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ABSTRACT

This report describes an analysis of multistage inter-
connection networks where queues are placed in the
bxb crossbar switches on which the networks are
based. A queueing analysis of the network is
presented, and results are obtained using approxima-
tions that are appropriate for network operation
parameters of primary interest. From the analysis
communication delay time and network throughput
are derived. Using the results obtained, queue
lengths may be chosen so that the network satisfies
certain performance requirements.
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1. Introduction.

In high performance multiprocessor computer systems, a high capacity
communication channel is typically required if processor communication/data
movement is not to be a system bottleneck. Interconnection networks have
been developed to provide such a high capacity channel [Clo53, Ben65, GoL73,
Law75, Pat79]. Operation performance of these networks is a critical measure-
ment of their usefulness (for example, one type of network may yield totally
unacceptable performance under certain operating conditions). This report
describes an analysis of a class of packet switched multistage interconnection
networks appropriate for use in multiple instruction, multiple data stream

(MIMD) multiprocessor systems.

Section 2 describes the multiprocessor model assumptions and the perfor-
mance measures to be derived (several more are embedded in the analysis).
Section 3 describes the queueing analysis (and approximations) of the model
and derives expressions for the performance measures developed in section 2.

Section 4 is the conclusion.
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2. System Model, Operation, and Assumptions.

This section describos the multiprocessor system to be modeled. System
operation in the context of the model is described and simplifying system

operation assumptions are described.

The multiprocessor architecture is shown in Figure 1. The system con-
sists of processing elements (PE's) connected by an interconnection network.
The model described may also be used for analysis of processor-to-memory

module connected systems if slight extensions to the model are made.

The system to be modeled is a packet switched system, in which n PE's
(n =b*b =2* k an integer, where z is the number of stages in the multistage
interconnection network), or packet sources, emit communication packets of
constant length. A packet consists of a destination address field and a data

field For example, a packet may be a memory word or several memory

Interconnection Network

PE 1

Figure 1. System Architecture.
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words, When a source emits a packet, the packet is destined for one of the n

sink devices (PE's here), i.e., packet broadcasting is not modeled here.

There are two network performance measures to be found, they are

measures of communication delay time and network throughput. They are:

(1) Packet delay time (PDT) - this is the average time required for a packet to
reach its destination. PDT is the average delay encountered by a packet
from the time of emission from its source to the time of arrival at its

destination.

(2) Network throughput (NTP) - this is the average rate of packet flow out of

the network at the destination side,

The interconnection network for this analysis is assumed to have the
unique transmission path property. That is, for any transmission path required
there exists only a unique set of switch settings that will yield the transmis-
sion path; in other words, there is only one choice of a transmission path for
every route (from PE to PE) required. Multistage networks which satisfy this
property are those that are bit controlled, i.e., where each stage in the network
determines its switch settings by using a unique bit field from the desti-
nation address tag. Furthermore, these fields are mutually disjoint. Multis-
tage networks which exhibit this property include Omega, Delta and Generalized
Cube Networks. The requirement of unique transmission paths will be seen

later in the network analysis.

2.1. Assumptions.

(1) All processors behave independently. In particular this means interproces-

sor data dependencies are not modeled here.
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(2) Each processor emits packets as a Poisson process with rate \. Thus pro-
gram behavior is modeled as follows: a program executing on processor i

emits packets at random times, the average time between packet emissions
is N This is simply a continuous time extension of discrete time processor

models [SkA89, Str70, Bha75, BaS78, Hoo77, SeD79, Pat79, Rau79, MaMB1a]
where the packel emission process is a Bernoulli process. In discrete time
processor models, it is assumed that processors emit packets during sys-
tem cycles with probability p (which may be viewed as the fraction of
instructions that are communication instructions, such fractions might be
characterized by Gibson mix relative frequencies). The continuous time
model is simply an extension of this idea, in fact it is the process that arises
if the system cycle time goes to zero (with an appropriate adjustment in p)

in the discrete time model.

(3) When a program emits a packet, the selection of a destination sink is
assumed to be uniformly distributed over all sink devices. This is an
approximation, since a processor will not emit packets destined for itself.
Removing this approximation makes analysis unduly complex without gain-

ing much.

From the bit controlled property, and the uniform distribution assumption,
it may be seen that for every packet traversing the network (at stage 1), its
position at the next stage is distributed uniformly over all outputs of the next
stage switch to which it is routed (each bit of the address field is either 0 or 1
with equal probability). Thus packet routing at any stage is independent of all
other stage routings. This allows a stage-by-stage queueing analysis to be
done. Figure 2 shows the queueing network configuration of a bxb crossbar

switch on which the multistage networks considered here are based.
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bxb Crossbar Switch

Figure 2. A bxb Switch with Queues.
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3. Network Queueing Analysis.

This section analyzes interconnection network behavior to find PDT and

NTP.,

The analysis will be performed in a stage-wise fashion, starting with the
source end of the network. The first stage will be analyzed (note that all queues
in a given stage behave similarly due to symmetry in processor emission rates
and uniform destination distributions) to find queue behavior. The results of
the first stage may then be used to find second stage behavior. Likewise for all
successive stages. Approximations will be made in order to make the analysis

tractable.

Again, each packet entering a bxb switch is randomly destined (with uni-
form distribution) for one of the b output queues. All inputs to all bxb switches
in the first stage are Poisson processes with rate A. Thus, by decomposition and

superposition of Poisson processes, each queue in the first stage sees a Poisson

process with rate i: % = A at its input. Figure 2 shows the situation.
=1

The exponential servers model randomness associated with the time
required to move a packet from one stage to the next. Synchronous queue
servers take a non-zero amount of time to move a packet to the next stage.
Thus, multiple packets may try to enter a queue simultaneously (in a synchro-
nous design), some of which are delayed. The use of an exponential server is an
attempt to model this interstage data movement delay, without unduly compli-

cating the analysis.

All queues in the first stage behave identically and independently; hence, it

suffices to analyze a single queue of this stage.
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3.1. Firsi Stage, Single Qucuc Analysis.

For an M/ M/ 1/ L queue, results from queueing theory are available

[Coo72, GrH74, Kle78]. Let,
Pi = Prik packets in the queueing station] O<k <l

be the steady-state, general-time, occupancy probabilities for a queueing sta-

tion. Then,
4
]
pp = (1Pt O<k<L, p#l, M/M/1/L (1.1)
1 OskslL, p=1, M/M/1l/L (1.2)
L+1
\
A
Where p = —,
P M

Let N be the random variable representing the steady-state number of

packets in a queueing station (N will be subscripted with a queue number later).

E[N] = élkpk

- o[l = (L+1)ph + Lp"*!]
(1 =p)(1 =p"*Y)

p#l, M/M/1/L (2)

u
Wit~

p=1, M/M/1/L

Thus the first stage queue is easily analyzed. For successive stages the

situation is generally more complicated.

Consider the interdeparture process at the output of an M/ M/ 1/ ¥ (*
denotes any queue length) queueing station with Poisson input rate A and Pois-

son service rate u, its probability density is found as follows [Kle76]:

Let E be the event that the queue is empty after a departure and let T be
the interdeparture time random variable. Let f7(t) be the probability density of

T, frg(t) be the probability density of T given that £ occurred, and fr~g(t)
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be the probability density of T given that £ did not occur. Then,

Fr(t) = frg(t)PriE} + fr~p(t)(1 - PriE})
= fr1g(t)po + fr~g(t)(1 — po)
And,

fqv|~g(t) = probability density of the server
Jri~g(t) = pe
Jrix(t) = probability density of service time plus arrival time

Taking Laplace transforms,

¢ = A 7] _ M
Jr'(s) Pols i x 3+/~‘+(1 Po)s+“
So
4
l-p—po Po
—— ueH e e ™M
fety=] 1P H 1-p p#1 (3.1)
1 24, -t L —~put p=1 (32)
Lol Wt ¥ T ke
\

Note that here instead of using m the departure point probability of an empty
queue, the asymptotic limit (as L), i.e., the general time probability, is used.
This makes the density above approximate but allows bounds on the approxima-
tion regions (see later) to be derived in a simple manner, Note that the inter-
departure process is a renewal process with a non-memoryless interdeparture
time distribution. From this it may be seen that processes input to second

stage queues are not renewal processes [Cin75] unless (to an approximation):

PoR1=p poR0 or p=1 with Z{T A 1. If processes input to queueing sta-

tions are not renewal processes, the analysis is very complex and simulation

may be a better approach for obtaining accurate results.

The three cases pg® 1 —p, pg® 0, and A = u correspond to the following

situations:
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Case ]
Po N 1 — p corresponds to a lightly loaded M/ M/ 1/ L queueing station with
an output process that is close to a Poisson process with rate A. Note that

PoN 1 —-p is also an approximation to an M/ M/ 1/« queue, which has
Po=1-p. Since -:L; is the average time required for a packet transfer

1

between stages and Y

is the average time between packet emissions (i.e.,

message emissions) from processors, 4 > A in a typical multiprocessor sys-
tem running in an independent processor, MIMD mode. ux models a high
rate of operation while A models a low rate of operation (relative to w). Thus
the lightly loaded situation is the one expected to be applicable in most sys-

tems,

Case II
Po N 0 corresponds to a saturated M/ M/ 1/ L queueing station, here the
output process is close to a Poisson process with rate 4 because the queue

is empty with low probability.

Case III
p =1 (A= u) corresponds to an M/ M/ 1/ L queue where the input and out-
put rates are about the same, In this case, the second expression (3.2) may
be used to see that for L large (to be described later) the second term
dominates the first so the output process is approximately Poisson with

rate u.

Notice that in these three cases, first stage output processes are approxi-

mately Poisson so the second stage has approximate Poisson inputs.

Obviously, there is some inaccuracy involved unless po=1-p, pg=0, or

p=1 with L » = The regions of validity for the approximations may be
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characterized in terms of allowable values for pg, p, and L.

First consider the region for which the lightly loaded M/ M/ 1/ L approxi-
mation applies. Since an M/ M/ 1/« queue has a Poisson interdeparture pro-
cess with rate A, a simple bound on the difference between Poy,usis. 804
Poy,us,, Will suffice (only pg affects fr(t) for both M/ M/ 1/L and M/ M/ 1/ =
queues when p # 1) for a bound on error. Define

the maximum allowable difference between

D =1 Powsusie®0dPoy,y,,, , inrelative

error with respect topg, ., .. -

Then
Po — Py -
.D > M/M/71/L M/H/1/ (4)
Powsusise
And
1 -—
T:‘;ign = (1 -p)
D=
1=p
2
That is, p < -b-—‘l_—z-l- B i satisfy (4). Thus selecting D and L places a bound on

the region of validity (with respect to D) for the light loading approximation.

Next consider the region of the saturation approximation validity. Define

maximum allowable value for
Po,, =1 Po ie,itis the maximum

non-zero value deemed allowable,
Then,

> —~=P

pomu 1 __pL+l
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So for all p = pg the saturation model will hold with pg < po_,.. Po is the solu-
tion to

Po, (1 =p§*) +po=1

This establishes a space of saturation approximation validity where L and pg,

are the parameters.

Finally consider the p ® 1 case. Here it is desirable to require an approxi-
mate Poisson output process because a renewal process is needed at the next

queue input. This approximation is satisfied as follows: Let

C = minimum coefficient of the ue ™ term in (3.2).

Then C < -L—f_i-i- for the p & 1 approximation to be accurate with respect to the

chosen C.

Figure 3 shows the regions of analysis validity for po =D =.05, C = .95

As can be seen from the graph L = 30 3 the analysis is relatively accurate for

almost all p.

3.2. Network Analysis.

Using the approximations from section 3.1, the network will now be

analyzed to find PDT and NTP from section 2.

Since queues are finite in length, packets will be rejected when they
attempt to enter full queues, Due to this effect, packets may be lost at any stage
of the network. That is, the network does not exhibit the blocking property
[DiJB0]. When a packet is lost, it is routed back to its source to be resubmitted
(alternatively, buffers could be placed between stages for lost packets, but this
amounts to lengthening queues). Figure 4 shows the return path configuration.
The submission/resubmission process resembles a Bernoulli process where the

probability of event occurrence is:
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1.21 Case III
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Figure 3. Approximation Validity Regions.

p = Pri{ packet is not rejected at any queue }.

This approximation is supported by discrete time analysis and simulation

[MaMB1a].

The average number of trials before the first event occurrence in a Ber-

noulli process is:

E[number of trials before event occurrence] = i-p

Define the following:

Pii = Prik packets in queue i at an arrival }

‘ random variable representing the time spent
T; = by a packet in queue i, service time
is included in this measurement.
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Stage 1 Stage z
»m‘ -------- ‘————»
Input paths Output paths
- J l
Rejected packet paths

Figure 4. Resubmission Path.

the average time from packet emission

F[Treject] ={ to return when the packet is lost (rejected)

somewhere in the network.

Then,

p =101 = pu)

=1

With the Bernoulli submission/resubmission approximation

] —
PDOT® Y E[T] + —1—;,—}3 E[ Trejoct]

And
E[Trejact] =(1 "ler)PLaE[Tl]
(1 = p01)(1 = pre)prs(E[T,] + E[Te))

+
4+
+

-1

1
2 |J=

1 =) = pre) (1 =pra-1)Pra(BIT] + - + E[T, ]

-1
E[Tj]]PLi}I(l ~ P1j) z=2
1 =1

8
)()

Here resubmission processing by sources is assumed to be instantaneous. See
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[MaMB1b] for a similar approximation. The Bernoulli resubmission process
approximalion is expecled Lo hold when:

(1) p is small enough that py;'s are small (this is case I)
() and py;'s are the same for all packet submissions and resubmissions.
Case 1 Analysis.

For the light loading approkimation Figure 5.a shows a series of 2 queues that
represents a transmission path through the network. This equivalent series of
queues relies on the equal rate, uniform destination distribution, and unique
connection path assumptions. The analysis may be extended (by considering
Poisson flow rates) to accorﬁmodate nonequal, general destination distributions
but the analysis is then specific to the network topology, network rates and dis-

tributions considered,

From Little's formula

E[N;]

FliT;] = i=1,2, , 2

Al = = o)

From (1.1)
1 -
PL =Py = ——-‘-’—1_pm pt i=1,2, .z
~ N A
1—pL=1—pL¢= 1~.pL+l 1'=1l2l |z
So from (2)

1 = (L+1)p* + Lpt*!

UL = B = = o)

i=1,2 ',

And,

ot |°
p =101 -p1) = [f—_—;‘%:;]

i=]
From (6)
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A A A
(62)
>—ﬂ—j_l_|_~®—&:_l_l_—@— ----- Q—w 1 HE—
A ‘ W I

(5b)

Figure 5. Equivalent Queue Series’.

E[ Trcjact] = PL ‘22(12 - 1)E[T](1 ..pL)’l-l
= puE[T] L k(1 - pu)*

1 — 281 4+ (2-1)8°
(1 -8)°
= _1_% (1- 2851 + (2-1)8%)E[T] 222

(CL1)

= E[T)(1 -8B

Where,
1 - pt
B=1-p,= 1——pL“
p =g
Therefore,
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PDT = |2 + ﬁ%;; (1 -2 + (2=1)8%)|B[ T] (CL2)

To find NTP, simply subtract the rate of network packet loss from nA, the

packet input rate.

.
NTP =n\ - Y nApy
=1

1+ (z=1)pl+! — zpk
1 __pL+1

= n\

PDT and NTP for n = 84, b = 4, verses p for several L are shown in Figure
8. Note that as L » =, NTP » nA as would be expected because no packets are
lost when L is very large Note also that as L » = (or L gets large) the cost of the
network becomes larée for both delta networks and crossbars (i.e., the largest
cost factor of the ne:twork becomes the queues) so it is actually less costly to
use a crbssbar because only n. queues are required whereas for mliltistage net-
works nlogyn queues are needed. With a single stage, PDT is considerably
better also. For a single stage, analysis is generally much more flexible

[MaMB1b].
Case II Analysis.

From Figure 5.b, the equivalent approximate series of queues.

_ FE[N|]
Elnl= A1 =pr1)
1= (L+1)pt + Lp&+!

u(1 = p)(1 - p*)

E[Ni]=§ i=2,38, , 2
E[N{]
Fl T,
[7:] #(1 = pg)
= Lzzl i=28 -,z

Therefore,
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SO.W

50_ 4

NTP —»

- 40.71

30. 1

20.1

10.1

00 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

Figure 8. PDT and NTP forn =64, b = 4.

E[Tnjeat] = E[TJ(1 ~pr)(1 = (1 —pr2)* ")
' —\Z~- - z2-2 2~ - z-1
b BTl = pr)(1 - ppg) B0 = Pra) B + (2 =201 - Pro)

Prz
] - L
-p
_ l—pL L -1
p jL-—pL’rl L+

Finally, from (5)

PDT = E[T,] + (2 = 1)E[Ts] + '1—;'£ E[Traject]
Again, find NTP from
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Z
NTP =nN = nApLy — 2 nupLn
: i=R
N/
1=-p
Provided NTP > 0 (incorrect use of the approximation can result in NTP <0, in

z -1
o )

which case NTP ~ 0 in actuality). If a detailed analysis were available, this
requirement would be satisfied because processes between stages would not be

approximate. |
Case I Analysi's.

Here the equivalenl series of queues is again shown by Figure 8.b with A=pu.

Y _
E[TJ_}"I.T'&] 2/4‘/ % 1l2) ) Z
F[Tyyject ] may be found using (C1.1) with
_ L
A= T+

p=p
And PDT is given by (CI.2). Finally,

_ K

NTP =nA |1 7+ 1

. Provided 0= 1 — <1,

z
L+1
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4. Conclusion.

An analysis of a class of packet switched, multistage interconnection net-
works thal exhibit the bit cpntrolled property was presented. The analysis (with
approximations) allows network communication delay and network throughput
to be evaluated for certain combinations of queue lengths, interstage transfer
rates, and processor packet emissions rates. From the analysis, queue lengths

that satisfy performance requirements may be chosen.
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This is intended as an addendum to A Queueing Model of Delta Networks
(SEL Report No. 159). where it was assumed that packets rejected from multis-
tage interconnection networks (ICN's) are sent back to their source for resub-
mission. This approach "penalizes” packets lost in the latter stages of the net-
work more severly and may be misleading in overestimating actual PDT {packet
delay time) for ICN's which do exhibit blocking. This addendum describes a
modification which may be more realistic in predicting PDT when blocking

occurs.

As an approximation to the rejection/blocking phenomenon assume that a
packet lost in state i (R<1i < 2) is sent back to the input of its stage i — 1
queue. This should be a feasible approximation because a packet leaving stage
i — 1 leaves an open position in its queue, and if it is rejected at the input of
stage i, it may return to stage i — 1 where its position will still be available with
high probability. 1f the rejection is practically instantaneous, then by the
approximation of Poisson processes, another packet will arrive at the same time
with probability 0 (or close to it). Hence the assumption of a single stage rejec-

tion delay seems reasonable.

Revising the Bernoulli resubmission approximation of equation (5) of SEL

159:
X | _ Pu
PDT & Y E[T] + 3, | = B[ Ti].
=1 iz2|l —Pu
I pL; is the average number of times that a packet must try to enter a queue
—Pnu

in stage i before it is accepted. Each rejection takes F[T,.,] time units as its

mean Lime for retry.

Or,
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PDT ~ E| T]+2 1+—2——-] [Ti-1]

{=2 1-p
E[Ty]

=F[T, ]+ —_—
[ '] =2 L — P

Which leads to:

Case ]

E[T\]=E[T] i=1..2

1 -
PL =P = ————3—1 __p“,p" i=1,.,2

So

PDT = E[T] + [-%I:Bglﬂ](z — D)E[T]

=+ (2 - 1)[-1—5_—_2‘-:{1”15[7*]

Case 11

E[T,] z": E[T,]
1 —Pl,z =3 1 — Pr2

E[Tl] z ~-R .
= + + 1|F|T
1~ Pre [1"PL2 [Tl

PDT = E[T,] +

Case 11l is handled in a similar manner as discussed in SEL 159.

This technique for approximating network blocking seems to be a more rea-

sonable technique than previously presented.

Note on SEL 159



