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ABSTRACT

Models of computing systems involving fixed system
resources and probabilistically specified user state transition
behavior must account for interactions between the system users
and the system states that result from resource limitations.
This is normally accomplished by the introduction of queues for
the system states. Because of the probabilistic definition of
user behavior, queue transition probabilities must usually be
determined by a simulation of the computing system. This paper
develops a new technique for simulating computing systems where
the hardware configuration is specified by a processor/state
service matrix and is fixed throughout the simulation, and user
state transition behavior is specified using a basic state

transition probabilities matrix satisfying the requirements for
a Markov process.

INTRODUCT 10N

Computing system models employing a Markov methodology
partition the computing system resources into a set of states
which may be occupied by user tasks. No user task may occupy
more than one state at any given time, and every user task must
occupy some state at all times (i.e., the states form a true
partition). User task state transition behavior is specified
using a Markov basic state transition probabilities matrix
(STPM). This matrix specifies the probabilities that a user
task will move from its current state to every other state in
the system. Implicit in the use of Markov processes is the
assumption that a state will be available when a user task
attempts to move to that state. This assumption is not
generally satisfied by state sets that correspond to processing
activity undertaken by a user task. The problem is that user
tasks are not always involved in processing, but rather, must
occasionally await processing on queues for system states.
These queues may be added to the state set and be used to

produce an extended STPM which includes the newly created queue
states.

Construction of an extended STPM requires the derivation
of queue entry transition probabilities (the probabilities of
moving from the original states to the queue states) and the
queue maintenance transition probabilities (the probabilities
of remaining in and of leaving a queue at the end of the
current time step). These Queue-related transition
probabilities may be calculated from performance statistics for
existing systems, but such statistics are not always available,
and can often be costly to collect. A less costly and more
practical method for deriving these probabilities is through
the use of simulation techniques. This paper will introduce a
simulation technique for deriving the information needed to
calculate the extended STPM for a computing system where user
state transition behavior is specified using Markov processes.
The states of the basic STPM will be referred to simply as



states, and the new states of the extended STPM that function
as queues for the basic STPM states will be referred to as
queue states. Therefore, there will be a queue state
associated with every state of the basic STPM.

A simulation of such computing systems probabilistically
moves users among the states of the system and maintains a
queue for each state. A state's queue becomes active once all
of that state's processors are in use servicing other users.
During the simulation, queue length and user queue wait time
statistics are collected. A Queue transition probabilities
matrix which contains the probabilities of moving from every
state to the queue for every other state is produced at the end
of the simulation. This matrix can be combined with the basic
STPM and user queue wait time statistics to form an extended
STPM which includes the original states of the basic STPM and a
queue state associated with each of the original states. The
extended STPM can then be used to specify user behavior in
analytical models of the given computing system. In fact, a
Markov-based model for studying computing system performance
has been developed by the author that utilizes an extended STPM
to specify user state transition behavior [7].

COMPUTING SYSTEM SPECIFICATION

The computing systems that we will consider can be
completely specified by providing a basic STPM (P), a
processor/state service matrix (S), and the number of user
tasks (N). This specification is given as a triple {P,S,6N}.
The basic STPM specifies the state transition probabilities for
user tasks. A Markov process is a discrete time event model.
This means that all user task state transitions occur at Ege
end of discrete time intervals called time steps. The ij
entry of the basic STPM indicates the probability that a user
task that is currently in state i will move to state j at the
end of the current time step (or remain in state i if i=j). A
user task can only enter a state if one of the processors
associated with that state is available. Otherwise, the
simulation must place the user task on a queue for that state.

We will assume that none of the states of the basic STPM are
queue states.

The processor/state service matrix is a boolean matrix
whose rows correspond to system processors, and whose columns

correspond to system states. The entries are calculated as
follows:

Let S be the processor/state service matrix, If there
are M system processors and N system states then S will
be a MxN boolean matrix.



S . = TRUE if processor i
] services state j

= FALSE otherwise

Consider a simple computing system in which the user tasks
cycle through three states: Input, Compute, and Output. If we
denote the Input state by I, the Compute state by C, and the
Output state by O, then we can construct a basic STPM P:

1 C o)
1 {.3 .7 0}
P= C {.3 .2 .5}
o {.6 o1 .31

This matrix models a computing system in which the
dominant user state cycle is Input-Compute-Output, but where it
is also possible to move to the Input state from the Compute
state or to move to the Compute state from the Output state.

For an example computing system, we will assume that there
are 13 system processors; 3 dedicated to the Input state, 5
dedicated to the CPU state, 2 dedicated to the Output state,
and 3 which may be used by either the Input state or the Output
state. Using these assumptions, we can construct a processor/
state service matrix S for the computing system:

Input CPU Output
Proc 1: TRUE FALSE FALSE
Proc 2: TRUE FALSE FALSE
Proc 3: TRUE FALSE FALSE
Proc ¢&: FALSE TRUE FALSE
Proc 5: FALSE TRUE FALSE
Proc 6: FALSE TRUE FALSE
Proc 7: FALSE TRUE FALSE
Proc 8: FALSE TRUE FALSE
Proc 9: FALSE FALSE TRUE
Proc 10: FALSE FALSE TRUE
Proc 11: TRUE FALSE TRUE
Proc 12: TRUE FALSE TRUE
Proc 13: TRUE FALSE TRUE

We will also assume that there are 24 user tasks in the
system. The example computing system is completely specified
by the triple {P,S,24}. Figure 1 contains a system diagram for
the example computing system which includes a graphic
representation of user task state transition behavior.
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Figure 1, System Diagram for Example Computing
System Including User Task State
Transitions

Let us consider finite first-order ergodic Markov
processes. This imposes several constraints on the user task
state transition behavior that we can model:

1. User task state transition behavior can depend only
on the current state.

2. There must be a non-zero probability that a user task
leaves a state at the end of each time step (no absorbing
states are permitted).



3. Once a user task enters a state, it must remain for

an entire time step due to the discrete time nature of
the Markov process,

4. A fixed time step must be used, and the process must
reach equilibrium in a finite number of time steps.

5. The basic STPM state set must be fixed throughout the
process.

6. The state transition probabilities must be fixed
throughout the process.

GENERAL SIMULATION REQUIREMENTS

The Markov process can be viewed as consisting of two
domains: the state/time domain and the transition domain. The
state/time domain contains information about the states of the
model and the amount of time spent in these states. The
transition domain contains information about the way in which
user tasks move among the states. Markov processes are highly
flexible in the transition domain, but are fairly inflexible
with respect to the state/time domain. It is because queues
are part of the state/time domain that they are particularly
difficult to incorporate into the Markov model unless they are
modelled as states.

A queue is used when a user task attempts to move into a
state that is not available because all of the processors
associated with the state are being used by other user tasks.
The order in which user tasks are removed from the gqueue is
determined by the queue maintenance policy. The processor that
is assigned to a user task once it enters a new state is
determined by the processor selection policy.

The complexity of the queue maintenance algorithm depends
on the complexity of the processor/state service matrix (S).
The simplest possible situation arises when each row of S has
exactly one TRUE entry (corresponding to a unique state
assignment for each processor). A more complex and more
realistic processor assignment strategy permits multiple state
assignments for each processor. In either case, a user task
must be placed on a queue when all of the associated state's
processors are in use. We will use the more general processor/
state mapping strategy.

When a user task enters a new state, either from another
state or from the state's queue, the processor selection
algorithm assigns that user task one of the state's available
processors. If more than one processor is available, then the
processor selection algorithm must consider the other states
that each available processor can service, since selecting a
processor will make it unavailable to these other states.



Therefore, to implement the gueue maintenance and processor
selection algorithms, a simulation must maintain records of
available processors for each state.

To include queues as states of the Markov model, the
transition probabilities for entering a queue when attempting
to move from one state to another (queue entry transition
probabilities) must be known. To simplify this problem
somewhat, we will assume that once a user task enters a state,
it can retain control of the processor that it is assigned
until it leaves the state. This eliminates the possibility of
a user task leaving a state, entering a queue for that same
state, and then returning to the state. This assumption seems
reasonable in general, since most computing systems do behave
in this manner. There are, of course, exceptions such as the
time slice interrupt which forces a user task to relinquish the
CPU after some prescribed time limit. Such exceptions can be
handled by using the flexibility that is available directly
through the Markov model (e.g., a ready state can be defined,
so that a user task can go from use of a processing state to
the ready state and then back to the same processing state).

Given a computing system specification {P,S,N}, we
simulate user task state transitions through the system.
First, a set of starting state assignments must be constructed.
This set can either be supplied to the simulation or can be
randomly constructed. The simulation uses the basic STPM to
move the user tasks among the various states of the model.
While many different simulations are possible, based on the
gueue management and processor selection policies, their goals
are the same:

1. To collect statistics on average queue lengths for
each queue.

2, To calculate the queue-related transition
probabilities for each gueue: queue entry and queue
maintenance transition probabilities.

3. To collect statistics on average time spent on each
queue in the system.

4, To collect statistics on the percentage of time spent
in every state of the model,.

Using the gqueue entry transition probabilities and the
average time spent on each queue, we can add queue states to
the basic STPM to form the extended STPM.

SIMULATION STATISTICS AND OUTPUT

Let us now move from the general specification of Markov
model simulations involving queues to a simulation that has
been developed as an example. This simulation uses a First-In



First-Out (FIFO) gqueue maintenance policy. The processor
selection policy is also a simple one: from the set of
processors that can service the required state, the processor
that can service the fewest other states is selected. This
policy attempts to select those processors that are least
likely to be needed by other states.

The simulation was written in ALGOL-W on the Michigan
Terminal System (MTS). It begins by obtaining the computing
system specification {P,S,N} and the starting assignment of
user tasks among system states. It also requests the number of
time steps that are to be simulated. For each time step, the
simulation moves each user task from the state that it occupies
at the beginning of the time step to the state that it will
occupy at the beginning of the next time step (it may be the
same state). This is done by generating a pseudo-random
number, and using this number and the basic STPM to determine
the state transition. During each time step, the simulation
program checks for state availability, manages the system
resource queues, and updates the following statistics:

1. Cumulative queue length for each state's queue during
the simulation.

2. Average queue length for each queue. This is

cumulative queue length divided by the number of time
steps.

3. Cumulative task queue wait time. This is the

cumulative time spent by user tasks on each queue during
the simulation.

4. Average task queue wait time. This is the cumulative
task queue wait time divided by the total number of user
tasks that were on the queue during the simulation.

5. Average distribution of user tasks among system
states and queues. This approximates the equilibrium
user task distribution. The average distribution of user
tasks may be used to identify potential system
bottlenecks, where additional processors might be needed.

6. Queue entry transition probabilities matrix. This
matrix specifies the probabilities of moving from every
state to the queue for every other state. This matrix
will always have zero entries along the diagonal since a
user task need not leave a state until ready.

A possible problem with the simulation concerns the order
in which user tasks are processed. The first tasks to be
processed during each time step have a greater implicit
priority, since they move among states before other user tasks.
This is a function of the fixed time step, and the fact that
every user task must move at the end of a time step, even if



the move is simply a return to the same state. This problem is
alleviated somewhat by the assumption that a user task can
remain in a state as long as necessary once it arrives. This

prevents user tasks from being bumped from a state to a queue
for that state.

In the simulation, user tasks are indexed 1 to n. Task 1
has the highest implicit priority, since it is always moved
first. One way to eliminate this problem would be to randomly
select the order in which user tasks are moved among the states
of the model during each time step. This was not done in the
simulation because we are only interested in average
quantities, and not in the behavior of individual user tasks.
This amounts to a statement of the importance of equilibrium
conditions, which are used by the Markov model as opposed to
more user task specific information.

A related problem is the implicit priority of states of
the model. Depending on the order in which the queues are
purged at the end of a time step, certain states could have a
higher implicit priority than others. This results from the
fact that a processor can potentially service more than one
state., If state i and state j each have non- empty queues, and
there is one processor available that can service both state i
and state j, then depending on the order in which the queues
for state i and state j are purged, one of these states will be
able to service a new user task, while the other will not be
able to remove any user tasks from its queue.

The problem of user task priorities was resolved by
considering the fact that the statistics about individual user
tasks are averaged into aggregate statistics. This same
reasoning does not apply to the states of the system. It is
important to ensure that certain states do not receive implicit
priority based solely on the order in which the state queues
are processed. For this reason, the simulation processes the
queues in a random order at the end of each time step.

I1f a particular computing system required a prioritization
of states of the model, a revised simulation could be produced
to incorporate such priorities. One possibility would be to
impose a fixed order on queue processing, although other
mechanisms could also be used. In the current simulation, an
implicit priority scheme can be imposed simply by restricting
the state assignments of some of the processors. As an
example, consider a case in which the input state is to have a
greater priority than the output state. If the computing
system has six 1/0 processors, each capable of servicing either
the input or the output state, then five of these processors
could be assigned to both the input and output states, while
the sixth processor could be assigned only to the input state,
thereby giving the input state a greater implicit priority.

Every time a user task is moved from a state to another



state, to a queue, or is assigned to remain in its current
state, a matrix of user task transitions is updated to reflect
the move. This simulation transition matrix is only updated
when a user task leaves a system state. Therefore, when a user
task is removed from a system queue and enters the associated
state, the simulation transition matrix is not updated. 1If a
user task enters and leaves a queue during the same time step,
then the simulation does not record the transition to the queue
or the time spent on the gqueue. This queue statistic recording
policy is used because the simulation processing is serial,
while the user task state movements can be thought of as being
somewhat parallel. If no processor is available when a user
task is moved to a new state, and then one becomes available

during the current time step, the wait on the gueue is not
recorded.

One conseqguence of the simulation transition matrix
updating policy concerns starting conditions. User tasks that
begin the simulation in system states cause the simulation
transition matrix to be updated during their first time step
move, while those starting on queues do not cause an update
until they arrive in the associated state and then leave that
state. Any problems that this policy may cause are resolved by
the fact that the simulation program processes the user tasks
through enough time steps so that the starting conditions have
little impact on the final results.

Another situation that arises when considering starting
conditions is the fact that a user task that begins the
simulation on a queue and is then moved into the associated
state during the first time step does not get charged for time

spent on the queue. This is the result of the queue statistic
updating policy.

Zero and 1 valued entries in the queue entry transition
probabilities matrix require special consideration. A 0 value
indicates that a queue was never needed in moving between the
two states involved. This can occur if there is a 0
probability of transition between the two states, or if the
state to which the user task moves has enough processors to
handle the user tasks that move into the state. A 1 value
indicates that every transition from the row state to the
column state required that the user task involved be placed on
a queue. This does not necessarily mean that the transition
between the states requires a queue with probability 1, but it
does indicate a very high likelihood and for the purposes of
the Markov model, we will use probability 1. As the number of
time steps in the simulation is increased, the likelihood of
encountering a probability 1 queue transition decreases, unless
the associated state has been assigned too few processors.

Table 1 displays the results of a run of the simulation
program using the sample computing system of the previous
section. The simulation was run for 2500 time steps.
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Table 1. Simulation program summary statistics
with 13 processors.

The queue length and wait time statistics
(in time step units) are:

Cumul, Average Cumul. Average

Queue Queue Queue Queue

Length Length Wait Time Wait Time
Input: 7493 2,498 7487 1.321
CPU: 1280 0.427 1278 1.018
Output: 27117 9.039 27111 3.989

The average distribution of user tasks
among system states and queues is:

Input CPU Output
In State: .200 172 . 129
On Queue: .104 .018 377

The queue entry transition probabilities matrix is:

Input CPU Output

Queue Queue Queue
Input: 0.000 0.128 0.000
Output: 0.561 0.000 1.000
CPU: 0.609 0.074 0.000

In table 1, there is a difference between the cumulative
queue length and cumulative task wait time for each of the
three states. This difference is based on the time at which
these quantities are updated. Cumulative task queue wait time
is only updated when a user is removed from the queue. User
tasks on queues at the end of the simulation are not reflected

in the cumulative task queue wait time, but they are included
in the cumulative queue length.

The determination of the number of time steps to be
simulated is somewhat arbitrary as long as the simulation is
sufficiently long so that the average distribution of user
tasks among system states and queues represents an equilibrium
distribution. In the simulation whose results are displayed in
table 1, the average distribution for 2500 time steps was
checked against a simulation run involving 5000 time steps.

The average distributions from these two runs were very close,

suggesting that an equilibrium had been reached after 2500 time
steps.
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Table 2. Extended State Transition Probabilities
Matrix with Queue States.

Input Input CPU CPU Output Output
State Queue State Queue State Queue

Input State .30 0 .61 .09 0 0
Input Queue .76 .24 0 0 0 0
CPU State .13 .17 .20 0 0 .50
CPU Queue 0 0 .98 .02 0 0
Output State .23 .37 .09 .01 .30 0
Output Queue 0 0 0 0 .25 .75

The extended STPM is constructed using the average task
qQueue wait times and the gueue entry transition probabilities
matrix. The average task queue wait time is used to calculate
the probability that a user task will remain on a queue during
the next time step or leave the queue and enter the associated
state. The gueue entry transition probabilities matrix is used
to calculate the probability that a user task will move from
every state to the queue for every other state (recall that we
assume that a user task never moves from a state to the queue
for that state). A more detailed discussion of the derivation
of the extended STPM can be found in Maletz [7]. The extended
STPM derived for the example computing system using the
statistics found in table 1 appears in table 2.

CONCLUSIONS

A simulation technique was developed that can be used to
model computing systems in which the hardware configuration is
specified by a processor/state service matrix and user task
state transition behavior is determined probabilistically by
using a Markov basic STPM. The simulation calculates queue-
related statistics that can be used to derive an extended STPM
which includes queue states. It also produces an average
distribution of user tasks among the system states and gueues
which can be used to verify that the system is in equilibrium
and to identify potential system bottlenecks.

The simulation was initially developed to provide the
queue-related statistics needed to derive an extended STPM for
a computing system specified by the {P,S,N} triple. This
extended STPM was used to specify a computing system involving
processing states and queue states. The information provided
by the simulation is also of interest for other applications

where queue-related statistics and equilibrium distributions
are required.

Some of the constraints imposed by selecting finite first-
order ergodic Markov processes could be eliminated to provide a
less restrictive definition of user task state transition
behavior. This might provide some interesting results. The
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first-order condition requires that the current time step state
transition depend only on the current state. By using higher
order Markov processes, user state transition behavior could
depend on the recent state history of a user task. One
consequence of this would be a direct ability to model the time
slice interrupt that was referred to earlier. The ergodic
condition could also be removed to admit the possibility of
absorbing states if a particular application had need of such
states.

The class of simulations developed for this paper are
relatively easy to program and provide a wealth of information.
By adjusting the queue maintenance and processor selection
policies, a wide variety of computing systems, spec1f1ed by the
{pP,S,N} trlple can be modelled. This makes comput1ng system
51mulatlon using Markov processes an attractive alternative to
costly performance monitors for existing systems, and provides
a means of modelling new systems.
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