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FOREWORD

This report, 7848-7-Q, was prepared by the University of Michigan, Ra-
diation Laboratory, Department of Electrical Engineering, under the direction
of Prof. Ralph E. Hiatt and Prof. John A, M. Lyon, on Air Force Contract
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of UHF-VHF Antennas (U)". The work was administered under the direction
of the Air Force Avionics Laboratory, Wright-Patternson AFB, Ohio. The
task engineer was Mr. Olin E. Horton; the project engineer, Mr. E.M. Turner.
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ABSTRACT

This report covers the work effort on the various tasks of the project for
a three-month period. The report goes into considerable detail since it includeg
: substantial analysis, computer results, and experimental data. In all of the
© tasks, substantial progress has been made. However, in one task, a complete
¢ reorientation of the work program has been made. Under Task II, on slot
arrays, it has been found necessary to simplify the work and also to avoid
difficulties with materials. This should allow development of a new array
: utilizing ferrite filled rectangular slots developed in the prior contract work of

! this group.
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I
INTRODUCTION

This report indicates the acomplishment in each of four assigned tasks
of this project. A separate section is devoted to each task.

Section II describes the work on Task I involving the development of a
log conical spiral antenna. Various techniques useful in reducing the size of
~ such an antenna are assessed in this report. For convenience, experiments
were confined to the loading of a bifilar cylindrical helix, These results can
be transferred to the design of the log conical helix required by this task.

Section III covers the effort under Task II which is devoted to the use of
physically small slot antennas as elements of an antenna array. In this sec-
tion, coverage is given to the new work effort which is quite different from
what had been previously recorded under this task. Emphasis is now on an
arrangement of ferrite loaded slots connected by a coaxial feed system, with
the apertures of the slots mounted in a line in a common ground plane. A
description of such a three element array is given in the report.

In previous work under task II, a waveguide with rectangular slots cut
in the broad-face was utilized. Some unsatisfactory results were obtained be-
cause the ferrite material used (type Q-3) did not have electrical characteristics
as good as those published. This necessitated either going to a much lower
frequency, with the attendant difficulties due to the required spacing in the
array, or going to a new design utilizing better material. The latter course
was chosen, and as a result rectangular slots filled with type EAF-2 material
were utilized. This choice will permit the array to be studied in a frequency
range from 300 MHz up to 600 MHz which will result in more easily obtained

expermental patterns.




THE UNIVERSITY OF MICHIGAN
7848-7-Q

In Section IV, progress on Task III involving studies of endfire ferrite
rod radiators has been described. During this report period, a major part of
the effort has been analytical. Also, the important decision has been reached
that ferrite rod radiators having only a cylindrical shell are more promising
as endfire radiators than solid ferrite cylindrical rod radiators. In addition
to analysis, experimentally determined radiation patterns for a ferrite tube
antenna are given. Likewise, information is given on experimental measure-
ments of the near field of a ferrite tube antenna.

In Section V, the effort under Task IV devoted to new types of ferrite
antennas usable down to 30 MHz is discussed. A considerable part of the
effort has been on the tuning of linear elements by utilizing magnetic bias. A
computer program study was made on small diameter cylindrical helices uti-
lizing various ferrite material core loadings. The air loaded case was also
studied for comparison, For some of the ferrite loading cases, the ferrite
has been biased into saturation. Saturated ferrite cores and air core results
correspond very well, Studies have also continued on the computer analysis
of multi-linear elements, Results on a folded dipole consisting of two similar
slow wave elements are presented. The material in Appendix A supplements

the coverage given in Section V.
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II

FERRITE LOADED CONICAL SPIRALS
2.1 Introduction

The objective of this task is to develop a ferrite filled conical spiral
antenna that will cover the 200 to 600 MHz range and be approximately
one-third the size of an unloaded conical spiral antenna. The antenna is to
have circular polarization with a broad forward directional main beam. The
antenna should also be capable of employing both the transmit and receive
modes simultaneously.

Throughout the course of this contract, emphasis has been placed on size
reduction of helix antennas instead of conical spiral antennas. The reasons
are three: 1) a helix is a special case of a conical spiral antenna that occurs
when the cone angle is O degrees; 2) helix antennas are much easier to con-
struct and analyze mathematically; 3) the results of cylindrical helices are
directly applicable to conical spirals. Therefore more investigations can be
made into reduction techniques with the time and money available.

During this report period, emphasis has been placed on two techniques
of reducing the size of a helix antenna. The first is by loading with an an-
isotropic ferrite; the special case of a ferrite biased into saturation by a d-c
magnetic field is explored. This special case is one limiting case of tuning
the antenna with a d-c magnetic field. (The other limit is an isotropic mate-
rial.) A saturated ferrite is also the only low loss ferrite material available
above about 400 MHz and therefore is itself an interesting ferrite loading.

The second technique investigated during this report period is discrete
inductance loading, inserting inductances in series with the windings of the
antenna, The inductors used were shorted sections of transmission line. Due
to a miscalculation in the design of the experimental antenna tested, the pre-

dicted results were not obtained. However, the antenna is still very interest-
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ing because it has the size and shape of a helix antenna, yet operates over
almost a 3 to 1 frequency band with a small stop band in the center.

2.2 Anisotropic Ferrite Loaded Helix Antenna.

There are several reasons for examining anisotropic ferrite loading in
helix antennas. All of these reasons are a consequence of the
steady unidirectional magnetic field in the material. First of all, at higher
frequencies, a magnetic bias of the ferrite makes a low loss material possi-
ble. (Hach, 1966). Second, if a helix is magnetically tuned by adjusting the
magnetic field, then the properties of the antenna would be affected by the
changes in the characteristics of the material. Third, because a plane wave
propagating through a saturated ferrite exhibits circular polarization, pre-
cisely the polarization produced by a helix antenna, it may be possible to use
anisotropic loading as to mode filter to reduce the high side and backlobes
that sometimes result from isotropic loading materials.

Because a saturated ferrite can be expected to represent one limit in the
range of operation of a magnetic field tuned ferrite loaded antenna, it poses
an interesting special case to study. Fortunately, the anisotropy of the per-
meability tensor of such a material is relatively simple and can be readily
predicted by classical electromagnetic theory. The permeability tensor can

be described by the following tensor:

7 ik 0
L A B L 0
0 0 1
where
Yyw M
_ 0 o
pe=+ 5
W -Ww
0
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and Mo is approximately Ms’ the saturated magnetization (provided the amp-
litude of the time varying fields is small), v is the gyromagnetic ratio, wo
is the Larmor frequency and is equal to 'yBO,. Bo is the DC magnetic field,
and My is the permeability of free space (Collin, 1960), The dielectric
constant of the material is the same as when no bias is applied.

The permeability tensor, like any tensor, may be transformed to another
coordinate system. For the helix antenna, circular cylindrical coordinates are
appropriate. Since the transformation matrix from rectangular to circular
cylindrical coordinates is:

cos sinf O

Qll
1

-sin) ecos§ O ,

0 0 1

CR

then the permeability tensor in the new system is:

pecosP-jk sin jk COS¢+MrSin¢ 0
7T .=C .ﬁR= —ursin¢—jl< cos -jksin@+ucosP O
0 0 1

which makes the permeability tensor a function of the coordinates. This is
true, in general, for any common coordinate system, except rectangular. This
dependence on one of the coordinate variables complicates the mathematical
solution of any saturated ferrite problem in any coordinate system except
rectangular. However, this doesn't make the situation hopeless, and some in-

sight can be obtained by a mathematical analysis.
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Details of the mathematical analysis will be given in the final report.
The preparation time for this report is insufficient to permit an adequate check
of the analysis prior to publication.

2.3 Discrete Inductance Loading

If the series inductance of a uniform transmission line is increased, the
phase velocity of the wave propagating over the line will be reduced. Since
a helix of conical helix antenna can be reasonably approximated by a two wire
transmission line having the same wire diameter as the winding of the helix
antenna and a wire ‘spacing equal to the diameter of the helix (Rassweiler, 1967)
it seems reasonable that if the helix antenna has inductance inserted in series
with the winding, then the phase velocity of a wave propagating along the helix,
and hence the size of the helix, can be reduced.

To check out this theory, a helix antenna was constructed and tested
that had additional inductance inserted in series with the winding. The induc-
tances were shorted coaxial transmission line stubs. The object of the ex-
periment was to check out the concept of using inductors made out of shorted
sections of coaxial transmission line. If the concept were substantiated, then
a ferrite loaded stub would be used. The advantages of ferrite are that
smaller stubs could be used for a given inductance and that more stubs could
be used per winding, hence making the discrete inductances approximate more
closely a distributed inductance.

Unfortunately, due to an error in calculating the inductance needed, the
inductances inserted were too small, and the hoped for performance was not
realized. Hdwever, the experimental results were so favorable that they are
reported here in the hope that the antenna may be useful to someone else. A
backward fire pattern is obtained over almost a 3 to 1 band (475 to 1250 MHz)
and the VSWR is close to 3 to 1 with réspect to a 50 ohm load over this band,
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except for a band of 80 MHz centered around 800 MHz. Yet a helix antenna
of the same size would have a center of operation around 710 MHz.

2.3.1 Antenna Description

The antenna, shown in Fig. 2-1, is a bifilar helix antenna fed at the tip
with a hybrid by twin lead consisting of two pieces of RG-58/U coaxial cable
on the axis of the antenna. The inductances are inserted every quarter turn,
and were designed to produce a 4 to 1 reduction in size assuming the diameter
of the two wire line model is the diameter of the helix antenna, and that the
diameter of the wire of the parallel wire line is that of the winding of the
helix. However, the miscalculation altered this relationship.

The formulas used to calculate the inductance needed to accomplished

were derived in an earlier report (Lyon et al., 1966) and are restated here:
= 1 =
L zo/vp L' = L/R

where R is the multiplicative reduction factor (0.25 in this case), L is the
original inductance per unit length, L' the new inductance per unit length, ZO
the characteristic impedance, and Vp the phase velocity.

The antenna is wound on a 4"ID x 1/16" thick piece of NEMA Grade XXX
(Mil-P-3115-PBE) paper phenolic tubing. The pitch angle of the helix is 14°
and there are 5 turns on the antenna. The winding was cut at the intervals
shown in Fig. 2-2. Part of the dielectric and outer shield was removed, and
one end of the remaining part of the shield was soldered to the center conduc-
tor to produce the inductor.

A helix antenna of this size would have a center frequency of operation of

about 710 MHz as can readily be calculated from Fig. 2-3 on page 333 of
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FIG. 2-1: ANTENNA 238, A BIFILAR HELIX ANTENNA WITH SHORTED
TRANSMISSION INDUCTORS USED AS LOADING,
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Walter (1965), The antenna described, however, was designed to have a cen-
ter frequency of operation of 227 MHz, since 910 MHz was assumed to be the
unloaded center frequency.

2.3.2 Test Results

The radiation patterns taken measuring |E elz on the § = O cut as in Fig.
2-3 show the usual backward fire radiation patterns (low back lobe and side
lobes, a well developed main lobe) from 475 to 760 MHz and from 840 to 1250
MHz as can be seen in Fig. 2-4. This gives geometrical mean center frequen-
cies of operation of 600 MHz and 1025 MHz respectively, with corresponding
bandwidths of 79 percent and 67 percent.

Between 760 and 840 MHz, the signal amplitude was so small that it was
difficult to record patterns. Those that could be recorded were not satisfactory
backward fire helix patterns.

The VSWR of the antenna was measured with respect to the input port of
the hybrid used to feed the antenna with swept frequency equipment as is in-
dicated in Fig. 2-5. In the lower band, the VSWR was centered around 2.5
with respect to 100 ohms and the variation from this was within + 0.5 over
most of the band. In the high band, the VSWR centered around 3.0 and the
variation from this was less than + 0.5 over most of the band. At about
790 MHz the reflection coefficient was almost 1.0. A check of the design in-
dicated that at this frequency, the coaxial stub should be about one-quarter
wavelength long, and hence the winding should be effectively open-circuited.

2.3.3 Conclusions

1) The transmission line model of the helix antenna presented by Rass-
weiler (1967) is apparently not quite correct. Assuming that the lower band of

operation was caused by the inductive loading and working backwards from its

10
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FIG. 2-3: COORDINATE SYSTEM ASSUMED FOR THE
HELIX ANTENNA,
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FIG. 2-4a: LINEAR POWER PATTERNS OF ANTENNA 238, AN
INDUCTOR LOADED BIFILAR HELIX. (iEJ2 Patterns
in the § = 0 plane.)
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FIG. 2-4b: LINEAR POWER PATTERNS OF ANTENNA 238, AN
INDUCTOR LOADED BIFILAR HELIX. ({EG'Z Patterns
in the § = 0 Plane.)

13



THE UNIVERSITY OF MICHIGAN
7848-7-Q

500 600
Frequency (MHz)

\/\/

. “---—-’12-0

1

800
Frequency

f\M

800 900 1000
Frequency

FIG. 2-5: VSWR OF ANTENNA 238, A BIFILAR HELIX WITH
INDUCTANCE LOADING.
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frequency range to find the characteristic impedance of the corresponding trans-
mission line produced a characteristic impedance of 110 ohms. The input imped-
ance of a helix antenna is usually in the range of 100 to 150 ohms. Thus,
apparently using the input impedance of a helix antenna in the transmission

line analogy correctly predicts the experimental results.

2) Even by itself, antenna 238 is a very interesting antenna. It covers
almost the entiré frequency range from 475 to 1250 MHz, except for a band
of 80 MHz centered around 800 MHz.

3) Series inductance tends to reduce the size of a helix antenna but
series capacitive loading will increase the size for a given frequency range of
operation. (In the 840 to 1250 MHz range, the stubs were capacitive.)

4) However, the average impedance values measured tend not to support
the transmission line analogy. The impedance was higher in the high band and
lower in the low band, not the other way around as would be expected from the
transmission line relation ZO = ‘VE/?‘ (Note, that in the high band, the cap-

acitance introduced would tend to reduce the inductance in the above formula.)

15
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III
SLOT ARRAYS

Since the last Quarterly Report the effort on the fabrication of a ferrite
loaded slot array has been completely reoriented. The work done under this
task had previously been concentrated on using a waveguide section with slots
cut in one of the broad faces. The material used had been type Q-3 solid
ferrite. Unfortunately the electrical and magnetic characteristics of the fer-
rite were not satisfactory and not in accordance with the published data re-
ceived by the manufacturer.

A new experimental arrangement has now been completed. This consists
of three ferrite filled rectangular slots mounted in a metal ground plane. The
ground plane is composed of copper screening 5' by 5' in overall size. In
the center the metal screening has been replaced by a solid aluminum plate
27" by 20" in size. Three rectangular ferrite filled slots have been mounted
on the center line parallel with the long direction of the rectangular plate.
That is the H direction of the slots is parallel with the 27' direction of the
aluminum plate. The slots are mounted 16 3/16" center-to-center. The cen-
tral slot corresponds to the center of the ground plate. Each slot has dimen-
sions 5" by 2" by 1 1/2" deep. The 5" dimension corresponds to the direction
of the H field. The 2" direction corresponds to the direction of the E field
in the aperture. Each slot is filled completely by solid type EAF-2 ferrite.

The array of slots just described has been made for operation about a
central frequency of 350 MHz. The present status of the array utilizing
physically small slot radiator elements is that it is now ready for preliminary

experimental testing as an array.

16
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v
FERRITE ROD ANTENNAS
4.1 Theoretical Analysis

The field components of an isotropic infinite ferrite rod obtained by
solving the homogeneous Helmholtz equation subject to the boundary conditions

on the cylindrical surface of the rod for the HEH mode are as follows where

jwt

the time dependent factor e is understood. Field inside the rod (p < a):

_ “jvz
H = A Jl(klp) cos @ e
i LY ! -jvz
= - ! +
Hp A 3y (klp) B, Jl(klp) cos ff e
. 1 k P
1
e ! -jvz
= - ! k i
H¢ A5 Jl(klp) B, Jl( P Jsm ¢ e
k. p 1
— 1
. -jvz
= k
EZ Bi Jl(lp) sin ¢ e
jou . .
_ 1 _ 1Yy . -jvz
Ep A5 Jl(klp) B, Jl(klp)] sin § e
L kop 1
1
ey . vz
E, = |A — J'(k.p) - B, 1~ J_(k.p) cos (e (4.1)
¢ i k 11 i 2 “171

Field surrounding the rod (p > a):

- (1) “jvz
H = A H (k) cos ¢ e

17
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I IRV 9% ) 5y
Hp = _Aok Hl (kzp)+Bo 3 H1 (kzp) cos fe
o 19 (1)
H¢ = AO 5 H1 (-kzp) - Bo T 1 (kzp) s1n¢e
L kyp 2
1 .
E =B H( )(kzp) sin e
qu . .
1 . -
Ep [:AO 5 (1)(k2p) -B JIEI H'( )(kzp) :I sin f§ e vz
k_p 2
2
jwu . .
_ (1) iv (1) -jvz
E¢ = [AO , (kzp) - B0 kzp H1 (kzp)J cos f e (4.2)

where

inside the rod

surrounding free space. (4.3)

Matching the tangential field components gives the proportion of field magni-
tudes inside and outside the rod as well as the magnitudes of the TM to TE

waves
(1),
H 1 (kza)

B.
J 1(k 1a)

Ai i
2 "B °C (4.4)
o

(o)

18
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7 <_1_ _ _1_>
a 2 2
E_i ) k1 k2
A, (1)
i we, J'1 (kla) W € H'l (k2a)
ko Iykp) Ky 5Bk a)
1 2
wu, I (k, a) WU H'(l)(k a)
1 Y P T M
k, dy{2) K H(ll)(kza)
= (4.5)
Y (_1__ _ _1>
a 2 2
k1 k2
Equations (4.3) and (4.5) together give the characteristic equation::
2 2 2
( )to >2 (kla) - (k2a) M€ l: 1 1 ]
21 a M€ T 1 (k a)2 (k a)2
1 2
2 (1) 2
) M €, J'l(kla) 1 H'1 (k2a)
§ 2 " 2 | (1)
(kla) Jl(kla) (kza) H1 (k2a)
- (1)
[ Mr + Er J'l(kla) Hi (kza) 4.6)
(k_a)k_a) (1) )
1772 Jl(kla) Hl (kza)

where ho = wavelength in free space, My ® “o“r’ € eoer. A graphical sol-

1

ution of Eq. (4.6) determine k. and k_, and together with Eq. (4.3) determines

1
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the propagation constant . The phase velocity along the longitudinal axis is:

A" 1
u € -
Z _ (277) r T (4.7)
C 7\0 k2 —k2
1 2 Mrer

which corresponds to a slow wave for VZ < c.
The computed axial phase velocity for some selected ferrite materials
with various diameters has been shown in the previous report, Lyon et al, 1967,

The electric and magnetic surface charge densities on the rod surface are:

2 1

U € - .

(0~ AiJl(kla)"ulTa 5 1e -21 i (72\1)2 sin fle” "
! k, k| Hr€r 0 (4.8)

A

u_€ k2 k2
- . §
’m ” BiJl(kla)Tci_é 55 16 —21' ('ii) cos 71
] k] Kk, Ii‘r r o « (4.9)

\

These oscillating surface charges on the rod surface are equivalent to the
volume electric polarization current and the magnetic polarization current in
the rod due to the subatomic displacement of charge centers and charge of spin
momenta. The magnitude ratio of % to 9 is the same as the ratio of TE
to TM waves. In the limiting case with “r =1, €r = 1 both electric and mag-
netic surface charges vanish.

The behavior of a finite ferrod antenna is more or less like a physically
thick cylindrical antenna with the volume electric polarization current in ferrod
equivalent to the conduction current in metal. A comparison of these two

antenna types is given in the following table.
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Thick Metal Ferrite Rod
Cylindrical Antenna Antenna
1 Excitation Voltage Source Field Source
2 Material of Radiator Metal Conductor Ferrite Material
3 Source of Radiation Surface Current Polarization Volume Current
4 Dominant Wave Pattern Standing Wave Traveling Wave

At present there is still no exact solution for the field distribution at the junc-
tion of the waveguide to the rod and at the end of the rod. To simplify the
problem it is assumed that HE” mode is traveling along the axis with an
attenuation due to radiation and heat loss in the material. The reflection from
the end is negligibly small.

Maxwell's equation in a homogeneous isotropic material media in the ab-

sence of conductance current can be written as:

/{ - oH oH
VXE—""“‘O ot -(“_uo) ot
- OE O
V xH € ot +(e - €) 5%
P
V.E—: —e
€
_ P
V. H= — . (4.10)
u
Let
- oE
eq (6_60) ot
= oH
Meq—(u -uo) % (4.11)
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The radiation field from the ferrod in unbounded free space arises from the
magnetic and electric polarization currents in the rod or from the oscillating
magnetic and electric surface charges on the rod. The field solution can be
represented as the sum of a complementary and a particular solution. The

particular solution due to the electric and magnetic polarization currents is

'E‘=-Vx'F-jwqu‘+ 3716— V (V- A)

H=VxA-jwe T+ — V(V.TF (4.12)
o jwu
0
f f r —J- (I") e'jklr 'ryl
A = _1 €q 1
Alr) = 4g Ir - r'] dv
JJ
il M (r')e_jk]r -
Flr) = = e av (4.13)
4mr _ Ir - r'|
Iy
If only the far field is considered for r >>r!' :
max
r -1 =r -1 cosk
r' cos £ = p' sinf cos (f - §') +z' cos 6 . (4.14)

In the radiation zone, the components of the field are therefore given by:

g

i

-jw A - ikF
JMOQ ] ¢

- Jun, Ag +jkF, (4. 15)

Ey
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:

=n . (4. 16)
6

E
H H
g

The spherical components of any vector can be obtained from the rectangular

components using the relationships:

Vv

| + : _ :
0 (VX cos { Vy sin ) cos 6 Vv, sin 6

v¢ -szin¢+Vycos¢ . (4.17)

The rectangular components of the electric field can be obtained by the trans-

formation of coordinates and the' relationships of the Bessel functions:

EX=Epcos¢—E¢s1n¢
E =E sin @ + E; cos (4.18)
y b ‘ g ‘
/ Jl(k p)
= ]
Jo(klp) klp + Jl(klp)
<
J 1(klp)
O ——— — 1
Jz(klp) klp Jl(klp) . (4.19)

Thus the field components in rectangular coordinates are:

i +
Ci[apn 5] :
2k

. -J
I, (k p) sin 2 g e

j [A,wu - B.’y]
_ i1 i
Ey —{ o Jo(klp)

' +
) [Ai"’“1 B i{I
1 2k

Jz(klp)cos 20 }e_J vz
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-j Biy—Biw 61] jIAi~y+Biw61! Sivg
H =— J (klp) + J2(k1P)0082¢ }e s

X 2k1 o} 2k1
j Biy " Biwel] -jvz
Hy = o J2(k1p) sin2f e’ "' . (4.20)

1

Substitute Eq. (4.20) into Eqgs. (4.11) and (4.13) and perform the integration

by using Eq. (4.14) and Bessel-Fourier series

Jjkp' sin 6 cos (@ - 99

= J (kp' sin 6)
Z J (kp' sin 6) cosn (§ - @) (4.21)
n=1
and the Lommel integral formula
p'e
1 - x3_(ax)J (Bx)dx = > l:J (o) = 2 > 5 (Bx)
0 3 R
0
- J][1 (éx) pw Jn (ozx):l . (4.22)

Thus the vector potential components in rectangular coordinate are:

Jw(e
E&\ wu1+B'y] I,(k,) sin 26 &(r) £(6)

>
]

>
]

jw(e1 e){
e — Awu, - By I(k)
y 8k, [ 1 ]

- Bi Wi, + Biﬂ L (kl) cos 2 §f }f(r) £(6)
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w(e1 - eo)
A = — BiIl(kl) sin § £(r) £(6)

jw(“l —”0) _J
FX = —8-1;1__ -2 EAi'y - Biwel Io(kl)

+ E\i v + Biwez I2(k1) cos 2 ¢ }f(r) £(6)

jw(ul - uo) —
F T Xz BiweJ 1,(k,) sin 2§ £(x) £(6)
w(u1 - uo)
F o= — 5 A Il(kl) cos § f(r) £(6) (4.23)
where
e—j kr
f(r) = ——
r
[ej(k cos 6 - yM _ 1]
£o) = - k cos 6 -v
ra
Io(kl) = J pJO(klp) Jo(kp sin ) dp
0
ra
Il(kl) = p Jl(klp)Jl(kp sin ) dp
/0
a
Iz(kl) = pJ2(klp) J2 (kp sin 6) dp .
0

Substituting Eq. (4.23) into Eq. (4.17) gives the spherical components of the

vector potential A and F.
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jwle, -€)
1 . '
AG = —__SE;_O— f(r)f(0) sin ¢{2E&iwul - Biﬂl'o(kl) cos 0
+ j2kl Bi Il(kl) sin 0 + [Aiwul + BiYJ Iz(kl) cos 9}
j w(el - eo)
A¢ = —81{1_— f(r) f(G) coSs ¢{ZEIMN1 - Bi’Y IO(k].)
Ew”1+ B'Y__]I (k)}
julp, -u)
1
F, = _ékl—o f(r)£(6) cos ¢{ -2 [Aiv —Biwel] Io(kl)cos 6
+]2k1A I(k )s1n6+|:A v + B, we] I(k ) cos 6}
jw(u1 -uo) .
F¢ = —-_87;1-— f(r) £(0) sin § {2 [Ai'y - Biwe]] Io(kl)
l}iy + Biwel—l L(k,) } . (4.24)

Thus the radiated field is- obtained by substituting Eq. (4.24) in (4. 15)

E, = £(r) £(6) sin @ { CA[Z(Aiwul - Bi'y)Io(kl) cos 6

B.I (kl) sin 6 + (Aiw/,c1 + Bi v) Iz(kl) cos é_-'

.
j2k B I,

+ CF [2(Ai'y - Biw €1)Io(k1) + (Aiy + Biwe ) (kl)] } (4.25)
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E¢ = f(r)f(6) cos ¢{CA [2(Aiwu1 - Bi'y)Io(kl) - (Aiwu1

+ + -
Bi'y)Iz(kl)] CF [:Z(Aiy Biwel) Io(kl) cos O

. . _ +
j2 k1 Ai Il(kl) sin 6 (Ai'y Biwel)Iz(kl) cos@] } (4.26)

2 2
k(e - 1) nk (u_-1) u
C = L C = _Tr n = o
A 8k F 8k €
1 1 o}

= :uo then CF = 0 and the radiated field reduces to the pattern of

where

In case when u 1
a dielectric rod antenna. It is observed that the magnitude (B.i) of the TM
component of the hybrid mode should be as small as possible in o’rder to
lower sidelobe level and increase the directivity in the endfire direction.

4.2 Experimentation

In the analysis of the ferrite rod wave guide it is seen that an increase
in the permeability u or the permittivity € of the ferrite rod has the effect
of increasing the propagation constant along the axis. This may be the cause
of increasing the numbers of side lobes and its levels. In order to obtain
end-fire narrow beam patterns it is preferable to have an axial propagation
constant nearly equal to the free space propagation constant. Experimentally
it appears that a cylindrical shell of ferrite will serve as Well_ for a surface
waveguide as the solid rod. As shown in Fig. 4-1 a cylindrical ferrite shell
was used instead of a solid ferrite rod since there was insufficient ferrite
material. EAF-2 ferrite powder with o= 2.2, €. = 3.8 was inserted be-

tween two fiber glass tubes with a 6 inch and a 5 inch diameter respectively.
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One end of the tube was fitted tightly into a metal circular cylindrical cavity
having 6 inches- in depth. Excitation wa‘s by a symmetrical dipole inserted
from the base of the cavity and mounted diametrically. In this Wajz, the ferrite
radiator has a 1/2 inch shell layer, 6 inches of outer diameter, 18 inches of
length and has a 45 degree conical shape with a tapered free end. The radi-
ation patterns in the E-plane and in the H-plane are presented in Figs. 4-2
and 4=3 from 400 MHz to 1150 MHz. It should be pointed ouf that the TE”
mode cutoff frequehcy of the cylindrical guide without the loéding of the ferrite
tube is 1170 MHz. Below this cutoff frequency the radiated field is weak; it
is difficult to detect it accurately at the far field zone. The patterns shown
in the Figs. 4-2 and 4—3‘ show the effects of adding the ferrite tube. In the
normal operation region above cutoff the directivity is more than 15 db above
an isotropic source. The measured half power beamwidth and the side lobe
level are plotted against frequency in Figs. 4-4 and 4-5. It is seen from
the graph that the side lobes are more prominent in the H-plane than in the
E-plane which is expected due to the asymmetric field distribution of the HE
mode in the ferrite tube. Also it can be observed that the side lobe level is
more than 4 db down from the main lobe.

The near field distribution along-the outer surface of the ferrite tube has
been measured by using a probe moving axially and along the circumference.
Figures 4-6 and 4-7 show the Ep— distribution against the coordinate @ taken
at 2 inches from{ the?feed end and 2 inches from the free end respectively.
The Ep field is observed to be sinusoidal around the circumference and the
sudden change of phase at § = 7/2 and ¢ = 37 /2 is to be expected. Figures
4-8 and 4-9 show the Ep - distribution along the tube axis at 600 MHz and

900 MHz. The observed pattern using a voltage probe appears to be standing
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waves rather than traveling waves, probably because the conical cap free end
and the short length ferrite tube form a resonance cavity. The continued in-
vestigation using experiinental effort will be described in the next report. The
exact mechanism governing the radiation properties of the tube antenna is not
yet fully understood. It is hoped that the near field measurements will help
to clarify the arguments among the existing theories. However, experimentally
it has been found that the ferrite material used offered better guiding proper-

ties than the dielectric material.
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A%
LOW FREQUENCY FERRITE ANTENNAS

The objective of this task is to investigate the design feasibility of new
types of ferrite antennas that are usable at frequencies as low as 30 MHz. An
effort has been made to identify realistic applications of ferrite loading to lin-
ear radiating elements. Accordingly, the investigation has focused upon appli-
cations which improve the performance of antennas that are relatively small.
The range of sizes considered is- 0.1x < 2h < 0,5A, where A = free space
wavelength, and h = element half-length. The low end was chosen so as to
avoid severe supergain limitations in element performance, while the high end
was considered to be a practical size limit for a loaded 30 MHz element.
Moreover, the detailed discussion is limited to center fed (or ground plane im-
aged) elements which support standing wave current distributions.

0.1 Tuning of Linear Elements Via Magnetic Biasing

Some inherent advantages of applying static biasing fields to material
loaded multiple linear elements were discussed in Section 5.1 of the Sixth
Quarterly Report, (Lyon et al, 1967). Section 5.2 of the same report described
some magnetic biasing experiments which used small diameter material loaded
helices as the linear slow wave structure. The interesting results of these
experiments, combined with promising theoretical implications, has motivated
a more thorough study of this particular slow wave structure. To this end,
rather extensive design curves for small diameter core loaded helices have
been prepared, and appear in Appendix A along with the details of the mathe-
matical origin. An underlying assumption of isotropic core material is im-
plied by the mathematics, so that strictly speaking the results are rigorous

only for the unbiased structure. However, since saturation of the ferrite core

39




THE UNIVERSITY OF MICHIGAN
7848-7-Q

material represents a limit on the tuning range of magnetic biasing, the theory
discussed in Section II was applied to obtain approximate results for this limit.

As an approximation, a helix filled with a ferrite material biased into
saturation by a DC magnetic field can be assumed equivalent to one filled with
only a dielectric material of the same dielectric constant as the ferrite. This
approximation is deduced by noting that the magnetic properties of a ferrite
biased into saturation do not effect the wave number of the wave equation for
electromagnetic waves inside such a material. By assuming that there is no
variation of the field in the @} direction for the helix (which is not the case for
anisotropic loading), the characteristic equation becomes identical to the iso-
tropic loaded case with the relative permeability of the material identically
unity. This approach yields a rough idea of the phase velocity reduction for a
biased loading.

To establish the reduction in phase velocity, obtainable with ferrites that
are available in our laboratory, the computer program described in Appendix
A was used to obtain graphical solutions of the characteristic equation. Plots
were made for the following core loadings: 1) Air, 2) EAF-2 ferrite powder,
3) Indiana General Q-3 ferrite at 100 MHz, 150 MHz, and 200 MHz, and 4)
Eccorsorb CR at 300 MHz. Eccorsorb CR is an Emerson and Cuming Micro-
wave absorber having fairly low electric and magnetic loss properties at the
frequency of interest. In certain instances two plots were made for each
loading so that the results could be read with greater resolution. The solution
of the characteristic equation for an air core is given in Fig. A-1 for purposes
of comparison with the loaded results. Figures A-2 through A-4 depict the

approximate results when the indicated ferrite loadings are biased into saturation.
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The results for a saturated core and an air core are seen to be nearly iden-
tical. Figures A-5a,b through A-9a,b depict rigorous results for the same
ferrite loadings without magnetic bias. A substantial reduction in phase veloc-
ity is seen to occur for a given helix pitch angle. Intermediate values of bias
field should produce phase velocity reductions between the no bias and satura-
tion bias cases. For small helix pitch angles, the sheath helix is an excel-
lent approximation to the physical problem, and close agreement between the-
oretical and experimental phase velocity reduction factors can be expected. At
the larger helix pitch angles, the theoretical model would be more closely
approximated by using multifilar windings connected in parallel at the feed. To
date, good agreement between theoretical and experimental results has been
obtained for the unbiased loadings. Since fields of sufficient intensity to sat-
urate the ferrite have not yet been generated in the project laboratory, the
accuracy of the graphs for the saturated core awaits experimental verification.

5.2 Computer Analysis of Multiple Linear Elements

A generalized analysis of two parallel linear elements was presented in
Appendix A of the Fourth Quarterly Report, (Lyon et al, 1967). That analysis
is the foundation from which ideas for several interesting design concepts are
being exploited. Although the formulation was complete, rather limited nu-
merical information was presented for the impedance associated with the sym-
metric excitation mode. This limitation was eliminated by the addendum which
appeared in Appendix B of the Sixth Quarterly Report, (Lyon et al, 1967), This
appendix developed the symmetric mode impedance of a small diameter helical
slow wave structure. The formulas are also valid for describing the effects

of material loading inside the helix, and are representative of the effects ob-
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tainable from other slow wave structures. Due to the general utility of these
results, they were put into a convenient graphical presentation to facilitate
usage.

The addendum material in Appendix B of the Sixth Quarterly Report,
along with the previously developed formulation in Appendix A of the Fourth
Quarterly Report, has been incorporated into a general computer program.
The computer program is useful as a diagnostic tool in designing meaningful
experiments. In addition results from existing experiments can readily be
compared to theory by inserting into the program the appropriate parameters
of the experiment. At present the program calculates the input impedance
Zin=R + jX to a structure composed of two parallel linear slow wave struc-
tures with various lumped impedance terminations. The structure and asso-
ciated nomenclature were specified in Appendix A of the Fourth Quarterly Re-
port.

Computer results for the particular case corresponding to a folded di-
pole formed of two similar slow wave elements are presented in Figs. 4-1
through 4-6. The slow wave elements characterized were small diameter
helices having symmetric and asymmetric mode phase velocity reduction factors
of P and P respectively, a length to thickness ratio of 55, and an asym-
metric mode characteristic impedance of 250 ohms. As the figures clearly
show, some interesting variations in impedance behavior result from different
combinations of P and P, - Figure 4-1 illustrates the input impedance for
an ordinary open wire folded dipole since P, =P, = 1.0. Figure 4-3 illus-
trates an interesting negative reactance slope behavior near kh =7 /2 when
p, = 1.0, p, = 0.6. This structure may be realized by placing dielectric
material between two linear conducting elements, thereby affecting only the asym-

metric phase velocity reduction factor as is the case for TV 'twin-lead" cable.
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VI
CONCLUSIONS

Both analysis and experiments have verified that a log conical spiral an-
tenna can be reduced substantially in size. The present methods available,
which have been investigated experimentally, are such as to assure the success
of designing a log conical spiral antenna operable in the range from 200 to
600 MHz with a reduction in size. Although it is not anticipated that aniso-
tropic loading will be utilized in the final design of this antenna, this type of
loading does appear to be worthy of future study.

It has been decided to utilize a slot array of only three ferrite filled
rectangular slots for establishing the feasibility and usefulness of the suggested
concept. If there appear to be substantial advantages in this small array, in-
cluding a reduction in near field effects due to small size of elements, then
it is expected that justification can be extended to larger arrays.

It can be definitely concluded that the utilization of ferrite loading mate-
rial for end fire rod antennas produces satisfactory results if the ferrite load-
ing material is used in the form of a cylindrical shell. The experimental re-
sults confirm that such ferrite tube antennas have superior performance to
ferrite rod antennas.

The study of ferrite loaded antennas down to 30 MHz has given consider-
able emphasis to the tuning of such antennas utilizing magnetic bias. For
reasonably small size antennas in this frequency region, the radiating elements
must certainly be of the highly tuned type. Therefore, in order to achieve
reasonable coverage in frequency, it appears necessary to use either multiple

tuning or continuously variable tuning, such as represented by magnetic bias.
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VII
FUTURE EFFORT

In the next few weeks, a decision must be made as to which manner of
loading is most appropriate for size reduction of the log conical spiral antenna.
Quite aside from the physical outline size, it is important to maintain a rea-
sonable weight for the final design. A choice must be made among the various
alternative methods of loading which have been studied so far.

It is expected that the analytical work on ferrite tube radiators will be
completed during the next report period. A careful study of the correctness
of the analytical work will be made through a comparison of radiation patterns
obtained both analytically and experimentally. In the future, all of the effort
on this task will be on the ferrite tube rod radiator, which has a hollow air-
space in the center of the core.

In the next few weeks, the array of three ferrite loaded rectangular slots
will be thoroughly tested experimentally to obtain its actual radiation pattern.
These tests will be performed on the roof-top antenna range. It is expected
that pattern measurements will be made in a fairly narrow range of frequencies
centered about 300 MHz. Supplementing these pattern measurements, there
will be work done on the driving point impedance of each of the three slots.
Effort will then be made to take this information and extend it to the prediction
of driving point impedances of slots arranged in a still larger square array.

A careful comparison between experimental and theoretical results for
elements useful down to 30 MHz will be completed. This should establish the
accuracy of the mathematical techniques developed, and add support to the use-

ful applications indicated by the study.
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APPENDIX A
DESIGN CURVES FOR SMALL DIAMETER LOADED HELICES

In designing a small diameter helix to function as a linear slow wave
structure, it is essential to know the dependence of the phase velocity reduction
factor (kg/k) upon the helix pitch angle (¢). This information may be obtained
from the solution to the characteristic equation for a sheath model of a helical
transmission line. The characteristic equation for an arbitrary isotropic mat-
erial loading in the helix core was derived by Li (1958) in his doctoral thesis.

For a small diameter helix, the characteristic equation is

9 5 2+, (ka)2 {zn(z/ka) - 'y} 5 9
2 (ka) {ﬂn (E) - 7}[ 5 =ur(Boa) cot
2 + er(ka) {ﬁn(Z/ka) - 'y}

2 2 2
where k' = (3 - BO, B is the wave number in the longitudinal direction, ,80 is

the free space wave number, ""a'" is the radius of the helix, ¢ is the pitch
angle of the sheath winding, and v is Eulers constant (0.5772157). (Note: Li's
notation is used only throughout this appendix. The notation appearing on
subsequent figures is consistent with both this appendix and the remainder of
the report.)

A computer program was written for the IBM 7090 computer at the
University of Michigan Computing Center in Fortran II that would solve the
characteristic equation and plot the required pitch angle (y) vs Boa for a
family of specified phase velocity reduction factors. With the slight modific-
ations that are indicated by comment cards, the main program may be used

on any computer system compatible with Fortran II. The subroutine that does
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the plotting, however, calls on many local subroutines to use the IBM 763/789
plotter and is not compatible with other systems. Nevertheless, both the main
program and the subroutine are included in the event that they may be useful
to others wishing to solve the characteristic equation for other ferrites.
Solutions to the characteristic equation for a number of different core
loadings are graphed in Figs. A-1 through A-9. The loadings are characterized
by the relative permittivity (er) and permeability (ur) of the core material.
The materials which the €. and M represent are stated in parentheses. While
various engineering implications relating to the core material are discussed in
Section 4.1, a few mathematical observations will be stated here. Li pointed
out that little phase velocity reduction beyond that of an air core (er “H, T 1)
is obtained with just dielectric loading of small diameter helices. This is
illustrated in Figs. A-1 through A-4, where the relatively minor effect of in-
creasing just €, is seen to be more prominent for larger values of 2ra/Xx and
smaller values of )ug/)\. On the other hand, the utilization of ferrite loading
to increase M results in a substantial phase velocity reduction for a specified
helix pitch angle. The effect is illustrated in Figs. A-5a,b through A-9a,b,

where two scales have been used to facilitate accuracy.
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