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An experimental design is a formula or algorithm that specifies how resources
are to be utilized throughout a study. The design is considered to be good or
even optimal if it allows for sufficiently precise and accurate data analysis with
the least output of resources such as time, money and experimental units. Most
experimental designs use fixed sampling procedures in which the sample sizes
and order of allocations to different study groups are known in advance.  2009 John
Wiley & Sons, Inc. WIREs Comp Stat 2009 1 118–122

INTRODUCTION

Adaptive designs are those that allow investiga-
tors to adjust resource expenditures while the

experiment is being carried out. In some experiments,
adaptation depends merely on knowledge of ongoing
study group sample sizes. This may occur, for exam-
ple, when attempting to balance allocations across
covariates or when randomizing to achieve predeter-
mined sampling proportions. However, more flexibil-
ity and efficiency can be gained when adaptation also
incorporates knowledge of the responses observed to
date. Such designs are referred to as response adap-
tive designs. Although response adaptive designs can
offer significant ethical and cost advantages, their
adaptive nature greatly complicates the explicit deter-
mination of their statistical properties. This precludes
classic analytic approaches in the evaluation of such
designs. As an example, even something as basic as the
proportion assigned to a given study group is a ran-
dom variable whose distribution cannot be obtained
analytically.

Nevertheless, with the advent of increased
computational power and improved algorithms,
various classes of response adaptive designs can be
assessed in exact terms. The easiest members of this
class to analyze are the fully sequential designs in
which, at each stage, only one observation is allocated
to a study group. Group or ‘staged’ designs are more
complex to address.
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FULLY SEQUENTIAL EXPERIMENTS

We begin with fully sequential designs modeled after
classic multi-armed bandit problems. In its simplest
form, the multi-armed bandit arises from an analogy
to slot machines. Suppose the machine has k arms
and you have n tokens. Assume that the outcomes
from pulling an arm are dichotomous, so that when
you deposit a token and pull (observe) arm i, you
receive $1 with an unknown probability pi and $0
with probability (1 − pi), i = 1, . . . , k. The ‘arms’ are
independent as are the outcomes, and your goal is to
sample from them in such a way as to maximize your
winnings after n pulls. This can also be viewed as
trying to minimize your losses. While we stick to the
example of independent Bernoulli outcomes for each
group or arm, other bandit designs have more general
distributions.

The two-armed Bernoulli bandit has long been
used to model clinical trials in which there are ethical
concerns regarding the well being of patients both
during and after the trial.1 One reason for this is that
the strategy for solving this problem results in excellent
information gathering which is critical to making
good decisions after the experiment. Also important,
however, is the fact that the optimal solution to the
problem minimizes patient losses during the trial. In
this way two important trial goals are addressed.

To formalize the problem, suppose there are
two arms available, A1 and A2. At any point in
the experiment, a sufficient statistic is the number
of successes s1, s2 and failures f1, f2 on each arm. Note
that s1 + s2 + f1 + f2 is the number of observations
made so far. The vector (s1, f1, s2, f2) is called a state.
The general design problem is to decide which arm
should be pulled next at any given state.
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There is a well-known approach to finding
an optimal sampling scheme for this and similar
problems. It is known as dynamic programming (DP),
which was initially developed by Bellman and is
delineated in Ref 2. It can be described as follows:
given a state σ , let p1(σ ) and p2(σ ) denote the
probabilities of success for the two arms. Given some
objective function O, such as maximizing successes, let
V(σ ) denote the maximal expected value of O among
all possible sequences starting at σ .

The DP equations that allow one to compute V
are

V(σ ) = max{V1(σ ), V2(σ )}, (1)

where

Vi(σ ) = pi(σ ) · V(σ +si) + (1−pi(σ )) (2)

·V(σ +f i), i = 1, 2

where si (f i) denotes one success (failure) observed
on arm i. Vi(σ ) represents the maximum expected
value possible if the next pull is on arm i, and Eq.
(1) says that the optimal decision is to pull the arm
with greatest maximum. Extending to more arms is
straightforward.

The DP equations are based on a Bayesian
framework, from which one can determine pi(σ ) as
the mean of a posterior distribution. For Bernoulli
variables the beta distributions, β(a, b), are conjugate
priors with simply expressed means, a/(a + b). At
any stage, if s successes and f failures have been
observed, the posterior mean is (s + a)/(s + f + a + b).
This simplicity helps explain their nearly universal
usage as priors for Bernoulli bandits.

Note that Eqs (1) and (3) can be used to optimize
quite general objective functions, not just bandit
problems that accumulate rewards as the experiment
proceeds. DP is a very powerful technique that has
been applied to a wide range of problems. Numerous
books and courses on the subject exist and most
computer science students are exposed to DP as
undergraduates.

Writing a program based on DP equations is
typically straightforward, starting at the end of the
experiment and progressing toward the beginning.
For example, for an experiment with fixed sample
size n, one must first determine the value of V for all
states with n observations. These equations are then
used to determine the value of V for all states with

{Initialize V at terminal states}

for f2=0 to n do

for s2=0 to n-f2 do

for f1=0 to n-f2-s2 do

s1=n-f2-s2-f1

V(s1,f1,s2,f2)= O(s1,f1,s2,f2)

end for f1

end for s2

end for f2

{evaluate V at all nonterminal states}

for m=n-1 downto 0 do

for f2=0 to m do

for s2=0 to m-f2 do

for f1=0 to m-f2-s2 do

s1=m-f2-s2-f1

V1=p1(s1,f1)*V(s1+1,f1,s2,f2)+(1-p1(s1,f1))*V(s1,f1+1,s2,f2)

V2=p2(s2,f2)*V(s1,f1,s2+1,f2)+(1-p2(s2,f2))*V(s1,f1,s2,f2+1)

V(s1,f1,s2,f2)= max{v1,v2}

end for f1

end for s2

end for f2

end for m

FIGURE 1 | Dynamic programming to optimize two-armed bandit.
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Number of Arms
n 2 3 4
10 1001 8008 43,758
50 316,251 32,468,436 1.9 109

100 4,598,126 1.7 109 3.5 1011

1000 4.2 1010 1.4 1015 2.6 1019

FIGURE 2 | Number of states as a function of number of arms and
experiment size n.

n − 1 observations, then n − 2, etc. This is illustrated
in Figure 1. Unfortunately, the computations can be
quite lengthy and require significant storage space.
An experiment with sample size n and k arms has
( n+2k

2k ) ≈ n2k/2k! states, which grows polynomially
with n and exponentially with k (the ‘curse of
dimensionality’). Figure 2 shows some sample values
of the number of states.

Storing this in a straightforward manner would
use a 2k-dimensional array where each coordinate has
extent [0:n] (the coordinates represent the components
of the states), which has (n + 1)2k entries. This can
be reduced by a factor of 2k! by noting that the
condition s1 + f1 + . . . fk ≤ n restricts the states to a
corner of the array. By linearizing the index scheme
the memory required can be reduced to the number
of states. See Ohemke et al.3 for this and other
time and space optimizations for serial and parallel
programs. Using these optimizations, it is currently
possible to optimize the two-armed Bernoulli bandit
problem for experimental sizes of many hundreds on a
laptop computer, and the three-armed bandit for many
hundreds on a parallel computer. We are unaware of
any work in which the optimal solution is determined
for more arms and a non-trivial experiment size,
despite interest in multiarm problems such as in Ref.
4–6.

One common trait of DP approaches is that they
produce the optimal value of the objective function.
However, more work is required to determine the
experimental decisions that would achieve this value.
To accomplish this, when the optimal i is determined
in Eq. (1) it is stored in a separate array, say D.
From this, the design can be recreated top-down. For
example, if D(0, 0, 0, 0) = 1 then arm 1 is the first arm
pulled in the experiment. If it is a success then the next
pull is on D(1, 0, 0, 0), while if it is a failure the next
pull is on arm D(0, 1, 0, 0), and so on.

Given an adaptive sampling design, researchers
often wish to evaluate its characteristics on multiple
criteria. For example, the design may optimize
successes, but the expected number of pulls on arm 1

is also be of interest. It may also be that the design is
adhoc and both of these criteria need to be determined
even though the design optimizes nothing. Another
possibility is that for various fixed success probabilities
p1 and p2, certain operating characteristics need
to be known; e.g., the robustness of its frequentist
properties.

It is possible to carry out such evaluations by
proceeding as in the calculation of the D matrix above:
first evaluate the criterion at the terminal states, and
then at each state, use the choice the design would
make to calculate the expected value of the criterion
at that state. If there are many such evaluations,
as with pointwise evaluations, then a more efficient
approach is useful: one determines, for each terminal
state σ , the number of different ways that the design
could end at σ , and then evaluates each criterion using
these counts. See Hardwick and Stout7 for details of
this approach, which is known as path induction.

An important variation of the bandit model
described earlier is the case in which rewards and
costs are associated with each pull as part of an infinite
process. Typically one utilizes a geometric discount,
so that a reward r after p pulls is worth rδp for
some δ < 1. From the perspective of the clinical trials
problem, this model represents a greater emphasis
on continuing to gather information to treat both
trial and future patients. For example, in the bandit
problem originally described, the last arm pulled will
always be the myopic choice, i.e., the arm with highest
expected value. In the geometric design, information
is always being gathered for future decisions, so the
arm pulled at the last step might have a smaller mean
but higher variance. The geometrically discounted
bandit is also popular due to an elegant theorem by
Gittins and Jones8 that reduces the dimensionality
of the problem. It states that one can compute an
index for each arm, independent of all other arms,
and then make the optimal choice at each stage by
taking the arm with the highest index. Unfortunately,
while the dimension of the problem is greatly reduced,
the computation of the indices is very difficult, so, in
practice, approximate solutions are used.

STAGED EXPERIMENTS
While the fully sequential designs described optimize
a specified objective function, they also introduce the
requirement that the result of each pull be observed
before the next pull. In many experimental settings
this is not a feasible scenario and the sampling must
be done in stages. Most staged designs considered use
one of two basic scenarios that have dominated the
literature for over 50 years.
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FIGURE 3 | Representation of an optimal three-stage design.
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In one scenario the total sample size is a
random variable and the designs have either two
or three stages. The problem is to find asymptotic
approximations for the stage sizes when seeking fixed
precision confidence intervals or for minimizing risk
functions when observational costs are incurred. See
for example Stein9 and Ghurye and Robbins10 for
early versions and Ghosh et al.11 for a survey.

The other prominent staged design uses a fixed
total sample size, n, and the goal is to maximize
expected reward under the following conditions.
There are two stages. In the first stage, allocation
is in pairs. In the second stage, all observations are
made from the apparently better population after
stage one. The only variable in the problem is the
first stage size which depends only on n and, in
the Bayesian case, on the priors. This problem was
proposed in 1965 by Colton12 and later addressed
by Canner.13 Using a Bayesian model with uniform
priors, Canner conjectured that the optimal first stage
length was approximated by

√
2n + 4 − 2. Despite

the fact that algorithms to solve this problem exactly
were available in 1995 in Hardwick and Stout,14

approximate first stage sizes were still being suggested
as recently as 2003 in Cheng et al.15 An application
of the algorithms in Ref 14 to this two-stage problem
appears in Ref 16.

More general and flexible multi-stage designs
allow for many more variables than a single stage size.
First, assuming a fixed sample size, n, the allocations
within each stage (except the first) may vary as a result
of all observations obtained as of the last completed
stage. Second, no stages have predetermined length.
Finally, it is even allowable that the number of stages
is unknown in advance. Flexible designs of this nature
are shown in Figure 3.

In Refs 14,16 algorithms were developed to fully
optimize flexible staged designs with diverse objective

functions. For most objective functions flexible
two-stage designs are relatively easy to optimize
computationally. Optimizing staged allocation with
more than two stages is complicated because of
the large number of options, and their outcomes,
at each state. For example, in an study of fixed
size n, for a given stage and given state, if there
are m observations remaining in the experiment,
then the number of observations o1, o2 assigned
to arm 1 and 2, respectively, need only satisfy
0 ≤ o1, o2 and 1 ≤ o1 + o2 ≤ m, i.e., there are
( m+2

2 ) ≈ m2/2 sampling options, as opposed to the
two options for the fully sequential case. Further,
given o1, o2, the number of possible outcomes is
(o1+1) · (o2+1), so a straightforward evaluation of
all of the sampling options, and their outcomes,
involves ( m+4

4 ) ≈ m4/4! values at each state. There
are ( n+4

4 ) states, and the total number of values
would be ( n+8

8 ) ≈ n8/8!. If there are t stages then
the total time is further multiplied by t. This is
rather unmanageable for sample sizes of interest.
Fortunately, by reusing intermediate results this can
be reduced to time proportional to the number of
distinct states and options, i.e., �(tn6) time—see
Ref 16. Using this, multi-stage designs with sample
sizes in the hundreds have been optimized. Significant,
simple, time reductions are possible for t ≤ 2. It is
interesting that imposing fixed stage sizes apparently
increases the computing time required, growing
exponentially in the number of stages.16 We are
unaware of optimal designs for three or more arms
with more than two stages.

FINAL REMARKS

This paper has concentrated on the basic approach
of using DP to solve a variety of response adaptive
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sampling problems for populations with outcomes
that are Bernoulli random variables. The approach
can also be used to evaluate the worth of subopti-
mal designs for the same problems. There are many
other desiderata, such as randomization or reducing
the number of times a fully sequential design switches
treatments, that can also be optimized through DP.
However, for populations with more complex distri-
butions, e.g., normal, the computational approaches

are only approximations, although they can be made
as accurate as desired. In some settings, such as opti-
mizing a minimax objective, DP is apparently not
applicable because it is typically based on a linear
objective, and in yet other settings, such as finding the
maximum of a unimodal function, it is not applicable
because there is no natural probability distribution
over the space of such functions.
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