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NOMENCLATURE

(_) indicates a quantity in the real dimensional space, (Q,E).
[Equations (1))

() indicates a quantity in the non- dimensional space, (X,%).
[Equations (2)]
A A A
(") indicates a quantity in the (x,t) space for the finite slab.
[Equations (38)]
( )_l indicates the inverse of the quantity in the parentheses.
~ indicates approximately equal quantities.
b steady state boundary speed. [Equation (11)]
B a matrix of eigenvectors of the matrix A. [Equation (27)]
c specific heat of the conducting medium. [Equations (1)]
c maximum value of the specific heat of the conducting medium.
© [Equations (2)]
C constant in the nonlinear power transformation of the space
variable. [Equations (45)]
D length dimension {(Appendix A).

dim( ) dimension of the quantity in the parentheses (Appendix A).

e the base of the natural logarithms. [Equations (12)]

At MT
e[ ] a diagonal matrix with elements e - . [Equation (27)]
f(x) functional notation for the nonlinear space variable trans-

formation. [Equations (40)]

f(t) a column vector describing the boundary conditions in Equa-

tion (26).
Fn heat flux passing the nth finite difference station (Appendix c).
Lo the temperature at x=x in the (2}?) and (2:%) spaces.

[Equations (1)]
g the temperature at x=C in the (x,t) space. [Equations (9)]

g(x) initial temperature distribution. [Equations (l)]
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NOMENCIATURE (CONT'D)

a column vector of initial temperatures. [Equation (27)]

initial temperature distribution in the computer variables.
[Equations (33)]

maximum amplitude of the heat pulse H=h(l-coswt)(Page 62 )
heat flux entering the conducting medium (Figure 1).

the heating rate in the compute variables. [Equations (33)]
Jacobian of a transformation.

exponent in the nonlinear space variable transformations.
[Equations (45) and (46)]

thermal conductivity of the conducting medium. [Equations (1)]

maximum value of the thermal conductivity of the conducting
medium. [Equations (2)].

scaling constant for the space variable. [Equations (2)]
scaling constant for the time variable. [Equations (2)]
scaling constant for the heating rate. [Equations (2)]
position of the moving boundary as a function of time (Figure 1).
latent heat of fusion of the conducting medium. [Equations (1)]
mass dimension (Appendix A).

an index designating the n® finite difference station (Appen-
dix C).

a point heat source in the conducting medium. [Equations (l)]
The heat added to the finite slab (Page 88).

the number of finite difference increments. [Equations (15)]
the initial thickness of the finite slab, [Equations (56)]
the independent time variable,

the time at which melting starts. [Equations (l)]

Xi



NOMENCIATURE (CONT'D)

to the time at which melting stops. [Equations (1)]

t3 the time after which the boundary velocity may be considered to
be linear in time (Page 19).

tm the time at which the finite slab is completely melted.
[Equations (36)]
T time dimension (Appendix A).
u the dependent temperature variable (Figure 1).
GC the melting temperature of the conducting medium. [Equations (l)]
-

u(t) a column vector of the temperatures at the finite difference
stations. [Equation (26)]

Uy, the computer temperature variable. [Equations (33)]
' the independent space variable (Figure 1).

Ax finite difference increment in x. [Equations (13)]
o temperature dimension (Appendix A).

0(x,t) an arbitrary function (Appendix C).
Ay the eigenvalues of the matrix A. [Equation (27)]

(A] the non-singular diagonal matrix of the eigenvalues of the matrix A.
[Equation (27)1

K(T) the boundary position in the computer variable. [Equations (33)]

T the constant 3.14159... in Equations (29), {(30), and (47).

A

a dimensionless ratio in Appendix A.

o the density of the conducting medium. [Equations (1)]

50 the maximum value of the density of the conducting medium.
[Equations (2)]

T the independent computer time variable. [Equations (33)]

xii



NOMENCIATURE (CONT'D)

the non-dimensional specific heat function.

the non-dimensional conductivity function.

[Equations (2)]

[Equations (2)]

the non-dimensional density function. [Equations (2)]
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CHAPTER I

INTRODUCTION

Background

The problem of the conduction of heat in a solid which is freezing
at its boundary was first posed by Fourier in connection with his study of
the solidification of the eartho(QJ Crank(u> and Evans, Isaakson, and
Macdonald(lg) list several other problems which are governed by essentially
the same equations. Recently, these problems have received renewed interest
in such diverse areas as the tarnishing of metals(u) and the ablation of
material from bodies entering the earth's atmosphere.

The first soluftion of the freezing problem was obtained by

(2.6)

Neumann about 1840, This solution was for a semi-infinite body of

ligquid which initially existed at the temperature of fusion. In 1891,

/
Stefan\38) solved the problem again for the semi-infinite body, for two
particular initial conditions. This freezing or melting problem has since

(6)

been called the Stefan problem;
(12)

other similar problems have been called

Stefan~-1ike problems; and the published literature is profuse. The

article by Brillouin(l) contains an excellent bibliography of the litera-
ture up to 1929.

The existence and the uniqueness of the solution to this problem

(7)

have been shown for very general circumstances by Evans,(ll)

(26)

Douglas,
Nﬁranker,(3o) Miranker and Frisch9(31> and Kyner. The general solution

has not yet been obtained, and it is not in the offing because the problem

.
is nonlinear, as Landau showso\27)
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Several schemes for solving the problem, at least approximately,
have been devised. These aralytical solutions are for the semi-
infinite body and apply only for particular initial and boundary conditions.
(A1l of these solutions provide for the two phases to remain in contact
after the change of phase.) Datseff(6) has developed a step-by-step solu-
tion which is very laborious and not completely general. Kolodner ") has
reduced the problem by eliminating the diffusion equation and reducing the
problem to that of solving a nonlinear, ordinary, integro-differential
equation. Friedman(l5) has refined a method developed by Rubinstein(36)
which reduces the problem to another nonlinear, integral equation that is
solved by a method of successive approximations. Douglas and Gallie(8> have
developed an iterative process based on a difference analog for a simple
case which does not allow for heat flow in the material before the change
of phase. Ehrlich(lo> has developed an iterative scheme again based on a
difference analog which does provide for heat conduction before the change
of phase, and Crank(5) has used an iterative process which allows this heat
conduction. Crank, in this same article, uses Lagrange's interpolation
formula in a second method to allow the variation of finite difference
increment size when the boundary passes through a given finite difference
cell, Longwell(28> has devised a graphical solution using the Schmidt con-
struction.

The ablative problem, in which the melted material is removed
instantaneously, was first studied, according to Landau,(27) by Soodak.(ug)

Landau<27) has developed a solution for the melting of a semi-infinite solid

with perfect ablation, in which none of the input energy is used to heat the
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liguid. In this solution he considers the case of a prescribed temperature
at infinity, a constant heating rate at the finite boundary, and a uniform
initial temperature distribution. He solves the warming phase, before
melting starts, by means of the classical analytical solution as given in

(2)

Carslaw and Jaeger. The transient portion of the melting phase is solved
numerically. This transient solution is then matched to the steady state
solution, which he obtains analytically, by means of an empirical equation.

Goodman and Sutton(uo) have studied the semi-infinite body
with imperfect ablation in which part of the input energy is used to heat
the liquid. Goodman and Shea(l7) have applied the heat integral method to
the problem for finite slabs, and Citron(3) has developed a method of suc-
cesgive approximations for the solution of the finite slab melting with
ablation.

In all of the above methods some form of numerical computation
is required. This ranges from the use of large-scale digital computers as
required by the iterative schemes through the numerical solution of a
Volterra equation of the second type required by Kolodner's solution to the
use of a desk calculator in Citron's method.

The analog computer has also been used in recent investigations
of this problem. Martini(29) proposed a scheme in which the stations in
the finite difference approximation would be switched out of the circuit as
the moving boundary passed them. Mqrray(32) also uses a similar technique
in his second method while in his first method he uses a moving network of

(41)

stations. Aldrich and Paynter designed a special analog computer for
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the study of frost penetration in the soil. Otis(3n) developed a passive
network for the solution of the finite thickness slab with perfect ablation.
In order to eliminate some of the nonlinear equipment in this computer,

Otis employed a nonlinear time transformation which requires an infinite

time to melt the slab completely. More recently, Sunderland(39) has used
passive networks to solve the melting problem in both finite and semi-
infinite slabs for the ablative and non-ablative cases. He attached the
coordinate system to the moving boundary in the same manner as Iandaun(EY)

In the past year, Murray(32’33) has used the electronic differential analyzer
to solve the melting problem for the finite slab without ablation. His
method employs a network of stations which move within the slab as melting
progresses. The spaces between the stations change in size as melting
progresses but remain equal to each other in each phase. Murray compares

his results with solutions obtained by means of approximations suggested

by Eyres, §§_§;§(13) This article by Eyres, et al, is the earliest reference
that this author has found to suggest the use of a space network in which

the increment size varies with time after melting starts.

The solution of the melting problem presented in this dissertation
requires the use of the differential analyzer to solve a set of ordinary,
time-varying, nonlinear differential equations. The digital differential
analyzer could also be used or the equations could be solved numerically.
This method provides for the solution of the melting of the semi-infinite

and finite slab problems with perfect ablation. The original contributions



contained are believed to be:

1. a new set of non-dimensional parameters which separates the
important variables of the problem;

2. the reduction of the semi-infinite interval to a finite inter-
val in order to use the finite difference technigues and the
differential analyzer;

3. the development of a method to make certain that the finite
difference approximation solution approaches the steady state
solution for the continuous case for a constant heating rate
in the semi-infinite slab;

4. +the use of non-uniform finite difference increments to improve
the accuracy of the solution in the finite slab solution.

The solution presented here also provides for arbitrary heating rates (which
may be functions of the solution as well as of time) and arbitrary initial
temperature distributions. Although only the ablative case is discussed
here, the solution may be extended to the non-ablative case. This would
require only sligh*t modifications but would approximately double the amount
of computing equipment needed.

The semi-infinite medium is considered in detail first; this

discussion is followed by a consideration of the finite thickness medium.

Diffusion in one dimension is assumed in both cases.



CHAPTER II

THE SEMI-INFINITE SILAB

The Physical Problem

The physical problem is lere described in terms of heat con-
duction in one dimension with melting at one boundary. The conducting
medium consists of a slab which extends from negative infinity to positive
infinity in two dimensions. In its third dimension, §, it extends from a
boundary which is a positive finite distance, 7(%), from the origin to posi-

tive infinity. Heat enters the slab at X = I(E). This configuration is

shown schematically in Figure 1.

H(t),
Conducting
Medium

i@,

Figure 1. Physical Schematic, Semi-infinite Solid.

Let

the real space variable.

t the real time wvariable.

]

E(§,E) = the temperature within the conducting medium.
H(t)

4(t) = the position of the left boundary.

the heat flux entering the left boundary.

-6-



Also let

%2(0) =0
The problem starts when heat is first added with the finite boundary at
the origin.

If heat is added, 1i.e. ﬁ(f} > 0, and if the medium is at a uniform
temperature initially, then the temperature of the slab increases and ul(x,t)
becomes a monotonic, non-increasing function of x at any instant of time.
The temperature range within the conducting medium is from the temperature
on the boundary to that at infinity, which rehmains at the initial tempera-
ture because the adding of heat at the left boundary cannot affect the
temperature at a point infinitely removed. This condition is nearly met
by bodies of finite thickness in which the heating rate is high and the con-
ductivity is low. Thus physical systems can approximate very closely the
conditions set down here and the semi-infinite problem does have practical
importance.

If the heat is added in sufficient quantity and at a sufficiently
rapid rate, the heated boundary temperature will rise to the melting point
and the boundary will move to the right. It i1s assumed that the liquid
produced by the melting is removed immediately and none of the heat flux
is used to raise the temperature of the fluid. If the heat flux is removed,
melting will stop and the temperature throughout the slab will approach the
temperature at infinity. If the heating rate 1s decreased sufficiently,
melting will stop and the problem becomes the usual semi-infinite heating

problem with a fixed boundary.
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In order to prepare this problem for solution on the electronic

differential analyzer the following steps are taken:
1. the mathematical model is established;
2. the problem is made non-dimensional;

3. the semi-infinite interval in space is reduced to a finite

interval;
L. the moving boundary is removed;

5. the space derivatives are replaced by finite difference

approximations; and

6. the problem is scaled for the computer.

The Mathematical Model

The problem is described by the diffusion Equation (la) which
applies throughout the conducting medium; the boundary condition Equations
(1v), (1), (1d), (1e), and (1f) which apply at the left boundary during
the appropriate time intervals; the boundary condition at X = o, Equation

(1g); and the initial conditions, Equations (1h) and (1i).

~
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In these equations:
o = p(x,u)=the density of the conducting medium.

= c(x,u) = the specific heat of the solid.

ol
H

k{(x,u) = the conductivity of the solid.

1
1l

L = the latent heat of fusion of the solid.

U, = the temperature of fusion of the conducting medium.

Il

1 the time at which melting starts.

ot
1t

the time at which melting stops.

the temperature at X = oo

8o
E(QQE) = a point source of heat within the conducting medium.
It is assumed in this thesis that there are no heat sources with-
in the conducting medium. Therefore, E(E,E) ¥ 0.
The time at which melting stops, %2, can be infinite for a heating

rate which remains large enough to maintain melting once it has begun to

melt. Figure 2 shows the (E,E) domain of the problem for such a heating

rate.

2|

i
N
ot}
g

crl

\j
1

Figure 2. The (x,t) Domain.
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Equations (1) will now be made non-dimensional to reduce the
number of problem parameters and to provide for a more orderly investiga-

tion of the problem.

The Equations in Non-dimensional Form

To make Equations (l) non-dimensional the following dimensionless

variables are defined.

In Equations (2a), (2b), and (2c) the quantities on Eoy and X,
are dimensional constants equal to the maximum value of B(Q,E), E(§,a),
and E(§,E) respectively. The functions %O’ @C, and ﬁk are dimensionless

functions of temperature and position which are characteristic of the

material of which the conducting medium is composed.



In Equations (2d), (2e), and (2f), Ky, Ky, and K5 are convenient,
constant, arbitrary scaling factors.

Equations (2d-2f) are derived in Appendix A. The numerical values
of the constants in these equations are included for several common materials.

When Equations (2) are substituted into Equations (1), the non-

dimensional Equations (3) are obtained.

2
WK 9T oU ~ T
CER A Kaaz[%"géj 0<x<@ 620 (s)
):K?'T‘z pj’%—K,Kz%—g—% 2=L@E)t»0 ()

o 2
=

g%-f@ Os/‘\c/s%/, ()
(j’f 0 x=0 o< {év, @ (5
%>0 %/,<%<Tf;(e)
0=0 5=0%) tetet
U —%/w Y=o £20
/2’: 0 £=0 (v)
U = 67(52) 0w =0 (1)

The (X,T) domain for Equations (3) is the same shape as the (X,t) domain

of Figure 2 on page 9 .
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Two special choices of the scaling factors K, Ko, K3 are of
interest:
~
1. When H(€3 is not constant, it is desirable to eliminate these

arbitrary constants from Equations (3).

ns
2. When H is a constant these factors can be chosen to eliminate

e

H.

For the first case define the scaling constants as in Equations (4).

(a)

[
~
e

'<2 - (LL)

K, = Tﬁ_, (v)

When Equations (h) are substituted into Equations (3) the results are

Equations (5).

od _ 1 9 od T VE PP

a%‘¢ 508”,[5/6 a;z] {)ex<o: 320 ()
oL 7 dE 7 ou a7

H(t) = P 4T "g& 5‘;% 2=Lt): 120 )
di _ ~
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In order to eliminate H when the heating rate is constant, the

scaling factors are defined as in Equations (6.

>~
I

2
e

This transformation is well defined becauselg; < 0.

When Equations (6) are substituted into Equations (3) Equations

(7) result.

90U _ _I__ 9 12 2047] ~ "

af\:—@@l PEARE RN O¢ XL St>/0 (a)
~ 7 dl 20 oy

/= o = o dF .....»é}a 2 )('/:«(‘t)»./}O (0}

a7 _ . oy

dt ~ U O$'tét, (c)

U <o %'03 Oét<t, ()

i -z

:f{——f/O t:< <t2 (e)

O

(7)
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Equations (5) are the fundamental equations of the problem because,
as can be seen by comparing Equations (5b) and (7b), the transformation de-
fined in Equations {6) effectively requires a dimensionless heating rate
of (1-§,). This dimensionless heating rate may be related to any real
heating rate and temperature at'§’= o by the proper choice of the constant
H in Equation (2g) and Equations (6). It will be shown below that this
heating rate, E = l—%;Q also will assure that the steady state melting rate
obtained from the finite difference approximation approaches the steady state
melting rate obtained from the solution of the partial differential equations
when the density, specific heat, and conductivity are assumed to be constant.

In Equations (5) the problem is described in terms of the follow-
ing variables:

1. Independent variables, %Iand %}

2., Dependent variables, u(%,%), 2(£);

3. Problem parameters:

a. Heating rate E(E).

b. Initial temperature distribution Z(X).

4, Characteristics of the conducting medium:

a. Density function, a;(§3ﬁ),

b. Specific heat function, 2;(§;ﬁﬁj

c. Conductivity function, 5£(§333,
This is the minimum number of variables to which the problem can be reduced
by means of dimensional analysis according to Buckingham's mx theorem,(21’9)

However, when the heating rate is constant one of the parameters, the

dimensionless heating rate, can be eliminated as has been done in Equations

(7).
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The problem can be further simplified by assuming that

1. the conducting medium is homogeneous, and

2. the density, specific heat, and conductivity are independent

of the temperature.
ns v ~/

These two assumptions make the functions ﬁp, ﬁc, and ¢k equal to unity.
They also make the problem independent of the material of which the con-
ducting medium is composed. When these assumptions are made the problem
is described completely in terms of four variables and two parameters.
These assumptions are made at this point and apply to the rest of this
dissertation. However, the development of Equations (5) to the finite
difference form is carried out in Appendix C for the non-homogeneous, tempera-
ture dependent, conducting medium.

When the heating rate is constant and the initial temperature
distribution is uniform in‘§’the problem parameters are reduced to one.
It is thus only necessary to obtain solutions for the range of initial tem-
peratures which is limited (in the dimensional variable) in minimum value
by absolute zero and in maximum value to the melting temperature of the
material being considered. The maximum temperature in the non-dimensional
form is zero while the minimum value will vary with different materials.
For the materials listed in Appendix A the lowest value is -5.01 for stain-
less steel. Thus the range of initial temperatures over which solutions
need be obtained for a complete solution of the problem is limited when
the initial temperature distribution is uniform. Of course, if the initial
temperature distribution is arbitrary, an infinite number of possibilities

exist.
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~s ~

When Equations (5) are considered individually with ¢p = ¢C=¢k=l
the problem seems to be linear. However, the problem is nonlinear as shown
by Iandau(EY) because the position of one space boundary, 21%5, depends upon
the temperature distribution which in turn depends upon the position of the
boundary, as shown below in the transformed Equations (10).

The space interval for Equation (5a) is semi-infinite in extent
and the left boundary moves with time after melting starts. It is neces-
sary to reduce the interval to a finite one and to remove the moving boundary
before the finite difference approximations can be applied and the differ-
ential analyzer used. The next transformation is designed to accomplish
these results.

Reduction of the Problem to a Finite Space
Interval and Removal of the Moving Boundary

The transformation defined in Equations (8) will reduce the
space interval and remove the moving boundary,
X =e L)< x oo (a)

~ (8)
t=1 tz 0 (%)

Thus X is in the interval 1.2 X.z 0.

Let
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~/

. N ~
When Equations (5) with ¢p = ¢c = ¢k = 1 are transformed by
Equations (8) and the relationships of Equations (9) are used, the results

are Equations (10).

L) P 2

5= x A lx D‘H']"X%T‘g% 0¢x< 1 t%0 (@
d

d% =H(t) - x=1; 120 (b)
%%ZO 0<t<t, (o)

ll

u<0 x= |, 0¢t<t, @ (0
%%WD t, <t <t, @
u=20 x=1 5 t¢t<t, @
u:90 x=0, t20 (2)
£=0 t20
U=glx) pexel =0

The Jacobian of the transformation (8) vanishes at X = w,
However, this singularity can be tolerated because only EK%;%} need be

defined at this point. The derivatives of GK%,%) need be defined only

arbitrarily close to X = .
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Figure 3 shows the (x,t) domain of the problem.

A

t | Conducting
Medium

.
' o

1 X
Figure 3. The (x,t) Domain.

Equations (lO) describe the problem with boundaries at x = O

. ~ L

and x = 1. The point ¥ = » has been transformed into x = O and x = £(t)
into x = 1. With the boundaries fixed, the effect of the boundary motion

s as

is now reflected in the term in Equation (10a) which contains EE. at

is
a function of the heat flux at x = 1 as shown in Equation (10b). The (x,t)
coordinate system is attached to the melting boundary and the heat transfer
represented by the term, - x %f-%ig can be interpreted as the heat trans-
ferred by convection due to the relative motion between the conducting
medium and the coordinate system.

Equations (lO) are now in a form suitable for the application
of the finite difference approximations to eliminate the space variable

derivatives. Before doing this, however, the steady state melting rate

will be discussed.

Steady State Boundary Velocity for a Constant Heating Rate

Equations (lO) can be solved, as is done in Appendix B, to
obtain the steady state boundary velocity and the temperature distribution
for the special case of a constant heating rate. The result of this solu-

tion is given in Equations (11).
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de _ __H
dt [ — qo (a)

m
U )= (1 - 7

| )qo (b) (ll)

For convenience here the steady state boundary velocity is de-

noted by b = as .

dt

Equations (11) may be transformed to the (%;%3 domain to obtain
Equations (12).
IO ______,'j__ (2)
| — gao L (12)
Jx)=LI-¢ Geo (v)
where g, = g, as defined in Equation (9e).
The temperature distribution is obtained explicitly as a function
of x in Equation (11b). However this does not yield the temperature dis-

tribution as a function of %3 the untransformed distance variable. This

is apparent if the boundary position is written as

Ar o~ ~ A ~As :J’v
L(T)=L(t;)+b(t -
n/ ns ~
where t > t3 and t3 is the time after which the boundary position may be

~ o~
considered linear in time. Until ﬂ(ts) is computed by some other technique,

£(t) cannot be obtained for t > %é,
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The steady state boundary velocity 1s unity when the heating
rate is chosen to be (1-g,), as can be inferred from Equations (7b) and
(12a). It will be shown below that the steady state solution for the finite

difference approximation is also unity for this heating rate.

The Finite Difference Approximations

The electronic differential analyzer can integrate with respect

(19)

to one variable only, but Equations {10) contain derivatives with re-
spect to both t and x. It is, therefore, necessary to eliminate either the
derivatives with respect to t or to x. The elimination of the latter is
more convenient because the resulting set of ordinary differential equations
are of first order in t. It is required because it is impossible, in

practice, to choseninitial conditions, u(Oytn) at each station in time

such that the n final conditions, u(l,tn)y are satisfied after integrating
from x = 0 to x = 1.

The derivatives with respect to x are eliminated by using finite
difference approximations. The approximation used will depend upon the
location of the station at which the derivative is to be approximated.
Three different types of stations can be identified, (l) the interior
stations, (2) the left boundary station, and {3) the right boundary shtation.
Equations (10) are written in such a manner that first order derivatives
only need be approximated.

To effect the finite difference approximations let the slab be
divided into equal space lncrements and let

r = the number of finite difference increments or cells

in the interval O_S X S 1.
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Then

-
AX= 1 (a)
A r m :OJ }JZJ' ’ ')r (b) (13)
U,(t)=U(x, 1) N=01.2,..r (

The cell size is constant and is uniform in x. However, in the

(%X,%) domain
~ =~ N
X, =lt)-|nT

while in the (x,t) domain _ (1)

_ — £
x, =0 (1) - ——_K'pgmlm ‘?‘ (o)

Thus the station distribution is logarithmic in both the X and X

v —
coordinates. The values of X, and X, are functions of time when melting

is in progress.

Figure L4 on page 21 shows the station position with respect to

the moving boundary for the x coordinate.

0.692

r=2 !

o,llpos 11.10
r=3
. o.g88 o.§92 1[..38

'?23 .1510 .|918 1161
r=5
e .}62 ,.ll;o5 .@92 1,1 1.|85( .

~
X

Figure 4. Values of Q; During Warming for Several Values
of r.
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Station number O is defined to be the left boundary in x. This
corresponds tothe point at W=+ in the @3%} domain as shown in Figure 4 for §:
Stations 1 through (r-1) are the interior stations, and station r is at the

right boundary in x (ieft boundary in ¥ as shown in Figure 4). The interior

station finite difference approximations will be obtained first.

Interior Station Finite Difference Approximations

The central difference approx:mation is used to obtain the finite

Lth

difference approximation of %E‘at the station. Thig derivative is

approximated by the relationship givern in Equation (15).

é_({.,_ e Una, —‘u""’| - r —_
Oxly,” 24X 2 (Unsi = Un-i) (25)

Figure 5 shows schematically the guantities of Equation (15).

Un+1

Xn-1 Xn L+l

n=l, 2, ... =1

Figure 5. Finite Difference Stations in the Interior of the
Slab.
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It 1s necessary to use the double interval in Equation (13)
because both the temperature and the first derivative with respect to x
must be evaluated at each station. The error introduced by this approxi-

mation is of the order of (Ax)g as shown in Appendix C.

It is also necessary to approximate_é [X'%E]x
n

R

again by using the central difference formula. However, a single interval,

and this is done

Ax, can be used for this approximation which is made in accordance with

Equation (16).

2u du
Lo\ X+ — X, Xn-3
aax[X g_%} . Knag (B’if) AﬁX (37) (6

Xon

However, since

and

LN\

=(n+=% )+

X’rwé ( 2/r
Equation (16) reduces to Equation {17).

%[X%—%] :(M‘F-Z’—)V(/fr.ﬂ"2ﬂl’un~+(n——é—)run_' (27)
Zn .
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left Boundary Approximation

At the left boundary, Xy, the temperature is fixed. Thus the

left boundary equation is Equation (18).

v

u()=g, 1o

Right Boundary Finite Difference Approximation

At the heated boundary, X,, both the gradient and the tempera-
ture must be evaluated. The gradient is approximated by a backward dif-
ference. As shown in Appendix C, the backward difference approximation
introduces an error of the order of Ax when first order differences are
used. When second order differences are used with a single interval, the
order of magnitude of the error in the first derivative becomes (Ax)g.
Both these approximations will be investigated to determine the effect on
the time domain solutions.

The first backward difference approximation of the first de-

rivative of the temperature at the heated boundary is given by Equation {19).

(g_%) ~ Lﬁz_{—%'—’—'- (19)

A=

When second order differences are used the approximation is

that of Equation (20).

(84)  m=Az(FU-2um £ U)o
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The approximations of Equations (19) and (20) are derived in

Appendix C.

Determination of the Temperature at the Heated Boundary

The temperature at the heated boundary must be determined as
a function of time during the period of warming before melting starts.
This may be done by means of Equation {10a) or (10b).

When Equation (10a) is used, the heat capacity lumped at this
boundary station is considered in the calculation of uy, and r differential
equations must be solved during the warming period. One difficulty with

this method, which will subsequently be termed the implicit method, is
ds

that in general I (tl) will have a non-zero value at the instant melting
starts. This introduces an error into the boundary position because %é (tl)
must be O at t; as shown by Citron(3) for the continuous medium.

The backward difference approximations used at the heated
boundary for the implicit determination of u, are:

(a) first order differences

xi{xa--”—) ~2rA-2rir-Hu verlr-=)u (21)
A E et AR A A 2 -

(b) second order differences

xg',;(xg—%)x:,% 3rH-4(7r-3)u, +4rlr-2) U, (22)

“'é}(f‘l) Ur-z
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The derivations of these approximations and the assumptions
made in these derivations are contained in Appendix C. Equations (21)
and (22) were obtained by using the smallest increments in x possible at
each step in the derivations. These formulae are not in as common use as
Equations (19) and (20) and other formulae could be developed, but they
would require using larger increments in x in some point of their deriva-
tions.

In an effort to eliminate the error in %f (t1), the explicit
method for determining u, is introduced. In this case Equation (lOb),

which becomes

during the warming interval because %f = 0, is used. This equation allows
the determination of u, in terms of the heating rate and the internal
temperatures. This approximation forces %f (tl) to be zero. However, it
neglects the heat capacity lumped at the boundary station and, if H(0) % 0,
ur(O) is in error. During the warming period (r-1) differential equations
must be solved simultaneously.

When u,. is determined explicitly during warming, the boundary
temperature during melting can be calculated and this value can be used
to determine when melting stops if the heating rate falls below that re-

quired to sustain melting.
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It is, of course, possible to calculate u, implicitly and

T
explicitly simultaneously. Then the implicit calculation can be used to
determine the boundary temperature, U,., when there is no melting; the explic-
i1t calculation can be used to determine when melting stops.

The approximations for the explicit determination of u, are:

(&) first order differences
L l (— 2
4=, +H =
(b) second order differences

2
U=FU._ ~5u,, T3 H(t) (230)

These approximafions follow from Eguations (10b), (19), arnd (20) since
dl . . 4
— = 0 in the interval 0 < t < t-.

Determination of the Boundary Velocity and
Positlon During Melting

During the melting phase the temperature, ur,is identically
zero and Equation (lOb) 1s used to determing the boundary velocity and
position. For *his case, also, both first and second order backward

1
difference approximaticns for 3 are to be investigated. The approxi-
. . Al e .
mations for 3¢ 8ve given in Equations (2Lka) and (2bb).

First order differences:

di __ (2ba)
d+ “"ﬂ(t)+'rur—l

Second order differences:
d4 (2lw)

gt~ Hit) -~ Ueet2rue,
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These approximations follow directly from Equations (19) and

(20) with u. = 0 and Equation (10p).

The Finite Difference Equations

The space derivatives of Equations (10) are eliminated by means
of the finite difference approximations by introducing Equations (15)
through (2&) into Equations (lO). The results are the following set of

ordinary differential equations with boundary and initial conditions given

in Equations (25).

U(t) =4, t>o ()
du, ndd -

E=gen)u..+z 27d— 2n"u, pii2 2.0 (v)

-nat, —2—(2n+r)un+, >0
N
glr%ﬁ=2rh‘+ rr-)u,., = r(2r-1)u, (1)
%%r =3rH=F(-)Urat2rRr-N U = S7r-aU  Loper  (e2)
U, =+ H+ upr (e3)
U =&EH+Fu. -5 Uz ) (ch)
(25)

%%=O 0<tst, (a)
U, <0 ostét, (e)
%’%:Hqu FUe- t<tet, (1)
dl _ y_r Eootet,
Y= H-fUrat2ru. (LTL (£2)

J=0 120 (g
oo -For(Cﬂam/(CQE t-0

=0,
=0, (r-nfor (cZand (C4

N
Y
"
Q
3
33

(n)
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Equations (25c1) through (25ck) will be used in turn with Equations
(25f1) and (25f2) in investigating the effects of first and second order
difference approximations. Two combinations, however, are not worthwhile.
These are (25c3) with (25f2) and (25ck) with (25f1). Equations (25c3) and

(25ck) result from the explicit determination of Up,. One object of this

approximation is to force %£ (tl) to be zero, and this can be done only if
t
the é%ﬁ%- is approximated by means of the same order differences during
Xr

the warming and during the melting periods. Thus the combinations in which
first order differences are used during warming and second order differences
during melting should be eliminated. With these two cases eliminated, there
are six cases of interest in studying the effects of the various approxi-
mations.

Equations (25) describe the problem in terms of r simultaneous,

1ls zero

first order, ordinary differential equations. During warming gf
and the equations reduce to a set of linear, ordinary, differential equations
which can be solved by conventional methods. During melting the equations
are nonlinear because %% depends upon the temperatures at the interior
stations and they in turn depend implicitly upon the boundary wvelocity.
Equations (25) are the equations to be solved upon the differential analyzer
during both warming ard melting.

It is reiterated hers that the stations at which the temperatures
are determined move within the solid during melting and remain a fixed
distance from the physical boundary in the (%C%) and (E,%) domains but are

fixed in the (x.t) domain.
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Equations (25) will be analyzed during the warming phase in the

next section.

Analysis of the Equations During the Warming Phase

In order to determine the errors introduced by the finite differ-
ence approximations and to isolate these errors from those introduced by
the computer, Equations (25) are solved analytically for the warming portion
of the problem and this solution is compared with the solution obtained from
the partial differential Equations (5)°

The solution of Equations (25) is facilitated by writing these
equations in matrix form and proceeding to the solution in this form. Thus
these equations may be written as

—

clt /L\u(t ) +1(t) ost<t, (26)

where

c¥
N

ct
~—

is a column vector with r elements for the implicit de-
termination of U, and (r-1) elements for the explicit
method;

A is the matrix of Equations (25b) and (25c¢) for the inter-
val 0 <t < ¢t

1 It is an r x r matrix for the implicit

method and (r-1)x(r-1) for the explicit method.

o

(t) is a column vector with the same number of elements as i
The first element is 1/2 o and describes the boundary con-
dition at x = 0. The last element is a constant multiple
of H(t) and describes the heated boundary condition. All

other elements are zero.
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The solution for Equations (26) may be obtalned by standard
matrix methods for the solution of a set of ordinary, constant coefficient

differential equationsb(23) This solution is given in Equation (27).

— . > _]t —_— s — r R S R
0(t) =B "B g + 52178 o)

-1 -1—> -1 _~[AJT -1 I (27)
-2DITE ) + BT [ e e 4L

where

(2] = the non-singular diagonal matrix of the eigenvalues of A,
e[l]t = the diagonal matrix with elements e%it

B a matrix whose columns are eigenvectors of A.

i

—> -
g a column vector whose elements are gy, go; g3, coe Sp

1l

for the implicit case and g1, 825 o0 8pq for the
explicit case.
If it is assumed that the heating rate is constant, the initial
temperature is zero, and all eigenvalues of A are real, distinct, and non-

zero then Equation (27) may be reduced to Equatiocn (28).

U (1)= Bec‘\jtﬁé“’[‘g’—r AT (0)]- A F i) (28)

The first term of the right member of Equation (28) is the tran-
sient solution and is composed of the sum of exponentials. The eigenvalues
of A calculated forr =2, 3, ... [ are all negative and are listed in
Appendix D. It can be shown that A is negative definite., This can be done

by showing that all even order principal minors are positive and all odd order
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principal minors are.negative. Thus the transient solution must approach zero
and the complete solution must approach the steady state solution represented
by the second term of the right member. The heating rate is constant for
this case; therefore ?(t) is a constant vector and the steady state solu-
tion must be a constant.

The solution of Equation (28) can be compared with the solution
of the continuous Equations (10) which, for constant heating rate and
uhiform initial temperature distribution, is given by Carslaw and Jaeger(Q)

as

)=2HL%€ ’%GHCCET?}V gw (29)

where
erfec (y) = l-erf (y)

and ‘
erf (y) '—‘\/_'2#'/078 ‘fd;

This equation is given in the (Rﬂ%} domain so that the heated face is

v 1a%4
at x = 0. Thus x = O corresponds to x = 1 or x = x,.. The temperature
5(0,%7 must be compared with ur(t). The temperatures at each of the sta-
tions are calculated from Equations (28) and (29) and are compared graphi-
cally in Figures 6 for r = 3 for the several approximations. In these

figures the temperature is normalized with respect to the constant heating

rate and is plotted as
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Equations (28) were evaluated manually be obtaining (1) the
inverse of the matrix A; (2) the eigen value matrix, [11; (3) the eigen-
vector matrix B and (4) its inversejB_l, The solutions, u,, were written
as explicit functions of time. These functions of time were then evaluated
for specific values of time with the aid of tables of exponentials and a
desk calculator.

For Equation (29) the temperature at the heated boundary is
r :____’é_H_ = Lo
(0,8) = 15 + Jo (30)

This temperature varies as \fg. However, it was shown above that for the

<

finite difference approximations the solution at the heated boundary ap-

proaches a constant temperature which is

7, o=-AT

Thus the error, ]u(O,%)- ur‘, eventually would become unbounded if melting

did not occur to stop the rise in surface temperature at t = tlm

The time at which melting starts, tl, is attained when the

boundary temperature u, reaches zero. This occurs in Figures 6 when

r

Ur-&o o . . .o
_—E—— = - T Thus t; may be determined from these figures by finding
| g
the intersection of the line - ﬁg with the uy curve. When H = lmgo, the
line - 8o » becomes €o The minimum value of this ratio is zZero when
H go-1

8y = O while its maximum value is unity because

/Zt/wz, ——io——— - /

%D—aa;go*l
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Finite Dif ference Approximation s
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Figure 6a. Temperatures During the Warming Phase vs. Time
up Determination Explicit, 1lst Differences.
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Figure 6b. Temperatures During the Warming Phase vs. Time
u,. Determination Explicit, 2nd Differences.
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Finite Difference Approximation

1.0 }—— — — = Continuous Medium
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Figure 6c. Temperatures During the Warming Phase vs. Time
up Determination Implicit, lst Differences.
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——— Finite Difference Approximation
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Figure 6d. Temperatures During the Warming Phase vs. Time
u, Determination Implicit, 2nd Differences.
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o

go'l ?

If the temperature ratio, is in the interval, 0 < <1, the

0
go-1
largest error introduced by the finite difference approximations occurs in
the temperature, u,, at the boundary, for each approximation. These re-
sults have been obtained with r = 3. It is concluded from the small errors
that the logarithmic grouping of the finite difference stations in the (%3%3
domain allows a very accurate approximation of the gradient of ﬁ'by means
of the finite difference approximations. It is expected that an increase
in the number of finite difference increments will improve the accuracy.
This effect will be checked by means of the computer solutions for r = &
First the computer solutions for r = 3 will be checked against these ana-
lytical results for the finite difference approximations.

The choice of H = 1-g, as the heating rate allows the solution

U=
during warming to be confined to the interval O < r"€o

< 1. The errors
introduced by the finite difference approximation have been shown to be
small in this interval after the first 0.1 units of time, t, even when

is determined explicitly. When u.. is determined implicitly,

r = 3 when u r

r
the errors are small over the entire interval. Thus this is a good choice

of heating rate for the warming phase. It will now be shown that this is a

particularly good choice for the steady state melting phase.

Analysis of the Melting Phase

The transient melting phase cannot be solved analytically in
either the continuous representation or the finite difference representation.

Equations (25) can be solved analytically, however, for the steady state
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melting rate when the dimensionless heating rate, H, 1s constant. This

solution can be compared with the steady state solution obtained for the

continuous case in Equations (11).

Let H(t) be a constant. Then, in steady state

%l%v-:o Nn=1,2,..f

(31)
%’%: b, a constant,

and Equations (25) can be written as
(142 (b-n]go—2uy+L1+ 5 (b-1)]u, =0

\:l+é,_f;(b—l):lmn_,'2un+fl+§Lﬁ(b—1)julm,=0 n=23,.-)
b= H+ru,., (ZEDifierences)
b=H —-Eﬁ_ Up-at2F U, (2”dD/-Fw‘“erence5)

If b = 1, then the above equations become

go= 2U,+ Uz =0
Up —2Up+ Uy =0
Hz 1-rUp, (1 EDfferences)
H:=i+£fu,,-2ru,, (228D fferences)

Thus

\ (b) (32)
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Thus each temperature is the arithmetic mean of the adjacent
temperatures and the temperature distribution is linear in x.

Since u, = O the temperature increment between stations can be

expressed as

Mr“(/f,,_i = Mr—l
There are r increments so
go = I Up-, (33)

Therefore for first order differences in the %é equation
H= - Qo
The relationship for the case when second order differences are

£
used in the as equation is obtained by using the equation

dt
2 U =290
But
[ Upp =21 Up- =270
because
Mr_2""2‘/{r—| + Ur=0.
Therefore

'g’ Ur—2_2 Mr—| = go ’230
and the heating rate of
H=l—ﬂo
results in a steady state boundary velocity of unity when second order
differences are used, also.
From Equations (11), if

H = l'"go;*
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then

b = 1.
Thus when the heating rate is the constant, H = l-g,, the steady state
solution for the finite difference approximation is identical to the steady
state solution for the continuous case in the boundary velocity. It isg
emphasized here that this does not mean that the boundary position is exact
for the approximation because the boundary position depends upon the value
of the boundary velocity during the transient phase as well as during the
steady state portion. ©Since the transient phase solution for the boundary
velocity is not exact, the boundary position will also be in error.

The above solution for the steady state boundary velocity is not
affected by the approximations used during the warming phase at the heated
boundary nor by the initial temperature distribution.

The problem is now ready to be solved on the differential analyzer.

The computer scaling and circuits are the subjects of the next section.

Differential Analyzer Scaling and Circuits

Equations (23) are scaled for the computer by means of the trans-

formation defined in Equations (34).

Un () = & U (1) G.7 & 9o (=)
aiT)= ‘é';/é (t) () (34)
K ()= 4 H() (c)

3

T=apt (@)
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In this scaling the unit for the dependent variables in the

machine unit and 1 mu = 100 volts.l
The transformation of Equations (25) by means of Equations (34)

yields Equations (35).

oo A (op N Do U dA _2n%
a1 T Lo, @ )Un, + 2 % U A T U n= 1,2, r- ()
N dA /. 170
{ _u” A L/'z}4 %T _{—:i ' (,”) V)‘f’ )> Uﬁ-f'l
L ! )
O VR SR A e L
}{Tr— = da, B (Q'jjlfr<i [ ) I: (e1)
o v o ) L A ~ s !
AT P d,a; “"r/ ol poo ! fg\ i 1/\ : :_’h_(/ )")f' N O<' Té/r (02)
U, = a (e3)
; |y
= A = U U,
Uy ,/%‘L‘*“ = Uy =5 Ut - (ch)(35)
d X\
U, = D TETE T2
QA _ Uz o rac | ]
aT a7 T Oy ag T | (£2)
, , T, LT T
§74{~:~ 93 _f;flLu(L) + 2ra U r l Z(fg)
= Do o 2eP g r-2 ol Oy r=1i
P
A= 0 T=0 (e)
. ‘ =Dy {OK(QDMVMJk2>
U, =G, O 1, () e (KDand (4 T=0 (n)

1A familiarity with the electronic differential analyzer is assumed.
general treatment of this computer the books by Johnson(gg)
Korn(25) are recommended. The paper by Howe and Haneman(eo
reference on the use of finite difference techniques in solving partial
ferential equations with the differential analyzer. The report by Howe
contains an exhaustive study of the solution of the heat equation with
fixed boundaries on the electronic differential analyzer.

For a
and Korn and
is an excellent

(355
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The scaling constants, a1, 8, a3, and a), are chosen to assure
as large a variation in voltage at each amplifier output as possible with-
out saturating any of the amplifiers during the solution. This procedure 1is
simplified for Equations (35) by the fact that the meximum absolute value
of the temperatures occurs at t = 0.

The computer circuits for solving Equations (35) are presented
in Figures 7 through 9. The heating rate, ;%(T), shown in Figures T and 8
as the input heating rate may be any arbitrary function of time or tempera-
tures or combination of these. This, of course, is one of the prime ad-
ventages of the solution by means of the differential analyzer because
these functions can be generated and used with little difficulty.

The circuits of Figures 7, 8, and 9 were used to solve Equations
(35) for r = 3 and r = 6. A Reeves Model 101 computer with 0.1% components

was used to solve these equations.
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CHAPTER III

COMPUTER SOLUTION FOR THE SEMI-INFINITE SLAB

Equations (3&) were solved on the electronic differential

analyzer in order to:

1. Determine the relative accuracy of the finite difference
approximations;

2. Determine the effect of increasing the number of finite
difference increments;

3. Obtain a set of curves with initial temperature as a parame-
ter which could be used to solve a wide range of physical
problems.

To accomplish the first and second goals above, the problem was

solved for r = 3 and r = 6 with g, = g = gy = 83 = +++ = 8p.] T By = -1.128

th Station) and constant heating

(where g; = the initial temperature at the i
rates of H =1 and H = 4. This value of initial temperature was chosen in
order to compare the results obtained in this dissertation with Lundau's
solution.(27) First and second difference approximationswere used at the
heated boundary, and u,. was determined both explicitly and implicitly. The
results of these solutions are presented in Tables I, II, ITI, IV, and V.

Table I contains values of tq (time elapsed when melting starts)

and b (steady state boundary velocity for constant H) for the continuous

-h7-
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medium Equations (8), the analytical solution of Equations (3&) and the
computer solution.

When H = 1 the time, tl, at which melting starts is very close
to that for the continuous medium for all cases. However, for the higher
heating rate, H = 4, the explicit determination of U, introduces very
large errors into the value of t] when only three stations are used. When
six stations are used with first order differences the error in tl is 45%.
When second order differences are used this error drops to 2.5%. The
analytic solution of the differential equations indicates that these errors
are introduced by the approximations and not by the computer. The errors

in t, are smaller when the temperature at the rth

station is determined
implicitly but the error decreases from 12% for Run C, r = 3, to zero for
Run F, r = § within the accuracy of the solution.

When six finite difference increments are used with second order
differences there is little to choose between the implicit and explicit
determinations of u, as far as the time at which melting starts is con-
cerned.

The values of the steady stafte melting rate, b, were calculated
by means of Equation (12a) for the continuous case. The values for the
finite difference approximations were obtained by setting all time de-
rivatives of temperatures in Equations (35) equal to zero, letting %% =D
and solving the resulting set of algebraic equations simultaneously for b.

The solutions are polynomials in b of degree r if r is odd and (r-1) if r

is even. The coefficients of powers of b are functions of H and go-
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These polynomials must reduce to b =1 if H = (l—go) as shown in Equations

(29-31). These polynomials are presented below for r = 1 through r = 6.

r=1, lst differences.
b ~(H+qo) =0

r=2, 1lst differences.
(2-cp b —(2H+30)=O

r=2, 2nd differences.

(1-9)b-H=0
r=3, lst differences.
b’-( H+39.) b2+(23—/2g,, )b~(3H %9%%0
2nd differences.
b*-(H+e C}c)b2+(23—12q0)b'(231—/+6g,,)=0

r=4, 1st differences.
(4 -8.)b>-(4 H+930)b2+(4+-23q0)b -(44H+15g.)= 0

2nd differences.
(2-g.)b~H+6q,)b*+(22-119,)b-(22H+ €4,)= O

r=5, lst differences.

bi-U4+5gn)b4+(230-803@)kg—(23ofi+43(7go)b2
+(1689-8809,) b -(1689 H+525¢g,) = 0

2nd differences.

b%- (H+109,)b™+ (230~ 1209,)l°~(230 H+ 5004,) b* (35)
+(l689—840go)b~(/689H+45039) =0



r 6, lst differences.

(6=90) b” — (6 H+2590) b +(580-23000)b”~ (58 bH +9509,) b
+(3254-16899.) b —(3254H945q.) = O

2nd differences.

(3-4.) b™= (3H+204,) b* + (290-150q0) b* —(290H+5204,) b*
+ (627-8090,)b ~(I627H420g,) = O
The values H = 1 and H = 4 were chosen instead of H = 2.128 for

the solutions in Table I in order to show the effect of the approximations
on b. The results in Table I show this error to be rather large for H = 1
where the minimum error is 10.3% even when second order differences are
used with r = 6. For H = L4, when second order differences are used, the
value of b is almost exact. These results may be explained by means of
Figure 10. In this figure b is plotted as a function of H for g4 = -1.128.
The values of b as a function of H for the continuous medium are plotted as
the dashed line. The curve b vs. H for the finite difference approximation
intersects the continuous medium curve at H = l-gg, H = 2(l—go)3 and
H= 3(l-go); and in the interval from H = l-g, to H = 3(l-go) is very close
to that for the continuous medium. The two curves diverge outside this
interval. Thus the close agreement between the values for b when H = 4
and gq = -1.128 are predicted.

In all these cases the close agreement between the computer re-
sults and the analytical solution of the ordinary differential Equations
(25) indicates that the computer solution is accurate and establishes a

reasonably high confidence in the electronic differential analyzer solution.
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Figure 10. Steady State Boundary Velocity vs. Heating Rate.
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Figures 11 through 14 contain sample solutions from the computer
results for r = 3 and r = 6 with the second order difference approximations
at the boundary. In Figures 11 and 12, 1/2 inch. represents. one unit of 7;
in Figures 13 and 14, one inch represents one unit in 7.

The transient melting solution will now be compared with the
solution obtained by Landau for a constant heating rate and uniform initial

temperature distribution.

Comparison of the Boundary Velocities

Tables II - V contain the values of the boundary velocity for the
several approximations used in this thesis and those obtained by Landaue(27)
The agreement of the differential analyzer results with Landau's results 1is
very good for the cases where r = 6 and second order difference approxi-
mations were used for %E at the boundary (cases B and F).

The effect of changing the approximations used during the warming
phase is to vary tl and, when u, is determined implicitly, to cause the
error described on page 25 in at at t;. This error in at at t, is very

at 1 at 1
apparent for cases C and E, r = 3,in Table II. In these cases the boundary
velocity is negative during the first moments of "melting".

The use of second order differences in the velocity equation
steepens the slope of the %é curve during the first part of melting when

compared to the first order difference curves. Increasing the number of

increments has the same qualitative effect. The values in Tables II - V
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indicate that after approximately 0.1 time units of melting only the

N
approximation for Jiit‘ in the as equation affects a4 . This can

Dx I%r dt dt
be seen by comparing the values of %é for cases A, C, and E with each other

and cases B, D, and F with each other.

General Solution Curves for Constant Heating Rate

In Appendix E solution curves are presented for initial uniform
temperatures of gy = -0.5, -1.0, -2.0, and -3.0. In each of these
solutions H = l-go, and u, was determined implicitly. Thus these curves
can be used to obtain values of the temperature at any of the six stations
and the position and velocity of the boundary at any given time. Equations
(2), (6), and (8) are used in conjunction with the curves of Appendix E.

The temperature curves of Appendix E indicate that the tempera-
ture distribution is lirear in x in steady state as predicted above. The
steady state boundary velocity in each solution is (l_go) as predicted.

The relatively few values of g, for which solutions are obtalned
in Appendix E do not allow direct solution of the problem for all possible
g, These curves could be used for values of E; which do not correspond
to any value of g, contained in Appendix E by graphical interpolation. A
better solution could be obtained by solving the problem for small incre-

ments of g,.

Solutions for a Time Varying Heating Rate

Solutions for a heat pulse of the form H = h(l- cos2nt), shown

in Figure Fl, are presented in Appendix F. In these solutions the initial
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temperature distribution was uniform in x. The heated boundary tempera-

ture was obtained explicitly in each case.

In Figure F2 the heating rate, H = 0.5(1-cos2nt), was not
sufficiently high to cause the boundary to reach the melting temperature.
This corresponds to a heat sink. After the heat input returns to zero the
temperatures within the body approach g,, the temperature at x = 0. or
X = w, because there i1s an infinite heat capacity in the slab.

Solutions are also presented for peak values of h = 1, and 1.5 in
Figures F3 and Fi. In both these cases melting starts at t; and eventually
stops when the heating rate drops to a sufficiently low value. After the

heating stops the temperatures again approach the initial temperature.



CHAPTER IV

THE FINITE SIARB

The finite thickness slab with one dimensional heat flow can
be treated by finite difference techniques alsc, as has been done by Eyres,
g}_g&.ﬁlB) OtisSBu) and Sunderland,(59> and Murray,(52> In each of
these references the finite difference increments used were of uniform
size. A non-uniform grouping of stations in which the finite dii rence
increments are smaller where the temperature gradient is larger allows
a more accurate approximation of the gradient. Such a method for regroup-
ing the finite difference stations for the heating problem with fixed
boundaries was developed by Howe.(l9> This method 1s applied to the
melting problem in this chapter after the problem has been made dimen-
sionless by means of Equations (2) above and the moving boundary removed

by means of another transformation below.

The Physical Problem

The physical problem is presented schematically in Figure 15.

Conducting - =

Insulation | pedim — H (1)

» X

X =0 x = 7(%)
Figure 15. Physical Schematic, Finite Slab.
The slab extends to + « in both directions perpendicular to X
thereby giving one dimensional heat flow. The heat flux, H, is defined

to be positive when heat flow is in the direction of positive X.

-68-
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The Mathematical Model

The physical problem is described by Equations (36) in the

(x,T) domain of Figure 16.

pe %‘_ _—_%[}é ng 0s X < L ():0¢Tt, (a)
e =pLdt -7 22 2 =Z(T) 0eteT,
d’% =0 0¢tet, (o)
U<0. £=L(t): 0¢T<E, (@
%—’% <0 tet<t, (e (36)
U=1U. 2=Z(1) tetst, (9
0= g(x) 0¢ %<0 (o)
L=3 t:=0 (n)

?5 =0 %=0 0¢ £¢T,, (1)
Here

Eﬁ = the time at which the slab becomes completely melted.

All other symbols are as defined on page 9 . It is assumed in Equations

(36) that there are no heat sources in the conducting medium.

tnd

]l

Figure 16. The (X,t) Domain, Finite Slab.
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Figure 16 is drawn for a heating rate which remains negative
sufficiently long to cause complete melting of the slab. If the heating
rate becomes zero after t1, melting will stop and the slab will approach
an equilibrium temperature. If the heating flux becomes positive the
temperature will decrease. Freezing cannot occur because perfect ablation
has been assumed and thus the liquid is removed immediately upon forma-
tion. Thus dﬁ/dt < 0 for all time.

Equations (36) are made non-dimensional by means of Equatiors (2).

Equations (37) result from this transformation.

o _ _| K2 Jd & UL L. L

= 93}.3 ‘?’1 R )%L%u S| 0¢ReLR)0ctet, (a)
H(t) = l<. <2>,, < — K K cpﬂ,%ﬁ‘- 2= L(£) 068t @)
%—'%-';‘O ngs\: (c)

U <0 =3 ot (o
g% <0 TeEet, (o)

i =0 2:L(E)teE sty (£) (37)
0 =4g(x) 0sX¢5: t=0 (&)

The (¥,T) domsin is the same shape as the (X,T) domain of Figure 16.
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Choice of Scaling Constants Kj, Kp, Kz

The scaling constants, K;, Kp, and K3, can be eliminated from
Equations (37) by means of Equations (4) as was done in Chapter II for
the semi-infinite slab.

When the heating rate is constant, Equations (6) can be used
to eliminate ﬁ)in a manner analogous to that used to obtain Equations (7)

from Equations (4).

Problem Variables

Equations (37) describe the problem in terms of the following
variables:
1. independent variables,‘z andlzg
e TPV R ~, )
2. dependent variables, u(¥,t) and ﬂ(t);
5. problem parameters:
a. heating rate, ﬁkg);
b. initial temperature distribution, Z(¥X);
c. initial thickness, s;
L. characteristics of the conducting medium;
N~
a, density function, Qp(x,u);
(o ~ o
b. specific heat function, P.(x,u);
c. conductivity function, @@(%33).
The finite slab problem has one more parameter, namely the initial thick-
ness, E; than the semi-infinite slab.

It will now be assumed that the thermal characteristics of the

conducting medium are constant both in temperature and in %. Thus

¥4 Pa)

A A A

The moving boundary will be eliminated in the next section.
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Removal of the Moving Boundary

The moving boundary is removed by applying the transformation

defined in Equations (58) to Equations (57) to obtain Equations (59) .
The transformation is

%) =™
A A\
8 =2 & B = &8 ® =2 =
SR A WS oS £
N <P -~ J N, N7 Q Q <3
Y ! O T T - v v
. 4 ,./.\.w 7 Y L " ' ~
Vi Vi 3 o <« < “ AS 2 N
o Y - - o
- z g
— ~7
v/ .f = =~ <X 5
<R " ) " Vy
71 p .AWN <X Q AvN
. o X
v
&
@
a <s|kR
m\} m DAU
Th)
T o P o -
> L — o ’A/'w AM‘AL
. R il wﬂﬂ . E Tl Ol
WRT S owov 8 R
S o 8 FUR )\
TR ® T o } “
« “> <3S A,yN < £ M_Mﬂ |
Q o
= = e .
< ™Is g
bl —] " 0 S R O
R A»VN o : @) Vv o \r(\ < Ty
" 4o N/ il
a sk = S ALW% - = < DRI
- sy <L ®is S= 0 ™Is S O X Ol
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The (Q,%) domain is shown in Figure 17. This figure emphasizes

A A
the singularity in the problem at t = t, when the cpnducting medium dis-

appears.
4
A
B
g
%. -
1
‘ A
0 e [ - X

0 &=1
AN
X

Figure 17. The ( ,£) Domain, Finite Slab.

If the finite difference approximations of Appendix C were
applied at this point, the increments of Q would be uniform. In order
to improve the accuracy of the finite difference approximations the
stations will now be grouped closer together near the heated boundary.

This grouping will be obtained by transforming the { variable non-

linearly.

The Nonlinear Space Variable Transformation

The transformation used to group the finite difference stations
near the heated boundary must satisfy the following two criteria:
1. The region near Q = 1 must be expanded.
2., The Jacobian of the transformation must not vanish in
A
the interval 0 < x < 1,
For convenience it is also required that, if x is the transformed variable,

its range must be 0 < x < 1.
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The nonlinear transformation is defined in functional form to be:

=4 (%) Ock el 0&xdi (a)
A A (hO)
t =1 os¢t=tet (v)

The Jacobian of this transformation is

W
QG
x>

Q
N

=f(x)

This Jacobian must be positive for all values of x in the interval

0 < x<1., This requirement is Jjustified by a consideration of Figure 18

— —_—

and the two criteria above.

O o
0 X

Figure 18. The Nonlinear Transformation.

In order to expand Q near Q = 1, the function Q = f(x) must
pass through the origin and through the point (1,1). Therefore f'(x)
must be positive somewhere in the interval if f(x) is continuous. Since
f'(x) # 0 in the interval 0 < x < 1, then £'(x) > O throughout this in-

terval.
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Equations (59) are now transformed by means of Equations (40)
to obtain Equations (41) in which
Ulx,4) = 0 (%,2)
2 t)=L(%)
A A
H(t)=H(%)

fl) i de yu : L2 [ 1 24T ¢
=100 I 4t 3 + T IW e e sa | Oexsh oty (@)
N
H(t)=%‘%—p%:)ﬁjc’):‘)—% x=] 0¢tet, (v)
%/_4_.__0 octet, (o
U< X1y 0¢tet, (a)
2.0 tctet, (o) (b1)
u = Xz tetets  (p)
U = g(x) 0¢xsl; t=0 (g)
/S t:D (n)
£ =0 %04 0¢tstn (1)

The Equations in Finite Difference Form

Equations (41) are in a form suitable for applying the finite
difference approximations of Appendix C. When these approximations are

introduced into Equations (41), the results are Equations (42).



dun v LN de 1 L\ u
et f i gl o,
dun __172 Uni _ X In dl - r? ! Un
T “f ey L) BTN dT ] Mo ;mﬁma
pffa g lpy am d U o (e
N b {t \hfru,é/e/«((t Osfﬁty;n
Ur=Z Uy =5 Upp —2A1 1 L08) H(T) ost <t
dur_ _3r ____L%_.- U2 412 =l &
7t P M) T By triL o ettt
___/t_?‘_<_i‘____’__>_9_£—
e L))
%’%: ot <t
%%:H(thﬁ%i%ﬁ%—-%—% tetet,
U, <0 ve¢t ¢t
U, =0 t <t ¢t
Un = G n=0,1,...[r-D4forC) t=0
nN=0,1,...,r for(C2)
£=5 t=0

(£) o

(g)

(h)

(1)
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Second order differences have been used in Equations (42) at
the heated boundary because the results of the semi-infinite slab clearly
demonstrate the improved accuracy of the second order over the first
order approximations. In Equation (%2-C1) the boundary temperature Ur,

is determined explicitly; in Eguation (42-Cc2) it is determined implicitly.

Scaling for the Differential Analyzer

Equations (42) are scaled for the differential analyzer by

means of Equations (43).

Un (T) = &= Un(t) n=o1,..r, (a)

AMT) =4 L) (o)
H(T)

1l

é; ff(t) () (43)

1~:-04 rét, (a)

Equations (43a, b, and c) are identical with Equations (3ka,
b, and ¢). In Equation (43d) r2 is written explicitly in order to
eliminate r2 from Equations (MEa and b),

When Equations (43) are introduced into Equations (42), the

results are Equations (44) which are the computer equations.



4%3*2 —W—CL/O(I;FWTI'; ) 0/2%% /\(:‘)D(T) +/dé(ﬂ?z+f'_g>aéa+ ,\—ELJ(LF) 0T & Tm

%rﬂ:ﬁ’,ﬁ’;a;/% Ufzc'q) = b =12,
"?[Tn(f"n-é N —?[:_‘;)022/% /\UJ('T) 0T T,
+EH e ot 3, 17

Ur=%Up =4 Ura ~£55= 928 yijpy(r) oere

oF = ’WfTaaz,Tz?m H(r) _F;,fr’_,‘ Zas F& osTer

et e ey A #)
$ =t M 2 i 5 TeTeT
- a9

4d- 0 0¢ T T,

U, <0 0< T<LT,

U, = T, $T<T,

U,:= 6, n=0,1,....r-1 for(Cl) T =0
nzot,. ., r Hor (CZ)



-79-
The computer circuits for solving Equations (44) are given in
Figures (19a-d) on the following pages.
Specific nonlinear R transformations must be selected before

solutions can be obtained on the differential analyzer. Two possible

choices of this transformation are presented in the next section.

Nonlinear Space Variable Transformations

Two nonlinear space variable transformations are considered
here. The first is a power transformation; the second an exponential
transformation.

The power transformation is given in Equations (45).
#
El“(“Cx) :I
I=(1-0O)*%

+ o) (45)

x= (a)

>
iy

C and k are arbitrary parameters.
In Equations (45) the interval of x is 0 < x < 1 as can be
verified by direct substitution. The Jacobian, J = dQ/dx of the trans-

formation is

y e
J= |- (1-C)

A -1
@~Cx) O<x & |

and
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Thus the Jacobian is positive for C in the interval 0 < C < 1 and re-
quirement 2 above is satisfied. Also, if k > 1 and 0 < C < 1, then
dgﬁ/dxg = dJ/dx < O and requirement 1 is satisfied also because the curve
x =[l/l-(l—C)k}4l-(l_Cx)k] is convex upward.

When Equations (L45) are used with k = 2, & uniform finite dif-
ference station distribution in x causes the finite difference stations
in Q to be distributed parabolically. This is shown in Table VI.

A second nonlinear transformation is the exponential transfor-

mation given in Equations (46).

~bx
N
’ —_— e - (a)

:E ::'t (b)

Again the interval in x is O <x<1 for Q in the interval O < Q\S 1,

(46)

The Jacobian of this transformation is

d % /ae_ﬂw
J= g% = 7 ——>

Thus J > 0 for all k > 0.

Since d°x /dx2 = - kge_kx/l—ewk, the curve x = l-e ¥%/1.e7F ig
convex upward in the interval O < x < 1 and must lie above the line £ =x
as required.

The station locations for a six station problem are shown in
Table VI for the power transformation, Equations (45), and the exponential
transformation, Equations (46). The values of £ = dg/dx are also shown
at each station.

The stations can be grouped more closely near the heated bound-
ary by increasing C and k in Equations (45) or (46). While the approxima-

tion of the temperature gradients improves in these areas the increased
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accuracy is not without its price. As the stations are grouped closer
together, the temperature difference between stations decreases. In

the computing circuits the differences are taken in the summing ampli-
fiers and depend upon the coefficlent potentiometer settings on the
inputs. Thus as the differences become smaller the errors in the coeffi-
cient potentiometer settings become larger by comparison and eventually
limit the accuracy of the solution. The same inaccuracies become pre-
dominant also when very large numbers of finite difference increments

are used to improve the accuracy of the solution.,

TABLE VI

STATION POSITIONS AND d%/dx FOR SIX STATIONS
LINEAR, PARABOLIC, AND EXPONENTIAL STATION DISTRIBUTIONS

n
n 0 1 2 3 y 5 6

Xy 0 0.1667 0.%33%3  .5000 .6667 .833%3 1.0000
Xy = ili%Z%iZELE 0  0.241k 0.453%0 6346  .7863  .9081 1.0000
£ = i:&é%;?:lﬁl 1.538 1.346 1.179 1.0C000 .821 N €2
L o=l=T 0 0.2428 U483  .6225 .7698  .8945 1.0000

0.57
£1 = Z::7 1.582 1.3%392 1.1%34 9595  .8122  .6875 0.5820

Computer Solution Results

The finite slab problem was solved by means of the same electronic

differential analyzer used for the semi-infinite solid solution above with

o o 3 . 03 o A
six finite difference increments. linear distribution of stations in x
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V2
and a parabolic distribution, Z= i:ﬁl:gfl_w with C = 0.7 were used.

2
Samples of these solutions are presigéiéczn Appendix G. In each case ug
was determined explicitly.

The time tl, at which melting starts,and the time, t,, at which
melting is completed when the heating rate is a constant are shown for
the linear and parabolic station groupings in Table VII for three thick-
ness, s = 0.5, 1.0, and 2.0. In all these cases the initial temperature
was g, = -1.0 and the heating rate was H = —(l—go) = -2.0.

The time, t_, obtained from the computer agrees very closely

m

with that obtained from the continuous case. The value to ty for the

continuous case was obtained from the equation tn1=~Hg-l)qﬂ £(0) which

is derived in Appendix H. The errors in this value are about one per cent.
The value for the time at which melting starts is obtained for

the continuous medium by solving Equations (59) during the interval

0 S.% § 31 in terms of a Fourier series. The results of this solution

are given here for a constant heating rate and a uniform initial tempera-

ture.

A
~ N ANA] A A
0D =g+5 Aleo) -2 8200) 2
A ""()w_n-u_”_fot
gt BEEE ST LN T e
h= | A
0« {-5'%:
D¢k <

A :
The value of t; is obtained from this equation by solving it numerically.
The valuesof t; obtained from the computer and from Equation

(47) are compared in Table VII. When £(0) = 0.5, these values agree
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within less than two per cent. The regrouping of stations does not
affect appreciably this value. When £(0) = 1.0, the percentage error

in tq increases to -9.2%. Here regrouping the stations lowers this error
to 1.5%.

When £(0) = 2.0, the error in t, becomes -18.4%, Regrouping
the stations makes the error +18,h% which is still large. Grouping the
stations more closely together near the heated boundary might decrease
this error still further. However, when the value of t, from the con-
tinuous case (0,1965) is compared to tl for the continuous semi-infinite
case (0.1963), from Equation (29), it is apparent that the slab with
£(0) = 2.0 behaves as a semi-infinite body during warm-up. This is fur-
ther corroborated by Figure G5a and Gba in which u, does not vary until
after melting starts. Thus the semi-infinite formulation could be used
with good accuracy for this portion of the problem at least for initial
temperatures g, < -1,

The decrease in accuracy with an increase in initial thickness
was expected because the same number of stations was used in each case.
As the initial thickness increases the accuracy of the gradient approxi-
mations must decrease because the error in the finite difference approxi-
mations varies as the square of thé increment.

The value of ug for the continuous case is plotted on Figures
G3a and Gla. These values were obtained from Equation (47). The improve-
ment in accuracy with the regrouping of stations is very apparent when
these two figures are compared. The maximum percentage error when the
stations are linearly distributed in Q is 22%; for the parabolic distri-

bution it is 10.3%.
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The effect of the station regrouping is to make the differences
between adjacent stations more nearly uniform compared to the linear
station grouping in £, This can be seen by comparing Figure Gla with G2a,
G3a with Gha, and G5a with Gba. A possible desideratum for station group-
ing could be that the temperatures be linearly distributed over the
stations in the part of the solution of most interest.

Figures G7 and G8 are solutions of the melting problem for a
heat flux of the form H = 1 - cos 4xt. It can be seen that with this
heat input melting starts at t, and ends at tp. The accuracy of the
solution can be checked by considering the energy exchange during the

heating. The total heat input is

L
A= [Tli-cosent)dt =%

From Figure GT7a the equilibrium temperature is -0.048. The rise in tem-
perature was thus 0.952 and the heat required to raise the remaining part

of the slab to this temperature was

Q,=0.952(2-0036) = 0,440

From Figure GTb, 0.036 of the slab was melted. The heat required to raise

this much of the slab to O was

@,\ = O\ 036

(-

The heat required to melt 0.036 of the slab is
Q.=0.036
E)
The total heat required is then

Q= Q+0+0U=0512

The error is

CQ'—@%§+632'+CA) - (D.C)G

This error could be caused by inaccuracies in reading the curves.
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When Figure G8 is compared with Figure G7, the effect of the
station regrouping is seen to be to spread out the temperature curves
and make the temperature increment between stations more nearly equal
as noted above.

In this chapter the finite slab has been analyzed and solu-
tions obtained on the electronic differential analyzer. The results are
not as striking as those obtained with the semi-infinite solid, but it
has been shown that the accuracy of the solutions can be improved appre-
ciably by regrouping the finite difference stations and that; for slabs
of such thickness that the finite thickness formulation gives unacceptable
errors, the semi-infinite formulation can be used to reduce the errors

during the warming phase and the first part of melting.



CHAPTER V

CONCLUSION

The problem of the diffusion equation with a free boundary
has been analyzed in this dissertation for both semi-infinite and finite
thickness conducting media in which diffusion proceeds in one dimension.
The obJject of the analysis was to render the problem into a form which
could be readily solved on the differential analyzer and which would
yield accurate solutions with a modest amount of computing equipment.

It is believed that these obJjectives have been attained.

Description of the Solution

The problem equations were first made non-dimensional. The
particular dimensionless ratios for the time variable, the space variable
and the heating rate which are derived in this dissertation are believed
to be original. In the process of eliminating the dimensions, scale
factors were introduced which allow physical temperature, time and space
variables, and physical heating rates of any range to be related to any
convenient non-dimensional range. It has also been shown that, for a
constant heating rate, these scale factors can be chosen to eliminate
the heating rate. This reduces the semi-infinite problem to one parame-
ter and the finite slab problem to two. The effect of varying these
scale factors is to expand or contract the space and time variables in
the non-dimensional variable domain.

For the semi-infinite solid the infinite space variable was re-
duced to the unit interval. This permitted the approximation of the de-
rivatives of the temperature with respect to the space variable by means

of the finite differences over the entire interval.

-90-
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The finite difference approuximation reduced the problem to a
set of ordinary differential equations which could be solved on the
differential analyzer. It was shown for a uniform initial temperature
distribution and a constant heating rate that during warming the tran-
sient solution of these differential equations i1s a sum of decaying
exponentials plus a constant at each station; while the solution of the
continuous case proceeds as the square root of time at the heated sur-
face. Thus the error between the continuous and finite difference solu-
tions at the heated boundary could eventually become unbounded. However,
it was also shown how the dirensionless heating rate could bhe chosen to
keep this error very small until melting started. Further it was shown
that this particular choice of constant heating rate caused the steady
state melting rate ohtained from the finite difference equations to be
exactly the same as that for the continucus casge.

Two methods for determining the beated boundary tempersture
during the warming phase were developed. The implicit method has the
advantages of (1) allowing the ivitial bourdar, temperature to ve arbi-
trary and (2) belng more accurate than the explicit method. The explicit
method (1) forces the boundary velocity to be zerc wnen melting starts
and (2) allows the heat balance at the boundary to pe determined during
melting in order to determine when the heating rate decreases sufficiently
to stop melting.

The semi~infinite slab problem was solved on an electronic
differential analyzer for three and for six finite difference increments.

The results show that reasonable accuracy can be obtained with six in-

e

crements. The one-parameter problem for constant heating rate and
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uniform initial conditions was solved for several initial temperatures.
These solutions are presented in Appendix E. The problem was also
solved fara heat pulse of the form (l-cos2wt) to demonstrate the ability
of the electronic differential analyzer to solve the problem with
arbitrary heating rates. ©Samples of these solutions are included in
Appendix F.

The finite thickness slab solution was made more accurate by
grouping the stations closer together near the heated boundary. It was
shown further that when the slab became too thick to obtain accuraie re-
sults with only six finite difference increments, *the semi-infinite slab
formulation could be used during the warming phase to obtain accurate
results for a constant heating rate. Tikis problem also was solved for
a heat pulse of the form (l-coskmt) and sample solution curves are pre-

sented in Appendix G.

Extensions of the Solution

The problem considered in this dissertation has been described
in terms of heat flow and the melting of a solid. The solution obtained
is directly applicable,; in its non-dimensional form, toc any problem
described by the diffusion equation with a free boundary of this type.
Thus it is directly extended to problems of mass diffusion, crystal growth,
éublimation, and neutron diffusion and the control of nuclear reactors.
In each case, of course, one dimensional diffusion must occur and the
equivalent of perfect ablation must occur. Also, suitable non-dimensional
ratios would have to be derived to relate the non-dimensional solution

to the dimensional problem.
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The solution obtained in this dissertation is limited to the
case of perfect ablation. It can be extended to the two phase problem
in which the liquid and solid phase remain in contact at the free bound-
ary by writing the equations for each phase. The space variable must
be normalized with respect to the liquid phase thickness in the equations
for this phase and with respect to the solid phase thickness in the
solid phase equations. The finite difference approximations could then
be applied. Care would have to be exercised in approximating the gradient
at the free boundary, where it is discontinuous. This difficulty could
be overcome by using forward and backward differences at this point.
Care would also have to be exercised during the warming period and Jjust
after melting starts, because the liquid thickness would be zero during
these times and the equations have a singularity when the thickness is
zero. This could be overcome by starting melting with a small, non-zero
liguid thickness and assuming that the melting rate would be linear Just
after melting starts.

In order to solve the two-phase problem it must be assumed
that there are no convection currents in the liquid. This is a very
restrictive assumption and is unrealistic after the liquid thickness be-
comes large enough to allow free motion of the fluid. This restricts the
validity of the solution.

The one dimensional heat flow problem has been described in this
dissertation in a Cartesian reference system. It can also be described
as radial heat flow in cylindrical or spherical coordinates. The same

methods could be used in the latter two coordinate systems.
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The extension of the results of this dissertation to two and
three dimensional heat flow is complicated by having to determine what
occurs at the "corners". No attempt has been made in this dissertation

to solve this '

'corner" problem.

The solution obtained here does provide a set of useful dimen-
sionless ratios for the melting problem; provides for the selection of
an optimum heating rate for the semi-infinite slab when the heating rate
is constant; demonstrates inaccuracies inherent in the finite difference
approach and developes means for avoiding large errors due to these in-
accuracies; provides a means for solving the melting problem which yields
very good accuracies with only a nominal amount of computing equipment;
refines the solution of the finite slab by regrouping the stations and
shows that the semi-infinite solution may be employed for slabs suffi-

ciently thick to cause large errors when using only a few finite differ-

ence increments.



APPENDIX A

DIMENSIONAL ANALYSIS

Equations (1a-i) are expressed in terms of E, E, E, L, 2, E,
ﬁ, and u. These physical quantities must have units of mass (M), length
(D), time (T), and temperature (6) or combinations of these four basic
quantities. The eight physical quantities and the four basic dimensions
then allow, according to Buckingham's n theorem of dimensional analysis,l
the formation of four dimensionless ratios. The problem can thus be ex-
pressed in terms of four dimensionless variables.
The problem will be analyzed in terms of ;, E, E, and H. That

these form a dimensionally independent set may be shown by forming the

product

dim(z2tPBige) =M DT 6°

Now
dim(x)= D
dim(t)=T
dim(M=MT >
dimlu)=6

Thus

DTEMIA T 82 =\°1D)° T2 6°

1 A complete disc%ssion of Buckingha?'s theorem can be found in the
books by Durand 9) and by Huntley. 21)

-95-
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The following set of linear equations is obtained by setting the exponents

of like factors equal.
4 a=0

b-3d=0
C=0
d= 0

Clearly the only solution is the trivial one thereby proving the dimen-
sional independence of the chosen set.

The dimensionless ratios are determined by forming the product
of 5, c, k, and L, each raised to arbitrary power, with the first power
of X, E, t, and H. Thus four dimensionless ratios T, Ty Mz, and ),
are formed. The first of these is derived here.

Let

T =p?c EiLe®
Then

dim(m)=M"D°T°86°

dim(p=c® A4 L°%) = M? D7 D T2 g pd AT e T2

Equating exponents of like factors yields:

o +-Cj': ) ( RA)
“30+20pb+d+2e+1=0 (D)
-2b-3d-2¢=0 (T)

-b-d=0 (8)

The solution of these equations yields



Similarly

Ty
E

In order to make Equations (la-i) dimensionless, the follow-

ing dimensionless variables are defined.

Ty
T {1
PN
J N
A

~ c —
U= Tla - T Uc

In these definitions Kéis a non-dimensional constant of arbitrary value.
Its introduction here allows the non-dimensional variables to be chosen
in any convenient range and still be related to any given set of dimen-
sional variables.

The numerical values values of the non-dimensional variables
are presented in Table A-IT for several common materials whose physical
properties are listed in Table A-I. In all cases the physical properties
are assumed to be independent of temperature.

In many ablation problems heating rates on the order of 10° to

107 are of interest. For these values of H, a convenient value for K

would be lO'u.
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TABLE Al

PHYSICAL CONSTANTS FOR SEVERAL COMMON MATERIALST

Material o g_cal gl p el 3 e
cmd gm sec °C gm °C gm ¢
Aluminum 2.7 1.01 0.25 76.8 658
Copper 8.9 0.858 0.09 L2.0 1083
Ice 0.92 0.00k 0.50 9.7 0
Magnesium 1.8 0.376 0.28 70.1 615
Silver 10.3 0.992 0.07 21.1 961
Stainless Steel 7.8 0.107 0.12 L8(iron) 1475
Water 1.0 0.001k 1.0 79.7 0

1A11 data are from the Handbook of Chemistry and Physics, 36th Edition,
Chemical Rubber Publishing Co., Cleveland, Ohio, (195%).
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TABLE A2

DIMENSIONLESS VARIABLES FOR SEVERAL COMMON MATERTIALS

Vaterial ¥x 10 tx109 Y x 10 H x 108
ALuminum 5.78 X 214 T 3.26(d-,)  8.50 §
Copper L.17 % 1.75 % 2.28(u-u,) 6.37 H
Ice 0.663 x 3%t 6.27(u-u,) 237 H
Magnesium 7.25 X 3.9t 3.99(u-u,) 14.6 H
Silver 21.6 x 6.40. % 3.32(u-u,) 15.5 H
Stainless Steel 39.2 x 17.6 t  2.87(u-u ) 5.97 H

In this table

X is

ot

is

is

]

is

measured in centimeters
measured in seconds

measured in ° Centigrade
measured in gram calories/square

centimeter-second

"KEZKB:]_



APPENDIX B

STEADY STATE SOLUTION FOR THE SEMI-INFINITE SLAB
WITH A CONSTANT HEATING RATE

In steady state the temperature distribution in the (X,t) domain

becomes a function of the space variable, x, only when the heating rate,

H, is constant. This provides a means for solving Equations (8) for the

steady state boundary velocity and the temperature distribution.

Since the temperatures are functions of x only

o u

R

sz =Y

(B1)

The boundary velocity, dﬂ/dt, must be a constant, also, because

d

.

\

Q]

T H“%%; x =] (B2)

Here H is constant by hypothesis and %%U-
x

is constant because it

x=|
is evaluated at x=1.

Therefore

dg/dt = b, a constant.

The steady state problem now may be stated:

xad;[xﬁ%]-bx du _ o

Ty = 0¢ x4l (a)
U = 9o xz=0

Expand (Bﬁa) to obtain

23%%% +—;cz-%ét§ - bx;ﬂ‘” =0

-100~
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This equation may be written

x[x 4% +(1-b)$4)=0

The second factor is now equated to zero to obtain
d2u _ u —
&tk +U-0)9gL =0 (BL)

Equation (Bh) may be integrated once to obtain a first order differential

equation. Thus

x% - U+ 0-bu =C,

or

%d;‘bu:cu (B5)

where Cy is a constant of integration.

The solution of (BS) is

, {bdx (£dx _(Ldx
U=C,e ™ 4e’'” f%ef" d x
or P Inx b Inx b
U=C.e™ e j—,’-ge, dx

But
b

!

e " = 3"
Thus
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The constants are evaluated by means of the boundary conditions

(B3b) and (B3c). Thus

CI = 'O go
and
CZ: "qo

The solution, with constants evaluated, is

u:(l—%b)%o (B7)

Equation (B2) provides a means for computing b:

u| _ b-1_ _ _
QC“TZ | b/\"/ qc = -b 30

H

= — (B8)
| 9o
Equations (B7) and (B8) indicate that if H = 1-g_ then the

temperature will be linearly distributed in the x coordinate. This prop-
erty will be used to demonstrate that the finite difference approximation

solution in steady state is identical to the continuous medium steady

state solution for this heating rate.



AFPPENDIX C

FINITE DIFFERENCE APPROXIMATIONS AND ERRORS

When Equations (5) of Chapter II are transformed by means of

Equations (8), the results are Equations (Cl).

ool B 2Dl BE] e
o) O o) 2 7F 55 (2)
Ht) = ¢(1,u )0—0,{%-#45&(:}“)%% =11t 20 (b)
%_%; 0 ostet,  (e)
U <0 Xz} o<¢tet,  (a)
(c1)
%:%> 0 ‘bl4‘t<t2 (e)
4 =0 =] fetety, (£)
U=4g: x=0, t=Z0 (g)
Uz qlx) o¢xsl t=0 (v
L =0 t=0 (1)

In these equations the derivatives with respect to x are to be
replaced by finite difference approximations. The equations are written
in such a manner that only the finite difference approximation of the
first derivative is required. These approximation formulae and the
errors introduced by their use will be derived for a general function,

@(x,t), and then the formulae will be applied to Equations (c1).

-103-
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Central Difference Approximations

To obtain the finite difference approximations the conduct-

ing medium is divided into r increments as in Figure Cl.

Figure Cl. Finite Difference Increments.

The function Q(x,t) is first expanded in a Taylor series in x

about the nth station. Thus

O(x+px,t) = On(t) + 2 } DX+ gf?_ n(ﬁ\_z.lcllz+. o
L 2%a ) (67
D X7 Nen TA 1 v (02)

By means of Equation (C2), 6(x,47,t) can be evaluated with

X,=nox =4

Thus

%p 3
Ons, =0l t) = 004 22,00+ S8 G + 58), S+ .

and

M

PF) 2% ax %
3[ +.1¢

e,.= n'ﬁ', A%+@z/ o 21 T 2

n-|
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2 2
en and,gkg_x Ax and all even order derivative terms are eliminated

" 2]

from these two equations by subtracting the second from the first. Thus

3

!

08

is obtained by solving for % from
xn

The approximation for

2% Ix,,
this equation and neglecting all terms of higher order than the first in

(Ax). The required approximation is

@_e_ /’\\’, 9n+l-—9n—l (C5>
70 xl’\ ZAX

\)/

and the error introduced by neglecting the higher order terms is

c=- 38|, L et

n 3] D AT

If Ax is small and all derivatives exist as required by the Taylor series
expansion, the error will then vary as (Ax)e.

Equation (C3) is the central difference approximation of the
first derivative of © with respect to x evaluated at the nth finite dif-
ference station. It requires that the values of © at each adjacent
station be known.

At the right hand boundary, the rth station, it is impossible
to evaluate 6 at a station to the right. Thus backward differences must

be employed to evaluate %—g—ix

Backward Difference Approximations

The function, 6(x,t), is now expanded about the rth station
(refer to Figure C1). Thus

9(x,+A>a)t)= 9r+%%' LAx + %‘;(‘2,) + e
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Then %f%lxr_ may be approximated by means of the values of

0 at the r°® and (r-1)5% stations.

N e
- — v
‘ar“" -Q( ’U":‘

~e 2 3 3
PErE er-%—‘a) (axy
/wAX/+ ""y'”L"r‘ 2l 'X’?/\«rB., oo

Solving for %%%?L, from these two equations yields
s by

¥l

GEA

() i

Wi

Q"(’)vl a;%« - D Ax
- = g L L
A TR

Xy oA
Equation (C4) is the backward difference approximation of

when all terms of degree greater than unity if (Ax) are neglected. The

error introduced by this approximation is

3 2
N A )35 L
€ =55 ‘3"‘“3(73 T

A X ¢ 3{

In this case the error varies as (Ax) for small Ax.

In Equation (Ch) it is required that the value of the function
© be known at two points. This equation employs first order differences
only. A more accurate approximation is obtained by using second order
differences in which the values of © at the r™B, r-18%, ang r-20d stg

tions are required. These values are

N 14 +
S ,Du“ 2% | R ) _/A_&L )(A%)
dﬁi‘~r 55x1”x+9wlxrr‘ ' “ | 7l R

-~ <, (EA)('_
076, = Bl leon)+ 55 Z5T - &2

% ﬁ‘axﬂlgAé)

-

oy
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are eliminated from the right members of these

2%
When ©, and N

three equations the result is

245 _ _ 26 __!__D_fﬁ) 3

z Or 29r-t+'£9r—a—7§§)x, 3’3%3}0{@)6)-{'...
This equation is solved for %%S’Ftr to obtain

3
{}ﬁL - 12 I 1078 2
-wa"Ax[’ZQV—ZQr-I“‘EQr_z]*B X xr(‘»’) oo
The approximation of i;ﬁq is thus
ppIY : : >l
26 1L [3 L
Wx'f’\\’z»c [‘2‘9r’29r—1+29r~2] (c5)

The error introduced by this approximation is

€ = —3L %% (ax) =+, |,

Xy
This error varies as (Ax)g and thus is of the same order of magnitude

as the central difference error of Equation (CB).
Equations (C3), (C4), and (C5) will now be used to eliminate

the x variable from Equations (Cl),

The Finite Difference Approximations
of the Problem Equations

The space variable, x, is eliminated from Equation (Cla) for
the stations n=l through n=r-l1 by means of the central difference approxi-

mation of Equation (C3). Equation (Cla) is

o () 0 Cest) B4 = e[ 0, ) BE] = oy ) e Lyt §F 244

)
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The first term of the right member is considered first.

Let

9:Ix¢%6%)u)%%:
@én: qﬁﬁz,[x"‘) M(Xﬂ)‘t)]

Then, by means of Equation (c3)

- |
%ﬁeﬂx¢%(xju)%%&]‘sz$2£?n+5 ¢%%+;%%E

— 76;1/{ ﬂsﬁ'”‘é— %_)_t;{_ )

,xrw é_

PC,,,.L

]

;%x[x qﬁkfb—;o—]:\\// ni(m-é)@%_ium-. _[Lh+é—)¢ﬂn*é+(m—é>¢ﬁn_ﬁ] Un

I
n —_—
=+ ( +2) ¢kn+,§l/1n+l}
The second term is approximated by

d)‘o (b‘«%g—% %%% Qb/omd)cn %l{:% 'g]:’ (un-n - Un—l)

since
ou. r -
’&MAYQ:2<Mn+I MH-J
Thus Equation (Cla) is approximated by Equation (C6).

U N £
H—-En—: gf‘z-%—-—g‘— V)(H‘%_) uy]-l+% %:E l/{y].—]
(0,\

Chn
d)h—n- s _'_/_ (b}.bm-f' L
- - nln 27*@;:?53:”(”*2)]“”
P,
”%%u“*‘_‘— @——a-—izm(h+‘é>un+|

Pnt Cn

This is Equation (25b) of the text when f§, = f, = f = 1.
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When the heated boundary temperature is determined implicitly
during warming, Equation (Cla) is used to obtain dur/dt° During warm-
ing dz/dt = 0 and the second term of the right member of Equation (Cla)
is zero. Also, from Equation (Clb)

HiE) = @, (1, )24,

Let

£ Lot en)3e), =arley 320 —tn %2, +(r-2)]

-
-1

Here &x = l/2r and it is possible to use the half interval to improve

the accuracy of the approximation. Thus

2r 5 LZiﬂ,,r, '

dur _
¥=z.7,h

-t u, +2 Pt v(rd)u,-,
Pl’ Cr ,Or Cr

Equation (C?) reduces to Equation (2501) of the text when

¢p=¢c=¢k=l’
When second order vackward differences are used to determine

the boundary temperature implicitly let

Ga::LX?q%i(k@(A) %%%

Fij: ¢¢ZL’)M) %%%ﬂ;cr

In this case the following approximations are used

Again

ou| Ue —Uer
DX r-=% Y

and

QM' ~ Ur —Ur-2
2% et 2)y
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When these four relationships are substituted into Equation (Cla) with

Equation (C5) in which Ax = 1/2r the result is Equation (C8).

dur._ 3r _rf. ¢kp4 _ @ér-é
a’%’ _‘¢pr¢cr H 2_<)f l> 43,0,, ¢cr Mr_z -+ 2_V(2F ') /or ur (‘ )
RAVES Q@r_, _ c8
+2[(r 1) 6 4(2r-1) W

Equation (C8) reduces to Equation (25C2) of the text.
Equation (Clb) is approximated with first order differences by

means of Equation (Ch) to obtain u, explicitly. Thus

HEY = @, G + & r(Up-ur-) (¢9)
Equation (C9) reduces to Equation (25C3) during warming when %’% =0
if d)p )y, = | . It reduces to Equation (25f1) during melting when
w. = 0.

When second order backward difference approximations are used

in Equation (Clb) the result is Equation (C10).

H(t) = % +@6 r(Eu,-2Ue +5 U -2) (c10)

Equation (C10) reduces to Equation (25C4) during warming and

to Equation (25f2) during melting if Qo = @6:

Additional Approximations for the Finite Slab

To approximate the gradient at the insulated boundary, x = O,

a virtual station is placed at x = -Ax. The temperature at this virtual
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station is required to be such that

DM — (/{l'—"/{—| —
aX X,:()— Z.AX -O
Thus
U, = uU-, (c11)

This boundary condition approximation could have been obtained
also by ending the conducting medium at x = 1/2Ax and then forcing
Uy, = Up.

The approximation of dur/dt during warming to obtain the im-

plicit formulation of u, requires that Equation (koa) be written as

ou _ L4 9 [ - 1{_/:_:}
DC T F ) I e LT BH) 3>
During warming, of course, dﬁ/dt is zero. The quantity, —#— -J——JQH_

’ F ) D ?
is the heat flux at any point in the slab., Thus if F represents the
flux and if a second order backward difference is used to approximate
BF/BX at the heated boundary with a finite difference interval of Ax/2,

the result is

But

! l Uy —U,.
- e — —— L il
F:_-é— f-y 20 AX
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Thus

o[l L Dy _ __r" U 402 U
w[f’(»)w)z;;]“”/ SrH -7 7200 tI, 2

At rfy U (c12)

Only second order differences at the heated boundary are used

for the finite slab.



APPENDIX D

EIGEN VALUES OF THE MATRIX A

The eigen values for the matrix, A, of Equation (26) are

listed below for r = 3 through r = 7 for the explicit determination

of Uy and for r =

2 throvgh r =

1. Explicit method, First differences

Uy = Ur-] +(l/r)H

6 for the implicit determination of Up .

n r =73 r=14 r =n5 r=6 ro=7
1 -0.32056 - 0.25155 - 0.21413 - 0.19008 - 0.17310
2 -, 67945 - 3.1719 - 2.42348 - 2.15232 - 1.90842
3 - -14.07558 - 9.91283 - 7.97425 - 6.82072
L - - -29.34803 -21.31184 -17.34784
5 - - - -50.87021 -37.86498
6 - - - - -78.88755
2. Explicit method, Second differences
up = 4/3 upy) - /3 u,0 + 2/3r H
)‘n

n r =3 ro= L r =5 r =06 r =7

1 -0.21370 - 0.20967 - 0.19190 - 0.176217 - 0.16326

2 -3.11963 - 2.54390 - 2.19925 - 1.9563k - 1.77689

3 - -11.12466 - 8.48754 - 7.13172 - 6.26940

L - - -25,12152 -18.90817 -15.80432

5 - - - -45.1618k4 -34.35316

6 - - - - -71.63703




~11k-

5. Implicit method, First differences

du,/dt = r(2r-1)u. ; - r(2r-1)u, + 2rH

Ay
n r =2 r=3 r=14 r =5 r =6

1 -0.39445 - 0.28273 - 0.23174 - 0.20160 - 0.1813%2
2  -7.60555 - 3.80059 - 2.81687 - 2.32581 - 2.02428
3 - -20.91580 -11.67256 - 8.85285 - 7.35941
L - - -41.27602 24 47488 -19.15244
5 - - - -68.86556 -bz L7948
6 - - - - -103.79791

L, TImplicit method, Second differences
dup/dt = -r/2(r-1)up_p + 2r(2r-1)up.] - r/2(7r-3)u, + 3rH
An

n r =2 r=>73 ro= L r =5 r =6

1 -0.31534 - 0.27128 - 0.227% - 0.19985 - 0.17792
2 -6.68466 - 3.67350 - 2.76862 - 2.30%38 - 1.9776k4
3 - -33.05158 -11.69403 - 8.80312 - 7.16368
L - - -63.30421 -25.16050 -18.6L387
5 - - - -103.52709 -b2. 78379
6 - - - - -119.,24925

All the eigen values that have been calculated for the matrix A,

negative.



APPENDIX E
GENERAL SOLUTION CURVES FOR CONSTANT HEATING RATE
AND

UNIFORM INITIAL TEMPERATURE

The Semi-Infinite Solid
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APPENDIX F
SOLUTIONS FOR HEATING RATES OF THE FORM
H = h(l-cos2nt)

Semi-Infinite Slab
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APPENDIX G

SOLUTION CURVES FOR THE FINITE SIAB
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APPENDIX H

THE EXACT VALUE OF t_, FINITE SIAB

m-’

An equation for the value of the time required to melt the
slab, t,, is derived by Landau in Reference 27 by means of a contour
integration about the (i,%) domain of Figure 15, Chapter IV. The same
equation can be obtained, again for a constant heating rate, H, and a
uniform initial temperature, g, in the interval 0 < x < £(0) by con-
sidering the energy required for warming the slab and for melting it.
Under these conditions and with unit specific heat, density, and latent
heat of fusion as in the nondimensional problem with temperature inde-
prendent thermal characteristics the pertinent energy quantities per unit

surface are are:

-t H = total energy supplied during the interval 0 <t < tg;
—gﬂ(O) = the energy required to raise the entire slab to zero
temperature without melting;
£(0) = the energy required to melt the slab without any change

in temperature.

The total energy supplied is the sum of the last two quantities.

Thus

b, H =g £0) +.£(0).

This equation yields the following expression for tm:

b = 25— 2£(0).
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