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Abstract

Sleep-Disordered Breathing is empirically related to at least three forms of mental illness: Autistic 

Disorder (AD), Attention Deficit/Hyperactivity Disorder (ADHD), and Major Depressive Disorder 

(MDD). A review of the literature revealed that SDB and/or its correlates are both cause and effect 

of critical neurobiological mechanisms contributing to these forms of psychopathology during 

gestation, childhood/adolescence, and adulthood, respectively. Time-specific SDB sequelae 

correlate with cortical alterations that mirror the known neuroanatomical signatures of the 

aforementioned mental illnesses. Thus, SDB may be not only a general risk factor for 

psychopathology but a specific risk factor for at least three types of mental illness when viewed in 

its age-specific developmental context. Since in many cases SDB is readily treatable, implications 

of this theory include a number of treatment strategies for diverse types of psychopathology.

Keywords: Attention deficit hyperactivity disorder (ADHD), Autistic disorder (AD), Major 

depressive disorder (MDD), Psychopathology, Sleep-disordered breathing (SDB)



Sleep-Disordered Breathing and Psychopathology     3

Sleep-Disordered Breathing, Physiological Sequelae, and the Neurobiological Relationship with 

Psychopathology

Sleep Disordered Breathing (SDB) characterizes a broad range of disorders described by 

abnormalities in respiratory pattern and intake during sleep (Okawa & Inoue, 2007). These range 

from snoring to upper-airway resistance syndrome (UARS) to severe obstructive sleep apnea 

syndrome (OSAS) as defined by the International Classification of Sleep Disorders, Second 

Edition (American Academy of Sleep Medicine, 2001; Yudofsky & Hales, 2007). SDB is 

common, affecting approximately ten percent of adult females and twenty-five percent of adult 

males (Young et al., 1993), with its most severe form—obstructive sleep apnea (OSA)—plaguing 

two percent of women and four percent of adult men (Strollo & Rogers, 1996). 

Sleep-disordered breathing appears to have many biochemical and clinical correlates. It is 

known to be associated with innumerable adverse changes in the cardiovascular, metabolic, and 

neurological systems. For example, SDB has been shown to have independent associations with 

obesity, increased age, smoking, excessive alcohol intake, and other medical conditions including 

gastroesophageal reflux disease and various diseases of the heart (Franklin, Rehnqvist, & 

Axelsson, 2007). SDB seems to have a strong genetic component (Kaparianos, Sampsonas, 

Karkoulias, & Spiropoulos, 2006; Pillar & Lavie, 1995; Redline, Tosteson, Tishler, Carskadon, & 

Millman, 1992) and pregnancy increases the risk of SDB by 2-3 times (Izci et al., 2006). 

Extensive research has identified these conventional clinical correlates, but relatively little 

attention has been paid to the relationship that has been emerging between SDB and three specific 

forms of psychopathology. To date, SDB has been shown to have significant empirical 

relationships with autistic disorder (AD), attention deficit/hyperactivity disorder (ADHD), and 

major depressive disorder (MDD). The present paper serves to review these relationships while 
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developing a neurobiological framework that proposes potential mechanisms as a function of the 

age of exposure to SDB. While it is possible that other forms of psychopathology may be related to 

SDB, empirical relationships outside of those in this review have not been elucidated.

Autistic Disorder and the Correlates of Maternal SDB in Utero

A recent study funded by the Center for Disease Control and Prevention estimated that 3-7 

out of 1000 children have some form of Autism spectrum disorder, the most common of which is 

autistic disorder (Yeargin-Allsopp et al., 2003). Troublingly, the prevalence of autistic disorder is 

most likely rising (Fombonne, 2003). Autism not only has great costs in terms of the afflicted—

sensory, cognitive, and interpersonal impairments—but vast repercussions with regard to 

healthcare spending. Recent projections for the cost of taking care of an individual with autism 

across his or her lifetime amounted to over $3.2 million (Moldin & Rubenstein, 2006). In fact, the 

cost for caring for all people with autism across their lifetimes may be as high as $35 billion per 

year.

Thus, it is of great concern that many studies have empirically linked SDB in early 

childhood with autistic disorder. A recent study found that sleep-disordered breathing was related 

to “autistic-relating behavior” in a cohort of young subjects (O'Donoghue et al., 2005; see also 

Malow, McGrew, Harvey, Henderson, & Stone, 2006, Liu, Hubbard, Fabes, & Adam, and 

Halbower et al., 2006). Most of the research linking SDB to autism to date suggests that “sleep-

disordered breathing predicted children's stereotyped behavior, social interaction problems, and 

overall level of autism” (Hoffman et al., 2005). 

However, it is unlikely that sleep-disordered breathing during early childhood causes 

autistic disorder. Rather, many authors have formulated a different theory based on the facts that 

AD is usually diagnosed very early in life, AD is not alleviated by continuous positive airway 



Sleep-Disordered Breathing and Psychopathology     5

pressure (CPAP), and SDB is highly heritable. It has been proposed that deviant behavioral 

patterns of autistic infants may arise from cortical insult due to maternal SDB in utero (see Table 

1) (Msall, Bier, LaGasse, Tremont, & Lester, 1998; Naeye & Peters, 1987; Robertson & Finer, 

1993). Numerous prior studies have noted fetal neurobiological changes associated with maternal 

sleep-disordered breathing sequelae (Ayalon & Peterson, 2007; Gale & Hopkins, 2004). Maternal 

SDB, therefore, appears to be an important target in autism research.

Maternal SDB correlates (hypoxia, metabolic fluctuations, hemodynamic changes, 

sympathetic activations, vasculature abnormalities, etc,) have been shown to be especially 

dangerous for developing fetuses. The most direct route to fetal cortical abnormalities may involve 

the induction of fetal hypoxia resulting from blood oxygen desaturation of the pregnant mother, 

although this is currently under debate.  If such a phenomenon occurs, one route to this 

desaturation could be SDB. This is manifested in the short-term by physiological changes 

including fetal heart rate deceleration (Roush & Bell, 2004). In a general sense, at least one study 

has found that maternal SDB is related to poor fetal outcome as indexed by lower APGAR scores 

and higher rates of neonatal healthcare unit admission (Sahin et al., 2008). Specifically, SDB-

related correlates can lead to placental ischemia, resulting in serious abnormalities ranging from 

fetal growth restriction to fetal bradychardia (Ritchie, 1980) and, of particular importance to this 

review, abnormalities in fetal brain development. 

Based on an extensive review of the literature, maternal SDB correlates in animals are most 

likely associated with cortical abnormalities ranging from alterations in neuronal migration, to 

increased apoptosis to macrocephaly. Previous models to date have looked at more extreme forms 

of hypoxia and thus should be viewed as more analogous to full-blown sleep apnea. However, they 
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should not be completely discounted for milder forms of SDB as it is likely that they have an 

attenuated but nevertheless important effect.  

Previous studies have shown correlations between maternal SDB correlates and fetal 

neuropathology including documented damage to the frontal cortex (Kheirandish, Gozal, 

Pequignot, Pequignot, & Row, 2005), hippocampus (Falkowski, Hammond, Han, & Richardson, 

2002; Gerstein et al., 2005; Mallard, Williams, Johnston, & Gluckman, 1994), pons (Kheirandish 

et al., 2005), cerebellum (Lee et al., 2001), amygdala (Ke et al., 2005) and the subcortical 

pathways of the basal ganglia and thalamus (Derrick et al., 2004). Mallard and his colleagues 

(1999) found that periodic fetal hypoxia was associated with overall gray-matter deficiencies and 

that placental insufficiency such as that associated with chronic intermittent hypoxic episodes was 

associated with the enlargement of the cerebral ventricles and reduced area of the cerebral cortex 

relative to controls (Mallard, Rehn, Rees, Tolcos, & Copolov, 1999). Brunel and colleagues (2004) 

proposed that two out of every three fetuses exposed to hypoxic conditions develop a chronic 

response consisting of ventricular dilation and ventricular wall abnormalities accompanied with an 

overall decrease in white matter. These white matter injuries resulting from fetal hypoxia can be 

associated with a compensatory increase in cerebrospinal fluid (CSF) (Inder et al., 1999).

Viewing Maternal SDB correlates in the Context of Neurobiology: Autistic Disorder Mechanisms 

and Implications

The relationship between maternal SDB and brain changes becomes especially important 

when viewed in a broader context. While it is difficult to determine the exact prevalence of fetuses 

exposed to SDB correlates in utero, data suggest that it may as high as 30%, since pregnant women 

are 2-3 times more likely to experience SDB than non-pregnant women (Izci et al., 2006). In a 

survey of over 500 new mothers, results showed that rates of SDB (specifically snoring) jumped 
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from 4% before pregnancy to 23% on the day of delivery, with the largest increase during the third 

trimester (Franklin et al., 2000). In most studies, women returned to their pre-pregnancy levels of 

SDB as little as three months after delivery (Hedman, Pohjasvaara, Tolonen, Suhonen-Malm, & 

Myllyla, 2002). The increase in SDB during pregnancy may be due to a variety of factors including 

gestational weight gain, nasopharyngeal edema, decreased functional reserve capacity, and 

increased arousals from sleep (Pien & Schwab, 2004). 

Because maternal SDB is associated with abnormalities in many of the same areas known 

to be damaged in the autistic brain, it is possible that SDB serves as a contributing factor in some 

cases of AD. Specific areas of overlap include (see Table 1): the amygdala (Howard et al., 2000; 

Pierce, Muller, Ambrose, Allen, & Courchesne, 2001), amygdala-hippocampal region (Kemper & 

Bauman, 1992; Otsuka, Harada, Mori, Hisaoka, & Nishitani, 1999), frontal cortex (Otsuka et al., 

1999), cerebellum (Salmond, Vargha-Khadem, Gadian, de Haan, Baldeweg, 2007), thalamus 

(Hardan et al., 2006), lateral ventricles (Piven et al.,1995), pons (Hashimoto et al., 1991), and basal 

ganglia (specifically caudate enlargements) (Sears et al., 1999). In an area of heated debate during 

recent years, Rojas et al. (2006) found both volumetric gray matter decreases (in the cerebellum) 

and volumetric gray matter increases (in the medial frontal gyri, caudate nuclei, hippocampus, etc.) 

in the brains of autistic individuals relative to controls.    

Conflicting data with regard to the cortical destruction associated with SDB correlates 

suggest that the relationship between autism and sleep-disordered breathing is undoubtedly 

complex. For example, a vast majority of the data citing the effects of SDB in utero indicate that 

related correlates contribute to neuronal breakdown (apoptosis). However, it is well-documented 

that the brains of most individuals with autism younger than twelve years old actually have a larger 

cortical volume, which seemingly contradicts the above data (Aylward, Minshew, Field, Sparks, & 
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Singh, 2002; Hardan et al., 2001). Recent research has not only shed light upon this apparently 

paradoxical relationship, but also substantiated the relationship between maternal SDB and autism 

by proposing specific neurobiological mechanisms. 

In their paper, Kern and Jones (2006) argue that there may be a complex interplay between 

neuronal apoptosis and proliferation (gliosis) in autism. Specifically, purkinje cell loss (prevalent 

in the cerebellum of the autistic brain) leads to the release of glial fribrillary acidic protein (GFAP) 

indicative of nervous cell damage (Ahlsen et al., 1993). This causes a compensatory response that 

results in an increased rate of glial cell production (glial cell hyperplasia). In other words, well-

documented damage to purkinje fibers resulting in a short-term cortical volume decrease is 

accompanied by overall cortical volume increases via glial cell hyperplasia. The offsetting effects 

of these processes may explain why children with autism are born with normal head 

circumferences and therefore presumably normal brain volumes (Courchesne et al., 2001). It has 

been suggested that the compensatory response continues during the postnatal years, which may 

explain why children with autism tend to show increases in cortical brain volume generally 

manifested in the toddler years (Courchesne et al., 2001). SDB correlates have been suggested as a 

possible vehicle whereby purkinje cell loss can occur, leading to a neural compensatory response 

that is consistent with the development of autistic disorder (Ahlsen et al., 2003). 

A minority of articles suggests that SDB-correlates can lead to the increase in brain volume 

seen in autism in other ways. For example, a few authors (Bauman & Kemper, 1994; Vajda, 2002) 

have posited that the damage done to the purkinje cells results in a compensatory mechanism in 

which the purkinje cells themselves become enlarged. Evidence for this inflammatory reactive 

edema is seen in the swelling response of purkinje cells when they are exposed to a variety of 

neural toxins (Kiefer, Knoth, Anagnostopoulos, & Volk, 1989). Some research has elaborated on 
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the relationship between cortical toxicity, SDB correlates, and brain enlargement by suggesting 

complex mechanisms whereby SDB correlates lead to forms of immunosuppression, thereby 

making the brain vulnerable to a buildup of toxic materials in the post-natal period (Sarafian et al., 

1999). SDB correlates may lead to the compromise of antioxidant proteins, which may result in the 

sequestering of toxic metals such as lead in the autistic brain (Bradstreet, Geier, Kartzinel, Adams, 

& Geier, 2003). Buildup of these metals has been shown to lead to purkinje cell death which, as 

noted above, may result in a compensatory purkinje edema or gliosis.   

Attention Deficit/Hyperactivity Disorder and the Correlates of Childhood SDB

Attention deficit/hyperactivity disorder (ADHD) also has a strong empirical relationship 

with SDB. Recent research estimates that almost 1 out of 12 school-aged children has been 

reported by their parents as having ADHD; this may explain why 4.4 million youth between the 

ages of 4-17 have been diagnosed with ADHD (Faraone, Sergeant, Gillberg, & Biederman, 2003). 

Using less restrictive methods, some have found the prevalence of ADHD in children to be as high 

as 16 percent (Birnbaum et al., 2005). Individuals with ADHD have more co-morbid mental 

problems than other populations ranging from anxiety, depression, conduct disorders, antisocial 

personality disorder, and delinquent behavior (Birnbaum et al., 2005). Estimates have shown that 

ADHD costs Americans almost $80 billion per year (Birnbaum et al., 2005).

Like autism, childhood ADHD has been shown to have a strong empirical relationship with 

SDB. Chervin et al. (2002) found that children who snored habitually were twice as likely as non-

snoring controls to have a high score on a hyperactivity index. Similar results were observed for an 

inattention/hyperactivity scale developed based on the Diagnostic and Statistical Manual for 

Mental Disorders, Fourth Edition. Another investigation of the effects of childhood SDB on 

ADHD revealed odds ratios over 2.0 for inattention, hyperactivity, and aggressiveness in a group 
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of 5-year-old patients with diagnosable SDB compared to controls (Gottlieb et al., 2003). It 

therefore makes sense that 50% of a childhood ADHD sample had some form of SDB (Golan, 

Shahar, Ravid, & Pillar, 2004).

Childhood SDB correlates are much more likely to be etiological factors in ADHD than in 

autism primarily because ADHD diagnosis is usually made much later in childhood, around seven 

years (Ray et al., 2006). Furthermore, the treatment of problematic sleep during childhood appears 

to have a more therapeutic effect for ADHD patients than those with autism (Ballas, 2008). 

However, pinpointing the specific aspect of problematic sleep in childhood ADHD has led 

to some debate. It has been proposed that the symptoms of ADHD develop in childhood as a result 

of repeated, persistent sleep interruption, but recent literature suggests that neurological changes 

associated with SDB correlates may be crucial in the development of ADHD. Notably, childhood 

SDB and its downstream correlates may be related to changes in brain structure and function that 

include damage to the hippocampus and right frontal cortex (Gadian et al., 2000), basal ganglia 

(Barkovich, 2005), cerebellum (Lai et al., 2003), pons (Ramanathan, Gozal, & Siegel, 2005), 

thalamus (Douglas et al., 2007), and corpus callosum associated with overall white matter and 

cortical volume decreases (Ment, Schwartz, Makuch, & Stewart, 1998).

Viewing Childhood SDB correlates in the Context of Neurobiology: ADHD Mechanisms and 

Implications

Evidence in support of an association between neurobiological alterations, SDB correlates, 

and ADHD necessarily spurs an investigation into the mechanisms that underlie the ADHD 

clinical presentation. First, while repeated, persistent sleep interruption likely plays a part in 

ADHD symptoms (Ballas, 2008), neurobiological research reveals that sleep interruption may be 

one of the many symptoms of SDB. For example, if sleep interruption was an important etiological 
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factor, it would be expected that a vast majority of young patients would respond to stimulant 

medication designed to compensate for low arousal levels (Chervin, Dillon, Bassetti, Ganoczy, & 

Pituch, 1997).  However, some groups are responsive to stimulants and some are not, indicating 

that the true etiology may be more complex than a simple lack of arousal secondary to sleep 

interruption in these children. It is possible that SDB correlates may account superficially for low 

arousals but more importantly the cortical abnormalities known to be present in ADHD. Thus, 

stimulants most likely treat the symptoms of ADHD rather than an etiological factor.

There is a significant subgroup of young ADHD patients that respond to CPAP (Engleman, 

Martin, Deary, & Douglas, 1997; Kotterba et al., 1998; Tirosh, Tal, & Jaffe, 1995). Since CPAP is 

known to maintain airway opening and increase oxygenation in the brain, many consider this to be 

a more efficacious target in pinpointing the major ADHD etiological factor (Chervin et al., 1997). 

This perspective gains credence by considering that the brain areas known to be altered as a result 

of childhood SDB correlates are almost all present in the neuroanatomical signature of ADHD. 

One study showed that individuals with ADHD show abnormalities in overall white matter 

(decreases specifically in the left hemisphere), superior frontal gyrus, corpus collosum, right 

posterior cingulate gyrus, and basal ganglia (Overmeyer et al., 2001). Furthermore, ADHD patients 

have problems in the right frontal cortex (Castellanos et al., 2001), cerebellum (Berquin et al., 

1998), hippocampus (Plessen et al., 2006), brain stem (bilateral pons) (Zang et al., 2007), thalamus 

(Kim, Lee, Shin, Cho, & Lee, 2002), and overall gray matter deficiencies with net cortical volume 

decreases (Halbower et al., 2006). 

Evidence suggests that damage to all but two of the regions known to be abnormal in 

ADHD may be associated with childhood SDB correlates (See Table 2). Key cortical abnormalities 

found in the neuroanatomical signature of ADHD that may be related to chronic SDB during 
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childhood include decreases in overall cortical volume and white matter and damage to the right 

frontal cortex, basal ganglia, cerebellum, pons, thalamus, corpus calossum, and hippocampus.

Major Depressive Disorder and the Correlates of Adult SDB

A recent study found that as many as 18 percent of Americans may have Major Depressive 

Disorder (Williams et al., 2007). This estimate has been rising steadily in recent years (Lambert, 

2006). MDD can be crippling to its victims, resulting in inordinate guilt, poor concentration and 

indecisiveness, suicidal thoughts, and a myriad of psychopathological co-morbidities (Grote & 

Frank, 2003). These maladies severely impact function in everyday activities. One study found that 

treating MDD actually lowers overall health care costs for its patients due to decreasing its many 

other problematic correlates (Katon et al., 2006). 

The link between SDB and MDD is empirically well documented. Some older studies 

found that almost half of their entire adult sample with SDB had depressive symptoms (Millman, 

Fogel, McNamara, & Carlisle, 1989), often times meriting a diagnosis of Major Depressive 

Disorder (Mosko et al., 1989). Depressives were significantly more likely to have SDB in other 

studies (Bliwise,1993; Kupfer et al., 1981; Schroder & O'Hara, 2005). Recently, Deldin et al. 

(2006) found that SDB predicted accurate grouping in 81.3% of subjects with MDD and 80.6% of 

controls. In fact, one investigation found that, after controlling for obesity and hypertension, the 

adjusted odds ratio was 5.6 for having SDB for individuals with MDD (Ohayon, 2003). 

These findings reinforce the virtually axiomatic relationship between emotional well-being 

and adequate sleep. This can be explored further by first noting the similarities in the psychological 

correlates. Documented cognitive symptoms of both MDD and SDB include deficiencies in overall 

memory (Peng, Li, Kang, & Huang, 2004; Richards & Ruff, 1989), selective attention (Kales et al., 

1985; Landro, Stiles, & Sletvold, 2001), and communication (Berry, Webb, Block, Bauer, & 
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Switzer, 1986). Furthermore, individuals with SDB and MDD tend to both have high levels of 

guilt, pessimism, and low self-esteem (Aikens, Caruana-Montaldo, Vanable, Tadimeti, & 

Mendelson, 1999).

Recent reports suggest that the cyclical nature in which SDB and MDD might be related 

(i.e., SDB leads to MDD which leads to more SDB) may be rooted in the neurobiological effects of 

SDB-related correlates in adulthood. A thorough review of the literature for the present paper 

revealed that SDB correlates experienced as an adult are associated with numerous cortical 

abnormalities. These abnormalities are generally similar but distinguishable from brain changes 

known to take place with regard to fetal or childhood hypoxia. The SDB correlates endured in 

adulthood result in sleep fragmentation and neuronal damage characterized by a reduction of 

neuronal excitability or neuronal apoptosis (Morrell et al., 2003). The most extensive study on the 

cortical implications of OSAS was done by Macey et al. (2003).  They found overall gray-matter 

deficiencies and specifically noted a decrease of gray matter in the right postcentral gyrus, 

posterior lateral parietal cortex, anterior superior frontal gyrus, left ventral lateral frontal cortex, 

and numerous sites in the lateral prefrontal cortex. Abnormalities in the temporal lobe included the 

inferior temporal gyrus and parahippocampal gyrus. An overall cortical volume decrease was noted 

in the left side of the brain extending dorsally, including the caudal extent of the lateral sulcus. 

Gray matter decreases were also found in the right hippocampus and the quadrangular lobule of the 

medial, deep cerebellar cortex. 

Additional studies have found abnormalities in the amygdala (Gozal et al., 2001), 

hippocampus (Bartlett et al., 2004; Cervos-Navarro & Diemer, 1991), anterior cingulate cortex 

(Henderson et al., 2006), basal ganglia (Macey et al., 2006), prefrontal cortex (Beebe & Gozal, 

2002), specifically, the dorsolateral prefrontal cortex (Thomas, Rosen, Stern, Weiss, & Kwong, 
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2005), and cerebellum (Morrell et al., 2003). Sugita et al. (1985) found that OSAS is associated 

with episodic elevation of cerebrospinal fluid (CSF). While most researchers found little relation 

between apnea-hypopnoea index and white matter function, Kamba et al. (2001) noted a significant 

degree of metabolic impairment in the white matter of patients with OSAS. 

Viewing Adult SDB correlates in the Context of Neurobiology: MDD Mechanisms and 

Implications

These findings are especially important when one notes that, while the most conservative 

estimates have suggested that ten percent of women and twenty five percent of men suffer from 

some form of SDB, projections for older adults (aged fifty to seventy years) have been as high as 

30 percent for males and 28 percent for females (Zamarron et al., 1999). 

While some have argued that these symptoms may be due to the sleep fragmentations that 

occur in response to intermittent hypoxia (Sforza, de Saint Hilaire, Pelissolo, Rochat, & Ibanez, 

2002; Yue et al., 2003), numerous authors have pointed to similarities in the neuroanatomical 

signatures of adulthood SDB and MDD (Kamba et al., 1997; Silverstone, McPherson, Li, & Doyle, 

2003; Thomas, O'Brien, Barber, McMeekin, & Perry, 2003). As CPAP has been shown to alleviate 

many of the symptoms common to both adult SDB and MDD (Engleman et al., 1997), it is 

unlikely that the MDD is heavily influenced by organizational changes related to SDB correlates 

early in life. Rather, changes to brain morphology secondary to SDB later in life appear to be 

supported by the fact that most individuals are not diagnosed with depression until their mid-

twenties (Solis, Khan, & Brown, 2006).

Furthermore, that brain changes secondary to SDB correlates may be related to MDD 

supports rather than detracts from other known etiological factors of MDD such as stress 

(Southwick, Vythilingam, & Charney, 2005). Higher levels of stress in individuals with SDB may 
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cause the muscles in the upper throat to contract and essentially narrow the upper airway, thereby 

increasing the chances of SDB (Southwick, Vythilingam, & Charney, 2005). Stress is also 

associated with obesity, especially in individuals with MDD, which may have a similar 

constricting effect (Franklin et al., 2007). Furthermore, stress may cause an increase in the 

immunomodulating agents known as cytokines, leading to an immune response characterized by 

inflammation (Mills & Dimsdale, 2004). Prolonged inflammation may be associated with 

compromises in upper throat airflow, asthma, and infections that are known to increase the 

prevalence of SDB (Mills & Dimsdale, 2004). Interestingly, since serotonin is known to excite the 

dilatory muscles of the upper throat (Veasey, 2001), it has been suggested that patients with a 

baseline compromise of the upper airway (perhaps due to stress) and a decrease in serotonin 

(possibly resulting from or causing depression) are particularly susceptible to SDB (Veasey, 2001). 

In fact, some studies have attempted to treat SDB by administering selective serotonin reuptake 

inhibitors (SSRIs), with mixed results (Berry, Yamaura, Gill, & Reist, 1999; Kraiczi, Hedner, 

Dahlof, Ejnell, & Carlson, 1999). 

Explanations of a neurobiological relationship between adult SDB and MDD are 

strengthened by findings that show that the brains of individuals with MDD show abnormalities in 

the left subgenual prefrontal cortex (SGPFC) (Botteron, Raichle, Drevets, Heath, & Todd, 2002), 

dorsolateral prefrontal cortex (DLPFC), specifically hypoactivity of the left DLPFC and 

hyperactivity in the right DLPFC (Brody et al., 1999; Frodl et al., 2007; Grimm et al., 2008; 

Maletic et al., 2007; Matsuo et al., 2007), caudate, amygdala, and putamen (Beyer & Krishnan, 

2002), ventromedial prefrontal cortex (VMPFC), lateral orbital prefrontal cortex (LOPFC), anterior 

cingulate cortex (ACC), the ventral striatum including the nucleus accumbens, the amygdala, and 

the hippocampus (Davidson, 2003; Drevets, 1998). Further abnormalities in MDD were found in 
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the cerebrospinal fluid (CSF), specifically increases (Kumar et al., 1997), the cerebellum (Fatemi 

et al., 2004), post central gyrus, superior frontal gyrus, ventral lateral prefrontal cortex (Keedwell 

et al., 2005), and parahippocampal gyrus (Aihara et al., 2007).

The literature has documented that MDD patients show abnormalities in twelve of the 

seventeen brain regions known to be affected by adult SDB (See Table 3). Overlap between the 

cortical consequences of SDB correlates and MDD include the SGPFC, DLPFC, VMPFC, LOPFC, 

ACC, hippocampus, cerebellum, CSF, parahippomcampal gyrus, amygdala, basal ganglia, and 

postcentral gyrus. 

Limitations

The main contention of this paper is that SDB and/or its correlates are both the cause and 

effect of critical neurobiological mechanisms contributing to three major forms of 

psychopathology (see Figure 1). SDB-related correlates appear to have similar yet distinguishable 

effects on cortical morphology and function depending upon the developmental period in which 

they are experienced. When a pregnant mother experiences SDB, data has shown that the effects 

on fetal neurobiology may be so profound that it may correlate with the development of autism in 

her child. Childhood SDB appears to be associated with a cortical transformation to the 

neuroanatomical signature of children with ADHD. Lastly, SDB correlates experienced as an adult 

seem to be closely tied to the development of a cortical pattern indicative of major depression.

There are some limitations to the present proposal. First, psychopathology and SDB 

undoubtedly arise in complex biological and psychological contexts. This makes the association 

between psychopathology and specific correlates of SDB complex and surely not simply causal. 

For example, while many of the findings presented in this paper were obtained using animals 

exposed to hypoxia at different developmental time periods, generalizations based on the findings 
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become difficult, because hypoxia is not the only vehicle whereby neurobiological changes can be 

induced. In fact, there is a subset of SDB patients that do not experience significant hypoxia at all. 

Other known correlates of SDB, including metabolic changes (Aerts, 2001; Edwards et al., 2002; 

Kamba et al., 2003; Kheirandish et al., 2005; Seicean et al., 2008; Thomas & Kwong, 2003) 

hemodynamic fluctuations, sympathetic activations, immunological abnormalities, hypercarbia, 

sleep fragmentation, and sleep deprivation may actually be the major factors (Lin et al., 2004; 

Luthar, 1997; Mayes, 1999; Terzidou & Bennett, 2001). Some researchers have proposed that 

these correlates may be caused by hypoxia, and not independent consequences of SDB (Aw, Shan, 

Sillau, & Jones,1991; Fletcher, Lesske, Qian, Miller, & Unger,1992). It is likely that many of the 

correlates work in concert and to varying degrees based on a myriad of individual variables. 

Furthermore, cortical changes are likely a function of the severity of SDB insult, so studies made 

to simulate snoring versus obstructive sleep apnea should be viewed with caution in the 

formulation of blanket statements about the effects of SDB. 

In addition to the complexity of the variables within the SDB-psychopathology pathway, 

there are most definitely factors outside the body that mediate the context in which the 

relationships cited in this paper function. Evidence for this can be found in the fact that despite 

significant overlaps in SDB and neuroanatomical signatures, there was never a complete overlap in 

effected brain regions. Different environmental influences may impact the extent to which the 

genetic and other biological aspects of psychopathology are manifested, with SDB in the context 

of mental illness a key example of a diathesis-stress phenomenon.

Furthermore, the directionality of the claims implied in this paper must be taken with some 

caution. It is unclear whether SDB causes psychopathological cortical changes or whether cortical 
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changes (i.e., in the respiratory control center) lead to SDB. It is also unclear under what 

circumstances either becomes the causative agent and it is likely situation specific. 

The mental disorders outlined in this review are a small sample of the psychopathologies 

that may be related to SDB but were not chosen randomly. Autism, ADHD, and MDD are 

disorders whose relationship to SDB has been suggested in prior work, and thus they served as a 

good starting point for the present paper in trying to determine a neurobiological framework. Some 

other disorders considered did not seem to be linked to SDB as closely, such as generalized anxiety 

disorder (GAD). Thus, while the scope of the illnesses affected by SDB can surely be broadened, 

the extent to which specific psychopathologies relate to SDB should be acknowledged as variable. 

Further research can elucidate links between SDB correlates and other mental disorders.

Conclusions

The present paper reinforces the case for empirical relationships between SDB and 

psychopathology by proposing that life stage-specific SDB correlates may be neurobiologically 

related to the cortical signatures of AD, ADHD, and MDD.  A review of the literature revealed 

that, depending upon the time in which SDB correlates were experienced, the neurological 

correlates are generally similar but distinguishable. The differences in cortical effects of SDB 

reflect well the differences between psychopathologies associated with SDB in utero, childhood, 

and adulthood, which may be AD, ADHD, and MDD, respectively. 

While the mechanisms behind the relationship between SDB and mental illness are largely 

hypothetical at the present time, health professionals would benefit by beginning to view SDB as 

one of the many important factors in elucidating etiological and diagnostic factors in mental 

disorders both generally and perhaps even more so specifically.  Much like smoking, we should 

regard individuals with sleep-disordered breathing as susceptible to diverse deleterious 
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psychological correlates. Certain high-risk populations (pregnant women, obese, diabetic, etc.) 

should be routinely screened for SDB.

In light of the present proposal, health-care providers might be able to assess both the 

likelihood of the patient developing mental illness and a possible means for therapeutic 

intervention at a deeper level of etiology. Current interventions to treat symptoms in 

psychopathology (like stimulants used in ADHD) should be combined with treatments for SDB to 

obtain maximal efficacy.

Furthermore, as many patients report cessation of the debilitating effects of SDB and 

improved quality of life upon treatment (Banno & Kryger, 2007; Ito et al., 2005; Noda et al., 

2007), a greater effort should be made by both clinicians and researchers to utilize and improve 

upon current CPAP, oral appliances, and surgical corrections for SDB. It is unclear when and to 

what extent the effects of prolonged SDB become irreversible, so placing a high priority on 

diagnostic screening and utilization of current treatments has a great deal of potential clinical 

significance. 
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Table 1.

Damages to Specific Cortical Regions Implicated in Maternal SDB in utero and Autistic 

Disorder with Similarities Noted                                                                                                        
Maternal SDB Autistic Disorder (AD)
Amygdala Amygdala
Basal ganglia Basal Ganglia
Cerebrospinal fluid (increases) No Overlap
Cerebellum Cerebellum
Cerebral ventricles (enlargement) Cerebral ventricles (enlargement)
Cortical volume decrease (overall) No Overlap
Frontal Cortex Frontal cortex
Gray Matter (overall deficiencies) Gray Matter (overall deficiencies)
Hippocampus Hippocampus
Pons Pons
Thalamus Thalamus 
White Matter (overall deficiencies) No Overlap

Table 2.

Damages to Specific Cortical Regions Implicated in Childhood/Adolescent SDB and ADHD 

with Similarities Noted
Childhood/adolescent SDB ADHD (ADHD)
Basal ganglia Basal Ganglia
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Cerebellum Cerebellum
Frontal Cortex Frontal Cortex
Hippocampus Hippocampus
Pons Pons
Thalamus Thalamus 
Corpus Collosum Corpus Collosum
Cortical Volume Decreases Cortical Volume Decreases 
White Matter (Overall Deficiencies) White Matter (Overall Deficiencies)
No Overlap Gray Matter (overall deficiencies)
No Overlap Right posterior cingulate gyrus

Table 3. 

Damages to Specific Cortical Regions Implicated in Adult SDB and Major Depressive 

Disorder (MDD) with Similarities Noted
Adult SDB Major Depressive Disorder (MDD)
Amygdala Amygdala
Anterior cingulate cortex Anterior cingulate cortex
Anterior superior frontal gyrus Anterior superior frontal gyrus
Assorted sites on lateral prefrontal cortex Associated sites of lateral prefrontal cortex 

(subgenual PFC,  lateral orbital PFC)
Basal Ganglia Basal Ganglia
Cerebrospinal fluid (increases) Cerebrospinal fluid (increases)
Cerebellum Cerebellum
Cortical volume decrease (overall) No overlap
Dorsolateral prefrontal cortex Dorsolateral prefrontal cortex
Gray matter (overall deficiencies) No overlap
Hippocampus Hippocampus
Inferior temporal gyrus No overlap
Lateral sulcus No overlap
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Left ventral lateral frontal cortex Left ventral lateral frontal cortex
Parahippocampal gyrus Parahippocampal gyrus
Posterior lateral parietal cortex No overlap
Right postcentral gyrus Right postcentral gyrus
White matter (overall deficiencies) No overlap

Figure Caption

Figure 1.  Proposed Theoretical Relationship between Developmental Timing of SDB correlates 

and Psychopathology
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