different electoral objectives. In
particular, under the objective winning probability maximization, the platform choice
of a favored candidate, who possesses the higher expected utility for the median vot-
ers, is more stubborn than under the objective of expected share maximization rule
while an unfavored candidate’s choice shows the opposite behavior. Thus, the equilib-
rium platform choices are closer to the favored candidate’s historical platform under
winning probability maximization, compared to expected share maximization. Our
result contrasts with some previous work that takes a probabilistic voting approach,
and predicts the equivalence of equilibrium platform choices under both objectives
(Banks and Duggan, 2005; Duggan, 2000; Patty, 2002). The perfectly correlated
random shock and the Downsian voting approach in our model violate one of the key
assumptions in this previous work: the independence of utility shocks across voters.

Our model reconciles seemingly contradictory views about the effect of uncer-
tainty about a candidate’s platform. For example, Shepsle (1972) and Alesina and
Cukierman (1990) suggest that a candidate has an incentive to make his platform
ambiguous while Enelow and Hinich (1981) suggest the opposite. A candidate with
more ambiguity in his platform choice may be viewed as less sincere by voters. How-
ever, if a candidate can have a smaller political baggage by making his platform

ambiguous, he would have less cost for his future potential platform change. A can-
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didate, therefore, has an incentive to make his platform choice more ambiguous if the
political winds change frequently, and less ambiguous if the political surroundings
are stable.

The expected share maximization case may also be interpreted in terms of spatial
competition model in differentiated products (Calem and Rizzo, 1995; Liu et al.,
2004) where the good has both a private value and a common value component. It
can be applied to such questions as whether a new brand should be launched when
consumer tastes change. Extending our model to multiple brands, if the median
consumer is shifted too far from the incumbent’s prior location, it would be better
to launch another brand rather than to produce a different product under the same
brand name. The rise and fall of Pontiac gives an example. A New York Times article
describes this situation as the follows: “When you deviate too far from it, that’s when
you run into trouble as a brand and a company,” and “More than any other G.M.
brand, Pontiac stood for performance, speed and sex appeal. Its crosstown rivals
followed with similar muscle cars, giving Detroit bragging rights over the cars that
Japanese automakers were selling based on quality and reliability.” 3

There are many issues left for future research. First, it is not clear whether
welfare is maximized under either of the candidates’ electoral objectives. Welfare

comparisons between candidates’ different electoral objectives in our model are not

straightforward, since voters’ care about sincerity as well. Another question of inter-

13Micheline Maynard, “Its Muscle Car Glory Faded, Pontiac Shrivels Up”, New York Times, Feb. 19, 2009
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est is the effect of candidates’ risk preference over the share of votes on equilibrium
outcomes. While we conjecture that greater risk aversion leads to greater rigidity in
platform choices, we have not established this result yet. Finally, empirical studies

are needed to check whether real world election data support our predictions.

2.6 Appendix: Proofs

2.6.1 Propositions
Proposition 2.1

Proof. Without loss of generality, the incumbent’s case when h; < 6 is shown.
i) Suppose 6 > h;. If w; is set optimally, it maximizes the expected utility of

voters of type 6. The first order condition ,BU, = a”(,()wi,’g) + dsl(d““ hi) — () needs to be
ow; w; w;

satisfied. With A.2 and A.3, for any g—jji < 0, %ﬂ;e) > (0 must be determined to

81}(11}Z

satisfy the first order condition. Note that >0 implies that h; < w! < 6.

The strict concavity of v (-), or v"” < 0, implies that for any given type 6 and

the value of 851 , there exists a unique platform w? which satisfies the first order
e 81}( ) 851(11} shi) . .
condition —t= 4 =572 = 0. A.3 iv) guarantees the satisfaction of the second

order condition.

ii) Given a type 6, there always exists unique w!. At w; = w! < 0, if 0 is

increased by any positive e, strict concavity of v leads to the lower value of w

and M + gsl becomes less than zero at 6 + e.

If w; moves to the left of w?, the value of dq’# becomes lower and - 851 higher.
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From A.3 iv), the decrease in % is faster than the increase in g
7

that the value of 2% w“ ) +3 85’ decreases. There exists no positive § where w; = w? — ¢

satisfies the first order condition.

f L Wi, dsl lower.
Ow;

If w; moves to the right of w?, the value o becomes higher and

Ov(w;
8w

0s;
ow

) is faster than the decrease in

Now, the increase in

of 8”(“’“ ) 1 95 jpcreases. Because 22if)

and 2% are continuous and differentiable
ow ow; ow;

with w;, we can find some positive § where w; = w? + § satisfies the first order

0

condition for any positive e. Therefore, w] is a continuous and increasing function

of 6. O

Proposition 2.2

Proof. Both candidates’ platform choices do not affect the common random shocks
g; and €.. Thus, given the opponent’s platform choice, maximizing or minimizing
Pr (b(m; w;, w.) > 0) is equivalent to a maximizing or minimizing B(m; w;, we).

For the incumbent, B(m;w;, w,) is maximum at w; = w!" regardless of w,. Only
the first order condition of the median voters’ expected utility from choosing the
incumbent affects his equilibrium platform choice. For the entrant, B(m;w;, w,.) is
obviously minimum at w, = w]* regardless of w; for the same reason.

Finally, w!" and w!" satisfy w!* = arg max,,, Pr(b(m; w;, w.) + k > 0), and w?* =
arg min,,, Pr(b(m;w;,w.) + k > 0) for any fixed value of k because, like ¢; and &,

k is not what candidates can alter. This implies that only the first momentum of
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each candidate’s sincerity affects the equilibrium platform choice; valence has no

effect. O

Proposition 2.3

Proof. We first look at the incumbent’s case. The first order condition is

Ov(|w; —ml]) Osi(wizhy)
Ow; + Ow; =0

The greater baggage means the lower value of the first derivative of sincerity 25

ow;?

which is negative, than before, and the higher value of the first derivative of policy

9 . . . .- .
preference W, which is positive. Therefore, |w! — m| increases: w!" moves
k2

leftward and the distance from the median m becomes wider.

Suppose that an election becomes more favorable to the incumbent, or m moves

closer to h;. We already know that the incumbent’s best response is w]". The first

order condition is given as
ov(w!™, m) N Os(w!™; h;)

70

and it must be always satisfied for any m. Thus, we have the following equation

am

0 (81}(11}{”, m) N Js; (wi; h,)) 0*v 0*v dw™

B O?s;(wi; hy) Ow 0
ow; ow; Imow; — dw? Im 0w, om
which leads to the following equation:
9%
aw;n o " Omdw;
om 9% 9%si(wi;hi)
ow? T 0%
9%v 9%v ‘925i(wzm§hi) 9%v _ 9%v
Because Fmow; > 0, Du? < 0, —rw < 0, and |zo5—| = Tmae | We can conclude
dwm
that 0 < S
m

< 1. Thus, when the median m moves marginally toward left, w!" also

40



moves toward left, but less than the marginal shift of the median, which means less

policy extremism.

82 m;hi . Ow™
78(12”1 ) is lower. Thus, the value of 2%
D%2w; ) om

Finally, the greater baggage means that
is also lower, which implies greater policy rigidity. The entrant’s case can be drawn

in the same way. O

Proposition 2.4

Proof. Two possible threshold platforms ¢; and ¢y are decided after the entrant choose
a platform w,. If the following inequality F'(¢i(we)) > 1 — F/(co (w,)) is satisfied in
equilibrium, the incumbent’s platform choice is w;*, which gives the highest expected
utility to the voter of type c¢1, and the entrant’s platform choice minimizes this c¢;.
We already know that the minimum c¢; is c*.

If m < ¢}, the incumbent’s platform choice is w; = w;"' because the entrant cannot
minimize ¢; less than ¢* and the median is still on the left of cj,. The entrant’s
platform choice is w} and the incumbent’s best response is w;.

If m > ¢}, the entrant’s objective (2.4) leads to F'(¢;) = 1—F(c2) to minimizes the
incumbent’s share of votes. With the symmetric voter distribution, F'(¢;) = 1—F/(c3)
leads to the distance from median to ¢; and ¢, must be equal. Therefore, the entrant

sets his platform w, so that m = cp. O

Proposition 2.4
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Proof. In a tight election, the median voter platform m is located between ¢} and c5,
or ¢; < m < cp. From Proposition 2.4 and 2.5, we know that w; and w] are platform

choices as the first mover, respectively, and that at w. = w}, the incumbent’s best

*
e

response is w;' = w;, and that at w; = w}, the entrant’s best response is wS* = w
Therefore, whoever moves first, (w}, w?) is the equilibrium in a sequential move game.
In addition, (w], w¥) is also a Nash Equilibrium because both are the best responses
for each other.

Now we want to show (w},w}) is the only pure-strategy equilibrium. We know
that platform w; > w for the incumbent and w, < w for the entrant are never chosen
as a first mover and can be ignored. Lemma 2.3 also tells us that w; = w, = w cannot
be a pure-strategy equilibrium platform. Suppose that w < w, < w}. Corresponding
c1(we) > ¢ and co(w,) are determined. From Lemma 2.5, we know that ¢ (w,)

decreases by increasing w, until ¢;(w.) = ¢*.

The increase of w, also leads to the
increase of co(w,) for any w < w.. Whether the incumbent choose w* or w?, the
incumbent has always incentive to increase w, when w < w, < w;.

Suppose now that w? < w,. Corresponding ¢ (w,) is determined. From Lemma
2.4 and the location of the median m < c¢j,, we know that the incumbent’s choice
is w;'. The incumbent then wants to decrease w, to give higher expected utility to

the voters of ¢; until ¢;(w.) = ¢*. Therefore, the entrant always has an incentive to

deviate unless the incumbent’s platform wj; is w;. O

Proposition 2.4
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Proof. We assume that the incumbent is the favored candidate. The following proof
can be easily applied when the entrant is favored.
(Sequential move game. The incumbent moves first) If m < ¢}, then the incum-

bent choose w; which makes ¢y (w;) = W =m (c; < c2). Let us call this

1

i

1 1 2

w; as w; and this ¢, as ¢'. It is obvious that ¢i(w;]) < w} < co(w?). Because

U.(c1) < Ucley), v(w}, er) < v(w}, ey) for any given w; < h. This inequality implies
that w} is on the right of ¢, or ¢* < w; and, therefore, the on the right of m, too.
The equilibrium choice w; is farther from the historical platform h; than w!", which
is the incumbent’s most appealing platform for the median voters, or w < w}. On
the other hand, the unfavored entrant’s choice, assuming that he chooses to remain
on the right side of the incumbent, is w¢* which is the most appealing platform for
voters of type ¢, and obviously on the right of w!*, or w* < w¢

Ifc; <m<c, w

¥ is the incumbent’s equilibrium platform, which is always on

the right of wi", or w!* < w;. The unfavored entrant’s choice w} is obviously on the
right of w*, or w* < w;.

(Sequential move game. The incumbent moves second) The entrant chooses w
in his first move and the incumbent’s best response is w; as long as m < cj,. The
unfavored entrant’s choice is always w? as a first mover.

(Simultaneous move game in a tight election) The incumbent always chooses w;

and the entrant always chooses w}. O
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2.6.2 Lemmas

Lemma 2.1

Proof. Without loss of generality, the incumbent’s case when h; < # is shown. For

any 6’ on the right of 6, or 6 < @', the first order condition implies that the following

Bv(wi,e)(wfﬂ)
ow;

dv(w;,0)(w? 07
ow;

Os;(w? h; 0s; wel,hi
(wlh)  Osilwf

inequalities 0 > ou; S ) and 0 < < must be

satisfied. In other words, the distance between w! and § must be smaller than that
between w? and 6.

Suppose U (6, w?) > Us(6,w?). Then, v(wf/,e’)—v(wf-,@) > s;(wls hy)—si(w?’; hy)
must be satisfied, which implies the distance between w! and § must be greater than
that between w? and @', which contradicts the condition to satisfy the first order

condition. m

Lemma 2.2

Osi

Ose
57 < 0 and ¢ > 0. Therefore,

19] .0 G
Proof. For any 0, % < 2% hecause w; < w,,

OB __ Ov(wi,0)  dve + Js; Jse

80 — 90 0 80 90

< 0 for any 6. In other words, B(0;w;,w,) is strictly
decreasing with 6. By A.3 ii) and iii), there exist one and only one § = ¢ such that

B(¢;w;, w) = 0. The same idea can be applied to the case of w; > w,. !

Lemma 2.3

Proof. Assume that o (0 < @ < 1) is the incumbent’s share when w; = w, = w. At

w, the incumbent maximizes the expected utility of voter of type 6,,,, whose expected
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utility is maximal from the incumbent’s platform w; and the entrant does the utility
of type 0,,, which is defined in the similar way, where 0,,, <w < 0,,.

From a marginal shift from w, the incumbent can earn his share F(6,,), and,
therefore, o > F(0,,) for the incumbent to stay at w. By the same logic, the
entrant can earn his share 1 — F'(6,,,) from a marginal shift from w and, therefore,
1—a >1-F(f,,) for the entrant to stay at w. These two conditions, however,

contract each other for any value of a between zero and one. We cannot have any

tie-breaking rule that prevents both candidates from unilateral deviation. O

Lemma 2.4

Proof. We know that when W < w,, there exist  which satisfies U, (0, w.) > U;().

. . . AU, __ Ov(we,0) au(0)  Ov(w;,0)(w?,0) | dv(w;,0) dw?
The first derivatives are given as ¢ = —57~ and —5,~ = 55 + ol do +

Os; dw? . av(wiﬂ)(w?ﬂ

) 8’1}(11]1,0)
ol @ 50 because ——4~

9
owy

+ % = 0 by the first order condition. Initially,

dv(w;,0)(

6
Qulwed) — ) is obviously greater than Tw“e) < 0, but %@eﬂ) decreases

o0

at 0 = w,,

. [ 6
faster than W because dd% > 0. Therefore, there must be two platforms

0 = c; and ¢, which satisfy U, (0, w.) = U;(f) when W < w,.
Next, we want to show that the threshold platform ¢(w;, w,) satisfies the first order

condition with w; and that the incumbent’s optimal platform satisfies W =0. At

any threshold platform ¢(w;, we), v(w;, ¢(w;, we)) + si(w;) = v (We, T(w;, we)) + Se(we)

is always satisfied. Therefore, the equation a”(wi’gg':“w&)) + 8”(1”“%(5’1'7%)) ;‘Z + j«i =
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olweclwiwe)) 92 st also be satisfied. 22 is represented as
oc ow; ow;
Ov(wy,e(wi,we)) ds; oU;
aE o 8’wi + dwi _ awi
Ow: T Ov(wet(wiywe))  Ov(wit(wi,we)) Ov(we,c(wi,we))  dv(w;,c(wi,we))
g e oz a g

The denominator is always positive for a given w < w,. Therefore, from the property
of U;, we can conclude that ¢(w;, w,) is single-peaked with respect to w;.

Suppose now that ﬁ =0 but %j}’;}i) #0. If %j}’;}i) > 0, then, for diufi =0 to

d, M > 0 should be satisfied at the same time, which is impossible

be satisfie y
W;

because ﬁ = 0 should be satisfied at optimum, and lej = 0. By the same logic, if

%Z’Z_wi) < 0, then, for diufi = 0 to be satisfied, %j}’f@) < 0 at the same time, which
is impossible for the same reason.

Finally, in a threshold platform, the expected utilities are the same, U;(¢, w;) =
Ue(¢,w,), and U;(¢,w;) is the maximum expected utility for threshold voters. In

other words, the incumbent’s platform choice leads to U;(¢, w;) = U;(¢) = U,(€, w,)

Therefore, the threshold platform is either ¢; or cs. O

Lemma 2.5

Proof. First, we want to recall that w} is the platform where the incumbent maxi-

mizes his expected utility for voters at the border platform ¢*. As long as m < cg,

C1

' is the best response for the incumbent.

w
Ifw < w, < w}, the voters of type 0, , whose expected utility is maximal from the

entrant’s platform w,, is 6, < ¢* < ¢;(w,) because U, (0, , we) = Ue(By,) < Us(0u,)

when w, < w*, and U,(c;(w,), w,) = U;(c1(w,)) must be satisfied at ¢;.
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A marginal increases of w, implies the entrant gives the marginally greater ex-
pected utility to voters of type 6 > 6, . As we have seen in Lemma 2.4, the incum-
bent’s platform choice w; = w§" needs to satisfy the condition U, (cy, w.) = U;(c;) =
Ui(ep,wit). Therefore, ¢; and the corresponding incumbent’s platform choice w}?
decreases as w, increases.

If w* < w,, on the other hand, ¢;(w.) < 6, because U.(0y,,w.) = Uc(0w,) >
U;(0y,), but Ug(ei(we), we) = Ui(ei(w,)) still needs to be satisfied at ¢;. A marginal

increase of w, now marginally decreases the expected utility of the voters on the left

of ¢;. Therefore, ¢; and the corresponding w;' increases as w, increases. O

Lemma 2.6

Proof. Assume an incumbent is the favored candidate and he has to move first.
Then, the incumbent has to choose his platform so that ¢; = m. If an entrant’s
best response is wS' (or we?), the incumbent’s share would increase by switching his
platform to the left (or right). This logic can be applied when an entrant is the

favored candidate and he has to move first. O
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Chapter 3

Getting Advice with Optimal Contract

3.1 Introduction

This essay explores mechanisms through which a principal can best elicit infor-
mation from multiple experts. In particular, we focus on a contractual situation,
implicitly assuming the information the principal needs to gather is at least partially
specific to him. Two important issues emerge as the principal makes contracts with
multiple experts. Firstly, the principal should consider how to aggregate information
from multiple sources. Secondly, she should determine the wage offer to each expert,
which may depend on the information quality if available.

Efficient information aggregation crucially depends on whether the principal can
screen the precision of information each expert possesses. To see this, consider an
environment in which experts have heterogeneous private signal distributions and
the signal is independently informative of the true state. The heterogeneity reflects
different abilities in processing raw information, analytic technologies, and/or levels

of ‘animal spirits.’
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Provided the principal knows the precision of each expert, she can easily aggregate
information from multiple experts by Bayesian updating. Assuming the compensa-
tion scheme is designed so that experts are paid off according to the ex-post accuracy,
and experts have no payoff other than the wage paid by the principal, each expert
must submit the report on the true state at his posterior mean given his available
information?

Without message pooling, the one-to-one relationship between posterior mean
and private signal allows the principal to discern each expert’s private information.
It follows that the principal’s best prediction of the true state is then the weighted
average of the prior and all private signals, where the weights are determined by the
precision of the signal.

When the precision of each expert’s signal is unknown to the principal, however,
information aggregation cannot be achieved with the simple compensation scheme
described above. A posterior mean is no longer matched to the private signal in
a one-to-one relationship, and the principal would not know the weight she should
assign to the report of each expert. The compensation must be more sophisticated.
It should be designed not only to induce the honest report of the true state but also
to elicit the precision of expert’s report.

Sorting through compensation helps the principal via another channel. When

the information quality of each expert is heterogeneous and the reservation wage

1Experts’ payoff other than the wage from the principal, including nonpecuniary or implicit compensation, may
drive shaded or pooled messages on true state. For example, reputation concern induces experts to shade or pool
messages in the model of (Ottaviani and Sgrensen, 2006a,b).

49



depends on the quality, the principal also needs to decide the wage offer and it would
be beneficial if the wage offer were contingent on the information quality.

We show, in an environment where the reservation wage is type dependent, that
there exist payoff function(s) in which the true type revelation is implemented and
the honest report on the true state is induced. In addition, the compensation scheme
induces the first-best outcome in the sense that no information rent exceeding the
reservation utility is paid in equilibrium. When the reservation utility schedule is
convex in type, a simple linear payoff function with respect to the mean squared error
of the report on true state achieves the first-best. In the case when the reservation
utility schedule is concave, the optimal payoff function is more complicated but keeps
the linearity in a certain form of performance measure.

The intuition behind this sorting mechanism is straightforward. In the optimal
compensation scheme we propose, the principal asks each expert what his type is.
The optimal contract is designed so that the penalty for the incorrect report is
increasing in type announced. The less accurate expert then incurs more cost when
he pretends to be a more accurate type, barring untruthful type revelation. Moreover,
due to the cheap talk feature of the ‘production’ of advice, there is no intrinsic utility
or cost for experts. This implies the virtual surplus is linear in the control variable
of the principal, and the principal makes the information rent arbitrarily small up
to the reservation utility to achieve sorting.

We then propose a game in which the principal achieves not only the efficient in-
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formation aggregation but also the optimal employment. In the game, the principal
announces the payoff function which depends on the type, the precision of the private
signal announced by each expert, the report on true state, and the true state to be re-
vealed ex-post. Experts from population then apply for the job (pre-screening stage.)
Among those applicants, the principal decides which experts to hire (employment
stage.) Compensation is paid after the true state is revealed.

This chapter is organized as follows: A brief literature survey follows the in-
troduction in the next section. We describe the model and present the optimization
problem in section 3.3. In section 3.4, we derive the optimal contract in which honest
reporting and truthful type revelation are achieved and the participation constraint
is binding. In section 3.5, we propose a game to achieve the optimal employment.

Section 3.6 concludes and addresses issues for further research.

3.2 Related Literature

The sorting mechanism in the paper is an application of a screening problem
under asymmetric information. For example, Maskin and Riley (1984) address the
problem in the context of an optimal quantity discount by a monopolist. The main
difference is that in professional advising, the information asymmetry occurs not only
in the type of each agent but also in the true state which is realized ex-post. Indeed,
the type, or the information quality of each expert is revealed ex-post through the

realized true state and the forecast. The principal, therefore, needs to get messages
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from each agent about her type in addition to the forecast on the true state. In a
sense, the model presented here is a hybrid model of screening and moral hazard
because the latter message is often sent after the principal’s employment decision is
made.

Bhattacharya and Pfleiderer (1985) is more directly related to our work in the
motivation and the model specification. They examine the compensation problem for
risk-averse portfolio managers whose signal and signal distribution are both private
information. They also derive the compensation scheme which achieves the first
best outcome. It differs from ours in the objective function and the risk attitude.
They assume the utility function of both principal and agents exhibits constant
absolute risk aversion, which makes sense in the context of the delegation of portfolio
management. With risk neutral agents, as in our model, the problem is not well
defined since the portfolio choice position would be extreme. In this sense, the first
main result of this paper is a risk neutral agent version of section 4 in Bhattacharya
and Pfleiderer (1985). The second main theorem is new. While Bhattacharya and
Pfleiderer (1985) derives the first best outcome under some regularity conditions on
the reservation utility, we show it for quite general case by varying the performance
measure.?

Crémer and McLean (1985, 1988) study mechanisms in which a principal, or a

seller, extracts full surplus in the context of the independent value auction. In their

20Osband (1989) also studies the incentive provision problem for forecasters. The precision of each forecaster in
his model depends on the effort level, so the focus is on the moral hazard problem, not on the hidden type problem
as ours.
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model, the valuations of the bidders are correlated and they know this fact. The
seller then designs an auction mechanism in which payments depend on the types
announced by bidders. Under some regularity conditions, the seller can induce each
bidder to announce his type truthfully, which results in the full surplus extraction.

The types of experts in our model are also correlated, but they are conditionally
independent. The true state itself, which is assumed to be verifiable ex-post, becomes
a reference point that each expert’s type is measured. Each expert, thus, is induced
to announce his type truthfully without guessing other experts’ type. This allows
us to develop an independent compensation scheme that does not depend on the
type announcements by other experts. Auctions with state-dependent payments are
studied in Hansen (1985), but it deals with very special cases.

Recent literature on professional advisors is based on the cheap talk game model
first introduced by Crawford and Sobel (1982). Departing from partisan bias ex-
ogenously given to the payoff functions, Scharfstein and Stein (1990) explores how
reputation concerns affect the pattern of messages in equilibrium. They show the
reputation concern drives experts to herd in a binary model. The model is generalized
in Ottaviani and Sgrensen (2006a,b).

The main difference between this paper and the previous literature on professional
advising is twofold. First, we give the principal an active role in determining the
compensation scheme. Secondly, our focus is on efficiency in information aggregation

and employment, not on the strategic bias. To do so, we assume the principal has
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no private information, and experts are not concerned the reputation effect of the
current report.

In our model, the information asymmetry is two dimensional: the signal and its
distribution. Except for a few papers, most existing papers on professional advis-
ing assume experts share the common private signal distribution, and asymmetric
information lies only in realized value of their private signal. Avery and Chevalier
(1999), Levy (2004), and Ottaviani and Sgrensen (2006a) consider heterogeneous
private signal distribution but usually the uncertainty is assumed to be symmetric
across the players in the model. Trueman (1994) and section 6 in Ottaviani and
Segrensen (2006a) model asymmetric information on signal distribution. The infor-
mation structure in this paper is mostly similar to Ottaviani and Sgrensen (2006a).
Battaglini (2002) explores a cheap talk game with multi dimensional uncertainty and
multiple referrals, but his results are mainly derived from the orthogonality between

uncertain variables, which is different from our setting.

3.3 Model

An uninformed principal tries to make his best prediction of the true state, for
example the profitability of a project. To get better information, the principal wishes
to hire privately informed agents, who are called ‘experts’ hereafter. Experts are
heterogeneous in the precision of their private signal, which is labeled their type.

The principal designs a game as follows.
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The true state x is drawn from a normal distribution with mean pu, and variance
1/7:, which is common knowledge. We assume the true state is verifiable and thus
contractible. While the principal has no private information®, expert i € I receives
a conditionally independent private signal s;, where I is the set of experts who are
employed.* The distribution of s; is assumed to follow a normal distribution with

mean x and precision 7;, or

si=x+e€, €~N(01/7).

The precision, or type, of each expert 7; is drawn from the population with dis-
tribution function F' on the support of [r,7] C R*. We assume F is continuously
differentiable so that the probability continuous density function f exists. The prin-
cipal cannot discern the type of each agent, but each expert knows his own type.
In the pre-screening stage, each expert is requested to submit a message on his own
type t;. Once hired, he has to submit a report on the true state, denoted by r; € R
for expert 4.°

The principal’s objective is to maximize revenue less payoffs to employed experts.
The revenue function R depends on the principal’s prediction on the true state,

denoted by Z, and the true state. We assume the revenue is decreasing in the ex-

3The assumption of a fully uninformed principal, in addition to that of the payoff being conditioned on the true
state, precludes the ‘yesman effect’ in Prendergast (1993).

4We fix the employment set of experts in this chapter, as though the employment decision is made before the
contract and the information aggregation. However, the order may be reversed in order for the contract to be used
as a pre-screening device. The whole recruiting, contracting, and information aggregation process is discussed in the
later section.

5We follow the convention that each expert reports his best prediction, not directly revealing his private signal.
However, reporting the prediction is equivalent to reporting the signal in equilibrium provided there is no message
pooling, which is the case of this paper.
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post error, | ¥ — x |. For example, the revenue can be the negative mean-squared
error where R(z,7) = —a(Z — z)? for a constant a > 0. In this case, the revenue
function is a decreasing function of the mean squared error.

The only cost for the principal is the wage she pays to the experts, where the
payoff function is denoted by C(r;,t;, ). Note that the payoff does not depend on
other experts’” messages. In other words, we restrict the compensation to be indepen-
dent, which implies that the principal cannot use group incentives to implement the
information revelation and the performance must be evaluated through the absolute
performance basis®.

Experts are assumed to be risk neutral utility maximizers with the identical vNM
utility function u(c) = c¢. We assume that the only benefit from information provision
is the payoff from the principal. Each expert has a reservation utility which is type-
dependent. Type-dependent reservation utility function u(7) is assumed to be strictly
increasing and continuously differentiable. Increasing reservation utility is realistic
when the private information is not fully relation-specific. The expert might use
the private information outside of the principal-agent relationship to derive some

personal benefits from it.”

6Relative performance evaluation has been an important issue in contract theory with multi-agent models. We
exclude such evaluation on report for simplicity and tractability of the payoff function, since we are focusing on the
screening procedure. Extant literature in contract theory find the merits of relative performance evaluation in that
it reduces risk-sharing cost as to the common noise. See Holmstrom (1982). Another branch of literature regarding
relative evaluation studies rank order compensation or tournament. While it has been shown that tournament
scheme can provide approximately the same incentive for agents as the standard contractual form(See, for example,
Green and Stokey (1983)), it is less susceptible to extreme output volatilities. Both benefits mentioned above are
not relevant to the current model. Ottaviani and Sgrensen (2006b) consider forecasting contest, an extreme case of
compensation scheme based on relative performance evaluation, in the context of reputational cheap talk game, but
their information structure is different from ours.

7See Jullien (2000) for examples of type-dependent reservation utility and the general solution in the context of

56



The Principal’s action is denoted by (¥, C'). The optimization problem is formally

described as follows.

T,

max B, | R(Z,z) - > Clri(si), 7, x)

i€l

subject to the expert’s problem
(ri(s;), ) € arg max E.[C(r,t,x) | s, 7]
subject to the participation constraint
E,[C(ri(si), i, ) | siy7i] > u(m).

where r;(s;) is agent i’s true posterior mean after observing s;.

In the next section, we begin our analysis with the pre-screening stage.

3.4 Compensation Scheme for Sorting

In this section, we aim at finding a compensation scheme which achieves the first-
best. We ask whether there exists a payoff function C(r;,t;, x) which induces the
expert to report his posterior mean, implements him to message his own type, and
further the expected payoff is just his reservation utility®. Formally, we want to find

C satisfying

(SiTi + Mo Ty

s 1e € E:t C 7t7 iy 11
P 7') argrriax (C(r,t,z) | si,7i

screening problem. Bhattacharya and Pfleiderer (1985) also assume the type dependent reservation utility.
8We assume the massage related to the true state is the posterior mean of each expert. However, it is equivalent
to assume that the private signal itself is reported.

o7



and

E, {C (%,Ti,x) | Si,Ti] = u(m).

Note that once the sorting and truthful reporting are implemented, the principal’s
optimal action is straightforward. Provided the revenue R(7, x) is decreasing in error
| T —x |, for a fixed I, the best prediction on the true state, z*, is the posterior mean

given reports from |I| experts, where |A| is the number of elements in a set A.

Formally, we have

P = Zie[ Ti(Ti + Tx) - (|]| - 1):“:v7—:v
Zie] Ti T Tz '

For example, if the revenue is negative mean squared error, the resulting expected
net gain is

a

E[R@E )] =) u(n) =~

Our strategy to show existence is as follows. We first restrict to a subclass of
payoff functions. We then solve the standard screening problem within the class and
check whether the participation constraint is binding for all types of expert.

Proposition 1 is our first main result. It states that if the reservation utility
function is non-convex, the first-best outcome is achieved through a payoff function

which is linear in the mean squared error of the report. With the linearity restriction,

the expert with precision 7; should solve

(3.1) (ri,t;) € arg max E, [—a(t)(r — )2+ B(t) | s, TZ}

)
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We want to find a(t) and 3(t) such that the solution to (3.1) satisfies the conditions
for both honest reporting and truthful type revealing, as well as the participation

constraint. We must therefore have the following conditions:

e Incentive Compatibility for Honest Reporting (ICR)

(3.2) a(t) > 0.

e Incentive Compatibility for Truthful Type Revelation (ICT)

Given (3.2), the expert with precision 7; will solve the following problem:

l;
(3.3) T, € arg Hlt?X_Tj(—l— 3} + 6(t;).

e Participation Constraint (PC)

Once (3.2) and (3.3) are satisfied, the participation constraint for type 7; be-

comes

(3.4) max Ey [—a(t)(ri — 2)* + B(t:)] = —% + B(7) > u(m).

Proposition 3.1. Suppose the reservation utility is convex on the support of T.
Then, the first-best is strictly implemented through the payoff function within the
class of linear functions in mean squared error. That is, it is the strict best response
for each expert to message his own type and submit his posterior mean, and the payoff

1s only his reservation utility if the payoff function is designed to be
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C(r,t,z) = —a(t)(r —x)* + B(t)

where

a(t) = (1, +1)?

'(t)

IS

and

Bt) = (7o + )/ (t) + u(t).

Proof. Let o and 3 be C? function on R, .? Let a(t) > 0 to satisfy (ICR). Define
C(7,t) be the expected payoff when type 7 expert announces that his type is t and

he reports posterior mean honestly. Given (ICR), we have

C(r,t) = E, {C’(%,t,x) | 7, 3]
2
_ TS F Table
— (B, (ZE ) 40
_ —ot)
T+ T + ﬁ(t)

The first order condition for (ICT) is then

o/(7)

Te + T

(3.5) V1 e lr,7], — + 3 (t) =0.

To see the second order condition given (IRC) and the first order condition of

(ICT), consider the following formula.

0C t—T

(36) o = e Sy

91t is required that o’/(t) and 3'(t) are right continuous at 0.
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which implies that ¢ = 7 is the global maximizer of €(r, ) for all 7 if and only if ()
is nondecreasing. We will temporarily ignore (3.6) to solve for the optimal contract
with (3.5), and then check whether the contract satisfies (3.6).

Let ¢(7) be the utility of expert type 7 at the optimum, so that ¢(7) = C(7,7) =
—a(7) /(12 + 7) + B(7). Note that from envelope theorem,

o),

(3.7) d(r) = m =

which implies that the experts with higher precision are paid more.

From (3.5), we have

and

(r) = =20 1 50y = 5 - 2 [

Te +T Ty + T Tx+s)2

Given that the expert reports his posterior mean, the principal’s problem is

min £, [¢(7)]

it /j (ﬂ(z) - % + / %ds) f(r)dr

(39) - [ (s - 22+ 2O L PO i

wt+T (e +7)? f(7)

subject to the participation constraint

(3.10) c(r) = p6(z) — o) + /T (OéLds > u(T).

Te + T Te + 8)2
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We can solve this problem through point-wise minimization. Since the formula
in the bracket of (3.9), the so called virtual cost, is linear in «, the principal can let
a(1) be the least possible cost ¢(7) for all 7. That is, the participation constraint
(3.10) should bind for all 7. Differentiation of the binding participation constraint
gives

a(t) = (1, + )% (1)

and from (3.8),

a(r)

Te T T

B(t) = B(z) — + (7o + ) (1) 4+ u(t) — u(z).

Let B(1) = (7, +1)u/(7) + u(r) for the participation constraint of the lowest type
to bind. We now solve for a and 3 to satisfy the first order condition of (ICT) and
binding participation constraint (PC). Finally we need to check the second order

condition, which is equivalent to @ monotone nondecreasing. Since

o/ (t) = 2(7s + ' (t) + (72 + )" (2),

the second order condition is satisfied provided wu is non-concave. This completes the

proof.1? O

10The result still holds in the case of type-independent reservation utility. Suppose w is the constant reservation

utility. From (3.7), the participation constraint is binding for the lowest type, i.e., (1) — a(r) /(72 + ) = w.
Then, the principal should solve

Point-wise minimization gives a(7) = 0 for all 7 and consequently 8(¢t) = w for all 7. That is, the optimal contract
indicates that the principal offers flat wage.

The problem in this case is that the honest reporting and the truthful type revelation are implemented only weakly:
experts are indifferent between sending truthful messages and lying. However, the principal can achieve the first best
with arbitrary small cost by setting a(t) to be increasing in ¢ very slowly but still keeping 3(t) = w.
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The following examples show how the concave reservation utility function ob-

structs the truthful type revelation.

Example 3.1. Suppose 7, = 1 and u(r) = 7 for 7 > 0. From Proposition 3.1,
we have C(r,t,z) = —(1 4+ ¢)*(r — 2)®> + (1 + 2t), and since (ICR) is satisfied,
E.[C(r,t,x)] = —(1+¢)*/(14+7)+ (1 +1). The first order condition gives ¢ = 7 and
the second order condition is satisfied.

Suppose now 7, = 1 and u(7) = 1 — 1/(1 + 7)%. Note the concavity of the
reservation utility function. If we construct the compensation function with o and

[ in Proposition 1, we have

2 1

The first order condition still gives t = 7, but the second derivative of the expected
compensation is

o2 4 0
5 e [C(r,t,z)] = TA+ 0P+ + (1+t)

which is positive at ¢t = 7, violating the second order condition. m

The result of Proposition 3.1 holds only for non-concave reservation utility func-
tions. When the reservation function is sufficiently concave, the compensation scheme
derived from the first order condition becomes convex, barring the expert from re-
vealing his own type to maximize compensation. To achieve the first best outcome
with a concave reservation utility function, the principal needs to make the compen-

sation function more concave in equilibrium. This can be done by restricting the
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expected payoff to be linear in a geometric power of variance. We state this result

in Proposition 3.2.

Proposition 3.2. Suppose u is a strictly increasing C* function and the support of
types is bounded, 1.e. T < oo. Then, there exist p € N such that the compensation

scheme

C(r,t,x) = —a(t)(r —z)* + (1)

achieves the first best outcome, where

_ 2p(p_ )! p+1, ./
at) = 2= o)
and
B(t) = “xp* D (#) + ().

Proof. Let « and 3 be C? functions on R, . Let a(t) > 0 to satisfy (ICR). Then,

the expected payoff for type 7 is

E[Cr 1, 2)] = —a(t)uzy(T) + 6(t)

where ps,(7) is the (2p)’th central moment. Under the Gaussian specification, we

have

2ep! \ 1, + 7

fiop(T) = E(r — )% = (2p)! ( 1 )p

The first order condition for (ICT) is

(3.11) Vr € [, 7], =/ (T)puzy(7) + 5'(7) =0
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Defining C(7,t) as in proposition 1, we have

oC , t—T
E(ﬂ t) = (t) ) mﬂ2p(7)7

which implies that ¢ = 7 is the global maximizer of C(7,t) if and only if «(t) is
nondecreasing.
The expected payoff at the optimum, ¢(7), is now ¢(7) = C(7,7) = —a(7) pap(7) +

B(1). From (3.11), we get

Mﬂzﬂ@wﬁ/&wm%@m

(3.12) =Mﬂ—a@mMg+avaﬂ—/7ﬂm@@mS

and

c(1) = —a(T)pgy(7) + B(7) = B(T) — 1) prgp(T) — / T a(s) i, (s)ds.

The principal’s problem is now

<m@xmawﬂ=fﬁwwmmwnwm%m———

o(7)

Note that the virtual cost in (3.13) still keeps the linearity in «, which implies the

participation constraint should bind for all 7 in the optimal contract, i.e.,

BL) )= 60— () — [ als)uy(s)ds = u(r)

Differentiating (3.14) with respect to 7, we get
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and from (3.12) and the appropriate boundary condition,

_ _Mgp(t) o u
Blt) =~ ue) + ).

The remaining part is to check the second order condition or monotonicity of a.
Since pi,(t) = —pL(7, +1)7P7" < 0 and pf,(t) = —p(—p — 1)L(7, +t)7P~* where

L = (2p)!/(2Pp!), we have

o/(t) = (1), (t) — @’gt)ué’p(t) .
(15,())
u'(t)  pa(t)  —p—1
(8.15) WO W) mrt

Since t is defined on a compact set and v’ and u” are continuous, the left side of
(3.15) is bounded. Therefore, for large p, the inequality holds for all ¢ in the support

of 7. O

The logic of proposition 3.2 is as follows. To satisfy the second order condition,
the sorting variable a/(¢) must be monotone increasing.! The «(t) derived from the
first order condition is the product of ¥/(t) and a function of the announced posterior
precision, which we call here h(7,+t). In the proposition, h(7,+t) = M (7,+t)P™ for a
constant M. Though A turns out to be increasing and positive, « is not guaranteed to
be monotone increasing for a concave u. The principal, however, can take arbitrarily

large p so that h increases fast enough to cover the effect of decreasing u/(t) so that

M This is indeed equivalent to the supermodularity of the objective function in (¢, 7).
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the product is monotone increasing. Indeed, for a given reservation utility, we can
find p* such that any payoff function with p > p* achieves the first best. We present

an example.

Example 3.2. Let 7, = 1 and u(7) = 1—1/(1+7)?, as in the second case in example
1. Then, from proposition 2, the expected payoff given honest reporting on the true

state is, in the optimal contract with p = 3,

. Clr.1,)) = —atia(7) + 8(0) = 3 5555 + 1= g
The first order condition gives
2 — 2 =0 = t=r71
3(1+7)3  3(1+1t)?
and the second order condition is satisfied since
5—;&[ [C(r,t,z)] = _(1—ﬁt)4 <0. m

Figure 1.1 shows how the power of the ex-post error affects the expected payoff.
If the compensation is linear in mean squared error (p = 1), the truthful report
t = 7 = 1 does not maximize the expected payoff. When the performance measure
is more sensitive to the error, for example with p = 3 in this example, the truthful
report becomes optimal for the expert.

The results in this section are interesting from two perspectives. First, sorting

and honest reporting are implemented through a simple linear-form payoff function.
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Figure 3.1: Expected Payoffs when p = 1 (right) and p = 3 (left)

This is because the linear payoff function under honest reporting satisfies the Spence-
Mirrlees condition, or —«(t)/(7, + 7) is supermodular in « and 7. Moreover, it is
supermodular in ¢ and 7 provided « is increasing in ¢. This simplifies the problem
since the second order condition is equivalent to the monotonicity of «.

Another striking result is that the minimal information rent is paid in equilibrium.
This is because, unlike the standard screening problem, the professional advising has
a cheap talk feature in the sense that the sorting variable o does not affect the
intrinsic cost or utility of the expert. This makes the virtual surplus (or virtual cost)
linear in «. Therefore, the principal can fully control the payoff so the participation
constraint is binding for all types of experts.

It is worthwhile noting that this mechanism is not a unique. One may design other
mechanisms that achieve truthful type revelation and honest reporting. In addition,
we should emphasize the compensation of each expert depends only on each expert’s
own report, not others’. This independent compensation scheme, in conjunction

with the binding participate constraint, is beneficial to the principal because she can
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design the employment policy independent of the compensation scheme. We now

turn our focus to the employment stage.

3.5 Optimal Employment

In the previous section, we showed that the principal can elicit each expert’s
precision and induce the honest reporting through a compensation scheme. Those
features do not change when the principal wishes to hire more than one expert, since
the optimal compensation scheme proposed is independent. Each expert would not
care what types of experts he will co-work. Furthermore, since each expert will be
paid at his reservation utility level, he would not concern about whether he will be
hired or not. This implies that once pre-screening is done before the employment
decision is made, the employment policy can be independent of the compensation
scheme.

Specifically, consider the following game. At the beginning of the game, the true
state is realized, but not revealed to anyone in the game. Then the pre-screening
stage begins. The principal announces the compensation scheme, which is designed to
screen the type of each applicant. Each expert, drawn from the population, applies
for the job positions and send a message t on his own type. In the employment
stage, the principal decides which applicants he will hire, based on the information
he learns from the pre-screening stage. Once hired, each expert submits his report

on the true state. Finally, the true state is revealed and payoffs are made according
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to the compensation scheme.

The screening through compensation simplifies the optimization problem. After
the principal pre-screens experts, she knows the type of each applicant and how much
she should pay if she hires some of them. Since experts hired are expected to submit
honest reports on the true state, the objective function of the principal becomes
a function of the precisions of employed experts less the sum of their reservation
utilities. With the mean squared error specification of the revenue, for example, we
have the optimization problem as follows:

(3.16) max <—#> - u(r)
z jes Ti e

where [ is the set of all applicants. Now, the optimization problem becomes

a combinatorial optimization, or a discrete portfolio problem, which is covered in

Chapter 4 of this dissertation.

3.6 Conclusion and Discussion

This paper considers a principal who wishes to get advice from one or more
experts. To aggregate information from possibly multiple sources and pay the least
amount to each type of expert, the principal needs to design a mechanism which
induces truthful type revelation and honest reporting of the true state. Under a
Gaussian specification, it is shown that there exists a payoff function which achieves
this first-best outcome. In the optimal contract proposed, the penalty for an incorrect

report is increasing in type (precision) revealed by experts, preventing less precise
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experts from hiding behind more precise experts.

We derive the optimal compensation scheme in the class of linear functions in a
specified performance measure. We show that if the reservation utility is convex, the
first-best outcome is achieved with a payoff function linear in mean squared error. In
the case with concave reservation utility, the performance measure should be more
sensitive to the ex-post error, but still we can design the payoff function which is
linear in the power of mean squared error.

In the paper, we assume each expert’s gain from providing information depends
only on the current period compensation paid by the principal, and his ability is
elicited through it. However, from a dynamic perspective, the ability or precision of
each agent may be evaluated by two parties: the decision maker (the principal) and
the outside evaluator (the market). In this case, the gain from information provisions
would come, at least partly, from future payoffs which depend on the reputation built
today. Recent empirical studies show that career concerns matter in expert advising.
Ottaviani and Sgrensen (2006a,b) explore the theoretical approaches on this topic.

However, Ottaviani and Sgrensen (2006a) assume the compensation is solely de-
termined by reputation. In this sense, the approach of the paper is in the opposite
direction to ours. A complete theory would consider the compensation determined
by both factors: future payoff from reputation and current payoff from compensa-
tion. As two parties are involved in evaluation, there would be a conflict of interests

between the decision maker and the evaluator. Since the report tends to be shaded
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or biased in the presence of reputation concerns, the principal’s objective is to reduce

such effect, without paying too much. We leave these topics for future research.
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Chapter 4

Optimal Employment of Multiple Experts

4.1 Introduction

This chapter considers an employer’s employment portfolio choice in which only
employees’ abilities, not efforts, affect the outcome, and employees are heterogeneous
in their ability and reservation wage. This environment usually appears when a
principal hires multiple experts for a single project.

Levitt (1995) shows that hiring multiple agents can increase the payoff when an
employer cares only about the best outcome among agents. In other words, multiple
samples from a distribution are better than a single sample. The school application
problem studied by Chade and Smith (2006) falls into this category. As in their work,
this chapter focuses on the optimal portfolio choice problem ignoring information
asymmetry issues.

When an employer hires multiple experts, while an expert with higher ability may
contribute more than those with lower ability, the level of an individual’s marginal

contribution often depends on the other experts’ contributions. For example, a finan-
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cial forecaster’s forecasting may be more valuable when there is no other forecasting
value available. Two pharmaceutical scientists with the same capability are more
likely to come out with a successful medicine when they work together for the same
research project than when one scientist works alone, but the probability of success
may not be doubled up. In other words, the output produced by multiple experts can
be less than the sum of their individual outputs; therefore, production is submodular.

An optimal employment portfolio choice is especially a big problem, even without
information asymmetry, with a submodular production function and an arbitrary
reservation wage schedule.! Further, it is almost impossible to characterize the prop-
erty of the optimal portfolio in general. Indeed, it is widely known that the max-
imization of a general submodular set function with arbitrary price, or reservation
utility, schedule is computationally intractable.

A nalve approach to this problem is to find a local maximum, or an agent with
the highest marginal contribution, at each step and repeat it until there is no agent
who makes a positive marginal contribution.? This kind of myopic decision approach,
however, does not always lead to a global optimum. More often than not, the optimal
employment portfolio does not necessarily include the most capable agent, and an
agent may be omitted while others with lower and higher ability are hired.

Under some conditions, this myopic approach can still lead to an optimum.

1This kind of problem is known to be NP-hard: there is no algorithm for it to be solved in polynomial time
(Cormen et al., 2001). It is possible, however, to find a maximum for a general supermodular function in polynomial
time, see Lovasz (1983).

2This approach is also known as the greedy algorithm; see Cormen et al. (2001).
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Murota and Shioura (2003) show that if the single improvement property (Gul and
Stacchetti, 1999) is satisfied for an objective function, the following properties must
hold: (i) a greedy algorithm leads to the global optimum, and (ii) local and global op-
tima coincide. By definition, the single improvement property is satisfied if, for any
sub-optimal employment portfolio, adding, removing or changing only one element
leads to a higher payoff. A unit demand function, for example, satisfies the single
improvement property.> Gul and Stacchetti (1999) show that for monotone objec-
tive functions, the single improvement property is equivalent to the gross substitutes
condition of Kelso and Crawford (1982).

Unfortunately, the single improvement property is often too strong to be satis-
fied in many portfolio choice problems. Kelso and Crawford (1982) show that an
objective function is submodular if it is non-decreasing and satisfies the gross sub-
stitutes property, but the opposite is not necessarily true. Many portfolio choice
problems, including simultaneous search with a downward recursive payoff function
(Chade and Smith, 2006) and hiring multiple experts (Chapter 3) do not satisfy the
single improvement property even though the objective function is non-decreasing
and submodular. In such problems, the naive approach often fails to achieve the
optimum.

In this essay, we focus on the employment portfolio decision when the single im-

provement property of the production function is violated, but a myopic employment

3Gul and Stacchetti (1999) give several classes of functions which satisfy the single improvement property. In
addition, they give two operations that allow us to drive a new function satisfying the single improvement property
from other functions satisfying it.
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approach is still optimal. Assuming the agents’ abilities and reservation wages are
known to the employer, we show that when (i) an agent’s reservation wage is a
fraction of his production as an individual, and (ii) the production function is in-
creasing, submodular and exhibits increasing differences in marginal production, the
optimal employment portfolio simply includes all experts with higher capability than
a cut-off level and excludes everyone else. We refer to this property as monotone em-
ployment. In this case, the employment decision is simply to sequentially choose the
expert who offers the largest marginal improvement, until the marginal contribution
turns negative.

This essay can be viewed both as a case of submodular function optimization when
the single improvement condition is violated, as in Chade and Smith (2006), and as a
justification for a monotone employment policy, which is often taken for granted.The
rest of this chapter is organized as follows: We describe the model in the next section.
In Section 4.3, we present the specifications under which the monotone employment
result becomes optimal. Section 4.4 presents an example for a decision-maker who
wishes to gather information from multiple professional forecasters. Section 4.5 con-

cludes and relates the result with the literature on combinatorial optimization.

4.2 Model

There is a monopolistic employer with many potential employees, or applicants,

each of whom is heterogeneous in ability. We define S = {7y, 7, -, 7y} as the set

76



of all potential employees and 7; € S (i = 1,...N) as the ability of each potential
employee to the job position. S is a discrete, finite subset of ]Rﬂf . An employee
with the ability 7 has his (reservation) wage w(7). The elements in S be ordered as
{ris1} = {ri}fori=1...N—1.

The production function, denoted by f(-), is a set function from 2° to R,. The
employees, once hired, jointly produce outputs. The production depends solely on
the employees’ ability. Without any employment, the employer cannot produce any
output, or f(#) = 0. For any A € 2° The principal’s payoff can be represented
as f(A) = > ,caw(a). Her objective is, therefore, maximizing this value. For con-
venience, we sometimes use w(A) to represent . _,w(a), and f(A,7) to represent
fAU{T}).

We define the binary relation = as follows. For any two subsets A; and A;, A; = A;
if and only if f(A;) > f(A;). Because the value of f is a non-negative real number,
every subset of S is completely ordered with respect to the binary relationship =.

We assume the following regularity conditions for the set production function

f(X) (X C89).
Assumption 4.1. The set production function f(-) satisfies

(i) Strictly monotonicity with the set inclusion ordering relation: If Ay C As, then

f(A1) < f(Ag), and if A1 C Ay, then f(A1) < f(A2).

(i1) Order preservation in marginal production: For any A C S and 7, 7; ¢ A,
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f(r) < f(m) & f(An) < f(A 7).
(iii) Decreasing marginal production: If f(m;) < f(7;), then for any A C S\{m,7;},
f(A 1) = f(Am) < f(13) = ().

A set function f(+) is submodular (Topkis, 1998) if for two sets A and B, f(AUB)+
f(ANB) < f(A)+ f(B) and strictly submodular if f(AUB)+f(ANB) < f(A)+f(B)

when A # B.

Lemma 4.1. f(X) is submodular in X on S.

Proof. Ttem (iii) in Assumption 4.1 implies that the production function has decreas-
ing marginal returns. Lemma 1 in Gul and Stacchetti (1999) shows that when a set
function f : 29 — R is monotone, it is submodular if and only if the set function has

decreasing marginal returns. O

Finally, following Gul and Stacchetti (1999), we define that f satisfies the single
improvement property if for any wage schedule w and subset A C S such that A ¢
argmax cg f(J)—w(J), there exists B C S such that (i) f(A)—w(A) < f(B)—w(B),
(i) #(A\B) <1 and (iii) #(B\A) < 1. Note that the single improvement property
is a property of f only, not related to the wage schedule w. The single improvement
property, which guarantees that a greedy algorithm reaches the global optimum, is
too strong to be satisfied in many cases. Our specification on f do not necessarily
satisfy the single improvement property, either. We give an example in subsection

4.4.1.

78



4.3 Optimal Monotone Employment

When the optimal employment portfolio simply includes all experts with higher
capability than a cutoff level and excludes everyone else, we refer to it as optimal
monotone employment. In this chapter, we propose a set of conditions which leads
to the optimal monotone employment, through a simple approach called marginal
improvement algorithm (Chade and Smith, 2006).

When a principal adopts a sequence of myopic decisions, she begins with the null
employment set, searches the best expert and adds him to the employment set if he
generates a positive profit. Otherwise, the optimal employment set is empty. She
then searches for the best one among experts not employed yet given the current em-
ployment set. If this expert generates a positive marginal profit, he is added to the
employment set. Otherwise, the algorithm stops. This procedure is repeated until
the best remaining expert generate a negative marginal profit is negative. Following
Chade and Smith (2006), we call this approach the marginal improvement algo-
rithm. It can be classified as a greedy Algorithm (Cormen et al., 2001).* Note that
the optimal monotone employment is not necessarily achieved even if the marginal
improvement algorithm leads to an optimum.

We define the positive single crossing condition of the marginal production by a

single expert and cutoff element.

4In a marginal improvement algorithm process, once an employment decision about an expert is made, it is not
revisited afterward. Because the marginal contribution of an expert depends not just on his own ability but also
on the abilities of the remaining employees, this once-and-for-all feature leaves the possibility of failing to reach the

optimum in general.
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Definition 4.1. (Positive Single Crossing Property) Positive single crossing is sat-
isfied if, for any subset A C S, there exists at most one element a* € {S\A} such

that for any b > a*, the inequality

F(Ab) — (Zw(a) +w(b)> >0

acA

is satisfied, and for any b < a*,

F(AD) — (Zw(a) +w(b)> <0

acA

are satisfied. This a* is called the cutoff element for set A.

We want to note that it is not the same as the single-crossing property defined in
Milgrom and Shannon (1994). In Milgrom and Shannon’s definition, if it is (strictly)
preferable to have more of the second component, an element in this case, given
a particular level for the first component, an employment subset in this case, then
it would still be (strictly) preferable to have the greater second component given
a greater level for the first component. Unlike Milgrom and Shannon (1994), our
single-crossing property does not require preserving the preference between any two
elements aj,as € S for different employment subsets. For example, in our model,
given a; < ag, A < B, it is possible that 0 < f(A,a1) — w(A) —w(a;) < f(A,az) —
w(A) —w(ay), but 0 > f(B,a1) —w(B) —w(a;) > f(B,as) —w(B) — w(ay), which
is not consistent with Milgrom and Shannon’s single-crossing property.

We assume another property for the production function.
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Assumption 4.2. f has increasing differences in marginal production. That is, for
any 7,7, 7" €Ry (1 <7 <7")and A € 25\{0}, if 0 > f(A, 7")—2f(A, 7)+f(A, 1),

then, the following inequality
0> f(AT") =2f(A,7) + f(A,7) > f(7") = 2f (7)) + f(7)
1s satisfied.

The intuition behind the Assumption 4.2 is that if f were a real-valued function,
the sign of the third derivative of f would be positive, or f” > 0. In other words,
f would show decreasing concavity. This condition is satisfied for both a decreasing
absolute risk-aversion (DARA) and a constant absolute risk-averse (CARA) function.

We also assume that the reservation utility schedule w(7) is exogenous to the

model as follows.

Assumption 4.3. w(7;) is proportional to the individual agent’s single production,
i.e., w(T) = [f(r) where 0 < <1 and (ACS).
The following lemma states that the positive single crossing condition is satisfied if

the submodular production function shows a decreasing curvature and the reservation

utility is given as a fraction of single production.

Lemma 4.2. For f (-), if assumption 4.1, 4.2 and 4.8 are satisfied, the positive single

crossing property is satisfied.

Proof. 1f the statement of the lemma is true, satisfying the inequality f(A,7;+) —

5 (S @)+ 1)) 2 0 must atvays imply £(4.5) 5 ( £ 1(0) 4 7)) 2 0

acA a€A
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for any ¢ > i* and a subset A C S\{7;, 7+ }. This condition is satisfied if the following

inequality

(4.1) f(A, 1) — f(A, 1) > Bf(T) — B (7ix)

is satisfied for any 7; > 7+ and not otherwise. When 0 > f(A,7,11) — 2f(A, ) +
f(A, 1), then, by Assumption 4.2, the decrease of marginal production from f(A, 7;)—
f(A 7<) to f(A,Tiy1) — f(A, 1) is slower than from f(7;) — f(7+) to f(Ti1) — f(7).

Thus, the following inequality

(A, Ti1) = (A7) + f(A ) — f(A, 1) > B(f(Tig1) — f(mi) + () — f(7+))

which can be reduced as

(4.2) FA 7)) = f(A 70) > B(F (Tia) = f(70))

must be satisfied as long as (4.1) is true. When 0 < f(A, 7i11) —2f(A, 1) + f(A, i),
then we can find a sequence of numbers (ty = 7, t; = 7, to, ..., tx_1,txk = Tit1)

where t;, <ty (K=0,..., K —1) so that f(A, 7,41) — f(A, 7+) can be rewritten as

f(At) — f(A i) + f(Astk 1) — f(At o) + ...+ f(A 1) — f(A to)

and that 0 > f(A, tkr2) —2f(A, tgr1)— f(A, tg). Again, Assumption 4.2 and equation
(4.2) are satisfied.

As long as we can find a 7 € S\ A which makes the lefthand side of (4.1) strictly
positive for given (3, we have one cutoff element which satisfies (4.1). Otherwise,

there is no cutoff element.
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acA

Finally, we want to show that f(A,7;) — 3 (Z fla) + f(Ti)) < 0 for any 7; <
T;+. Suppose that there exists such 77 ¢ A that satisfies 7/ < 7« and f(A,7') —
g (Z fla) + f(T’)) > 0, and that there exists such 7" that satisfies 7/ < 7”7 < 73

acA

and f(A,7") =0 (Z fla)+ f(T”)) < 0. Then, we have the following inequality
acA
FAT") = Bf(T") < f(A,7") — Bf(7") which clearly violates (4.2), which must be

satisfied because of the existence of 7/, and, therefore, the assumption 7/ < 7”. This

completes the proof. O

It should be noticed that the existence of a cutoff element does not itself permit
an immediate identification of the optimal set. Lemma 4.2, however, implies that the
marginal contribution, as long as it stays positive, is always proportional to appli-
cants’ capability and that monotone employment can lead to the global optimum. To
show optimal monotone employment achieved, we need the following lemma which
states that the cutoff element is non-decreasing with respect to the set of previous

employees.

Lemma 4.3. Given the properties of the set production function and the reservation
utility in Assumption 4.3, for any set A, B C S such that B = A with cutoff elements

a* and b* for A and B, respectively, it must be that b* = a* is satisfied.

Proof. Based on property 3 in Assumption 4.1, if B = A, then it is possible that
f(A,a") = f(A) = Bf(a”), but
f(B,a*) = f(B) < pf(a”)
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On the other hand, if f(B,b*) — f(B) > Bf(b*), then f(A,b*)— f(A) > Bf(b*) must

be satisfied. O

Combined together, Lemma 4.2 and Lemma 4.3 predict that monotone employ-

ment is optimal. Proposition 4.1 formally states it.

Proposition 4.1. Under the given assumptions, the optimal employment portfolio

1s monotone. Further, it can be achieved by the marginal improvement algorithm.

Proof. In a local optimum, there is no applicant unemployed whose capability is
greater than the cutoff value and every employee makes a positive marginal contri-
bution.

Suppose that there is an element a such that a = b, but a ¢ A and b € A in a

locally optimal employment set. Then, the following inequality

fANA}, a) = Bf(a) < fF(ANA{b}) < f(A) = Bf(b)

must be satisfied and, therefore

fANAbY, a) — f(A) < Bf(a) = BF(b)

must be satisfied, too. Because b must be greater than the cutoff element of the

previous employment set A \ b, by Lemma 4.2, the following inequality

fANAbY, @) = f(A) = Bf(a) = BF(b)

must be satisfied, which contradicts the previous inequality. Thus, there must be
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no element missed in a locally optimal employment set. Lemma 4.2 implies that a
locally optimal employment set must comprise an interval from the highest type.
Now, suppose that there are two locally optimal employment sets E; and Fs
(Ey C E3). Then, there must be at least one element e such that e € Ey, but e ¢ Ej.
Therefore, e must be smaller than the cutoff value for F; but greater than that for
FE5. This result, however, violate Lemma 4.3. Thus, there must be at most one

locally optimal employment set, which is eventually global optimal. O

4.4 Example: Hiring Multiple Professional Forecasters

This chapter considers, as an example, the optimal employment when a monopo-
listic information demander, a principal, wishes to gather information from multiple
professional forecasters. We assume each forecaster has heterogeneous information
quality, or precision of the signal, and his reservation wage depends on the quality.
When the information quality is known to the principal, his objective is to select the
set of forecasters which provides the best information.

A principal tries to make the best prediction of the true state, for example the
profitability of a project. To get better information beyond common prior, the
principal wishes to hire privately informed professional forecasters, called experts
hereafter. Experts are heterogeneous in the precision of their private signals on the
true state, which can be interpreted as their ability, is labeled as their type.

The true state x is drawn from a normal distribution with mean p, and variance
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1/7,, which is common knowledge. While the principal has no private information,
expert ¢ of type 7; € S receives a conditionally independent private signal s;, where
S ={7,...,7n} is the set of experts who applied for the job positions. The distri-
bution of s; is assumed to follow a normal distribution with mean x and precision
Ti, OT

si=x+e€, €~N(01/7).

Once hired, each expert should submit a report on the true state, denoted by
r; € R for expert 7. We assume the compensation scheme is designed for each expert
to report his posterior mean. In other words, the honest report is a priori assumed.”
Since the principal knows the precision of each expert, the honest report on the true
state is equivalent to the honest report on the signal received. Formally, we have the

one-to-one relationship between the private signal and the honest report:

(Tx + Ti)ri — Tz g
T

S; —

The principal’s objective is to maximize revenue less payoffs to employed experts.
The revenue function R depends on the principal’s prediction on the true state,
denoted by 7, and the true state. We specify it as R(z,7) = a — (T — z)? for
constants a > 0 and v > 0. In other words, the principal tries to minimize the mean

squared error®.

5We can actually design an optimal contract which can derive the first-best outcome for this case if the true state
is verifiable ex post. See chapter 3 for more.

6The qualitative results of this chapter hold provided the principal minimizes any power function of ex-post error,
| & — |. This is because the expectation of the power of error is a constant times the power of the posterior variance.
One can easily transform the optimization problem into one with the mean squared error.
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With known precisions and honest reports, the principal’s best prediction is the
posterior mean of the true state given all information available for her. If J C §'is

the employment set, we have

> ores Ti(T 7)) = (| = DT
ZT]'GJ Tj +Tx

T = ;

This prediction is unbiased, so the expected mean squared error becomes the poste-

rior variance, 7, + > 7;. Principal’s objective is to select the best subset £ C S

TjEJ

which maximizes the revenue less the wage payments. The optimization problem is

formally described as follows.

(4.3) I?SL%(E;E a—y(T—1z)* — Z w(r)| = <a - #ﬂ) - Z w(7;)

T]'EJ T]'EE

In principle, the problem can be solved through computing values of the objective
function over the power set of alternatives (in our setting over the power set of
applicants). It belongs to the class of combinatorial optimization problems, which
aims at finding the best subset from a finite set of alternatives.”

Before we begin the analysis, we define some functions for notational convenience.

In this example, the production function f is defined as

f =90 ) =a 1 Jcs

- )
T, T
T€J x+ZTj€J J

If J is a singleton, f(J) is called the single production function.
Let Ty =7, + er ¢ Tj» which is the precision of the employees in J. In the later

part of this paper, we sometimes suppress the subscript J and use 7" to represent 7’;.

"The utility maximization problem given a price vector in Gul and Stacchetti (1999) is also isomorphic to ours,
where the utility and the price are analogue to the information gain and the reservation wage, respectively. In Gul
and Stacchetti (1999), however, the SI condition is satisfied.
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The marginal production function is derived from information contribution func-
tion. For prior precision 7" and an additional signal with precision 7, let

T
T(T+71)

AT 7)=9(T+7)—g(T) =
Similarly, we define the marginal loss function when we remove a signal with

precision 7 from a set J with precision 7.

YT

vV(T,7)=g(T)—g(T—71) = TT—7)

We have the following properties of the information contribution function.

Lemma 4.4. The production function [ satisfies all properties in Assumption 4.1

and Assumption 4.2.

Ny : :
Proof. g(3..e57) = a—1 £ e a—7- is increasing concave with respect to 7.

By Topkis (1998), g satisfies the properties in Assumption 4.1. The third derivative

6y
T

of g is which is obviously greater than zero. Therefore, ¢” < 0, which is equivalent
to the difference in marginal production, increases as T’y increases. Assumption 4.2
is satisfied. m

4.4.1 Discussion on the Specification

In our model, the assumptions for the production function does not necessarily
satisfy the single improvement property. f satisfies the single improvement property
if, for any reservation wage schedule and an employment portfolio A C S, if A is
not optimal, then there exists another subset B # A such that f(A) — w(A4) <

F(B) = w(B), #(A\B) <1, and #(B\A) > 1.
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The single improvement condition is too strong to be satisfied in many cases. We
show an example that a production function which satisfies Assumptions 4.1 and 4.2
may violate the single improvement property (Example 4.1).

Instead of relaxing the single improvement property in the production function,
we put a constraint on the reservation wage schedule to achieve the optimal mono-
tone employment through the marginal improvement algorithm. The assumption on
reservation wage is critical to achieve the optimal monotone employment. To moti-
vate, we provide examples which show that (i) if the specification on the reservation
wage schedule violates Assumption 4.3, the marginal improvement algorithm fails
to achieve the optimum even if the production function satisfies Assumptions 4.1
and 4.2(Example 4.1), and (ii) the optimal employment portfolio is not monotone

(Example 4.2).

Marginal Gain/Cost
02T

w(r)
A(3,7)
A(3.8,7)

01T A4 7)

Figure 4.1: Marginal Information Contribution and Reservation Utility

Example 4.1. Figure 4.1 shows a linear reservation utility function w(7) = 1—167' and
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marginal information contribution functions when v = 1. Let 7, = 1 and 7 € (0, 3].

Note first that when the principal is to hire one expert in the beginning, the highest

type is always preferred since A (T, 7) —w(T) = (1;) — %7’ is increasing when 7 < 3.

Suppose that the pool of applicants S has three potential employees {7, 72, 73}
and that from the pre-screening the principal knows their types are 7y = 1, 75 = 2,
and 73 = 2.8. If the principal chooses the marginal improvement algorithm, or finding
the local maximum in each step, she will first hire 73 = 2.8, who makes the biggest
marginal production. Then, both 7 and 7, cannot create positive contributions and
the hiring process stops. T' = 3.8 and the principal’s profit is a — les — % =

a — 0.43816. On the other hand, if she starts from hiring 7 = 2, she will be able

to hire another agent, 74 = 1. Then, her profit is o — 1+§+1 — % = a — 0.4375,

which is bigger than o — 0.43816 and, actually, the global optimum. The marginal
improvement algorithm fails to achieve a global optimum. The marginal production
functions for each case are demonstrated in Figure 4.1.

Adding, deleting, or substituting only one element from J = {r3 = 2.8} does
not improve the principal’s payoff. The optimal employment portfolio, however, is

E ={m = 1,7 =2}. The single improvement property obviously fails here. m

Example 4.2. Consider now three applicants of type 7, = 1, 75 = 1.5, and 753 = 2.
Under the marginal improvement algorithm, the principal first hires 73 = 2, whose
marginal profit is biggest. Then, the marginal production from hiring one more agent

becomes A(1 +2,7) = 15 — 1557, and the marginal profit is A(1 + 2,7) — B2,
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which is positive if 7 = 1, but not if 7 = 1.5. The principal chooses to hire 7 and
the employment portfolio is £ = {73 = 1,73 = 2}, which happens to be optimal, but

obviously not monotone. m

The above example shows that the marginal improvement algorithm does not al-
ways lead to the global optimum, and the optimal employment set may not comprise
an interval. The key point in this example is the quasi-concavity of the marginal
profit. As the reservation utility function is close to linear, the marginal profit is
always more concave than the reservation utility function. If the reservation utility
is linear or convex, the marginal profit is always concave due to the submodularity
of f. This implies that as the employment set is enlarged, or equivalently the in-
formation is cumulated, the lower type has a better chance of being hired than the
higher type, though initially the higher type contributes more. This breaks down
the monotonicity of the positive profit and finding a local maximum at each step, or

marginal improvement algorithm, may not lead to the global optimum.

4.4.2 Properties of Optimal Employment Set

Even though it does not satisfy the single improvement property, the objective
function of our model has a nice feature. Any set of experts can be characterized
by a single real number, the sum of precisions of experts in the set. This allows
us to transform the objective set function to a function on the two dimensional

Euclidian space. This transformation allows us to solve the problem through a
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greedy algorithm, as will be discussed later.

Yet the optimal employment set is quite arbitrary since it depends heavily on the
form of reservation utility function. We make a critical but reasonable assumption
on the reservation utility in the next section: the reservation utility is proportional to
the marginal single information contribution. Under this specification, the optimal
employment set is shown to follow a cut-off property. We then discuss on general
cases, providing an example of complicated optimal employment set. The comparison
of our model and other combinatorial optimization problem is presented in the final
subsection.

The result crucially depends on the quasi-convexity of the marginal profit, which
is due to the fact that, roughly speaking, the marginal production is less convex
than the reservation wage. Moreover, the marginal production becomes less concave
as T gets large. This implies that even though the marginal production is more
concave than reservation utility at the initial state (when 7' = 7,), it might become
less concave when T approaches the optimal cut-off point. The specification of
reservation utility in the previous subsection shows exactly this case. Initially, the
curvature of the reservation utility is the same as that of the marginal information
contribution. For T" > 7., however, the curvature of the former is always bigger than
the latter.

We now apply Assumption 4.3 on the reservation wage schedule. It is proportional
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to the single production, or production by single agent.®, that is, for k > 1,

YT

ATy, T) = —F——-
(72, 7) KTe(Te +7)

w(r) =

3=

We also normalize v = 7, = 1. The assumption is quite strict but reasonable. It
says that if the expert utilizes his private information outside of the relationship with
the principal, his gain is proportional to his single production under the principal.
Behind the assumption we think potential principals in the market share the same
information on each expert so that the gain inside of the market should be the same
across principals. Since all employers do not know who is what type, the reservation
utility cannot be type dependent. The only situation where an expert with higher
ability gains more lies in the case when he uses the private information for his own
gain.

To prove the key characterization of the optimal employment set, we need the

following lemma:

Lemma 4.5. The profit from adding T from a set with collective precision T, A
(T, 1) —w(T) crosses zero on T > 0 at most once and from below. Likewise, the profit

from dropping T, w(t) — V(T,T) crosses zero at most once and from above.

Proof. & (T,7)—w(7) > 0if and only if T(T'+7) — k(1 +7) < 0. Since it is linear in

7, for some 7 > 0 to satisfy the equality we must have either k—T2 > 0 and T —x > 0

8We strongly conjecture that the main result still hold if the reservation utility is a concave function of the
single production. This is because, as will be clarified later, the main result depends on the fact that the marginal
contribution function near the global optimum crosses the reservation utility only once and from below. The fact is

still satisfied when the reservation utility is concave in the marginal single contribution.
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or Kk —T? < 0and T < k. However, the latter inequality cannot hold because x > 1.
Thus, we need to check only the case of \/k <T < k. Then, T(T + 1) — k(1 + 7) is
a decreasing function of 7 and crosses zero only once rom above. This implies that
A (T, 7) —w(T) crosses zero at most once from below.

For the dropping case, w(r) — V(T,7) > 0 if and only if (T + k)7 — T? + r < 0.
This crosses zero at most once regardless of the value of 1. Since it crosses from

below, w(r) — V(T, T) crosses from above. O

The intuition of Lemma 4.5 is as follows. For the marginal information contribu-
tion function to cross the reservation utility function, 7" must be in an appropriate
range. Since the marginal production becomes less concave as T' increases, it is flat
relative to the reservation wage function in the range of 7.

We need an additional lemma to prove the main proposition.

Lemma 4.6. Given T? > k, if 7o satisfy & (T,7) — w(7) =0 and 7, satisfy w(T) —

V(T,7) =0, then, 1, < To.

Proof. When T? < k, there is no applicant who can make a positive profit for the
principal. Then, there will no more employment. When 72 > &, the existences of 7
and 7, are immediate from the proof of Lemma 4.5. We have (T — k)7 +T* —k =0
and (T + k)1, — T? + k = 0. But then, (T + k)70 — T? + k> —(T — k)1 = T? — k.

Thus, w(my) — V(T,71) < 0, which implies that 71 < 75. O

Proposition 4.2. Under the given specification, there exists at most one cutoff ele-
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Marginal Net Gains from
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Figure 4.2: Marginal Contribution from Adding/Dropping an Expert with 7 (k =4, T = 3)

ment 7F < 1y such that the optimal employment portfolio includes any expert ; > 7*

and can be achieved by the marginal tmprovement algorithm.

Proof. Let E C S be the optimal set and let Tz be the associated collective precision.
Note first that if T3 < x, FE cannot be the optimum unless £ = S since adding any
expert in S\ F yields positive net gain. We only consider the case T% > k.

Define 71 and 75 as in the proof of lemma 4.6. Suppose ¢ € FE is less than
71. Then, dropping it improves net gain, contradicting the optimality. Similarly,
any u € S\ E cannot be bigger than 7. The only thing we need to check is the
case in which there are ¢ and j such that both are between 7 and m, 7, < 75,
and 7, € £ but 7; € S\ E. Consider £\ {r;,7;}. The optimality implies that

A(Tg—mi,1)—w(r) >A (T — 1, 7j) —w(7;). But then A (T'—7;, 7) —w(T) crosses
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zero from above, which contradicts Lemma 4.6. (Refer to Figure 4.2) This completes

the proof. O

4.5 Conclusion and Discussion

An employer may need to hire multiple experts for a single project such as fi-
nancial forecasting, consulting, or pharmaceutical production even if there is little
complementarity among the experts. If the employer cares about the maximal output
across agents, hiring multiple agents can increase the expected value of the output.
In other words, multiple samples from a distribution are better than a single sample.

There are two issues in finding an optimal employment portfolio in this environ-
ment. First, if the production function is submodular, it is computationally complex
even when the experts’ abilities are known (Lovész, 1983). Second, the optimal
employment portfolio is not well-behaved.

If the gross substitutes condition (Kelso and Crawford, 1982) or single improve-
ment property (Gul and Stacchetti, 1999) is satisfied for a set production function,
the global maximum can be achieved by a greedy algorithm (Murota and Shioura,
2003). Unfortunately, the single improvement property is too restrictive in many
cases.

Like Chade and Smith (2006), we first provide conditions under which, even
though the single improvement property is not satisfied, the optimal employment

portfolio is achieved through a simple myopic approach, the marginal improvement

96



algorithm. On the other hand, while Chade and Smith (2006) focus on the spec-
ification of the production function and cost structure under which the marginal
improvement algorithm leads to the global optimum, we propose conditions under
which the optimal employment portfolio can be simply described by a cutoff ele-
ment where all experts with greater ability than the cutoff are hired and the rest are
not. We call this result optimal monotone employment. Such a property does not
necessarily obtain in Chade and Smith (2006).

In our model, if an increasing, strictly submodular production function shows in-
creasing differences in marginal production, and an agent’s reservation wage is a frac-
tion of his individual production, monotone employment is optimal and, therefore,
can be achieved by the marginal improvement algorithm. We provide an example
in which the single improvement property is violated, but monotone employment is
nevertheless optimal.

One drawback of our result is that there is no guarantee that the core exists with
our proposed conditions. Because the single improvement condition guarantees the
existence of the core, a Walrasian equilibrium can be achieved in matching or auction
applications. The possibility that the core may not exist limits the application of
our model to other economic problems.

A few questions remain as future research topics. First, while we conjecture that
our condition is weaker than the single improvement property, the exact relationship

between these two conditions needs to be investigated further. Second, we believe
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that a positive concave transformation of the reservation wage schedule we use will
lead to the same result. Finally, topological features of the production function and

reservation wage schedule need to be explored.

98



Bibliography

Alesina, A. and A. Cukierman (1990). The politics of ambiguity. Quarterly Journal

of Economics 105, 24-52.

Alesina, A. and R. Holden (2008). Ambiguity and extremism in elections. Working

Paper.

Ansolabehere, S. and J. M. Snyder Jr. (2000). Valence politics and equilibrium in

spatial election models. Public Choice 103(3-4), 327-336.

Aragones, E. and T. R. Palfrey (2002). Mixed equilibrium in a downsian model with

a favored candidate. Journal of Economic Theory 103, 131-161.

Avery, C. N. and J. A. Chevalier (1999). Herding over the career. Economics Let-

ters 63(3), 327-333.

Banks, J. and J. Duggan (2005). Probabilistic voting in the spatial model of elec-
tions: The theory of office-motivated candidates. In D. Austen-Smith and J. Dug-
gan (Eds.), Social Choice and Strategic Decisions: Essays in Hornor of Jeffrey S.

Banks. Springer Berlin Heidelberg.

99



Battaglini, M. (2002). Multiple referrals and multidimensional cheap talk. FEcono-

metrica 70(4), 1379-1401.

Berger, M. M., M. M. Munger, and R. F. Potthoff (2000). Expository note: The

downsian model predicts divergence. Journal of Theoretical Politics 12(2), 228~

240.

Bernhardt, D., O. Camara, and F. Squintani (2008). Competence and ideology.

Working Paper.

Bernhardt, M. D. and D. E. Ingberman (1985). Candidate reputations and the

‘incumbency effect’. Journal of Public Economics 27, 47-67.

Bhattacharya, S. and P. Pfleiderer (1985). Delegated portfolio management. Journal

of Economic Theory 36(1), 1-25.

Calem, P. S. and J. A. Rizzo (1995). Competition and specialization in the hospital
industry: An application of the hotelling’s location model. Southern Economic

Journal 61, 1182—-1198.

Callander, S. and S. Wilkie (2007). Lies, damned lines, and political campaigns.

Games and Economic Behavior 60, 262—-286.

Chade, H. and L. Smith (2006). Simultaneous search. FEconometrica 74(5), 1293~

1307.

100



Coate, S. and S. Morris (1999). Policy persistence. American Economic Re-

view 89(5), 1327-1336.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2001). Introduction to

Algorithms (2nd ed.). The MIT Press.

Crawford, V. and J. Sobel (1982). Strategic information transmission. FEcoomet-

rica 50(6), 1431-1451.

Crémer, J. and R. P. McLean (1985). Optimal selling strategies under uncertainty
for a discriminating monopolist when demands are interdependent. FEconomet-

rica 53(2), 345-361.

Crémer, J. and R. P. McLean (1988). Full extraction of the surplus in bayesian and

dominant strategy auctions. Econometrica 56(6), 1247-1257.

Dasgupta, P. and E. Maskin (1986). The existence of equilibrium in discontinous

game: Part i theory. Rewview of Economic Studies 53, 1-26.

DeBacker, J. (2008). Flip-flopping: Ideological adjustment costs in the united states

senate. Working paper.

Downs, A. (1957). An Economic Theory of Democracy. New York: Harper and Row.

Duggan, J. (2000). Equilibrium equivalence under expected plurality and probability

of winning maximization. Working Paper.

101



Enelow, J. and M. J. Hinich (1981). A new approach to voter uncertainty in the

downsian spatial model. American Journal of Political Science 25, 483-493.

Eyster, E. and T. Kittsteiner (2007). Party platforms in electoral competition with

heterogeneous constituencies. Theoretical Economics 2, 41-70.

Feddersen, T. and W. Pesendorfer (1996). The swing voter’s curse. American Eco-

nomic Review 86(3), 408-424.

Feddersen, T. and W. Pesendorfer (1997). Voting behavior and information aggre-

gation in elections with private information. Econometrica 65, 1029-1058.

Fiorina, M. P. (1973). Electoral margins, constituency influence, and policy moder-

ation: A critical assessment. American Politics Quarterly 1(4), 479-498.

Green, J. R. and N. L. Stokey (1983). A comparison of tournaments and contracts.

Journal of Political Economy 91(3), 349-364.

Griffin, J. D. (2006). Electoral competition and democratic responsiveness: A defense

of the marginality hypothesis. Journal of Politics 68(4), 909-919.

Groseclose, T. (2001). A model of candidate location when one candidate has a

valence advantage. American Journal of Political Science 45, 862-886.

Grossman, G. M. and E. Helpman (1994). Protection for sale. American Economic

Review 84 (4), 833-850.

102



Gul, F. and E. Stacchetti (1999). Walrasian equilibrium with gross substitutes.

Journal of Economic Theory 87, 95-124.

Hansen, R. G. (1985). Auctions with contingent payments,. American Economic

Review 75(4), 862-865.

Hinich, M. J. (1977). Equilibrium in spatial voting: The median voter result is an

artifact. Journal of Economic Theory 16, 208-219.

Holmstrom, B. (1982). Moral hazard in teams. Bell Journal of Economics 13(2),

324-340.

Jullien, B. (2000). Participation constraints in adverse selection models. Journal of

Economic Theory 92, 1-47.

Kartik, N. and R. P. McAfee (2007). Signaling character in electoral competition.

American Economic Review 97(3), 852-870.

Kelso, A. S. and V. P. Crawford (1982). Job matching, coalition formation,and gross

substitutes. Econometrica 50(6), 1483-1504.

Levitt, S. D. (1995). Optimal incentive schemes when only the agents’ “best” output

matters to the principal. Rand Journal of Economics 26(4), 744-760.

Levy, G. (2004). Anti-herding and strategic consultation. Furopean Economic Re-

view 48(3), 503-525.

103



Liu, Y., D. S. Putler, and C. B. Weinberg (2004). Is having more channels really bet-
ter? a model of competition among commercial television broadcasters. Marketing

Science 23, 120-133.

Lizzeri, A. and N. Persico (2001). The provision of public goods under alternative

electoral incentives. American Economic Review 91(1), 225-239.

Lovész, L. (1983). Submodular functions and convexity. In A. Bachem, M. Grotschel,
and B. H. Korte (Eds.), Mathematical Programming: The State of the Art, pp. 235~

257. Berlin: Springer-Verlag.

Maskin, E. and J. Riley (1984). Monopoly with incomplete information. RAND

Journal of Economics 15(2), 171-196.

Milgrom, P. and J. Roberts (1990). Rationalizability, learning, and equilibrium in

games with strategic complementarities. Econometrica 58, 1255-1277.

Milgrom, P. and C. Shannon (1994). Monotone comparative statics. Economet-

rica 62(1), 157-180.

Murota, K. and A. Shioura (2003). Quasi m-convex and l-convex functions - quasi-

convexity in discrete optization. Discrete Applied Mathematics 131, 467-494.

Osband, K. (1989). Optimal forecasting incentives. Journal of Political Econ-

omy 97(5), 1091-1112.

104



Ottaviani, M. and P. N. Sgrensen (2006a). Reputational cheap talk. RAND Journal

of Economics 37, 155-175.

Ottaviani, M. and P. N. Sgrensen (2006b). The strategy of professional forecasting.

Journal of Financial Economics 81(2), 441-466.

Patty, J. W. (2002). Equivalence of objectives in two candidate elections. Public

Choice 112, 151-166.

Persson, T., G. Roland, and G. Tabellini (2000). Comparative politics and public

finance. Journal of Political Economy 108(6), 1121-1161.

Persson, T. and G. Tabellini (1999). The size and scope of government: Comparative

politics with rational politicians. Furopean Economic Review 43, 699-735.

Prendergast, C. (1993). A theory of “yes man " American Economic Review 83(4),

757-770.

Scharfstein, D. S. and J. C. Stein (1990). Herd behavior and investment. American

Economic Review 80(3), 465-479.

Shepsle, K. (1972). The strategy of ambiguity: Uncertainty and electoral competi-

tion. American Political Science Review 66, 551-558.

Topkis, D. M. (1998). Supoermodularity and Complementarity. Princeton University

Press.

105



Trueman, B. (1994). Analyst forecasts and herding behavior. Review of Financial

Studies 7(1), 97-124.

Wittman, D. (2007). Candidate quality, pressure group endorsements, and the nature

of political advertising. European Journal of Political Economy 23(2), 360-378.

106





