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Abstract — The coupling of geometric shapes and local composition in multicomponent
membranes results in the formation of complex structures. These membranes can form structures
that are planar at large length scales while retaining complex morphologies at smaller scales.
We explicitly construct the overall planarity condition for membranes and identify it with the
presence of an average tension at the membrane boundary with nonzero components only along
the plane defined by the average height of the membrane. The explicit construction of the condition
simplifies the analysis of morphologies of the planar membrane. We apply this method to the case
of a bicomponent membrane with lamellar morphology. We determine the possible shapes of
membranes, their stabilities and the thermodynamic equations of state satisfied by their intensive

variables.

Copyright © EPLA, 2008

Two key features of multicomponent lipid membranes
are their compositional and shape morphologies. Their
interplay has important consequences for processes in
biomembranes such as vesiculation and protein trans-
port, and holds numerous possibilities for technological
and biomedical applications. These features may be more
easily explored when the overall, large-scale geometry of
the system is planar; that is, when the membrane devi-
ates from a flat background by only small distances. We
call these membranes planar, for short. Several theoreti-
cal works have studied the static [1-3] and dynamic [4-7]
properties of lamellar (striped) and caplet morphologies in
planar membranes. Experimentally, the existence of these
morphological phases has also been established [8,9]. The
purpose of this work is to determine the precise condi-
tions that lead to the existence of planar membranes and
their implications for the mechanical and thermodynami-
cal properties of such membranes. We find that planarity
requires that the external forces at the membrane bound-
aries be confined to the background plane. While our key
results are useful for all types of planar membranes, we
focus in particular on the lamellar morphology, where the
combination of the planar condition and the morphological
symmetry allows us to analytically determine the shapes,
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their stabilities, and the equations of state satisfied by
their intensive variables.

We adopt the Helfrich model [10] to address the mechan-
ical properties of the membranes. We assume that the
components of the membrane form two distinct phases
with sharp interfaces between them. We write the Helfrich
free-energy functional for the system as [10]

F=>" /rdAd

i=1,2

[;Ai(K—Ci)Q] . (1)
The phases 1 and 2 occupy areas A; and As, respec-
tively. Each phase has different mechanical properties.
The total area is A= A;+ Ay, and each of the areas
can be composed of multiple domains. The bending
rigidity and spontaneous curvature of each phase are
denoted as A; and Cj, respectively. Following the nota-
tion of Capovilla and Guven [11], K is the trace of
the curvature tensor and is equal to twice the mean
curvature of the surface. For simplicity, we treat only
the symmetric case where the bending rigidities are
equal, A1 = As. We assume the spontaneous curvatures
have opposite signs (i.e., one concave and the other
convex) and introduce the magnitude of their ratio 8=
—C3/C1. We choose the phase labels and the orien-
tation of the membrane so that C; >0 and Cj > |Cy]
(i.e., #<1). We nondimensionalize the free energy by
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measuring lengths in units of 1/C7 and energies in units
of A. These choices are equivalent to setting Ay =As =1,
C1 =1, and Cy = —(. The thermal properties of our free-
energy functional are embedded in the implicit tempera-
ture dependence of the properties of the two phases.

We define a planar membrane as a thermodynamically
stable macroscopic system with an average shape that
extends along a plane (i.e., the z-y plane) and has a
finite extension onto the transversal direction (i.e., the
z-direction). The geometric projection onto the z-y plane
defines a (signed) projected area, while the projection
onto the planes z-z and y-z is zero. Such states can be
obtained by fully homogenous flat membranes, or those
with microsegregated patterns. These patterns can be
characterized by their ground-state symmetries, which in
the binary case can only be lamellar and hexagonal caplet
arrangements [1-3]. The analysis below will require that
periodic boundary conditions be satisfied at the edges of
the membrane; however, for sufficiently large membranes,
this requirement should not affect the thermodynamic
properties of the bulk. Thus we consider a sufficiently large
membrane with regular boundaries that includes enough
repetitions of the basic pattern, which can be thermo-
dynamically described by a free energy F' that minimizes
the Helfrich functional subject to the constraints on the
values of four extensive variables: the areas occupied by
each of the phases, (41, Az), the total length of the phase
boundary (hereafter, interface), B, and the transversal
area occupied by the membrane (or the projected area
of the membrane onto the planar background), D. Thus,
F(Ay,As, B,D)=min F. The scheme in fig. 1 identifies
the areas A; and the projection D associated with a
membrane patch with lamellar morphology. Analysis of
the free energy as a function of the extensive variables is
cumbersome, and it is simpler instead to use a thermo-
dynamic potential, ¥, conjugate to F in all of these
extensive variables:

U(u1, p2,7,q9) =F — 1Ay —poAs+yB —gD.  (2)

The conjugate variables are Lagrange multipliers that
enforce the constraints on the values of the extensive vari-
ables. In addition, these variables have simple physical
interpretations. We assume that the membrane is incom-
pressible so that area changes are associated with absorp-
tion or desorption of molecules; thus, u; is the chemical
potential of each segregated phase per unit area, measured
with respect to the surrounding environment. These chem-
ical potentials can be identified as the intrinsic surface
tension for each phase (0; = —p;), although the effective
surface tensions contain other contributions as discussed
later. These two chemical potentials can be combined into
a reference surface tension of the membrane o= —(u; +
12)/2, and a chemical potential difference p = — po.
The interfacial length, B, is controlled by the line tension,
v. The term vB in eq. (2) is usually considered part of
the mechanical free energy, but since it couples linearly to
the interfacial length, it can be elevated to the status of
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Fig. 1: Geometry of the lamellar morphology: (a) a rectangular
patch of a planar binary membrane with strongly segregated
phases shown in grey and white; (b) a sketch of a distribution
of external tensions required for planarity at the boundaries of
the projection of a rectangular subsection; the top and right
edges are acted on by the total forces; (c) a parametrized cross-
section, with local varying angles 0(s), and contact angle at the
boundary between regions 6..

a thermodynamic conjugate variable. The final Legendre
transform with respect to the projected area introduces
the lateral tension, ¢, which we discuss in detail below.
We note that these conjugate variables can be defined as
derivatives of the mechanical free energy considered as a
function of the extensive variables F'(A;, As, B, D):
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While the fundamental definitions of the conjugate vari-
ables p;, v, and ¢, are based on the free energy F' that
depends on the extensive variables, the thermodynamic
potential we have defined is a function of the inten-
sive variables conjugate to the extensive quantities, i.e.,
U =U(u;,7,q). These variables can also be considered as
conjugate to four ratios: two area fractions ¢; = A;/A,
the boundary length density b= B/A, and the projected
area ratio d=D/A. Finally, we define the mechanical
free-energy density f = F/A. All of these quantities are
averaged over a unit cell.

The requirement that the membrane should have a
projected area D onto the z-y plane and zero on planes
perpendicular to it constrains its possible conforma-
tions. Let us now examine in more detail this planarity
constraint. We consider a membrane patch of area dA
with a unit normal vector n. The patch is projected onto
a plane with unit normal k, and the projected area is
dD =k -ndA. Therefore, the term —g¢D in the potential
U corresponds to the inclusion of a term of the form
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— [¢k-ndA in the corresponding variational functional
U, and constrains the projected area of the membrane.
This term leads, in principle, to new contributions to
the shape equations, boundary conditions and stress
tensor. To derive these terms, we apply the methods and
results from refs. [11,12]. The notations adopted from the
references are given below. Each point on the membrane
is labelled by two-dimensional coordinates (u!,u?) and
occupies a position X(u®) in three-dimensional space,
where a =1,2. Bold fonts are used throughout the paper
to denote three-dimensional vectors. This representation
defines a tangent vector base e,=09,X=0X/0u®, a
gradient operator V, that reduces to a partial derivative
on scalars but acts in a more complicated manner on
vectors, and the metric tensor and its inverse, ga, g%,
where gop = €4 - €3, ¢ gpe = 02. We use Einstein’s summa-
tion convention and standard upper and lower indices for
contravariant and covariant vectors, respectively.

Our basic results are as follows:

i) The new potential density term —gk-ndA does not
modify the shape equation. A general shape variation
takes the form dX = ¢%e, + vn for arbitrary infinitesimal
parameters ¢® and v. We rewrite the variation of our
term as a total derivative: §(—gk-ndA) =V,U*dA, with
U*=—q(¢°k -n—g%vk-ep). A total derivative can be
integrated out to a boundary term and thus it does not
contribute to any bulk equations, including the local shape
equation.

ii) For a system where we require the boundary itself to
be in equilibrium, boundary contributions due to a normal
shape deformation, X, must cancel among each other.
We find that this new term, stemming from the planar
condition, manifests as an average equilibrating term that
compensates the boundary contributions of the Helfrich
free energy in eq. (1). Given a unit vector b = b%e, normal
to a smooth boundary and tangent to the membrane, the
integral of a divergence in a manifold can then be recast as
a boundary integral: fM V.U A= faM U%b,dt, where dt
stands for an infinitesimal length segment of the boundary.
In other words, the planarity constraint determines a set
of boundary conditions for the membrane in general.

iii) At a smooth cut or boundary of the membrane we
find a three-dimensional force density vector f. This force
density depends on the direction of the cut, which on the
boundary is specified by the boundary normal b = b%e,.
The force density is related to the stress tensor of the
membrane £¢ = [f!, £2] through f = f%b,. This stress tensor
consists of two three-dimensional vectors (indicated by
bold face), one for each value of the index a (see [11-13]).
The tensor can be written as f* = fl“’beb + f{n, where flt\lb
and f{ are the tangential and normal components of the
tensor, respectively. Each term of the variational potential
gives rise to a contribution to this tensor. We have shown
that a variation X normal to the surface takes the form
—Va(6X-£%). This expression allows us to identify the
stress-tensor contribution of our constraint ffj, and we
obtain the final net boundary force density due to the

constraint fp = fgb,:

fo =gk x (b x n). (4)

This form of the boundary force contribution has a
very clear property: it is always in the background plane,
perpendicular to the boundary of D, and pointing outward
of D, as is evident from the cross product of k, b, and n.

iv) Let us now consider the stress tensor associated with
the planar projection of the membrane, instead of the
membrane itself. The planar projection has a boundary
unit normal h=(k x (bxn))/|k x (b xn)| (parallel to
the projection plane), and the infinitesimal length along
the projected boundary is d¢. We can then recast the
constraint contribution to the net force on a bound-
ary segment as fpdt = ¢hdl. Therefore, the stress tensor
contribution fg, can also be interpreted as the stress tensor
on the projected plane. The effective stress tensor TO’?B
in this plane, using Cartesian coordinates, is TO’?B =qdag-
This tensor is homogeneous and isotropic. External forces
applied at the boundary of a membrane patch that satisfy
this structure can therefore be used to create a planar
membrane, establishing the planar constraint.

v) The equilibrium of a large but finite membrane
requires in general the application of inhomogeneous
distributions of forces at the boundary, as sketched at
the bottom boundary of fig. 1(b). The force created
by the planar constraint cannot locally equilibrate the
forces required for equilibrium of the membrane. From a
thermodynamic point of view, however, we are concerned
only with average quantities over scales larger than the
characteristic morphological length (e.g., the repetition
length XA in the lamellar morphology). Therefore, states
in thermodynamic equilibrium satisfy (f*) =0, where the
braces indicate an average over a large boundary segment.
The contribution of the planarity constraint ff7, then
serves to compensate all other contributions. Since this
tensor lies within the projected plane, the inclusion of the
constraint —gD requires that the average stress tensor of
the remaining contributions also be confined in the same
plane.

vi) Let us consider the deformation of a membrane
patch with rectangular projection of dimensions L, and L,
that satisfies periodic boundary conditions. The energy of
deformation is given by the integration over the boundary
of the membrane of contributions due to the stress tensor
and the torque density H (see ref. [12]). This density
is —b,(f?-0X — Ha%ey - 0n). When the dimensions of the
patch are large enough, the stress tensor term is zero on
average thanks to the inclusion of the planarity constraint.
When the periodic boundary conditions are respected
by the deformation, the torque contributions at opposite
points of the boundary cancel each other. We therefore
have full equilibrium of the membrane against large-scale
deformations. We can now construct a membrane patch
of arbitrary size A by extending a smaller size membrane.
When the extension is sufficiently regular, any change in
the thermodynamic potential due to a small deformation
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is zero on the average: that is, ¥ = [f%, -6Xds=0
since (f*) =0 and b, and X are uniform in deformations
that maintain a rectangular shape with periodic boundary
conditions. Therefore, the potential is constant. Since this
potential is an extensive quantity, it takes the value of
zero for a system of zero area. We thus conclude that the
potential is identically zero ¥ =0 at all areas; we refer to
a potential with such properties as a null potential.

vii) Finally, we examine the thermodynamic role of the
lateral tension term —g¢D in eq. (2). Because this term
accounts for the work done by external forces applied
to the boundary, the potential ¥ describes finite but
large systems using a thermodynamic ensemble based on
the intensive variables p;, ¢ and «. When the values of
the intensive variables are specified, the absolute values
of the extensive variables (A;, B, D) are only determined
up to a scale factor; only their ratios are specified. A
basic theorem of thermodynamics [14] indicates then that
the intensive variables are not independent and that an
equation of state relates them. This equation can be
obtained from the condition ¥ =0, which was derived
above, and the explicit form will be discussed later.

We apply these results i)-vii) to the case of lamellar
morphologies sketched in fig. 1. As shown in fig. 1(c), the
coordinate s measures the arc length along a transversal
section. The lengths of the repeated sections of each
species are s; and sy, and we define A = sy + so; because
of the continuous translational symmetry of the system
in the y-direction, we have s;/\ =¢. The local shape is
measured by means of an angle # with respect to the
projection plane. The crucial terms in the potential are
the projection, k - n = cos 6, and the trace of the curvature
tensor K =6’, where the prime indicates differentiation
with respect to the arc length s. For a large rectangular
region of dimensions L, x L,, the variational potential '
to be minimized in order to obtain ¥ is given by

] 0 —C;)?
_ = —_— — U — 2 y
L, E /ds[ 5 Wi —qcosf| +2ny

i=1,2

(5)

where the last term of the functional is the expression of
the interfacial boundary length B in terms of the number
of lamellar repetitions per unit length, n. Note that we
have d=D/A=L,/S, where S is the total arc length in
a cross-section. Instead of considering direct variations
with respect to the coordinate field X, we determine
more easily interpreted equilibrium conditions by direct
variation of the angle variable 6. This technique has been
employed previously, and many aspects of the solutions are
known [15-17]; however, its thermodynamical implications
have not yet been explored.

The shape equation of the membrane is obtained
from variation of the potential ¥ with respect to 6. We
decompose the variation into a bulk term, Vi, and a
boundary term, Vi, as: 6¥/L, = [ ds(Vid6 + 05(V400)).
The bulk equilibrium is obtained by setting V} to zero:

(6)

0" —gsinf =0.

This equation is valid at all points within the homogeneous
regions. At interfaces, where two homogeneous regions
meet, the boundary contributions V;, from each homoge-
neous region should cancel each other to make the net
variation of the potential zero. This leads to the following
condition at the interfaces:
0] — C1 =05 — Cs. (7
Another set of equations can be obtained by considering
a local extension of the membrane. To do so, one can
introduce a variable p that parametrizes the integrand
of ¥. This introduces a Jacobian j=ds/dp, and we have
0" =(1/4)dd/dp. Variation of the free energy with respect
to the Jacobian j is physically equivalent to the local
extension. Carrying out the variation and evaluating at
j =1, we obtain
1 2 1 2
—56 +§Ci — i —gcosf =0, (8)
where 7 specifies the phases. This result, eq. (8), is in fact
an integration of eq. (6). In addition, by taking a derivative
of eq. (6) with respect to the arc length, and then using
eq. (8) to eliminate the cosine, we obtain 6" +6'3/2+
(—p; +C?/2) =0. With suitable identifications, such as
0" being the Laplacian of the curvature, this is in fact
the standard shape equation of the membrane. Thus our
formulation, which considers the lateral tension and the
planarity condition, is consistent with the shape equations
derived in a classical manner (for example, by examination
of balances of forces and torques [18,19]). We note that the
lateral tension does not appear explicitly in the classical
form of the shape equation.
The shape of the membrane can be obtained, for
example, by solving eq. (8), which can be written in terms
of the Jacobi amplitude function am:

0(s) = +am ((s — s)T4, ‘jg) , 9)

i

with 7, = /—2p; + C? —2q. In this expression, sj is an
arc length value at which the angle is zero. The sign in
the right-hand side of the equation is chosen according
to the spontaneous curvature of the region: negative for
phase 1, (with C; =1) and positive for phase 2.

The boundary conditions, eq. (7), lead to a unique value
of the contact angle, 0., defined in fig. 1(c), which is given
by
I

2(1+0)2 (

We join regions of phase 1 that span angles from 6. to
—0,. forming a convex shape, and match a region of phase
2 with angles from —0,. to 6.. Together, they create a
basic cell of the periodic solution. Other solutions exist in
which the values of the angle exceeds 27; these solutions
are discarded as they lead to unphysical self-intersections
of the membrane. The explicit form of the solution for

qgeosf. = — p—1+p8%) +o. (10)
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Fig. 2: In (a) the physical regions in the o-u plane are shaded.
The straight lines and parabolas are limiting lines of the regions
allowed by conditions/egs. (11) and (12). The lateral tension
is ¢=0.5 and the curvature ratio is 8 =0. Panel (b) shows a
detailed view of the physical region with v > 0 of panel (a). We
show isocontour lines for the area fraction ¢ and periodicity A.

the angle variable can be used to obtain the local height,
contour lengths and horizontal projections as well. These
solutions have also been recovered (using a fixed-surface-
tension, fixed-periodicity ensemble) in recent simulations
by our group [6].

The solutions described above must obey a number of
restrictions in their allowed parameters. First, we note
that the square of the spontaneous curvature in the shape
equation, eq. (8), requires the remaining terms to add
to a positive quantity. As we will show later, ¢ >0 for
stable solutions. Thus, considering the limiting case at
cos () =1, we obtain

min(0"?) = C? — 2u; —2¢ >0,

(11)

within each homogeneous region ¢ =1, 2. In addition, the
contact angle must be physical,

—1<cos(b.) <1, (12)

thus restricting the right-hand side of eq. (10).

We note that v does not appear in the solutions above
since, due to the symmetry of the lamellar system, its
energy density is concentrated at the interfaces and does
not modify the bulk equation nor the boundary conditions.
To examine the role of v we use the equation of state,
¥ = 0. After some substitutions in eq. (2), and division by
the total area A, the equation of state can be expressed as

(13)

1 2y
f+o,u<¢2> fqd+7f0.

The solutions constructed above allow determination of f,
¢, d and A as a function of o, u, and g only, and therefore,
~ can simply be evaluated using this expression.

0=.37, u=0.5, p=0, g=0.5

6=0.26, p=0.5, p=0, q=0.5

1.5
0.01
(@) (b)
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-3 0 3 6 -0.2 0.0 0.2 0.4
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B C 1
1.04 (© 024 (d)
] 0.1
0.5 1 \/
1 0.0
0.0 T T T T T T T T
4 0 4 8 12 0 1 2
6=1.37, p=1.75, p=0, g=0.5  6=0.5, p=0.5, B=0, q=-0.25
{ (e 3]
,] @ 1
2 |
1 1 _
A 0_. U
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2 -1 0 1 2 3 -1 0 1 2 3

Fig. 3: Cross-sections of repeating shape patterns. Parameters
as shown in headers.

We can now present the properties of the system in
terms of three of the four intensive variables u1, 2, v, and
q. It is easiest to eliminate 7y as an independent variable
using the equation of state and then study the behavior of
dependent variables as functions of o and p while keeping
q constant. In this slice of parameter space, realizable
points are bounded by four boundaries determined by
egs. (11) and (12). These boundaries form, for generic
values of the tension ¢, three different regions as shown
in fig. 2(a), for the particular case of ¢=0.5 and §=0.
Two points of contact divide the regions; their explicit
coordinates can be obtained solving for the intersection of
the boundaries defined by egs. (11) and (12). These points
have coordinates o=¢q—(3/2, and p=1+p3,-0(1+0).
Inspection of the equation of state reveals that the two
side regions have v < 0, and thus are unphysical. We note,
however, that solutions in these regions exhibit overhangs
(see fig. 3(e,f)), which are important features observed in
the dynamics of certain surfactant films [20]. In fig. 2(b)
we expand the physical region with v>0 and show
isocontours of ¢ and A. Isocontours for the mechanical
free-energy density f and the equilibrium line tension -~y
have similar shapes to those of ¢ and A, respectively.

Sample shapes obtained from our solutions are shown in
fig. 3 for the parameter values shown in each frame. Panel
(a) shows a very regular, generic solution with ¢ =0.5.
Panels (b,c) show that, while the characteristic length of
the system is 1/Cy =1, the lamella spacing and height
of the ripple can be (b) smaller than or (c) larger than
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the characteristic length. Panel (d) has an asymmetric
area fraction ¢ = 0.4. Panels (e,f) belong to the unphysical
regions (7 < 0) and show overhangs. It can be shown that
when the phase fraction is symmetric, ¢ =0.5, and the
bending rigidities are equal, the shapes of the two phases
are mirror images even when their intrinsic curvatures are
not equal, as in (a,b).

Let us now consider the stability of these solutions.
Taking the second variation of the potential with respect
to the local angle, we obtain a quadratic functional on the
first-order variations. We write the result in terms of a
Schrédinger-type operator, 620 = [ ds00H 0 with

2

H:—@—l—qcosH(s). (14)
The stability condition 5%2% > 0 has a direct solution; since
the operator His Hermitian, its eigenvalues, &;, must be
positive. Conversely, the system is unstable if at least one
of the eigenvalues becomes negative. Instead of this direct
approach, it is also possible to examine instabilities of the
system by finding deformations 66 that render the integral
negative [21]. Using this latter method we can show that
planar membranes under (strong) compression ¢ < 0 are in
general unstable. For large values of the compression force,
the lateral tension term in the operator, ¢ cosf, becomes
large and negative, and any trial variation centered around
a position s with 6 = 0 creates an instability. This is similar
to the classical result of columns under compression [22].
Due to this instability, we do not consider compressive
states in our phase diagram, as mentioned earlier.

The membrane under tension is typically found to be
stable. Instabilities can appear only when the term ¢ cos 6
becomes negative in a region. This occurs when there are
overhangs in the shape, where cosf <0, so that locally
the membrane is under compression. It can be shown that
such shapes occur only in regions of the phase diagram
that correspond to negative line tension, v < 0, which are
already unstable (as v < 0 causes complete mixing). In the
central region of the phase diagram, with « > 0, overhangs
are not possible, and the system is always stable.

As we have shown, the thermodynamics and stability
of planar membranes are greatly illuminated by the
explicit introduction of the planarity constraint and, as
in other recent works, by the consideration of forces and
stresses [13,18,19]. The Lagrange multiplier ¢ associated
with the constraint is interpreted as an external tension
acting on the boundary of the membrane and also as
the thermodynamic variable conjugate to the projected
area of the membrane. We note that while we have
exploited in detail these relations in the context of the
lamellar morphologies, they should also be useful for caplet

morphologies, and will enable the reinspection of the phase
diagrams obtained in recent works [1-3].
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