THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY

A STOCHASTIC MODEL OF
PARALLEL AND CONCURRENT
PROGRAM EXECUTION ON MULTIPROCESSORS

B. A. Makrucki
T. N. Mudge

CRL-TR-3-82

OCTOBER 1982

Electrical and Computer Engineering Department
Room 1079, East Engineering Building

Ann Arbor, Michigan 48109

USA

Tel: (313) 763-8000

1Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the funding agencies.

ABSTRACT

This report summerizes a model developed to allow the evaluation of parallel
program execution on multiprocessors. The model is intended for MIMD algo-
rithms in which the individual processors are coupled through their programs’
interaction with memory. The meodel is not intended for SIMD algorithms.
Specifically, estimates of processor utilization, execution times of programs or
subprograms, and memory bandwidth can be obtained from the model. Earlier
research has concentrated on the last of these quantities and a body of
research, which might be termed "memory interference models", has evolved.
The work reported here goes one step further by allowing the programs to be
included in the model. Consequently questions about the performance of the
processors running the programs can also be answered.

TABLE OF CONTENTS

IR § o R oY AU L] 8 U) « WA

1.1. Modeling vs. Simulation and Program Testing.cc..oee

1R, Previols ReSUILS. oot e e e

1.2.1.

1.2.2.

Discrete Time Models. oo e,

Continuous Time Models. ..ovviirii e,

1.8. General Modeling Ideas.coooiiiiiiiii

2. System Configuration and Operation.ccccooivviiiiiiiiiniii

2.1, System Configuration.ccoiiiiviiiiviiic i,

R.2. Dystem Operalion.ooooivviiiiiiiiori i

3. The Semi-Markov Process (SMP) Model.ocoovvvvviiiiiinrnniiiiiiineennnnnnn,

3.1. Processor/Program Modeling.coooovviiviiiniiinniiiiiiiiiiniiinenin,

3.2, Performance M eaSUle S, oo e e

3.2.1.

3.2.%.

3.2.3.

3.2.4.

3.2.5.

Program Execution Time; ..
Processor Utilization. ..o,
Memory Utilization.ccoiiiiviririnie e
Connection Bandwidth.cocoiii e,

Queue Lenglhs.

3.3. SMP Model Paramelers. . oo e e e

4, Fundamental SMP Relationships.cooviivviiviiiiirieie e s

ii

12

17

17

_2

R3

_4

26

26

2B

29

33

5. Measure Derivation in the SMP Model. ..o,

5.1. Program Execution Time.cooooiiii
5.2, Processor Utilization.ccccoiivviiiniiiiiinnnn, e
5.3, Memory Utilization.coocoviiiiiiiiri e
5.3.1. The Product Form Approximation (PFA).ooooerverinniennn,
5.3.2. The Sum Form Approximation (SFA).oocooiiiiiiinnnnnn,

5.4. TConnection Bandwidth. ...,
8.5, Queue Lengths. ...
8. Computation of Sojourn Times. ...
6.1. The Independent SMP Approximation for Sojourn Times.
6.2. The Simple M/G/1 Computation of Sojourn Times.cc...oeeenne.
7. Examples and Simulations. ...
7.1, Two State Model of Processor Behavior. ...
7.2. The Instruction Storage Example.c.ooiiviii
7.3. State Space Generator Example.ocooiiiii
B, ConClUSIOM. i
B.1. Process Communication.coccoiviiiii
B.2. Transient AnalysSis. ..o
B.3. Non-stochastic and Synchronized Systems.cooooviiiil
B.4. Error Analysis. ...
B.5. State Space Reduction Techniques.c.cooviviiiniiiiiiiiiiiin

iii

36

38

41

41

42

43

44

45

46

46

49

56

56

62

86

74

75

75

75

76

76

B.6. Multipl

e Requests. ...

B.7. Lookahead Applications.cooiiviiiii

9, References.

10. Appendix.

..

...

iv

77

ka4

78

B1

1. Introduction.

In order to increase computing power in an economical fashion, multipro-
cessor computer systems have been developed. Multiprocessor architectures
allow system designers flexibility and typically modularity; computing power
may be added incrementally and over time as system needs grow. Multiproces-
sor systems allow system designers to obtain reliability in a simple manner,
failure of a few processors may often be tolerated. Implementation of mul-
tiprocessoz_"s using VLSI technology makes their use even more attréctive when

compared to very high speed uniprocessor alternatives.

Multiprocessors used in such environments might logically be configured
to run in the MIMD (multiple instruction stream, multiple data stream) mode of
operation. This way, processors may share common random access memory
(RAM) and disk memory space. By making RAM common to all pfocessors in the
system, memory space usage may vary dynamically as user programs require.
A less versatile alternative could consist of processor-memory pairs which com-
municate with each other using simple transmission systems, this could be
termed a tightly coupled computer network. The use of common memory also
allows processors to share data files and data bases which would be stored in

- secondary disk memory.

Multiprocessors may also be used to increase the execution speed of algo-
rithms which exhibit parallel or concurrent components. MIMD systems may be
used to decrease the execution time (over serial execution time) of many algo-
rithms which are inherently parallel. For example, some database‘searching
and artificial intelligence problems lend themselves to a parallel environment.
MIMD systems perform well on algorithms which entail list processing where
elements of lists are to be processed similarly. SIMD (single instruction stream,

multiple data stream) systems work very well on problems where each element

A Stochastic Model of Multiprocessor Behavior

of a list is to be processed identically. SIMD systems are generally not as ver-

satile as MIMD systems.

MIMD system performance is an important characteristic for comparing
alternative system designs, but MIMD system performance often depends on
the programs load used to characterize the system's performance. The quantif-
ication of MIMD performance is valuable in that it may be used as an aid by
MIMD hardware and software designers. For example, a mathematical model
which parameterizes system characteristics such as the number of pfocessors
in the system, the number of memory modules in the system, interconnection
characteristics, and processor-memory speeds could be used to evaluate the

| effects of systems changes. That is, a model may be used to answer questions
such as: how much extra computing power is gained by the addition of another
processor or memory module; if memory speed is increased by a certain
amount, how much faster will the system run; ete. Such questions may be
answered by a mathematical model (of sufficient capabilities) without imple-

menting a system or writing programs to use as tests and simulators.

The complexity of MIMD systems and parallel program execution makes a
mathematical model of parallel/concurrent program execution valuable as a
tool for guiding program design as well as answering system design questions.
F‘or example, in multiprocessor operation, when multiple processors access
system memory, interference occurs and system performance may often be
modeled as being random. Due to these random effects, program design is not
always clear, seemingly trivial program meoedifications may increase system per-

formance. The amount of increase should be obtainable from a good model.

This document describes the present state of such a model that may be
used for the quantification of program execution on a (described) MIMD system.

For simplicity, a single system conliguration will be described (in section 2)

A Stochastic Model of Multiprocessor Behavior

that is believed to be representative of a high-performance MIMD system suited
for parallel program execution and a general purpose environment as would be
seen in a general computer installation. Modifications to the basic model
presented may be made to suit specific system configurations. For example, an
Intel 43R system could be modeled with appropriate changes in the basic model

presented here.

The remainder of the section describes previous work done on multipro-
cessor performance evaluation (for the type of multiprocessor system con-
sidered here) and general modeling concepts. Section 2 describes the system
configuration and operation, including program execution on the system. Sec-
tion 3 describes the model which is based on modeling program execution using
stochastic finite state machines; and the performance measures of interest.
Section 4 is an overview of results from stochastic process theory that will be
used in analyzing the model. Section & derives expressions for the performance
measures described in section 3 based on relationships discussed in section 4.
Section 6 presents two calculations which complete the basic model (as of the
date of writing) analysis. Section 7 presents example uses of the model, and
shows simulation results that were used to verify and test the model's accu-
racy. Section 8 describes several topics for future work related to the basic

model.

1.1. Modeling vs. Simulation and Program Testing.

When a model is constructed, its usefulness must be evaluated against
alternative techniques that may be used to obtain problem statistics. Analytic
models would be of little use if alternative techniques provided more informa-
tion. This section describes alternative performance evaluation techniques
that could be considered: system simulation; and running test programs in

order to design a good parallel program.

A Stochastic Model of Multiprocessor Behavior

Simulation of multiprocessor systems of the type considered here tends
to be costly (section 7 describes a program simulation example) and provides
insight only into the case simulated. Simulation of systems which possess a
stochastic nature often requires several simulator runs in order to obtain con-
fidence intervals; this can be expensive. Simulation of actual program execu-
tion, in general, is expected to be very costly. It is far easier to solve model
equations then it is to simuiate the same situation (assume that the model is
somewhat approximate, as will be seen a model which computes full system

behavior is virtually useless due to computational complexity).

A general model, and a program that solves its equations, may be used to
evaluate specific situations by specifying parameters of the model and running
the model solution program. The alternative simulation approach is to write a
general simulator and use it as the model solution program would be used.
Simulations though are generally expensive to run, especially if they are gen-

eral purpose simulators and good stable statistics are desired.

Another alternative to analytic modeling of program execution on mul-
tiprocessors is to write the program and then conduct tests of the program on
the actual machine. This approach is useful if the machine is available (it may
still be in the design phase in which case an analylic model may be used to
quantify design choice impact, this is a very useful aspect of modeling in itself)
and when the algorithm is easily implemented. The implementation of algo-
rithms on parallel machines is still an area of research and algorithm parti-
tioning is often not obvicus. An analytic model may be used to test various
algorithm partitioning ideas without the necessity of writing a full program (an
actual program would probably be required for a general simulator just men-
tioned and as such is another drawback of the simulation approach to
program /system performance evaluation). For example, the model presented

here does not require an actual program to be written, characteristics of the

A Stochastic Model of Multiprocessor Behavior

program at the flowchart level are used. Even if all characteristics of a given
algorithm partition are not known, approximate values may be used where

needed and meaningful comparisons may still be made.

Analytic models provide insight into system performance that is not
obtainable through other means. For example, closed form special case
results are often obtained from general formulations. Analytic models also
provide details as to the causes of system behavior. Such understanding is not
offered by experimental means. Experiments are useful for verifying and test-

ing analytic models.

1.2. Previous Results.

Multiprocessor models have been developed in an effort to characterize
system performance based on system measurable quantities such as rates of
emission, the fraction of time that an event occurs, ete. Past models have typ-

ically dealt with the relationship between these measurable quantities.

Consider a multiprocessor system composed of P processors, M memory
modules used for data (and possibly instruction storage) and a simple PxM
crossbar connection between the processors and memories. Each processor
may access any of the M memory modules. Previous models have been dev-
ised to study the problem of memory interference. Memory interference has
loosely been termed the interference which processors inflict upon each other
when concurrent access to a common memory module is required. The past
study of memory interference can be categorized into two basic classes:

discrete time models; and continuous time models.

1.2.1. Discrete Time Models.

Most previous models have been of this type; here the system is assumed

to be clocked and the models attempt to obtain performance characteristics

A Stochastic Model of Multiprocessor Behavior

based on presumptions about program execution at the clock cycle (or basic
time cycle) level. [SkA69] was (about) the first published work on a discrete
time model of multiprocessors, they assumed clock cycle level of operation
and modeled the effects caused by memory interference. Their model used
Markov chain techniques and even mcdeled conflict resolution probabilities.
Unfortunately their technique becomes intractable even for systems with 4
processors and 4 memories. Their model requires 85 states for a 4 processor,

2 memory system.

[Str70] introduced another model of basically the same system and
derived closed form results for special cases. [MuMBRa] obtained the same
basic results but generalized them using a simple discrete time meodel.
[Bha?5] formulated an exact computation {for an approximate model, see
section 1.3) and approximations for general sized systems by using Markov

chains.

[SeD78] obtained some approximate results for systems where memory
access patterns tend to latch onto their present meodules, their results are
rather approximate. [Rau79] presents a computation technique based on a

decomposition approximation presented in [BaS76].

In the discrete time classification, in the author's opinion, the most ver-

satile and accurate model so far has been developed in [Hoo77].

1.2.2. Continuous Time Models.

These models are often basically the same as the discrete time models
but approximations are made using ideas from queueing theory [Kle75,
Coo72, TakB2, GrH74]. [BaS78, Smi74] made the appropriate approximation
that for large systems, memory queues may be approximatedb as M/G/1
queueing stations. These results noted that variation of certain system

characteristics (connection time distributions) has a small effect on

A Stochastic Model of Multiprocessor Behavior

performance measures. See section 7.1 for a further explanation.

[McC73] used a Jackson type queueing network to obtain analytic results
for a fully continuous time model. [MaGB1] obtain results using Markov
processes on systems which employ multiple busses as their connection facil-
ity. [MaMB1] used queueing results to model MIMD systems under some sim-

plifying assumptions relieved here.

1.3. General Modeling Ideas.

A fact becomes evident from examining previous work in the area. Known®
work can basically be summed up as follows: approximate
processor/program/memory behavior in a simple manner and then seek an
accurate solution for this model. This approach leads to simplistic modeling of
complex phenomenon with great care taken in solving the simple model. The
model presented herein is believed to be different in that it seeks to model
processor/program/memory behavior as realistically and accurately as possi-
ble, then it attempts to find an acceptable solution to the model. This basic
difference leads to a more realistic and versatile model than previous ones
and even compares favorably with Hoogendoorn's discrete time model. The
model presented here also allows more information about program and system
behavior to be obtained, this is obtained by using a more realistic model of

program execution than previously used.

The model presented here may best be classified as a continuous time
model and as such it seems reasonable that its greatest error (due to approxi-
mation breakdown) should occur when modeling behavior best described by
discrete time models. The model presented may be used quite easily to model

the same phenomenon as the simple models previously developed.

1 76 the authors.

A Stochastic Model of Multiprocesser Behavior

2. System Configuration and Operation.

This section describes the basic configuration of the MIMD (multiple
instruction stream, multiple data stream) multiprocessor computer system
studied herein. The system is intended to serve as a general-purpose parallel
processor, or possibly as a multiuser, multiprogrammed, geﬁeral—purpose Sys-

tem.

To achieve acceptable performance from a multiprocessor designed for
parallel processing, reasonably concurrent access {(by all processors) to com-
mon data is required. Multiport memory systems would be the ideal solution to
achieving highly concurrent memory access, unfortunately memory systems of
this type would be very expensive and large. Low density multiport memory
parts are available but the number of ports provided is smaller than required
by system designs [MuM82d].

It is desirable to have common data appear the same to all

2

processes/processors”. That is, each process should see an identical version of

common data. Figure 1 diagrams the situation.

Another important aspect of parallel processor system operation and
design involves the implementation of data access locking. That is, the imple-
mentation of access control structures (e.g., semaphores, monitors, guarded
regions, etc. [Hoa74, Han78]). For example, it is often important for a process
to have full control of list pointers, list elements, etc. This control will be seen

to be implementable in hardware using certain memory mapping techniques.

? "Processes” and "processors” are equivalent terms if each processor runs only one process,
this will be seen to be the parallel program execution mode of processor operation. They are dif-
ferent in the case where a physical processor runs multiple processes (in a time-multiplexed
manner), this will be termed concurrent program execution. In this case the term "processor” will be
used to reference the physical processer, and the term "process” or "program” will be used to refer-
ence a single task executing on a processar.

A Stochastic Model of Multiprocessor Behavior

PE 1
PE?R
Address
Space
PEP

Figure 1. Global data as seen by all processors.

2.1. System Configuration.

The multiprocessor computer system to be described and modeled is
shown in Figure 2. The system consists of P processors, M global memeory
modules, D disk units, a processor-memory interconnection network (ICN),
and a memory-disk ICN (the disk units are not shown and are not of major con-
cern here). It will be assumed that disk accesses are handled through global
memory in a DMA type manner, disk data transfers are handled by the
memory-disk ICN. DMA is assumed because of its efficiency and wide use in

most systems. A discussion of these subsystems and their operation follows.

The term '"processor” will be used to describe devices such as general-
purpose processors, special-purpose processors (such as 1/0 processors) or
other such devices which perform operations on data. The following discussion
applies primarily to processors which execute programs using data stored (at

least partially) in global memory.

A Stochastic Model of Multiprocessor Behavior

10

P GMM

Ep

l I : Request Network
[
/

iz

PE

Connection Network ‘ GMMl

Figure 2. Multiprocessor system architecture.

Processors in the multiprocessor system read their instruction streams
from local memories shown in Figure 3. Local memory i is accessible only by
processor i (and possibly a global system controller). Each processor com-
bined with its local memory will be termed a processing element (PE). PE's are
suitable for implementation in VLSI, a PE may be constructed in relatively

compact form.

Processors also use local memory to store temporary (or local) inter-
mediate results of computations. The use of local memory makes global
memory (which is accessible by all processors) usage efficient in that under
proper data storage conditions memory interference may be minimized (it is
not a good plan to store instructions in global memory unless absolutely
required because this causes great memory interference to occcur, an example

use of the model in describing this phenomenon will be seen in section 7.).

A Stochastic Model of Multiprocessor Behavior

11

Processor

PE/ICN
Intertace

Local
Memory

Figure 3. PE configuration.

Global memory (GM) is generally used to store global data structures
such as arrays, lists, trees, etc. (as will be seen GM may be used in a general-
purpose, multiuser, multiprogrammed environment; for the time being con-
sider parallel program execution where each processor executes only one pro-
gram). If, though, local memory storage capacity is exceeded by local storage
requirements, processors may be forced to use GM for local storage. In this
case it is best for each processor to store overflow data in a preferred GM
module (GMM); processor i would store its overflow data in GMM i. This tech-
nique minimizes memory congestion (interference) due to local memory over-
flow effects. This fact will be evident from the model and analysis described

herein.

When a processor executes a GM reference instruction (i.e. it makes a GM
reference) it emits request packet(s). A request packet consists of of at least
a processor number {in the parallel program execution environment). That is,
a request packet (termed a request) emitted by processor i, destined for one

of the GMM'’s, could be as simple as a tag representing the number i. Packets

A Stochastic Model of Multiprocessor Behavior

12

emitted by PE's are sent to the processor-memory ICN's.

The processor-memory ICN's serve to: (1) transfer requests from PE's to
GMM's, this ICN will be termed the request network (RN); (R) connect PE's to
GMM's for the actual data transfer operations, this ICN will be termed the con-
nection network (CN). The RN is a packet switched network while the CN is a

circuit switched network [SieB80].

For simplicity® both ICN's will be assumed to possess the totally con-
nected property: all 1-1 PE-to-GMM connections may exist simultaneously; the
networks are assumed not to block connections with insufficient connection
capabilities. The crossbar network meets these requirements and is imple-
mentable in VL3I for small to moderately sized systems, up to about 32 PE's

and 32 GMM's. Consider next the structure of a GMM.

GMM's receive requests from the RN, a GMM configuration is shown in Fig-
ure 4. Requests from PE's (transmitted through the RN) are placed into a FCFS

(first come, first served, or FIFO) queue. Since requests consist of simple tags

(of at least width I[logzP bits), a FIFO queue may be constructed in VLSI using

simple shift register structures. The length of GMM queues depends on imple-
mentation constraints (for example, if the queue and GMM controller are
implemented on a single chip using VLSI technology, space factors could limit

the length of the queue) and system behavior, as will be seen later.

2.2. System Operation.
Processor operation divides basically into two modes:

1) parallel program execution mode
2) concurrent program execution mode

3 This assumption is used here in order that initial insight may be obtained without the compli-
cation arising from the use of other ICN structures. This assumption is nof essential, as will be seen
later in the section which describes the SMP model analysis.

A Stochastic Model of Multiprocessor Behavior

13

GMM
GMM queue Controller

GMM

Figure 4. A global memory module architecture.

When operating in the parallel program execution mode, processors emit
requests and then wait for requested connections (to GMM's) to be esta-
blished. This mode of operation is equivalent to running one process per pro-
cessor. In this mode of operation processors become idle for some period of
time each time a GM reference is made. A measure of system effectiveness for

parallel program execution is the fraction of time that processors are idle.

In the concurrent program execution mode of operation, processors are
multiprogrammed, several users use each processor on a time-sliced like
basis. In this mode many GM usage strategies are available, an cobvious stra-
tegy is to use GM and disks as secondary memory. Page faults generated by
user programs (whose working sets would be stored in the local memory
belonging to the processor on which the user's tasks execute) are references

to GM or disk memory storage (which would be buffered through GM).

A Stochastie Model of Multiprocessor Behavior

14

This treatment of user program memory references requires an answer to
the question as to whether or not it is best to context switch tasks when GM
references are made. For example, if context switch times (the time required
to complete a context switch) are small compared to mean request queueing
times (processors emit requests which wait in queue for use of the GMM RAM),
then it is best (on the average) to treat GM references as page faults because
tasks may be swapped quickly enough that some useful processing may be
done before the requested connection becomes available. See Figure 5.a for a
timing diagram of this situation. If, though, context switch times are about
equal to or greater than the mean request queueing time then treating GM
references as page faults leads to a form of thrashing (because as soon as the
context switch is complete, the previcusly requested connection becomes
available, see Figure 5.b for average timing), this will be termed GM thrashing.
An important use of a model of system behavior determines when GM thrash-
ing will cccur.

Notice that the concurrent program execution mode of operation leads to
multiple requests from the same processor being present in the GM system
simultaneously. Hence simple processor numbers will probably not suffice as

request packets, a packet number might also be required.

At the time of writing, the model and examples developed pertain pri-

marily to the parallel program execution mode of operation.

To the programmer® the GM may be viewed as a set of individually
addressable memory modules. In memory systems designed for high con-

currency, memory modules are often selected using the least significant

{1og2M bits of memory addresses, this is the interleaved addressing scheme®.

Other memory selection schemes exist, one application of the model

presented is the quantification of effects on program execution (and system

A Stochastic Model of Multiprocessor Behavior

15

Context
Switch
Time —> | €—— Useful processing time~—3 l
| > 4
<« Mean >
Queueing

Time

| <—————Mean queueing lime ———————3 ' |

I | R

< Context switch time >

Figure 5. Global memory timing with context switching.

performance) of choices such as memory mapping and data layout in GM. The
model acts as a performance indicator of program design. Two addressing

schemes are obviously available: the interleaved mapping technique, and the

block mapping technique, where the most significant {logzM bits of the GM
address bus are used to address the GMM's.

Block mapping has an efficiency advantage over interleaved mapping in
that once a connection has been established (from say PE i to GMM j) all loca-

tions in GMM j are accessible in a linear manner. [Note that the same effect

may be achieved with interleaved GM but addresses within GMM's are I[loggM

locations apart, the term "interleaved” normally applies when each GMM is

used for a single word access, here the two mapping techniques will be taken

4or compiler for that matter.
® The term "interleaved” is often associated with single memory word accesses.

A Stochastic Model of Multiprocessor Behavior

16

to be different.]

Block mapping also serves to implement data access locking. For exam-
ple, elements of lists which may consist of several words may be stored effi-
ciently by storing a single element of the list in a single GMM (obviously the list
wraps around the GM system). This storage scheme allows elements of the list
to be modified without concern about "semaphore like" locking of the data,
The circuit switched property of PE-to-GMM connections intrinsically (alohg
with block mapping) supplies a locking facility in hardware. An example

presented later describes the use of this facility more fully.

A Stochastic Model of Multiprocessor Behavior

17

3. The Semi-Markov Process (SMP) Model.

The SMP model describes MIMD systemm behavior at the
processor/memory/switch (P/M/S) level of system operation. For simplicity
the crossbar ICN's will be taken to have zero switching times. This is certainly

an approximation but there are two reasons for its applicability:

1) To assume otherwise would complicate matters without
contributing much in the way of new understanding of
system behavior.

) Simnple delay times could be added to account for ICN

propagation delays, this addition again simply complicates
matters without yielding new results.

Due to the negligible effects of ICN operation, the model will consist of
describing the system at the processor/ memory (F/M) level of operation. That
is, events in the system consist of the interaction between PE's and GMM's (disk
interaction is yet another level of complexity that might be studied, herein disk

interaction is not explicitly modeled).

3.1. Processor/Program Modeling.

The basic technique used to model program execution (on a single PE) is
to view program execution (termed processor behavior) as the sequencing of a
finite state machine (FSM). From the viewpoint of processor/memory interac-
tions, processors may be in one of two states: computation states; and GM

reference states.

Computation states are states in which processors are doing purely inter-
nal operations; that is, the PE is operating as an autonomous PE. Computation
states may actually consist of very complicated phases of computations where
local memory is used for storage of intermediate results. After completing
the local computations, the PE enters its next state (as seen at the P/M level

of system operation).

A Stochastic Model of Multiprocessor Behavior

18

GM reference states consist of states where processors reference GMM's.
Upon entry to a reference state (this will be the term used for a GM reference
state) a PE emits requests for connections to GMM's. After emitting a request,
the PE waits for the connection to be established. Once the connection has
been established, the PE uses the requested GMM as required. After complet-
ing the required GMM use, the PE releases the connection. It is at this point in-
time that the PE leaves its reference state. It can then enter a computation or

reference state.

If a PE emits multiple requests upon entering a reference state, it uses
connections in the order in which they become available (i.e., their ack-
nowledges arrive, but this is not a stiff requirement of the model). Only after

all requested connections have been used does the PE enter its next state.

The P/M level of program execution description reduces a program
flowchart (which may be interpreted as a FSM state transition diagram) to a
P/M level state transition diagram. For example, suppose it is desired for cne
of the P processors to add a series of numbers stored in GM. When the process

is in operation, its P/M state transition diagram looks like:

Add 5 Reference

The computation state (1) is occupied for the time required to complete
an add operation. The reference state (2) is occupied for the time required for

a GM read and the time spent by the request in the referenced GMM queue.

The model described assumes that as an approximation to program condi-

tional transitions (i.e., conditional transitions in the program flowchart), pro-

A Stochastic Model of Multiprocessor Behavior

19

babilities may be determined that represent the probability that a particular
branch of a conditional is taken. For example, suppose that a conditional test

looks like (in the P/M or flowchart level of program description):

Then it is assumed that p and ¢ = 1 — p represent the probability that

their respective arcs are taken upon evaluation of the test.

This assumption of probabilistic transitions is not unreasonable in that it

may be representative of reality in two obvious ways:

(1) When program behavior is approximately random, i.e., when p represents
the fraction of time that its arc is taken and each entry to the conditional
test is relatively independent of past and future entries to this state (the
amount of correlation allowed before this assumption breaks down is now

unknown but might be a topic for study).

(2) When inaccuracy may be tolerated so that an answer may be obtained.
For example, if each processor is used to add ¥ > 0 numbers, a suitable

approximation to a string of & read/add states might be:

A Stochastic Model of Multiprocessor Behavior

20

This approximation reduces the number of states to 3, two computation
states and one reference state. For large k, the savings is quite significant (as
will be seen state space reduction techniques are valuable). Ceftainly this is
an approximation because only k cycles through the loop will be taken by the
program, but probabilistic approximations set only the mean number of loop
executions to k. There is a non-zero variance on the number of times the loop
will be executed if the probabilistic approximation is used, this leads to some
inaccuracy, the tradeoff is cost (of computations as seen later) verses accu-

racy.

In general, it may be advantageous to use the probabilistic loop to replace
linear chains (an unwrapped loop) of loop states. This is most attractive when
the number of loop iterations is large. It is precisely these situations in which
the model is to be used, The SMP model is designed for use in large scale com-
putations (i.e., ones in which the problem is computation intensive) where the
system reaches steady-state (steady-state will be described more fully later).
Modeling small scale programs is not really required because (typically) the
solution of a good model (of small scale programs) may actually be more
expensive than running the program, this relates to the discussion of analytic

models in section 1.

A good model of small scale program execution basically entails the tran-
sient solution of system description equations. Steady-state solutions will not
suffice because in small scale programs (i.e., ones with short execution time)
the system probably does not reach steady-state. Steady-state solutions might
provide some insight into bounds on small scale program execution though.
Small scale programs are not as worthy (compared to large scale programs) of

modeling in that they are not that expensive to run.

A Stochastic Model of Multiprocessor Behavior

21

The first assumption (the approximation that transitions are taken ran-
domly) is believed to apply reasonably well to programs which exhibit among
other characteristics a recursive nature or independent element characteris-
tics®, For example, where many elements of a list are to be processed and
each element is relatively independent of others. A more concrete example

will be seen later and was used as a test of the basic SMP model's accuracy.

Computations that exhibit element independence, besides being candi-
dates foy stochastic modeling, can typically be partitioned to operate in the
MIMD mode of operation. Examples of such computations include artificial
intelligence state-space generation and searching, and database processing. In
the context of concurrent program execution mode the operating system
introduces stochastic (or seemingly random) characteristics into system

behavior.

Remaining work to be done on the model includes testing the model on
real programs that are believed to exhibit stochastic behavior, and examining
the extent to which the first assumption holds. It is also (presently) believed
that the model may provide relatively meaningful statistics on large scale,
relatively loosely coupled (i.e., not synchronized) program executions of a
non-random nature. It is believed that the MIMD mode of operation inherently
"randomizes"” program execution. This is another area requiring more experi-

mentation.

The assumption of stochastic program behavior also acts as a general
model of program behavior when input data is unknown. That is, when a pro-
gram is designed, input data is often unspecified (i.e., the program maps input
data into output data in specified ways but the program designer does not

specify input data), in this case branching probabilities repr-esent the fraction

6 Models of hardware behavior have made a similer assumption regarding the nature of proces-
sor behavior [MuMB8Ra], here a similar assumption is being made at a different level of system
description.

A Stochastic Model of Multiprocessor Behavior

22

of time arcs are taken when considering input values. For example, consider

states which represent a simple division operation:

Yes Abort &
D Flag

Nol 1-p

f=x/y

Then under general circumstances, p represents the fraction of time that
Yy = 0 during a division, or it is the fraction of time that division by zero occurs

when the routine is used.

Randomness, then, is believed to occur naturally in large scale indepen-
dent element computations, and to some extent may be used to simplify state
transition diagrams. For now consider there to be conly computalion and
reference stales. The following section describes the performance measures
of interest in the parallel program execution mode of operation. They act as
performance indicators of program design, GM data layout efficiency,

hardware speed, etc.

3.2. Performance Measures.

This section describes performance measures of system behavior. The
SMP model acts as a mapping from system configuration, program design, and
GM data layout into a set of values which indicate (in an interpreted way) sys-

tem performance.

A Stochastic Model of Multiprocessor Behavior

23

3.2.1. Program Execution Time.

Important measures of program design and GM data layout are program
execution times. There are basically two "types" of execution times: local exe-
cution time which is the time it takes a processor to compete its allotted
task; and global execution time which is the time it takes the complete MIMD
systemn to complete the full parallel program. Notice that often the global
program execution time is the time required for all processors to complete
their tasks; that is, the global task is complete only when all of its com-
ponents are done. If local program execution times are known, then global
execution time can be determined. These two random variables (rv's) will be

termed

E; = execution time of program i, 1<i < P,
E= global execulion lime,

Then,

E‘=miaxiﬁii

Using notation that will always be used, the ~ denotes a random variable,
It A is a random variable, then A(t) is its cumulative probability function
(CDF) and a(t) is A's probability density (or mass) function (pdf, or pmf) if it

exists:

Often e (t) will be a probability mass function where Dirac delta functions
(6(¢)) will be used to account for discrete components. Using this interpreta-

tion, the existence of a(t) is not of practical concern.

A Stochastic Model of Multiprocessor Behavior

24
The mean of a rv A will be written Z, then
E[A]l=A= ztdA(t),
likewise, moments of A will be written as:

E[A*] = AF = }t"dA(t).
]

Denote the Laplace-Stieltjes transform (LST) of A(t) as A°(s) and the LT
of a(t)as a’(s).

Returning to the discussion of execution time, a possible objective of
program design and GM layout is to minimize a measure of the global execu-

tion time. A good candidate is to minimize E.

Thus the objective of parallel program design and GM data layout could
be to minimize £. Other measures of global execution time could be used, but
the mean is an obvious choice. It might, for example, be desirable to minim-
ize the variance of global execution time in order to ensure "finite” and con-
stant (as best as possible) program execution time. A discussion of the rela-

tionship between global and local execution times will be delayed until section

.1

3.2.2. Processor Utilization.

A fundamental measure of system effectiveness is the fraction of time
that processors are doing useful work. It is the fraction of time that proces-
sors are doing useful work in computation states (this is certainly related to
the fraction of time that processors are idle). Define ¢, to be the fraction of

time that processor/program p is "in" computation states.

Define system processor utilization ¢ to be the weighted sum of ¢, where

the weighting coefficients represent relative importance of various programs:

A Stochastic Model of Multiprocessor Behavior

25

P
¥ = pr%'
p=1

For example, if program j is very important relative to other programs, then
one might set w; > w;, i # j (assume 0 <w, < 1,2pwp = 1). This would be
the case for example if processor j is the only general-purpose processor in
the system and processors i # j are 1/0 processors. Here obviously program
j is most important in determining ¢. It could be, though, that for 1/0 bound
situations, weighting ¢; most heavily and optimizing ¢ actually makes the sys-

tem run jobs more slowly.

Notice that ¢, is affected by many things including times spent in com-
putation states, GM connection times, and times spent by requests in GM
queues. The random component of these three (from the viewpoint of wasted
time due to GM interference) is queueing time by requests. Time spent in
queue is purely wasted time. Times spent in computation states and GM con-
nection times are dependent only on program design, GM data layout, and the

speed of system hardware.

A fundamental property of program design with its GM data layout is
potential processor wulilization $. This is the same as ¢ but is computed
assuming zero queueing delay, i.e., with no memory interference. Notice that
@ represents system processor utilization for a system employing {in some
way) perfect processor synchronization. It is an intrinsic quantity that indi-
cates maximum system utilization. For a given program and GM data layout
¢ < @. Similar to ¢ define o = Epwp ®p simply as the weighted sum of indivi-

dual potential processor utilizations.

Then to measure the amount of potential processing power lost to

memory interference define ¢ to be the relative system processor utilization:

A Stochastic Model of Multiprocessor Behavior

26
¢= 2.
¢
Certainly 0 < £ < 1. Another objective of program design and GM data lay-

out might be to maxirnize ¢ {although it is not clear that this is as useful a

minimizing).
3.2.3. Memory Utilization.

Memory utilization will be defined as:

Pm = fraction of time that GMM m is in use.

| Memory utilization is a seemly robust characteristic of system behavior in
that relatively accurate predictions of memory utilizations may be obtained

with simple approximations [MuMBRa, Pat79, Str70].

3.2.4. Connection Bandwidth.

Connection bandwidth will be defined as the number of PE-GMM connec-
tions in use at time t. This definition actually defines connection bandwidth
(or bandwidth for short) to be a time dependent stochastic process

§B(t), t = 0} where

number of PE-GMM connections
in use at fime t

B(t)=
B(t) is a random variable because of the stochastic nature of program execu-
tion induced by those characteristics discussed in section 3. and 3.1.

An important characteristic of ICN's is their maximum attainable con-
nection capacity. Define this to be F [MuMB2a]. Then a measure of the frac-

tion of ICN capacity in use at time { is

o) = 8.

A Stochastic Model of Multiprocessor Behavior

27

0= %(¢t) < 1. If the system reaches steady-state (discussed later):

lim E(y(t)] = lim 7(¢) =7,

t -+

¥ represents the steady-state mean fraction of ICN capacity that is used by

the set of programs” running on the system.

The quantities pp,, £, 7 characterize an operating point of the system.
From these quantities, simple conclusions may be drawn regarding system
bottlenecks, program/system improvements, etc. ([Kuc7?8] contains a similar
discussion for single processor-memory-disk systems). For example, if £ and
Pm are small and ¥ is large then it may be concluded that the system is ICN

bound.

The quantities B and ¥ depend on the type of ICN used for the PE-GM
connection. Multistage networks [Sie80, WuF80, Law75] are an attempt at
attaining crossbar performance while maintaining a lower rate of cost growth

with size, Simple busses may be used if cost is a major concern.

A general SMP model can be used to delermine the required capacity of
ICN's considered for a particular system. The SMP model presented here
assumes, as in the system description discussed in secticn 2, that the system
is of small to moderate size and the ICN is a crossbar. Analysis of multistage
networks is more complex but has been studied to some extent [MuMB82b,

MuMBRc, Pat79, DiJ80].

When the ICN is circuit switched, more concise statements may be made

concerning bandwidth [MuMBRal]:

B = min {P, M}

B(t) = number of GMM s in use at t.

7 The term "set of programs” will be used to describe a parallel program and its GM data layout.

A Stochastic Model of Multiprocessor Behavior

28

Then defining

0 if GMM m is not busy a lime

B (t) = 1 if GMM m is busy af time ¢

leads to

More discussion on these measures will be presented later. Notice that for

circuit switched ICN's (p,,.£,7) is equivalent to (p,,.£).

3.2.5. Queue Lengths.

GM queue lengths are very important in that they provide much informa-
tion about improvements in GM data layout. If, for example, it is found that
the average number of requests present in a single GMM queue is far greater
than the average number in other queues, it would be advisable to redistri-
bute GM data to even out mean queue lengths across all GM queues. A single
large queue leng‘;h indicates that a particular GMM is acting as a system
bottleneck and it would be advantageous to attempt to relieve the congestion

at a this queue.

Define

the number of requests in GMM
gueue m at time £,

N (t) =

Only requests in the queue proper (not including the server) are included in

this measurement.

The next section discusses parameters that the SMP model uses. The
parameters serve to describe programs that execute on PE's. The parameters
typically require extensive knowledge of program characteristics, actual

knowledge of program behavior is probably not as extensive as the SMP model

A Stochastic Model of Multiprocessor Behavior

29

can use. The SMP model can be used as an approximate guide to
program/system performance when only approximate program characteris-
tics are used. The extent of applicability of the use of approximate program

characteristics might be material for future study.

3.3. SMP Model Parameters.

This section describes the SMP model, its notation and some of its charac-

teristics.

Define Z»(t) to be the state of processor® p at time ¢ (state numbers are
positive integers) then the SHMP maodel is described by saying thal
{Z,(t), t = 0} is a semi-Markov process. This is an approximation but if the
MIMD system reaches a steady-state, it is not an unreasonable one. Steady-
state existence is a reasonable assumption for the large scale computations

considered here.

The approximation that E?p(t), t = 0] is a semi-Markov process amounts

to making the following assumption regarding program execution:

Every time a state in the P/M transition diagram is entered (the correspond-
ing Markov renewal process changes state), the distribution of time until the
next state transition along with the next state entered is independent of all
system information except the state just entered. More formally, define the

following quantities:

state of processor p after
M, (n) = the nth transition of the processor

p embedded Markov chain (MC)°

8 Since we are considering parallel program execution the term processor will be used to
describe both the processor and program, they are equivalent.

A Stochastic Model of Multiprocessor Behavior

30

S"ps = sojourn time spent in statfe s by processor p.

Then the approximation that processor p behaves as a SMP becomes that

the following holds:

Pr(S,s <t M,(n+1) = j | all previous program information)
=Pr(S=t, lin+1) =5 | Bh(n)=5)

Define the following:

Pri8pst, My(n+1) =7 | By(n) =1) = @,(i.5.t)

& (t) is the semi-Markov kernel for program (SMP) p, @,(¢) is a matrix of

CDF’s.

If the transition probabilities of arcs in the P/M transition diagram are
independent of sojourn times (that is, the probability of taking a particular
next state arc is independent of the amount of time spent in the présent

state), then

G(id.t) = Pr(Sp=t | Hy(n)=i) Prifly(n+1) =7 | H,(n)=1)
= (gpzSt |j’-\ip(n):i) Pp(i.7)
= pv.(t) Pp(ivj)

Where P, is the one step probability transition matrix for the embedded MC
describing program p. Spi(t) is, by definition, the CDF of the sojourn time for

program p in state i. The state sojourn time CDF's, Sp(t), are of two types:

(1) Computation state sojourn times where these CDF's are known, they are
controlled by the programmer and the speed of processor/local memory

hardware.

9 The embedded MC is defined by the transition probabilities on the arcs of the P/M transition
diagram.

A Stochastic Model of Multiprocessor Behavior

31

() Reference state sojourn times which consist of two components.

Computation state sojourn times are known in that they may be deter-
mined directly from examining program machine code and PE hardware
specifications. In their simplest form, they are the times between thé comple-
tion of one GM connection, and the emission of the next request. Note that for
simple constant computation time of length ¢ units, Sy(t) = w(t—c). w(t) is
the unit step function and &6(¢), the Dirac delta function, is defined as its

derivative.

Reference state sojourn times consist (in their simplest form that applies
to a crossbar ICN) of two components: the amount of time spent by a request
in its GMM queue; and the amount of time that the program uses the GMM
referenced. First consider that processor p references memory m when it
enters state s (assume only one request is emitted when a particular state is

entered) then

Sps = Wosm + Tpsm- (1)

Where Wpsm is the time spent in queue m by the request emitted by processor
p when it entered state s. Wpsm is the waiting time rv seen by an arriving
request from processor p in state s referencing memory m. In the parallel

program execution mode we expect Wpsm(t) to be independent of s so we will

write me for Wpsm.

?psm is the connection time required by processor p using memory m in
state s. For simple unit connection times Yp, (t) = w(f—1). This CDF maps
the length of pages transferred (in, for example, words) into a transfer (con-
nection) time. This mapping depends basically on GMM RAM speed. This CDF
can aléo be used to reflect secondary disk access time in the case where disk

paging is modeled.

A Stochastic Model of Multiprocessor Behavior

32

If the memory chosen upon entry to a reference state is random (as it
might be, for example, in the interleaved mapping scheme), the pmf of sojourn

time for a reference state becomes

Sps (t) (W (£) 0 Ypsm (£)) Mpsm (2)

1

fl
?.M:z:

?.Mm

Wprn (8) X Ypsm (8) X Npsm
1

Sps(s) =

Where o denotes convolution of the pmf's Wy, (t) and Ypsm (t) (me and ?;,sm
are independent!'®) and Npsm 18 the probability that processor p emits a
request for memory m when it enters state s. If g = 1 then this indicates

an emission with certainty.

Mean reference state sojourn times become simple to evaluate:
L —
Sps = 2 (Wom + Ypsm) Npsm (3)
m=

Zmnpsm = 0 for computation states while Emnpsm > 0 for reference states. In

particular Emnpsm = 0, 1 for the single request per processor situation.

Concluding this section: the SMP model uses the quantities Spe(t), Py,
Ypsm(t), and 7, to describe program characteristics. The main point in the
SMP model (and hence its name) is to take processérs /programs to behave as
stochastic FSM's that are describable as semi-Markov processes. The next sec-
tion describes fundamental semi-Markov process relationships that will be

used later,

10 This is not actually true in that a large mean value for z,sm may cause a large queue tof/li‘]orm
during this time (processor p connection time for memory m and state s) which in turn affects Wpp,,
due to the indirect effect, they will often be teken to be independent.

A Stochastic Model of Multiprocessor Behavior

33

4. Fundamental SMP Relationships.

The relationships described here are common knowledge and may be
found in [Cin7?5, HeSBR, Ros70]. Throughout let §?p(t), t > 0} be the SMP under

consideration.

Define the state space of ?p(t) to be 4;, 4, is the set of states in program

p. Define

Then Pps(t) characterizes the trajectory of program p. For deterministic
programs {say a single processor, running a deterministic program) Pps(f)
describes exactly where the program will be at time t (t = 0 marks the begin-
ning of program execution). For a realistic program SMP, in general, Pp(t) is

virtually impossible to find due to complexity [Cin75, HeS82, Ros70].

What is readily available about general SMP's is their steady-state distribu-

tion of state occupancy, i.e., 1tim Pps (t) is very easily obtained.

Define

Cp(i,7.t) = Pr(first entry to state jin time < t |
initially in state 1)
Then C,(i.7.t) is the CDF of the time required for program p to "cycle" from
state i to state j, i.e., it is the CDF of the time between two entries to state j if
© = j. This is certainly an indicator of the "rate"” of program execution if state j
is éome given state. 5p (i,7) is performance measure that arises naturally in
the SMP model. Since the process is an SMP, each entry to state j constitutes a

renewal process with renewal time CDF C,(j.7.t).

Then in the case of non-lattice!! C,(7.7.t):

; 11 A lattice random variable takes on values (with non-zero probability) that are integral multi-
ples of the rv's period, i.e.: 2 Pr(V=ng)=1.

n=0

A Stochastic Model of Multiprocessor Behavior

34

§Pi

lim ij(t) = ij = m, ’l:f Cp(] ,]) < oo, (4—)

t >

Since the model presented here assumes that the system reaches steady-state,
Fpj will be used as the steady-state state occupation distribution, F,; is also
the (steady-state) probability that the SMP will be in state j at a random point

in time. These will be termed the general-time probabilities [GrH74].

If the embedded MC is irreducible and positive recurrent then

Py = 2 Soi _ _ _Swi
Y Mot ok Cpld.d) (5)
IcsAp

Where m,; are the stationary (steady-state) occupation probabilities for the

embedded MC §ﬂp(n), n = 04, my; are gotten from: m, = 7, P

P P p.Ek"pk =1 [mp

is a row vector (mpy, Tip2...., ﬂp,Apl),] The next section describes the irreducible,

positive recurrent, and regularity conditions in the SMP model.

From this simple formulation Ep (7.7) may be found from the embedded MC

state occupation probabilities and mean sojourn times,

For the case when ((.7.t) is lattice, formulations are more complex,

equation (4) does not hold and the left-hand side of equation {5) takes the form:

Bps
lim Ppii{t +nf) = ——— 1= Spi(t — By +k8)
noaw PIIE S Moot S “zgt Pj ij
ked,

Where,

8 is the period of the SMP
Bij s the first jump point of C,(1.7.t)
Sy =im:t + mB= gy

and Fy;; is Pp; conditioned on the fact that 7 was the initial state of the SMP.

A Stochastic Model of Multiprocessor Behavior

35

Analytic techniques for obtaining Cp(i,7,t) exist and will be detailed next.

Define the Markov renewal kernel, Rp(¢.,7.t):

number of visits to jin [0, t] |
process startediniat{ = 0

Ry(ijt)=E

Ry(i.7.t) is related to &, (i.7.t) and C,(4.7,t) as follows for finite state spaces:

Rp(s) = (I - G(s)™!

Rgs)
. R;;(j,j's)
Cplinjis) = 1 L
1= =7 t=7
Ry(j.j.8)

In theory these quantities could be used to solve for CDF's of cycle times,
etc. In reality, these computations are so complicated that it is doubtful that
analytic results may be obtained for these CDI's. They might be obtained for
special cases such as those SMP’s used to describe approximate, low level pro-

cessor models (see section 7).

Notice that to obtain such analytic results, CDF's of sojourn times are
required, mean values will not suffice. As will be seen this requirement makes
the calculation of the above CDF's even less attractive because CDF's of sojourn

times (for reference states) are difficult to obtain.

A Stochastic Model of Multiprocessor Behavior

36

5. Measure Derivation in the SMP Model.

This section describes the calculation of performance measures discussed
in section 3 using the SMP relationships from section 4. First though the ideas
of regularity, positive recurrence, irreducibility, and lattice distributions need
to be addressed. Again define Ezp(t). t = 0} to be the SMP describing program

p execution. 4, is the (finite) state space of program p.

The regularity condition required by many of the SMP results of section 4
is equivalent to the condition that the semi-Markov process can not make an
infinite number of transitions in finite time with positive probability. This is
certainly true in the context of an MIMD system, processors cannot make an
infinite number of state changes in finite time, so the regularity condition is

satisfied because we are dealing with a physical system.

Notice that since most processors are synchronous machines, virtually all
CDF's which are associated with time are latffice because processor computa-
tion times and connection times are based on a clock af the lowest level of sys-
tem operation. GMM controllers are also based on clocks {although they would
probably be different clocks than those that drive the processors). In fact, if
PE's are indeed autonomous units, there may be many individual clocks in the
system. Nevertheless, if the entire system is driven by a central clock of cycle
time 7 then we know 8= 7 and connection and computation times are lattice
with period at least 7. Although this presents some difficulty'® the results for
absolutely continuous CDI's have been used in testing the SMP model and have

been found to yield acceptable mean value results!s,

Due to the assumption that the system runs large scale programs, it is rea-

sonable te presume that the program SMP's reach a steady-state. This assumes

12 This whole problem does not exist if processors are asynchronous machines,

13 purther development of the SMP model might include examining the use of results for lattice
CDF's where appropriate.

A Stochastic Model of Multiprocessor Behavior

37

that the SMP’s are irreducible. To satisfy this requirement, it seems reasonable
to restrict 4, to an irreducible subspace. For example, consider a program p

that looks like

Main

Process

If the main process is a large scale irreducible program, then it will be assumed
that the SMP is restricted to this main irreducible process. The case of phases
of irreducible processes (termed phased computations) will be studied in the

future. An example of a phased computation might look like:

(S D

->

A Stochastic Model of Multiprocessor Behavior

38

Hence it will be assumed that programs have been reduced to their irredu-
cible subspaces by eliminating initial and final transient states (which contri-
bute negligible or known amounts to measures of interest because the compu-
tations of interest are large scale problems).

Define A7 to be the state space of the restricted (or reduced) SMP describ-

T will be appended to previously

ing program p execution. In general, an
defined quantities to denote the corresponding quantity for the reduced SMP.

The rest of this section discusses the derivation of performance measures.

5.1. Program Execution Time.

Let s, be the starting state for program p and let f, be the final (ending,

or stopping) state for program p, then:

Ep(t) = Gpsp.fpit). (7)

Where C,(sp.fp.t) is computed by assuming that all processors are busy (i.e.,
they are all in their irreducible sub-SMP's) during processor p's full program
execution. (sp ,fp,t) computed this way is lower than actual program execu-
tion time CDF's because other processors could reach their final states before
processor p does, When other processors reach their final states, processors
which are still running speed up (measured say as the inverse of the time
between visits to a given state) because retarding effects from memory
interference decrease. Hence F,(t) is greater than C,(s,.fp.t) computed
assuming the full system is in operation during program p's execution and

that the primary component of E‘p is due to occupation of the reduced SMP.

Next consider bounding £ (¢). Since E = max {#}},
1

A Stochastic Model of Multiprocessor Behavior

39

Which may be written as

E(t)=Pr(E, <t | By<t FEy=t, . Ep=<t)

xPriE,<t |Ey=st, . Ep<t)

XPT(Esgt ‘ E4$ t,..., Egpét)

x e

x Pr(fp=<t|Ep=t)

X PT(EP < t)
The basic idea is to replace each factor by a bounding quantity to find a simple
bound on F(t). By the same argument as above:

Pr(Ep<t | Ep<t) = Cpy(sp-1.fp1t)
Pr(Ep o<t | Ep =<t ,Ep=<t) = Cpplsp-afp-at)

S0
P
E(t) = chp(sp,fp,t) (8)
p:

provides a simple bound on E(t).

A more accurate (though still approximate) approach would be to condi-
tion F(f) on the sequence program terminations, then uncondition with the
probability of the sequence. Consider a transition diagram (for an SMP) where

each state is designated by a bit vector (b,, b,,..., bp) where

0 if program. 1 is still running
1 if program 1 has reached f;

A state diagram is shown in Figure 8 The problem with this approach is the
complexity of the computations for @(7,7,t) in the SMP described by Figure 8.
If Q(i,j.t) are available, then F{t) = C(fop state, bottom state,t). Due to com-

plexity this approach has not been pursued.

A Stochastic Model of Multiprocessor Behavior

40

P
P

P
Note: there are),
p=0

} = 2P states.

Figure 6. An SMP state diagram for execution time computation.

A Stochastic Model of Multiprocessor Behavior

41

5.2. Processor Utilization.

Define
77 ’ps = Z npsm R
m
then

¢p = 2 Phs Limps =0} (9)
seAg

where 1z is the characteristic or indicator function:

0 if Fis nof true
1 if Fis true

Since the Pps quantities are steady-state general-time pmf's, they represent
fractions of time. Also since states are occupied disjointly, their probabilities

add when evaluating the "or"” condition.

Potential processor utilizations are computed similarly:

%o = 2 Prs Lin'pe =01 (10)
ssA;

5.3. Memory Utilization.

This is a more difficult entity to compute than is processor utilization
basically because processor behavior is being modeled directly while memory
utilization is a related quantity that is indirectly modeled. Due to this fact
memniory utilization may be approximated in at least two ways (a third will be

seen later). In a circuit switched CN the following holds--

¢
fﬁm('r)d'r
pm = Um-————— = lim Pr (B, (t) = 1) = lim B, ().

{ v t f] t oo

A Stochastic Model of Multiprocessor Behavior

42

5.3.1. The Product Form Approximation (PFA).

This is based on viewing the memory module controller (server) at a ran-
dom point in time (¢) after the system reaches steady-state. Define a proces-
sor to be using GMM m if it has a request dueued in queue m or it is con-

nected to GMM m RAM.
Pm = Pr(GMM m is busy at t) = 1 — Pr(GMM m is idle at t), (11)
Pr(GMM m is idle at t) = Pr(all processors are

not using GMM m at t
= Pr(processor 1is not using GMM m. at t,

and processor 21s not using GMM m at t,

and processor Pis not using GMM m at t)

= Pr(processor 1 is not using m at ¢ | proc.s 2 through P are not)

X Pr(processor 21is not using m at t | proc.s 3 through P are not)

X Pr(processor P-11is not using m at t | proc, Pis not)

X Pr(processor Pis not using m af t)

As will be often be done for simplicity the processor SMP's will be taken

to be independent. This yields:

il
Pr(GMM m is idle at t) = || Pr(processor p is not using GMM m at t). (12)
p=1

Several examples of this approximation will be seen later. Obviously

Pr(processor p is not using GMM m.at t) = 3, (1 = Ypem) Pps. (13)
sedp

A Stochastic Model of Multiprocessor Behavior

43

A better way to compute memory utilization would be to use the condi-
tioning formulation above and recognize that since the P SMP’'s are inter-
locked through memory interference, knowing (or conditioning on) where'*
one is influences the pmf of where others are. The study of this approach is

planned. An example of the PFA will be seen in section 7.

5.3.2. The Sum Form Approximation (SFA).
This is based on an alternative (approximate) formulation of the proba-
bility that GMM m is busy at ¢.

Pm = Pr(GMM m is busy at t) = Pr(processor 11s using GMM m at t,

or processor 21s using GMM m at [,

(14)

or processor Pis using GMM m at t),

Since the event that processor i uses GMM m at ¢ is disjoint from the event
that processor j, 7 #4 uses GMM m at time t, the "or" condition may be
rewritten as:

Pr(GMM m is busy at t) = f} Pr(processor p is using GMM m at t). (15)

p=1

Notice that each reference state of a program SMP may be viewed as a suc-
cession of two states: one in which the request wails in queue; and one in
which the processor wses the GMM RAM. Then if £ is a random time it seems

reasonable that

Pr{(processor p is using GMM m at t | processor p is in state s)

sy dpm (18)
P Yosm + Wom

14 por parallel execution mode a single {oken may be used to describe where a processor's re-
quest is. That is, imagine a token owned by program p which flows through hardware facilities such
as processors and GMM's. This would be the approach used if a pure network of queues model were
%veloped. For example, we could define [, (f) to bg the position of program p's token at time t.

» (t)ZO iff the program p token is in processor p, Dp (i’)——-k iff the program p token is in GMHM k,
1's k = P. The problem here is to study the stochastic nature of ﬁp t).

A Stochastic Model of Multiprocessor Behavior

44

Then unconditioning on the state of processor p at time t (again we actually

know that the SMP’s are not independent so the SFA is an approximation)

Y,
Pr(processor pis using GHM m att) = 3 Npm _}—’—_p::-—n}_W—] FPps. (17)
'ssAI’,' psm pm
Therefore,
= < _?pﬂ____ pr
pm - Z Z npsm -)—/, + W ps: (18)
p=1 SEA; psm pm

This is an approximation in the same sense that the PFA is; knowing that pro-
cessor p is using GMM m, there is less uncertainty as to where processor
k #pis.

5.4. Connection Bandwidth.

B(t) is very complicated unless it is studied in the steady-state, then we

are primarily interested in %im Pr(B(t) = k), 0<k < B. Unfortunately these
values are not readily available.
Returning to the original definition of H(t) for a crossbar CN,

M
B)=>3, B, (t). To find the mean steady-state value of F(¢) use

m=1

lim BLB(6)] = lim 3% (B ()] = 3% lim B{By (1)

“m=1 m=1

then
M M
lm BB ()] = 3 lim Pr(Bn(t) = 1) = 3, pm (19)

Which is the well known formula for 1tim E[B(t)]. By the bounded convergence
theorem %im E[B(t)] = E[%Lm B{t)] which would be the case if

lim Pr(B(t)=k) = Pr(ltirn B(t) = k) were available.

A Stochastic Model of Multiprocessor Behavior

45

5.5. Queue Lengths.

Here the queue length seen by an observer is of interest, section 6
describes two computations of sojourn times, one of which computes this, the
other which computes the queue length pmf for arriving requests; this is also a

valuable measurement.

A Stochastic Model of Multiprocessor Behavior

46

6. Computation of Sojourn Times.

Until now, it has been assumed that sojourn times have been available,
equation (5) describes the relationship between sojourn times and Pj;, and
hence the performance measures of the previoué section. This section
describes two approximate formulations of sojourn time computations. In gen-
eral an appropriate solution algorithm for solving the non-linear equations

which form the SMP model is to compute P},

o §ps as follows:

[

Compute §ps Compute P;s <+—Start

i

6.1. The Independent SMP Approximation for Sojourn Times.

As noted earlier, the mean value analysis requires the average time spent
by a request from processor p 1ﬁ the GMM m queue (queue m for short). [Note
that this is not simply related to N,, () because here we are interested in the
time spent by actual packets, not virtual packets as would be obtained with
N, [GrH74].] This formulation is based on a conditioning argument. Condition

the waiting time CDF Wpn, () on the sequence of requests seen by the arriving

request from processor p for queue m.

Let Kmp be the sequence of (processor, state) pairs seen by an arriving

request from processor p referencing GMM m. Then

=2

mp = 6 = ((p1.51). (P2.52)..... (Px.Sk)) Where (p;.5;) is a tuple representing the

processor number queued in position 7 and the state s; in which the processor

A Stochastic Model of Multiprocessor Behavior

47

(p;) is waiting. By convention p,; is the processor using GMM m RAM at the
arrival time and p, is the processor whose request arrived just prior to proces-

sor p's.

Then conditioning and unconditioning on Zmp gives

me (t) = ; me(t Izmp = 5) Pr{xmp = 6) (20)

A characteristic of the steady-state assumption is that every request emitted
from processor p for GMM m sees the same arrival point queueing time CDF's.

Define k = |6| = the length of 6 (the number of requests in GMM m). Then

4

6gs m(S) 6] = 1

w};'n(s Izmp = 5) =]
81:131”‘(3) Jjjgy;ﬂjm(s) [5| =2

(1)

\

Again denotes the LST of the marked CDF/pmf/pdf. Notice the new quantity

. >
whose LST is ey 5 m

(s). Ep s m(t) is the CDF of the excess connection time for
the connection in progress at the time of processor p's request arrival at
queue m. This connection is due to processor p; in state 5; using memory m.

See the Appendix for an explanation of the transform equation (21).

This excess connection time seems difficult to establish in that the sto-
chastic process describing service (connection) times is not a renewal process
and arrival times are not random (Poisson). A reasonable approximation
might be to assume that arrival times are Poisson and that the excess connec-
tion time is that seen if service is a renewal process with renewal time CDF

Yp,s,;m(t): this is another effect that may warrant more study. Then [Kle75,

Ros70, GrH74]

1= Ypislm(t)

YP1S 1™

episim (t) = (22)

A Stochastic Model of Multiprocessor Behavior

48

and

— PSm
E. = — 23

Using (20) the mean queueing time is easily obtained:

Wom = {t d Wom (1) ;E‘[me |Bnp =6] Pr(Bmp=6)

(4)

= Y E[Wom |Bpp=6] Pr(B,,,=6)
§:|6|=1

— 8l _
E[melzmpzd]:Eplslm + E}’I'stjm, Iﬁlkl.
j=2

Where the null sum is taken to be zero.

Approximating the arrival point probabilities with the general-time proba-
bilities gives an evaluation for Pr(zmp:cﬁ), assuming again that the processor

SMP's are independent.

Let X ={p.pa...Ped Y =1{1R....Pj
Then

Pr(&,p=06) = Pr{proc. p, is in state s,, connection in progress)
X Pr{proc. p, is in state s, in queue)
X (25)
X Pr(prac. p, is in state s, in queue)

X Pr(j ¢ Y-p—X are not queued at GUM m)

Y,
Pr(proc. p, is in state s, connection in progress) = 0, s m Pp Peal (28)

151 37
YP1317" + WP1’"

w.
— pim_ , R=1<k. (27)
Ypis-;m al/

pym

. . _ ,
Pr(proc. p; is in state s;, in queue) = Npisim Fogs,

A Stochastic Model of Multiprocessor Behavior

49

Pr(j ¢ Y-p—X are not queued at GUM m)= ([| Pr{j not queued at GMM m.,)
je¥Y—p-X (28)

Using equation (14) again:

Pr(j not queued at GHM m) =), (1 = Njsp) Pl

SEA}' (29)

Although this formulation's usefulness (in a practical sense it is too com-
plex to be used even for moderately sized systems and programs) is
outweighed by its complexity it is useful for small state spaces (see section 7)

and gaining insight into characteristics of memory interference.

This formulation for waiting time shows that mean sojourn times are
dependent only on the first two moments'® of connection times. Hence connec-
tion time CDF's which display nearly the same first and second moments will
yield nearly the same behavior (and hence FPg). If connectién times are con-

stant, then prslm is minimized. Note that if mean queue lengths are small
(<1) at arrival times, then even though Episﬂn is the predominating contribu-

tor to waiting times, the waiting time is a small contributor to Pg, if mean

queue lengths at arrival times are large then Ep ,s,;m has only mild influence on

waiting times and hence FP.

6.2. The Simple M/G/1 Computation of Sojourn Times.

This is an approach of a different type and appears to be more appropri-
ate than the independent SMP approach of section 6.1. It provides good results
for memory utilization, mean algorithm cycle times and processor utilization.

Presently, it is not as accurate however at predicting mean waiting times.

If the number of processors is large and they behave independently and

are also independent of the GMM system, it is reasonable to approximate the

15 Within the framework of the approximation for Ep sy given above.

A Stochastic Model of Multiprocessor Behavior

50

input process at GMM queues as Poisson processes. Technically this is not true
unless all processor emission processes are Poisson, or there are an infinite
number of them and each behaves as a rénewal process with uniformly sparse
emission rates. A survey of more technical aspects on the superposition of
point processes may be found in [Cin72]. As a result of simulation studies and
similar approximations [MuMB82b] the assumption of approximate Poisson

input processes seems reasonable.

Since processors emit requests and then wait for use of GM, there is a
sort of "feedback” induced within the model formulation. This feedback serves
to inhibit any Poisson nature of emission processes. Nevertheless, the effec-

tive rate of packet emission from processors will be used in the analysis.

The evaluation of sojourn times requires arrival point waiting times or the
waiting time experienced by an arriving request, an approximation relating to
queueing networks with a finite number of customers will be employed.
[SeMB1] presents a proof that in Markovian multiclass (of .multichain) net-
works of queues, the distribution (in the steady-state) of queue length seen by
an arriving customer is the same as the general-time distributicn of the queue

behavior without the customer in‘question.

The analysis here differs from these ideas in two major respects: the net-
work of multiclass queues is certainly not Markovian; the arrival point queue

length characteristics will be computed in a different manner'6.

The basic analysis is to use M/G/1 results to obtain queue statistics seen

by processor p. Define the following quantities:

effective rale of packet emission directed toward
Apsm = GHM m due to processor p in state s,

16 14 compute the arrival point distribution of queue characteristics, the system without pro-
cessor p's contribution will be considered. A more exact result might be achieved if to find processor
p's view of the system, a complete system solution without processor p is computed. This is another
area for study.

A Stochastic Model of Multiprocessor Behavior

51

rate of packet arrival af the
input of the GUM m queue,

total rate of packet flow

Apm from processor p to GHM m.,

rate of packet flow into GMM m
Am (P) = nol including processor p's conlribution.

A = rate of packet oulput from proc. p.
Notice that Af, AJ, A

pm are actually measurable quantities in the system,

they are viewable at the bus level of the system. [As such, a test of the model
on an actual system would consist of predicting these values and then measur-

ing them as the system runs, such test may be conducted with a simulator.]

Obviously the following relationships heold among such data

Mo = A (@) + Mo

>\m.(p) = Z)*jm
i#p

0 M
>‘P = Z Apm
m=
Apm = Apsm

Further define X, (p) to be the mean connection time (computed over

request types) for GMM m ezcluding processor p's contribution.

These quantities are related to the previous discussed quantities (in previ-

ous sections) as follows:

A Stochastic Model of Multiprocessor Behavior

52

Npsm
A = —— Py,
psm Sps ps

Which may be seen as follows: let T(Zp(t)) be the '"reward" (emission) rate

earned when processor p is in state Z,(t). Then

Dpsm. =5
rn= | 5, 2

0 ‘otherwise

The timre average rate of reward (emission) for processor p in state s referenc-

ing memory m becomes [Cin7?5, Ros70]:

(2)) dt
Apom = lim ——— = Y r(k)P = 2 pr
b Ic:A; SPS

Considering the GMM queues as M/G/1 queueing stations with arrival rate
Am (p) (that is, without processor p's contribution) yields the fact that the pro-
bability of a customer entering service (a request beginning a connection) is
from processor j # p in state s is P\jsm/Am(p). Connections beginning service
form a Markov chain with these transition probabilities (when considering
(processor, state) as the state variable). Computing the mean service time of

the mth M/G/1 queueing station without processor p's contribution gives:

Njkm 1 —
¥z, _- As myz, -
}\m(p)] jkm . (p)jgp k%:q; jk jk (30)

Xo@ =2 2

j#p keAT

Which may be seen graphically in Figure 7.

The simple M/G/1 approximation entails the following computations:

P (®) :Am('p)fm(p) (31)

Where p,, (p) is the GMM m utilization "seen" by processor p.

A Stochastic Model of Multiprocessor Behavior

53

Processor 1 Service Time

Processor P Service Time

Figure 7. X,, (p) interpretation (p # 1, P).

A Stochastic Model of Multiprocessor Behavior

54

= Am(p)pm(p) Xr{(p)

PRl = pm () |2 X (p) (52)

Where Npm is the number of requests seen in queue m by an arriving request
from processor p. This is the appropriate P-K (Pollaczek-Khintchine) mean
value formula, then using a modified Little's formula

| %)
2 X (P)

Nom (33)

= Npm)—(m (P) T Pm (_P)

Note that ogain only the first two moments of connection times arise in the
formulation, this agrees with the independent SMP formulation with its given

mean excess connection time approximation.

Note that it is plausible that]me from above may at first thought be > P-1
(which is certainly impossible in the system operation) but experience shows
that the iterative solution technique!” tends to seek a stable, feasible!® solu-

tion to these M/G/1 equations.

The computation of memory utilizations is particularly simple using the

queueing formulation.

Pm = Aa X (34)
_ 1 P
Xm = = 2)\jlcm ij:m (35)

And the mean queue length is readily obtainable (this is the general-time

outside observer’s queue length, not to be confused with ﬁpm):

17 The iteration is to compute P;s's, N's, Sps 's, then P;s's. ete,
18 The uniqueness of the solution is yet unknown.

A Stochastic Model of Multiprocessor Behavior

55

Nm = %15;1 E[Nm(t)] = E[?E}Nm(t)]

MNebm | X (36)
l—Pm 2)—(771.

A Stochastic Model of Multiprocessor Behavior

56

7. Examples and Simulations.

7.1. Two State Model of Processor Behavior.

Past work in this area has concentrated on modeling processor behavior
at a very low level. Past models [Hoo77, Pat79, MuMBRa] have modeled proces-
sor behavior at the "clock cycle level”, assuming that a processor is in a
"think" state where it processes, or it is in a reference state. This is used to
model hardware level behavior when the system is based on a single central

clock and memory reference times are integral multiples of this clock.

In terms of the SMP model, the description of processor states becomes

an alternating renewal process (ARP):

Compute 1 2 Reference

Typically computation times have been assumed to be geometrically dis-
tributed and based on the clock such that at each clock cycle, a processor (i)
in its computation state emits a request with probability ;.. With this model of

computation time, the mean scjourn time for state 1is 1/7;.

To compare the SMP model with other models, assume that connection
times are always one clock cycle in length, this is the typical assumption for
idealized interleaved memory systems. [Bha75, SkA69] employed MC tech-
niques to analyze this situation and found that for general 7;, 7psm, and
geometric connection times, the MC state space becomes enormous even for

small systems.

Hoogendoorn presents a model (termed the general memory interfer-

ence, GMI model) which resembles the SMP meodel in that it too uses an

A Stochastic Model of Multiprocessor Behavior

o7

iterative solution method for solving complicated model equations. The GMI
model is believed by the author to be the most accurate of the published
models of the ARP processor description and so will be used for comparison

purposes.

When considering only two states, special case closed form solutions may

be obtained very easily. Consider the special case where

1
Mpem = 7 Jorallp, m,
This represents the interleaved model where all GMM's are selected equiprob-
ably. Let all processor computation state sojourn times be geometrically dis-
tributed, based on a unit time cycle (which is SMP p’'s period), with mean

sojourn time 1/7. That is

™~

Pr(8, =n)=r(1-r)L,

Let all connection times have unit length (this could represent a memory

cycle time) with certainty:

Ypem (£) = (t = 1),

Due to the symmetry present in this situation all processor requests see
the same waiting time CDF, all processor utilizations are the same, etc. There-

fore subscripts will be dropped where they are not required.

From (23) we get

= 1
EpZm §
_ P-1 1
so W = (k - —Z-)Pr(lzl = k) from simplification of the waiting time formula.
k=1

A Stochastic Model of Multiprocessor Behavior

58

Simplifying:

and
P=11 Py 1 Pl w V7 (m—1 Pk
Pr(|R| =k)=k!]- — | |= = P, +1~-P
(18] = k) k M |1+W)|M|1+W MoF ;
Forl=sk < P-1.
Using the fact that Pz = :+—11 gives
W+1l+ =
r
k_l — k-1 — P—(k+1)
7o _(P-1y P 2 w L - W+ 1
1] e (P =1 =R 1 - 1
MW +1+ = MW +1+ = MW+ 1+ =
T T r
= (W)

Which suggests a simple solution technique that works for systems where

P>Y M: Wnyy = f(W,). For systems with two processors a simple solution

|

The rest of the performancé measures may be derived from the calcula-

eXists:

r+1
r

2 /2
+E _r+l
M r

W=

tion of W because ¥ determines P, and P, which in turn complete the deter-

mination of the remaining measures.

Consider the use of the simple M/G/1 analysis. From the P-K formula

(32):

A Stochastic Model of Multiprocessor Behavior

59

and

1 1
W+1+ =
T
Then simplifying
W = P-1
2MW+1+% +2(1 - P)

Which has a unique solution:

2 1/2
[M Tty p +2M(P-—1)} — | m|E +1—P}
W= oM
Computing memory utilization using (34):
Pm = Ap X 1= P
HlF+1+ L
r
So
B=—4X—
W+1l+ =
T
1 1
T 1 _ T 1
L 1 1+r(W+1 p=q 14T
W+ 1+ al) = +1
T T
And

A Stochastic Model of Multiprocessor Behavior

60

14+
1+ 7 (W + 1)

¢ =

Reviewing the equation relating B and ¥, the sensitivity of B with respect

to W may be determined. B is relatively insensitive té changes in W which
means that significant error in # can yield a reasonable prediction for B. B is
a robust measure (perhaps this is why it is the measure that has been
predicted most often in the past). The problem with the exclusive prediction
of B is-that it does not yield program execution characteristics such as

Cp(7.7). Assuming the two state model of computation in general causes pro-

gram characteristics to be undetermined.

To understand the sensitivity of B with respect to W, consider # as a

function of B (% should really be written as a function of r):

Whereas

il

When # is small with respect to 1 + ;1_— B remains relatively insensitive to

changes in #. B as a function of ¥ and |dB/dW | are plotted in Figure 9. As

W - w, |dB/dW| - 0 which again shows insensitivity to #.

Notice that using the simple M/G/1 approximation enables simple closed

form results to be obtained for general P and M.

A Stochastic Model of Multiprocessor Behavior

61

«u

&l%

-

w
]

R}

'

=

Figures B and 9. Sensitivity analysis.

A Stochastic Model of Multiprocessor Behavior

62

Results of using the two state model are tabulated in Tables I and IL
Table I shows results for a 2x2 system. The simulatorlwas written to simulate
the ARP state diagram exactly. Notice that for r = 1, state 1 is occupied for
precisely one time cycle and GM is used for" 1 time cycle, so after an initial
conflict (i.e., both processors emit requests for the same memory on the same
cycle, one is delayed and one proceeds) both processors access GM without
conflict. This phenomenon, termed self synchronization, is not modeled in the
SMP (or any known general request rate model). This phenomenon is not
expected to occur in reasonably general situations, this seems to be a special
case. Note: all simulation values unless explicitly stated otherwise are single
simulation values. Confidence intervals have not been compiled, nor have mul-
tiple run values been averaged. Simulation values for Table I should be

regarded as rough values.

Table II shows results of the SMP model along with Hoogendoorn's GMI
model (which only applies to the two state state diagram) and simulation con-
fidence intervals from [Hoo77]. Here r =1 or Sp;(t) =u{t—1) along with

Y,

pom (f) =u(t—1). Note that the SFA and PFA calculations for B might be

averaged to obtain a value in the confidence interval. The basic SMP model
compares well with the GMI model. Notice that as the system gets larger, B
computed using the simple M/G/1 approach gets better as would be expected
because as P, M - o, queue input processes approach Poisson processes

(ideally) [Cin72].

7.2. The Instruction Storage Example.

Returning to the example of a system where instructions are stored in GM
verses the use of LM for instruction storage. Make the following assumptions

regarding instruction execution by processors!®:

19 The purpose here is to compare two situations and demonstrate a use of the SMP model, not
to expand on instruction execution.

A Stochastic Model of Multiprocessor Behavior

63

Anealytic and simulation results for P =M =2,
uniform (interleaved) reference patterns

W w1l e 0. 03 w4 no 3]
T Wsim Wcalc Wcalc Bsim B calc Bcatc B, calc E

0.05 | .008 .012 012 .094 | .095 095 .095 | .999

0.10 | .021 .023 .024 .180 .181 .181 .181 .998
020 | .044 041 .045 .330 .330 331 .331 .883
0.30 | .058 .057 .084 .457 .453 458 .455 | .985

040 | 074 070 .081 .5569 555 580 .558 | .977
050 | .082 .081 .0986 .845 | .640 649 .646 | .989
0.80 | .081 .091 110 724 | .713 725 .720 | .980
0.70 | .090 .099 122 192 | 775 791 784 | .952
0.80 | .078 .108 133 .854 | .B29 .B49 839 | 944
0.90 | .057 112 .143 022 | .875 .889 .887 | .037
1.00 | .000 .118 151 1.000 | .918 944 .930 | .930

= mean queueing time for the independent SMP approximation.
= mean queueing time for the simple M/G/1 queueing approximation.
= mean memory bandwidth computed using the product-form approximation and Wcl,uc.

= mean memory bandwidth computed using the sum-form approximation and Wclalc-

mean memory bandwidth computed using the simple M/G/1 queueing approximation.

= relative processor utilization based on Wczalc.

Table 1. 2x% simulation results.

A Stochastic Model of Multiprocessor Behavior

64

Anslytic and simulation results for unit processing and
connection times with uniform reference patterns
P M Eszm 90% CI GMI E Eclalc Eczalc Wc?zlc EC%ILC Wcsalc E 6
4 2] 15647 1.5843 | 1.5400 | 1.5228 1.5917 513 1.5087 851 15
4 418194 1.8276 | 1.7917 | 1.7963 | 1.7848 241 1.7778 250 .89
4 B | 1.9126 1.9244 | 1.2012 | 1.8058 | 1.8958 110 1.8974 .108 .85
8 4 | 2.8460 2.9206 | 2.9789 | 2.9935 | 2.93086 730 2.8542 .B12 71
8 8 | 3.4858 3.5348 | 3.5221 | 3.5754 | 3.4340 .330 3.4695 308 .87
186 16 | 6.8140 6.9788 | 6.9844 | 7.1452 | 6.7068 .386 8.8513 335 .88

51 _ .) —
Bigic = mean memory bandwidth computed using the product-form approximation and Wc%c .

—— _) —
Bgaie = mean memory bandwidth computed using the sum-form approximation and Wcsalc-

wa — . . .
Wealc = mean queueing time for the independent SMP approximation.

B&uc = mean memory bandwidth computed using Wcﬁazc.

Wcsazc = mean queueing time computed using the simple M/G/1 approximation.

= relative processor utilization based on Woy, .

Table II. Simulation results with varying P and M.

(1

(®)

(4)

All processors are executing a similar instruction stream.

GM is interleaved so connection times are unit length and references are

directed to all GMM’s equiprobably.

About 30% of the instructions reference data (not instructions).

Each non-data reference instruction requires 2 time units to execute (one

instruction fetch and one instruction execution). Note that if the instruc-

tion is in GM, the a queueing delay is also present in each instruction

A Stochastic Model of Multiprocessor Behavior

65

fetch/ execute cycle.

(56) Each GM data reference instruction requires one instruction fetch, one

instruction execution time unit, and one GM connection cycle.

Consider first the case where all instructions and data are stored in GM.

A state diagram is intuitively drawn as

Instruction Execute

Instruction Fetch Data Read/Write

Where

};)Zm.(t) = u(t_l)- MNpem =

S]EESI

YpSm(t) = u(t'—l)' Npam =

An execution rate of interest is the inverse of the mean time between entries to
state 1. Every entry to state 1 marks the beginning of an instruction execution.

The rate of system instruction execution is:

Ci(1,1)°

For the second situation where instructions are stored in LM, the state
diagram is the same but state 2 is now a computation state (relative to the

P/M level of interaction) so

A Stochastic Model of Multiprocessor Behavior

66

Spa(t) = w(t 1),

Table IIl shows the results of solving these systems descriptions using the
basic SMP model with the simple M/G/1 approximation. From the table it may
be seen that for a 16x16 system a sf)eedup of 20% is achieved by storing
instructions in LM (this speedup is relative to speed for a system with instruc-
tions stored in GM). Note that this result is actually conservative in that a real
system would have faster (i.e., smaller access time) LM (similar to a cache)
than GM so instruction storage in LM would result in better than a 207%

speedup.

7.3. State Space Generator Example.

Consider the generation of a state space using a heuristic function

applied to generate successor nodes [Nil71]. That is, a tree is to be generated

Instruction Storage in LM vs. GM
P=M LM Inst. Storage GM Inst. Storage % speedup
Execrate B Pp, | Execrate B P, | offered by LM
2 .868 .260 | .433 792 1.030 | .398 9.8
4 1.727 518 | .432 1.498 1.645 | .374 15.4
8 3.450 1.035 | .431 2.902 3.773 | .383 18.9
18 6.894 2.088 | .431 5.712 7.427 | .857 20.7

Table 1II. Speedup with instruction storage in local memory.

A Stochastic Model of Multiprocessor Behavior

67

with a heuristic function that is applied to all unexpanded nodes to generate

successor nodes.

The implementation is based on [Nil71] but in a parallel environment
where a list of nodes is kept in GM and -each processor removes the next node
to be expanded from an OPEN list, expands it using the heuristic function,
writes the expanded node onto a CLOSED list, and writes the successors onto
the OPEN list. Note that if the OPEN list becomes empty when, for example,
P-1 processors operate on nodes which have no successors, P-1 processors
must wait for the next node(s) to be written to the OPEN list by the single run-

ning processor.

In order that the lists OPEN and CLOSED be manipulated in a parallel
environment, pointers will be kept GMM 1. Notice that GMM 1 should exhibit a
higher rate of use than other GMM's. List elements (which may consist of
several words) will be mapped into a single GMM. That is, each element of each

list lies entirely within one GMM,

When a processor generates successors of a given node, it first modifies
pointers kept in GMM 1 and the writes all the generated nodes into a single
GMM indicated by a pointer in GMM 1. Pointers are also be needed in each
GMM that indicate the exact position within the GMM that where new nodes
should be added. Figure 10 shows a state of the OPEN list. The CLOSED list is
a simple list that wraps around GMM modules. Due to these two specifications
it seems that when node(s) are written onto the OPEN and CLOSED lists, the
GMM chosen is chosen seemingly randomly, again provided a steady-state is

reached.

A flowchart of the algorithm which each processor execules indepen-
dently, is shown in Figure 11. First assume that OPEN is not empty, then the

algorithm operates as follows: a processor removes the next node on OPEN, it

A Stochastic Model of Multiprocessor Behavior

68

Node Node GMM 1

Node W / GMM 2

i 4

Node | Node | Node /A GMM 3

Node / /// ZECE

A

A

Node [Node Neode

N\N

Figure 10. The OPEN list arrangement.

is indicated by a pointer in GMM 1 that points to the GMM that contains the
next node on OPEN. The processor next obtains a connection to the GMM
peinted to (the processor might modify the OPEN pointer in GMM 1, not all
operations done on pointers are explained here; this example program was
constructed to test the basic SMP model, not necessarily to create a finished
parallel state space generator) and reads a node pointed to by a local pointer
contained in the GMWY, in this way circuit switched CN's provide a simple lock
of pointers and data. Since nodes are stored uniformly in the steady-state,
the GMM chosen for the read should be nearly random with uniform distribu-

tion.

Once a new node is read from the top of OPEN it is placed on the bottom
of CLOSED. This is done similarly to the reading of elements from the OPEN

list. Once the next node has been obtained (and stored in LM) and rewritten to

A Stochastic Model of Multiprocessor Behavior

69

Read from
GMM
1 (DONE)

Yes

No

Remove 1st
node |

Yes Check for
data available

on OPEN

| No

Put it
on CLOSED

|

Expand node

9o
A 4
Read/mod/
write
OPEN pointer

Put successor
|® end of OPEN

No Yes Write done
signal

Figure 11. The state space generator example flowchart.

A Stochastic Model of Multiprocessor Behavior

70

the CLOSED list, it is expanded. Each node is expanded using the same heuris-
tic function (hence this fits the independent elemént list criterion) which has
probability mass function g, the k successors are generated, 0 <k <K, Henée
the arc labeled with g leading from the "Expand node” state to the top of the

cycle again.

After generating successors, the processor updates th OPEN pointer in
GMM 1 (again, the semantics of the pointers are not discussed here), puts the

new set of nodes at the end of OPEN and then continues.

Figure 12 shows the P/M level of description for this hypothetical state
space generator. The following values have been assumed?®®:
4 processors and 4 GMM's

Ypll(t) =wu (t—100), Mp11 = 1
sz(t) = u(f-100)

Ypaa(t) =u(t—100), 7ps =1
SP4(t) = u(t-100)
YpEI(t) = u (t-100), Nps1 = 1

Spe(t) = u(t—100)

y;ﬂm(t) = u(t '—2000), Np7m

SR
3
i
=

Ypﬁm(t) = u(t _2000)1 Npdm =

Spe(t) = .51 u(t~5000)

+ .25 u (t —10000)
.10 u (£ —15000)
.05 w (£ —20000)
.03 u (t —25000)
.03 w (t —30000)
.08 u (£ —35000).

+ + + + +

20 Por the first simulation. Five different runs were performed with different parameters varied
from run to run. Fach run requires about 20 CPU seconds on the Michigan Terminal System, hence
confidence intervals have not been accumulated.

A Stochastic Model of Multiprocessor Behavior

71

S Read from
GMM 1

3 4 5
2 Check for Read from Check for Read from
empty GMM 1 done GMM 1

Read from
random GMM [€— |

Pp

I

g | Write into
random GMM

Expand node

GMM 1
10 read/write -

il

Write new
nodes

11

Check for
done

Figure 12. The P/M level description of the state space generator.

A Stochastic Model of Multiprocessor Behavior

72
Ypa0.1(t) = u(£—200), 7p.101=1

Y

i (£) = 5051 w (£=2000) Ty = % m=1,...H

+ .2525 u(t —4000)
+.1010 u(t—sood)
+ .0505 u (£ —8000)
+.,0303 u (£ —10000)
+,0303 w (£ —12000)

+ .0303 u (£ —14000)

qo=.01, prp=.01, pp=.05

Sp12(t) = u(t—500)

Y,

pam = 4121

YZ Lm = 26260400

P

From the specification of the program, it nay be seen that it takes 5000
time units to generate each successor node as given by the state 9 computa-
tion time. From the embedded MC (P/M level diagram) it may be seen that 0

successors also take H000 time units to evaluate.

From state 11 it may be seen that it takes 2000 time units to write a new
node into the appropriate GMM. This neglects the manipulation of the local

pointer within the GMM.

Table IV summarizes the basic SMP model's calculated results verses
simulation values for five separate simulations where gg, pg, Spe(f), and
Yp1im () were varied. Again, no confidence intervals have been compiled so

simulations should be regarded as rough estimates. Notice that calculated

A Stochastic Model of Multiprocessor Behavior

73

results are generally very good except in predicting EP(S,S). For simulations 1

through 4 the simulation statistics show that ¢, (5,5,1) looks about like:

A

cp(5,5,1)

Where the large peak occurs at a small value of t relative to the smaller peak
at a very large value of t. The problem is that a small number of entries
(about 20) are seen in the simulation data pertaining to the small peak. This
small number typically does not constitute a stable statistic so parameters
were varied so the simulation 4 and 5 exhibit better results. Simulation 5 par-
ticularly shows better results. Multiple simulations are certainly needed for

further testing of the basic SMP model.

States b and 6 constitute a loop that each processor uses to wait for data
to become available when OPEN is empty. This communicalion loop is a
important aspect of parallel program execution. In general processes must
communicate through GM locations or special signaling lines that are con-
nected from PE's to PE's. The modeling of process communication is critical.
For this simple test, assumptions were made regarding the number of times
the communication loop will be executed. Techniques are under development

that should provide a formulation for communicating processes.

A Stochastic Model of Multiprocessor Behavior

74

Analytic and simulation results for the
state space generator algorithm, the simple M/G/1 analysis,
andP=M=4
Measures Simulation No.
1 2 3 4 5
Biim 1.417 2.020 1.036 1.975 1.009
Beaic 1.444 1.982 1.093 1.883 1.071
7% error 1.9 -1.9 5.5 -4.7 6.1
G (1. V)sim 22613 16408 17417 16017 17889
Co (11 cate 23248 16944 17290 18030 17993
% error 2.8 3.8 -7 8.6 .8
G, (5.5)sim 86919 73395 85968 15335 17595
Cp (5.5)catc 116289 84757 86469 18030 17993
7% error 33.8 15.5 31.1 17.8 2.3
Msim | 4.965x107* | 7.107x107* | 6.545x107* | B.857x107* | B.052x107*
L cate 5.069x107* | 6.955x107* | 6.816x107* | B.514x107* | B.5631x107*
% error 2.1 -2.1 4.1 -3.8 5.8
A sim 1.238x107* | 1.812x107* | 1.630x107* | 1.690x107* | 1.564x107*
NS caic 1.286x107% | 1.764x107% | 1.729x107% | 1.658x107* | 1.662x107*
% error 3.8 -2.8 6.1 -1,9 6.3

Table IV. State space generator example results.

8. Conclusion.

The basic SMP model presented here forms a basis for a model of MIMD
systems that is believed to be more comprehensive than models previously
developed. Many problems discussed need to be addressed in the future. The
remaining sections describé major points that need to be studied in order to

better model parallel program execution.

A Stochastic Model of Multiprocessor Behavior

75

B.1. Process Communication.

Modeling process communication is of vital importance, no models yet
developed (that model the level of process interaction considered here) are
capable of describing system operation appropriately. At the time of writing
techniques are under development that appear to offer promise. The basic
idea seerms to be to include more types of states in the P/M flowchart. Com-
munication states could be included, then the SMP equations which describe
process i could be mathematically "linked" to those equaltions describing pro-

cess j.

This aspect of future work is considered to be imperative because process
communication is a common phenomenon and yet no results regarding the
problem have been seen. Note that modeling program/processor behavior
using the two state model that predominates other work (as described in sec-

tion 7) provides no reasonable way of modeling communicating processes.

8.2. Transient Analysis.

It seems important to predict the relationship between the steady-state
SMP model results and actual system behavior on smaller scale execution
times. That is, given the SMP results for a giveﬁ program set; it would be use-
ful to know how to predict the relationship between authentic short term pro-
gram execution measures and steady-state values predicted. Reasconable

bounds would be useful here.

B.3. Non-stochastic and Synchronized Systems.

An interesting test of the SMP model would be its use on non-stochastic
problems. That is, ocnes in which decisions, computations, etc. are decidedly
not random. In this testing, loops executed a constant, known number of times

would be replaced by Bernoulli trial loops as in the example in section 3.1.

A Stochastic Model of Multiprocessor Behavior

76

Deterministic programs also benefit from self synchronization, once they
become synchronized they may stay synchronized. Future SMP model

development might include modeling synchronization.

8.4. Error Analysis.

It would certainly be useful to predict when and how much error is to be
expected in the SMP results. If the M/G/1 analysis is used, then a better char-
acterization of input processes to queues would be useful. The accuracy of
approxirmating input processes as Poisson processes is an area for study.
[Cin72] presents a survey of CDF error measures that describe the "distance"
between a given CDF and a Poisson process CDF (with exponential renewal
times).

Another approach to approximating memory queue behavier might be to
use [FreBR] approach to approximating the waiting time seen by arriving
requests using an assumed functional form for the waiting time CDF and the
Lindley integral equation to match moments and find appropriate coefficients
in the assumed function. This technique though is an infinite independent cus-

tomer analysis.

B.5. State Space Reduction Techniques.

Due to solution complexity dependence on state space size, it might prove
advantageous to develop analytic techniques that map a large complicated
program (or MC) into a simpler, less descriptive, state digram. It might be
useful to develop more accurate processor description than the previously
used two state model. The problem here is that fundamental measures are

lost when state space reduction techniques are employed.

State diagrams might be developed to model operating system activity

along with user program execution. This is similar to the concurrent program

A Stochastic Model of Multiprocessor Behavior

77
execution mode.

8.6. Multiple Requests.

In the case when multiple requests are emitted when a processors enters
a reference state, a formulation has been derived but is presently complex
and reguires the CDF of queueing time. The M/G/1 approach might be used
with the P-K transform equation of queueing time. The [FreB82] approach is
appropriate here because a functional form is assumed for Wy, (f), and hence

the CDF of queueing time is present.

8.7. lLookahead Applications.

Processors may employ lookahead units in an effort to reduce queueing
time effects, an important application of the SMP model is its use in evaluating
the selection of lookahead times. If lookaﬁead times are large then memory
time is wasted, if lookahead times are small the waiting time will still be

experienced by processors. More work is required on this topic.

In conclusion, the basic model presented here may be used to model
parallel program execution and processor behavior. The basic model is a gen-
eralization of previous models although the concepts and formulation here are
different than seen previously. Along with greater generality than previous
models allow, the SMP model makes available more information than previous
models. Preliminary accuracy tests were shown that suggest that less than

10% error on mean value predictions may be expected.

A Stochastic Model of Multiprocessor Behavior

78

9. References.

(BaS78]

[Bha75]

[Cin72]

[Cin75]

[Coo72]

[DiJ80]

[FreB2]

[GrH74]

[Han78]

[HeS82]

[Hoa74)

[Hoo77]

[Kle75]

[Kuc78]

F. Baskett, and A. J. Smith, "Interference in Multiprocessor Com-
puter Systems with Interleaved Memory,” CACM, Vol. 19, No. 6,
June 1976, pp. 327-334.

D. P. Bhandarkar, "Analysis of Memory Interference in Multipro-
cessors," IEEF TC, Vol. C-24, No. 9, Sept. 1975, pp. B97-908.

E. Cinlar, "Superposition of Point Processes,” Stochastic Point
Processes: Statistical Analysis, Theory, and Applications, Peter
AW. Lewis, Ed. John Wiley and Sons, Inc. 1972, pp. 549-608.

B. Cinlar, Infroduction to Stochastic Processes, Prentice-Hall Inc.,
Englewood Cliffs, N.J., 1975.

R. B. Cooper, Introduction to GQueueing Theory, The Macmillan
Company, New York, 1972.

D. M. Dias, and J. R. Jump, "Analysis and Simulation of Buffered
Delta Networks," Proc. Workshop on Interconnection Netfworks,
Purdue University, April 21-22, 1980.

A. A. Fredericks, "A Class of Approximations for the Waiting Time
Distribution in a GI/G/1 Queueing System," Bell System Technical
Journal, Vol. 81, No. 3, March 1982, pp. 295-325

D. Gross, and C. M. Harris, Fundamentals of Queueing Theory,
John Wiley and Sons Inc., New York, 1974,

Per Brinch Hansen, "Distributed Processes: A Concurrent Pro-
gramming Concept,” CACM Vol. 21, No. 11, Nov. 1978, pp. 934-941.

D. P. Heyman and M. T. Sobel, Stochastic Models in Operations
Kesearch, Vol. I, McGraw-Hill, Inc., New York, 1982.

C.A.R. Hoare, "Monitors: An Operating System Structure Concept,"”
CACM, Vol. 17, No. 10, Oct. 74, pp. 549-5b7.

C. H. Hoogendoorn, "A General Model for Memory Interference in
Multiprocessors," [EEE TC, Vol. C-26, No. 10, Oct, 1977, pp. 998-
1005.

L. Kleinrock, Queueing Systems Volume I: Theory, John Wiley &
Sons Inc., New York, 1975,

D. J. Kuck, The Structure of Computers and Computations, Vol. 1,
John Wiley & Sons Inc., New York, 1978.

A Stochastic Model of Multiprocessor Behavior

[Law75]

[MaG81]

[MaMB1]

[McC73]

[MuMBRa]

[MuMBRb]

[MuM82c]

[MuMB2d]

[Nil71]

[Pat79]

[Rau79]

[Ros70]

[SeD79]

79

D. H. Lawrie, "Access and Alignment of Data in an Array Proces-
sor," IEEF TC, Vol. C-24, No. 18, Dec. 1975, pp. 1145-11565,

M. A. Marsan, and M. Gerla, Markov Models for Mulliple Bus Mul-
tiprocessor Systems, Report No. CSD 810304, Computer Science
Department, UCLA, Feb. 1981,

B. A. Makrucki and T. N. Mudge, A Multiple M/ D,/ 1/ L. Queueing
Network Model of Crossbar-based Multiprocessors, SEL Report No.
1567, Dept. of Electrical and Computer Engineering, University of
Michigan, September 1981.

J. W. McCredie, "Analytic Models as Aids in Multiprocessor Design,"
Prac. 7th Annual Conf. on Informalion Sciences and Systems,
Princeton Univ., March 1973, pp. 186-191. ’

T. N. Mudge and B. A. Makrucki, "Probabilistic Analysis of a
Crossbar Switch," Proc. 9th International Symposium on Com-
puter Archifecture, IEEE, April 1982, pp. 311-320.

T. N. Mudge and B. A. Makrucki, "An Approximate Queueing Model
For Packet Switched Multistage Interconnection Networks," Proc.
of the 3-rd Int, Conference on Distributed Compuling Sysltems,
October 1982, (to appear).

T. N. Mudge and B. A. Makrucki, "Analysis of Multistage Networks
with Unique Interconnection Paths,” Proceedings of the I14-th
Southeastern Symposium on System Theory, April 1982.

T. N. Mudge and B. A, Makrucki, "Analysis of a Multiport Memory,"
Proceedings of the 16-th Annual Conference on Informalion Sci-
ences and Systems, Princeton University, March 1982, pp. 639-
643,

N. J. Nilsson, Problem-solving Methods in Artificial Intelligence,
MeGraw-Hill, Inc., New York, 1971.

J. H. Patel, "Processor-Memory Interconnections for Multiproces-
sors,”" Proc, 6th Annual Symp. on Compuler Architecture, IEEE,
April 1979, pp. 166-177.

B. R. Rau, "Interleaved Memory Bandwidth in a Model of a Multipro-
cessor Computer System,"” IEEE TC, Vol. C-28, No. 9, Sept. 1979,
pp. 67B-681.

S. M. Ross, Applied Probability Models wifth Optimization Applico-
tions, Holden-Day, Inc., San Francisco, 1970.

A. S. Sethi, and N. Deo, "Interference in Multiprocessor Systems
with Localized Memory Access Probabilities," /EFE TC, Vol. C-28,
No. 2, Feb, 1979, pp. 157-163.

A Stochastic Model of Multiprocessor Behavior

[SeMB1]

[SieB80]

[SkABY]

[Smi74]

[Str70]

[TakB2]

[WuF80]

80

K. C. Sevcik and 1. Mitrani, "The Distribution of Queueing Network
States at Input and Output Instants,” JACH, Vol. 28, No. 2, April
1981, pp. 3568-371.

H. J. Siegel, (E4.), Proc. Workshop on Interconnection Networks,
Purdue University, April 21-22, 1980.

C. E. Skinner, and J. R. Asher, "Effects of storage contention on
system performance," IBM Systems Journal, No. 4, 1969, pp. 319-
333.

A. J. Smith, Performance Analysis of Computer System Com-
ponents, Ph.D, Thesis, STAN-CS-74-451, Computer Sci. Dept., Stan-
ford Univ., August 1974.

W. D. Strecker, Analysis of the Instruction Freculion Fate in Cer-
tain Computer Structures, Ph.D. dissertation, Carnegie-Mellon
University, Pittsburgh, 1970.

L. Takacs, Infroduction to the Theory of Queues, Oxford University
Press, Inc., New York, 1962.

C-L. Wu, T-Y. Feng, "On a Class of Multistage Interconnection Net-
works," IFFFE Trans. Compulters, Vol. C-29, No. 8, August 1980, pp.
694-702.

A Stochastic Model of Multiprocessor Behavior

81

10. Appendix.

Since connection times for different processors are independent, and are
added for those requests in the queue at processor p's request arrival, the pmf
of waiting time is given by the convolution of connection times (and the excess
connection time for the connection in progress). In terms of transforms it is
given by the product. In the first case when |6] = 0, the queue is empty so the

waiting time CDF is w () which has pmf é(f). §(f) has an LT of 1.

A Stochastic Model of Multiprocessor Behavior

