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Abstract In this paper we present a necessary and sufficient condition of separability for multipartite pure states
and variants of it. These conditions are very simple and calculable, and they do not require Schmidt decomposition (for
two subsystems) or tracing out operations. We also give a necessary condition for a local unitary equivalence class for a
bipartite system in terms of the determinant of the matrix of amplitudes.

PACS numbers: 03.67.Lx, 03.67.Hk
Key words: entanglement, quantum computing, separability

1 Introduction

A pure state is separable if and only if it can be writ-

ten as a tensor product of states of different subsystems.

It is also known that a state |ψ〉 of a bipartite system is

separable if and only if it has Schmidt number 1.[1] Let

|ψ〉 and |φ〉 be two pure states of a composite system AB

possessed by both Alice and Bob, where system A (B) is

called Alice’s (Bob’s) system. To obtain a Schmidt de-

composition of a pure state |ψ〉, we need to compute (i)

the density operator ρAB

ψ ; (ii) the reduced density operator

ρA

ψ for system A; (iii) the eigenvalues of ρA

ψ. However it

is hard to compute roots of a characteristic polynomial of

high degree.

Peres[2] presented a necessary condition for separa-

bility by means of positivity of the partial transposi-

tion of the density matrix. The positivity was shown

by Horodecki et al.[3] to be also sufficient for 2 × 2 and

2 × 3 dimensions. A reduction criterion of separability

for bipartite systems was given.[4,5] Wu et al. gave a nec-

essary and sufficient criterion for multipartite separable

states by solving a set of equations. However, as the

authors claimed, in general it is hard to solve the equa-

tions unless the density matrix of the given state has few

nonzero eigenvalues. After Chen et al.[7] proposed a neces-

sary and sufficient condition of separability of any system,

Eggeling et al.[8] showed immediately that “it is nothing

but a reformulation of the definition of separability, which

is naturally a necessary and sufficient criterion for itself.”

Hence, “it is a reformulation of the problem rather than

a practical criterion,” said Eggeling et al.[8] Therefore,

as Eggeling et al.[8] indicated, beyond the above special

cases, no such calculable criterion is known. Recently,

Meyer and Wallach[9] proposed a necessary and sufficient

condition for n-qubit system in terms of wedge product.

Raymer[10] developed a sufficient condition for bipartite

systems. Thus, so far a simple, necessary and sufficient

condition of separability for multipartite systems is still

open.

For a multi n-partite system, in this paper we give a

necessary and sufficient condition of separability for mul-

tipartite pure states and variants of it. This paper was

adapted from the version in Ref. [11]. In Sec. 2, we present

a necessary and sufficient condition for separability for a

bipartite system in terms of 2 × 2 minor determinants of

the matrix of the amplitudes. Section 3 contains three

versions of a necessary and sufficient separability criterion

for an n-qubit system. Section 4 is devoted to study the

separability of multipartite pure states, and two versions

of a necessary and sufficient separability criterion are pro-

posed. Section 5 gives a simple necessary criterion for |ψ〉
∼ |φ〉 for a bipartite system, where |ψ〉 ∼ |φ〉 means that

|ψ〉 is equivalent to |φ〉 under local unitary operators.

2 Separability for a Bipartite System with
the Same-Dimensional n Subsystems

Let |ψ〉 be a pure state of a composite system AB pos-

sessed by both Alice and Bob. In this section we give a

simple and intuitive criterion for the separability. Let |i〉
(|j〉) be the orthonormal basis for system A (B). Then

we can write |ψ〉 =
∑

i,j aij |i〉|j〉, where
∑n−1
ij=0 |aij |2 = 1.

Let M = (aij)n×n be the matrix of the amplitudes of |ψ〉.
Then the criterion for the separability is as follows.
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|ψ〉 is separable if and only if all 2×2 minor determi-

nants of M are zero.

This criterion for the separability avoids Schmidt de-

composition. To compute the determinants, it needs

n2(n − 1)2/2 multiplication operations and n2(n − 1)2/4

minus operations.

Proof Suppose that systems A and B have the same di-

mension n. By definition, |ψ〉 is separable if and only if

we can write |ψ〉 = (
∑n−1
i=0 xi|i〉) ⊗ (

∑n−1
j=0 yj |j〉), where

∑n−1
i=0 |xi|2 = 1 and =

∑n−1
j=0 |yj |2 = 1. By tensor product

|ψ〉 =
∑n−1
i,j=0 xiyj |i〉|j〉. It means that |ψ〉 is separable if

and only if

xiyj = aij , i, j = 0, 1, . . . , (n− 1) . (1)

Let m = (
ail aik

ajl ajk
) be any 2× 2 submatrix of M . It is easy

to check

det(m) = ailajk − aikajl = xiylxjyk − xiykxjyl = 0 .

Therefore if |ψ〉 is separable then all the 2 × 2 minor de-

terminants of M are zero.

Conversely, suppose that all the 2 × 2 minor deter-

minants of M are zero. We can write M in the block

form, M =







A0

A1

···
An−1






= (B0, B1, . . . , Bn−1), where Ai is

the i-th row and Bi is the i-th column of M , respectively,

i = 0, 1, . . . , (n− 1). Let

|xi|2 = AiA
†
i , (2)

|yj |2 = B†
jBj , (3)

i, j = 0, 1, . . . , (n− 1) ,

respectively. Note that A†
i is the complex conjugate of

transpose of Ai. Under the supposition we can show that

the above xi in Eq. (2) and yj in Eq. (3) satisfy Eq. (1).

Let us consider the case in which all the aij are real. It is

not hard to extend the result to the case in which all the

aij are complex. We only show |x0y0|2 = |a00|2 and omit

the others. From Eq. (2) and Eq. (3),

|x0y0|2 = A0A
†
0B

†
0B0

=





n−1
∑

j=0

|a0j |2




(

n−1
∑

i=0

|ai0|2
)

=

n−1
∑

i,j=0

|a0j |2 |ai0|2

=

n−1
∑

i,j=0

|a00|2 |aij |2 = |a00|2 .

In the last but one step we use the equality |a0j |2|ai0|2 =

|a00|2|aij |2, which holds since (
a00 a0j

ai0 aij
) is a 2×2 submatrix

of M . This completes the proof.

Corollary

If |ψ〉 is separable then det(M) = 0.

3 The Separability for an n-qubit System

Let |ψ〉 be a pure state of an n-qubit system. Then we

can write |ψ〉 =
∑

i1,i2,...,in∈{0,1} ai1i2...in |i1i2 . . . in〉. Let

Mi be 2n−1 × 2 matrices of which each row is of the form

(ab1b2...bi−10bi+1...bn
, ab1b2...bi−11bi+1...bn

), where b1, b2, . . .,

bn ∈ {0, 1}, and i = 1, 2, . . . , n.[11] Note that Mi are not

the usual matrices of the amplitudes of state |ψ〉. Later,

Mi will be used for SLOCC classification and called the

partition.[12,13]

For example, let |ψ〉 be a state of a three-qubit system.

Then |ψ〉 can be written as |ψ〉 =
∑7

i=0 ai|i〉.

M1 =











a0 a4

a1 a5

a2 a6

a3 a7











, M2 =











a0 a2

a1 a3

a4 a6

a5 a7











,

M3 =











a0 a1

a2 a3

a4 a5

a6 a7











.

There are three versions of the separability.

Version 1 |ψ〉 is separable if and only if all the 2 × 2

minor determinants of Mi, i = 1, 2, . . . , n, are zero.

The proof of Version 1 is similar to the one for a bi-

partite system in Sec. 2.

Version 2 |ψ〉 is separable if and only if aiaj = akal,

where i+ j = k+ l and i⊕ j = k⊕ l, where 0 ≤ i, j, k, l ≤
2n − 1 are n-bit strings and ⊕ indicates addition modulo

2.

For example, 2, 7, 5, and 4 can be written in binary

numbers as 010, 111, 101, and 100, respectively. Clearly,

010 + 111(modulo 2) = 101, 101 + 100 = 001(modulo 2).

Using this condition it is easy to verify that states

|W 〉 = (1/
√
n)(|20〉 + |21〉 + · · · + |2n−1〉) and |GHZ〉 =

(1/
√

2)(|0(n)〉+ |1(n)〉) for an n-qubit system[14] are entan-

gled.

Let i1i2 · · · in, j1j2 · · · jn, k1k2 · · · kn, and l1l2 · · · ln be

n-bit strings of i, j, k, and l, respectively. Then version 3

is phrased below.

Version 3 |ψ〉 is separable if and only if aiaj = akal,

where {it, jt} = {kt, lt}, t = 1, 2, . . . , n.

The following Lemma 1 shows that versions 2 and 3

are equivalent to each other.

Lemma 1 i+ j = k + l and i⊕ j = k ⊕ l if and only if

{it, jt} = {kt, lt}, t = 1, 2, . . . , n.

The proof of Lemma 1 is put in Appendix A.
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We argue Version 3 next.

Assume that |ψ〉 = (x
(1)
0 |0〉 + x

(1)
1 |1〉) ⊗ (x

(2)
0 |0〉 +

x
(2)
1 |1〉) ⊗ . . . ⊗ (x

(n)
0 |0〉 + x

(n)
1 |1〉). By tensor product

x
(1)
i1
x

(2)
i2

· · ·x(n)
in

= ai1i2···in , where it = 0, 1, t = 1, 2, . . . , n.

Then aiaj = x
(1)
i1
x

(1)
j1
x

(2)
i2
x

(2)
j2

· · ·x(n)
in
x

(n)
jn

and akal =

x
(1)
k1
x

(1)
l1
x

(2)
k2
x

(2)
l2

· · ·x(n)
kn
x

(n)
ln

. Explicitly, aiaj = akal when-

ever {it, jt} = {kt, lt}, t = 1, 2 . . . , n.

Conversely, suppose that aiaj = akal when-

ever {it, jt} = {kt, lt}, t = 1, 2, . . . , n. Let
∣

∣

∣x
(t)
it

∣

∣

∣

2

=
∑

i1,...,it−1,it+1,...,in∈{0,1} |ai1i2,...,in |
2
, where t =

1, 2, . . . , n. We can show |x(1)
i1
x

(2)
i2

· · ·x(n)
in

|2 = |ai1i2···in |2.
We only demonstrate the cases of n = 2 and 3 to give the

essential ideas of the general case.

When n = 2, see section 2. When n = 3, see ap-

pendix B. The two cases suggest that it be simpler to

prove |x(1)
i1
x

(2)
i2

· · ·x(n)
in

|2 = |ai1i2···in |2
(
∑

|ai1i2···in |2
)n−1

.

Now we finish the argument for the real number case. It

is not hard to extend the result to the complex number

case.

4 Separability for a Multi(n)-Partite System with the Same-Dimensional d Subsystems

Assume that each subsystem has the same dimension d. Let |it〉 be the orthonormal basis |0〉,|1〉,. . . ,|(d − 1)〉 for

the t-th subsystem. Then any pure state |ψ〉 can be written as |ψ〉 =
∑d−1
i1,i2,...,in=0 ai1i2···in |i1i2 · · · in〉. Assume that

|ψ〉 is separable. Then we can write |ψ〉 =
(

∑d−1
i1=0 x

(1)
i1

|i1〉
)

⊗
(

∑d−1
i2=0 x

(2)
i2

|i2〉
)

⊗ · · · ⊗
(

∑d−1
in=0 x

(n)
in

|in〉
)

. By tensor

product x
(1)
i1
x

(2)
i2

· · ·x(n)
in

= ai1i2···in , where i1, i2, . . . , in ∈ {0, 1, . . . , (d−1)}. Let Mi be dn−1 ×d matrices of which each

row is of the following form:
(

ak1k2···ki−10ki+1···kn
, ak1k2···ki−11ki+1···kn

, . . . , ak1k2···ki−1(d−1)ki+1···kn

)

,

where k1, k2, . . . , kn ∈ {0, 1, . . . , (d−1)}, and i = 1, 2, . . . , n. Note that Mi are not the usual matrices of the amplitudes

of state |ψ〉.
There are two versions of the separability.

Version 1 |ψ〉 is separable if and only if all the 2 × 2 minor determinants of Mi, i = 1, 2, . . . , n, are zero.

Version 2 |ψ〉 is separable if and only if ai1i2···inaj1j2···jn = ak1k2···kn
al1l2···ln , where {it, jt} = {kt, lt}, ] t =

1, 2, . . . , n.

The proof of Version 1 is similar to the one for a bipartite system. The proof of Version 2 is similar to the one for

an n-qubit system.

When n = 2, the criterion is reduced to the one for a bipartite system. When d = 2, the criterion is reduced to the

one for an n-qubit system.

Apparently,

|ai1i2···inaj1j2···jn − ak1k2···kn
al1l2···ln | ,

where {it, jt} = {kt, lt}, t = 1, 2, . . . , n., is just a deviation from a product state. Let

DE(|ψ〉) =
∑

|ai1i2···inaj1j2···jn − ak1k2···kn
al1l2···ln |

2 , (4)

where {it, jt} = {kt, lt}, t = 1, 2, . . . , n. Then DE(|ψ〉) has the following properties.

Property 1 DE(|ψ〉) = 0 if and only if |ψ〉 is separable.

For a two-qubit system, let |ψ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉. Then DE(|ψ〉) = |ad− bc|2 and the following

Properties 2 and 3 hold.

Property 2 The maximum of

DE(|ψ〉) = |ad− bc|2 ≤ (|ad| + |bc|)2 ≤
( |a|2 + |d|2

2
+

|b|2 + |c|2
2

)2

=
1

4
.

When a, b, c, and d are real, by computing extremum it is derived that DE(|ψ〉) has the maximum at states of the

forms: x|00〉 + y|01〉 − y|10〉 + x|11〉 or x|00〉 + y|01〉 + y|10〉 − x|11〉.

Property 3 |ψ〉 ∼ |ψ′〉 if and only if DE(|ψ〉) = DE(|ψ′〉).
Given |ψ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉 and |ψ′〉 = a′|00〉 + b′|01〉 + c′|10〉 + d′|11〉. Suppose that |ψ〉 ∼ |ψ′〉. By

the necessary condition in Sec. 5, DE(|ψ〉) = DE(|ψ′〉).
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Conversely, suppose DE(|ψ〉) = DE(|ψ′〉). Let us show |ψ〉 ∼ |ψ′〉. Using Schmidt decomposition, we can write

|ψ〉 ∼
√
λ1|00〉 +

√
λ2|11〉, where λ1 + λ2 = 1. As discussed above, |ad − bc| =

√
λ1

√
λ2. As well using Schmidt

decomposition we can write |ψ′〉 ∼ √
ρ1|00〉 +

√
ρ2|11〉, where ρ1 + ρ2 = 1, and |a′d′ − b′c′| =

√
ρ1
√
ρ2. Thus

λ1λ2 = ρ1ρ2. Then λ1(1 − λ1) = ρ1(1 − ρ1). There are two cases. (i) λ1 = ρ1, then λ2 = ρ2. (ii) λ1 + ρ1 + 1 = 0. In

the case λ2 = ρ1 and λ1 = ρ2. It means that |ψ〉 and |ψ′〉 have the same Schmidt coefficient for either of the two cases.

By factor 5 in Ref. [5], |ψ〉 ∼ |ψ′〉.
Nielsen in Ref. [15] showed |ψ′〉 ∼ |ψ′′〉 by calculating eigenvalue, where |ψ′〉 =

√
α+|00〉 +

√
α−|11〉, and |ψ′′〉 =

(|00〉 + |1〉(cos γ|0〉 + sin γ|1〉))/
√

2. By Property 3 it only needs to check
√
α+

√
α− = sin γ/2.

5 A Necessary Condition for a Local Unitary Equivalence Class for a Bipartite System

We use the following Lemma 2 to establish the necessary condition.

Lemma 2 Let |ψ〉 be a pure state of a composite system AB possessed by both Alice and Bob. Assume that each

subsystem has the same dimension n. Let M = (ajk)n×n be the matrix of the amplitudes of |ψ〉. Let ρAB = |ψ〉〈ψ|
and ρA = tr B(ρAB). Then |det(M)|2 is just the product of the eigenvalues of ρA.

The proof is put in Appendix C.

Lemma 2 reveals the relation between the determinant of the matrix of the amplitudes and the eigenvalues of ρA

for a bipartite system.

The corollary of Lemma 2

Let Mψ (Mφ) be the matrix of the amplitudes of a pure state |ψ〉 (|φ〉) of a composite system AB. Assume that

each subsystem has the same dimension n. Then |det(Mψ)| = |det(Mφ)| whenever |ψ〉 ∼ |φ〉. That is, |det(Mψ)| is

invariant under local unitary operators.

It is well known that it only needs O(n3) multiplication operations to compute |det(M)| instead of doing Schmidt

decomposition in Refs. [2] and [15].

For a two-qubit system, let |ψ〉 = a|00〉+b|01〉+c|10〉+d|11〉 and ρ12 = |ψ〉〈ψ|. By lemma 2 |ad−bc|2 is the product

of the eigenvalues of ρ1. Let |ad− bc| = ε. We can show that ε satisfies 0 ≤ ε ≤ 1/2 and eigenvalues λ± = 1±
√

1−4ε2

2 .

Hence, |ψ〉 ∼
√

λ+|00〉 +
√

λ−|11〉 or |ψ〉 ∼
√

λ−|00〉 +
√

λ+|11〉.

6 Conclusion

In this paper we have presented the necessary and sufficient conditions of separability for multipartite pure states.

These conditions do not require Schmidt decomposition (for two subsystems) or tracing out operations. By using the

conditions it is easy to check whether or not a multipartite pure state is entangled.

Appendix A: The Proof of Lemma 1

Let α1α2 · · ·αn, β1β2 · · ·βn, δ1δ2 · · · δn, and γ1γ2 · · · γn be the n-bit strings of α, β, δ, and γ, respectively.

Lemma 3 {αi, βi} = {δi, γi}, i = 1, 2, . . . , n, if and only if α + β = δ + γ and α ⊕ β = δ ⊕ γ, where ⊕ indicates

addition modulo 2.

Proof Suppose {αi, βi} = {δi, γi}, i = 1, 2, . . . , n. Since

α+ β = (α1 + β1)2
n−1 + (α2 + β2)2

n−2 + · · · + (αn + βn)

and

δ + γ = (δ1 + γ1)2
n−1 + (δ2 + γ2)2

n−2 + · · · + (δn + γn) ,

by the supposition it is easy to see α+ β = δ + γ. It is straightforward to obtain

α1α2 · · ·αn ⊕ β1β2 · · ·βn = δ1δ2 · · · δn ⊕ γ1γ2 · · · γn .

Conversely, suppose α+ β = δ + γ and α⊕ β = δ ⊕ γ. First let us consider the case where n = 1. There are three

cases

(i) α1 + β1 = δ1 + γ1 = 0. This means α1 = β1 = δ1 = γ1 = 0.

(ii) α1 + β1 = δ1 + γ1 = 1. This implies {α1, β1} = {δ1, γ1} = {1, 0}.
(iii) α1 + β1 = δ1 + γ1 = 2. This says α1 = β1 = δ1 = γ1 = 1.

No matter which of the above three cases happens, it yields {α1, β1}={δ1, γ1}.
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Let us consider the case n. Since

α+ β = δ + γ, (α1 + β1)2
n−1 + (α2 + β2)2

n−2 + · · · + (αn + βn) = (δ1 + γ1)2
n−1 + (δ2 + γ2)2

n−2 + · · · + (δn + γn) .

Again since α⊕ β = δ ⊕ γ, that is,

α1α2 · · ·αn ⊕ β1β2 · · ·βn = δ1δ2 · · · δn ⊕ γ1γ2 · · · γn ,

we obtain αi ⊕ βi = δi ⊕ γi, i = 1, 2, . . . , n. There are two cases.

(i) αn ⊕ βn = δn ⊕ γn = 1. In the case {αn, βn} = {δn, γn} = {0, 1}. Then

(α1 + β1)2
n−2 + (α2 + β2)2

n−3 + · · · + (αn−1 + βn−1) = (δ1 + γ1)2
n−2 + (δ2 + γ2)2

n−3 + · · · + (δn−1 + γn−1)

and αi ⊕ βi = δi ⊕ γi, i = 1, 2, . . . , n− 1. By induction hypothesis {αi, βi} = {δi, γi}, i = 1, 2, . . . , n− 1.

(ii) αn ⊕ βn = δn ⊕ γn = 0. There are two subcases.

(iia) αn = βn = δn = γn = 0 or αn = βn = δn = γn = 1. As discussed in case (i), we can obtain {αi, βi} = {δi, γi},
i = 1, 2, . . . , n− 1 by induction hypothesis.

(iib) αn = βn = 1 and δn = γn = 0 or αn = βn = 0 and δn = γn = 1. Let us consider the former case. In the case

(α1 + β1)2
n−2 + (α2 + β2)2

n−3 + · · · + (αn−2 + βn−2)2 + (αn−1 + βn−1 + 1)

= (δ1 + γ1)2
n−2 + (δ2 + γ2)2

n−3 + · · · + (δn−2 + γn−2)2 + (δn−1 + γn−1) .

Since αn−1 ⊕βn−1 = δn−1 ⊕ γn−1, either αn−1 ⊕βn−1 = δn−1 ⊕ γn−1 = 0 or 1 causes that one of (αn−1 +βn−1 +1)

and (δn−1 + γn−1) is odd and the other is even. It contradicts α⊕ β = δ ⊕ γ.

Appendix B: The Separability for an n-Qubit System

When n = 3, let us show |x(1)
i1
x

(2)
i2
x

(3)
i3

|2 = |ai1i2i3 |2, when aiaj = akal, where {it, jt} = {kt, lt}, t = 1, 2, 3. We only

illustrate |x(1)
0 x

(2)
0 x

(3)
0 |2 = |a000|2. Other cases then follow readily. Experientially, it is simpler to prove

|x(1)
0 x

(2)
0 x

(3)
0 |2 = |a000|2





∑

i,j,k∈{0,1}
|aijk|2









∑

i,j,k∈{0,1}
|aijk|2



 ,

where |x(1)
0 |2 =

∑

i,j∈{0,1} |a0ij |2, |x(2)
0 |2 =

∑

k,l∈{0,1} |ak0l|2, and |x(3)
0 |2 =

∑

p,q∈{0,1} |apq0|2.
First we show that a0ijak0lapq0 can be rewritten as a000aα1α2α3

aδ1δ2δ3 . There are the following four cases.

(i) Consider a0ijak0l and the pairs {0, k}, {i, 0} and {j, l}. If j ∗ l = 0 , then a0ijak0l = a000aki(j+l) since

{j, l} = {0, j + l}.
(ii) Consider a0ijapq0 and the pairs {0, p}, {i, q} and {j, 0}. If i ∗ q = 0, then a0ijapq0 = a000ap(i+q)j since

{i, q} = {0, i+ q}.
(iii) Consider ak0lapq0 and the pairs {k, p}, {0, q} and {l, 0}. If k ∗ p = 0, then ak0lapq0 = a000a(k+p)ql since

{k, p} = {0, k + p}.
(iv) Otherwise i = j = l = k = p = q = 1. It is not hard to derive a3a5a6 = a1a7a6 = a0a

2
7.

Second, let us show that a000aα1α2α3
aδ1δ2δ3 can be rewritten as a0ijak0lapq0. If a000aα1α2α3

aδ1δ2δ3 is of the forms:

a000a0ijak0l, a000a0ijapq0 or a000ak0lapq0, then these forms are desired. Otherwise a000aα1α2α3
aδ1δ2δ3 must be a0a6a6,

a0a3a3, a0a5a5 or of the form a0a7arst, which can be rewritten as a2a4a6, a1a2a3, a1a4a5, a1a6arst, respectively.

a2a4a6, a1a2a3 and a1a4a5 are just desired and a1a6arst is furthermore rewritten as follows. There are three cases.

(i) In the case r = 0 or s = 0, this is desired.

(ii) In the case r = s = t = 1, a1a6a7 = a3a5a6, desired.

(iii) In the case r = s = 1 and t = 0, a1a6a6 = a2a5a6, desired.

Appendix C: The Proof of Lemma 2

Proof Suppose that systems A and B have the same dimensions n. Let |ψ〉 =
∑n−1
i,j=0 aij |i〉|j〉. Then M = (aij)n×n.

Let density operator ρAB = |ψ〉〈ψ|. Then

ρAB =





n−1
∑

i,j=0

aij |i〉|j〉









n−1
∑

l,k=0

a∗lk〈l|〈k|



 =
n−1
∑

i,j=0

n−1
∑

l,k=0

aija
∗
lk|i〉|j〉〈l|〈k| =

n−1
∑

i,l=0

n−1
∑

j,k=0

aija
∗
lk|i〉|j〉〈l|〈k| .
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The reduced density operator for system A is defined by ρA = trB(ρAB). Let us compute ρA.

ρA =
∑n−1
i,l=0

∑n−1
j,k=0 aija

∗
lk|i〉〈l|δkj (where δkj = 1 when k = j. Otherwise 0.) =

∑n−1
i,l=0

∑n−1
j=0 aija

∗
lj |i〉〈l| =

∑n−1
i,l=0(

∑n−1
j=0 aija

∗
lj)|i〉〈l|. Let Ai = (ai0, ai1, . . . , ai(n−1)), that is, the i-th row of A. Then

∑n−1
j=0 aija

∗
lj = AiA

†
l .

Finally

ρA =
n−1
∑

i,l=0

AiA
†
l |i〉〈l| =











A0

A1
···

An−1











(A†
0, A

†
1, . . . , A

†
n−1) = MM† .

Thus det(ρA) = | det(M)|2. Hence |det(M)|2 is just the product of the eigenvalues of ρA. Q.E.D.
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