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Abstract
An analytical formula is developed for the evolution of angular dependence of sputtering
yields by extending the theory of sputtering yield proposed by Sigmund. We demonstrate that
the peak of sputtering yield at oblique incidence can be attributed to a balance between the
increased energy deposited on the surface by incident ion which enhances the sputtering yield
and the decreased depth travelled by recoil atom which reduces the sputtering yield. The
predicted dependence of sputtering yield on the incident angle is in good agreement with
experimental observations.

(Some figures in this article are in colour only in the electronic version)

Ion-induced sputtering is a subject of constant research by
many scientists over the last few decades due to its wide
application in the semiconductor industry, in surface analysis
and deposition. The understanding of this phenomenon lies
in the framework of Sigmund’s theory [1]. This theory was
derived on the basis of the linear Boltzmann transport equation
under the assumption of random slowing down in an infinite
medium. For amorphous and polycrystalline targets, Sigmund
revealed that the sputtering yield is proportional to the energy
accumulated by ions on the surface. It was shown that this
theory can be used successfully to predict energy-dependent
sputtering yields for a wide range of energies and a variety of
ion–target combinations [2–6]. Many surface features induced
by ion bombardment, including ripple and nanodot formation
are based on this theory [7–15]. However, one challenging
problem associated with this process is the angle-dependent
sputtering yield. According to Sigmund’s theory, the evolution
of sputtering yield with ion energy E and incident angle θ

measured from the surface normal is given by

Y (E, η) = �F(E, η), (1)

where η = cos θ , � = 0.042/(NU0), N is atomic density,
U0 is surface binding energy, F(E, η) is energy distribution.
This equation can be understood as the production of sputtered
atom density (in unit of atoms per length) per bombarding
ion and depth from which sputtered atoms come [1, 16]. By
solving the linear Boltzmann’s equation under the assumption
of an infinite medium using Thomas–Fermi cross section
dσ = CmE−mT −1−m dT with m = 0 and C0 = 1

2πλ0a
2,

where λ0 = 24 and a = 0.219, Sigmund obtained
incidence dependent sputtered atom density F(E, η)/(π2U0)

and incidence independent depth 3/(4NC0) [1, 16]. The
production of these two terms determines the sputtering yield
(equation (1)). Assuming a Gaussian distribution of deposited
energy distribution F(E, η), from equation (1) the normalized
sputtering yield can be approximated as

Y (E, η)

Y (E, η = 1)
= (cos θ)−fs , (2)

where the exponent fs ≈ 1 ∼ 2, depending on the mass of ion
and atom [1,5]. This means that sputtering yield increases with
the incidence angle and goes to infinity for grazing incidence.
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It is well known from experiment that the sputtering yield
reaches a maximum at an oblique incidence of about 70◦ and
then approaches zero at θ = 90◦. Sigmund pointed out that this
maximum sputtering yield at a certain glancing angle cannot
be explained on the basis of the assumption of an infinite
medium [1]. Although this subject is mostly of applied interest
and has been intensively investigated over several decades
[2, 17–20], angular dependence of sputtering yield is still not
well understood.

In this letter, starting with the recoil atom density
[1, 16, 21], we show that the sputtered atom depth is

proportional to the cosine of incident angle. The peak of
sputtering yield can be attributed to a balance between two
competitive effects: one is the deposited energy F(E, η),
which increases with the incident angle and thus enhances
the sputtering yield, and another is the sputtered atom depth,
which decreases with the incident angle and thus reduces the
sputtering yield.

According to Sigmund’s theory [16, 21], the average
number of recoil atoms passing through the surface plane with
energy (E1, dE1) in the solid angle (Ω1, d�1) per incident ion
is given by [21]

Y =
∫ ∫

J (E1,Ω1) dE1 d2�1, (3)

where J (E1,Ω1) is the number of recoil atoms per unit energy
and unit solid angle. Equation (3) gives the sputtering yield
if we integrate over E1 cos2 θ1 > U , where θ1 is the angle
between Ω1 and the outward surface normal, U/ cos2 θ1 is the
surface binding energy. Following the approach suggested by
Falcone and Sigmund [21], using power cross section with
m = 0, J (E1,Ω1) is given by

J (E1,Ω1) = 3F(E, η)

2π3

×
∫ ∞

0

dE0

E2
0

∫ ∞

0
dx δ(E1 − f (E0, x,Ω1)), (4)

where F(E, η) is the deposited energy density on the surface,
E0 is the initial energy of recoil energy, δ is the Dirac delta
function, f (E0, x,Ω1) is the energy of the recoil atom with
initial energy E0 after travelling from x to the surface in the
direction Ω1. In order to integrate equation (4), we need to
know the relationship between energy E1 and initial energy
E0 at depth x for recoil atoms.

We assume in general that energy loss for both ion and
recoil atom has the form [21]

dE

dR
= −CEγ , (5)

where R is the travelled path length and C and γ are constants.
For power approximation of cross section, γ = 1–2 m. If we
assume m = 0, according to Sigmund’s assumption [1], then
C = NC0, where N is target atomic density.

For an incident ion with initial energy Ei and incidence θ ,
the energy E0 at depth x from the surface is given by
(integrating equation (5) under m = 0 for incident ion)

E0 = Ei exp

(
−Cx

η

)
. (6)

θ1

θ

Rη
cosθ1

sputttered atom with E1cosθ1>U

incident ion Ei

surface

depth of sputtered atom recoil atoms with initial energy E0

R
Rη

Figure 1. Schematic illustration of the variation of sputtered atom
depth with incident angle. Recoil atom with initial energy E0, after
travelling depth Rη/ cos θ1, reached the surface with energy E1.
Sputtered atoms satisfy E1 cos θ1 > U (surface binding is given by
U/ cos2 θ1).

This equation shows that the depth of an incident ion that
has energy E0 under off-normal bombardment is equal to the
cosine of the incident angle times the depth of the incident ion
with the same energy under normal bombardment (figure 1).
Because this energy will be transferred to the recoil atom, for
a given energy E0, the depth of the recoil atom has the same
relationship between normal and off-normal bombardment.
Thus the energy E1 of a recoil atom with initial energy E0 at
depth x from the surface is given by (integrating equation (5)
under m = 0 for the recoil atom)

E1 = E0 exp

(
− Cx

η cos θ0

)
, (7)

where θ0 is the angle between Ω0 and the outward surface
normal. This equation is different from that derived by Falcone
and Sigmund [21] by a parameter of η on the right-hand side of
equation (7). This reduced depth at off-normal bombardment
shows that more recoil atoms can easily escape from the surface
without inducing further recoil atoms, and then lead to the
decrease in sputtering yield. The schematic explanation of
this difference is shown in figure 1. Substituting equations (7)
and (4) into equation (3) yields

Y (E, η) = η�F(E, η), (8)

where power approximation of the Thomas–Fermi cross
section with m = 0 is used. At normal bombardment,
this equation reduces to Sigmund’s result. At off-normal
bombardment with increasing incident angle, η decreases and
F(E, η) increases. When the incident angle is equal to 90◦,
because the depth of sputtered atoms is zero, the sputtering
yield reaches zero. Deposited energy distribution F(E, η) on
the surface can be approximated as a Gaussian distribution set
up in terms of the moments [1]

F(E, η) = Ei

(2π)1/2A
exp

(
−η2a2

2A2

)
, (9)

where a is the projected energy range, A2 = η2α2 + η′2β2,
α and β are the energy range stragglings along the longitudinal
and lateral directions, respectively, η′ =

√
1 − η2. With

increasing incident angle, deposited energy increases through
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Figure 2. Normalized sputtering yield as a function of incident
angle from our model. Sigmund’s theory (----) is given for
comparison.
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Figure 3. Angular dependence of sputtering yield given by
equation (11) with different ratios of energy range to straggling:
from top to bottom (symmetry case α = β), a/α = 4, 3.5, 3, 2.5, 2,
inset showing the sputtering yield for the asymmetry case: from left
to right a = 2.5α = 1.5β, a = 2.5α = 4β. The dashed curve shows
the Sigmund theory given by cos−2 θ .

the exponential term while the corresponding depth of the
sputtered atoms decreases through the cosine term. A balance
between these two terms gives rise to the peak position of
sputtering yield (figure 2).

Substituting equation (9) into equation (8) and letting the
derivative of equation (8) in terms of η be zero, we have the
incident angle θmax in which the sputtering yield achieves its
maximum value. For simplicity, we assume the symmetric
case α = β.

cos θmax = α

a
, (10)

which means the maximum sputtering yield depends only
on the energy range and straggling (deposited energy
distribution). For deposited energy, if we assume a ≈ 2.5α,
equation (10) shows the maximum sputtering yield will appear
at θmax = 66◦ (figure 2). This is in good agreement with
the experimental observation showing the maximum sputtering
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Figure 4. Comparison of angular dependence of sputtering yield
predicted by the model with experimental results. (a) 0.5 keV Ar ion
on diamond [22], a = 18 Å, α = 8 Å, β = 10 Å. (b) 1.05 keV Xe,
Kr and Ne ions on Cu [23], for Xe on Cu, a = 17 Å, α = 8 Å,
β = 9 Å; for Kr on Cu, a = 11 Å, α = 6 Å, β = 4 Å; for Ne on Cu,
a = 16 Å, α = 9 Å, β = 6 Å. (c) 100 keV Xe on Ag [24],
a = 156 Å, α = 59 Å, β = 35 Å.

yield takes place around θ = 70◦. From equation (8), under
the assumption of Gaussian distribution and symmetry case
(equation (9)), the normalized sputtering yield is

Y (E, θ)

Y (E, θ = 0)
= cos θ exp

(
a2 sin2 θ

2α2

)
, (11)

where we replace η by cos θ .

The variation of sputtering yield with energy range and
straggling is shown in figure 3. With increasing ratio of
projected range to straggling, the maximum value of the
sputtering yield moves to larger incident angle. For higher
energy and lighter ion, a/α becomes larger and the peak tends
to move to higher incidence. This prediction is consistent
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with the experimental results: the higher the ion energy or the
lighter the ion, the larger the incident angle for the maximum
sputtering yield.

Figure 4 shows the comparison of the angle-dependent
sputtering yield predicted by equation (11) with the
experimental results for different energies and different ion–
target systems. The quantitative values of the coefficients
a, α, β for energy distribution can be found using the theory of
Winterbon et al [25] from the corresponding values for the ion
distribution using the Monte Carlo simulation code SRIM [26].
We can observe that the theoretical predictions in equation (11)
compare fairly well with the experimental data.

It is well known that the average projected energy range is
given by 〈xθ 〉 = η〈x0〉 [25], where 〈xθ 〉 and 〈x0〉 are the average
damage depths at off-normal and normal bombardment,
respectively. This relationship was derived from the linear
Boltzmann transport equation under the same assumptions as
those in Sigmund’s theory. For approximation with m = 0
in the Thomas–Fermi cross section, the average projected
energy range is energy independent [1, 21, 25]. This means
the recoil atoms with different energies, including sputtered
atoms at the surface which have energy larger than surface
bonding, satisfy the same equation describing the relationship
for the range between normal and off-normal bombardment.
Therefore, we can assume the average depth of recoil atoms
is equal to the average depth of sputtered atoms. This can be
confirmed by equation (7). The average depth of recoil atoms
is given by 2η/(πλ0Na2), where 2/(πλ0Na2) is the average
depth at normal bombardment which agrees very well with the
estimate of the sputtered atom depth (3/4) ·2/(πλ0Na2) given
by Sigmund [1].

In summary, we have derived an expression for
interpreting the evolution of sputtering yield as a function of
incident angle based on Sigmund’s theory. We showed that
the peak of angular dependence of sputtering yield results
from two competitive effects: increased energy deposited on
the surface by the incident ion and decreased depth travelled
by the sputtered atom. The results predicted by this model are
in good agreement with experimental observations.
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