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1 Introduction

1.1 What is a foam?

Fill a glass halfway with chocolate milk. Put one end of a straw in the milk,
put the other end of the straw in your mouth, and blow. The structure you
have just produced is a dry liquid foam: a network of thin liquid films enclosing
several gas-filled regions.

To a first approximation, the law governing the evolution of a liquid film is
delightfully simple: the surface area of the film is always decreasing as quickly
as possible. The film reaches equilibrium when its surface area can no longer be
reduced.

The films of a dry liquid foam are prevented from collapsing to zero area by
the pressures of the gas bubbles they enclose. In a typical foam, the pressure
differences between adjacent bubbles are tiny compared to the ambient pressure,
so the volume of each bubble depends only on the number and temperature of
the gas molecules inside it.1 The time it takes for the films to reach mechanical
equilibrium is much longer than the time it takes for the bubbles to reach
thermal equilibrium, but much shorter than the time it takes for an appreciable
number of gas molecules to diffuse across the films. The volumes of the bubbles
in a mechanically equilibrated foam are therefore approximately constant.

The facts laid out above suggest the following mathematical model of a dry
liquid foam.

Definition 1.1. An n-dimensional foam is a collection of bounded, continuously
differentiable (n − 1)-dimensional surfaces, called films, that partition Rn into
a finite number of connected regions. These regions, with the exception of
the unbounded one, are known as bubbles. Films may intersect only at their
boundaries, and every boundary must be shared by at least three films.

1The surface tension of water is 0.073 J/m2 so the tension of a thin water film is about
0.146 J/m2. The pressure difference across a spherical water film 1 cm in diameter is therefore
only 58 N/m2—less than a thousandth of an atmosphere. For water containing a surfactant,
the pressure difference is even smaller.

1



A foam is said to be in equilibrium if no continuously differentiable defor-
mation of the foam can reduce its total area while keeping the volumes of the
bubbles constant.

This definition can be extended to encompass foams with infinitely many
bubbles [3]. It can also be changed to allow films to bump into each other with-
out crossing [1]. These modifications increase the generality of the definition,
but they also introduce technical complications that I wish to avoid here.

1.2 Foam dynamics

An equilibrium-preserving deformation of a foam is a continuously differentiable
deformation that keeps the foam in equilibrium at all times. An equilibrium-
preserving deformation does not have to preserve the volumes of bubbles. For
simplicity, I will adopt the convention that an equilibrium-preserving deforma-
tion may not create or destroy films.

Heuristic arguments suggest that in most cases, the evolution of a two-
dimensional foam undergoing an equilibrium-preserving deformation should be
determined, up to translation and rotation, by the evolution of the pressures
of its bubbles [4, 2]. I will make this statement rigorous under fairly general
assumptions, and also describe some cases in which it fails.

2 Preliminaries

2.1 Equilibrium conditions

The variational definition of equilibrium that I have given is conceptually illumi-
nating, but difficult to work with. Fortunately, equilibrium can also be defined
in the more practical language of elementary geometry.

Theorem 2.1. A two-dimensional foam is in equilibrium if and only if it sat-
isfies the following conditions, known as Plateau’s laws:

1. The curvature of each film is constant. In other words, each film is a
straight line segment or a circular arc.

2. The films meet in threes at 120◦ angles.

3. If a closed path crosses three intersecting films transversally, as shown in
Figure 1, the signed curvatures of the films with respect to the path sum
to zero. The sign convention for the curvature is shown in Figure 2.

Proof. See Lemma 4.1 of [1] and Corollary A.4 of [7]. Although the latter is
stated as a result about foams in S2, the proof goes through in R2 as well.
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2.2 Constellations

The films of a two-dimensional foam intersect only at isolated points, known as
vertices. To describe an equilibrated two-dimensional foam in the vicinity of its
vertices, I will use a structure called a constellation. A constellation is composed
of stars and edges. A star has a base point, which is a point in R2, and three
tangent vectors, which are unit vectors in R2 separated by angles of 120◦. An
edge connects a tangent vector of one star to a tangent vector of another star.
Every tangent vector in a constellation belongs to exactly one edge.

The constellation map turns equilibrated two-dimensional foams into con-
stellations. It does this by turning vertices into stars and films into edges. The
position of a vertex becomes the base point of a star, and the unit tangent
vectors of the films that intersect at the vertex become the tangent vectors of
the star. Two tangent vectors are connected by an edge if and only if they
come from the same film. The effect of the constellation map is demonstrated
in Figure 3.

Theorem 2.2. The constellation map is one-to-one.

Proof. Let F be a foam, and let G be the constellation of F .
Consider any film of F . The corresponding edge of G is associated with two

base points, which are the endpoints of the film, and two tangent vectors, which
are the unit tangent vectors of the film at its endpoints. Since the film is a
straight line segment or a circular arc, this uniquely determines the film.

Therefore, every film of F is uniquely determined by G.

The constellation map is not surjective. A constellation is the image of an
equilibrated foam if and only if it satisfies the following conditions:

1. For each edge, there exists a constant-curvature arc with the appropriate
endpoints and endpoint tangent vectors.

Equivalently, if the tangent vectors t1 and t2, with associated base points
x1 and x2, are connected by an edge, the signed angle from t1 to x2 − x1
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is equal to the signed angle from x1 − x2 to t2. Counterclockwise angles
are positive.

2. The arcs described in Condition 1 satisfy the curvature sum condition
from Theorem 2.1.

3. The arcs described in Condition 1 intersect only at their endpoints.

2.3 Constellation dynamics

Consider a foam undergoing an equilibrium-preserving deformation. The defor-
mation is prohibited, by convention, from creating or destroying films, so the
constellation of the foam is changing only by the translation and rotation of
its stars. Since the motion of the stars is guaranteed to be continuously dif-
ferentiable, all of the stars have well-defined linear and angular velocities at all
times. The linear and angular velocities of the stars determine the evolution of
the constellation, which determines, by Theorem 2.2, the evolution of the foam.

A velocity field assigns a linear velocity and an angular velocity to each star
of a constellation. The velocity fields on a constellation G form a vector space,
V (G). The velocity field that assigns linear velocity v and angular velocity ω to
star i, leaving all other stars stationary, will be denoted [v, ω]i. The projection
of a velocity field onto the subspace {[v, ω]i | v ∈ R2, ω ∈ R} will be referred to
as the projection of the velocity field onto star i.

An equilibrium-preserving velocity field is the instantaneous velocity field of
an equilibrium-preserving deformation. A velocity field is equilibrium-preserving
if and only if it satisfies the following conditions, obtained by time-differentiating
the conditions for a constellation to belong to an equilibrated foam:

1. For each edge, there exists an evolving constant-curvature arc whose end-
points and endpoint tangent vectors have the appropriate linear and an-
gular velocities.

Equivalently, if the tangent vectors t1 and t2, with associated base points
x1 and x2, are connected by an edge, the signed angle from t1 to x2 − x1

is changing at the same rate as the signed angle from x1 − x2 to t2.

2. As the arcs described in Condition 1 evolve, they continue to satisfy the
curvature sum condition from Theorem 2.1.

The condition requiring arcs to intersect only at their endpoints has no analogue
here, because it is always preserved by sufficiently small deformations.

To describe the equilibrium-preserving deformations of a foam, it suffices to
describe the equilibrium-preserving velocity fields of the foam’s constellation.
This task will be the focus of the next section.
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3 Equilibrium-preserving velocity fields

3.1 Assumptions and notation

Let F be an equilibrated two-dimensional foam. Since the connected compo-
nents of a foam are completely independent of one another, I will assume, with-
out loss of generality, that F is connected. For convenience, I will also assume
that every bubble of F has at least three sides. This assumption does not lead
to any practical loss of generality, because two-sided bubbles can be treated as
“decorations” superimposed on the rest of the foam.

Let G be the constellation of F . I will use the following notation in reference
to G.

• xi is the base point of star i.

• cij = |xj − xi|.
• eij = 1

cij
(xj − xi).

• e∗ij is the vector obtained by rotating eij 90◦ counterclockwise.

• tij is the unique tangent vector of star i that is connected to a tangent
vector of star j.

• θij is the signed angle from tij to eij .

• Mij is the unique constant-curvature arc with endpoints xi and xj and
endpoint tangent vectors tij and tji.

• Lij is the unique circle or line containing Mij .

• κij is the signed curvature of Mij with respect to a path traveling coun-
terclockwise around xi.

Suppose G is undergoing a continuously differentiable deformation with in-
stantaneous velocity field u. I will use the following notation in reference to
u.

• vi is the linear velocity of star i.

• ωi is the angular velocity of star i.

3.2 Symmetry constraints

Suppose stars 0 and 1 are adjacent—that is, connected by an edge. The signed
angle from t01 to x1 − x0 is changing at the same rate as the signed angle from
x0 − x1 to t10 if and only if θ′01 = −θ′10, where ′ denotes the time derivative.

Let · denote the standard Euclidean inner product. As G evolves, e01 and
e10 both rotate with angular velocity φ = 1

c01
e∗01 ·(v1−v0), as shown in Figure 4.

In addition, t01 rotates with angular velocity ω0, and t10 rotates with angular
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velocity ω1. Therefore, θ′01 = φ−ω0, and θ′10 = φ−ω1. As a result, θ′01 = −θ′10
if and only if

φ− ω0 = −(φ− ω1)
0 = −2φ + ω0 + ω1

0 = − 2
c01

e∗01 · (v1 − v0) + ω0 + ω1

0 =
2

c01
e∗01 · v0 − 2

c01
e∗01 · v1 + ω0 + ω1.

Using the fact that e01 = −e10, this can be rewritten

0 =
2

c01
e∗01 · v0 +

2
c10

e∗10 · v1 + ω0 + ω1.

In other words, θ′01 = −θ′10 if and only if u is orthogonal to the velocity field

S01 =
[

1
c01

e∗01,
1
2

]

0

+
[

1
c10

e∗10,
1
2

]

1

.

There is one symmetry constraint Sij for each edge of G. The subspace of V (G)
spanned by the symmetry constraints will be denoted CS(G).

3.3 Balance constraints

In this subsection, I will assume that u is in CS(G)⊥, the orthogonal complement
of CS(G). The arcs Mij may therefore be taken to be evolving in accordance
with u.

Suppose star 0 is adjacent to stars 1, 2, and 3. As G evolves, the arcs M01,
M02, and M03 continue to satisfy the curvature sum condition from Theorem 2.1
if and only if κ′01 + κ′02 + κ′03 = 0.
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One can deduce from Figure 5 that cijκij = 2 sin θij . Differentiating with
respect to time, one finds that

cijκ
′
ij + c′ijκij = (2 cos θij)θ′ij

cijκ
′
ij + [(vj − vi) · eij ]κij = (2 cos θij)

ωj − ωi

2
cijκ

′
ij = κijeij · vi − κijeij · vj − (cos θij)ωi + (cos θij)ωj

κ′ij =
κij

cij
eij · vi − κij

cij
eij · vj − cos θij

cij
ωi +

cos θij

cij
ωj

κ′ij =
2 sin θij

c2
ij

eij · vi − 2 sin θij

c2
ij

eij · vj − cos θij

cij
ωi +

cos θij

cij
ωj .

Since G is the constellation of an equilibrated foam, θij = −θji. Recalling that
eij = −eji, this implies that

κ′ij =
2 sin θij

c2
ij

eij · vi − 2 sin θji

c2
ji

eji · vj − cos θij

cij
ωi +

cos θji

cji
ωj .

In other words, κ′ij = Kij · u, where

Kij =

[
2 sin θij

c2
ij

eij , −cos θij

cij

]

i

−
[

2 sin θji

c2
ji

eji, −cos θji

cji

]

j

.

Therefore, κ′01 + κ′02 + κ′03 = 0 if and only if u is orthogonal to the velocity field

Y0 = K01 + K02 + K03.

There is one balance constraint Yi for each star of G. The subspace of V (G)
spanned by the balance constraints will be denoted CY (G).

The curvature constraints Kij will be important later on. There is one
curvature constraint for each edge of G.
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3.4 The subspace of equilibrium-preserving velocity fields

Let Λ(G) = [CS(G) + CY (G)]⊥. A velocity field on G is equilibrium-preserving
if and only if it lies in Λ(G).

The main result of this paper is an upper bound on the dimension of Λ(G). I
will also show that if the upper bound is attained, each bubble of F is associated
with an equilibrium-preserving velocity field that changes its pressure while
keeping the pressures of the other bubbles constant. (Pressure will be defined
in Subsection 5.1.)

Before these results can be proven, a few technical details must be worked
out. This will be done in the next section.

4 Technical details

4.1 Conjugate vertices

Suppose star 0 is adjacent to stars 1, 2, and 3. Because F is in equilibrium, L01,
L02, and L03 intersect not only at x0, but also at the conjugate vertex x†0 [5, 6].

Definition 4.1. A curve passes through all of its points except the endpoints.

Lemma 4.1. None of the arcs M01, M02, and M03 pass through x†0.

Proof. Let I : R2 ∪ {∞} → R2 ∪ {∞} be inversion about x0. (See [6, 8] for
discussion of the inversion transformation.) Since I preserves generalized circles
and sends x0 to ∞, it turns M01, M02, and M03 into rays and maps L01, L02,
and L03 to lines intersecting at I(x†0), as shown in Figure 6. Since I is conformal,
I(L01), I(L02), and I(L03) meet at 120◦ angles.

Inversion preserves Plateau’s laws, so I(F ) would be an equilibrated foam
were it not for the unbounded films I(M01), I(M02), and I(M03). By shortening
these films and adding three new films, as shown in Figure 7, I(F ) can be turned
into an equilibrated foam, F ∗.

Suppose M01 passes through x†0. Since I is continuous, I(M01) passes
through I(x†0). This forces the bubbles labeled A and B in Figure 8 to intersect
the shaded region.

Cristian Moukarzel has shown that every equilibrated two-dimensional foam
is also a Sectional Multiplicative Voronöı Partition (SMVP) [6]. Consider F ∗

as an SMVP. If you remove all of the sources except the ones corresponding to
the exterior region and the bubbles A, B, and C, the resulting SMVP will be
the one pictured in Figure 9, because the line or circle on which the interface
between two SMVP sources lies depends only on the positions, intensities, and
heights of the sources.

In the SMVP in Figure 9, regions A and B do not intersect the shaded
region, which is the same as the one in Figure 8. Adding sources to an SMVP
can only remove points from the already-existing regions, so it follows that
regions A and B of F ∗ cannot intersect the shaded region. This contradiction
proves that I(M01) does not pass through I(x†0), which proves that M01 does
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not pass through x†0. The same argument can be used to show that M02 and
M03 do not pass through x†0 either.

4.2 Linear independence of the symmetry constraints

Proposition 4.1. The symmetry constraints are linearly independent.

Lemma 4.2. If star 0 is adjacent to stars 1, 2, and 3, the projections of S01,
S02, and S03 onto star 0 are linearly independent.

Proof. The projections of S01, S02, and S03 onto star 0 are [ 1
c01

e∗01,
1
2 ]0, [ 1

c02
e∗02,

1
2 ]0,

and [ 1
c03

e∗03,
1
2 ]0. Since the projections all have the same angular velocity com-

ponent, they are coplanar in R2×R if and only if 1
c01

e∗01,
1

c02
e∗02, and 1

c03
e∗03 are

collinear in R2. This, of course, occurs if and only if 1
c01

e01, 1
c02

e02, and 1
c03

e03

are collinear in R2.
Notice that cijeij = xj − xi. Therefore, 1

cij
eij is the image of xj under

inversion about xi. Let I : R2 ∪ {∞} → R2 ∪ {∞} be inversion about x0.
Now, suppose I(x1), I(x2), and I(x3) are collinear. Because F does not

contain any two-sided bubbles, x1, x2, and x3 must be distinct. Since I is one-
to-one, I(x1), I(x2), and I(x3) must be distinct as well. There is therefore a
unique line X containing I(x1), I(x2), and I(x3).

Since I(xi) must lie on I(Li) for all i ∈ {1, 2, 3}, X can contain I(x†0) only
if two of the I(xi) lie on I(x†0), contradicting the fact that all of the I(xi) are
distinct (Figure 10). Therefore, X does not contain I(x†0). As a result, one of
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the I(Mi) must pass through I(x†0), as shown in Figure 11. Since I is a homeo-
morphism, one of the Mi must pass through x†0, contradicting Lemma 4.1. This
contradiction shows that I(x1), I(x2), and I(x3) are not collinear. Therefore,
the projections of S01, S02, and S03 onto star 0 are linearly independent.

Proof of Proposition 4.1. Consider a linear combination of the symmetry con-
straints. If the coefficient of Sij is nonzero, the projection of the linear com-
bination onto stars i and j will also be nonzero, by Lemma 4.2. Therefore, a
linear combination of the symmetry constraints can only be zero if all of the
coefficients are zero.

4.3 Modified balance constraints

The dimension of CY (G) is not obvious. I will therefore introduce a set of
modified balance constraints Ỹi, which will turn out to be linearly independent.
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If star 0 is adjacent to stars 1, 2, and 3,

Ỹ0 = K̃01 + K̃02 + K̃03, where

K̃ij = Kij − 2 cos θij

cij
Sij .

The subspace of V (G) spanned by the modified balance constraints will be
denoted C̃Y (G). Since CY (G) ⊂ CS(G) + C̃Y (G), it follows that CS(G) +
CY (G) = CS(G) + C̃Y (G). Therefore, Λ(G) = [CS(G) + C̃Y (G)]⊥.

Knowing that

2 cos θij

cij
Sij =

[
2 cos θij

cij

1
cij

e∗ij ,
2 cos θij

cij

1
2

]

i

+
[
2 cos θij

cij

1
cji

e∗ji,
2 cos θij

cij

1
2

]

j

=

[
2 cos θij

c2
ij

e∗ij ,
cos θij

cij

]

i

+

[
2 cos θji

c2
ji

e∗ji,
cos θji

cji

]

j

,

one finds that

K̃ij =

[
2 sin θij

c2
ij

eij − 2 cos θij

c2
ij

e∗ij , −
2 cos θij

cij

]

i

−
[

2 sin θji

c2
ji

eji +
2 cos θji

c2
ji

e∗ji, 0

]

j

.

This expression will be useful in the next subsection.

4.4 Linear independence of the modified balance constraints

Proposition 4.2. The modified balance constraints are linearly independent.

Lemma 4.3. If star 0 is adjacent to stars 1, 2, and 3,

cos θ01

c01
+

cos θ02

c02
+

cos θ03

c03
> 0.

Proof. I will start by proving the lemma in the case that κ01, κ02, and κ03 are
all nonzero.

Consider the vertices x0, x1, x2, and x3 independently of the rest of F . If
x0 is fixed, and the curvatures of M01, M02, and M03 are held constant, x1, x2,
and x3 can only move by sliding back and forth along L01, L02, and L03. For
i ∈ {1, 2, 3}, the position of xi is uniquely determined by θ0i. We can therefore
consider c0i to be a function of θ0i. Let

Ω(θ01, θ02, θ03) =
cos θ01

c01(θ01)
+

cos θ02

c02(θ02)
+

cos θ03

c03(θ03)
.

For all i ∈ {1, 2, 3}, the angle swept out by the arc M0i is 2θ0i. Therefore,
|θ0i| ∈ (0, π], with M0i = L0i when |θ0i| = π.
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Special case. Let Θ01, Θ02, and Θ03 be the unique angles such that x1(Θ01) =
x2(Θ02) = x3(Θ03) = x†0. Suppose that θ0i = Θ0i for all i ∈ {1, 2, 3}. In this
case, M01, M02, and M03 join up at x†0, creating a standard double bubble
(Figure 12) [6]. Since Ω(θ01, θ02, θ03) is a symmetric function, we can assume,
without loss of generality, that the arrangement of t01, t02, and t03 around star
0 is as shown in Figure 12.

Imagine sliding a unit tangent vector along M0i from x0 to xi. The vector
will rotate through the angle 2Θ0i. Now, imagine sliding a unit tangent vector
along M01 from x0 to x†0, rotating it π

3 radians clockwise to line up with M02,
sliding it along M02 from x†0 to x0, and rotating it another π

3 radians clockwise
to line up with M01. The vector is now back in its starting position, and it has
rotated through one complete clockwise circle. Therefore,

2Θ01 +
π

3
− 2Θ02 +

π

3
= 2π.

A similar argument shows that

2Θ02 +
π

3
− 2Θ03 +

π

3
= 2π.

In other words,

Θ01 = Θ02 +
2π

3

Θ03 = Θ02 − 2π

3

Since x1(Θ01) = x2(Θ02) = x3(Θ03), it follows that c01(Θ01) = c02(Θ02) =
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c03(Θ03). Therefore,

Ω(Θ01,Θ02, Θ03) =
cos(Θ02 + 2π

3 )
c01(Θ01)

+
cosΘ02

c01(Θ01)
+

cos(Θ02 − 2π
3 )

c01(Θ01)
.

A little algebra reveals that

cos(Θ02 + 2π
3 ) + cos(Θ02 − 2π

3 ) = 2 cos(Θ02) cos( 2π
3 ).

Consequently,

Ω(Θ01, Θ02, Θ03) = 1
c01(Θ01)

[cos(Θ02) + 2 cos(Θ02) cos( 2π
3 )]

= 1
c01(Θ01)

[cos(Θ02) + 2(− 1
2 ) cos(Θ02)]

= 0.

General case. Recall that c0iκ0i = 2 sin θ0i. Therefore,

cos θ0i

c0i(θ0i)
=

κ0i

2
cot θ0i.

Since cot is an odd function, and κ0i and θ0i always have the same sign,

cos θ0i

c0i(θ0i)
=
|κ0i|

2
cot |θ0i|.

As a result,

Ω(θ01, θ02, θ03) =
|κ01|

2
cot |θ01|+ |κ02|

2
cot |θ02|+ |κ03|

2
cot |θ03|.

Because |θ0i| ∈ (0, π], it follows that Ω(θ01, θ02, θ03) decreases whenever |θ01|,
|θ03|, or |θ03| decreases.

Now, go back to considering x0, x1, x2, and x3 as part of F . This fixes
the values of θ01, θ02, and θ03. Lemma 4.1 guarantees that |θ0i| ≤ |Θ0i|
for all i ∈ {1, 2, 3}. In addition, the fact that F has no two-sided bubbles
means that |θ0i| < |Θ0i| for some i ∈ {1, 2, 3}. Therefore, Ω(θ01, θ02, θ03) >
Ω(Θ01, Θ02, Θ03). In other words, Ω(θ01, θ02, θ03) > 0.

I will now consider the possibility that some of the κ0i may be zero. If all
three of the κ0i are zero, the lemma is obviously true, because all of the c0i are
positive. If two of the κ0i are zero, Plateau’s laws force the third to be zero
as well. If only one of the κ0i is zero, the argument for the nonzero case can
be re-used with some minor modifications. I leave this as an exercise for the
reader.

Proof of Proposition 4.2. Notice that K̃ij · [0, 1]k can only be nonzero if i = k.
Therefore, Ỹ0 is the only modified balance constraint whose projection onto
[0, 1]0 can be nonzero. Furthermore,

Ỹ0 · [0, 1]0 = K̃01 · [0, 1]0 + K̃02 · [0, 1]0 + K̃03 · [0, 1]0

=
cos θ01

c01
+

cos θ02

c02
+

cos θ03

c03
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Therefore, by Lemma 4.3, Ỹ0 · [0, 1]0 is never zero.
Now, consider a linear combination of the modified balance constraints. If

the coefficient of Ỹi is nonzero, the projection of the linear combination onto
[0, 1]i will also be nonzero. Therefore, a linear combination of the modified
balance constraints can only be zero if all of the coefficients are zero.

5 The dimension of Λ(G)

5.1 Pressure

In a physical foam, the pressure difference between two adjacent bubbles is
proportional to the curvature of the film between them. This relationship,
which can be deduced from basic mechanical principles, is known as the law of
Young and Laplace [10].

The physical notion of pressure turns out to have a purely mathematical
analogue, first described by Cox et al. [1]. The pressure of a bubble in an
equilibrated two-dimensional foam can be found by drawing a path that begins
in the exterior region and ends inside the bubble, crossing films transversally
and never crossing vertices. The pressure of the bubble is the sum of the signed
curvatures of the films the path crosses. Plateau’s laws guarantee that the
pressure will not depend on the choice of path.

5.2 Isobaric velocity fields

Suppose u is in Λ(G). If the pressure of a certain bubble in F is given by
κ12 + κ34 + . . . + κmn, the time derivative of the pressure is given by (K12 +
K34 + . . . + Kmn) · u.

An isobaric velocity field is an equilibrium-preserving velocity field that keeps
the pressures of all of the bubbles constant. To identify the isobaric velocity
fields on G, one must first obtain a set of “special” films with the property that
any bubble of F can be connected to the exterior by a path that crosses only
special films. Such a set can be constructed in the following way:

1. Pick a bubble adjacent to the exterior. Add the film between the bubble
and the exterior to the set of special films. Put a “mark” on the bubble
to show that you have dealt with it.

2. Pick a bubble adjacent to a marked bubble (or to the exterior). Add the
film between the bubble and the marked bubble (or the exterior) to the
set of special films. Mark the bubble.

3. Repeat Step 2 until all of the bubbles are marked.

When this procedure is complete, there will be one special film associated with
each bubble of F .

Suppose F is undergoing an equilibrium-preserving deformation with instan-
taneous velocity field u. Since any bubble of F can be connected to the exterior
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by a path that crosses only special films, the pressures of all of the bubbles are
constant if and only if the curvatures of all of the special films are constant. In
other words, u is isobaric if and only if it is orthogonal to all of the curvature
constraints corresponding to the special films.

Let CΠ(G) be the subspace of V (G) spanned by the curvature constraints
corresponding to the special films. Let Π(G) = [CS(G) + C̃Y (G) + CΠ(G)]⊥. A
velocity field is isobaric if and only if it lies in Π(G).

5.3 The dimension of Λ(G)

Theorem 5.1. The dimension of Λ(G) is no greater than B +dimΠ(G), where
B is the number of bubbles in F .

Proof. In this proof, I will write V for V (G), Λ for Λ(G), and so forth.
Notice that Π⊥ = CS + C̃Y + CΠ. Taking the dimension of both sides,

dim V − dimΠ = dim(CS + C̃Y + CΠ)

= dim CS + dim(C̃Y + CΠ)− dim[CS ∩ (C̃Y + CΠ)].

Let N be the number of stars in G. Since every velocity field assigns a two-
dimensional linear velocity and a one-dimensional angular velocity to each star
of G, dim V = 3N .

Let E be the number of edges in G. Every edge touches two stars, and every
star touches three edges, so E = 3

2N . There is one symmetry constraint for
each edge of G, so dim CS = 3

2N by Lemma 4.1. Therefore,

3N − dimΠ = 3
2N + dim(C̃Y + CΠ)− dim[CS ∩ (C̃Y + CΠ)]

dim[CS ∩ (C̃Y + CΠ)] = dim(C̃Y + CΠ) + dim Π− 3
2N.

There is one modified balance constraint for each star of G, so dim C̃Y = N by
Lemma 4.2. Since CΠ is spanned by B velocity fields, its dimension can be no
greater than B. Therefore, dim(C̃Y + CΠ) ≤ N + B. As a result,

dim[CS ∩ (C̃Y + CΠ)] ≤ N + B + dim Π− 3
2N

dim[CS ∩ (C̃Y + CΠ)] ≤ B + dim Π− 1
2N.

Recall that Λ = (CS + C̃Y )⊥. Therefore,

dimΛ = dim V − dim(CS + C̃Y )

= 3N − [dim CS + dim C̃Y − dim(CS ∩ C̃Y )]

= 3N − [ 32N + N − dim(CS ∩ C̃Y )]

= 1
2N + dim(CS ∩ C̃Y ).
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Since C̃Y ⊂ C̃Y + CΠ, it follows that dim(CS ∩ C̃Y ) ≤ dim[CS ∩ (C̃Y + CΠ)].
Thus,

dimΛ ≤ 1
2N + B + dim Π− 1

2N

dimΛ ≤ B + dim Π.

5.4 Compressions

A compression is an equilibrium-preserving velocity field that changes the pres-
sure of one bubble while keeping all of the other pressures constant.

Theorem 5.2. If dimΛ(G) = B+dim Π(G), then Λ(G) has a basis of the form
p1, . . . , pB , π1, . . . , πn, where pi is a compression of bubble i, and π1, . . . , πn are
a basis for Π(G).

Proof. Once again, I will write V for V (G), Λ for Λ(G), and so forth.
Pick any bubble of F and call it the “target bubble.” Construct a set of

special films using the procedure in Subsection 5.2, making sure that the target
bubble is the last bubble marked. Let CΠ be as it was before, and let C∗Π be
the subspace of V spanned by the curvature constraints corresponding to all of
the special films except the one associated with the target bubble.

Let Π∗ = (CS + C̃Y + C∗Π)⊥. A velocity field in Π∗ keeps constant the
pressures of all of the bubbles except the target bubble.

Recall that Π = (CS + C̃Y + CΠ)⊥. Therefore,

dimΠ = dim V − dim(CS + C̃Y + CΠ)

= dim V − dim(CS + C̃Y )− dim CΠ + dim[(CS + C̃Y ) ∩ CΠ].

Notice that CS + C̃Y = Λ⊥. Therefore, dim(CS + C̃Y ) = dim V − dimΛ. If
dimΛ = B + dim Π, then dim(CS + C̃Y ) = dim V −B − dimΠ. Hence,

dimΠ = dim V − (dimV −B − dimΠ)− dim CΠ + dim[(CS + C̃Y ) ∩ CΠ]

= B + dim Π− dim CΠ + dim[(CS + C̃Y ) ∩ CΠ]

dim CΠ = B + dim[(CS + C̃Y ) ∩ CΠ].

Since CΠ is spanned by B velocity fields, its dimension can be no greater than
B. Therefore, dim[(CS + C̃Y ) ∩ CΠ] = 0.

Finally,

dimΠ∗ = dim V − dim(CS + C̃Y + CΠ∗)
= dim V − dim(CS + C̃Y )− dim C∗Π + dim[(CS + C̃Y ) ∩ C∗Π]

= B + dim Π− dim C∗Π + dim[(CS + C̃Y ) ∩ C∗Π].
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Since C∗Π ⊂ CΠ, it follows that dim[(CS + C̃Y ) ∩ C∗Π] ≤ dim[(CS + C̃Y ) ∩ CΠ].
Recall, however, that dim[(CS + C̃Y ) ∩ CΠ] = 0. Therefore,

dimΠ∗ = B + dim Π− dim C∗Π.

Since C∗Π is spanned by B − 1 velocity fields, its dimension can be no greater
than B − 1. Therefore,

dimΠ∗ ≥ dimΠ + 1.

All of the isobaric velocity fields are in Π, so there must be at least one velocity
field in Π∗ that changes the pressure of some bubble. Recall, however, that a
velocity field in Π∗ cannot change the pressure of any bubble except the target
bubble. It follows that Π∗ contains a compression of the target bubble.

Since any bubble could have been chosen as the target bubble, every bubble
has at least one compression. For each i ∈ {1, . . . , B}, let pi be a compression of
bubble i, and let Pi : Λ → R be the map that sends each equilibrium-preserving
velocity field to rate at which it changes the pressure of bubble i. Let P : Λ →
RB be the map P (u) = (P1(u), . . . , PB(u)). Notice that P is linear, and the
images of p1, . . . , pB under P are linearly independent. It follows that p1, . . . , pB

are linearly independent, and their span intersects the kernel of P only at zero.
The kernel of P , however, is precisely Π, so if π1, . . . , πn is a basis for Π, then
p1, . . . , pB , π1, . . . , πn are linearly independent. If dim Λ = B + dim Π, any set
of B + dim Π linearly independent velocity fields in Λ is a basis for Λ. Thus,
p1, . . . , pB , π1, . . . , πn is a basis for Λ.

6 Singular foams

6.1 Extra isobaric dimensions

The subspace of isobaric velocity fields must always contain a three-dimensional
subspace comprising the velocity fields of rigid rotations and translations. In-
tuition and numerical experiments suggest that for most foams, the subspace
of isobaric velocity fields contains only the velocity fields of rigid rotations and
translations.

One type of foam with additional isobaric velocity fields is a “necklace”: a
ring of bubbles surrounding a zero-pressure central bubble. A necklace can be
constructed by arranging a sequence of circles L1, . . . , Ln, with radii R1, . . . , Rn,
so that the distance between the centers of Li and Li+1 is

√
R2

i + R2
i+1 −R1R2.

This guarantees that Li intersects Li+1 at two points, and the angle of intersec-
tion is 120◦ [8]. The intersection points become the vertices of the foam, and
the films are added in the obvious way.

An example of a necklace is shown in Figure 13. In this example, all of
the circles have the same radius, and their centers are located at the vertices
of a regular polygon. This kind of necklace will be called “perfect.” A perfect
necklace with n outer bubbles exists if and only if n ≥ 7.
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(a) Circles shown (b) Circles not shown

Figure 13

If R1, . . . , Rn are fixed, the configuration of the necklace is completely de-
termined by the positions of the centers of L1, . . . , Ln. From this fact, it is not
hard to deduce that if G is the constellation of a necklace with n outer bubbles,
dimΠ(G) = n = B − 1.

6.2 Missing compressions

Let F be a necklace whose n circles all have the same radius, and let G be the
constellation of F . As I have said, dim Π(G) = n. It turns out that if F is
perfect, dim Λ(G) = B + n. Thus, by Theorem 5.1, there is a compression for
each bubble of F . If F is not perfect, however, there is no compression of the
central bubble.

To see why, let F ∗ be a foam obtained from F by compressing the central
bubble—that is, by applying an equilibrium-preserving deformation whose ve-
locity field is a compression of the central bubble at all times. Because all of
the outer bubbles of F have the same pressure, all of the outer bubbles of F ∗

have the same pressure. Therefore, the films between the outer bubbles of F ∗

are straight lines. As a result, each outer bubble of F ∗ looks like the one in
Figure 14. Because all of the outer bubbles of F ∗ have the same pressure, the
values of R and r in Figure 14 are the same for all outer bubbles. Therefore, ∆
depends only on γ, and it is fairly easy to see that the relationship between ∆
and γ is one-to-one. Since adjacent bubbles share a film, adjacent bubbles must
have the same value of ∆. Therefore, all of the outer bubbles have the same ∆,
so all of the outer bubbles have the same γ. It quickly follows that F is perfect.

In short, if F ∗ is a foam obtained from F by compressing the central bubble,
then F is perfect. Thus, if F is not perfect, there is no compression of the
central bubble. In this case, by Theorem 5.1 and the converse of Theorem 5.2,
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Figure 14

dimΛ(G) < B + dim Π(G).

6.3 Pressure-related instabilities

A flower is a foam obtained by compressing the central bubble of a perfect
necklace. Let G be the constellation of a flower with n bubbles, and let Pc be
the pressure of the central bubble. The dimension of Λ(G) is B+n when Pc = 0,
and numerical experiments suggest that dimΛ(G) is B + 3 when Pc 6= 0. If you
start with Pc > 0 and steadily decrease it, you will see the dimension of Λ(G)
jump from B + 3 to B + n when Pc hits zero. This is precisely the buckling
instability described by Weaire et al. in [9]. Weaire and his coauthors remark
that “it is not immediately clear why the instability should only show itself for
n > 6.” In light of the discussion above, the answer is obvious: there is no
buckling instability for n < 7 because there is no perfect necklace for n < 7. If
you steadily decrease Pc with n < 7, the central bubble will shrink to a point
before Pc reaches zero.

7 Conclusions

7.1 Summary of results

The main results of this paper are summarized below.
Let F be an equilibrated two-dimensional foam. Assume that F is connected,

and that every bubble of F has at least three sides. (These assumptions do not
lead to any practical loss of generality, as discussed in Subsection 3.1.) Let G
be the constellation of F .

1. The dimension of Λ(G) is no greater than B + dim Π(G), where B is the
number of bubbles in F (Theorem 5.1).

2. If dim Λ(G) = B+dimΠ(G), then Λ(G) has a basis of the form p1, . . . , pB , π1, . . . , πn,
where pi is a compression of bubble i, and π1, . . . , πn are a basis for Π(G)
(Theorem 5.2).
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3. There exists F for which Π(G) contains more than just the velocity fields
of rigid rotations and translations (Subsection 6.1).

4. There exists F for which the dimension of Λ(G) is less than B +dim Π(G)
(Subsection 6.2).

7.2 The space of equilibrated foams

Two constellations are combinatorically equivalent if they have the same edges
and the same number of stars. A constellation space is an equivalence class
of constellations. A constellation in a given constellation space is uniquely
determined by the positions and angular orientations of its stars. A constellation
space of constellations with n stars may therefore be thought of as (R2 × S1)n

plus edge information.
Let C be a constellation space, and let E be the set of constellations in C

that are the constellations of equilibrated foams. For each E ∈ E , Λ(E) is the
set of time derivatives of continuously differentiable curves in E passing through
E. If E were a differentiable manifold, Λ(E) would be the tangent space of E
at E. It seems likely that E is diffeomorphic to RB+3 at most points, but the
examples in Section 6 demonstrate that there are constellation spaces for which
E is not diffeomorphic to RB+3 at every point.

Many different classes of generalized manifolds have been studied, and I
suspect that the set of all possible E falls into one of them. Learning more about
the possible geometries of E may shed light on questions about the geometry,
existence, and uniqueness of equilibrated foams.
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