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Quality control charts have proven to be very effective in detecting out-of-control
states. When a signal is detected a search begins to identify and eliminate the source(s)
of the signal. A critical issue that keeps the mind of the process engineer busy at
this point is determining the time when the process first changed. Knowing when
the process first changed can assist process engineers to focus efforts effectively on
eliminating the source(s) of the signal. The time when a change in the process takes
place is referred to as the change point. This paper provides an estimator for a period
of time in which a step change in the process non-conformity proportion in high-
yield processes occurs. In such processes, the number of items until the occurrence
of the first non-conforming item can be modeled by a geometric distribution. The
performance of the proposed model is investigated through several numerical exam-
ples. The results indicate that the proposed estimator provides a reasonable estimate
for the period when the step change occurred at the process non-conformity level.
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1. INTRODUCTION

Control charts are used for monitoring the performance of a quality characteristic. They assist process
engineers to distinguish random causes from assignable causes. When a control chart signals, a
search is initiated to identify and eliminate the source of the assignable cause. The nature of the

search depends on the experience and the knowledge of the process engineer. The more knowledge and
experience the person has about the process, the faster he/she can pinpoint the source(s) of the assignable
cause. However, if the time when the change began could be determined with a reasonable level of accuracy,
then the engineer could search within a smaller window of observations to identify the possible source(s)
of the assignable cause.
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The issue of step changes in the parameters of various distributions in the context of statistical process
control has been addressed by different researchers. Samuel et al.1,2 considered step changes in the mean, �,
and variance, �2, of a normal distribution, respectively. Samuel and Pignatiello3 compared the performance of
the maximum likelihood estimator (MLE) with the built-in estimators of EWMA and CUSUM in determining
the time of a step change in a normal process mean and showed the superiority of the MLE. Pignatiello and
Simpson4 proposed a magnitude-robust control chart not only for monitoring a normal process mean, but
estimating the time of step changes in the mean as well. Perry and Pignatiello5 considered a linear trend
change in the mean of a normal process. Samuel and Pignatiello6 studied a step change in the parameter
of a Poisson process, �. Perry et al. proposed methods for determining the change point in the rate of
a Poisson distribution7,8 with a linear trend and monotonic change, respectively. Pignatiello and Samuel9

and Perry et al.10 considered a step change and monotonic change in the non-conformity level, p, of a
binomial process, respectively. Perry and Pignatiello11 showed that the performance of the MLE is better
than the built-in estimators of EWMA and CUSUM in identifying the change point of a binomial distribution.
Nedumaran et al.12 identified the time of a step change in a �2 control chart. Timmer and Pignatiello13

provided change point estimates for the parameters of an autoregressive process of order 1. Zou et al.14

proposed a change point model for monitoring linear profiles with unknown parameters. In this paper, we
consider a step change in the non-conformity level of a geometric process. In high-yield processes where
the level of non-conformity is in the range of part per million, e.g. 1000 PPM, it is common to consider the
number of conforming items until the occurrence of a non-conforming item as a geometric random variable
with parameter p. The non-conformity level p indicates the probability that a randomly selected item does
not conform to predefined specifications. This paper provides an MLE for the period when a change in
the process non-conformity level, p, takes place. The process change model is discussed in Section 2. An
illustrative example is presented in Section 3. Performance of the estimator is investigated in Section 4. The
final section provides our concluding remarks.

2. STATISTICAL MODEL

Consider a process that is initially under statistical control and observations are generated according to a
Bernoulli process with fraction non-conforming p0. It is assumed that the fraction non-conforming p0 is
in the range of part per million. Many researchers including Xie and Goh15 and Woodall16 have warned
about using the traditional p chart when fraction non-conforming is very low. The reason lies in the fact that
low level of non-conformity requires a relatively large sample size in order to detect shifts in the process
non-conformity level promptly. To overcome the large sample size dilemma, it is recommended to consider
the number of conforming units until a non-conforming unit is generated as a geometric random variable
and apply a geometric control chart to control the process non-conformity level, i.e.

g(x; p) = p(1− p)x−1, x≥1

G(x; p) = 1−(1− p)x
(1)

where g(·) and G(·) are the p.d.f. and c.d.f. of a geometric random variable, respectively, and p is the
process non-conformity proportion.
Control charts based on the geometric distribution, which were initially developed by Calvin17, were

further studied by several researchers such as Kaminsky et al.18, Nelson19, Quesenberry20, Xie and Goh21,
McCool and Joyner-Moltey22 and Xie et al.23.
Suppose that at an unknown point in period �, referred to as process change point, process non-conformity

level changes from p0 to p1=�p0, where � is the magnitude of the change. Values of �>1 represent
deterioration in the non-conformity level and values of �<1 represent an improvement in the non-conformity
level. We also assume that once the process shifts from the in-control state p0 to an out-of-control state p1,
it remains at the new level until the source of the assignable cause is identified and eliminated.
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Let us define period i as the time interval between the (i−1)st and i th non-conforming units and Xi as
the number of inspected units until a non-conforming unit is observed in the period i . It is well known that
Xi follows a geometric distribution with parameter p0, where p0 represents the in-control non-conformity
level. Suppose at period T a signal is generated by a geometric control chart. Hence, LCL≤ Xi ≤UCL for
i<T and Xi <LCL or Xi >UCL for i=T . It is assumed that no false alarm is generated by the chart.
Therefore, observations X1, X2, . . . , X� belong to the in-control process with fraction non-conforming p0,
while observations X�+1,X�+2, . . . , XT come from the out-of-control process with fraction non-conformity
level p1. It is now desired to identify the period � at which the change has taken place in the process. The
following section provides a numerical example through which the procedure for estimating the period � is
presented.

3. AN ILLUSTRATIVE EXAMPLE

Consider a process with an in-control non-conformity level of p0=0.0005. Since the process non-conformity
level is very low it would be appealing to use a geometric control chart. Based on the control limits provided
by Xie and Goh21 for geometric control charts, we obtain the following values for the upper and lower
control limits when type one error probability (�) is equal to 0.0027:

UCL = Ln(�/2)

ln(1− p0)
= Ln(0.0027/2)

Ln(1−0.0005)
=13211.99

LCL = 1+ Ln(1−�/2)

Ln(1− p0)
=1+ Ln(1−0.0027/2)

Ln(1−0.0005)
=3.70

(2)

Thus, if Xi<4 or Xi>13211 the chart signals an out-of-control condition, indicating a change in the process
non-conformity level.
The change point estimator proposed here for the period when the step change occurred in the process

non-conformity level is based on the MLE method. When the geometric control chart signals an out-of-
control condition, the proposed method can be applied to determine the period when the step change occurred
in the process parameter p0. The period when the step change occurred is that value of i (0≤ i<T ) that
maximizes

Li = i Ln

(
p0(1− p̂1,i )

p̂1,i (1− p0)

)
−SXi,T Ln

(
1− p0
1− p̂1,i

)
+T Ln

(
p̂1,i

1− p̂1,i

)
(3)

where p̂1,i =(T −i)/SXi,T is the estimate of process fraction non-conformity level and SXi,T =∑T
j=i+1 x j

is the sum of inspected units in the period i+1, i+2, . . . ,T , respectively (see Appendix A for details).
The value of i that maximizes Li would be the estimate of the last period from the in-control process and

p̂1,i would be its corresponding estimate of the changed fraction non-conformity level.
Now we present a simple demonstration of the method through a numerical example. Table I gives the

number of inspected units, Xi+1, the values of p̂1,i and SXi,T , respectively, for i=0,1, . . . ,23. According to
this table, the geometric control chart signals a change in the process non-conformity level at period T =24.
To determine the period when the step change occurred, one needs to check the above table for the

largest value of Li . The largest value of Li corresponds to period 10, indicating that the change in
the non-conformity level has most likely occurred at this step. This means that our estimate of �, the
period when the step change occurred in the process non-conformity level, would be �̂=10. Hence, the
process engineer should check his/her records for an assignable cause that occurred most likely around
period 10.
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Table I. Change point estimator computations

Period no. i Xi SXi,T =
T∑

j=i+1
x j p̂1,i =(T −i)/SXi,T Li

1 0 3070 21818 0.0011 −176.6
2 1 1345 19167 0.0012 −175.5
3 2 679 16923 0.0013 −175.4
4 3 5378 17500 0.0012 −175.8
5 4 2345 11765 0.0017 −171.6
6 5 2188 9048 0.0021 −169.7
7 6 1954 6923 0.0026 −167.2
8 7 843 5000 0.0034 −164.2
9 8 1506 4103 0.0039 −163.5
10 9 280 2586 0.0058 −159.4
11 10 293 2333 0.006 −160.4
12 11 28 2031 0.0064 −161.2
13 12 131 2000 0.006 −163.6
14 13 300 1864 0.0059 −165.3
15 14 154 1563 0.0064 −166.2
16 15 327 1429 0.0063 −167.8
17 16 211 1096 0.0073 −168.4
18 17 302 875 0.008 −169.6
19 18 15 577 0.0104 −169.9
20 19 221 562 0.0089 −172.7
21 20 242 342 0.0117 −173.6
22 21 30 100 0.03 −173
23 22 68 70 0.0286 −176.3
24 23 2 2 0.5 −176.2

4. PERFORMANCE EVALUATION

The performance of the proposed estimator for the period when the step change occurred in the non-
conformity level is investigated through a Monte Carlo simulation study. Using a geometric distribution,
100 observations from an in-control process with p= p0 are first generated.
Observations with Xi value exceeding either of the control limits are considered as false alarms, since

the process is in-control. In case a false alarm is encountered in a simulation run, it is treated in the same
way that one would treat it in an actual process. In other words, when a false alarm is encountered at a
period i<�, the control chart is restarted and all previous observations are omitted, while the scheduled
change point does not change. It is rational to exclude such observations from the calculation since clearly
the period of change is not prior to the false alarm period. Therefore, in simulation runs where a false alarm
occurs, the number of observations considered in estimating � is less than 100.
Starting with period 101, a shock was induced to the process, changing the non-conformity level from p0

to p1=�p0. We then generated enough observations until an out-of-control signal was detected. From this
point on, the estimate for the period when the step change occurred, �, which should be close to 100, was
computed and recorded. Furthermore, to estimate the expected period when the first alarm is given by the
geometric control chart (Ê(T )), we recorded the period number in which the signal had been detected. This
process was repeated 10 000 times for p0=0.0005 and for different values of �. The average and standard
error of the 10 000 estimates of the period when the step change occurred, namely ¯̂� and Se( ¯̂�), along with the
estimation of the expected period when the first alarm is given, Ê(T )=ARL+�, are presented in Tables II
and III for different magnitudes of increases (�>1) and decreases (�<1) in fraction non-conformity level,
respectively. The average run length (ARL) in the above expression for Ê(T ) refers to the number of points
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Table II. Average change point estimates ( ¯̂�) and standard error using
p0=0.0005, �=100, p1> p0 and N =10000 independent simulation runs

p1 0.0006 0.0007 0.0008 0.0009 0.001

¯̂� 164.50 106.38 99.72 98.27 98.46
Se( ¯̂�) 1.223 80.4462 0.2629 0.1744 0.1348
Ê(T ) 565.85 543.45 510.75 477.38 452.61

Table III. Average change point estimates ( ¯̂�) and standard error using
p0=0.0005, �=100, p1< p0 and N =10000 independent simulation runs

p1 0.0004 0.0003 0.0002 0.0001

¯̂� 149.09 105.47 100.65 99.59
Se( ¯̂�) 0.8058 0.2152 0.1028 0.0669
Ê(T ) 248.81 149.29 113.69 103.70

plotted on the control chart before a signal is observed and it can easily be obtained by subtracting �
from Ê(T ).
Table II reveals that a 40% increase in the fraction non-conformity level (p1=0.0007) would be detected

by the geometric control chart on average of 443.45 periods after the change has actually occurred in the
process. However, the MLE provides an average estimate of 106.38 for the period when the step change
occurred in fraction non-conforming, which is very close to the actual change point of 100. The standard
error of the estimates for this case is Se( ¯̂�)=0.4462, which is relatively small. The results in Table II indicate
that the estimates for period when the step change occurred get closer to the true value as the size of the
shift in the process non-conformity level increases.
According to the results in Table III, the geometric control chart signals on average 49.29 periods after

the process fraction non-conforming drops by 40%, i.e. p1=0.0003. However, the change point estimator
performs relatively well by yielding 105.47 as the average estimate for the period when the step change
occurred. The results in Table III reveal that the performance of the MLE improves as the value of the
fraction non-conforming decreases. In other words, as the deviation from the in-control value of fraction
non-conformity level increases, the standard error of the estimates decreases.
We now consider the frequency with which the change point estimate is within m periods of the true

change point form=1,2,3,4,5,10,15,20,25,30,35,40 and 45. The results from the same simulation study
for the increases and decreases in the process fraction non-conformity levels are given in Tables IV and V,
respectively.
Table II shows that for a 40% increase in the fraction non-conformity level (p1=0.0007), the control

chart yields an ARL of 443.45. According to Table IV, the proposedMLE estimates the true change point 4%
of the times correctly when p1 is equal to 0.0007. The change point is estimated 25.88% of the times within
five periods of the process change point. Similarly, for a 60% increase in the fraction non-conformity level
(p1=0.0008), the control chart yields an ARL of 410.75. For this step change, the proposed MLE estimates
the process change point 7.54% of the times correctly. The change point is estimated 67.03% of the times
within 15 periods of the process change point. The results in Table IV indicate that the performance of the
estimator improves as the magnitude of the change increases.
Table II indicates that for a 40% decrease in the process fraction non-conformity level (p1=0.0003),

the control chart ARL drops to 49.29. For a step change of this magnitude, according to Table V, the true
process change point is estimated 8.13% of the times correctly and in 41.48% of the times the change point
is estimated within five periods of the true process change point. For a 60% decrease (p1=0.0002) in the
fraction non-conformity level, the control chart yields an ARL of 13.69 and the true process change point
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Table IV. Precision of the estimator with p0=0.0005, �=100 and p1> p0 using 10 000 independent simulation runs

p1 0.0006 0.0007 0.0008 0.0009 0.001

P̂(�̂=�) 0.0124 0.0400 0.0754 0.1071 0.1455
P̂(|�̂−�|≤1) 0.0318 0.0978 0.1701 0.2268 0.2946
P̂(|�̂−�|≤2) 0.0528 0.1440 0.2424 0.3239 0.4041
P̂(|�̂−�|≤3) 0.0702 0.1884 0.3063 0.3973 0.4859
P̂(|�̂−�|≤4) 0.0869 0.2247 0.3592 0.4588 0.5513
P̂(|�̂−�|≤5) 0.1038 0.2588 0.4050 0.5081 0.6066
P̂(|�̂−�|≤10 0.1673 0.4824 0.5652 0.6896 0.7698
P̂(|�̂−�|≤15) 0.2247 0.5578 0.6703 0.7871 0.8561
P̂(|�̂−�|≤20) 0.2726 0.6151 0.7425 0.8472 0.9087
P̂(|�̂−�|≤25) 0.3203 0.6658 0.7979 0.8857 0.9385
P̂(|�̂−�|≤30) 0.3611 0.7060 0.8386 0.9146 0.9580
P̂(|�̂−�|≤35) 0.3947 0.7060 0.8686 0.9376 0.9696
P̂(|�̂−�|≤40) 0.4259 0.7419 0.8910 0.9523 0.9773
P̂(|�̂−�|≤45) 0.4619 0.7691 0.9122 0.9632 0.9827

Table V. Precision of the estimator with p0=0.0005, �=100 and p1< p0 using 10 000 independent simulation runs

p1 0.0004 0.0003 0.0002 0.0001

P̂(�̂=�) 0.0179 0.0813 0.2254 0.4514
P̂(|�̂−�|≤1) 0.0433 0.1779 0.4119 0.6915
P̂(|�̂−�|≤2) 0.0668 0.2501 0.5311 0.8106
P̂(|�̂−�|≤3) 0.0875 0.3138 0.6197 0.8728
P̂(|�̂−�|≤4) 0.1070 0.3708 0.6829 0.9125
P̂(|�̂−�|≤5) 0.1238 0.4148 0.7302 0.9359
P̂(|�̂−�|≤10) 0.2042 0.5860 0.8752 0.9695
P̂(|�̂−�|≤15) 0.2725 0.6957 0.9315 0.9780
P̂(|�̂−�|≤20) 0.3304 0.7747 0.9574 0.9823
P̂(|�̂−�|≤25) 0.3806 0.8277 0.9719 0.9860
P̂(|�̂−�|≤30) 0.4266 0.8703 0.9785 0.9880
P̂(|�̂−�|≤35) 0.4700 0.8996 0.9826 0.9894
P̂(|�̂−�|≤40) 0.5050 0.9228 0.9859 0.9912
P̂(|�̂−�|≤45) 0.5379 0.9396 0.9878 0.9929

is estimated 22.54% of the times correctly. Simulation results indicate that the change point is estimated
73.02% of the times within five periods of the true process change point. We can see that by increasing
(or decreasing) the magnitude of a change, the probability of accurate estimation of the true change point
increases.

5. CONCLUSIONS

When a control chart signals the presence of a shift in a process, process engineers begin a search to identify
the source(s) of the assignable cause. A dilemma for the process engineer at this point is to identify the
time when the process actually changed. Unfortunately the time of the change is not usually known to the
process engineer. However, if he/she knew when the actual step change occurred in the process level, it not
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only limits the scope of the search window to just a few observations but also helps in the effective use of
resources to eliminate the source(s) of the assignable cause.
In this paper, an estimator based on MLE method and geometric distribution was developed to identify

the period when the step change occurred in the fraction non-conformity level in high-yield processes. The
performance of the proposed estimator was investigated numerically using shifts of different magnitudes
in the non-conformity level. The results indicate that the estimator is reasonably accurate and precise for
estimating the period when the step change occurred in the fraction non-conformity level.
The proposed method is simple, effective and can be easily implemented. This makes the method appealing

to process engineers who work with high-yield processes.
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APPENDIX A

In this Appendix, we consider the derivation of the MLE of �, the process fraction non-conforming change
point. MLE techniques are discussed in Casella and Berger24, for example. We will denote the MLE of the
change point � as �̂ (0≤�<T ). Given the number of conforming items in the observations X1, X2, . . . , XT ,
the MLE of � is the value of � that maximizes the likelihood function or, equivalently, its logarithm. The
likelihood function is

L(�, p1|X) =
�∏

j=1
p0(1− p0)

x j−1
T∏

j=�+1
p1(1− p1)

x j−1

L(�, p1|X) = p�
0(1− p0)

∑�
j=1 x j−� pT−�

1 (1− p1)
∑T

j=�+1 x j−T+�

The logarithm of the likelihood function is

LnL(�, p1|X) = �Ln p0+
(

�∑
j=1

x j −�

)
Ln(1− p0)+(T −�)Ln p1+

(
T∑

j=�+1
x j −T +�

)
Ln(1− p1)

LnL(�, p1|X) = �Ln p0+
(

T∑
j=1

x j −
T∑

j=�+1
x j

)
Ln(1− p0)−�Ln(1− p0)

+(T −�)Ln p1+
(

T∑
j=�+1

x j −T +�

)
Ln(1− p1)

The value of p1 that maximizes the likelihood function is p̂1,� =T −�/
∑T

j=�+1 x j .
The maximum likelihood estimate of the change point (the last period from the in-control process) � is

�̂=argmax
0≤i<T

{Li }

where

Li = i Ln

(
p0(1− p̂1, j )

p̂1, j (1−P0)

)
−

T∑
j=t+1

x j Ln

(
1− p0
1− p̂1, j

)
+T Ln

(
p̂1, j

1− p̂1, j

)
and

p̂1,i = T −i∑T
j=i+1 x j
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