RSD-TR-14-83

PRODUCTION SYSTEMS FOR MULTI-ROBOT CONTROL

A TUTORIAL

M. C. Malets

Department of Electrical and Computer Engineering
The University of Michigan

Ann Arbor, Michigan 48109

November 1983

CENTER FOR ROBOTICS AND INTEGRATED MANUFACTURING
Robot Systems Division
COLLEGE OF ENGINEERING

THE UNIVERSITY OF MICHIGAN
ANN ARBOR, MICHIGAN 48109

ABSTRACT

Current robot programming languages belong to the class of
procedural systems. They can be characterized by elaborate
flow of control, primarily serial processing, and
substantial syntactic constraint. Such languages are
designed for completely specified tasks, and are poorly
suited to the problem of providing robots with a local
intelligence capability. 1In direct contrast, the class of
production system languages do not require elaborate control
constructs, are highly parallel, and are particularly
valuable for implementing heuristically specified tasks.

This paper will introduce production systems and develop a
formalism for applying such systems to the area of Multi-
Robot Control (MRC). The structure of production systems
will permit the construction of MRC systems which are highly
parallel and internally conflict-free.

I. INTRODUCTION

Current robot control.systems and their programming
languages are designed to handle completely specified tasks.
They can be characterized by elaborate flow of control,
primarily serial processing, and substantial syntactic
constraint (e.g., AUTOPASS*, AL?, WAVE®, etc.). Such
systems are poorly suited to the problem of providing robots
with a local intelligence capability. As the complexity of
the task that the system is expected to perform increases,
there is a corresponding increase in the complexity of the
robot programming and control system design. In direct
contrast to current robot programming systems, which belong
to the class of procedural systems, is the class of
production system languages. This paper introduces
production systems, which are highly parallel, do not
require elaborate control constructs, and are particularly
valuable for implementing heuristically specified tasks.

The application of the production system methodology to the
area of multi-robot control develops a formalism for
pursuing artificial intelligence research in the robotics
area. Among the areas for possible research using the
production system formalism are robot synchronization and
collision avoidance, the introduction of expert advice, and
adaptive modification of the underlying production using
genetic algorithms.

Section Two provides a general introduction to production
systems. In Section Three, the application of production
systems to robot control in multi-robot environments is
discussed. This discussion includes the description of a
prototype multi-robot environment. The application of
production systems to robot control necessitates changes to

the basic production system. These changes are also
introduced in Section Three. Section Four contains a
detailed example of the way in which the production system-
based multi-robot control system functions. Finally,
Section Five presents conclusions and areas for further
research.

II. INTRODUCTION TO PRODUCTION SYSTEMS

Two classes of programming languages can be identified:
procedural systems and production systems. Almost all
traditional programming languages are procedural in nature.
They are characterized by the importance of flow of control,
which is often elaborate, and by an algorithmic
specification of the tasks to be undertaken. Procedural
systems are generally processed serially, although a degree
of parallel processing is occasionally permitted (such as
tasking). This parallelism, however, must be carefully
spec1fled and is subject to substantial syntactic
constraint. Even where parallelism is permitted, flow of
control concerns still dominate. In direct contrast, is the
class of production systems, which are highly parallel, lack
elaborate control constructs, and are particularly valuable
for implementing heuristically specified tasks.

Traditional programming languages are heavily dependent on
syntax requirements. A change of even a single bit is
likely to prevent the program from functioning correctly,
perhaps even from functioning at all. This dependence on
.syntax makes automatic programming and the implementation of
adaptive algorithms particularly difficult. The highly
parallel nature of production systems makes their
"instructions" less interactive than those of’ traditional
programming languages. This results in the graceful
degradation property which characterizes production systems
and permits the alteration of individual "instructions"
without significantly degrading system performance.

A production system can be completely specified by a set of
productions and a common data structure known as a message
list as follows:

production system ::= {productlgn set,message_ llSt }
production_set ::= <productign>

<product10n> 1= <c ong1t10n> /<acﬁlon>

<condition> ¢ {0,1,*} "{0,1,%*}

<action> ¢ {0,1}

message_list is a data structure that can contain

a maximum of m messages, where each
message is an n-bit string over {0,1}

Each production in the production_set contains a condition
part and an action part. The + superscript indicates that

the superscripted element may appear one or more times.

This means that productions are composed of one or more
conditions comprising the condition part, followed by
exactly one action in the action part. Conditions are n-bit
strings over the {0,1,*} alphabet, where 0 and 1 are the
ordinary binary digits, and *% is a don't care character
(i.e., it will match both a 0 and a 1). The actions are n-
bit strings over the {0,1} alphabet. The relative
simplicity of the message list belies a great versatility
which will be developed.

Given the above specification, a production system functions
as follows:

1. The system is first initialized by placing one
or more messages on the message list (up to a
maximum of m messages).

2. Bach of the productions is checked against the
message list to determine whether the messages on
the message list satisfy that production's
conditions.

A production's conditions are satisfied if
and only if every condition matches a
message on the message list, where
matching is done on a bit-by-bit basis.
The matching process is performed bit-wise
for every condition in the condition part
of the production, and therefore, the
condition part is treated as a conjunction
of conditions. Only the 0 and 1 digits in
a condition must match the corresponding
digit in a string on the message list
since the don't care character (%) will
match either a 0 or a 1 digit.

3. After every production has been checked
against the message list, the message list is
erased. Notice that the production checking
procedure can be performed in parallel if the
hardware permits. In fact, each production could
potentially be processed by a dedicated
microprocessor. Because of the message list
erasure at the end of each time step, all messages
have a single time step lifespan. To post
messages for longer periods, repeated postings are
required. A simple message renewal construct
involves the use of a production whose condition
and action parts are identically equal to the
message to be renewed. This results in perpetual
message renewal for the associated message once it
appears on the message list, unless the production
is not selected to post its message because more

than m productions with distinct messages attempt
to post their messages to the message list. A
more general approach would be to use additional
conditions in the condition part of the production
to indicate when message renewal should occur.
Using this approach, when the message to be
renewed appears on the message list it will match
one of the conditions, and when the other
conditions are matched signalling message renewal,
the message is re-posted.

4, A new message list is then constructed from
the action parts of every production that was
satisfied by the old message list. As long as no
more than m productions with distinct messages are
satisfied in step 3, every production can post its
action part to the new message list.

The action part of a production is posted
to the message list by placing the n-
length bit string that comprises the
action part on the message list.

5. The processing procedure is iterated by
returning to step 2.

As long as the number of distinct messages to be placed on
the new message list in step 4 is not greater than m, all
productions whose conditions are satisfied by the old
message list may post their actions on the new message list.
This results in a parallel system that is internally
conflict free due to the fact that messages, from the
message list viewpoint, are simply bit strings and cannot
conflict with one another. Conflict can occur when the
messages are interpreted if they generate contradictory
interpretations (e.g., two messages might generate two robot
control commands, one which instructs the robot to move to
the right and the other which requires a left rotation).
Interpretation conflict resolution is, however, exogenous to
the production system. Another type of conflict is due to
the fixed length message list. If more than m productions
attempt to post distinct messages to the new message list,
then m of the new messages must be selected. This problem
can be resolved by removing the length constraint from the
message list. This could be done by setting the message
list length (m) sufficiently large, since the system itself
imposes a maximum message list length equal to the number of
distinct actions in the production set.

The production system processing can continue indefinitely.
There are three possible terminal conditions:

1. During some iteration, it is pecssible that no
productions will be satisfied by the current

message list. This results in no messages being
posted to the new message list. Once an empty
message list appears, the system stops processing.

2. A message list cycle may appear. This

represents a type of dynamic equilibrium in which
the system cycles through a set of message lists.
It corresponds to the control of repetitive tasks.

3. A special case of message list cycling occurs
when the cycle length is equal to one. 1In this
case, the same message list appears during all
future time steps.

An empty message list brings the system to a halt and should
be avoided. Other control constructs for halting the system
can be provided if necessary. A simple mechanism that will
prevent an empty message list from occurring is the
inclusion of a set of productions in the production_set that
covers the n-bit string space over {0,1}.

A cover of {O,1}n, the n-bit string space
over ion1}, is a collection of strings ip
{0,1,*%}" such that every string in {0,1}
is contained inna string in the cover. A
string in é0,1} is contained in a string
in {0,1,*}" if and only if the 0 and 1
digits in the {0,1,*} string exactly
match_the corresponding digits in the
{0,1}" string.

A simple example of this would be the use of a production
whose condition consisted of the string **...*, which would
match any string on the message list. This universal
condition is particularly useful in systems where the
message list is a limited resource and not all productions
whose conditions are satisfied can post their actions to the
new message list. In such systems, the universal condition
production could be assigned a low priority so that it would
only post its action to the new message list if there were
few other satisfied productions during the current time
step. In a system where all satisfied productions are
guaranteed a space on the new message list for their
actions, the use of universal condition productions is
discouraged since their actions would perpetually appear on
the message list. In such systems, it is better to use a
larger set of productions that cover the n-bit string space
over {0,1}. The universal condition production is the
smallest cover. The largest possible cover contains 2"

productions, where the condition part of each prcduction is
a distinct string in {0,1} .

A message list cycle can be beneficial in systems which are
used to control cyclic or repetitive tasks. The steps of

the task cycle would then correspond to the cycles of the
message lists. The single time step cycle is a special, and
generally degenerate, case of these cycles. Although cycles
can be programmed using production systems, they are better
handled by procedural programming systems because of the
algorithmic nature of cycles and the advantages inherent in
procedural systems for algorithmic programming.

The don't care (%) character has been permitted to appear in
the condition part of productions, but not in the action
part. A don't care character in the action part of a
production corresponds to a pass—-through character. A pass-
through character can only be used with productions whose
condition part consists of a single condition.

A pass-through on the action side of a
production involves passing the
corresponding bit of the message that
matched the condition through to the
action that is posted. 1If the
corresponding character in the
production’'s condition is a 0 or 1, then
that digit is always passed-through. 1In
such situations, it is easier to simply
place that digit in the action string
rather than the pass-through character.
More often, the condition character
corresponding to a pass-through is the
don't care character. In this case, the
corresponding character in the message
that matches the condition will be passed
through. Recall that the don't care
character can match either a 0 or a 1
digit in a message. The pass-through
character will not be permitted in
productions because of computational
difficulties that result. The most
prominent difficulty is the resolution of
a potential conflict when more than one
message matches the condition of a
production containing pass-throughs in the
action part. Consider the following
example:

The production involved is
01%¥11/11%10, Suppose that both of
the messages that can match the
condition part of this production
appear on the message list (01011
and 01111). The pass-through would
then attempt to pass through both
the 0 and the 1 digits, and to post
both 01010 and 01110. This violates
the single action requirement

imposed on the action part of
productions.

Rather than introduce this potential conflict, the pass-
through character will be excluded from the action parts of
productions. This does not limit the computational power of
the production system, since the action part pass-through
can be emulated by using more than one production. This
emulation requires the replacement of don't care characters
in the condition part by both 0 and 1 digits, and
replacement of the action part pass-through by the same
digits.

Greater flexibility and programming power can be attained in
production systems if communication with the outside world
is permitted. This communication must be introduced without
disturbing the parallelism or internal conflict-freeness of
the production system. This is most easily accomplished
using the message list by permitting messages to be posted
from the outside world. The outside world can also be
permitted to read the message list. 1In this way, production
systems can be provided with a primitive I/O capability.

III. ROBOT CONTROL USING PRODUCTION SYSTEMS

The application of production systems to the problem of
robot control in a multi-robot environment will now be
discussed. The robots in these multi-robot control (MRC)
systems will initially consist of a microprocessor-based
robot arm, a television camera or other imaging device and
an associated image processor, and a locomotion drive unit,
Alternate robot configurations are possible with relatively
minor alterations to the MRC system command structure. No
modification of the production system processing is required
when the robot configuration is altered. The robots are
able to interact with their environment using the robot arm
which can execute a predefined set of control subroutines,
view portions of the environment, and move through the
environment. Associated with each robot is a robot control
processor which is responsible for local processing. Each
individual robot processor communicates with its respective
robot and with the system supervisor.

An example configuration is presented in Figure 1. The
robots consist of PUMA robot arms mounted on a locomotion
platform along with a television camera which can be rotated
to the left or right, but which is set at a fixed height.
The robot processors are LSI 11/23 microcomputers. Each LSI
11/23 is connected to the associated robot and to the
supervisory computer, a DEC VAX 11/780. Two channels from
the VAX 11/780 to each robot processor are required.
Therefore, the number of robots that can operate within the

uotjeanbryuo) welsAs DYW ordwexg ‘1 oanbtg

wiojleTd uorjowod0T7
BI2WBD UOTSTADT23
wie joqox

i1 3jo0qox

wiojieTd uorjowodo07
BID2WED UOTSTAD[9]
wie j0qox

T 30qoy

h

)

|

319s
uorlonpoad

1sT'T 93essap
Ie207

10ss83%01g

1 3jo0qox

3198 —_—
uorjonpoad

1SsTIT @3essoy
: €207

x10ssadoig

T 310qox

I9710a3U0)

1 jo0qox

ADTTOIQUO)

T 310qo02x

ISTT wwmmww&
TeqoTd

losTazxadng walskg

system is entirely determined by the number of available
channels to the VAX 11/780.

Bidirectional communication between robot and robot
processor permits robot control and television camera data
transfer. The television camera has a local dedicated
processor which converts images within the scope of its view
into messages which can be placed on the message list.

These messages are transferred along the communication
channel to the robot processor. No other data originates at
the robot end of the channel. Again, alternate robot
configurations could be constructed which would require more
extensive robot/robot processor data transfer. One example
would be data generated by a wrist force sensor or other
sensory devices. As with any alteration to the robot
configuration, these changes would require MRC system
modification. The robot processor sends robot control
instructions to the robot. 1Initially, a limited set of
robot control commands (RCC's) will be permitted. ' These
initial commands are summarized in Table 1. Although
relatively few commands are available, the set of Execute
commands {En} permit the execution of any one of N robot
control subroutines. -These pre-programmed subroutines could
be designed using task-specific robot control reguirements.
They therefore provide a large degree of flexibility in
specifying the robot control capabilities of the system.

Table 1. Robot Control Commands

Command Description
{s} SCaN Visjon vector performs
360 scan
{A} ALIGN Align vision vector
with nearest object ,
{T} TURN Rotate vis. vec. 180 ,
{L} LEFT Move vis. vec. left ¢ ,
{R} RIGHT Move vis, vec. right ¢
{M} MOVE Move in the direction of
the motion vector
{F} FAST Move Quickly in the
motion vector's direction
{H} HALT Stop moving

{C} COUPLE Couple motion vector
with vision vector

{U} UNCOUPLE Uncouple motion vector
from vision vector

{G} GRASP Grasp object aligned
in vision vector
{En} EXECUTE Execute robot arm

subroutine n, for nsN

The set of RCC's has been divided into three
general categories. The first five commands
relate specifically to the vision vector. The
next five commands are used to control the robot's
locomotion, and the last two commands are used to
manipulate the robot arm.

Implicit in Table 1 are several assumptions concerning the
MRC system:

1. Each robot is equipped with a single
television camera which corresponds to the vision
vector, a robot arm which can grasp objects
centered by the vision vector, and a primitive
locomotion capacity which must be in the direction
of the vision vector.

2. Robots move at a fixed speed in the direction
of the vision vector. The motion vector must
always be coupled with the vision vector before
movement. The vision vector may be rotated during
robot movements, but this will alter the robot's
course.

3. The vision vector may only be uncoupled from
the motion vector after the robot has been halted.
This permits the robot to scan the environment by
moving its camera while leaving its locomotion
platform fixed. Because of this requirement, the
SCAN RCC can only be performed after the robot
halts.

4., The robot can grasp an object that has been
aligned in the vision vector. A primitive
subroutine execution facility {En} has been
included in the RCC set that can be used to code
robot arm subroutines, in addition to the other
robot control subroutines that {En} may encode.
Robot arm control EXECUTE RCC's may be performed
either before or after grasping an object. They
are presumably related to the task that the robot
is to perform. The availability of multiple robot
arm subroutines using more than one {En} RCC
corresponds to multi-task capabilities.

Two additional RCC's are provided for use by the system's
"expert" users (the individuals who provide "expert" advice
to the production system):

SHOW R Show the portion of the environment
contained in robot R's vision vector
on the television monitor.

IMAGE R Show all image related messages

10

posted to the message list by robot R
during the current time step. These
messages are created by the image
processor associated with the robot's
television camera.

These commands will never be invoked by the production
system. They are used exclusively by "expert" users to help
them understand the internal processing of outside world
image data by the production system.

3.1 Production System Modification

The class of production systems specified by

{ production_set, message_list } can be used to control a
MRC system, but only if robots have complete autonomy or no
autonomy. In the case of complete autonomy, each robot
would have its own production system and would never need to
communicate with other robots. In the no autonomy case, all
processing and control would be performed by a single
production system which would reside at the supervisor
level. Clearly, both of these options are inefficient.
Because the robots operate in the same environment, some
implicit communication and cooperation among the robots is
desirable. However, because the robot tasks may be vastly
divergent, centralized control is inappropriate. This
indicates the need for a modification of the production
system definition,

To isolate robot control, each robot should be equipped with
its own production_set. This will permit differentiation of
robots according to task and behavior specific requirements
through the distinct production_sets. To permit implicit
communication and cooperation, a single message list will
serve as the common data structure. In terms of the example
system configuration, this means that each local robot
processor (LSI 11/23) will have a production_set which is
processed and updated separately from all other robot's
production_sets. This will permit each robot's
production_set to evolve separately when adaptation is
introduced. The single message list for the MRC system will
reside on the system supervisor (VAX 11/780), and be
accessible to all robot processors. These modifications to
the production system definition are sufficient to permit
control of a MRC system. The new production system is
specified by the following r+i1-tuple:

production system ::= { production_set.,
production_set,, ...,

production_set_,
message_list]

Where there are r robots in the multi-robot
environment.

11

Figure 2 illustrates the example MRC system, including the
locations of production_sets and the message list.

3.2 Message Differentiation Through Tagging

In the multi-robot environment, each robot is characterized
by its individual production_set. These production_sets are
processed using the common message list during each time
step. The shared access to the message list necessitates
segmentation of the message list. The message list segments
correspond to the various interpretations of messages on the
message list, and are summarized as follows:

1. Messages can be generated externally to
provide the MRC system with "outside world”
information. 1In the example system, these
messages can only be generated by the television
camera image processor. The messages are
therefore specific to the robot whose television
camera dgenerated them. For this reason, other
robots need not use these messages in production
processing. Future MRC systems may include an
external source of outside world data. This
external source could then make its data available
to all robots. An example of this would be a
motion detection device which could identify all
robot's that were in motion.

2. Internal processing messages can be generated
by the activation of a production belonging to a
particular robot for processing associated
uniquely with that robot. These are the messages
that permit each robot's production processing to
occur, and need not be interpreted by other
robots.

3. Control messages can be generated internally
by production activation for a particular robot.
These messages are used both for production system
processing and for robot control. The robot
control function is implemented by translating the
message into a robot control command, which is
then passed to the robot for interpretation.

These control messages are also robot specific,
and need not be interpreted by other robots.

4. Coordination messages are accessed by all
robot production_sets and are used to permit robot
coordination and joint processing capabilities.

Figure 3 illustrates the segmentation of the message list
into these four segments, and describes the degree of shared
access to each segment among robot processors. This message

3s11 9besssn ayjz pue mulecoﬁuonvoum 3T ue3sAs OuW o1dwexy °*g a2anbtg

eBiawed AL + eilawed AL +
wie joqox wie 30qox
wxojierd uoriowod07 wiojyiefd uorjowodo07
0 0 n 0
oo o n o o~
] 8o p B 8o
"t o t o o o
n oA "o P H O
o O rt o o rt
- —
SpuewWwWOD sfs —_— SAs —_—
P poad — P poad —_—
10309339 310q0y :7 T[auuey))
suorjonpoad mau I B
10883201 T1-H 10ssadoayg T-H
ISTT 1 30qo0y T 3o0qoy
93essaw Teqol8 moau
3J0qoy € 19 [013U0)
3ISTT 93essaw jusaaand
I9TT013U0D =« 30qOoy :] [auuey)
fUOT3IEBITUNWWOY STauueyd ¢ sTauueyo ¢
aj3epdn @3epdn S1Tq u
*poad *poad
———
*diajuy pue *dasjug pue
purmwod T-3| " ° ° | puewwoo T-R souepyoaE 1 joqoa
1977013 U0) A9TToajuo) UOTSTTIOD .
130qoy T 10qo0y pue -
4 l“zTuoayoudfs ¢ 30901
uum:llllllﬂV jJjoqoy T 30qox
10staxadng TeqOo19
XT1u
(x1un) 08L/T1 XVA Wy gy
a8essap

Message_List ,,

External Messages

bb...b

bb...b

Internal Processing
Messages

bb...b

bb...b

Control Messages
bb...b

bb...b

Coordination Messages
bb...b

bb...b

——
n bits

where b= bit

(1)

(2)

Robot-specific source
accessed only by
associated robot
External source

can be made available
to more than one robot

robot-specific to robot
whose production-set
posted the message

Accessed by all
production_sets

bb...b is a fixed length bit string (n bits)

Figure 3. Four Segment Message-List Segmentation

12

list segmentation will be further refined for MRC system
usage. The first category of messages provides the
production system with a primitive input capability. These
are the messages that are generated by the image processor
associated with each robot's television camera. Encoded in
these messages is information concerning the image currently
contained in the vision cone. The third message category
provides the production system with a primitive output
capability, in the form of robot control commands which are
executed by the robot. These commands permit the robot to
interact with its environment. The final message category
represents the potential for I/O among robots in the form of
messages which are accessed by all robots.

Segmentation of the message list into the four categories of
messages is accomplished through the use of message tags.

A tag can either be a prefix or a suffix
consisting of a fixed number of bits.
These bits can be used to identify message
list segments.

In this case, prefix tags will be used. The number of bits
dedicated to the tag depends on the number of distinct
message list segments desired. By subdividing the prefix
bits into fixed length substrings, it is possible to provide
sub-segments for the message list. In this way, the message
list may first be segmented into principal components, and
then each of these components may be further subdivided as
necessary. For the MRC system, primary message list
segmentation will be used to separate the global portion of
the message list and the robot-specific segments. The
global segment of the message list contains messages from
category four. These messages are required for robot
coordination, and must be accessible to all robot
processors. Each robot-specific segment of the message list
contains external messages, internal processing messages,
and control messages for the associated robot. If there are
r robots, then the message list must have r+1 segments,
which requires INT_CEILING [log,(r+1)] bits dedicated to the
tag prefix (where INT CEILING ?3] is the integer ceiling
function; the largest integer greater than or equal to x).

No further subdivision is required within the global portion
of the message list. The robot-specific segments, however,
must be further divided into three sub-segments according to
message category. This further segmentation requires
implicit segmentation of the tags.

Each tag used by the production system
will be divided into two components: a
primary tag and a secondary tag. The
primary tag is used to segment the message
list into its primary segments; global and

13

robot-specific. This requires r+1
distinct tags, and hence INT_CEILING
[log,(r+1)] bits will be dedicated to the
primgry tag. The primary tag will always
be represented by the initial bits in a
message. A secondary tag is used to
establish message list sub-segments,
within segments defined by the primary
tag. The number of bits required for the
secondary tag are computed in the same way
as the number of bits required for the
primary tag. The secondary tag bits
immediately follow the bits dedicated to
the primary tag. While only primary and
secondary tags will be used here, higher
order tags can also be defined.

The first sub-segment of the robot-specific message list
segments identifies external messages. These messages
correspond to images in the vision cone and can therefore be
interpreted as more than just a sequence of bits for
production system control. The second sub-segment contains
internal processing messages. The third sub-segment
contains control messages which can be converted into robot
control commands and transferred to the robot. These
control messages are also used by the production system for
internal processing along with internal processing messages.
By distinquishing between internal processing messages and
control messages, a substantial amount of command conversion
overhead is eliminated, since the command conversion routine
need only process messages tagged as control messages.

The following tagging convention will be adopted:

Suppose that there are r robots in the MRC system,
and that the robots have been indexed 1 to r.

i = INT_CEILING [log,(r+1)] bits are required by
the primary tag, and“2 bits are required by the
secondary tag.

1. The global segment of the message list will
always be assigned the tag: 00...0 (i+2 bits).

2. Each robot-specific segment of the message
list will be assigned an i-bit primary tag whose
decimal value is equal to the index number of the
associated robot.

3. The 2 secondary tag bits will immediately
follow the primary tag bits and will be encoded as
follows:

00 External messages
01 Internal processing messages

14

10 Control messages
11 Not currently used

The 11 secondary tag could be used for global messages
posted by a particular robot. This could, for example, be
used if image data collected by a particular robot was
required by other robot processors. Figure 4 displays the
complete message list segmentation used by the MRC system.
This tagging scheme segments the message list in a manner
that requires little system overhead. Distinct message list
segments can be identified by using a bit mask to select the
messages of interest. As an example, a bit mask of 00...011
(i bits) will select all messages specific to robot number
3, and a mask of 00...01110 (i+2 bits) will select all
control messages for robot number 3.

Tag manipulation using bit masks and assembly language is
fast and efficient. Tags represent a low overhead mechanism
for partitioning the MRC system's common data structure into
both shared and dedicated components. In future
applications, tags can be used to perform even more
sophisticated functions. One example involves message
addressing using tags. In such a system, robot j might post
a message on the message list, and address that message to
robot k through the use of a tag. This tag would have two
address components, one for the sender, and the other for
the addressee. Although the message list is a relatively
simple data structure, information coding using tags can
permit sophisticated behavior, and the emulation of complex
data structures.

IV. MRC System Example

The example system will be configured with a single robot,
consisting of a robot arm, a television camera, and a
locomotion platform. The robot will reside in a contrived
environment in which there are humans, ducks, rats, and a
single elephant (Clyde, of course). The robot's desired
behavior is to avoid the elephant, chase the rats, and
ignore the ducks and humans.

The simplicity of the environment and task results in a
relatively simple production system. The external messages
generated by the television camera's image processor need
only distinguish the four types of occupants of the
contrived environment. This can be accomplished using two
features: size and number of legs. A third feature which
will prove to be useful is the range of the object, since
the robot will react differently to the elephant depending
on whether it is close or far away. The three features can
be coded as follows:

size O0=large 1=small

15

legs 0=2 legs 1=4 legs
range O=close 1=far

Using these features, the external messages corresponding to
the four residents of the robot's environment can be
constructed. Each of these messages requires five bits: the
two bit 00 prefix identifies the message as an external
message, and the last three bits correspond to the size,
number of legs, and range features, respectively. The area
inhabitants are identified as follows:

Humans 0000_
Ducks 0010_
Rats 0011_
Elephant 0001_

Note that in each case, the range feature is left
undetermined, since each of the area inhabitants can be
either close or far away.

To obtain the desired behavior from the robot, a subset of
the Robot Control Commands is sufficient. These RCC's are
coded as control messages using the control message 10
prefix as follows:

10000 Halt 0

10001 Rotate vision vector g

10010 Rotate vision vector 180

10011 Move fast

10100 Align vision vector with nearest object

For this example, five RCC's were sufficient, and since the
external messages required three bits for feature mapping,
the RCC's could be coded using the message length determined
by the external messages. In fact, one could have coded up
to eight RCC's using the five bit message format. If more
than eight RCC's were required, then it would have been
necessary to expand the message length, and to pad the
external messages with dummy features.

Because of the task's simplicity, a rough approximation of
the desired behavior can be obtained using only seven
productions:

00%0%/10001 Ignore humans and ducks by
rotating the vision vector

00011/10000 Halt when the elephant is
sighted at a distance

10000/10001 Rotate vision vector away
from elephant after halting

00010/10010 " Rotate vision vector 180°

16

when elephant is close

10010/10011 Move fast to flee from close
elephant

0011%/10100 Align vision vector on rats

10100/10011 Move fast to chase rats

The above production system fragment could be expanded to
provide the exact behavior desired, but it is intended only
to serve as an example and to help develop intuition about
production systems. A particularly significant observation
concerns the third and fifth productions. 1In both of these
productions, a control message serves as an internal
processing message. 1In the second production, the 10000
control message is posted to the message list and is
interpreted as an RCC to halt the robot. 1In the third
production, the 10000 control message serves as a condition
to the production. The 180° rotation RCC (10010) found in
the fourth and fifth productions functions in a similar
manner.

V. Conclusions

A formalism for applying production systems to the area of
Multi-Robot Control has been developed. The example system
demonstrated the use of such a system in a single robot
environment. More sophisticated multi-robot environments
can be developed, in which the robots perform robot-specific
tasks and also communicate with each other through the
global message list.

In the future, the formalism developed here will be applied
to several problems in the area of robot control:

1. Robot Synchronization - the fact that all
robots access the global message list can be used
by the system supervisor to handle such robot
synchronization problems as collision avoidance.
One simple approach to this problem would be to
divide the environment into quadrants, and use the
global message list to Lock and Unlock these
quadrants so that only one robot would be
permitted to be in motion in any quadrant.

2. Production Differentiation - assuming that the
production system does not completely correspond
with the desired behavior (either due to faulty
coding, inaccurately specified behavior, or
changes in the task itself) it is helpful to
identify productions that contribute positively
and negatively to the robot's completion of the

17

specified task. This will involve assigning a
strength parameter to each production, and
modifying the strength based on the production's
contribution to robot behavior,

3. Adaptive Modification of Production System -
once the productions have been assigned strength
parameters, it is possible to use genetic
algorithms to modify the production system so that
the robot's behavior will converge to the desired
task.

4. Introduction of Expert Advice - expert advice
is required to differentiate productions. It can
also be used in conjunction with genetic
algorithms to modify the task assigned to the
robot.

These areas of future research will involve the development
of simulations of the MRC systems, and then prototype
systems using actual robots with simulated input data.
Finally, a prototype system in which the robots and the
television cameras are fully operative will be constructed.

Acknowledgments. The author is grateful to C.S. George
Lee for his comments and advice during the development of
this paper.

{1}

{2}

{3}

{4}

{5}

{6}

{7}

References

Bonner, S., and Shin, K.G. A Comparative Study of Robot
Languages, Computer, 15,12 (December 1982), pp. 82-96.

Finkel, R. AL, A Programming System for Automation,
Stanford Artificial Intelligence Laboratory Memo
AIM-243, Stanford University, Palo Alto, California,
November 1974.

Holland, J.H. Adaptation in Natural and Artificial
Systems, The University of Michigan Press, Michigan,
1975.

Lieberman, L.I., and Wesley, M.A. AUTOPASS, An Automatic
Programming System for Computer Controlled Mechanical
Assembly, Computer Sciences Department RC 5925 (25653),
T.J. Watson Research Center, Yorktown Heights, New
York, March 1976.

Paul , R.P.C. Wave: A Model-based Language for
Manipulator Control, Industrial Robot, vol. 4 (1977),
pp. 10-17.

Takase, K., Paul, R.P., and Berg, E.J. A Structured
Approach to Robot Programming and Teaching, IEEE
Transactions on Systems, Man, and Cybernetics, SMC-11,4
(April 1981), pp. 274-289.

Winston, P.H. Artificial Intelligence, Addison-Wesley,
Massachusetts, 1977.

AT

3465 7935

