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Lüscher term for k-string potential from holographic

one loop corrections

Leopoldo A. Pando Zayas,a V.G.J. Rodgersb and Kory Stifflerb

aMichigan Center for Theoretical Physics,

Randall Laboratory of Physics, The University of Michigan

Ann Arbor, MI 48109-1040, U.S.A.
bDepartment of Physics and Astronomy, The University of Iowa,

Iowa City, IA 52242, U.S.A.

E-mail: lpandoz@umich.edu, vincent-rodgers@uiowa.edu, kstiffle@gmail.com

Abstract: We perform a systematic analysis of k-strings in the framework of the

gauge/gravity correspondence. We discuss the Klebanov-Strassler supergravity background

which is known to be dual to a confining supersymmetric gauge theory with chiral sym-

metry breaking. We obtain the k-string tension in agreement with expectations of field

theory. Our main new result is the study of one-loop corrections on the string theoretic

side. We explicitly find the frequency spectrum for both the bosons and the fermions for

quadratic fluctuations about the classical supergravity solution. Further we use the mass-

less modes to compute 1/L contributions to the one loop corrections to the k-string energy.
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1. Introduction

Although the QCD Lagrangian has been known for more than forty years, extracting

physical predictions from it in the strong coupling regime has proven to be monumental.

Ingenious string theoretic strategies have been devised since that time that attempt to

probe the theory analytically and provide insight into QCD. The Wilson loop,

< W (C) >= exp (−TAC)

for example, where T is the string tension and A is the area circumscribed by the contour C,

computes the probability amplitude that quarks will traverse the contour and has a string

theoretic interpretation in terms of gluon flux tubes. In 2+1 dimensions, for example,
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Summary of AdS/CFT Correspondences

Gauge Theory State String Theory Configuration

Glueballs Spinning Folded Closed String

Mesons of heavy quarks Spinning open strings ending on boundary

Baryons of heavy quarks Strings attached to baryonic vertex

Dibaryons Strings attached to wrapped branes

Mesons of light quarks Spinning open strings ending on D7 branes

k-strings Wrapped branes with flux

Table 1: Gauge Theory States and Their String Theory Configurations.

Karabali, Kim and Nair (KKN) [1] were able to compute the string tension starting from

first principles in SU(N) Yang-Mills and found that

TF = e4
(N2 − 1)

8π
,

for fermions in the fundamental representation. This result is within 3% agreement of

earlier theoretical predictions from lattice gauge theory work by first Teper [2] and then

Lucini, Teper and Wegner [3]. More recent work, however has suggested that in theN → ∞
limit, the lattice data is about 1% lower than the work of KKN [4]. This residual 1% remains

even after all systematics are taken into account. However Karabali, Yelnikov, and Nair are

presently improving the wavefunction in KKN and preliminary results for the first order

corrections have moved the agreement to within 1− 2% for fixed values of N and .88% for

N → ∞ [5].

The AdS/CFT correspondence [6] goes further and opens a window into the strong cou-

pling region of field theory by means of supergravity backgrounds. As shown in table 1 we

now have the correct string theory correspondence for specific gauge field theory states [7].

Our focus will be on the k-string configurations in confining field theories as they have re-

ceived a lot of attention as prototypes of the AdS/CFT probe. The k-string is the flux tube

that results between k quarks in the fundamental and k antiquarks. These configurations

have been studied following various methods. Earlier analytical results were obtained in

Douglas-Shenker [8] and the MQCD result of Hanany, Strassler and Zaffaroni [9]. k-strings

are good candidates for examing Ads/CFT since they are also an active line of research in

lattice gauge theories [3, 10 – 12]. One of the issues that these configurations are able to

probe is whether there is a Casimir-like scaling

Tk ≈ k(1 − k/N)

for large N or whether the scaling exhibits a sine law where

Tk ∝ N sin

(

πk

N

)

.

What adds to the controversy is that on the one hand, the 1/N expansion of QCD agrees

with the sine law scaling [13, 14], while on the other hand lattice calculations favor Casimir

– 2 –
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scaling (1/N) [15]. Nevertheless, both the sine law and the Casimir law respect the sym-

metry k → N − k, an important feature of k-strings which describes replacing quarks with

anti-quarks [16].

There is, by now, a vast literature of k-strings in the context of the gauge/gravity

correspondence that originates with this and other interesting observations made in [16, 17]

and extends to investigations of the k-string width due to the electric flux [18, 19]. A very

complete review is presented by Shifman in [20]. Our goal is to revisit the k-string tension in

the context of the gauge/gravity correspondence and more importantly to understand the

structure of fluctuations and their contributions to the Lüscher term. The k-string tension

can be computed as the classical value of the Hamiltonian for a particular static classical

supergravity configuration. In this work we start with the Born-Infeld action associated

with a Klebanov-Strassler [21] supergravity background and evaluate the tension from the

solutions of the field equations making no approximations. We find, in agreement with [16],

that tension is
Tk
Tf

≈ sin

(

πk

N

)

.

We also find that it exactly satisfies the aforementioned k → N − k symmetry. Our main

result of this note is to compute the quadratic fluctuations of the Hamiltonian incorporating

both bosonic and fermion fields. These fluctuations correspond to the one-loop correction

to the k-string energy. By summing the zero point energies we are able to calculate the

leading order corrections to the energy as well as the Lüscher [22] term,

VLüscher = − π

3L
.

Note, that since the Lüscher term in independent of k, it too satisfies the important k →
N − k symmetry.

2. Electrically and magnetically charged Dp branes

In this section we discuss the general formalism. This is a classical analysis that can be

found in various papers, we present it here for completeness. The starting point is the

action of a Dp brane in a supergravity background

SDp = −µp
∫

dp+1ξ e−Φ
√

−det (gµν +Bµν + 2πα′Fµν)

+ µp

∫

exp(F2) ∧
∑

q

Cq.
(2.1)

In this expression gµν and Bµν are the induced metric and B-field in the world volume of

the Dp brane. The field strength Fµν describes a U(1) potential which in turns induces

the electric and magnetic charges in the world volume of the Dp brane. Our problem

can basically be formulated as: given a supergravity background find classical solutions of

the embedding describing electrically and/or magnetically charged Dp branes; compute the

energy of such configurations and the spectrum of its small fluctuations.
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From the gauge theory point of view we describe a string extending along the coordi-

nates (t, x). From the gravity side we are going to describe a D3 brane wrapping a two-cycle

which we parameterize as (θ, φ). Therefore the world volume coordinates are

ξµ = (t, x, θ, φ). (2.2)

We also turn on a gauge field in the world volume of the brane which is described by two

non-vanishing components of the field strength, Ftx and Fθφ. Thus

gµν +Bµν + 2πα′Fµν = (2.3)











−gtt 2πα′Ftx 0 0

−2πα′Ftx gxx 0 0

0 0 gθθ gθφ +Bθφ + 2πα′Fθφ
0 0 gθφ −Bθφ − 2πα′Fθφ gφφ











. (2.4)

The action for D3 branes is

S = −µ3

∫

d4ξ
√

− det(gµν + Fµν) + 2πα′µ3

∫

F2 ∧ C2. (2.5)

S = −µ3

∫

d4ξe−Φ
√

gttgxx − (2πα′Ftx)2
√

gθθgφφ − g2
θφ + F2

θφ

+ 2πα′µ3

∫

d4ξFtx(C2)θφ. (2.6)

One can consider the equation of motion for Ftx and find that

∂L
∂Ftx

= D = const. (2.7)

where D is the displacement. A way to determine the constant is through the quantization

conditions which arises due to the coupling of the B-field [23 – 25]:
∫

S2

d2ξ
∂L
∂Ftx

=
p

2πα′ . (2.8)

The situation for the magnetic component is more straightforward, one simply demands

Fθφ to be quantized [26]

Fθφ = −q
2

sin θdθ ∧ dφ. (2.9)

This leads to q units of flux after integration over the 2-sphere which the D3 brane wraps.

One can now define the Hamiltonian density as

H = DFtx − L. (2.10)

The Hamiltonian takes the form

H = µ3

∫

R×S2

d3ξ
√
gttgxx

√

e−2Φ(gθθgφφ − g2
θφ + F2

θφ) + (D − C2)2. (2.11)

– 4 –
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3. K-Strings in the Klebanov-Strassler background

3.1 Review of the Klebanov-Strassler background

There are many interesting reviews of the Klebanov-Strassler background [16, 27, 28].

However to facilitate the reader, this section will review the salient features which are

relevant to this work. We begin by considering a collection of N regular and M fractional

D3-branes in the geometry of the deformed conifold [29, 30, 28]. The 10-d metric is of the

form:

ds210 = h−1/2(τ)ds24 + h1/2(τ)ds26 , (3.1)

where ds24 is the 4-D Minkowski metric and ds26 is the metric of the deformed coni-

fold [31, 21]:

ds26 =
1

2
ε4/3K(τ)

[

1

3K3(τ)
(dτ2+(g5)2)+cosh2

(τ

2

)

[(g3)2+(g4)2]+sinh2
(τ

2

)

[(g1)2+(g2)2]

]

.

(3.2)

where

K(τ) =
(sinh(2τ) − 2τ)1/3

21/3 sinh τ
, (3.3)

and

g1 =
1√
2

[

− sin θ1dφ1 − cosψ sin θ2dφ2 + sinψdθ2
]

,

g2 =
1√
2

[

dθ1 − sinψ sin θ2dφ2 − cosψdθ2
]

,

g3 =
1√
2

[

− sin θ1dφ1 + cosψ sin θ2dφ2 − sinψdθ2
]

,

g4 =
1√
2

[

dθ1 + sinψ sin θ2dφ2 + cosψdθ2
]

,

g5 = dψ + cos θ1dφ1 + cos θ2dφ2. (3.4)

The 3-form fields are:

F3 = dC2 =
Mα′

2

{

g5 ∧ g3 ∧ g4 + d[F (τ)(g1 ∧ g3 + g2 ∧ g4)]
}

=
Mα′

2

{

g5 ∧ g3 ∧ g4(1 − F ) + g5 ∧ g1 ∧ g2F

+F ′dτ ∧ (g1 ∧ g3 + g2 ∧ g4)
}

, (3.5)

and

H3 = dB2 =
gsMα′

2

[

dτ ∧ (f ′g1 ∧ g2 + k′g3 ∧ g4)

+
1

2
(k − f)g5 ∧ (g1 ∧ g3 + g2 ∧ g4)

]

. (3.6)
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Solving these for B2 and C2 results in

B2 =
gsMα′

2
[f(τ)g1 ∧ g2 + k(τ)g3 ∧ g4] (3.7)

C2 =
M

8πT0
[2F (τ)(g1 ∧ g3 + g2 ∧ g4) + (cosψ sin θ1 sin θ2 − cos θ1 cos θ2)dφ1 ∧ dφ2

− cosψdθ1 ∧ dθ2 + ψ(sin θ1dθ1 ∧ dφ1 − sin θ2dθ2 ∧ dφ2)

− sinψ sin θ1dφ1 ∧ dθ2 + sinψ sin θ2dφ2 ∧ dθ1] (3.8)

The self-dual 5-form field strength is decomposed as F̃5 = F5 + ⋆F5, with

F5 = B2 ∧ F3 =
gsM

2(α′)2

4
ℓ(τ)g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 , (3.9)

where

ℓ = f(1 − F ) + kF , (3.10)

and

⋆F5 = 4gsM
2(α′)2ε−8/3dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dτ ℓ(τ)

K2h2 sinh2(τ)
. (3.11)

The functions introduced in defining the form fields are:

F (τ) =
sinh τ − τ

2 sinh τ
,

f(τ) =
τ coth τ − 1

2 sinh τ
(cosh τ − 1) ,

k(τ) =
τ coth τ − 1

2 sinh τ
(cosh τ + 1) . (3.12)

The equation for the warp factor is

h′ = −αf(1 − F ) + kF

K2(τ) sinh2 τ
, (3.13)

where

α = 4(gsMα′)2ε−8/3 . (3.14)

For large τ we impose the boundary condition that h vanishes. The resulting integral

expression for h is

h(τ) = α
22/3

4
I(τ) = (gsMα′)222/3ε−8/3I(τ) , (3.15)

where

I(τ) ≡
∫ ∞

τ
dx
x coth x− 1

sinh2 x
(sinh(2x) − 2x)1/3 . (3.16)

The above integral has the following expansion in the IR:

I(τ → 0) → I0 − I1τ
2 + O(τ4) , (3.17)

where I0 ≈ 0.71805 and I1 = 22/3 32/3/18. The absence of a linear term in τ reassures us

that we are really expanding around the end of space, where the Wilson loop will find it

more favorable to arrange itself.

– 6 –
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3.2 Review of Herzog-Klebanov k-string tension

In this section we review the original calculation presented by Herzog and Klebanov (HK)

in [16]. Our goal is to clarify the extent of their simplifications and provide a more complete

computation of the strings tension.

Herzog and Klebanov construct their model by considering the metric in the τ = 0

limit. By performing an S-duality transformation they are able to send F3 ↔ H3 and

exchange k fundamental strings for k D1 branes. Further a T-duality transformation along

the D1-brane direction yields k D0-branes on an S3 with M units of NS-NS flux.

This is related to the setup of Bachas, Douglas and Schweigert [26] who found that q

D0 branes blow up into an S2 via the Myers effect. We consider a D3-brane wrapping the

S2, that is with world volume given by the parametrization

X0 = t, X1 = x, θ1 = θ, φ2 = −φ. (3.18)

The KS background metric at

X2 = X3 = τ = 0, θ2 = θ, φ1 = φ (3.19)

becomes

ds210 = h
−1/2
0 ds24 + bMα′

(

1

4
dψ2 + cos2 ψ

2
(dθ2 + sin2 θdφ2)

)

b = 22/33−1/3I
1/2
0 ≈ 0.933 (3.20)

where the new constants h0 and K0 are the τ → 0 limits of h(τ) and K(τ), respectively.

After S-duality we find that, for τ = 0 we have F5 = 0, and C2 = 0. Under S-duality

the RR 3-flux becomes H3 flux. The corresponding B-field is given by

B2 =
α′M

2
(ψ + sinψ) sin θdθ ∧ dφ. (3.21)

There is an ambiguity in choosing this B field. The quantity that appears in the

equation of motion is

H3 = dB2 =
α′M

2
(1 + cosψ) dψ ∧ dθ ∧ sin θdφ

(3.22)

By applying a coordinate change ψ → 2ψ − π, the metric KS background at τ = 0

becomes

h
−1/2
0 ds24 + bMα′(dψ2 + sin2 ψ(dθ2 + sin2 θdφ2)). (3.23)

and H3 becomes

H3 = dB2 = α′M (1 − cos 2ψ) dψ ∧ dθ ∧ sin θdφ

= 2α′M sin2 ψdψ ∧ dθ ∧ sin θdφ. (3.24)

– 7 –
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leading to a B2 of the form

B2 = α′M

(

ψ − 1

2
sin 2ψ

)

sin θdθ ∧ dφ. (3.25)

We will also consider a world volume U(1) field strength

F = −q
2

sin θdθ ∧ dφ. (3.26)

This is a magnetically charged U(1) field. Naturally, it represents the charges of D1-strings.

The charge q represents electrically charged strings under an S-duality transformation

which are further interpreted as q quarks on the gauge theory side.

Since for this case C4 = C2 = 0 we have no contribution from the Chern-Simon term.

The action is then

S = T3

∫

dtdxdθdφh
−1/2
0 sin θMα′

√

b2 sin4 ψ +

(

ψ − sin 2ψ

2
− π q

M

)2

, (3.27)

Minimizing the Hamiltonian with respect to ψ one finds:

ψ − π q

M
=

1 − b2

2
sin 2ψ. (3.28)

By substituting the solution into the Hamiltonian one finds the k-string tension

T ≈ b sinψ
√

1 + (b2 − 1) cos2 ψ. (3.29)

Herzog and Klebanov showed that since b ≈ 1 one obtains that

Tq ∼ b sin
π q

M
. (3.30)

3.3 The k-string tension in the KS background

We propose that under the parametrization (3.18), the D-Brane action has a solution given

by ψ = constant and equation (3.19). We will demonstrate this by directly solving the field

equations for the bosonic fields, and later will show that it is indeed a classical solution

when we fluctuate around it. Then no first order fluctuations survive up to total derivative

terms. Following the strategies of [32, 33], we proceed to evaluate the tension without

applying S-duality.

In the KS background, we find the pullbacks of B2 and the Ramond-Ramond fields Ci
to be

B2 = C0 = C4 = 0

C2 =
Mα′

2
(ψ + sinψ) sin θdθ ∧ dφ. (3.31)

Further we consider electrically charged D3-branes, along the x-direction so that

Ftx = constant, (3.32)

– 8 –
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and all other components are zero. Normally due to the fibration of 10D space-time one

does not get a round metric as the induced metric. Our result relies on a very specific

choice of the volume coordinates. We find the induced metric to have topology R1,1 × S2:

ds2 = gµνdξ
µdξν = h

−1/2
0 (−dt2 + dx2) +

2

R
(dθ2 + sin2 θdφ2) (3.33)

where the scalar curvature is

R =
2 sec2 ψ

2

h
1/2
0 ε4/3K0

. (3.34)

From the action, eq. (2.5), we explicitly calculate the field equations for τ , ψ and Ax
and find that when τ → 0 and ψ = ψ[θ] the field equation for ψ reduces to

(b1f3(ψ,ψ
′, ψ′′) − f1(ψ,ψ

′)f2(ψ,ψ
′)) sin(θ) + b1f2(ψ,ψ

′) cos(θ)ψ′(θ) = 0 (3.35)

where

f1(ψ,ψ
′)2 = a1

2b1 (1 + cos(ψ(θ)))
(

2 + 2 cos(ψ(θ)) + ψ′(θ)2
)

(3.36)

f2(ψ,ψ
′) = 4 cos2

(

ψ(θ)

2

)

+ ψ′(θ)2 (3.37)

f3(ψ,ψ
′, ψ′′) = 8 cos2

(

ψ(θ)

2

)

sin(ψ(θ)) + 3 sin(ψ(θ))ψ′(θ)2+

+ 4cos

(

ψ(θ)

2

)2

ψ′′(θ) (3.38)

a1 = 21/631/3FtxgsM, b1 = 4π2T 2
0 ǫ

8/3(T 2
0 − F 2

txh0), T0 =
1

2πα′ . (3.39)

By exploring the solution ψ[θ] = ψ0, a constant, the field equation for ψ reduces to

b2T 2
0 tan2

(

ψ0

2

)

= F 2
txh0

(

1 + b2 tan2

(

ψ0

2

))

(3.40)

The ψ0 dependence of Ftx can be further obtained from the Euler-Lagrange equations

for Ax. Since
∂L
∂Ax

= 0,

define D as

D ≡ ∂L
∂Ftx

= constant. (3.41)

One can solve for the dependence of ψ0 and write

Ftx =
T 2

0 (D − Ω)√
h0

√

∆2 + (T0(D − Ω))2
, (3.42)

where

∆ =
T 2

0

2πgs

∫

dθdφ
2

R
sin θ =

4T 2
0

Rgs

Ω =
T0

2π

∫

dθdφCθφ =
M

2π
(ψ0 + sinψ0). (3.43)

– 9 –
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Figure 1: Exact solutions for the k-string tension for M=3 and M=6, normalized to one, and

compared to the sine law scaling and Casimir scaling. Solid: Exact numerical solution. Dashed:

sine law. Dotted: Casimir Law. We find similar agreement for larger M.

The solution to the field equations requires that ψ0 satisfies

ψ0 −
2Dπ

M
= (b2 − 1) sinψ0 (3.44)

where b = 22/3
√
I0

3√3
. This constraint equation from minimizing the action is the same that

one arrives at when minimizing the Hamiltonian density:

H = DFtx − L = h
−1/2
0

√

∆2 + T 2
0 (D − Ω)2 (3.45)

with respect to ψ0. Evaluating H at ψ0 yields the minimized Hamiltonian:

H0 =
bMT0

h
1/2
0 π

cos
ψ0

2

√

1 + (b2 − 1) sin2 ψ0

2
. (3.46)

We interpret this as the k-string tension. Since b ∼ 1, equation (3.44) yields that ψ0 ≈ 2Dπ
M .

Upon setting D = k −M/2, the k-string tension approximately simplifies to the sine law:

Tk ≈
bMT0

h
1/2
0 π

sin

(

kπ

M

)

(3.47)

which vanishes when k is an integer multiple of M .

We can numerically solve the transcendental equation for ψ0 for given M , and plot the

resulting k-string tension as a function of k. Figure 1 compares the exact k-string tension

to sine law scaling and Casimir scaling for M = 3 and M = 6. The exact KS tension sits

between the sin law and the Casimir law.

So in our analysis, we find approximate agreement with the sine law from lattice

gauge theories of QCD. The SU(M) k-string tension vanishes when the D3-branes flux,

D = k−M/2, is quantized by an integer or half integer multiple of a M. Thus in our specific

example, the gauge/gravity correspondence is manifested specifically between SU(M) k-

strings and D3-branes endowed with electric flux in the Klebanov-Strassler background.

– 10 –
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4. Excitations of k-strings

Up until now, we have only calculated the ground state k -string energy, E0 = TkL. We now

calculate one loop quantum corrections to this energy by allowing the fields to fluctuate

around their classical solutions, expecting a Luscher term, proportional to 1/L. The van-

ishing of first order contributions in the fluctuating fields assures us that we are fluctuating

around a classical field configuration.

4.1 Fluctuations around the classical solutions of the D3-brane action

We proceed by investigating small fluctuations around the classical solutions of the bosonic

fields Xa, the gauge potentials, Aµ, and the fermion fields, Θ [26], of the D3-brane action:

Xa =Xa
(0) + δXa(ξ),

Aµ =Aµ(0) + δAµ(ξ),

Θ = 0 + δΘ(ξ). (4.1)

The equations of motion for these new fields will yield the energy eigenvalues of the Hamil-

tonian for the quadratic fluctuations.

The general form of the action for D3-branes breaks up into bosonic and fermionic

terms [34 – 39]

S = S(b) + S(f), (4.2)

where the bosonic action S(b) is the same as S(Dp) in eq. (2.1) while S(f), is

S(f) =
T 2

0

4πgs

∫

d4ξeΦ
√

−|M0|Θ[
(

M−1
0

)αβ
Γα∂β +M1 +M2 +M3]Θ. (4.3)

Here, M0, is a sum of the classical values of g(0) and F (0)

M0 = g(0) + F (0), (4.4)

and M1, M2, M3, and the Γα matrices are calculated in appendix A.

We proceed by using the reparametrization invariance of the D3-brane world volume

to reduce our considerations to only six fluctuations out of the 10 bosonic SUGRA fields.

The world volume coordinates take the static gauge of

X0 = t, X1 = x, θp ≡
1

2
(θ1 + θ2) = θ, φm ≡ 1

2
(φ1 − φ2) = φ. (4.5)

We vary the fields from their classical solutions in the following way,

θm ≡ 1

2
(θ1 − θ2) = δθm, φp ≡

1

2
(φ1 + φ2) = δφp

X2 = δX2, X3 = δX3

ψ = ψ0 + δψ, τ = τ0 + δτ, (4.6)
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where we will be careful to take the τ0 → 0 limit at the appropriate time to avoid singu-

larities.

With this explicit shift, the fields Bab, Cab, and the 10-D bosonic metric, Gab, all can

be expanded to at least quadratic order in the fluctuations:

Gab = G
(0)
ab +G

(1)
ab +G

(2)
ab

Bab = B
(1)
ab +B

(2)
ab

Cab = C
(0)
ab + C

(1)
ab + C

(2)
ab . (4.7)

The Ramond-Ramond four-form has only one non-vanishing component, which is second

order in the fluctuations in the τ0 → 0 limit

C4 ∝ λ2δτ2 dX0 ∧ dX1 ∧ dX2 ∧ dX3, (4.8)

and so is zero to quadratic order when pulled back to the D3-brane.

The U(1) gauge potential undergoes a very simple shift, and is only first order in the

fluctuations:

Fµν = F (0)
µν + δFµν

= (∂µA
(0)
ν − ∂νA

(0)
µ ) + (∂µδAν − ∂νδAµ)

= F
(0)
tx (δtµδ

x
ν − δtνδ

x
µ) + (∂µδAν − ∂νδAµ) (4.9)

The Chern-Simons part of the D-brane action is, to quadratic order,

Scs =
T 2

0

2π

∫

exp(F) ∧
∑

q

Cq =
T 2

0

2π

∫

F ∧ C2

=
T 2

0

2π

∫

[F (0) ∧ C(0)
2 + (F (1) ∧ C(0)

2 + F (0) ∧ C(1)
2 )+

+ (F (0) ∧ C(2)
2 + F (1) ∧ C(1)

2 + F (2) ∧ C(0)
2 )]. (4.10)

We now expand the square root in the bosonic action to quadratic order. We will

utilize the following formula to accomplish this:

√

|M0 + δM0| =
√

|M0|
{

1 +
1

2
Tr(M−1

0 δM0) +
1

8
[Tr(M−1

0 δM0)]
2+

−1

4
Tr(M−1

0 δM0M
−1
0 δM0) + O(δM3

0 )

}

, (4.11)

where

δM0 = M
(1)
0 +M

(2)
0

M
(1)
0 = g(1) + F (1), M

(2)
0 = g(2) + F (2). (4.12)

Putting all this together, we find the bosonic action to be, to quadratic order,

S(b) = S
(b)
(0) + S

(b)
(1) + S

(b)
(2), (4.13)
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where the first and second order actions have the following forms:

S
(b)
(1)

= − T 2
0

2πgs

∫

d4ξ
√

−|M0|
1

2
Tr(M−1

0 M
(1)
0 ) +

T 2
0

2π

∫

[F (1) ∧C(0)
2 + F (0) ∧ C(1)

2 ] (4.14)

S
(b)
(2) = − T 2

0

2πgs

∫

d4ξ
√

−|M0|
[

1

2
Tr(M−1

0 M
(2)
0 )

]

− T 2
0

2πgs

∫

d4ξ
√

−|M0|
[

1

8
[Tr(M−1

0 M
(1)
0 )]2 − 1

4
Tr(M−1

0 M
(1)
0 M−1

0 M
(1)
0 )

]

+
T 2

0

2π

∫

[F (0) ∧ C(2)
2 + F (1) ∧ C(1)

2 + F (2) ∧C(0)
2 ]. (4.15)

The lowest order piece, S
(b)
(0), is that which was calculated in section 3.3.

4.2 Bosonic fluctuations

Continuing with the analysis, we will first show that the first order bosonic action, S
(b)
(1),

vanishes, up to total derivatives, confirming our previous result that we are fluctuating

around a classical solution. Next, we will find the Hamiltonian eigenvalues, ω, for the

quadratic fluctuations and use them to calculate the one-loop correction to the k-string

free energy.

4.2.1 First order bosonic action

Evaluating S
(b)
(1) at the classical solution, ψ = ψ0, we find that it vanishes up to total

derivative terms:

S
(b)
(1) =

∫

d4ξ

[

(k −M/2) sin θ

4π
δFtx −

M

8π2
F

(0)
tx (∂φδθm − ∂θδφp)

]

. (4.16)

This confirms our earlier result that we are fluctuating around a classical solution.

4.2.2 Second order bosonic action

The second order bosonic action, after some simplifications, takes the covariant form:

S
(b)
(2) = −

∫

d4ξ

√

−|g(eff)|
{

cX
∑

i=2,3

[∇µδXi∇µδX
i] + cA

[

1

16π
δFµνδFµν + δAµj

µ

]

+

+ cτ [∇µδτ∇µδτ +m2
τδτ

2 + ∇µΨ∇µΨ −RΨ2] (4.17)

+ Total Derivatives

}

,

where the covariant derivative, ∇µ, is with respect to an effective metric, g(eff), on the

D3-brane

ds2 = g(eff)
µν dξµdξν = gxx(−dt2 + dx2) +

2

R
(dθ2 + sin2 θdφ2). (4.18)

This effective metric has the same topology, R1,1 × S2, and scalar curvature, R, as the

induced metric (3.33). The field Ψ is a combination of the fields δψ, and δφp

Ψ ≡ δψ + 2cos θδφp, (4.19)
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and contains all the contributions of δψ and δφ to the quadratic action suggesting a redun-

dancy in the fields. We discuss this below. The covariantly conserved U(1) gauge current

is given by

jµ = (−QΨ∇xΨ, QΨ∇tΨ, −Qτ csc θ∇φδτ, Qτ csc θ∇θδτ), (4.20)

The various constants in the previous few equations are

gxx =
1

d
√
h0
, d = 1 + b2 tan2 ψ0

2
, cA =

2
√
d

gs
, cx =

√
dT 3

0 ε
4/3K0

2bg2
sM

cτ =
b
√
dMT0

32π2
, m2

τ =
b2(31−4 cos ψ0)+ 10 cos2(ψ0/2)

45b2
R

Qτ =
T 2

0

6b2gsM
sec2 ψ0

2
, QΨ =

d3/2gsM

8π2K0ε4/3
, R =

2 sec2 ψ
2

h
1/2
0 ε4/3K0

.

(4.21)

The Euler-Lagrange equations for the boson fields, derived from the action (4.17), take

the form:

∇2δXi = 0, i = 2, 3 (4.22)

∇2δτ −m2
τδτ +

cA
2cτ

Qτ csc θδFθφ = 0 (4.23)

∇2Ψ +RΨ +
cA
2cτ

QΨδFtx = 0 (4.24)

∇µδFµν − 4πjν = 0. (4.25)

Observe that we found no field equation for δθm and that a field redefinition absorbs

δφp in Ψ. This is consistent with the way we arrived at the D3 brane through the D5

brane of the K-S background via a deformed conifold where the base is an S3 × S2 and

the diffeomorphism gauge is fixed. The τ → 0 limit shrinks the S2 and yields M fractional

D3 branes. From this point of view, θm and φp were already fixed and the absence of

any fluctuations of these fields is equivalent to there being no residual gauge freedom in

fixing the coordinates. One might wonder whether the absence of field equations for θm
and φp could be related to a degenerate coordinate choice. Indeed by following [40], and

recalculating the Lagrangian after applying the following coordinate transformation

W ≡ θm cosφp

Z ≡ θm sinφp (4.26)

we again find no field equations for δW or δZ, up to total derivatives.

4.3 Bosonic eigenvalues

We now set out to solve the bosonic equations (4.22)–(4.25). Notice that the composite

field Ψ looks like a tachyon with an electric source δFtx. With the definition of the Riemann

curvature tensor

RαβµνδA
β = [∇µ,∇ν ]δA

α, (4.27)
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we can cast the U(1) gauge field equations (4.25) into the following form:

4πjν = ∇µδFµν = ∇µ(∇µδAν −∇νδAµ)

= ∇µ∇µδAν −∇ν∇µδA
µ −RµαµνδA

α

= ∇µ∇µδAν −∇ν∇µδA
µ −RανδA

α. (4.28)

We can further simplify these three equations by noticing that the Ricci tensor has only

two non-vanishing components:

Rθθ = 1, Rφφ = sin2(θ), all others zero. (4.29)

Working in the temporal gauge, δAt = 0, the Gauss’ law constraint is identified in

equation (4.28) as

∇t∇µδA
µ = −4πgxxQΨ∇xΨ. (4.30)

We try the following ansatz for δAµ, Ψ, and δτ :

δAi =

∫

dp dω

∞
∑

l=0

m=l
∑

m=−l
Ãi

(lm)
(p, ω) ei(px−ωt) Y

(lm)
i (θ, φ), i = x, θ, φ (4.31)

Ψ =

∫

dp dω
∞
∑

l=0

m=l
∑

m=−l
Ψ̃(lm)(p, ω) ei(px−ωt) Y(lm)(θ, φ) (4.32)

δτ =

∫

dp dω

∞
∑

l=0

m=l
∑

m=−l
τ̃ (lm)(p, ω) ei(px−ωt) Y(lm)(θ, φ), (4.33)

where the Y
(lm)
i (θ, φ) are

Y (lm)
x ≡ Y(lm)(θ, φ)

Y
(lm)
θ ≡ csc θ

√

l(l + 1)
∂φY(lm)(θ, φ)

Y
(lm)
φ ≡ − sin θ

√

l(l + 1)
∂θY(lm)(θ, φ), (4.34)

Y
(lm)
θ and Y

(lm)
φ are vector spherical harmonics which satisfy the eigenvalue equation

L̂2Y
(lm)
j = [−l(l + 1) + 1]Y

(lm)
j , j = θ, φ (4.35)

where

L̂2 =
1

sin θ
∂θ sin θ∂θ +

1

sin2 θ
∂2
φ. (4.36)

Using an ansatz with Ãθ = Ãφ, the Gauss law constraint (4.30) becomes simply

∇x∇tδAx = −4πg2
xxQΨ∇xΨ. (4.37)
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This can be used to simplify the δAx equation to the non-dynamical form

L̂2Ãx = 0 (4.38)

which means l = 0 for the coupled fields δAx and Ψ. The Ψ equation (4.24) then becomes

the eigenvalue equation

[ω2 − p2 −m2
Ψ]Ψ̃ = 0 (4.39)

where m2
Ψ is positive and is,

m2
Ψ = 4πg2

xxQ
2
Ψ

cA
2cτ

−R =
1 + (1 − b2) cosψ0

b2
R (4.40)

where

17.5055
T0

gsM
≤ m2

Ψ <∞.

Next, we have the coupled fields δAθ, δAφ, and δτ , whose eigenvalue problem becomes

[ω2 − p2 − gxx
R

2
l(l + 1)]Ãi −HAτ̃ = 0, i = θ, φ

[ω2 − p2 − gxx
R

2
l(l + 1) − gxxm

2
τ ]τ̃ −Hτ Ãθ = 0,

Hτ = −gxxQτ
cA
2cτ

√

l(l + 1), HA = −8π

R
gxxQτ

√

l(l + 1). (4.41)

Finally, the two massless equations (4.22) can be solved with

δXi =

∫

dp dω X̃i
(lm)(p, ω)ei(px−ωt)Y(lm)(θ, φ) i = 2, 3 (4.42)

yielding two identical eigenvalue problems

[ω2 − p2 − gxx
R

2
l(l + 1)]X̃i = 0, i = 2, 3. (4.43)

We now organize equations (4.39), (4.41), and (4.43) into the succinct form:

ω2





















Ψ̃

X̃2

X̃3

τ̃

Ãθ
Ãφ





















= H2
(b)





















Ψ̃

X̃2

X̃3

τ̃

Ãθ
Ãφ





















(4.44)

where the square of the bosonic Hamiltonian, H2
(b), is given by

H2
(b) =



















ω2
1 0 0 0 0 0

0 ω2
2 0 0 0 0

0 0 ω2
2 0 0 0

0 0 0 ω2
2 + gxxm

2
τ Hτ 0

0 0 0 HA ω2
2 0

0 0 0 HA 0 ω2
2



















(4.45)
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where

ω2
1 = p2 + gxxm

2
Ψ and ω2

2 = p2 + gxx
R

2
l(l + 1).

Furthermore, the six eigenvalues of this matrix are the squares of the bosonic energy

eigenvalues, ω.

ω2 =











ω2
1

ω2
2 3-fold degenerate

ω2
±

(4.46)

where

ω2
± = ω2

2 + gxx
m2
τ

2

(

1 ±
√

1 +
4HAHτ

g2
xxm

4
τ

)

. (4.47)

4.4 Fermionic eigenvalues

Here we present a detailed solution to the fermionic field equations. We start by variation

of the fermionic action, equation (4.3), where δΘ are the fermions fluctuated about the

zero field. The D-brane Dirac equation becomes,

[
(

M−1
0

)αβ
Γα∂β +M1 +M2 +M3]δΘ1 (4.48)

where M0 is as before, and M1, M2, M3, and the pulled back Γα matrices are found in

appendix (A). There it is shown that M1 contains the spin connection, Ω āb̄
β , which is

antisymmetric in ā and b̄, and has the following non-vanishing components in the τ → 0

limit:

Ω 4̄9̄
θ = Ω 8̄7̄

θ =
sinψ0

2
, Ω 5̄9̄

θ = Ω 6̄8̄
θ = sin2 ψ0

2

Ω 5̄4̄
φ = Ω 7̄6̄

φ = cos θ, Ω 9̄4̄
φ = Ω 7̄8̄

φ = sin θ sin2 ψ0

2

Ω 5̄9̄
φ = Ω 6̄8̄

φ =
1

2
sin θ sinψ0. (4.49)

This spin connection is quite distinct from the spin connection that one gets from the

4-D spin connection inherited on the D3-brane through the induced metric. That spin

connection has just one non-vanishing component:

(Ω(4d)) 3̄2̄
φ = cos θ. (4.50)

This complication stems from the fact that the 10-d KS background has paired θ and φ

coordinates, θ1, θ2, φ1, and φ2, and is the main source of complexity in the fermionic field

equations.

We proceed by using a harmonic ansatz for δΘ in the Dirac equation (4.48) [39]:

δΘ =

∫

dp dω
∑

l

ei(px−ωt)Θ̃lm(p, ω) ◦ Φlm(θ, φ) (4.51)
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where Φlm(θ, φ) is a 32 component complex spinor, whose components are arbitrary func-

tions of θ and φ, and Θ̃lm(p, ω) is a 32 component spinor of Grassman valued expansion

coefficients. The component product ◦ is a commutative operator, defined for N component

vectors or spinors as:

A ◦B =













A1

A2
...

AN













◦













B1

B2
...

BN













≡













A1B1

A2B2
...

ANBN













. (4.52)

With solution (4.51) for δΘ, the Dirac equation (4.48), can be reorganized and ex-

pressed as the eigenvalue problem

ωΘ̃ ◦ Φ = H(f)Θ̃ ◦ Φ (4.53)

where the Hamiltonian H(f) has the block diagonal form

H(f) =













H(f)
1 0 0 0

0 H(f)
2 0 0

0 0 H(f)
1 0

0 0 0 H(f)
2













. (4.54)

The exact forms of the eight by eight matrices H(f)
1 and H(f)

2 , as well as a detailed calcula-

tion of their eigenvalues, are found in appendix B. There they are found to share the same

eight eigenvalues

ω =







±
√

c10(p, l) +
√

c8(p, l) ±
√

c9+(p, l)

±
√

c10(p, l) −
√

c8(p, l) ±
√

c9−(p, l)
(4.55)

where c8(p, l), c9(p, l), and c10(p, l) are given in appendix B.

4.5 One loop energy corrections: the Luscher term

Following closely [7, 40], we now demonstrate our semi-classical approach to calculating

the one loop energy corrections of k-strings. We calculate the one loop energy corrections

as the sum of the bosonic and fermionic one loop energies

E1 = E
(b)
1 + E

(f)
1 (4.56)

where

E
(b)
1 =

∑

bosons

ω(b)
c (4.57)

E
(f)
1 = −

∑

fermions

ω(f)
c (4.58)
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where ω
(b)
c and ω

(f)
c are the positive, classical energy eigenvalues of the bosons and fermions

in equations (4.46) and (4.55), respectively.

The one loop bosonic energy is given by

E
(b)
1 =

∑

p

ω1 + 3
∑

p,l,m

ω2 +
∑

p,l,m

ω+ +
∑

p,l,m

ω−. (4.59)

As shown in appendix C, only the massless modes contribute to the 1/L piece and we find

that

E
(b)
1 = VLüscher + Vc(k). (4.60)

where we interpret 1/L dependent VLüscher as a Lüscher term

VLüscher = − π

3L
, (4.61)

and the term Vc(k) is constant in L but dependent on k. The Lüscher term represents

a Coulomb-like potential for largely separated quarks and only depends on the massless

fields and therefore is k independent. Here we have four massless modes, two coming from

the bosonic fields X2 and X3, and two modes from the photon, see eqs. (C.14), (C.7). This

is to be compared to the Lüscher terms for a confining four dimensional gauge theory were

there are two massless modes and to the gravity theory where there are two massless modes

coming from quantizing the string [41]. Furthermore the Lüscher term (since it is constant

in k) as well as Vc(k) respect the symmetry for k →M−k and this is shown in appendix C.

As it turns out, regulating the fermionic eigenvalues is quite difficult (see (4.55)) but as

there are no massless modes in this sector, we do not expect the fermions to contribute to

the Luscher term. We should remark that other researchers have found 1/L contributions

at the classical level in the case of a Maldecena-Nunez supergravity background [42].

5. Conclusions

One of the hopes of the gauge/gravity correspondence is that we may soon have enough

machinery to make predictions about present day QCD even though the duality is coached

around supergravity and supersymmetric gauge theories. In this work we focused on the

Klebanov-Strassler supergravity background. In order to probe this background, we calcu-

lated the field equations for the D3-brane action and found that, in agreement with Herzog

and Klebanov, a near sin(πk/M) behavior for the string tension of the k-strings. We went

further by calculating the one loop corrections to the energy through quadratic fluctuations

about the classical configuration. Here we included both the bosonic and fermionic fluctu-

ations in the analysis and found explicit formulas for their frequencies. It is interesting to

note that the number of bosonic fields that contribute to the quadratic fluctuations is more

akin to fluctuations on a D5 brane. This suggests that the limiting procedure to arrive at

the D3 brane by going to the tip of a D5 brane preserves the diffeomorphism symmetry

of the D5 brane thus eliminating the fluctuations of two more of the bosonic fields. By

using the massless modes of the quadratic action we were able to find a 1/L correction to
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the k-string energy which we interpret as a Lüscher term. This result is robust since the

massive modes contribute terms proportional to exp(−mL) which has no 1/L contribution.

For the 2 + 1 dimensional case, lattice calculations are already available for the spectrum

of k-strings, including L dependence, for certain values of N [43, 44]. These lattice re-

sults also suggests that the closed string spectrum is in the same universality class of the

Nambu-Goto string.

There are a number of questions that our work naturally suggests. First is whether

the k-string excitations as computed from the supergravity backgrounds are also among

a universality class or do they depend explicitly on the model. One way to understand

this is to continue this line of research using other supergravity backgrounds such as the

Maldecena-Nùñez [6] and Witten QCD backgrounds. At the classical level they all look

quite similar, however we expect the excitations to clearly determine the ‘universal’ modes

from the model-dependent modes. This work is presently underway.
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A. Fermionic action definition and results

The general form of the fermionic portion of the D3-brane action used in this paper was

found in [38].

S
(F )
DBIp

=
µp
2gs

∫

dp+1ξe−Φ
√

− det(M0) Θ{
(

M−1
0

)αβ
ΓαD

(0)
β − ∆(1)

−
∨
Γ
−1

Dp
(M−1

0 )αβΓβWα +
∨
Γ
−1

Dp
∆(2)}Θ (A.1)

where

M0 = g + F

D(0)
α = ∂α +

1

4
Ω āb̄
α Γāb̄ +

1

4 · 2!HαnpΓ
np

Wα =
1

8

[

FnΓ
n +

1

3!
(Fnpq + C0Hnpq)Γ

np +
1

2 · 5! (Fnpqrs +H[npqCrs])Γ
npqrs

]

Γα

∆(1) =
1

2
(Γm∂mΦ +

1

2 · 3!HmnpΓ
mnp)

∆(2) = −1

2
eΦ[FmΓm +

1

2 · 3!(Fmnp + C0Hmnp)Γ
mnp]

∨
ΓDp = (−1)

(p−2)(p−3)
2

εα1...αp+1Γα1...αp+1

(p+ 1)!
√
− detM0

∑

q

Γ[β1...β2q]

q!2q
Fβ1β2 · · · Fβ2q−1β2q (A.2)
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and where Γabc... = ΓaΓbΓc . . . . Our index convention is that latin indices, (a, b, c, . . . ), are

10-d Bosonic supergravity indices, and greek indices, (µ, ν, α, . . . ), Dp-brane world volume

indices. Furthermore, latin indices with an overbar, (ā, b̄, c̄, . . . ), are flat space-time indices.

The 10-d flat Γā matrices satisfy a Clifford algebra:
{

Γā,Γb̄
}

= 2ηāb̄ (A.3)

We use the following representation for the 10-d flat Γā matrices:

Γ0̄ = −iσ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3, Γ1̄ = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ σ0

Γ2̄ = σ1 ⊗ σ3 ⊗ σ0 ⊗ σ0 ⊗ σ0, Γ3̄ = σ2 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0

Γ4̄ = σ1 ⊗ σ1 ⊗ σ3 ⊗ σ0 ⊗ σ0, Γ5̄ = σ1 ⊗ σ2 ⊗ σ0 ⊗ σ0 ⊗ σ0

Γ6̄ = −σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1, Γ7̄ = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2

Γ8̄ = σ1 ⊗ σ1 ⊗ σ2 ⊗ σ0 ⊗ σ0, Γ9̄ = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ σ0 (A.4)

where ⊗ means tensor product, and the σµ are the Pauli spin matrices, augmented with

the identity:

σ0 =

(

1 0

0 1

)

, σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

(A.5)

The 10-d curved Γa matrices are related to the 10-d flat Γā matrices via the viel-biens

Γa = e a
ā Γā, Γa = e ā

a Γā (A.6)

and so the 10-d curved Γa matrices will,in general, satisfy a curved Clifford algebra:
{

Γa,Γb
}

= 2e a
ā e

b
b̄ η

āb̄ = 2Gab (A.7)

.

Also, Γα are the 10-curved Γa matrices pulled back onto the D3-brane:

Γα =
∂Xa

∂ξα
Γa

Γα = gαβΓβ (A.8)

The Spin Connection, Ω āb̄
α in (A.2) is the pullback of the full 10-D spin connection,

Ω āb̄
a (only the first index is pulled back to the D3-brane):

Ω āb̄
a =

1

2
e c̄
a (ηd̄c̄η

ēāηf̄ b̄ − δ ā
d̄ η

ēb̄δ f̄c̄ − δ b̄
d̄ δ

ē
c̄ η

f̄ ā)C d̄ēf̄

C āb̄c̄ = (e a
b̄ e

b
c̄ − e b

b̄ e
a
c̄ )∂be

ā
a (A.9)

For the KS background at τ = 0, the definitions (A.2) simplify to

D(0)
α = ∂α +

1

4
Ω āb̄
α Γāb̄

Wα =
1

8 · 3!FnpqΓ
npqΓα

∆(1) = 0, ∆(2) = − 1

4 · 3!FmnpΓ
mnp

∨
ΓD3 =

εαβµνΓαβµν

2!4!
√
− detM0

ΓλρFλρ (A.10)
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whereupon plugging these into the fermionic action (A.1) for D3-branes gives:

S
(F )
D3

=
T 2

0

4πgs

∫

d4ξ
√

− detM0Θ[(M−1
0 )αβΓα∂β +M1 +M2 +M3]Θ

M1 =
1

4
(M−1

0 )αβΓαΩ āb̄
β Γāb̄

M2 = − 1

8 · 3!
∨
Γ
−1

D3
(M−1

0 )αβΓβFmnpΓ
mnpΓα

M3 = − 1

4 · 3!
∨
Γ
−1

D3
FmnpΓ

mnp (A.11)

For our solution of the KS background, we find the object
∨
Γ
−1

D3
can be expressed as:

∨
Γ
−1

D3
= b−1 cot

ψ0

2
Γ6̄Γ7̄. (A.12)

and we calculate the pulled back Γµ matrices to be:

Γµ =















h
1/4
0 Γ0̄

h
1/4
0 Γ1̄
√

R
2 (cos ψ0

2 Γ7̄ − sin ψ0

2 Γ6̄)

−
√

R
2 csc θ(sin ψ0

2 Γ7̄ + cos ψ0

2 Γ6̄)















. (A.13)

B. Fermionic Hamiltonian and eigenvalues

The two distinct fermionic eigenvalue equations are

ωΘ̃1 ◦ Φ1 = H(f)
1 Θ̃1 ◦ Φ1 (B.1)

ωΘ̃2 ◦ Φ2 = H(f)
2 Θ̃2 ◦ Φ2 (B.2)

where Θ̃1 ◦ Φ1 and Θ̃2 ◦ Φ2 are each eight component spinors. The component product

operator, ◦, was defined in equation (4.52). The matrices H(f)
i are

H
(f)
1 =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

−p −c3+O
(2)
+ c2+ 0 0 ic+ 0 0

−c4−O
(1)
−

p 0 c1− 0 0 0 0

−c1− 0 p c3−O
(2)
+ 0 0 0 ic−

0 −c2+ c4+O
(1)
−

−p 0 0 0 0

0 0 0 0 −p −c3+O
(1)
+ −c2+ 0

ic− 0 0 0 −c4−O
(2)
−

p 0 −c1−

0 0 0 0 c1− 0 p c3−O
(1)
+

0 0 ic+ 0 0 c2+ c4+O
(2)
−

−p

1

C

C

C

C

C

C

C

C

C

C

C

C

A

(B.3)

and

H
(f)
2 =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

−p −c3+O
(1)
+ c2+ 0 0 0 0 0

−c4−O
(2)
−

p 0 c1− −ic− 0 0 0

−c1− 0 p c3−O
(1)
+ 0 0 0 0

0 −c2+ c4+O
(2)
−

−p 0 0 −ic+ 0

0 −ic+ 0 0 −p −c3+O
(2)
+ −c2+ 0

0 0 0 0 −c4−O
(1)
−

p 0 −c1−

0 0 0 −ic− c1− 0 p c3−O
(2)
+

0 0 0 0 0 c2+ c4+O
(1)
−

−p

1

C

C

C

C

C

C

C

C

C

C

C

C

A

(B.4)
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where the constants c± and c1± . . . c4± are

c1± = i
c±
2T 2

(3T 2 − d1/2T − b3), c2± = i
c±
2T 2

(3T 2 + d1/2T − b3)

c3± = c±

(

1 − i
b

T

)

, c4± = c±

(

1 + i
b

T

)

c± = − 2b2T

h
1/4
0 d1/2

(T ± d1/2)

T = b tan
ψ0

2
, d = 1 + b2 tan2 ψ0

2

b2 =

√

πT0

2b3M
, b3 = b−1/2 + 3b3/2 − 3b2 (B.5)

and the operators O(i)
± are

O(1)
± = ∂θ ± i csc θ∂φ (B.6)

O(2)
± = cot θ + O(1)

± (B.7)

From inspection of the Hamiltonians (B.3) and (B.4), and their actions on the spinors

Φilm in equations (B.1), we identify the components, ΦA
ilm(θ, φ), A = 1 . . . 8, i = 1, 2, of the

spinors Φilm(θ, φ) with three distinct functions Y +
lm(θ, φ), Ylm(θ, φ), and Y −

lm(θ, φ)

Φ1
1 = Φ3

1 = Φ6
1 = Φ8

1 = Φ2
2 = Φ4

2 = Φ5
2 = Φ7

2 = Ylm(θ, φ)

Φ2
1 = Φ4

1 = Φ6
2 = Φ8

2 = Y −
lm(θ, φ), Φ5

1 = Φ7
1 = Φ1

2 = Φ3
2 = Y +

lm(θ, φ) (B.8)

which must satisfy four coupled differential equations

O(1)
− Ylm(θ, φ) = λ1Y

−
lm(θ, φ) (B.9)

O(2)
+ Y −

lm(θ, φ) = λ2Ylm(θ, φ) (B.10)

O(1)
+ Ylm(θ, φ) = λ3Y

+
lm(θ, φ) (B.11)

O(2)
− Y +

lm(θ, φ) = λ4Ylm(θ, φ) (B.12)

Eliminating Y −
lm(θ, φ) from equations (B.9) and (B.10) results in the spherical harmonic

eigenvalue problem:

L̂2Ylm = λ1λ2Ylm (B.13)

So we see that the Ylm(θ, φ) are indeed the spherical harmonics, as their name suggests.

Furthermore, equation (B.13) now demands that

λ1λ2 = −l(l + 1) (B.14)

Eliminating Y +
lm(θ, φ) from equations (B.11) and (B.12) results in a similar identity

λ3λ4 = −l(l + 1) (B.15)
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Consistent with these two constraints, we make the following choices for the λi:

λ1 = λ3 = 1, λ2 = λ4 = −l(l + 1) (B.16)

and so we find Y +
lm(θ, φ) and Y −

lm(θ, φ) to be dependent on the spherical harmonics,

Ylm(θ, φ), in the following way:

Y +
lm(θ, φ) = O(1)

+ Ylm(θ, φ)

Y −
lm(θ, φ) = O(1)

− Ylm(θ, φ) (B.17)

This newfound knowledge allows us to remove all θ and φ dependence from the eigen-

value equations (B.1), leaving us with

ωΘ̃1 = H(f)
1 Θ̃1 (B.18)

ωΘ̃2 = H(f)
2 Θ̃2 (B.19)

where the fermionic Hamiltonians H(f)
i now take the form

H
(f)
1 =

0

B

B

B

B

B

B

B

B

B

B

B

@

−p c3+l(l + 1) c2+ 0 0 ic+ 0 0

−c4− p 0 c1− 0 0 0 0

−c1− 0 p −c3−l(l + 1) 0 0 0 ic−

0 −c2+ c4+ −p 0 0 0 0

0 0 0 0 −p −c3+ −c2+ 0

ic− 0 0 0 c4−l(l + 1) p 0 −c1−

0 0 0 0 c1− 0 p c3−

0 0 ic+ 0 0 c2+ −c4+l(l + 1) −p

1

C

C

C

C

C

C

C

C

C

C

C

A

(B.20)

and

H
(f)
2 =

0

B

B

B

B

B

B

B

B

B

B

B

@

−p −c3+ c2+ 0 0 0 0 0

c4−l(l + 1) p 0 c1− −ic− 0 0 0

−c1− 0 p c3− 0 0 0 0

0 −c2+ −c4+l(l + 1) −p 0 0 −ic+ 0

0 −ic+ 0 0 −p c3+l(l + 1) −c2+ 0

0 0 0 0 −c4− p 0 −c1−

0 0 0 −ic− c1− 0 p −c3−l(l + 1)

0 0 0 0 0 c2+ c4+ −p

1

C

C

C

C

C

C

C

C

C

C

C

A

(B.21)

These two matrices have the same eight eigenvalues

ω =







±
√

c10(p, l) +
√

c8(p, l) ±
√
c9+(p, l)

±
√

c10(p, l) −
√

c8(p, l) ±
√
c9−(p, l)

(B.22)

where

c5 = c212 − 3c11c13 + 12c14

c6 = 2c312 − 9c12(c11c13 + 8c14) + 27(c213 + c211c14)

c7 = c6 +
√

−4c35 + c26
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c8 = c211 +
2

3

(

−4c12 +
24/3c5

c
1/3
7

+ 22/3c
1/3
7

)

c9± =
2

3

(

3c211 − 8c12 −
24/3c5

c
1/3
7

− 22/3c
1/3
7 ± 3(4c11c12 − c311 − 8c13)√

c8

)

c10 = 2(p2 − (c3+c4− + c3−c4+)l(l + 1) − c−c+ − 2c1−c2+) (B.23)

and where

c11 =4c1−c2+ + 2c−c+ + (2c3+c4− + 2c3−c4+)l(l + 1) − 4p2

c12 =6c21−c
2
2+ + c22+c

2
− + 4c1−c2+c−c+ + c21−c

2
+ + c2−c

2
++

+ (2c22+c3−c4− + 4c1−c2+c3+c4− + 4c1−c2+c3−c4+ + 2c21−c3+c4+ + 2c3+c4−c−c++

+ 2c3−c4+c−c+)l(l + 1)+(c23+c
2
4−+4c3−c3+c4−c4++c23−c

2
4+)l2(l + 1)2+(−12c1−c2++

− 6c−c+ + (−6c3+c4− − 6c3−c4+)l(l + 1))p2 + 6p4

c13 =4c31−c
3
2+ + 2c1−c

3
2+c

2
− + 2c21−c

2
2+c−c+ + 2c31−c2+c

2
++

+ 2c1−c2+c
2
−c

2
+ + (4c1−c

3
2+c3−c4− + 2c21−c

2
2+c3+c4−+

+ 2c21−c
2
2+c3−c4+ + 4c31−c2+c3+c4+ + 2c1−c2+c3+c4+c

2
− + 2c1−c2+c3+c4−c−c++

+ 2c1+c2+c3−c4+c−c+ + 2c1−c2+c3−c4−c
2
+)l2(1 + l)2+

+ (2c22+c3−c3+c
2
4− + 2c22+c

2
3−c4−c4+ + 4c1−c2+c3−c3+c4−c4+ + 2c21−c

2
3+c4−c4++

+ 2c21−c3−c3+c
2
4+ + c23+c

2
4−c−c+ + c23−c

2
4+c−c+)l4(1 + l)4 + (2c3−c

2
3+c

2
4−c4++

+ 2c23+c3+c4−c
2
4+)l6(1 + l)6 + (−12c21−c

2
2+ − 2c22+c

2
− − 8c1−c2+c−c+ − 2c21−c

2
++

−2c2−c
2
++(−4c22+c3−c4−−8c1−c2+c3+c4−−8c1−c2+c3−c4+−4c21−c3+c4+−4c3+c4−c−c+

−4c3−c4+c−c+)l2(1+l)2+(−2c23+c
2
4−−8c3−c3+c4−c4+−2c23−c

2
4+)l4(1+l)4)p2+

+ (12c1−c2+ + 6c−c+ + (6c3+c4− + 6c3−c4+)l2(1 + l)2)p4 − 4p6

c14 =c41−c
4
2+ + c21−c

4
2+c

2
− + c41−c

2
2+c

2
+ + c21−c

2
2+c

2
−c

2
+ + (2c21−c

4
2+c3+c4+ + 2c41−c

2
2+c3+c4++

+ 2c21−c
2
2+c3+c4+c

2
−+2c21−c

2
2+c3−c4−c

2
+)l2(1+l)2+(c42+c

2
3−c

2
4−+4c21−c

2
2+c3−c3+c4−c4++

+ c41−c
2
3+c

2
4+ + c21−c

2
3+c

2
4+c

2
− + c22+c

2
3−c

2
4−c

2
+)l4(1 + l)4 + (2c22+c

2
3−c3+c

2
4−c4++

+ 2c21−c3−c
2
3+c4−c

2
4+)l6(1 + l)6 + c23−c

2
3+c

2
4−c

2
4+l

8(1 + l)8 + (−4c31−c
3
2++

− 2c1−c
3
2+c

2
− − 2c21−c

2
2+c−c+ − 2c31−c2+c

2
+ − 2c1−c2+c

2
−c

2
+ + (−4c1−c

3
2+c3−c4−−

+ 2c21−c
2
2+c3+c4− − 2c21−c

2
2+c3−c4+ − 4c31−c2+c3+c4+ − 2c1−c2+c3+c4+c

2
−+

− c1−c2+c3+c4+c−c+−2c1−c2+c3−c4+c−c+−2c1−c2+c3−c4−c
2
+)l2(1+l)2+

+ (−2c22+c3−c3+c
2
4−−2c22+c

2
3−c4−c4+−4c1−c2+c3−c3+c4−c4+−2c21−c

2
3+c4−c4++

− 2c21−c3−c3+c
2
4+ − c23+c

2
4−c−c+ − c23−c

2
4+c−c+)l4(1 + l)4 + (−2c3−c

2
3+c

2
4−c4++

− 2c23−c3+c4−c
2
4+)l6(1 + l)6)p2 + (6c21−c

2
2+ + c22+c

2
− + 4c1−c2+c−c+ + c21−c

2
+ + c2−c

2
++

+ (2c22+c3−c4− + 4c1−c2+c3+c4− + 4c1−c2+c3−c4+ + 2c21−c3+c4+ + 2c3+c4−c−c++

+ 2c3−c4+c−c+)l2(1 + l)2 + (c23+c
2
4− + 4c3−c3+c4−c4+ + c23−c

2
4+)l4(1 + l)4)p4+

+ (−4c1−c2+ − 2c−c+ + (−2c3+c4− − 2c3−c4+)l2(1 + l)2)p6 + p8 (B.24)
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C. ζ-function regularization of the bosonic fluctuation energy

The four terms in the one loop bosonic energy

E
(b)
1 =

∑

p

ω1 + 3
∑

p,l,m

ω2 +
∑

p,l,m

ω+ +
∑

p,l,m

ω− (C.1)

can all be written in the form
∑

p,l,m

ω =
√

p2 + f(l), (C.2)

where f(l) is a function of only l. Demanding vanishing of the bosonic eigenfunctions at

x = 0, L, leaves us with p quantized to p = nπ/L. In addition we can easily perform the

m summation in (C.2), and split up the l summation up as so:
∑

ω =
∑

n,l,m

√

(nπ/L)2 + f(l)

=
∞
∑

n=1

√

(nπ/L)2 + f(0) +
∞
∑

n=1,l=1

(2l + 1)
√

(nπ/L)2 + f(l) (C.3)

The function f(l) for the first sum in equation (C.1) is actually l-independent

f(l) = f1 = gxxm
2
Ψ (C.4)

We have for this sum then only the leftmost term from equation (C.3)

∑

p

ω1 =
∞
∑

n=1

√

(nπ/L)2 + f1

=
√

f1

∞
∑

n=1

√

1 +
n2π2

L2f1

=
√

f1

∞
∑

n=1

∞
∑

q=0

(1
2

q

)(

n2π2

L2f1

)q

=
√

f1

∞
∑

q=0

(1
2

q

)(

π2

L2f1

)q ∞
∑

n=1

n2q

=
√

f1

∞
∑

q=0

(1
2

q

)(

π2

L2f1

)q

ζ(0)δ 0
q

=
√

f1ζ(0) = −1

2

√
gxxmΨ (C.5)

Notice we find no Luscher term associated with this oscillation, merely a constant energy

contribution. We will take the common point of view that constants such as this do not

actually contribute to the ground state energy, focusing merely on Luscher terms, i.e.,

terms proportional to 1/L.

We look now to the next sum in equation (C.1), which has l dependence given by

f(l) = f2(l) = gxx
R

2
l(l + 1). (C.6)
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Which means we will need to analyze both terms in (C.3)

∑

ω2 =

∞
∑

n=1

nπ/L+

∞
∑

n=1,l=1

(2l + 1)
√

(nπ/L)2 + f2(l)

=
π

L

∞
∑

n=1

n+
∑

n=1,l=1

(2l + 1)
√

f2(l)

√

1 +
n2π2

L2f2(l)

=
π

L
ζ(−1) +

∑

l=1

(2l + 1)
√

f2(l)
∞
∑

q=0

(1
2

q

)(

π2

L2f2(l)

)q ∞
∑

n=1

n2q

=
π

L
ζ(−1) +

∑

l=1

(2l + 1)
√

f2(l)

∞
∑

q=0

(1
2

q

)(

π2

L2f2(l)

)q

ζ(0)δ 0
q

=
π

L
ζ(−1) +

∑

l=1

(2l + 1)

√

gxx
R

2
l(l + 1)ζ(0)

=
π

L
ζ(−1) + ζ(0)

√

gxx
R

2
fζ

(

1

2

)

(C.7)

The function fζ(s) is defined as

fζ(s) ≡
∞
∑

l=1

(2l + 1)
√

l(l + 1). (C.8)

Through ζ-function regularization, we find fζ(
1
2 ) ≈ −0.265096. Here we find a Luscher

term, π
Lζ(−1), contribution to the zero point energy.

Finally, we regularize the final two sums in equation (C.1), whose l dependence can be

written succinctly for both terms as

f(l) = f±(l) = a1l(l + 1) + a2 ± a2

√

1 + a3l(l + 1) (C.9)

with

a1 = gxx
R

2
, a2 = gxx

m2
τ

2
, a3 =

16πT0R

9b3gsMm4
τ

(C.10)

Through a series of binomial expansions and a ζ-function regularization, we calculate

the final two sums to be

∑

ω± =

∞
∑

n=1

√

(nπ

L

)2
+ f±(0) + a4 (C.11)

where

a4 ≡ ζ(0)
√
a2

∞
∑

q=0

r<q
∑

r=0

v=

(

∞,odd r
r
2
,even r

∑

v=0

(1
2

q

)(

q

r

)( r
2

v

)

(±1)r
(

a1

a2

)q−r
av3fζ(q − r + v) (C.12)

and

f+(0) = 2a2 = gxxm
2
τ , f−(0) = 0. (C.13)
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Figure 2: Solution of transcendental equation (3.44) for M = 3. Notice that the solution is anti-

symmetric under the transformation k → M − k. This means that the additive constant to the

bosonic energy in equation (C.15) is invariant under this transformation. This holds true for any

value of M .

It is easy to show that

∑

ω+ = ζ(0)
√

f+(0) + a4 = −1

2

√
gxxmτ + a4,

∑

ω− =
π

L
ζ(−1) + a4. (C.14)

Using equations (C.5), (C.7), and (C.14) with equation (C.1), we calculate the one

loop bosonic energy to be

E
(b)
1 = VLüscher + Vc(k) (C.15)

VLüscher = 4
π

L
ζ(−1) = − π

3L
(C.16)

Vc(k) = −1

2

√
gxx(mτ +mΨ) + 3ζ(0)

√

gxx
R

2
fζ

(

1

2

)

+ 2a4. (C.17)

The first term, VLüscher, is a Lüscher term, signified by the 1/L dependence. The second

term, Vc(k), is independent of L, the length of the k-string, and is merely an additive con-

stant. The Luscher term, obviously respects the k →M−k symmetry, as it is independent

of k. This symmetry, however, is not at all obvious for Vc(k). Through careful inspection

of Vc(k), we find that it’s k dependence depends on only the following list:

gxx, mτ , mΨ, and R. (C.18)

Through their definitions in equations (4.21) and (4.40), we discover that their k-

dependence lies only in cosψ0. So if the transcendental solution for ψ0,

ψ0 −
2kπ

M
+ π = (b2 − 1) sinψ0, (3.44)

respects the symmetry ψ0 → ±ψ0 under exchange of k quarks with k anti-quarks (k →
M − k), then cosψ0 will remain invariant, and thus, so will Vc(k). We find that the

transcendental solution exactly satisfies this condition, as shown in figure 2.
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