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CHAPTER I

INTRODUCTION

A. Purpose and Statement of the Problem

In this thesis, a mathematical technique has been developed
for solving the neutron (age) diffusion equation in "mixed" geometries.
Thus, for example, we are able to obtain rigorous solutions to the
diffusion equation for rectangular cells containing cylindrical fuel
rods, cubical cells containing spherical fuel elements, etc.

The reason for developing this technique is that in this
way a rigorous¥* expression for thermal utilization and resonance escape
in heterogeneous reactors be obtained. Most calculations(l'B) of these
quantities are based on approximations which attempt to a&éid the com-~
plexities introduced by mixed geometry. Thus, for example, equivalent
cylindrical cells replace the actual cells, and we attempt to evaluate
the error introduced in this way. More seriously, in resonance escape
calculations, it is assumed that the flux recovers completely to a con=-
stant in space and lethargy between resonances., Our method permits an
accurate calculation of resonance escape without this approximation,
and permits us to study the interference between closely spaced reso-
nances.

The various approximations which we are attempting to evaluate

are described in more detail below.

¥ Rigorous in the context of the diffusion approximation.
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1. It is generally assumed, in thermal utilizastion calcula-
tions, that rectangular cells with fuel rods at the center can be re-
placed by cylindricel cells for the purpose of flux calculations. The
assumption that the reactor can be divided into cells, with a zero-
current boundary condition at the surface, is clearly correct only for
a very large system. However, we accept this assumption, but test the
additional approximation that the actual cell shape may be replaced by
a cylinder. We have done this by calculating the thermal utilization
exactly for a system composed of rectangular cells, and comparing it
with the same calculation carried out in the "equivalent eylindrical
cell" approximation, The methods of our calculations are described in
Chapters II and III. The numerical results, obtalned via a code de-
scfibed in Appendix F, are presented in Chapter III. Our rigorous cal-
culations have also been carried out for one- and three-dimensional sys-
tems, although no comparison with approximate methods are made for those
cases. To anticipate the numerical results, we find that the "equivalent
cell" approximation is rather good.

2. In resonance escape celculations, it is usually assumed that
the flux feeding neutrons into the resonance 1s constant in space and
lethargy. 1In case of closely spaced resonances the flux may not recover
completely before reaching the next lower energy resonance and thus the
flux may depend on both space and lethargy. When a resonance is in the
transient region of the flux due to the presence of a higher energy reso-
nance, the resonance integral of the lower energy resonance may differ from

that calculated with the flat flux assumption. We investigate this effect,
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the resonance interference, by quasi-rigorous calculations described
in Chapters II, IV and V. Although our numerical results are restricted
to the case of one-dimensional (i.e., slab) lattice, the two- or three-
dimensional cases can be carried out using the expressions derived in
Chapter II with proper first-collision probabilities. We find that
resonance integral changes due to the presence of a nearby resonance at
higher energy. Therefore, the flat flux assumption may not be valid for
close resonances.

In order to understand better the purpose and methods of cal-
culations described here, it is important to review the previous work

which has been carried out.

B. Review of Previous Works

The thermal utilization, defined as the fractional number of
thermal neutrons absorbed in the fuel, for a homogeneous system depends
uﬁon the composition of material, but in a heterogeneous system it de-
pends also upon the size and shape of the unit cell. The effect of cell

shape on thermal utilization has been considered by several authorso(h'll)

(12) which was

The equivalént unit cell approximation of Wigner and Seitz,
originally conceived for the calculation of wave functions of crystal
lattices, are usually used in calculating the flux in the unit cell. 1In
this approximation it is assumed that the unit cell may be replaced by a
cylinder (or a sphere, in case of a three-dimensional cell), although it
is clear fhat a collection of cells cannot occupy the exact volume of any
system unless the cells have straight sides. Nevertheless this assumption

has become popular for the simplicity of the calculations. The heteroge-

neous method of Feinberg(l5) also gained general acceptance.



Wéinberg(h> investigated the thermal utilization of a square
lattice and compared with that of a hexagonal lattice. He observed that
the difference is negligibly small when the radius of the equivalent
cell is small compared with the moderator diffusion length.

Clark and Newmarch(5) considered a finite-sized fuel rod in a
square cell with a capturing moderator. They concluded that the thermal
utilization calculated with the cylindrical cell approximation differs
from their calculations only by a few tenths of a percent even for water
lattices. Cohen(6) considered a square cell with a non-absorbing modera-
tor and replaced the fuel rod by a line sink. He observed that the flux
pattern is cylindrically symmetric to a radius of about one-fourth the
lattice spacing and showed that a sufficiently accurate value for the
thermal utilization is given by the equivalent cylindrical cell approxi-
mation.

Galanin(7) assumed & line fuel rod and small moderator absorp-
tion to find thermal flux patterns and thermal utilization of several
lattices. He summed over lattice arrays of modified zero order Bessel
functions of the second kind (i.e., the Ko, according to Watson's(lh)
notation). Galanin's approach is conceptually the same as the small source
theory of Horning,(l5) who showed that the small source theory holds good
if the ratio of the fuel rod radius to the diffusion length is small.

Neumann(S) combined the lattice sum technique of Galanin(7)
with the harmonic development of Clark and Newmarch(5) to obtain expres=-
sions for the thermal flux and the thermal utilization for several cells.

He observed that the propagated effect of the fuel rod in a lattice will
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be cylindrically symmetric when the lattice is highly symmetric, when

the ratio of lattice spacing to moderator diffusion length is small,

or when the ratio of fuel diameter to the lattice spacing is small.
Bailly du Bois(9) replaced the fuel rod by a cylindrically

symmetric line sink, and solved the diffusion equation for a nonabsorb-

ing moderator. He expressed the thermal utilization in terms of

10) extended his method to

Jacobian theta functions, Pazy and Goshen(
the absorbing moderator case.

All the works mentioned above used diffusion theory and assumed
a flat source distribution in the moderator. Horning and Galanin éhowed
that these approximations should be satisfactory for all shapes.

Amouyal gz_gl,(ll) have developed an improved method for com-
puting the thermal flux disadvantage factor and the thermal utilization
in lgttice cells in which the diffusion theory assumption was relaxed.
They assumed that diffusion theory is applicable a few mean free paths
away from the rod, and integral transport is used in the fuel. The
method may break down if the moderator region is only one or two mean
paths thick. Amouyal et al. concluded that the method gives results as
good as those obtained from the Pz or P5 approximations.

Our*approach has been somewhat different from all of those
described above. We assumed diffusion theory to be valid in both fuel
and moderator, and expand the flux in the cell in a Fourier series. 1In
this sense, our work is similar to that of Clark and Newmarch,(5) although
it is basically simpler. For exaﬁple, we are able to satisfy the zero-
current boundary condition exactly because of the form of our expansion.

Thus, we do not need to consider, as Neumann(8) does, the contribution
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of other cells. In this way, we are led to an infinite determinantal
equation to solve for the expansion coefficients of the flux, although
we find that a reasonably small number of terms represent a good approxi-
metion. The same technique is used both in the thermal utilization and
resonance escape problems. The basic procedure is as follows:

In Chapter II we solve the age-diffusion equation for rectangu-
lar parallelepiped, rectangular, and slab cells. Fluxes have been ex-
panded in terms of the solutions of the Helmholtz equation with lethargy
dependent coefficients. In Chapter III expressions have been derived for
the disadvantage factors and the thermal utilization for a rectangular
parallelepiped cell with a spherical fuel element at the center, and a
rectangular cell with a cylindrical fuel rod at the center. The disadvan-
tage factors and the thermal utilizations have been computed for several
rectangular cells and compared with those computed for the equivalent
cylindrical cells. A flat source distribution of thermal neutrons in the
moderator and no source of thermal neutrons in the fuel have been assumed.

Turning to the question of resonance escape, previous works have
been along the following lines. Basically, we represent p, the resonance

escape probability, by L

where Ii 1is the resonance integral of the i-th resonance.

oz = §,0m * 5,072
where C;él is the potential microscopic scattering cross section of the
absorber, and <Yég is the microscopic scattering cross section of the
moderator per absorber nucleus. Therefore, we are interested in evaluating

resonance integrals.



In order to simplify the resonance integral calculations

(16)

Wigner suggested two approximations: (i) the narrow resonance
approximation (NR), in which it is assumed that the resonance line is
extremely sharp and that a single collision with the absorber is enough
for the neutron to pass the resonance region; (ii) the infinite mass
(IM) approximation in which it is assumed that neutrons are not slowed
down by the absorber. The distinction between these two extreme approxi-
mations is made with the help of the concept of practical width, defined
as the interval over which the resonance cross section is larger than the
potential cross section. When the practical width is small compared to
the maximum energy change per collision, the NR approximation is used.
The IM approximation is used in those cases where the practical width is
larger than the maximum energy loss per collision. But there are cases
where none of these approximations gives a satisfactory result.

First order corrections to the NR and IM approximations have
been made by Spinney,(l7) Chernick, and Vernon,(lB) and Rothenstein.(l9’2o)
Nordheim(zlnej) has developed a numerical method of evaluating resonance
integrals without the NR or IM approximation. Recently Goldstein and
Cohen(24) developed an analytical method (A-method) of evaluating resonance
integrals for homogeneous media. The constant X\, which depends upon the
resonance parameters only, has a value between O and 1 and the extreme
values correspond to the usual NR and IM approximations. Hill and
Schaefer(25) have extended the lA-method for the heterogeneous case.

Sumner(26) has written a code based on the A=method. In this work we have

considered the NR and IM spproximations only. However, the A-method may



be used in our calculations for the resonances in which the maximum
energy loss per collision of the absorber and the practical width have
nearly the same value.

The usual procedure for calculating resonance integrals in
heterogeneous systems has been to assume a flat neutron source (both
spatially and lethargy wise) feeding into resonance. Then the resonance
integral can be expressed simply in terms of constant source first colli-
sion probabilities such as those calculated by Case, EE_§l°(29) While
the flat source assumption is valid for resonances spaced sufficiently
widely in lethargy, we are interested in finding corrections for closely
spaced resonances. We are also interested in finding out whether the
spacing in lethargy which may be considered wide depend upon the size of
the cell.

Schermer and Corngold(27) investigated the interference between
resonances in an infinite homogeneous media using a variational technique
and concluded that the interference is negligibly small. Brown, g}_éi.(h8)
performed an experiment to measure the interference between the resonances
of gold, indium and rhenium. They placed a spherical lump of indium mixed
with gold or rhenium in water., They observed a decrease in resonance in=-
tegral of indium resonance due to the presence of interfering resonances.
Foell, gz_gg.(h9) calculated the resonance absorption in gold and indium
lumps using a Monte Carlo code(5o) and compared with those calculated using
the ZUT-MOD-3 code,(5l) which considers two overlapping resonances. In
our calculations we consider two non-overlapping resonances only.

In a recent paper Iijima investigated the resonance disadvan=-

tage factor due to (i) the incomplete recovery of flux at off resonance
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energies and also due to (ii) failure of narrow resonance approximation
in the moderator. The error, due to the first cause, of about two per-
cent or less for rectangular uranium-graphite cell was observed. The
error in the surface absorption due to the second cause may be sizeable.
In this calculation Iijima used the Wigners rational approximation for
the escape probability. No correction was made for non-flat source dis-
tribution.

In our investigation we study the interference between close
resonances in a heterogeneous lattice. Our procedure has been to first
find the neutron flux, as a function of energy and position, in the region
of a given resonance due to the "negative source" contribution of a higher
resonance., This is done by utilizing the solutions of the age-diffusion
equation described in Chapter II. The results are given in Chapter V.

In order to evaluate the resonance integral it is necessary to find the
first-collision probabilities for spatial distributions of the neutrons
above the resonance.

Case, g§_§£,(29) have calculated the flat source collision

(16)

probabilities for various geometries. Wigner's rational approxima-
tion gives consistently higher value for the collision probability.
Sauer(50) has developed an expression for collision probability based on
Wigner's rational approximation and has shown that it gives a better re-
sult., Di Pasquantonio(5l) used a different approach in developing analy-
tic expressions for the collision probabilities for lattice cells composed
of different media. But in all these calculations the flat source approxi-

mation has been used. Corrections for dense lattices, which were first

investigated by Dancoff and Ginsburg,(jz) and were later developed by
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several other investigators,(33’54) are usually made in the calculation
of resonance integrals. A simple equivalent expression for escape proba-
bilities in dense lattices has been given by Bell.(35) Levine(56) com-
puted resonance integrals by the Monte Carlo method and compared with
those calculated from analytical expressions and concluded that the flat
source collision probabilities are inapplicable in thick lumps.

In Chapter IV we derived expressions for first collision proba-
bilities in a slab lattice due to flux distribution which is a sum of a
spatially constant term and a cosine term. The cosine term appears due
to the presence of first (higher energy) resonance absorption which has
been replaced by a negative source. (We have shown that the next higher
terms in the expansion of the flux may be neglected.) If the separation
between resonances is large, the coefficient of cosine term vanishes.
Since we have to compute the collision probabilities numerically, we
cannot prove the reciprocity theorem,(29)

In Chapter V we have calculated the resonance integrals of two
resonances separately, and also in the presence of one another. All reso-
nances are assumed to be resolved. The unresolved resonances may be
treated by the methods developed by Nordheim,(gl) and Adler, gE_§£,(57)
The interference between resonances has been computed for several se-
lected pair of resonances of U-238, Th-232, their oxides and their mix-
tures, We find that the resonance interference increases with the in-
crease of thickness of fuel lump. We also observe that the resonance
integral of the lower energy resonance increases for the graphite moder-

ated lattices but it decreases for the heavy water moderated lattices,
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although the total absorption by the lower energy resonance decreases
due to the presence of higher energy resonance in both the cases.
Hayes, Luming, and Zweifel(38) investigated the cases where the flux
should take its asymptotic value below a resonance. This work is a
further extension of their method. A part of our results was reported

earlier.(59)



CHAPTER II

SOLUTION OF AGE-DIFFUSION EQUATION

In this chapter we solve the age-diffusion equation in (A) a
rectangular parallelepiped cell with a spherical fuel element at the
center of the cell, (B) a rectangular cell with a cylindrical fuel rod
at the center of the cell and (C) a one dimensional slab cell. These
cells are assumed to be one of many similar cells of infinite extent so
that zero current boundary condition can be assumed at the surface of the
cell. (In a reactor this assumption is valid for the cells not close to
the boundary of the reactor.) It is also assumed that:

i. Age-diffusion theory holds both in the fuel and the

moderator region.

ii. The cross sections are independent of energy and are
region-wise constant.

iii. A uniform monoenergetic neutron source S} 1s present
in region 1 (fuel) and Sp in region 2 (moderator).

A. Rectangular ParallelepipedCell with a Spherical
Fuel Element at the Center of the Cell

Let us consider a rectangular parallelepiped cell of length 2a
along the x-axis, 2b along the y-axis, and 2c along the z-axis with a
spherical fuel element of radius /9 at the center of the cell (Figure 1).
Let us choose the center of the cell as the origin of the coordinate sys-
tem. For the steady state condition the age-diffusion equation can be

written as

-12-
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Pigure 1. Sketch of a Rectangular Parallelepiped Cell.
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Figure la. Semiquadrant of a Rectangular Parallelepiped Cell.
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N I T 2D2¢ 2D >
Dliet+3n*3a|- 5% - 37
>D -

- az‘?a‘dé) +Yad = -§ZS?£ + $(x,y,2) O(w) (2-1)

q)(x,y,z,u) is the usual neutron flux, z;l(x,y,z) and z:s(x,y,z) are
macroscopic absorption and scattering cross sections respectively,
D(x,y,z) is the diffusion coefficient, gS(x,y,z) is the average loga-
rithmic energy decrement per collision and ¢S(u) is Dirac's delta func-
tion. Thus S(x,y,z) 8 (u) 1is a source of monoenergetic neutrons of
lethargy u =0, and is assumed constant in each region (as are the vari-
ous material parameters).

Since we propose to enforce a zero current boundary condition

at the surface of the cell, we expand the flux in the following way:

o o oc,
/ ':__
P(x>y,2,u) = Gl +2ZL AijR(w)
‘..=0 _j:O h=
.cos X eos BUESIY: B—? (2-2)

The summatio%S— j;_ 3;- is over all values of i,j and k except the case

i=3j=k=0. We insert Equation (2-2) in Equation (2-1), multiply by

Lrrx UMY niT 2
CcOSs o COS b COoSs C

cell. After taking a Laplace transform with respect to wu, we obtain

, divide by {S‘S and integrate over the
D

(A = transform variable)
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- Loz al _ o
OLOOO(R) { abe (>‘ + 520‘25,_) 501_ dom don T %FB( ;isl - in.;sz )
o¢

- R 1 X1 %y
I/(O) OJO)L, m, YL)] \‘\ ) —
tzo 4=0 k=0

(2-3)

where
Oy when 1 =m =n =0
1(0,0,0,1,m,n) = (2-4)
1'(0,0,0,1,m,n), otherwise

8ij etc. are Kronecker deltas,

i,myn =0,1,2,3,... etc.

Nooo =8
/\{00=-/\Ojo =_/\°ok=1+, for i,j,k}-L-O
/\{50 ='/\':Ok =‘/\th=2’ for 1,j,k,40

AE_“Q: 1, for 1,3,k ié 0 (2‘5)

and
[ ] "r Tr
I(i)jyk;l:m)n) = D oS —L—l')‘(’ €os —J——‘Z Jo)S E—Z
EZ A b (o
S
celd

I m
cos lff)i €05 -V-”-g—y €0s Y—"g—z dxdydz

(2-6)
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(1,4,k,1,m,n) = 1 3D gp X o AMY (oo RTZ
He(d, n) f[[gzsbxsma sb >
celd

cos L_’l’-‘ cos T cos 272 dxdyd 2

b
(2-7)
_ 1 2D urx Iy k2
Hy(i1jxk:l:man) —ff g{s 55 CoSs SLn b COS§ —— C
cos L2 cos I I cos LT xdydz
(2-8)
Hz(1,d,%,1,m,n) 13D o HMX Lo SMY L RTZ
f[[gzu ST COSTg Sin—¢
cos—-Lﬂfcos b” cos.’}f_?_ dxdy 42
(2-9)
S(l,m,n)é f[f SE(X).V,Z} cos LT;LX cos W‘Lbﬂ'\y
s
cell
cos T2 dxdydz
¢ (2-10)

The integrations defining I(i,J,k,1,m,n), Equation (2-6), have been

carried out by dividing the cell into several parts such that in each
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D

part S—— 1s constant and cen be taken out of the integral.

$Zs

PQ-_ xﬁ- "\/-"; X
I(4,d,k,1,m,n) = ntx f d-iSL }
1251

2| &*f i

These integrals are evaluated in Appendix A. We find

Dy Dg,
| 1R TTIRE I ¥7Y
F(1,3,k,1,-mn) + F(L,3,%,~1,m,n) + P(4,J,k,=1,m,-n)

I(1,4,%,1,mn) = ( ) [F(ilj!killmln> + F(i:dyk:lrm;'n>

F(1,4,k,=1,-m,n) + P(1,d,k,1,-m,-n) + F(i,J,k,-l,-m,-n)]

+ ‘izjt abe Aijk 811 &3m Sxn | (2-11)

Here P(i,J,k,1,m,n) is given by
F(t,4,k,1,m,m) "33/2(’7?\["5(L (B *(k:n)

Y

(2-12)

{67 (e ]

J3/2 1s a Bessel function. To carry out the integrations defining Hy,
1 3D
iis X

H

y and Hy let us note that

is a product of a step function
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and a delta funetion

ﬂ = (Dy - Dy) $(x - qu'-y"'- 2%) (2-13)

X

1
Thus, these integrations which contain : El s _1__.. .?...‘P.. , and
13D $L X $ L oY
§ 5 32 can be carried out easily. The integrations are carried out
S

in Appendix B. We find

Hx(ilj)klllm’n) = % (%—i—s. + {3':'{;1)( l)[(
+ P(4,4,k,1,m,=n) + F(i:«j:k;l;'m:n)

F(i:J:k:l:'m;"n)} + L‘-‘é}lﬂ' {F(i,.j,k,-l,m,n)
F(i:J;k;'l:m:'n) + F(i,,j,k,-l,-m,n)
F(i,a,k,-l,-;n,-m}} (2-14)

(1,d,k,1,mn)

Similarly we obtain

1 n
H—y(i:JJk:l’mvn) = ';? <§1£$| f:{s]_)(Da D1) I: (k+ m) {F i,3,k,1,m,n)

+ F(1,3,k,1,m,-n) + F(1,J,k,-1,m n)

+ F<i:J:k:'11m:'n)} + (-JED—)—T‘T {F<i:¢j:k’ls"m;n)

+ F(i,,j,k,l,-m,-n) + F(i,J,k,-l,-m,n)

+ F(i:J)k)‘l;'m:'n)}} (2"15)
and
. 1 /1 1 {(\Qw\)n { .
»drk,1,m, = — D> =D —_— ¢ PF(i,3,k,1,m,n)
s gitmen) = (A A g - o) B
+ F(i,3,k,1,-m,n) + F(i,J,k,-1,m,n)
+ F(i,d,k,~1,-m n)} {F (1,3,k,1,m,-n)
+ F(i,5,k,-1,m,-n) + F(i,J,k,1,-m,-n)
B4, ,k,-L,m,-n) } (BT ] (2-16)
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The Integrations containing the source term can be performed in the same

way a8 the integrations containing iﬁt » Thus we get
s

S1_ _ _Sa
S(1,2,n) = 8 (31254 22l

) ¥(0,0,0,1,m,n) + Sa_ 8abe EOLSoMSM
Salsy

_ [ 81 _ 52 \ um .3
(51 Ly gzisﬂ) 3 ot fomSon (2-27)

where
- O whenl =m=n=20
¥(0,0,0,1,m,n) = (2-18)
¥(0,0,0,1,m,n), otherwise
I'(1,J,k,1,m,n) 1s exactly same as I(i,J,k,1,m,n), (Equation (2-6)),
except that D; and Dy should be replaced by Za,l and 2&2 re-
spectively.

We can solve the matrix Equation (2-3) and obtain the expansion
coefficients &1Jk(u)' In order to calculate the thermal utilization and
disadvantage factor, we may assume that 81 = O, §Zs =1 and A =0,
In other words 1t is assumed that monoenergetic neutrons are produced
uniformly in the moderators only and there 1s no slowing down. Absorption
and diffusion are the processes by which neutrons are removed from the
system. The energy of the neutrons is the average thermal energy and the
measured velued of material parameters can be used in the calculations of
disadvantage factor and thermsl utilization.

B. Rectangular Cell with a Fuel Rod
at the Center of the Cell

Let us consider a rectangular cell of length 2a along the x-axis

and width 2b along the y-axis with a fuel rod of redius /3 at the center



of the cell (Figure 2). The cell is assumed to be infinite along the

z-axis. For the steady state condition the age-diffusion equation is

written as
g ¢ . ¢\ _ w3 _ Db ,
D(x,y) <3X7- -+ By—i) — ST-S? - -5—9**.5"9“ <+ 5.0.(*.3')4’(%»& u)
= —£06Y) Y, (x,y) au + 5Cxy) Sew) (2-19)

All the quantities are defined as in the previous section.
In order to satisfy the boundary conditions, we expand the

flux qb(x,y,u) in the following way:
oe , e,

& (xyy,u) - ool Z ) e (o

R=o L=0
The summationji: :E: is over all values of k end 1 except the pair

, cos-ﬁaeiz (2-20)

1=k =0, We insert Hquation (2<20) in Equetion (2-19), multiply by

cos -V%E-’-scos —“—'E—y- and divide by f Z g Then upon Iintegrating over the

cell, we find after taking Laplace transform ( )~= transform variable)

the fbllowing equations for the expansion coefficlents Zkl ‘
Py Py Toa
000 %8 (A + B2 SomSon + B (22 - F Vbumen

_ mmm]@'i%m e (L I(h o

h.o L=

+(-%7-') Hx(h,t,m,n) -+ (L-E)Hy(k,ﬁamsn) + I'(h,l,mm)

+ OLB’\A}QL Smk Snl.] = $(m,n) (2-21)
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2a

Figure 2. Cross Section of a Rectangular Cell.
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where

. O, whenm =n =0

I(0,0,m,n) = (2"22)
1'(0,0,m,n), otherwise

myn = 0;172957“' ete.

Ago =Nor =2, for x,1 £0

Npr=1, for k140 (2-23)

) y Tr
I(k,1,m,0) [fD(X Y) h_rx cos — LC cos max €os vxbﬂ_\/} dxdy

'§Zs
VPL x>
d
[szg[xf“{ JM[M j
Vet
a b
Dy ]
+§2isz[cleo‘y {_-- }J
o A (2-24)
Hy (k,1,m,m) = fijfsig sin RIX co Lgy
ced
c m T X coS _____YLTT)' &X&
°* & b g (2-25)

klmn) hﬂx S{'n_._L_U_‘Z.
g'zs T b

T X nity
C0S == Cos o= dxdy (2-26)
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S(m,n) :[f E(z,sv) cos w&nx cos n:y dx dy oo

After performing the integrals in Equation (2-24) (see Appendix C), we

find
I(k,1,m,n) = ( i _ D2 )[F(k,l,m,n) + F(k,1,-m,n) + F(k,1,m,-n)
£.34  $23Is
F(k,1,-m,-n) ] + ab/\ k1 Smk énl (2-28)
where

F(k,1,m,n) = J] (ﬂf\/(la;m)a_'_ (Lgn )'z_)_g[ (R;nq)':_ (Ltn‘)m}‘ (2-29)

J1(..) is a first order Bessel function of the first kind. As before let

4 5D . .
us note tha gzs Sx is a product of a step function and a delta function.
1 i 1
= = — + x = b (2-30)
EZS ‘é, zsu (§7_Zs'). §|25|) /{( P k4 )

Here /,{ is the unit step function and

2>

2 = - P - ) (2-31)

Evaluating the integrals in Equation (2-25) we find

1 1 - M k,1,m,n
(§|ZSI + 21252) (D2 Dl)[ a {_F( 4, )

F(k,l,m,-n)} + _C_Ra_m)l {F(k,l,-m,n)
F(k,1,-m,-n) } } (2-32)

Hx(k:l;m;n)

+

+



Dl

Similarly, we get

_1/1 1 ) (Ltm)m ¢
Hy(k,1,m,n) 7 (§|ZS' + 'gzZsz) (Dp - D1) [—b {F(k,l,m,n)
+ F(k,1,-m,n) } + (—l%-)—lr— {F(k,l,m,-n)
+ F(k,1,-m,-n) } ] | (2-33)

I'(k,1,m,n) has the same expression as I(k,l,m,n), Equation (2-28),

except that Dj and Dy should be replaced by Zal and Z a2 Tre-

spectively.
S S2 \= Sy Sa .
S(m,n) = u( - )F(0,0, ) + ( - m
§12s1 3,52 ) { %t §.lsa e
+4ob S } gom Son, (2-34)
1251
where
_ O, whenm =n =0
F(0,0,m,n) = (2-35)
F(0,0,m,n), otherwise

Solving the matrix Equation (2-21) and taking inverse Laplace transform,

we get the expansion coefficients ax1(u).

C. One Dimensional Slab Cell

Let us consider a slab cell of width 2b with a central fuel
lump of width 2a (Figure 3). For the steady state condition we write

the age-diffusion equation as

_%(D(x)%;(ob(x.u)) + Za(x)d(x,u)

= ~£ T 022 & 500 S (2-26)
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The one-dimensional case can be treated either by the method used in the

two and three dimensional cases, i.e., by integrating over the singularity
2D

in 3% or alternately, by measuring the distance in units of diffusion

coefficient, D(x). In the present section we adopt the latter approach.

Introducing & new variable
X /
d x
Y = | v 2-3
(Y
we write Equation (2-36) in the following form

- &)
- 3(.;(3;& )gygcp(y’u) + = C‘)(glu)

__3b L s

u T I Lo)

§(w) (2-38)

Here we use the relation

Dy - L (2-39)

3%:(1- M)

where j:_ is the average cosine of the scattering angle per

collision in +the laboratory coordinate system. The
boundaries x =a and X =Db correspond to y = a and y =/3 . They

are given by

D4 (2-10)
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As before we expand the flux

nmy
(5 (2-41)

Qo (W)
—5 +

P(y,u) =

N =\
YY \
We insert Equation (2-41) in Equation (2-38), multiply by cos gsn‘/

and integrate over y fronl-—(g to-+(% . Taking the Laplace transform,

we get

— ‘ «
Qo(%)[( ¢, =¢q) SIY)Q’SLW;TTT 12 (94 +7\) Som]
oe ne
- - _ it Stn (m )T/
#) Ea] £ &= @ sl = via)(f ) § 00T
1 =)

+5 8- G + (W -wn) \n_é_)? .;é. $ vom

+%'g9_+ Wz( (,J) §wm \~9\<g\m‘w}: §(W\)

(2-k2)
where
m =0,1,2,5, etc.
2al
gi = ———
U5 Tst
(2-43)
v U= ML)

5:
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and

S_(m) =

S in (T S
2( S _ 52\ sin(mTe/p) L ST

ﬁ glzﬂ 31252 ™ gg_isz

For the particular case when there is no absorption during slowing down,

}Ea = 0 and Equation (2-42) becomes

(M)A Som + Zanm [Amn +>5mn] - §(u) (2-1s)

where
N \* in(mMm+n)T«/
Agy = "(ﬁ‘) [(wl-wg)Sln((m+n)) E
+ 22 S W2l S (2-46)

(

We can take account of resonance absorption during slowing down by re-
placing the resonances by delta function sinks. Solving Equation (2-45)
for a () and taking the inverse Laplace transform we obtain the ex-
pansion coefficients for the case in which there 1s no non-resonance
absorption during slowing down. Since at high energy resonance absorp-
tion is the most dominant absorption term during slowing down, the neglect

of non-resonance absorption is a good approximation.



CHAPTER III

THERMAL UTILIZATION

In this chapter we obtain expressions for the thermal utilization
and disadvantage factors for (A) a rectangular parallelepiped cell, (A')
an equivalent spherical cell having the same volume as the rectangular
parallelepiped cell, (B) a rectangular cell, and (B') an equivalent cylin-
drical cell having'same cross sectional area as the rectangular cell. For
the cases (A) and (B) the fluxes obtained in Chapter II are used in the
calculations of the average fluxes. But for the cases (A') and (B') the
diffusion equation is solved separately in the fuel and the moderator re-
gions with the boundary conditions that the current and the flux of thermal
neutrons are continuous at the fuel-moderator interface. In all cases a
flat source of thermal neutrons in the moderator is assumed.

In Section C numerical values of the thermal utilization and
disadvantage factors are computed for a rectangular cell and compared with
those computed for the equivalent cylindrical cell. The disadvantage fac-
tor is defined as the ratio of the average flux in the moderator region

to the average flux of thermal neutrons in the fuel region of the cell.

A. Rectangular Parallelepiped Cell

The flux for this cell is given by Equation (2-2)

o, ¢, o,
CP(X;Y:Z,U) = d.oeo(u) +Zz 2— a-‘:jk( ) COS— 1_71')(
i.= =0 k=0 .
. (3-1)
cos 2 cos R

b
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In order to calculate the thermal utilization ajjk are obtained by
solving the matrix Equation (2-3) with XA =0 , § ZS =4 and Si= o .
When the expansion coefficients, ajjk» are known, the average fluxes in
the fuel and the modera.to‘r region can be found by integrating over and
dividing by the volume of fuel and the moderator respectively. Thus,

the average flux,c—f}' , in the spherical fuel element of radius l° is

- o 3 R R AV T X
¢. - ;00 + 32 ZCLJ' COS'-‘:——'
4mpPeL o
Lzo j=0 R=0 Me\
o5 ATY cos RIZ dx dy A2
b e
‘ 0 ,oc 00,
QOQ [} 1
=%t WZZZ%J&FMW“) (5-2)
=0 A=0 =0

Here F(i,J,k,0,0,0) is defined as in Equation (2-8).
The average flux, 52. , in the moderator is
/ ’

- & , o0
O (8a\oc ZZEZ: Hisk

‘.L.
3 L-o_’i 0 0
7r

cos —‘-(-E*nlxotydi

¢, X ,00,

Qcoo
= a F hﬁ*k 0,09) (3.3
3 (a.bc- T 03) ZZZ R ) o)

L'D j 6 R=0
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The average flux on the surface of the fuel element is

o0 , 00, o0
Po= = 4 mmZZZ * kff
Lz0 f=0 R=o Mwtace

iny RTZ )
cos = cos = A

The above integral can be evaluated easily.

The thermal utilization, f, is the ratio of thermal neutrons
absorbed in the uranium to the total number absorbed in the cell. Let
us consider that the fuel element contains natural uranium only. The

thermal utilization is usually expressed by the following relation

‘l_ _i V'J.S.Q'LF + E“l
5 \Z Yat G-5)

Vi and Vo are the volumes occupied by the fuel and the moderator in
the cell. F 1is the ratio of the average flux on the surface of the fuel
sphere to the average flux in the fuel element, i.e., F = 43//CP|° E is

characteristic of flux distribution in the moderator, and is given by

E-{ = Zdlvlc-‘;f — ZGQ.VQ_& (3-6)
Nﬁ_cﬁ ZEAI
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The sbsorption in the fuel, V) Zdllégi, , 18 equal to the net current
into the spherical fuel element, (E-1) is indeed that part of the ab-
sorption in the moderator which is due to the excess of the neutron flux
in the moderator over the value of the flux at the fuel-moderator inter-
fece, divided by the absorption in the fuel. This is sometimes called
excess absorption.

The disadvantage factor, 4, is defined as

d = &/ (5-7)

The thermal utilization, f, can be expressed in terms of the disadvantage

fector, 4.

ZO\'LVZ. A

=1
T S

(3-8)

2N Lo

The thermal utilization depends upon the stomic ratio and the volume ratio
of the fuel and moderator. It also depends upon the size and shape of the
fuel and moderator separately and i1s introduced by the presence of disad- -
vantage factor, d, in Equation (3-8)

A'. Equivalent Spherical Cell

The rectangular parallelepiped cell is approximated by an equive-
lent spherical cell having equal volume., The normal derivative of flux 1is
assumed to vanish on the surface of the cell. This assumption, which under-
lies the method for computing the cohesive energy in a crystal lattice,(le)
is introduced to simplify the mathematics. The radius, rT , of the equiva-

lent cell is

f = (6ab°) (3-9)



In order to find the flux in the cell, we must solve the follow-

ing diffusion equations:

D,Vq'd‘)'(h) - 2o CP,(N) =0 (in fuel) (3-10a)

2
D,V CPQ_(’C) - Zaz CPQ_(N) +S2=20 (in moderator)  (3-10b)

The boundary conditions are
4= d(p) )

dd b,

D r=(® = Y2 dr |z p (3-12)

Solving Equations (3-10a) and (3-10b) with above boundary conditions, the
average fluxes in the fuel and the moderator can be found easily. Thus,

the expressions for E and F can be obtained(e) in the following form:

£E X tanh x,p

3(Xf = tanX,P) .
e LUy Y
3 L1=0GEp = Xy(g-p) cothXa(g-f)

where
X;), _ _%_iﬂ ~ and x> = oz (3-14)

Dy



B. Rectangular Cell

For the rectangular cell the flux has been shown in Chapter II

knx LNY
P(x,y) = = +Z Z Ay 05— (3-15)

akl are obtained by solving the matrix Equation (2-17) with /\ =0,
§ZS =1 and S =0. Thus, the average flux in the fuel rod is given

by

o6 06
= - Lo 1 ! / kﬂx
et T [
L=

k:.o o {'u&l
« €08 -l‘-‘%‘i dx dy
" ¢, 00 ,
Qoo &
- 4 + nFlZZQkL P(‘R,L,0,0)
R=o L=0 (3-16)

#(k,1,0,0) is defined as in Equation (2-22). The average flux in the

moderator is

of , o¢
+ - Aoo IS
4)2._ 4 t (“ ab = 77? Z Z [ICOS E——XCO.S LTT‘/ dxdfa.

mod.

- O‘OO
C4 (4 ab- ITP’-)Z ZOL“FOQ o O) (3-17)

R=o L=0
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The average flux, 4DS, on the surface of the fuel rod is

4 ame ° b
R=q [ =0 Cirele
oc , %0
= 2o 1)) o (el (4
R=zo k=0 (3-18)

The above integral can be evaluated easily following the method as shown

in Appendix C.

B Equivalent Cylindrical Cell

In this case the rectangular cell is approximated by an equiva-
lent cylindrical cell having the same cross-sectional area. The diffusion
Equations (3-10a) and (3-10b) are solved with flux and current continuity
condition at the fuel-moderator interface. It is also assumed that fhe
normal derivative of flux vanishes at the surface of the cell. The radius,

(T , of the equivalent cylindrical cell is

g (2]

Solving Equations (3-10a) and (3-10b) in cylindrical coordinate system it

(3-19)

is found(37) that the flux, 4209, in the fuel rod is

d k) = AT (XxXn) (3-20)

and the flux, CPZ(RJ , in the moderator is
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P, (r) = C[L(X:J.R)Kq(xa.ﬁ) + Ko (X2 ) I( Xzﬁ)]+ -7-5:21 (3-21)

I,y I;» K, and KX; are zero and first order, modified Bessel functions
of the first and second kind respectively.(lu) The constants A and C

may be evaluated by means of the boundary conditions.

az

AL(GF) = ¢ LK DHOGILOGE)] + 2, o)
and

ADy Xy 1i{ X, f’) = €D, Xz[ L(X2pK, (Xaf) —Ki(Xef) L1 (Xa) } (3-23)

The thermal utilization, f, in the equivalent cylindrical cell is given by

1. - = _____—VQ‘ 2a2 E-1 -
f ! Vi Tat P (3 5)
where
X1 Io(XiF)
= =24
2 L(X,) (3-24)
and

E - Xz(/fi-(ol)[ L(XGA Ki(Xaft) +Ko(Xaf) 13(Xalfr)
-2 LLOGRKOGH - Ki(X%6) L(XP) (5-25)

X{ and X4 are defined as in Equation (3-14).
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C. Comparison between a Rectangular
and an Fquivalent Cylindrical Cell

A computer program (Appendix F) has been written for IBM-7090
using MAD(AQ) language to solve Equation (2-21) for a1 and to compute
the average fluxes in the fuel and moderator, the disadvantage factor
and thermal utilization. Let us note that Equation (2-21) is an infinity
by infinity matrix. Tables III-1 and III-2 show the average fluxes, dis-
advantage factors, and thermal utilization of two different cells calcu-
lated keeping different terms in the expansion of the flux. From the
tables we find that the expansion coefficients converge rapidly. We get
an excellent approximation for disadvantage factor and thermal utilization
if we keep the expansion coefficients for k, 1 =0,1,2,3,4

In Tables III-3, 4 and 5 we have calculated the disadvantage
factors and the thermal utilizations for three different cells varying
the radius of the fuel rod and compared with those calculated with the
equivalent cylindrical cell approximation. The computer program written
for the equivalent cylindrical cell is given in Appendix F. From these
tables we observe that the equivalent cylindrical cell approximation is
accurate except for very tight lattices. The thermal cross sections and
the diffusion coefficients used in these calculations has been taken from

ANL-5800.
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TABLE III-1

THERMAL UTILIZATION OF A NATURAL URANIUM=-GRAPHITE
CELL FOR VARIOUS FLUX APPROXIMATIONS

a=2cm b=2,5cm p=1cnm

Average flux¥ Average flux#*

in the fuel in the moderator Thermal Utilization

k4 01 A 02/01 £

1 1 14039043 16. 524909 1.177068 0.995510
2 2 14,060333 16.703461 1.127985 0.995469
3 3 14,075512 16.736275 1,.189035 0.995465
N L 14,000440 16.762192 1.189615 0.995463
5 5 14,099829 16. 774762 1,18971k 0.995462
6 6 14,105524 16.782078 1.189752 0.995u62
7 7 14,111894 16.789801 1.189762 0.995u62

# Arbitrary unit
TABLE IIl.2

THERMAL UTILIZATION OF A NATURAL URANIUM-HEAVY
WATER CELL FOR VARIOUS FLUX APPROXIMATIONS

Averags flux*

in the fuel in th@am@derat@r = = Thermal Utilization

X 4 b1 2 ba/91 £

101 9,9%6120 12,057761 1.213528 0.999550
2 2 9.893984 12,055554 1,218473 0.999548
3 3 9,856714 12.039kak 1,2214L4 0.599547
" 9, 845210 12034834 1,221605 0.599547
5 5 9,840412 12,028025 1.222%09 0.999547
6 6 9.857569 12,025747 1,028431 0.999547
7 17 9,8336p2 12,022149 1,222556 0.599547

* Arbitrery unit
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TABLE III-3

COMPARISON OF A RECTANGULAR NATURAL URANIUM-GRAPHITE
CELL WITH AN EQUIVALENT CYLINDRICAL CELL

a=2cm b=2.5cm, k=g=35

(cm) ®2/01)re  P2/P)mcc  fre froc

1.8 1.435236  1.300985 0.999012  0.998699
1.6 1.353071  1l.2732k41 0.998566  0.998568
1.k 1.292296 1.242156 0.997930 .99840k4
1.2 1.239316  1.208218 0.996982  0.998189
1.0 1.189714%  1.171716 0.995462  0.997893
0.8  1l.lhkeikg  1.133084 0.992756  0.99745k4
0.6 1.096617 1.093305 0.987104 . 996727
0L  1.054568  1.054131 0.971620 995273

RC = Rectangular cell

ECC = Equivalent cylindrical cell
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TABLE III-4

COMPARISON OF A RECTANGULAR NATURAL URANIUM-HEAVY
WATER CELL WITH AN EQUIVALENT CYLINDRICAL CELL

a=2cm, b=2.5cm, k=4=35
—
(@) @ffrc Fofsc  fre  face
1.8 1.595902  1.325893 0.999861  0.999832
1.6  1.L84790  1.303616 0.999800  0.999814
1.4 1.%01965  1.27282k% 0.999714  0.999792
1.2 1.328663  1.238L422 0.999588  0.99976k4
1.0 1.259559 1.199773 0.999388  0.,999726
0.8  1.193202  1.157289 0.999033  0.999669
0.6  1.130091  1.111750 0.998294  0.999576
0.4 1.072665 1.065726 0.996243  0.999391
TABLE III-5

COMPARISON OF A SQUARE NATURAL URANIUM-HEAVY WATER
CELL WITH AN EQUIVALENT CYLINDRICAL CELL

(cm) Oo/%)re  Bo/P1)pec Tre freC

0.8 1.085149 1.070877 0.999903  0.999863
0.6  1.061513  1.053869 0.999756  0.999820
0.4  1.039283  1.035871 0.999345  0.999735
0.2 1.016171 1.015347 0.997169 0.999481




CHAPTER IV

COLLISION PROBABILITIES IN A SLAB LATTICE

The resonance integral, I, is defined as

1 =Ep‘l‘ b1 (W) o, (u)du (4-1)
10

Res

where ¢lO is the flux in the fuel element which would exist at the
resonance energy in the absence of the resonance. ¢l(u) is the average
flux in the fuel element in the resonance region. The lethargy integral
in Equation (L4-1) is over the resonance interval. In order to get an
expression for ¢l(u) in the resonance we write the integral equations

for ¢(u) in two media, following Chernick,(hB) in the form given below:

Z V0 ()2 (u) Zpl(u[ Vlel(bl T du’

i
u Ly u'-u (4-2a)
+ Z (o)) | emalelele o,

- l-aj
J u-Aj
i u'-u
;{: VgEj(u)¢2(u) = jg: Po(u) ngsj?2;u Je du'
j J U.-AJ- ’
u . 'u ()-|--2b)
+) GeE) Pl T,
0t
i u=A
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The summations % and ? are over the atoms in the fuel and moderator
respectively. Zi and Zsi are the total and scattering macroscopic
cross sections respectively of the i-th atom. ¢;(u) and ¢2(u) are
the fluxes in the fuel and moderator respectively. The maximum fractional

energy loss of a neutron in an elastic collision with an atom of mass, A4,

is (1 - a4), where

2

As-1
S Ve (4-3)
by = 4n(l/ag) (4-k)

The collision probabilities Pj(u) and P,(u), which enable us to relate
the collision densities Zl(u)¢1(u) and 2o(u)Pp(u) to the previous
collisions at higher energy, i.e., at lower lethargy, are defined for the
lattice in the following way:
Pk(u) is the probability that the neutrons of lethargy u originating
in region k (k = 1 for fuel, k = 2 for moderator) will make their first-
collision in the same region k (probably after traversing other regions).
The integrals on the right hand sides of Equations (4-la) and (4-2b) can
be evaluated easily in the NR and IM approximations. The details of the
calculations of the resonance integrals will be shown in Chapter V. In
this chapter we derive expressions for the first-collision probabilities.
Where two resonances are close together the flat-source collision
probability is inapplicable in the calculation of second (lower energy)
resonance. In our calculations we replace the first (higher energy)

resonance by a delta function sink and solve the age-diffusion equation
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to obtain the energy and spatial dependent flux above the second resonance.
In Section A we obtain the spatial and energy dependent flux. In Section B
we derive expressions for the first-collision probabilities using the flux
obtained in Section A as the source distribution of neutrons.

A. Solution of Age-Diffusion Equation with
Delta Function Source and. Sink of Neutrons

The age-diffusion equation is exactly the same as Equation (2-29)

with X, =0 and a modified source term. A delta function negative

a

source, S5 , at lethargy u = up 1is added to the source term,

= (0(x) & 0(x,w)) = 40T (%) 2 4 B(x)8(u)-8o(x00(uro)  (4e5)

" &

As in Section C, Chapter II, the flux 1e expanded in the following way

d(y,u) = Egégl +§E:an(u)cos Egz (4-6)
n=1

All the terms have been defined in Chapter II. The matrix equation for

the expansion coefficients becomes

00

5o (M)A Bop +Z (M) [Aon + Nogn| = S(a)-Bo(m)e™™O (4-7)

n=1

Equation (4-7) is exactly the same as Equation (2-38) except for the
modified source term,
In order to find the expansion coefficients, ap(u), we have

to solve Equation (4-7) and take the inverse Laplace transform. Let us



e

note that the roots of the following determinant, Equation (L4-8), multiplied

by u or (u-uo) will appear in the expension coefficients as negative

exponent.
A Aol A02 Qe AOn » 0
O All"‘}\ A12 s e Aln e
0] Apy Apo+h ces App ..
° . . . e . . . . . . . o = O ()‘""8)
O Aml A.In2 A.mn‘*"}\- o Amn s e
O Anl AT12 LI Y A.mn"‘}\. o0

Equation (4-8) is an infinity by infinity determinant. Taking different
values of m=n we have solved Equation (4=8) for A. Table IV-l shows
that the roots converge rapidly and the smallest root may be approximated
by Aj1, i.e., by the solution of a 2 x 2 determinant. The actual value
of the smallest root, A;, 1s about three percent less than Ajq. Let

us also note that the next higher root, X, 1is about five times as large

as M. ©Since LA; appear in the expansion coefficients as negative

i

exponent, we can neglect all the terms involving 2A; except for 1 = 1.
Solving Equation (L4-7) for ap()\) and then taking the inverse

Laplace transform we obtein the expansion coefficients an(u) for differ-

ent approximation. Solving a (n+l) x (n+l) matrix equation we find the

expansion coefficients aj(u), where i < n, have the following form
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TABLE IV-1

Half-width of fuel
Half=-width of Moderator

cg = 10.75 barns

LATTICES

a cm
(b-a) cm

GS = 4.5 barns

1126.798
.5 1.0 111k4.54 5905. 7
1093.19 5905.1 10999.9
1092.75 5865.9 10954.9 21876.0
281.7
1.0 5 278.6 1476, 4
’ 273.3 1476.2 2749.9
273.2 1466.4 2738.7 5469.0
125.2
123.8 656. 2
> 3 121.5 656.1 1222.2
121.4 651.7 1217.2 2430.7
70. 4
2.0 N 69.6 369.1
68.3 369.0 687.5
68.29 366.6 684.7 1367.2
33.1 \
2. 6 31.7 143.5
2 31.6 140.7 301.5
31.2 140.6 298, 1 571.8
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ai(u) = Cp1 e~M(u-uo) Cnp e->‘2(u'u°)+...+cnn e~ Mn(u-uo)

Cnl e )\.l( U.-U.O)

where Cpi,...,Chn are constants. We found in the one-speed case, i.e.,
the thermal energy group, that the first two terms in the expansion of
the flux are correct to about two percent. The expansion coefficients
for the higher terms are very small. We, therefore, keep only the
first two terms in the expansion of the flux ¢(y,u), Equation (L4-6),

and write

1

¢(Y;u) = EQLEL + al(u) cos gz (4-9)

where

x/D1 , for -a<x<a
y o= (4-10)
a/D; + x-8/Dp, for a<x<b

The expansion coefficients are

ao(u) = 8(0) - w)— (l-e-)\lu)

A1l
- J(u-up) {So(o) - -A—'%Sﬁ—ll (l-e'*l(u'“o))} (4-11)
11

and

ar(w = S(Le™MP - 4 (u-ug)so(1)e M) (k-12)
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where

is a unit step function.
The terms containing em)\lu can be neglected. The terms con-

-2 (u-uo)

taining e will be important only when xl(u-uo),s 1. For

widely separated resonancesj\(u—uo) at the second resonance would be large

and consequently e-Xl(u-uO)

+ 0, i.e., a] » O and as expected flux
would be constant in lethargy and in space. Therefore, we find that the
flux above the second resonance becomes spatially and lethargy dependent

due to the presence of a close first (higher energy) resonance only.

B. Calculation of First Collision Probabilities

The first collision probabilities are usually calculated assuming
a flat source distribution as given by Case §E_§£°(29) We derive expres-
sions for the first collision probabilities for source distributions repre-
sented by the spatially dependent flux, O§(x,u), shown in Equation (L-5).
The single collision kernel at x' due to a plane source of one neutron

(1)

per cme per sec located at x' is given, by

l ]
5 E1 (X]x-x"]) (4-11)
where Ep(x) is defined as(44)
=xt . n
Bn(x) = e ™% tlat
1 -1
= e'x/u n-2 au

(k-15)
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for positive values of x - 2, is the total macroscopic cross section

of the medium. For different media we have to take the optical distance
between the plane source and the point under consideration. Therefore,
the probability, Pl(u), that the neutrons of lethargy u originating
in the lump (-a < x' < a) of region 1 will make their first collision

anywhere in the same region 1 of the lattice is given by (see Figure 3)

a a 2

Py(u) = gi ax'd(x") El(zllx-x'l)dx‘] Q(x")dx"

® a 2nb+a
+ éi ax*¢(x") El[HE(b-a)(ZQ-Zl)

n=1 -a
+ z.(x -x'

~2nb+a
Z Zl [ / dx E]_ nr(b a (ZQ Z‘l
-2nb-a

- T (o) / Bxt)ax (4-16)

The above integrations have been evaluated in Appendix D. Finally for

Pi(u) we get

Py(u) = 1-



= o
al(u) sin O'a Zl -l<06') Z]_cos Q'a ( al >

- = 1l - — tan + log. (1 + —=—
410 L @ 2 o e N5

o0

— r ‘
+ al(_u) 2 cos Oé'a{\y (n) - Q\kg(n) + \y (n) }
%:o dl(bl L ' g

+ Q'sin a'a{ Y i(n) - \P;(n);J

(L-17)
where
d} = 2a
dp = 2(b-a) (4-18)
Y
, =45 (n)/t
Y. = | 52, i=1,23 (4-19)
1 0 Z§+oc' %
- (n)/t
' i “Li\n 2
‘i,(n) =] € 5 > ; dv (4-20>
1 22+oc" t
0
o . —P2
Dpa+D (b-a) (4-21)



and
41(n) = (ntl)dplp + ndj2q
fo(n) = (n+l)(aolp + dy2q)
£3(n) = ndplp + (n+l)dydy

(4-22)

Similarly, we find the probability, Pg(u), that the neutrons of lethargy
u originating in the moderator lump (a < x' < ob-a) of region 2 will

make their first collision in the same region 2 anywhere in the lattice.

/,2b—a _2b-a 2b-ga
Po(u) = g@ J/ dx'¢(x?/ ELLZQIX‘X /’

®_ 2b-a | 2(n+l)b+a ~2b-a

+ g@ // ax'd(x") El[Ena(Zl-zQ)+(x-x dﬁ/{/ d(x")
2

n=1 a “2nb+a

® ~2b-a ~-2(n-1)b-a -2b-a
+ZZ—J ;gvj ax" ¢(x'{/ E1L2na(zl-22)+(x“-X)ZQde// d(x*)dx

= a -2nb+a a

(L-23)

The above integrals have been evaluated in Appendix E. We find



2
loge <l + ;-g—> (sin B'(2b-a)+sin B'a)

+ é—'- <1 - g—e'— tan” %p-—)(cos B'(2b-a)+cos B'aﬂ

+§{: 2 tu)eos 9 [?Q{cos B'(2p-a)+cos p'a }{II}(n)-2TT(n)
- 28502
n=

+ II5(n)}+ B'{sin B'(2b-a)-sin B'a]} {Hi(n)-ﬂé(n)}]

o8]

_ZM l:ZQ{sm B'(2b-a)+sin B'a) {II3(n)-21Tp(n)M3(n))

2ds (o
n=0

- B'{cos B'(2b-a)-cos B'a) {Hi(n)-ﬂ%(n)}] (k-24)

where

o - E—"i(L ) 1—) (4-25)

D1 Dp

pr = L (4-26)



2b-a
0 = 2(i-a)-} G(x"')ax? (4-27)
a
Al y
’ -ﬁl(n)/t
I75(n) = ] e - tdt i=1,2,3 (4-28)
T4 1242
J
. 93 (n)/t 2
IT;(n) = - . t7dt (4-29)
Z§+B"“t‘
0
41(n) = (n+1)ayly + ndolp
E;(H) = (n+l)(di_zl+d22Q)
E;(n) = ndiYy + (n+l)dolp

Let us note that the first two terms of P,{u) (also Py{u)) are exactly

3 ey
the same as derived by Rotherstein}lg)”(ﬁo)

with a flat source assump-
tion. The remaining terms are due to the presence of the cosine term in
p

the flux, &(x,u).

Hence, for the flat source assumption we get

P;fu) - P;(u) = 1 - gliz— 0.5 -Z[E5(El(n)-2E5(£~2(n))+E5(£5(n))] “
2
n=0 (5L-31)

and
Pa(u) » BS(a) = 1 -~ 10,5 -) B3 (83 (n))-28 (85 () )45 (55 ))]F]
2{u) » Polu) = - - 2+iln))- n))+ n

2 " O 3(51 5 (o (n))+B5 (13 -J

n=l

(k-32)
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From the reciprocity theorem 1t can be proved29 that

LVl - BI(u)) = Zava(l - Pa(u)) (4-33)



CHAPTER V

INTERFERENCE BETWEEN RESONANCES IN A SIAB IATTICE

In this chapter the interference between two close resonances
is investigated. It is assumed that the flux takes its asymptotic value
before reaching the first (higher energy) resonance., The flat source
collision probability is used in the calculation of the first resonance
integral., The second resonance (lower energy) integral is evaluated in
the absence and also in the presence of first resonance, The lethargy
and spatially dependent flux, due to the presence of the first resonance,
and the corresponding first-collision probabilities are used in the cal-
culations of the second resonance integral.,

In Section A, the first resonance integral and the strength of
the sink due to resonance absorption are obtained. In Section B, the
second resonance integral is calculated in the absence of first resonance
and in the presence of a delta function sink due to the higher energy
resonance, The NR and IM approximations are made in these calculations,
It has been assumed that the Breit-Wigner one-level resonance cross-section
formula can be used for all resonances. In Section C, the computational
details are discussed and the numerical values of several pair of resonance
integrals are shown, Throughout these calculations it has been assumed
that the change of temperature is inconsequential in the evaluation of

resonance integrals.

-5&—
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A. DNumber of Neutrons Absorbed in the Fuel Element Per Unit Volume
Per Second by the First Resonance

In this case we assume that the flux takes its asymptotic value
before reaching the resonance, i.e., i1t is constant in space and in
lethargy within at least one collision interval above the resonance, It
is also assumed that there is no absorption during slowing down, The

asymptotic flux in a reactor lattice is given(MS) by

a( V1 +Vo)

Vy89 201 Vot ol

d)asy (5‘1)
where g 1is the slowing down density, El and gg are the average
logarithmic energy decrement per collision in the fuel and the moderator
region respectively. Zpl and Zpg are the macroscopic potential
scattering cross sections in the fuel and the moderator respectively.
The average number of neutrons absorbed in the fuel lump per

46)

unit volume per second, S, , is(

So = Mol by (5-2)

Where NO is the number of absorber nuclei per unit volume of
the fuel (region 1), I is the resonance integral defined in Equation
(4-2), In this case ¢ = ¢ . In order to evaluate the resonance

10 asy
integral, I , we make the NR or IM approximation and solve the inte-

gral Equation (4-2a) to obtain ¢l(u) at the resonance lethargy. For

the higher resonance the escape probabilities given by Equations (L4-31),

(4-32) and (4-33) can be used.
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1. Narrow Resonance Approximation

When the maximum energy loss in & collision with an absorber
atom 1s greater than the practical width of the resonance, the narrow
resonance (NR) approximation is aspplied. Usually the absorber is the
heaviest atom in a reactor system. If the NR approximetion can be used
for the absorber atom, it is expected that the NR approximation is also
applicaeble for the atoms mixed with the fuel element and for the mod-
erator atoms. In other words we can use the asymptotic values of
¢;(u') and ¢o(u') inside the integrals in Equation (4-2a) end evelu-
ate the flux, ¢l(u), at the resonance. The asymptotic value of the

flux 1s given by Equation (5-1), i.e.,
da(u') = do(u) = Oggy (5-3)

From Equetions (4-2e) and (5-3), we find

\ \

Z{f VlQl(u)Zé(u) = ¢asyV1Pl(ul£— Zé + ¢asyV2(l"P2(u)); Izg
i ; J
(5-k)
Iet us note thatg; Z% - Zl(u) and 4;# Zé ] Zsl e

the mecroscopic total and scattering cross sections respectively in the
fuel element; andFZMd Zg = 252 is the mecroscopic scattering cross
section in the modegator lump. Let us essume that the fuel element mey
contain U238, Th232 gnd 0l6-atoms. From Equations (4-1) and (5-4)

the resonance integral for the i~th absorber, IéR y 1s obtained
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i
+ oa(u)du

Res

(Here i = Th or U), the relation, Equation (L4-33) between Pg(u) and

Pg (u) has been used to obtain Equation (5-5).

o, Infinite Mass (IM) Approximation

When the practical width is larger than the maximum energy loss
in a collision with the absorber atom, the IM approximation is employed.
It is assumed that the scattering by the absorber atoms changes only the
direction of motion of the neutron but not its energy. Therefore, for
this particular case, we assume Oy Oy > 1, which make the
integrals due to the absorbers delta functions., But the NR approxima-
tion is used for the moderator and the moderating material present in the
fuel element, for example, the oxygen in the uranium oxide. As before,
we assume that the fuel element contains U,Th and O . Thus, in the

infinite mass approximation Equation (4-2a) becomes
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Vld)l(u)(zg * Zgh * Z(%) = TToPY(w) gy (u) + TthPl u)dy (u)
+ V1¢asyngg(u) + Zs2vé¢asy(l’P8(u))

(5-6)

Assuming that there is no absorption in the moderator and using the
reciprocity relation, Equation (M-33), we obtain the resonance integral

for the i-th absorber in the following form:

(5-7)

and when i = Th,

0
here 1 = U or Th. Iet us note that Z& ~ Zg 5
Zg = Zg , the potential scattering cross section of uranium, because

we assumed that there is no non-resonance absorption during slowing down,

Th

Similary, when 1 = uranium, ZT = Zgh . Now, from Equations
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(5-1), (5-2), (5-5) and (5-7) we can compute the strength of the sink

S , due to the higher energy resonance at lethargy uq .

B. Interference Between Two Closely Spaced Resonances

In this section,we calculate the interference between two close
resonances. The absorption rate by the first (higher energy) resonance
has been calculated in Section A. In order to calculate the second
(lower energy) resonance integral in the presence of the first resonance,
we consider the first resonance as a delta function sink. The solution
of the age-diffusion equation with this approximation has been obtained
in Chapter IV. The average fluxes $i(u) and @é(u) in the fuel and
moderator respectively are used in the calculations of the second reso-
nance integral. The average first-collision probabilities P;(u) and
P5(u) , derived in Chapter IV, due to spatially dependent source distri-
bution are used in these calculations., In the absence of the first
resonance integral, the uninterfered second resonance integral will have
the same form as shown in Section A, The NR and IM approximations
have been used in these calculations.,

We write the neutron balance Equation (4-2a) assuming that the
fuel element is a homogeneous mixture of U, Th and O atoms and that the

moderator may contain one or more light atoms in the following way:



u
v+ T YY) = wlew | §(u) ia'u du’
u—AO °
u - u'-u
+ VZoP (W) [ G (un) du’
-0y
u-AU
u
T - e’ -u
+Viepy(w) [ §(u)
L-Omy
U=
+

V(L1 P (“))Z %4 | d,(u) et du
A éf plu 1, (5-8)
J u-Aj

The average fluxes 6i(u') and $E(u’) above the second (lower energy)

resonance is

— =A L.
B(u) = 0o+ oy M)y

Joa) = by + 0p e IOy g (5-90)

¢o , &1 , 05 are defined in Equations (D-2), (D-3), and (E-T7) respec-
tively., In order to solve Equation (5-8) we make the usuel NR and IM

approximations,
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1. Narrow Resonance Approximation

In the NR approximations we replace $l(u') and
Jo(u')  in Equation (5-8) by their values in Equations (5-9) and (5-10)

when Af = 4n (1/aq) is less than or equal to Au = U.-Up . Here U,

is the lethargy at the second resonance., And when 4n(1l/0y) > (Up-Ug),

¢, = & = ¢asy in the interval in(1/ag) - (Up-Ug)
and @i and 52 are given by Equations (5-9) and (5-10) in the inter-
val (Up-Uy). Let us evaluate a typical integral,

u'-u

Ry(w) = dy(u) =— au’ (5-10)
1-04

u~£n(l/1i)

For the case ﬂn(l/&i) < (Up-Tp)

A -
Ri(u) ¢o + 0 [e(All-l)Zn(l/di)_ l] e 11(u-uo) (5-11)
(l-ozi) (All-l)
For the case n(1/oy) > (Up-Ug)
u
Ri(u) = - QU -u
d)l(u') 1o du’
U.-,Zn( l/Oli) +
- e *  -Ap1(ut-ug) et ™
= ¢asy ) + [¢o + ¢y e ]l-a du'
"u-4n(1/04) e o 1



_ Qasy (e-(u-uo) i e~ﬂn(l/ozi)] . b [1 —(u-uo)J

1-04 1-05

¢’ Le—(u—uo) } e‘All(u‘uoﬂ
+

1 ( l—Odi) (All-l)

(5-12)
Similarly
) -A17 (u-up)

Ry(u) = 0y + @} [e(All-l)zn(l/aJ)- l] e (5-13)

(l—aj)(All-l)

for the case ﬂn(l/aj) < (Up-Ug)

and

Qasy [ -(u- -4n(1l/as) -(u-u
Ri(w) = 2 [on(uo) n</J}+%[l_e< o)]

(5-14)

for the case zn(l/dj) > (Up-Ug) -
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The changes of Rj(u) and Rj(u) are very small in the
resonance region compared to the change of cross-sections, So, we take
Ry (u) and Rj(u) out of the integral and put R;(u) = R;(U,) and
Rj(u> = Rj(Ur) when the integration is over the resonance, Finally,
we obtain the interfered resonance integral in the NR approximation

for the i-th absorber as

i 1 Ty d
(Ihg), . = () ¢y (w)og (u)du
Res

(5-15)
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2. Infinite Mass Approximation

Now we set o, O, + 1  in Equation (5-8) and use
the narrow resonance approximation for the other integrals, i.e., we
replace ¢l(u') and 6é(u') by their values in Equations (5-9a)

and (5-9b). Finally we get

(I%M)int = (bl u)du /¢1
Res
0 .
L 0. Pl(u)c;(u)du
T 0
) T ) - e ) ()
Res

+__a___
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C. Computational Details and Results

The cross sections at the resonance have been calculated using
the Breit-Wigner one-level formula. The absorption and the scattering

cross sections are

r 1
05(E) = oy _L\/E./E 5-17

r /2 2(E-E)/r
o 1

o ==
I' 4(E-E,

os(E) = o )E/F2+l + op (5-18)

The first term in Equation (5-18) represents the resonance scattering,
the second term is due to interference between the resonance and potential
scattering, and the third term is the potential scattering cross section

of the absorber. Ty , I; and I are the radiation, neutron and the

total width at the resonance respectively.

0y = gunxg ;E (5-19)

where )\

o is the wavelength associated with a neutron of energy E, .

Here E is the energy at the peak of the resonance. A simple relation

)

between %o and Ey 1is

Ko v 4.55x 107 B (5-20)
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where Eo is in electron volts and )O is in ecm, The statistical

weight factor, g, is given by

- L (5-21)
2(2I+1)

where I and J are the nuclear and channel spins respectively. For

resolved resonances in U238 and The32 we may take I =0 and J =

°

DO l g

But in the computer program (Appendix F) provisions have been made for
selecting any value of I and J .

The integrations over the resonances have been performed
numerically using Simpson's rule.(h7> The range of integration has been
taken six times the practical width of the resonance., No correction has
been made for the absorption in the wings of the resonance, The error
due to the finite interval of integration is negligible., It has been
shown(gl) that even when the range of integration is five-times the
practical width, the wing correction is less than a few percent of the
main part of the absorption.

In the calculations of collision probabilities the values of
the function E3(X) have been interpolated from the tables given in
Reference 4k, The integrations in Equations (4-19), (4-20), (4-28) and
(4-29) have been evaluated numerically using the Simpson's rule,

The potential scattering cross sections and the resonance
parameters used in the calculations are shown in Tables V-1, V-2, and

V-3. The practical width, Iprac , has been calculated using the relation
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Pprac = F\/oo;op

(5-22)

where all the terms in the above equation have already been defined.,
In the Tables V-4 through V-10 we have shown the resonance
integrals of several pairs of resonances for different lattices. The
second (lower energy) resonances have two values for the resonance
integral, one assuming no absorption of neutrons during slowing down
before reaching the resonance and the other assuming a delta function
sink above it. In order to find the rate of absorption of neutrons by
the lower energy resonance in the absence of the first (higher energy)
resonance, we have to multiply the resonance integral by the density
of the absorber atoms and also by the lethargy dependent flux, which
1s a constant and has the same value as the flux above the first (higher
energy) resonance when it is present. Therefore, the absorption rate

by the second resonance in the absence of the first resonance is

d)lo Na(I)unint (5'23)

where ¢lO is the asymptotic flux above the first resonance. The
absorption by the second resonance in the presence of the first resonance
is

Py = o Na(I)yy (5-24)
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where @é is the average flux which would be present at the second reso-
nance if the second resonance were not there; (I)int is the interfered
resonance integral given by Equation (5-15) or Equation (5-16). Iet us

define

(5-25)

d is the ratio of capture due to interference to non-interference

capture. p’ has been computed for all pairs of resonances under consid-
eration.

In Table V-4 we have shown the interference between the 116.5 ev
and 102.5 ev resonances in several U238 - graphite lattices, It is found
that the interference is larger in thicker lumps. In Table V-5 we have
shown the interference between several selected pairs of resonances of a
U238 - graphite lattice having 2 cm thick fuel lump and 18 cm thick
moderatbr lump. It is found that the interference depends upon the reso-
nance integral of the higher resonance, which is proportional to the
strength of the sink, and also upon the lethargy separation, Au,
between the first and second resonances. In Table V-6 we have shown the
interference between several pairs of resonances in a UOp - heavy water
lattice; the thickness of the fuel being 1 cm and that of the moderator
3 cm, In Tables V-7 and V-8 we have shown the interference between
pairs of resonances of a Th232 - graphite and a Th232 . heavy water

lattice respectively. In Tables V-9 and V-10 we have shown the inter-

ference between resonances when the absorber lumps contain a homogeneous
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mixture of U238 and Tha32 having graphite and heavy water as moderator
respecticely. From all the tables mentioned above we notice that the
interfered resonance integral is larger than the resonance integral with

a flat flux approximation in the graphite moderated cells, i.e., defining

AL = (I)int - (I)unint (5'26)

AT 1is positive for the graphite moderated lattices., But for the heavy
water moderated lattices AI is a negative quantity. But this should
not mislead us. The presence of a high energy resonance, of course,

decreases the absorption by the second (lower energy) resonance in both
the graphite moderated and heavy water moderated lattices. The negative

value of p' shows this effect clearly.
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TABLE V-1

POTENTIAL SCATTERING CROSS SECTIONS

F

Elements (barns)
D 3.4
¢ 4.5
0 3.8
232 12.0
238 10.75

TABLE V-2
RESONANCE PARAMETERS FOR U230x

(In Electron Volts)

Eo Iy Iy Ip Approximation
(Calculated)

6.7 1.52x 1073 2,46 x 1072 1.080339 ™
21.0 8.9 x 1073 2,46 x 1072 1.853616 ™
36.9  3.25 x 1072 2.46 x 1072 3.1488660 M
81.3 2.1 x 1073 2.4 x 1072 0.L08538 NR
90.0 9.0 x 1072 2.4 x 1072 0.077299 NR

102.5 6.5 x 1072 2.46 x 1072 3.708180 ™
116.5 1.5 x 1072  2.46 x 1072 1.110817 NR
189.6  1.35 x 1071 2.6 x 1072 5. okl16k M
208.5  5.50 x 1072 2.6 x 1072 2.254223 NR
26h.5 2.3 x 10-4  2.46 x 1072 0.072286 NR
o7h.0 2.7 x 1072 2,46 x 1072 1.109286 NR
398.5  1.00 x 1072 2.46 x 1072 0.458391 NR
1.0 1.7 x 1072 2,46 x 107° 0.645301 NR

¥ Taken from Reference

no
[



-71-

TABLE V-3

RESONANCE PARAMETERS FOR Th232x

(In Electron Volts)

Eo I Iy Tprac Approximation
(Calculated)

21,84 2.40 x 1003 3.0 x 10-2 0.878572 IM

23.48 4.0 x10°3 3.0 x 1072 1.120588 M
113.15 1.10 x 1072 4,2 x 10-2 1.056990 NR
121.00 1.85 x 1072 4,1 x 1072 1.L404356 NR
128,50 1.00 x 10* 4.1 x 10-2 0.083271 R
129.40 3.10 x 1073 4,1 x 10-2 0.478585 NR
196.8 1.3 x 10- 4,10x 102 0.076747 R
199.8 9.0 x 1073  4,lox 1072 0.698770 R
203,00 1.88x 1072  4,10x 102 1095739 R
366.70 3.5 x 10"2  L4,10x 102 1.255238 MR
371.00 2.4 x 1072  L,10x 102 0.954775 NR
52,8 9.0 x 1073 4,10x 1072 0.492138 NR
413.4 2,68 x 1072 L4,10x 1072 0.976164 MR
46,4 2.82 x 1072 L.1 x 10-2 0.962788 NR
465.0 4,5 x 107 4,1 x 1072 1.343243 NR
* Tgken from Reference 21,

TABIE V-k

RESONANCE INTERFERENCE BETWEEN THE 116.5ev AND 102.5ev

RESONANCES FOR U238

Thickness of the Absorber Lump
Thickness of the Moderator Lump

- GRAPHITE CELLS

28
2(b-a)

[}

2a 2(b-a) Eo (I)unint (I)int (I)intf(I)unint x 100 pl

(ecm)  (cm) (ev) (barns) (barns) (I)int
116.5 0.136624

1.0 9.0 2,900018 -0.043485
102.5 0.175556 0.180799
116.5 0.117069

2.0 18.0 6.197581 -0.072165
102.5 0.134082 0.142941
116.5 0.117076

2.0 28,0 6.592241 -0.108977
102.5 0.134096 0.143560
116.5 0.106046

ho 26 9.220431 -0.109864
102.5 0.126165 0.138980
116.5 0.106046

Lo 36.0 11.637581 -0.105127
102.5 0.126164 0.142780
116.5 0.103780

5.0 45,0 18.543231 -0.0L44865
102.5 0.150339

0.184563
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TABLE V-5

RESONANCE INTERFERENCE BETWEEN SEVERAL
PAIRS OF RESONANCES IN A U238 . GRAPHITE CELL

Thickness of the Absorber = 2cm
Thickness of the Moderator = 18cm
Eq Au (Duning (Ding Dine=(Duntne ) o’
(ev) (varns) (barns) (D 1ot
90.0 0.015188
0.101664 0.493352 -0.014496
81.3 0.088780 0.089220
208.5 0.068054
0.095022 4, 862141 -0.,043569
189.6 0.059805 0.062861
274.0 0.038607
0.035287 1.393043 -0.059245
2645 4.757314x1073 4.835669x1073
41,0 0.01833
0.030886 0.801507 -0.028683
398.5 0.015957 0.016086
TABIE V-6
RESONANCE INTERFERENCE BETWEEN SEVERAL PAIRS OF
RESONANCES IN A UO, - HEAVY WATER CELL
Thickness of the Absorber = 1.0cm
Thickness of the Moderator = 3.0cm
E, Au (Dunint  (Ding Dint-(Dunint o6 o’
(ev) (varns) (varns) (T)int
90.0 0.022161
0.101664 -3.796641 -0.037345
81.3 0.138441  0.133377
208.5 0.,102702
0.095022 -4.759987 -0.048970
189.6 0.112919 0.107788
291.6 0.048700
0.062255 -2,251708 -0.023812
274.0 0.058837 0.057541
hi1.0 0.028091
0.030886 -1.085112 -0.012130
398.5 0.024579  0.024315




RESONANCE INTERFERENCE BETWEEN SEVERAL PATRS
OF RESONANCES IN A Th232 - GRAPHITE CELL

Thickness of the Absorber
Thickness of the Moderator
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TABIE V-7

[l

20cm
18.0cm

Eo Au (I)unint (I)int (I)int‘(l)unintxloo o’
(ev) (barns) (barns) (I)int
23.48 0.650028
0.072k06 43.312819 -0.383695
21,84 0.568972  1.00370k4
121.0 0.189870
0.067253 4,763815 -0.155140
113.15 0.174218  0.182933
1294 0.079632
6.979465x10-3 7.213855 -0.047351
128.5 0.012501  0.013473
203.0 ~0.087732
0.015889 3.601960 -0.088312
199.8 0.067155 0.069664
h13.h 0.033996
0.025975 1.23086 -0.032289
402.8 0.023351  0.0236k42
L65,0 0.033140
0.018668 1.27740k4 -0.032649
4564 0.029775 0.030160
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TABLE V-8

INTERFERENCE BETWEEN RESONANCES IN A Th232 - HEAVY WATER CELL

Thickness of the Absorber Lump
Thickness of the Moderator Lump

2.0cm
6.0cm

Ey Au (Dunint <I)int (I)int'(l)unintxloo P
(ev) (varns) (varns) (D)t
23.48 0.630786
0.072406 -2.837988 -0.057473
21.84 0.551959  0.536727
121.0 0.187481
0.067253 -1.723887 -0.025939
113.15 0.171990 0.169076
129.4 0.078597 S L
6.979465x1073 0.483585 -6.309174% x 10
128.5 ©0.012371  0.012432
203.0 0.086629
0.015889 -0.410150 -0.011506
119.8 0.06629%  0.066023
371.0 0.038097
0.013569 -0.270201 -6.3k22Lx10-3
366.0 0.043781  0.0L43663
h13.4 0.033575
0.025975 -0.72807k -9.293795x10"3
402.8 0.023053  0.022887
465.0 0.032739
0.018668 -0.522162 -7.695121x10"3
456 .4 0.029407  0.029254
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TABLE V-9

RESONANCE INTERFERENCE IN A (U238m232) _ GRAPHITE CELL

Thickness of the Absorber
Thickness of the Moderator

2cm
18cm

Number of U23® atoms per unit vol: 0.023915 x 102%
Number of Th232 atoms per unit vol: 0.014650 x 1024

Absorber Ej Au (I)unint (I)int (I)int-(I)unintxlOO o’
(ev) (barns) (barns) (D yne
¥ 1165 0.157977 3.233714
0.029177
Th32 113.15 0.265604 0.274480 -0.133932
230 208.5 0.0905k4k
232 0.026733 2.059386
Th 203.0 0.133127 0.135926 -0.075256
TABIE V-10
RESONANCE INTERFERENCE IN A (U239Th232) . HEAVY WATER CELL
Thickness of the Absorber = 2cm
Thickness of the Moderator = 18cm
Number of U238 atoms per unit vol: 0.023915 x 102”
Number of Th232 atoms per unti vol: 0.014650 x 102
Absorber E, Au (I)unint (I)in (I)int'(I)unintXlOO p’
(ev) (barns) (barris (Dint
238 11605 0.157975
9.929177 -0. 444601
The32 113.15 0.265600 0.264425 -0.013552
y238 208.5 0.090542
0.026733

The32 203.0 0.133125 0.132400 -0.01076k4 -0.547137




CHAPTER VI

CONCLUDING REMARKS

Solving the age-diffusion equation in reactor lattices by a
Fourier series expansion of the flux, and observing that the series
converges rapidly, we have been able to treat several problems of re-
actor physics satisfactorily. From the investigations made in this
thesis we can make the following observations.

1. The equivalent cell gpproximation used in the calculation
of the disadvantage factor and the thermal utilization in diffusion
theory is good for most practical lattice cells. Similar observations
have been made earlier by several investigators. They used different
methods of calculation. This confirms the usefulness of the method of
calculation employed here.

2. In the4case of a slab lattice, it has been observed that
a resonance is influenced by the presence of another resonance above it,
i.e., at higher energy. Since there is depletion of flux due to absorp-
tion by the higher energy resonance, the absorption of neutronsby the
lower energy resonance decreases. The resonance integral does not de-
pend upon the magnitude of the flux if the flux is constant spatially
and lethargywise. But in the case of closely spaced resonances, the
resonance integral is different from that calculated by the flat flux
approximation. The difference between the resonance integrals is a
measure of the resonance interference which arises due to the incomplete
flux recovery after the absorption by the higher energy resonance. 1In

the transient region the flux is spatially and lethargy dependent and

-76=-
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the flux in the moderator is higher than the flux in the fuel lump.
Depending upon the excess flux in the moderator above the lower energy
resonance the resonance integral may be greater or smaller than that
calculated by the flat flux approximation. The lethargy interval of
the transient region depends upon the strength of the higher energy
resonance and also upon the size of the fuel lump. We have observed
that the ratio of the interfered resonance integral to the flat flux
resonance integral is greater than unity in the case of graphite mod-
erated cells but it is less than unity in the case of heavy water
moderated cells., The resonance interference in the two- and three-
dimensional lattices may be treated in the same way.

In the calculation of resonance interference, the higher energy
resonance has been replaced by a delta function sink. This approximation
is expected to be quite good for narrow resonances. The delta function
sink approximation may not be satisfactory for a wide resonance. In
these calculations, we have assumed two non-overlapping resonances. But
there may be cases where two resonances may overlap each other, for ex=-
ample, in the case of a mixture of two absorbers. The 21,84 ev and
23.48 ev resonances of Th252 are wide resonances and also they overlap
each other. The results obtained in Table V-7 and V-8 for those cases
are not reliable., A Monte Carlo calculation is desirable in order to
investigate those overlapping cases. Also, ZUT-MOD-3 code(5l) can be
used to treat the overlapping resonances.

The technique of solving the age diffusion equation may also
be used to treat lattices with hydrogeneous moderator. In that case we

can solve the Selengut-Goertzel equations.



APPENDIX A

THE INTEGRAL I(i,Jj,k,1,m,n)

Here we evaluate the integration shown in Equation (2-6)

. D {_ LT X Iy kT2 LI X
I(i,J,k,1,m,n) = — dcos cos COS —— COS—F—

(1,3,k,1,m,n) I[J%zs o b c o

cedd
z
cos Y oog AT } dxdydz (2-6)
Since it 1s assumed that éDZ is constant in each region of the cell,
S

namely the spherical fuel element (region 1) and the outer moderator

lump (region 2), we divide the entire volume of the cell into several
parts such that in each part jggi; is constant and integrate over the
parts separately. Let us note that the integrand has eight-fold symmetry
so that we can integrate over one-eighth of the cell only, (see Figures 1
and la). The integration over the cell can be carried out in the follow-

ing way:

D T X Sy RTT 2 LTTX mmy
j//[fg——zsicos o coSs b cOSs c COS o cOoSs b

Cell
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Note that
————— } - L ( cos _____({+L)ﬂx + cos(———{—k)ﬁx )(cos ___(j+m)7¥y 4
8 a a o
+ Cos (‘J—‘m) ( cos _______(k+n)7¥2 + cos _____(k—n)’ﬁz ) (A-2)
b C C

Let us consider the first term of the above expression after performing
the multiplications. The remaining seven terms will give similar results
except that the signs of 1l,m,n will be different in each case. Let us

define F(i,j,k,1,m,n) as

Y

[+ ] 7
F(1,4,k,1,m,n) = ax | dy dzcos ) X Y mix cos (———~———-J+m) /
) z 5
© 0 o
. P ~VA=xE
cos @Z_ =1l— dxj dy cos(&x) cos( py)
0 0
sin(‘/m) (A-3)
where
_ (L+L) n _ (j+m) YA d _ (k'Hﬂ) T
A== a“ — ﬁ = . an '{_ = (A-b)
Let
y = P-x sin 6
dy = \/ p*—x* cos@dé
x = L sin W
dx = p cosPd (4-5)



We now expand the sines and cosines of Equation (A-3) in terms of its
arguments and substitute the values of x and y from Equation (A-5)

and get

< o€ o< P +qQ+r 2p 2q 2r 2(p+q+r)+5
R(L,3,k,Lmn) =) ) ) (-) " 57 1 ye

(2p)! (29)! (2r+)!

PIO q_:O r=0

~ 0

’ 2(q+r)+3 ’ 2 2(r+1)

sinwgo cos “ v dip | sin qe cos Bde (A-6)
(o] (6]

The definite integrals in Equation (A=-6) are known. Thus, we get

EEE paaer 20 24 +q+F)+3
13 - Tl g A AP
Rt “;é\;)%?o( ) 2p) (2a)t (2r+)!
2 29+
r’< P+l r'(OI’H’*?—) I"‘l( qzl) r 2Y+3)
2[_'(\0+Q+r+i) \ 2F(q+k+2)
=< o< K 2(p++r)+3 3 2p 2q 2r
ST T AT gy o
P=0 g=0 r=0 r(p+q+r+% 22(P+9+r)+3 IO'C]‘ Pl
we know
3
2

CENTERITE) _ )
2p)! (2q)! @r+)! AR TR TR
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Let us make the following substitutions in Equation (A-7)

S =p+q+r
t=q+r
and obtain
o< 253 5 st 1 5- t
. S P A ) ) s! 1
F(i,J,k,1,m,n) =Z("') [Z
o r(s+—g) 2543 & 0; (s-t)! (t I‘)I Fl gl
o 3 2. S
s 0T T (ol 5 +T)
:Z(—l) : 73 (4-9)
5=0 l——v(5+—2_) 2 S.'
We know(uo) that
oc S n+2S
(-1) Z .
Jn(z) = E: , where n is any number, (A-10)

5o oNTE gl [T(n+s+)

Using above relation we can express Equation (A-9) as

rcssimtoma) = Jy (N TT) (] (g 7)

= <7(/o\/t+L J-\-m} +<k+n )

(&) [y () (s | i

J5/2 is g Bessel function.

NN
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The second integral of Equation (A-1) is relatively simple.

a b c
- .
dx dy dzcos X cog I cog KNE  oog ATX oo MTY  ognTE
a b C a b c
o ) o

(A-12)

ijkgilsjmgkn
/\ijk has been defined in Equation (2-5). The third integral of

Equation (A-1) is exactly the same as the first one. Taking all the

terms of Equation (A-2), we finally get

D D
-§|:ES| EZEZSZ

+ F(i:jfk;l:‘m:n) + F(i:j)k:'l:m:n)

I(i,3,k,1,mn) = ( )F(i,j,k,l,m,n) + F(1,J,k,1,m,-n)
+ F(i,j,k,-l,-m,n) + F(i,j,k,-l,m,—n)
+ F(i7j’k)l:‘m)'n) + F(ipj’k;'l:'m)'n)

D.

2 & S2

(A-13)

abc/\ijkgilgjmékn



APPENDIX B

THE INTEGRAL H,(i,J,k,1,m,n)

| D

{Zs X

is constant in each region of the cell except at the

Let us perform an integration containing terms like

We know that
3

fuel-moderator interface where it is a step function. Whereas YE is

a delta function at the fuel-moderator interface but zero everywhere else,

Therefore, we can take the average value of —l—- at the interface.
S

oD

;(—— = (Dg - Dl> 6 (X - \/PQ - y2 - 22) (B'l)

oD 2 _ 2 .2

%i;-'— (Dp - Dl)é (v - “ch - X% - 2%) (B-2)
and

oD 2 _ 2 _ 2

¥=(Dg -Dl)é(z -‘\ﬂo - X5 - y°) (B-3)

Let us consider the following integral

.7Y 'TY —
Hz(i,J,k,l,m,n) = _[;[J( ! ?gz{cos qu cos Jlgz- sin ’1?2 cos %%i

car? & 25 0z _
cos ﬁ%%L cos Jl%éi—.} dxdydz (B=4)

The term inside the bracket can be written as

{—-———} = % (cos ££t£lzli—— gﬁ:élziil—) < cos gitﬁQle
a

+ COS
a b

+ cosw> ( sin—(—t—(:—glz‘——z—- + sin (k—_nC)TT__Z) (B=5)

Let us take the first term of Equation (B-B), i.e.,

cos Qﬁéli&ﬁ cos Qifﬁl&i sinﬁhjﬁﬁzzz

a b C

and carry out the integration shown in Equation (B-L4). The remaining
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seven terms of Equation (B-5) will give similar results except for the

change of sign of 1, m, and n.

jfj ——g-a——cosoﬂx cos3y sinYZ dxdydz
Cel g‘ o x2 /° x_)( +€
- 8 1, (g ZS‘ %7_232 D2 - le f dz cos %X cos@]

y - €
sin Y2 9 (z -"Véog - % - yg)

(§ 25| 13 232) - Dl j f dy cosoXx cosﬁ] slnﬁ/—Tz

(B-6)

o ,P ,Y are defined as in Equation (A-4). Observing that the above

integral has exactly the same form as in Equation (A-3), we can easily

write
f f —— cos XX cos/3y sin Y2 dxdydz
cell Zs
1 l l (k+n) T L
=8 = Dp - D -— F(i,J;k,1,m, B-
5 (g}ﬂ gzsz)( 5 1) z (1,3 m,n) (B-7)

Taking all the terms of Equation (B-5), we finally get

( %,Izs. * s,z'zsz)(Dz ) Dl){ el

g F(iyj;kyl’m:n) + F(i:j:k:‘l)m:n)

|-

Hz(iyjﬁkyl;m’n) =

+

F(i}j;k:l:'m)n) + F(i;j:k}'l)'m;n)}

+

k-n) T L .
"Q__?%—___ F(l’Jrk)l,my’n> + F(l)Jyk;l"m:’n)

F(i:jyk)'l’m"n) + F(i:j:k)'l:'m;'nZ}} (B'8)

-+

Similarly we can derive expressions for HX(i,j,k,l,m,n) and

H,(i,J,k,1,m,n).

y(



APPENDIX C

THE INTEGRAL I(k,1,m,n)

The integration in Equation (2-24) is very similar to the integra-
tion carried out in Appendix A except that here it is a surface integral.
In this case also the entire area of the cell has been divided into several
parts in each of which i’; is constant (see Figure 2) and integrations

5 s
have been carried out separately.

I(k,1,m,n) = jj { k';VX cos UL)’ cos m:x os MCTZ }dxdy
Cell z
J’ f VP2
dx —_——— = dx dy ————}
[ gES\ o) f J §ZSZ o] j
D2
+ jdx Idy{~———” (2-20)
252 r o
We know
cos XX cog A7y cos X oog ATY =(COSM—
b a b
- x -
NS0 S P L P o S T Y

Let us consider the first term on the right hand side of Equation (C-1)

and perform the integrations shown in Equation (2-24).

jdx j dy cos Xx cos By = F(k,1,m,n)
where

k+m)T _
2 ; and /5 S — (c-2)

IO
F(k,1,m,n) = /[dx(cosqx)zg— sin/@‘\/Pl_xL (c-3)
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As in Appendix A let us expand the sine and cosine in Equation (C-3)

and then make the following substitutions:

X =p sin @
(C-4)
dx = /Jcosede
o P P 2P
cos AX = ZP (c-5)
P =0
. 29+
o< 29+ , 1 2\ 2
sin /3'\//01_Xz — 2(—‘)‘4 I (Io X) (C-6)
= <2q +1)!
Inserting Equation (C-4), (C-5) and (C-6) in Equation (C-3) we get
o< oc . 2p 29 2(p+q+) l?i
F(k)l;m’n) =Z Z("‘)P T r_L SI'n2P6 COSZ(qﬂ)e d6
5 (2e)! (29+)!
o< o< 2(p+ +) q+3
D N A ¥ o LN e
b0 = (2p)! (29)! 2r(|°+°’+2)
< o< o+rq 2P 29 2(p+9+i) T
=Z Z("I) S 2(p (e-7)
i 2 (p+qt2) PP o) g

let s =p+ q, and get

“mn)"zﬁ‘ T [Z@) Q)1 ql Lz




|

=2z

3 (PVei) B Lo 6] (c-8)

We used the relation in Equation (A-10) in the above equation. Sub-

stituting the values of (X and /3 , we get

pol=

F(k,1,m,n) =LJ /)ﬁ\/(kwn) +(L+n\2 (k+m) <L+n> (c-9)

In the same way we integrate the second and third term of the

right hand side of Equation (2-24) and finally get

I(k,1,m,n) = 25225“‘ - 7§J%§?— P(k,1,m,n) + F(k,1,m,-n)
+ F(k,1,-m,n) + F(k,1,-m,-n) +a b/\k(ghnk8nL (c-10)

\
/&kL has been defined in Equation (2-23).
Following the same method as has been shown in Appendix B we

can obtain the expressions for Hy(k,l,m,n) and Hy(k,l,m,n) easily.



APPENDIX D

DERIVATION OF THE FIRST-COLLISION PROBABILITY IN A FUEL LUMP

P,(u) is the probability that the neutrons of lethargy u

originating in the fuel lump (-a < x' < a) of region 1 will make

their first collision in the same region 1 (probably after crossing

other regions such as the moderator in this case) anywhere in the lat-

tice.

From Equation (L4-16) we write

'“LM

x! a
M/ﬂ dx'd(x") El(zl{xf-x])dx ¢(x ,u)dx’

a
dx'¢(x' u.J[- Eq (2 {x-x"))dx (x",u)x'

+
NG

2nb+a a

ZL J[‘dx x',u) | Ei(2n{b-a}{To-2y }+lq {x-x" })dx ¢(x',u)dx"

2
n=1 onb-a —a

. -2nb+s

%l'/fdx o(x',u) [ E;l2n(b-a)(Xz-L1)

nzl -8 -2nb-a
- a
+ 2q(x'-x) Jax d(x',u)dx" (D-1)
-a
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The flux, &(x',u), in the fuel lump is given by Equations (L4-9) and

(4-10)
o) = 2o ()eos arxe, for -a<x'<a
f $(x',u)ax' = 2ady(u)
where )
bi(u) = %g~}r d(x,u)dx’
- 2o o) 2 sin(era)
-2 s 2]
e T {_%@}Q-Au(u-%)
- Humuo)80(1) 5 sin(ara)e 1 (¥to)
— g v gy a0 (p-2)
Here
L, Ans(1) 80150(1)] |
dbo = 3 LS( ) - ~1 - J,(u-uo){so( ) - = ] J (0-3)

cbl _ J(u—uo) l:Ao:LSo(l) .\ So(1) sin(a'a)} (D-L)

2All Q'a
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By definition

-X
En(x) e M pn du
1
1

e-x/t tn-2 at

0

We also know(hh) that

‘/rEn(Ax+B)dx =

1

T Enip(Ax+D)

where A and B are constants.
Integrating Equation (D-1) with res
a
Py(u) = L ax! [%Qégl + a; (u)cos a‘xq
-a

-

+ ay(u)cos a'xL

+

[
Z

L|-8.$l

for x> 0O and

n, a non-negative integer

(D-5)

(D-6)

pect to x, we obtain

r
Eg (0)-Eo (le ! +Zlaﬂ

g

{%2(0)-E2(218'21X

j LT— + a;(u)cos a'x 1 EEZ {ndzYp

+ (21’1-1)8.21-2;1_)('} - Eg{ndgz.g + (2n+l)azl-zlx'}z|

anglu

@ a
1 'I—o()
+ j{: KE$I J[‘dx L
n=1 Za

2

+ (2n-l)a21+zlx'§ - Egil’lngQ 21’l+l azl—o—z.lx'ﬂ

+ aj(u)cos a'x} EgindQZQ

(D-7)
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where d, = 2(b-a), the thickness of the moderator.
We use the integral form, Equation (D-5), for Ey {f+ <} when it is
multiplied by cos ®'x' and perform the integrations in Equation (D-T7)

and find

(u)

{Fs(2aly) - Es(0)} —3 Zl

Pl(u) = u $
a@a

[0.¢]

+§{: ——E— %o {Eg nd222+ n l dlzl) - E3(Hd222+nd121)
ha¢l 221

n=1

- E3(Hd222+ndlzl) + E3(Hd222+(n+l)dlzl)}

[ee]
+Z ul$ {Es nd27_2+ (n-1)a 121 - 2E5( ndgzeﬂldlzl)
ady
n=1

+ E3(Hd222+(n+l)dlzl)}

—_ a l
- l_ al(u)[ dx'cos O'x' e-zl(x'+a)/tdt
ha¢l
- 0
1 5 ‘
+ dx'cos Q'x!' e' l(a'X )/t d{}
-a O
w i " [0S+ (2n-1)aTy -Tax ]
- |nd 2n-1 - v/t
+j{: ay (u) , dx'cos O'x' e [P elet(2n-1)ala-tax']/ at
ha¢1
n=1 -a 0

1
e-[hd222+(2n+l)azl-zlxﬂ /tdt (D'8)

- dx'cos Q'x!



-92-

a

-1
' -(ndsle+(2n-1)alq +2.x' |/t
+ dx'cos a'xi/ e [— 222 ( ) 1Tk ]/ dt

-a O

a 1

(D-8)
(Cont 'd)

- dx'cos O'x

=
e' [nd222+(2n+l )azl+zlx ‘] /tdtJ

here dj = 2a, the thickness of the fuel lump.

In Equation (D-8) we have integrations of the following types

a

1
- 1/t
cos Ot'x'dx'[ e !‘_K+le]/ dt

= -K/t f cos Ot'x'e“le'/t dx!
/( e {2) J
- —)cos Q'g + O'sin O'a
Zl 2 t
t

=a

L]

_ ar) L

Z.la/t ‘ i
[- T cos Q'ag - Q'sin O }

1

<Zﬁ +ar?
[K+Zla] /t 2 - LK Zla.J /ttgdt
= O'sin O'a 22+a' J Zi+05'2t2
O 0
; | T /e = [K+Zla]/tt o
+ 2icos Q'a I Z?_+Ot'2t2 (D-9)
0
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and
-~ a 1 1 )
¥ o - [K+Z a [t
- [K-2ix'] [t 1 >
cos O'x! e L 1 J/ dt = Q'sin O's e t=dt
. A 250132
a o d
"k a]/t - 1 kTiel /s
+ e R L e Kemsl/e
+ 2jcos Q'a| |
2T+ r®e? LJ T2401242
0 0
1
- [K+21 8] /ttdtﬁ
e
) > 2.2 I (D-10)
Y2002 _]
0
Let us also note that
a L1 a 1
[ Zi(atxt) /% i R
dx'cos Ot'x'// e l( )/ dt = J dx'cos alxl/ e l(a X )/tdt
-a 0 -8 0
1
- -2aZl/t > oL 5
F Q'sin Q'a. // < £at + _tedt
j Deftelion Y2401242
0 0
1
— 1
tdt e 2azl/ttdt
+ ZlCOS Q'a % 55 ° _— (D-ll)
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We know that

2 Y N
f t7de %2 1 - =2 tan-1 9‘—'> (D-12)
22+01242 o at Xy
0

and

2
tdt 1 a!
—_—v = 1o 1l + —
fZ%ouZtg a2 ge( Zz) (p-13)
0

Evaluating all the integrals of Equation (D-8) and rearranging

the terms we finally get

Pi(u) = 2d121¢1 {j ZEJ {Es £1(n))-2E3(42(n))+E3(£a(n ))%}
[Sln k. - = tan?t %i>} + _2122?205'_ loge (l + ;2—;2>:l
ZZJ d [%1005 at {; (n) - EEPé(n) + \Pé(ni}
191
+ O'sin A'a {\P;(n) Y (n)ﬁ (D-14)
where

1 =45 (n)/t
VY () = fe /tdt, 121,23 (p-15)
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J 2341242
0
and
f1(n) = ndy2y + (n+l)dzle
fo(n) = (n+1)(da2s+d2)p)
4a(n) = (n+1)d12s + ndole

(D-16)

(D-17)



originating in the moderator lump (a < x' < 2b-a)

APPENDIX E

DERIVATION OF THE FIRST-COLLISION PROBABILITY

IN THE MODERATOR LUMP

Po(u)

is the probability that the neutrons of lethargy u

of region 2 will

meke their first collision in the same region 2 (probably after tra-

versing other regions) anywhere in the lattice.

From Equation (L4-28)

we know
2b-a x! 2b-a
Po(u) = ggdjf dx'd(x") Elfzg(x'—x)]dx//i]ﬂ d(x")dx
a 2 "
5 b-a - 2b-a
v 2 gt E1[22<x-x'ﬂdx/2<b-a>$z
a X!
e - 2b-a 2(n+1)b-a
+ §g4/f dx'¢(x") E [2na (X -Ye )+ (x-x' )Zé]dx,/g (b-2)
n=1 & 2nb+a
2 2b-a -2(n-1)b-a
+ -;L:g[ ax'd(x") El[__Qna (X1-2p)+(x"-x) Ze]dx/2 b-a)
n=l a -2nb+a
(E-1)
where
2b-a
= sp— 3 Jax' (B-2)
“a
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From Equations (4-9) and (4-10) we know that

¢(x') = aoéu) + a3 (u)cos {(%I + 5523) g] for & < x' < 2b-a
Therefore, we find
D-
$2(u) = 2(%-a) 7}20522 + al(u){cos © cos B'x!'
a
(E-3)
- sin 6 sin B'X'}] dx!
where
na [ 1 1
° = p Dy Bg)
' T[ (E-4)
T = BDz
Performing the integrations in Equation (E-3) we find
T ao(u) al(U—)B B R (¢
da(u) = > 22 (B-0) L?ln 5 (2p-a)-sin 5 (E-5)

Q& and B have been defined in Equation (2-&0), $é(u) can also be

written as
f(u) = 4o+ 4 ehrlamo) (2-6)

where ¢o has same value in Equation (D-3) and

oL ) [A0180(1) _So(1)B . /ma ] .
d2 = Ai(u Ug ) L ™ (60 51r1<5— (E-7)
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Integrating Equation (E-1) with respect to x we find

2b 2b-a

u) = E x')dx"' - x! 29532
) = e [232(0)[4)( ) /d { {

a

a

+ a;(u)(cos © cos B'x'-sin © sin B'x')J Eg{Zg(Eb-_a)-ng}

J[42b a{:
/]
f { (cos © cos B'x'-sin © sin B'x )J‘

{Ea nd121+nd222+322 ZQX - E2 ndlz.l+ 1’1+l d222+aZQ ZQX }

+ai1(u)(cos © cos B'x'-sin 6 sin B'x"') ]Eg Yox'-2pa )

® . 2b-a

+ j dx! {ao(u) + a;(u)(cos 6 cos B'x'-sin © sin B'x')}
a

Eo(ndig+(n-1)dsle-ale+lex') - Eo(ndili+ndsle-ale+lox! } (-8)

\—““7
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As in Appendix D we express Eo(. . . ) in integral form, Equation (D-5),

when it is multiplied by cos B'x' or sin B'x'and get

. =
Pa(u) = 1 - i—:—%—g— Es-Es(dgze) 4 {Eamdlzﬁ(n-ndgze)
-

- 2E3(ndlzl+ndgze) + Es,(ndlzl+(n+l)d222 )}J

( ) o 2b-a 1 [ =
_ai(u)eos cos B'x" o Yo (2b-a)-2ox J/tdt
2d2$2
) 2b °© 1
—a _
in o i Ry ;
. al(u)s—l—n sin B’ . [ZQ(Eb a) ng-l/tdt
2dzds
0
-~ 2b-a 1
- E'_(u_)_c_:%s_? ';1 cos B'x! e'EzQX"ZEa]/tdt
2d2¢2 | j
a “‘O
(W)sin @ 2b-a -1 -
+ ki Sin sin B'x"' | e-[:zeX -Zga_' /tdt
2dzdz
© b
¢ -a
T ag(u) ol -[ndlzl+ndgzg+azg-zgx']/t
+>—‘ cos © cos B'x' ! e dt
2dod2 j
=1 a 0
2b-a ~1 My
- sin © “/f sin B'x"j o~[Paalatndolorale-Tox'] [y,
~ 2b-a O, 1 5 ZQ ZQ ZQ ]
- - vl /¢
- cos © / cos B'x' J e I'—ndl 1+(n+1)dzloa x']/ dt
,t]
& b=-a (?» 1

sin B'x' / o~ [n822 +(n+1)doTovalp-Yox '] /444

+ sin O

a 0

(E-9)
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2b-
+ cos 9[ c:s B'x! [ndlzl+ (n- l)d2&~aze+zexj/tdt
J

0
2b-a

- sin Gf sin B'x' f -[nd12+(n-1)dolp- aze+zex_]/tdt

cos B'Xif e-[ndlzl+ndgzg—a2é+zexﬂ /t it

-cosQJ
a 0

f2b-a ,fl

+ sin 9] cin B'X'j e_ E’ld121+nd222-aze+zexﬂ /t " (E-9)
a

Cont'd
. (cont 'a)

In Equation (E-9) we have integrations of the following types:

2b=-a

f cos B! x] BGZQX]/t dat

1. - 1. q
= B'sin B (2b a)[ < [K+ZE(2b a)]/ttzdt -B'sin B'a € [K-’ZQB_J/ttZdt
254'6'2"[}2 Z§+B'2t2
0

0
| _{’le- l-l{’rzea] /ttdt ' le- [K+(2b-a)le] /ttdt
+ Lpcos B aj ENIEE - Ypcos B'(2b-a) 2,522

o 0 (E-10)

and

2b-a 1 - 1 Pb-a
- i - - '/t
j’ sin B'x' e EGZQXU /tdt =/ dt e K/tj sin B'x' e ng / dx!

a 0 0 a

1
-2o(2b-a)/t
fe-K/t [e Zé : : t2 {(— -Z—Q> sin B'(2b-a)-B'cos {3'(2b-a)}r
#'t

0

Zga/t 2
ZQ+B'2 z {(— %) sin B'a-B'cos s'a:H dt (E-11)

L}

ct
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- L
Jesin B'a ]-e-EK+ZeaJ/ttdt - Ypsin B'(2b-a) e-LK+<2b-a)ze]/ttdt
Ye+8 1242 O Z§+B'2t2

0

Blcos B ;fl e-Ek+22é]/tt2dt
+ cos B'a
T54B1%t7

ON—

= e-[k+(2b-a)2i]/ttgdt
(E-11)

- B'cos B'(Eb-a).J >
<t
o Lo (Cont 'd)

Evaluating all the integrals of Equation (E-9) we finally get

ao u) °° 1 !
Po(u) = 1 - 55;%;;; [: LLJ Esz(2](n))-2E3(4 z(n))+E3(ﬂ3(n)i}}

12

5 logg <; + igﬁ) (cos B'(2b-a)+cos B'a)

w

_ax(u)cos 6 ’ Lo
2d2$2 L?B'

+

él7 (l - _Bzg' tan™*t %) (sin B'(2b-a)-sin B'aﬂ

ai(u)sin o 2o (i 12
+ = | 5a:2 lO +
2d2(i)2 26 12 ge

w

> (sin B'(2b-a)+sin B'a) (E-12)

59
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+ é’,‘ <l - g@ tan-t ;-;—) (cos B'(2v-a)+cos B'a)i]

oc

+

n=0

ai(u)cos ©

2dods

+ B'{sin B'(2b-a)-sin B'a} {IIi(n)—IIé(n)%J

o0

—

2422
n=0

\ aj(u)sin ©

-

- B'{cos B'(2b-a)-cos B'a} {IIi(n)-IIé(nXU

IIi(n)

l 1
e~ 4i(n)/tygy

Zae T
0
II} _ le-zi(n)/ttZdt
1 254‘5'2132
0
ﬂi(n) = (n+l)dlzl+nd22é
f2(n) = (0+1)(a222+Yeds)
ﬂé(n) = ndlzl + (I’l+].)d222

[ie{cos B'(2b-a)+cos B'a}iIIl(n)-2IIQ(n)+Ils(n8

{%Q fsin B'(2b-a)+sin B'a}{;Il(n)-2I12(n)+I13038

(E-12)

(Cont 'd)

(E-13)

(E=14)

(E-15)



APPENDIX F

COMPUTER PROGRAMS

The computer programs used in obtaining the tables of results
given in the text are listed in the following pages. The programs,

written in MAD,(AE)

are for the IBM=7090 computer. They are written
mainly for checking the calculations used in this thesis. A brief

description of the input and output variables are given below:

Program No. 1

This program calculates the average fluxes in the fuel and
the moderator lumps, the disadvantage factor and the thermal utilization

of a rectangular cell with a cylindrical fuel rod at the center of the

cell.
Input
HK,HL,HM,;HN = +the highest value of k,l,m,n respectively
SA = half-width of the cell (in cm) along the x-axis (a)
SB = half-width of the cell (in cm) along the y-axis (b)
SOR2 = source density in the moderator (SQ)
SAl = macroscoplic absorption cross section of the fuel

element (Zal) for thermal neutrons

SA2 = macroscopic absorption cross section of the moderator
material (X ,) for thermal neutrons

D1 = diffusion coefficient of thermal neutrons in the

fuel element (Dy)
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D2 = diffusion coefficient of thermal neutrons in the
moderator (D)

DF = an arbitrary constant by which each term of the
matrix are divided so that the determinant does not

become too large for the machine

Output
AFLUXL = average flux in the fuel rod ()
AFLUX2 = average flux in the moderator ({s)
RATIO = the disadvantage factor (d)

THERU = the thermal utilization (f)
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PROGRAM NO. 1

$ COMPILE MADSEXECUTESPRINT OBJECTsPUNCH OBJECT»DUMP
DIMENSION A(6650+sADIM) 4DEL(6650sDIM)sPHI(100sPDIM)Y,
1 PHIF(100sPDIM)sPHIM(100sPDIM)
VECTOR VALUES PDIM = 1,1
VECTOR VALUES ADIM = 24190
VECTOR VALUES DIM =4404904040
START READ DATA
PRINT RESULTS HMsHNIHK sHLsSA9SB9SA19SA29D19D2sRsDF s SOR2
LC = HM+HN+HM¥*HN+2
LR = (HK+1)¥(HL+1)
ADIM(2) = LC
DIM(1) = (HK+1)*(HN+1)*¥(HL+1)+ (HN+1)*(HL+]1}+HL+2
DIM(2) = HK+1
DIM(3) =HN+1
DIM(4)= HL+1
Pl = 34142592
RP = PI#R
D= D1-D2
S= SA1-SA2
R
R CALCULATION OF FIRST AND LAST COLUMN OF THE MATRIX
R
PRINT COMMENT $0 FIRST AND LAST COLUMN OF THE MATRIXS$
Allsl) = (S*RP#R/6G40 + SA2%#SA*SB)/DF
A(1sLC) = (440%SAX¥SB~RP#R)*SOR2/DF
PRINT RESULTS A(lsl)sA(1sLC)
1 =1
THROUGH LOOP9sFOR L=191sL eGeHL
I = 1+1
9 L/SB
X9 RP#29
Y = BSL1e(X93191989+0)
WHENEVER YeEe2¢09 TRANSFER TO COMM
A(lsl) = (S*R¥B9/(Z29%2,0))/DF
Al(I9sLC) = (=2.0%R¥B9/29)*#SOR2/DF
LOOPS PRINT RESULTS AtIsl)sAllsLC)
I = HL+1
THROUGH LOOP1sFOR K=lsls KeGeHK
THROUGH LOOP1sFOR L=09s19s LeGeHL
1 = I+1
2Z = SQRTe( (K/SA)ePe2+ (L/SB)ePe2)
X = RP*Z
Y BSL1e(X91919Bs0)
WHENEVER YoEe209TRANSFER TO COMM
Allsl) = (SRR¥B/(Z%2))/DF

A(IsLC) = (-2%R*B/Z)%*SOR2/DF
LOOP1 PRINT RESULTS A(Is1)sA(IsLC)
1 =0

THROUGH LOOP2s FOR K=0sls KeGeHK
THROUGH LOOP2s FOR L=0s1s LeGeHL
I = I+1

J =1

THROUGH LOOP3s FOR N=191s NeGeHN
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J = J+l

WHENEVER NsEolL oANDe KeEoO

DEL(OsK9NsL) = SAXSB®2

OTHERWISE

DEL(OsKsNsL) =0

END OF CONDITIONAL

21 = SQRTe((K/SA)ePe2 + ((N+L)/SB)ePe2)

X1 =RP*21

Y = BSL1e(X191919B190)

WHENEVER YeEe2¢09 TRANSFER TO COMM

22 = SQRTe((K/SA)ePe2 +((N=L)/SB)ePe2)

X2 = RP#Z22

Y = BSL1e(X291913B2+0)

WHENEVER YeEe2¢09TRANSFER TO COMM

AlIod) = (((N#PI/SB)ePe2%(D*R*(B1/Z1+B2/22)+D2*DEL(OsKsNsL))
1 +N*PI/SB*(=D)*R*PI1/SB*( (N+L)*¥B1/Z1+(N=-L)*¥B2/22)+S#R*(B1/Z1+
2 B2/722)V+SA2*DEL(OsKeNsL))/72)/DF

LOOP3 CONTINUE
LOOP2 PRINT RESULTS A(l92)eeeAl{lsHN+1)
1 =0

THROUGH LOOP4sy FOR K=0419 KeGoeHK
THROUGH LOOP4y FOR L=2Qysls LeGeHL

1 = I+1

J = HN+l

THROUGH LOOPS5sFOR M=1¢19 MeGeHM

J = J+l

WHENEVER LeEeO oANDe MeEoK

DEL(M9sKsOsL) =SA®SB¥*2

OTHERWISE

DEL(MsKsQsL) =0

END OF CONDITIONAL

23 = SQRTe(((M+K)/SA)ePe2 + (L/SB)ePe2)
X3 = RP#23

Y 2 BSL1e(X391914B340)

WHENEVER YoEe2409TRANSFER TO COMM

24 = SQRTe(((M=K)/SA)ePe2 + (L/SB)ePe2)
X4 = RP#24

Y = BSL1e(X491919B490)

WHENEVER YoeEe2¢Q0s TRANSFER TO COMM
AlloJd) = (((M#PI/SA)ePe2s0%(DHR*(B3/23+84/24)+D2#DEL(MsK90sL)
1 )4 (MHPI/SA)®(=D)#R¥PI/SA*({M+K)#B3/23+(M~K)*B4/Z24)+SRR*(B3/
2 23+B4/24)+ SA2¥DEL(MsKsOsL))/2)/DF

LOOPS CONTINUE
LOOP4 PRINT RESULTS A(IsHN+2)eesA(IyHN+HM+1)
1 =0

THROUGH LOOP63sFOR Kz0sly KeGeHK
THROUGH LOOP&s FOR L=0sls LeGeHL
I = I+1

J = HM+HN+1

THROUGH LOOP743FOR M=1ls1s MeGeHM
THROUGH LOOP7sFOR N=1lsls NeGeHN
J =z J+l

WHENEVER LeEeN oANDe KeEoM
DEL(MsKoNsL) = SA*SB

OTHERWISE

DEL{(Ms¥sNsL) = 0

END OF CONDITIONAL

25 = SQRTe( ((M+K)/SA)ePs2 +({N+L)/SB)ePe2)
X5 = RP#25



LOOP7
LOOP6

LOOPS8

LP1

LP2

LP3
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Y = BSL1e(X5»151sB5+0)

WHENEVER YeEes2¢09 TRANSFER TO COMM

26 = SQARTe(( (M+K)/SA)ePe2 +((N~L)/SB)ePe2)
X6 = RP¥*Z6

Y = BSL1e(X6351919B690)

WHENEVER YeEe2¢09s TRANSFER TO COMM

27 = SQRTe{((M=K)/SA)ePe2 +((N+L)/SB)ePs2)
X7 = RP*Z7

Y = BSL1e(X791919B70)

WHENEVER YoEe2e09TRANSFER TO COMM

28 = SQRTe(((M=K)/SA)ePe2 +((N=L)/SB)ePe2)
X8 = RP¥*28

Y = BSL1e(X89191+B8+0)

WHENEVER YeEe2409TRANSFER TO COMM

AlIsd) = ((IM#PI/SA)ePe2e0 +{N¥PI/SB)ePe2+0)*(D¥R/240%(B5/Z5
1 +B6/26+B7/27+B8/28)1+D2#DEL(MyKoNyL) )+ MU¥PI/SA¥ (=D)*PI/SA*R/
2 240%((M+K)*(B5/25+B6/26) +(M=K)*(B7/27+B8/28)) + N*P1/SB*
3 (=D)#PI/SB*¥R/240%( (N+L)*(B5/25+B7/27)+(N=L)*(B6/26+B8/28))+
4 S#R/2.0%(B5/25+B6/26+BT7/27+B8/28) + SA2*DEL(MsKeNyL))/DF
CONTINUE

PRINT RESULTS A(IsHM+HN+2)eseA(IsLC=-1)
PRINT COMMENT $0 THE MATRIXS$

PRINT RESULTS Allsl)eeeA(LRILC)
R
R CALL FOR GJRDT SUBROUTINE
R

PRINT COMMENT $0 CALCULATION OF COEFFIENTSS
G = GJRDTe(LRsLCs»A(191)9DE)

WHENEVFER G oEe O¢0s TRANSFER TO OUT

PRINT RESULTS DE

THROUGH LOOP8s FOR I=1s1ls] ¢Ge LR

PRINT RESULTS A(IsLC)

PRINT COMMENT $0 AVERAGE FLUX IN FUELS

1 =1

PHIF(I) = A(IsLC)/4

THROUGH LPl1s FOR N=1s1ls NeGeHN

I = [+1

S1 = N/SB

Tl = RP¥S1

Y = BSL1e(T1l91l9s1lsW1ls0)

WHENEVER YeEe2¢09TRANSFER TO COMM

PHIF(1) = PHIF(I=1)+ A(IsLC)/RP*W1/S1

I = HN+1

THROUGH LP2s FOR M=1y1y MeGeHM

I = I+1

S2 = M/SA

T2 = RP*S2

Y = BSL1e(T251919W20)

WHENEVER YeEe2¢09s TRANSFER TO COMM

PHIF(1) = PHIF(I-1) + A(lsLC)/RP%¥W2/52

I = HM+HN+1

THROUGH LP3s FOR M=1lsls MeGeHM

THROUGH LP3s FOR N=1ls1ls NeGeHN

I = 1+1
S3 = SQRTe((M/SA)ePe2 + (N/SB)ePe2)
T3 = RP#*S3

Y = BSL1e(T39191sW390)
WHENEVER YeEe2¢09s TRANSFER TO COMM
PHIF(I) = PHIF(I-1) + 2*A(I4LC)/RP*W3/53
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AFLUX1= PHIF(I)
PRINT RESULTS AFLUX1
PRINT COMMENT $0 AVERAGE FLUX IN MODERATORS
F = 440%SA%SB = PI#R#R
[ =
PHIM(I) = A(IsLC)/4
THROUGH LP4y FOR N=1ljs1ly NeGeHN
I = 1+]
S4 = N/SB
T4 = RP*S4
Y = BSL1a(T4s1l019W4s0)
WHENEVER YeEe2¢09TRANSFER TO COMM
LP4 PHIM(I) = PHIM(I=1) =R*¥A(IsLC)/F%W4/S4
I = HN+1
THROUGH LPS5s FOR M=1491y MeGeHM
I = I+1
§5 = M/SA
T5 = RP#S5
Y = BSL1e(T54191sW540)
WHENEVER YoEe200sTRANSFER TO COMM
LPS PHIM(I) = PHIM(I-1) =R#A(lsLC)/F%*W5/S55
I = HM+HN+1
THROUGH LP6s FOR M=1lsls MeGeHM
THROUGH LP6s FOR N=1sl9s NeGeHN
I = [+1
$6 = SQRTe((M/SA)ePe2 + (N/SB)ePe2)
Té6 = RP¥S56
Y = BSL1e{T63191sW690)
WHENEVER YeEe2+09TRANSFER TO COMM
LP6 PHIM{I) = PHIM(I=1) =2.0%R¥A(I+LC)/F%W6/S6
AFLUX2= PHIM(I)
PRINT RESULTS AFLUX2
RATIO = AFLUX2/AFLUX1
INVDIS = 14(4%SAXSB-PI#R*R)®SA2/(PI#R*R*SA1)#RATIO
THERU = 1/INVDIS
PRINT RESULTS RATIOs»THERU
INTEGER HMyHNoHKsHLsLCoLRs 19K oL o JoNsM
TRANSFER TO START

COMM PRINT COMMENT $0 ARGUMENT OF BSL1 TOO LARGES
TRANSFER TO START
ouT PRINT COMMENT $0 ERROR IN GJRDT OPERATIONS

TRANSFER TO START
END OF PROGRAM
$DATA
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Program No. 2

This program calculates the average fluxes in the fuel and
the moderator lump, the disadvantage factor, the thermal utilization

and flux at different points in the equivalent cylindrical cell.

Input
A = half-width (in cm) of the rectangular cell whose egquivalent
cell calculation is need, along the x-axis (a)
B = half-width (in cm) of the rectangular cell along the y-axis (b)
Rl = radium (in cm) of the fuel rod (p)
SA1 = macroscopic absorption cross section (Zal) in the fuel for
thermal neutrons
SA? = macroscopic absorption cross section (Zae) in the moderator
for thermal neutrons
D1 = thermal diffusion coefficient (D7) of the fuel material
D2 = thermal diffusion coefficient (Dg) of the moderator material
SEP = intervals of the radius at which the fluxes are calculated
Output
APHI1 = average flux in the fuel rod (@i)
APHT? = average flux in the moderator lump (§,)
RATIO = the disadvantage factor (d)

THERU = thermal utilization (f)
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$COMPILE MADsEXECUTEsDUMPsPRINT OBJECTs1/0 DUMPsPUNCH OBJECT

START

READ DATA

PRINT RESULTS AsBsR19SA19SA2+D1+D2+SEP
K1l = SQRT.(SA1/D1)

K2 = SQRTe(5A2/D2)

R2 = 2%SQRTe(A%B/34141592)

Z1 = K1#%*R1

23 = K2#R1

Z4 = K2#R2

PRINT RESULTS Z1923924

R 2ERO ORDER MODIFIED BESSEL FUNCTION OF FIRST KIND

L = BSL1e(Z1»2+0+B140)
WHENEVER L oEe 2¢0sTRANSFER TO OUT
L = BSL1e(Z2392+09B250)
WHENEVER L oEe 2¢0sTRANSFER TO OUT

R FIRST ORDER MODIFIED BESSEL FUNCTION OF FIRST KIND

L = BSL1e(Z192919B3+0)
WHENEVER L oEe 2¢09TRANSFER TO OUT
L = BSL1e(Z392919B450)
WHENEVER L eFEe 2¢0sTRANSFER TO OUT
L = BSL1e(Z492913B8540)
WHENEVER L eFe 240sTRANSFER TO OUT

R ZERO ORDER MODIFIED BESSEL FUNCTION OF SECOND KIND

L = BSL1e(Z3+3409B6+0)
WHENEVER L eEe 2+09TRANSFER TO OUT

FIRST ORDER MODIFIED BESSEL FUNCTION OF SECOND KIND

L = BSL1e(Z35351sB7+0)
WHENEVER L oEes 2e40sTRANSFER TO OUT
L = BSL1a(Z4s3+15B850)
WHENEVER L eEes 240sTRANSFER TO OUT

R CALCULATION OF Q/(SA2%A)

CONS = B1-D1#K1#B3%(B2*B8~-B6#B5)/(D2*#K2#(B4*B8-B7*B5))
PRINT RESULTS CONS

R CALCULATION OF C/A

CBYA = (B1-CONS)/(B2%B8+B6*B5)
PRINT RESULTS CBYA

R CALCULATION OF FLUX IN FUEL
R

PRINT COMMENT $0 FLUX IN THE FUELS
THROUGH LOOP1+FOR R=03sSEP» R +Ge R1
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F = R#K1
L = BSL1e(F92909F1+0)
WHENEVER L oFEe 2¢09sTRANSFER TO OUT

PHIBYA = F1
LOOP1 PRINT RESULTS RyPH1BYA
R
R CALCULATION OF FLUX IN THE MODERATOR
R

PRINT COMMENT $0 FLUX IN THE MODERATORS
THROUGH LOOP2s FOR R =R19SEPs R oGe R2
M = R¥K2
L = BSL1e(M329s0sM140)
WHENEVER L eEe 2¢09TRANSFER TO 0OUT
L = BSL1e(M33304M2+0)
WHENEVER L oFEe 2+.09TRANSFER TO OQUT
PH2BYA =CBYA*(M1%B8+M2%B5)+CONS

LOOP2 PRINT RESULTS RyPH2BYA
PRINT COMMENT $0 AVERAGE FLUXESS
APHI1 = 2%B3/(K1*R1)
APHIZ2 = 2#CBYA/ (K2%¥{R2#R2~R1%R1))*(B8*(R2*B5-R1¥B4) +BS5*(R1*
1 B7-R2%B8))+CONS
PRINT COMMENT $0 DISADVANTAGE FACTORS

RATIO = APHI2/APHI1
INDIS = 1+ R2%SA2/(R1#SA1)*RATIO
THERU = 1/INDIS

PRINT RESULTS APHI1sAPHI2sRATIOsTHERU
TRANSFER TO START

ouT PRINT COMMENT $0 ERROR IN BSL1 SUBROUTINES
TRANSFER TO START
END OF PROGRAM

$DATA



-112-

Program No. 3

This program calculates the roots of the determinant,

Equation (4-8).

Input
SA
SB

SIGS1

SIGS2

MEUL

MEU2

CIl

CI2

Sl

OQutput

R(1),R(2),
ete.

half-width of the fuel lump (a)

half-width of the one-dimensional cell (Db)

macroscopic scattering cross section of the fuel material
(Zs1)

macroscopic scattering cross section of the moderator (ng)
the average cosine of the scattering angle per collision in
the fuel in the Laboratory Coordinate System (uj)

the average cosine of the scattering angle per collision with
the moderator atom in the Laboratory Coordinate System ({p)
the average logarithmic energy decrement of neutrons per
collision in the fuel element (&)

the average logarithmic energy decrement of neutrons per
collision in the moderator lump (gg)

source density in the fuel region (S7)

the maximum value of n in the summation of the flux.

(HN = L4 in this program)

are the roots of the determinantal equation. R(1) + iR(2)

is the first root, but R(2) = R(4) = ... =0, i.e., the

imaginary part of the root becomes zero, the roots appear

with a negative sign.



-113-

PROGRAM NO. 3

SCOMPILE MADSEXECUTESPRINT OBJUECTsDUMPsPUNCH OBJECT

READ

LOOP1

HN3

DIMENSION A(1009ADIM)+S(10)sB(20)9sR(20)

VECTOR VALUES ADIM = 2,040

READ DATA

PRINT ZOMMENT $0 INPUT DATA FOR NO ABSORPTION CASES$
PRINT RESULTS SA9SBeSIGS19SIGS29MEULIMEUZ2+CI19CI29S19eHN
ADIM(1) = HN+2

ADIM(2) = HN+1

Dl = 10/(3%51GS1%*#(1~MEVU1))
D2 = 140/(3%SIGS2*(1-MEU2))
Wl = 340%(1-MEU1)/CI1

W2 = 340%(1-MEU2)/CI2

W = Wl-W2

ALP = SA/D1

BETA = ALP+(SB=-SA)/D2
PI = 341415926
T = PI*ALP/BETA

A(0s0) = O
THROUGH LOOP1sFOR M=0s1s MaGeHN
A(Ms0) = 0

THROUGH LOOP1sFOR N=1ljyls NeGeHN
WHENEVER MeEWN

A(MoN) =PI%(N/BETA)aPo2#(WH(SINe( (N+M)*T)/(M+N)+T)+W2*#P])
OTHERWISE

A(MsN) = PI*(N/BETA)ePe2*WXSINe ((M+N)*T)/ (M+N)
END OF CONDITIONAL

WHENEVER MeE«O

S{M) = 2¥S1*T/(PI*CI1%#SIGS1)

OTHERWI SE

S(M) = 2%S1%SINe(M*T)/(PI*#CI1%SIGS1*%M)
END OF CONDITIONAL

CONTINUE

PRINT RESULTS A(03s0)eesA(HNIHN)

PRINT RESULTS S(0)eseS(HN)

WHENEVER HNeGe29s TRANSFER TO HN3

B(O) = 1

B(1) = O

B(2) = A(ls1l) + A(2s2)

B(3) =0

Bla) = A(1s1)%A(292) = A(291)%A(192)
B(5) = 0

Q = ZERZ24(298(0)sR(1))

WHENEVER QeEe2¢09 TRANSFER TO 0UT2
WHENEVER QeEe3¢0s TRANSFER TO OUT3
PRINT RESULTS R{1)eeeR(4&)

TRANSFER TO READ

WHENEVER HNeGe3»TRANSFER TO HN4

B(0O)=1

B(1) = 0

B(2) = A(191)+A(292)+A(393)

B(3) = 0

Bl4) = A(Ls1)*A(292)+A(1s 1) %A (393)+A(2+2)%A(393)~A(392)%

1 A(253)-A(192)%A(291)1-A(193)%A(3y]1)



HN4

HNS
ouT2

ouT3

$DATA
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B(5) = 0

Bl6) = Alls1)*(A(292)%A(393)=A(392)%A(293))-A(1s2)%(A(2s1)%
1 A(393)-A(391)%A(2+3))+A(193)%(A(291)%A(3+92)=A(292)1%A(391))
B(7) = 0

Q = ZER24(3sB(0)sR(1))

WHENEVER QeEe240+s TRANSFER TO 0OUTZ

WHENEVER QeEe3¢0»TRANSFER TO OQUT3

PRINT RESULTS R(1l)eseR(6)

TRANSFER TO READ

WHENEVER HNeGe4s» TRANSFER TO HNS

B(O) = 1

B(1) = O

B(2) = A(lsl) + A(292) + A(393) + Al4r4)

8(3) =0

Bla) = A(Ly1)%(A(292) +A(393) +A(494)) +A(242)%(A(393)+

1 A(494)) +A(393)%A(4e4) ~A(293)%A(392)= Al(294)%A(492)=A(394)%*
2 A(Gys3)=A(192)%A(291)-A(1s3)%A(351)=A(194)%A(4y]1)
B(5) = 0
B(6) = A(1s1)%(A(292)%A(393) +A(292)%A(494)+A(393)1%A(494)~
1 A(293)%A(392) ~A(294)%A(492)~A(394)%A(493)) +A(292)%(A(393)%
2 A(Gea)=A(394)%A(493)) =A(293)%(A(392)%A1494)~A(394)%A(4r2))+
3 A(294)%(A(392)%A(493) =A(492)%A(393)) =A(192)%(A(291)%A(393)
4 +A(291)%A(494)-A(203)%A(391) ~A(204)%A(4Le1))+A(193)%(A(29]1)%*
S A(392)+A(394)%A (491 )-A(202)%A(391)~A(391)%A(4e4)) =A(194)*
6 (A(292)%A (491 )~A(391)%A(493)+A(49]1)*A(393)-A{291)%A(4+2))
B(7) = 0
B(8) =A(19o1)*(A(292)%(A(393)%A(494)~A(394)%A(493)) ~-A(2+3)%(
A(392)%A(494)~A(394)%A(492)) +A(204)%(A(392)%A(4e3)~A(Lo2)*
A(3931)) =A(192)%(A(291)%(A(3+3)%A(494)1~A(394)%A(493)) =
A(293)%(A(39s1)%A(494)~A(394)*A(4s]1)) +A(294)%(A(391)%A(4y3)~
Al4s1)%A(393))) +A(193)%LA(201)%(A(392)%A(494)=A(394)%A(4y2)
) =A(292)%(A(391)%A(494)=A(3s4)%A(4e1)) +A(294)%(A(34]1)%
Alhe2)=A1302)%A(491))) =A(1o4)*(A(291)%(A(392)%A(493)=A(42)
#A(393)) =A(292)%(A(391)*%A(493)=Al4s1)*A(393)) +A(293)%(
A(331)%A(401)~A(392)%A(441)))
B(9) = 0
Q = ZER2e(49B(0)9R(1))
WHENEVER QeEe2¢09 TRANSFER TO 0OUT2
WHENEVER QeEe3¢09 TRANSFER TO 0QUT3
PRINT RESULTS R{(1)eeeR(8)
TRANSFER TO READ
PRINT COMMENT $0 ARGUMENTS OF 2ER2 ARE OUT OF RANGES
TRANSFER TO READ
PRINT COMMENT $0 IMPOSSIBLE TO LOCATE THE ROOTSS$
TRANSFER TO READ
INTEGER MsN oHN
END OF PROGRAM

O ~NJOoOWm P LN
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This program computes the resonance interference between a

pair of resonances in a slab lattice.

The fuel lump contains U258,

Th252 and O16 but the moderator may contain any monoatomic moderator.

Input
SA

SB

NTH
NOX
SIG2

MEU2

CI2
SORS
SPINJ

SPINT
ALPM
EFR

GNF

GGF

half-width of the fuel slab (in cm) (a)

half-width of the cell (in cm) (b)

number of U258 atoms in fuel/barn-cm

number of Th®32 atoms in fuel/barn—cm

number of oxygen atoms/barn-cm

total macroscopic cross section of the moderator (22)
the average cosine of the scattering angle per collision
with the moderator atom in the Laboratory Coordinate
System (EM)

the average energy decreasement per collision (52)
source density at higher energy

channel spin (J)

nuclear spin (I)

Ay-1.2
e G

energy of the first (higher energy) resonance (Eg)

the neutron width (in ev) at the first resonance ()
the radiation width (in ev) at the first resonance ([.)
0O, NR approximation for the first resonance

1, IM approximation for the first resonance
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O, when the first resonance is due to The>2

SURAN =
1, when the first resonance is due to U238
IM,HN = the highest value of the m,n in the expansion of the
flux, here HM = HN = 2 will do
NFR = one half the number of divisions used in integrating
over the first resonance (the range of integration is
six times the practical width)
ESR = energy at the peak of the second (lower energy)
resonance
0, when the second resonance is due to The32
SURAN =
1, when the second resonance is due to U'238
0, when NR approximation is used for the second resonance
e 1, when IM approximation is used for the second resonance
GNS = the neutron width (in ev) at the second resonance (rh)
GGS = the radiation width (in ev) at the second resonance (1)
NSR = one half the number of divisions used in integrating
over the second resonance (range of integration is six
times the practical width)
Output
GAMP = the practical width (in ev) of the first resonance (r;rac)
FRI = resonance integral of the first resonance (I)
GAMPS = the practical width (in ev) of the second resonance
(T prac)
UNIRI = the uninterfered second resonance integral, (I) unint

DELU = the lethargy difference between the first and second

resonance, Au = u.-uy
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RI the interfered second resonance integral (I)int

sy = ()
PCERR = (Dint = (Dunige x 100
(I)int

p -
PCINA =Mk
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PROGRAM NO. 4

$COMPILE MADs EXECUTEs PRINT OBJECT»s DUMP, PUNCH OBJECT
DIMENSION A(819ADIM) 9S(10)9AS(10)sXT(282)9YT(282)sF(250)
1 FN(250)9IN(100)sJN(100)
EXECUTE FTRAPs
VECTOR VALUES ADIM = 25090
READ DATA
SIGPU = 10475
SIGPTH = 1240
SIGPO = 3.8
MEUU = 040028
MEUTH = 040029
MEUO=040317
CIU = 040084
CITH = 040086

CIOX = Qe12

START READ DATA
PRINT RESULTS SAs SBs NUs NTHs NOXs SIG2sMEUZ29CI2¢SORS)y
2 EFRs NFRs SPINJs SPINIs GNFs GGFo IMFy FURANs HMsHNS

3 ESRy NSRs GNSs GGSsALPMs SURANIMS

ADIM(1) =HM+2

ADIM(2) = HM+1

SIGSU = NU*SIGPU

SIGSTH = NTH*SIGPTH

SIGSO NOX#SIGPO

SIGS1 SIGSU+SIGSTH+SIGSO

MEUl =(MEUU*SIGSU + MEUTH#*SIGSTH + MEUO*SIGSOQO)/S1GS1
Dl = 1e0/(3%SIGS1*(1-MEUL))

D2 160/ (3%SIG2%(1-MEU2))

CIl = (CIU%SIGSU+CITH*SIGSTH+CIOX*#SIGS0)/SIGS1
wl 340%({1~-MEU1l)/CI1

W2 3.,0%(1=-MEU2)/CI2

W = Wl-W2

ALPH = SA/D1

BETA = ALPH + (SB-=-SA)/D2

PI = 341415926

PIT PI#CI2%51G2

PIC PI#CI1%*SIGS1

T = PI*ALPH/BETA

T™M = 2%(SB=SA)

TF = 2%SA

THROUGH LOOP,y FOR M=091ly MeGeHM

A(Ms0) =0

WHENEVER MeEeC

S(M) = 2#SORS*#T*#(1/PIC-1/PIT) + 2%¥SORS/(CI2#S51G2)
OTHERWISE

S(M) = 2%SORS*SINe (M*¥T)/M*(1/PIC~1/PIT)

END OF CONDITIONAL

THROUGH LOOPs FOR N=1sls NeGeHM

WHENEVER MeEeN

A(MoN) = PI*(N/BETA) ePe2# (W*(SINe((M+N)*T)/ (M+N)+T)+W2%PI)
OTHERWISE

A{MeN) = PI#(N/BETA)ePe2%W*SINe ( {M+N)*T)/(M+N)
END OF CONDITIONAL

it on
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LOOP CONTINUE

PRINT RESULTS A(090)eeeA({HM9HM)

PRINT RESULTS S(0O)eeeS(HM)
R CALCULATION OF THE STRENGTH OF THE SINK
R EFR IS THE ENERGY AT THE PEAK OF THE FIRST RESONANCE
PHIASH = SORS*SB/(SA#CI1*SIGS1 + (SB~SA)*CI2#51G2)

PRINT RESULTS PHIASH

G = (Z®SPINJ+1)/(2#{2%SPINI+1))

GTF = GNF+GGF

LAMH = (4455E~10)/SQRT(EFR)I%*(140E12)

Cl = 4¥PI*LAMH*LAMH*GNF/GTF*G

C2 = C1*GGF/GTF#SQRTe (EFR)

C3 = C1#GNF/GTF

PRINT RESULTS C1sC2sC3

WHENEVER FURAN «Esl

GAMP = GTF*SQRT«(C1/SIGPU)

PRINT COMMENT $OFIRST RESONANCE ATEFR IS DUE TO URANIUMS
OTHERWISE

PRINT COMMENT $OFIRST RESONANCE AT EFR 1S DUE TO THORIUMS
GAMP = GTF#SQRTe (C1/SIGPTH)

END OF CONDITIONAL

FEL = 3¢0%GAMP

PRINT RESULTS GAMP sFEL

HE = EFR+FEL

LE = EFR~-FEL

H =FEL/NFR
R
R2FEL IS ENERGY INTERVAL OF INTEGRATION OF FIRST RESONANCE
R 2NFR IS NUMBER OF DIVISION USED IN INTEGRATING FIRST RESON
WHENEVER IMFeEsl

PRINT COMMENT $Q INFINITE MASS APPROX FOR FIRST RESONANCES
OTHERWISE

PRINT COMMENT $0 NARROW RESONANCE APPROX FOR FIRST RESONANCES
END OF CONDITIONAL

J =0

THROUGH LOOP1ls FOR E=LEsHs EoGoHE

X = 2#(E-EFR)/GTF

RT = 1+X*X

SIGA = C2/(SQRTe(E)*RT)

SIGSR = C3/RT

WHENEVER FURAN eEel

SIGSI = SQRT&(C3*¥G*SIGPU) *¥X/RT

SIGT = NUX¥(SIGA+ SIGSR+ SIGSI+ SIGPU)

SIGT1 = SIGT + SIGSTH + SIGSO

TRANSFER TO KHAL

OTHERWISE

SIGST = SQRTe(C3#G*SIGPTH)#X/RT

SIGT = NTH*(SIGA+ SIGSR+ SIGSI+ SIGPTH)

SIGT1 = SIGT+ SIGSU+ SIGSO

END OF CONDITIONAL
R CALCULATION OF FIRST COLLISION PROBABILITY IN FUEL Pl

KHAL Y =0
THROUGH EDA FOR N=C»sls NeGeHN

L1 = (N+1)%TM*SIG2 + N*TF*SIGT1
L2 = (N+1)*%(TM*SIG2 + TF#SIGT1)
L3 = N*TM%SIG2 + (N+1)*TF*SIGT1

WHENEVER L1eGel0e0
Yl =0
OTHERWISE
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Y1 = TABe(L19sXToYT91ls1s392819SW)
END OF CONDITIONAL
WHENEVER SWeEe2e09sTRANSFER TO OUT1
WHENEVER L2¢Ge1040
Y2 = 0
CTHERWISE
Y2 = TABe(L2sXT9oYT91919392819SW)
END OF CONDITIONAL
WHENEVER SWeEe2¢0sTRANSFER TO QUTI
WHENEVER L34Gel1040
Y3 =0
OTHERWISE
Y3 = TABe(L3sXTsYTs1l9193928195W)
END OF CONDITIONAL
WHENEVER SWeEe2409TRANSFER TO QUT1
EDA Y = Y+Y1+Y3-2%Y2
Pl = 1-(1-2%Y)/(2%SIGT1#TF)
WHENEVER IMFeEel
F{J) = (SIGT1-(SIGT1-SIGSO)*PL1)*SIGA/(E*(SIGT1=P1*(SIGSU+
1 SIGSTHI )
J = J+l
OTHERWISE
F(J) = SIGA/E - (SIGT1-SIGS1)#P1/(SIGT1*E)*SIGA
J = J+l
END OF CONDITIONAL
LOOP1 CONTINUE
F1 = 0
THROUGH JAHANy FOR N=1sls NeGe(J-1)/2
JAHAN F1 = F1 + F(2%#N-1)
F2 = 0
THROUGH ARAs FOR N=1sls NeGel(J=3)/2
ARA F2 = F2 + F(2¥N)
R CALCULATION OF THE STRENGTH OF THE SINK
WHENEVER FURANeES1

NF = NU
OTHERWISE
NF = NTH

END OF CONDITIONAL

FRT = H/3%(F(0) + 4%F1 + 2%¥F2 + F(J=1))
PRINT RESULTS FRI

PRINT COMMENT $OSTRENGTH OF SINK AT HIGHER ENERGY RESONANCES
SINK = PHIASH#NF*FRI

PRINT RESULTS SINK

THROUGH RAJAs FOR M=0s1ly MeGeHM
WHENEVER MsEoO

AS(M)= 2*#SINK#T*(1/PIC)

OTHERWISE

ASIM)= 2%SINK*SINe (M¥T)/M*(1/PIC)

END OF CONDITIONAL

RAJA CONTINUE
PRINT RESULTS AS(0)eeeAS(HM)
R
R CALCULATION OF UNINTERFERRED SECOND RESONANCE
R

GTS = GNS + GGS

LAML = (4¢55E=10)%#(1e0E+12)/SQRTe(ESR)
cs1 4HFPT*| AML¥_AML*G*¥GNS/GTS

cs2 CS1*SQRTe (ESR)*¥GGS/GTS

R

Hou
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R ESR IS THE ENERGY AT THE PEAK OF SECOND RESONANCE
R

CS3 = CS1%#GNS/GTS

PRINT RESULTS CS51+CS529CS3

WHENEVER SURAN eEe 1

PRINT COMMENT $0 SECOND RESONANCE AT ENERGY ESR IS URANIUMS
GAMPS = GTS*SQRTe(CS1/SIGPU)

OTHERWISE

GAMPS = GTS#SQRTe (CS1/SIGPTH)

PRINT COMMENT 30 SECOND RESONANCE IS DUE TO THORIUMS
END OF CONDITIONAL

SEL = 340%GAMPS

PRINT RESULTS GAMPS»SEL

HE = ESR + SEL
LE = ESR-SEL
H = SEL/NSR

2SEL IS THE ENERGY INTERVAL FOR THE INTEGRATION OF SECOND
RESONANCE

2NSR IS THE NUMBER OF DIVISIONS USED IN INTEGRATING THE
SECOND RESONANCE

VDVODD0 0D

WHENEVER IMSeEsl

PRINT COMMENT S$OINFINITE MASS APPROXe FOR SECOND RESONANCES
OTHERWISE

PRINT COMMENT 3$ONARROW RESONANCE APPROX FOR SECOND RESONANCES
END OF CONDITIONAL

J =20

THROUGH LOOP2y FOR E=LEsHs EeGeHE

X = 2*%(E-ESR)/GTS

RT = 1+X#X

SIGA = CS2/(SQRTe(E}*RT)

SIGSR = CS3/RT

WHENEVER SURANeEe1l

SIGSI = SQRTe(CS3%#G*SIGPU)*#X/RT

SIGT = NU*(SIGA + SIGSR + SIGSI + SIGPU)
SIGT1 = SIGT + SIGSTH + SIGSO

TRANSFER TO PR1

OTHERWISE

SIGSI = SQRTe(CS3#G*¥SIGPTH) ¥X/RT

SIGT = NTH#*(SIGA + SIGSR + SIGSI + SIGPTH)
SIGT1 = SIGT + SIGSU + SIGSO

END OF CONDITIONAL
R
R CALCULATION OF COLLIJSION PROBABILITY

Y =0

THROUGH YURAs FOR N=0sls NeGeHN

L1 = (N+1)*TM%SIG2 + N*TF*SIGT1
L2 = (N+1)*{TM*¥SIG2 + TF*SIGT1)
L3 = N%TM*¥SIG2 + (N+1)*TF*¥SIGT1
WHENEVER L1eGelOa0

Yl =0

OTHERWISE

Y1 = TABe(lLls XTsYTolsls3s2819SW)
END OF CONDITIONAL

WHENEVER SWeEe2e0s TRANSFER TO OUT1
WHENEVER L2¢Gel0e0

Y2 =0

OTHERWISE
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Y2 = TABe(L2s XTsYT91l919392819SW)

END OF CONDITIONAL

WHENEVER SWeEe2¢09 TRANSFER TO OUTI1

WHENEVER L3¢Ge1l040

Y3 =0

OTHERWISE

Y3 = TABe(L3y XTsYT91l9193+28195W)

END OF CONDITIONAL

WHENEVER SWeEe2¢0s TRANSFER TO OUT1
YURA Y = Y+Y1+Y3=2%Y2

Pl = 1-(1=2%Y)/(2%SIGT1*TF)

PRINT RESULTS EsYsPl

WHENEVER IMSeEsl

F(J) = (SIGT1=(SIGT1-SIGSO)*P1)%#SIGA/(E*(SIGT1I=P1*(SIGSU+
1 SIGSTHI )
J = U+l
OTHERWISE
F(J) = SIGA/E=(SIGT1-SIGS1)*P1/(SIGT1*E)*SIGA
J = J+l
END OF CONDITIONAL
LOOP2 CONTINUE
F1 =0
THROUGH PIEMsy FOR N=19ls NeGe(J=1)/2
PIEM F1 = F1+F({2%N-1)
F2 = 0
THROUGH SUWANs FOR N=1sls NeGe(J=3)/2
SUWAN F2 = F2+F(2%N)

PRINT COMMENT $0 UNINTERFERRED SECOND RESONANCE INTEGRALS$
UNIRI = H/3%(F(Q)+4%F1 + 2%F2 + F(J~1))

PRINT RESULTS UNIRI

R

R INTERFERRED SECOND RESONANCE INTEGRAL
R ES IS THE ENERGY OF SOURCE NEUTRONS
R

ALPOX = 15¢0%1540/(170%1740)

ALPU 23740%#237e0/(23940%23940)

ALPTH = 23140%#231e0/(23340%23340)

ES = 2400E6
US = ELOGs(ES/ESR)
UF = ELOGe(ES/EFR)

DELU = US-UF

PRINT RESULTS US»UFsDELU

WHENEVER USeGeUF

STEP = 1

OTHERWISE

STEP = 0

PRINT COMMENT $OFIRST RESONANCE DO NOT HAVE HIGHER ENERGY$
END OF CONDITIONAL

CB = STEP*(AS(0)-A(0s1)*AS(1)/A(1s1))/2

CD = STEP*(S(0)-A(0s1)%¥S(1)/A(1s1))/2

PHIZ = CD-(CB

PHIP1 = ~STEP*AS(1)¥*(A(091)/(2e0%A(1s1))+ SINe(T)/T)
PHIP2 ==STEP#AS(1)%(A(09s1)/(2e60%A(1s1)) - BETA/(PI*(BETA-
1 ALPH))I*SINe(T))

AZ 240%PHIZ~-STEP*¥A(091)%¥AS(1)/A(1s]1)*EX

EX EXPel(=A(1s1)*DELU)

Al -~STEP®AS(1)*EX

PHIB1 PHIZ+PHIP1#*EX

PHIB2 PHIZ+PHIP2*EX

H Hon

"

1t
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CON1 = AZ/(2%TM¥PHIB2)

CON2 = Al/(2#TM*PHIB2)#COSe(T~=T*D1/D2)
CON3 = Al/(2%TM#PHIB2)%SINe (T=T*D1/D2)
SBP = SINe(BETAP*(2%SB-SA))

CBP = COS+(BETAP*(2%#5B-SA))

CBA = COS+(BETAP*SA)

SBA = SINe{(BETAP*SA)

ALPHP = PI/(BETA#D1)

BETAP = PI/(BETA*D2)

J =20

THROUGH LOOP3y FOR E=LEsHs EeGeHE
X = 2%¥(E-ESR})/GTS

RT = 14X#X

SIGA = CS2/(SQRTe(E)*RT)

SIGSR = CS3/RT

WHENEVER SURANeEel

SIGSI =SQRT«(CS3*G*SIGPU)*#X/RT
SIGT = NU#(SIGA+SIGSR+SIGSI+SIGPU)
SIGT1 = SIGT+SIGSTH+SIGSO

TRANSFER TO PR2

OTHERWISE

SIGSI = SQRTL(CS3*¥G¥SIGPTH)*X/RT
SIGT = NTH*(SIGA+SIGSR+SIGSI+SIGPTH)
SIGT1 = SIGT+SIGSU+SIGSO

END OF CONDITIONAL

R
R CALCULATION OF COLLISION PROBABILITIES
R
PR2 PSI = 0

PSIP = 0

CPI =0

CPIP = 0

YM = 0

YF = 0

THROUGH KENJIs FOR N=0sls NeGeHN
L1 = (N+1)#TM*SIG2 + N*TF*SIGT1
L2 = (N+1)*(TM®SIG2+TF*SIGT1)

L3 = N¥TM®SIG2+(N+1)*TF*SIGT1
LP1 = N#TM*SIG2 + (N+1)*TF*SIGT1
LP2 = (N+1)*(TM*SIG2+TF*SIGT1)
LP3 = (N+1)*TM*S1G2 + N*¥TF%SIGT1
WHENEVER L1 «Ge 100

YF1 = 0

OTHERWISE

YF1 = TABe{(L19XToYT91919392819SW)
END OF CONDITIONAL

WHENEVER SWeEe2e¢0s TRANSFER TO OUT1
WHENEVER L2 «Ge 1040

YF2 = 0

OTHERWISE

YF2 = TABe (L2sXTsYTelsl939281lsSW)
END OF CONDITIONAL

WHENEVER SWeEe2e¢0s TRANSFER TO OUT1
WHENEVER L3 ¢Ge 100

YF3 = 0

OTHERWISE

YF3 = TABe(L39XTsYTslsle39281l9SW)
END OF CONDITIONAL

WHENEVER SWeEe2e0s TRANSFER TO OUTIL
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YF = YF+YF1l+YF3=-2%YF2

WHENEVER LPleGe 1040

YM1 = O

OTHERWISE

YM1 =TABe(LP1sXT9YT919193928Ll9SW)

END OF CONDITIONAL

WHENEVER SWeEe2e¢0s TRANSFER TO 0QUT1
WHENEVER LP2e¢Ge 1040

YM2 = O

OTHERWISE

YM2 =TABe(LP2eXT9YT91l91939281lsSW)

END OF CONDITIONAL

WHENEVER SWeEe2e¢0s TRANSFER TO OUT1
WHENEVER LP3+4Ge 1040

YM3 = 0

OTHERWISE

YM3 =TABe(LP3oXTsYTs1l91l9392819s5W)

END OF CONDITIONAL

WHENEVER SWeEe2+0s TRANSFER TO OUT1

YM = YM + YM1 + YM3 - 2#YM2
R
R CALCULATIONS OF THE INTEGRALS PSI AND PSIPRIME
Tl = L1/1540

WHENEVER TleLeleO ¢ANDe TleGeOe5

Hl = (140=T1)/2040

OR  WHENEVER TlelLEeOe5 oANDe T1leGe0se000001
Hl = (1e0=T1)/4040

OTHERWISE

PSI1 = 0

PSIP1= 0

TRANSFER TO S12

END OF CONDITIONAL

K =20

THROUGH RUSTAMy FOR ST = TlsHls STeGeleO
IN(K) = STHEXP o (=L1/ST)/(SIGT1#SIGT1+(ALPHP#ST)ePe2¢0)
JNIK)Y) = IN(K)*ST

RUSTAM K = K+1

JJ =0
IT =0
THROUGH ALIs FOR M=1slys MeGe(K=1)/2
IT = II+IN(2%M=1)
ALl JJd = JJ+IN(2¥%M=1)
IK = 0
JK =0

THROUGH GOLAMy FOR M=l9ls MeGe (K-=3)/2

IK = [K+ IN(2%¥M)
GOLAM JK = JK + JUN(2#M)

PSI1 = H1/3e0%(IN(O)+4*II4+2%IK+IN(K=1))

PSIP1 = H1/3e0%(JUN(O)+4%JJ+2%JK+IN(K~-1))
SI2 T2 = L2/1540

WHENEVER T2eLeleO oANDe T2eGeQe5

HZ2 = (160=T2)/2040

OR  WHENEVER T2eLEeQe5 e¢ANDe T2¢Ge0000001

H2 = (1e0=T2)/4040

OTHERWISE

Psi2 = 0

TRANSFER TO SI3

END OF CONDITIONAL

K =0
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THROUGH FAROOQs FOR ST =T2sH2s STeGeleO

IN(K) = ST*EXPe(=L2/ST)/(SIGT1I#SIGT1+(ALPHP#S5T)ePe240)
FAROOQ K = K+1

II 0

JJ 0

THROUGH ANOs FOR M=1lsls MeGe(K=3)/2

non

ANO Il = TI+IN(2%M=-1)

IK = 0

JK =0

THROUGH WARAs FOR M=1sly MeGe(K=3)/2
WARA IK = IK+ IN(2#M)

PSI2 = H2/3e¢0%(INtO)+4%#]1T+2%#IK+IN(K~1))
SI3 T3 = L3/1540

WHENEVER T3eLeleO o¢ANDs T3eGe0e5

H3 = (140-T3)/2040

OR  WHENEVER T3eLEsOe5 «ANDe T34Ge0000001
H3 = (140-T3)/4040

OTHERWISE
PSI3 = 0
PSIP3= 0

TRANSFER TO NAHID

END OF CONDITIONAL

K =20

THROUGH BEGUMs FOR ST=T3sH39STeGele0

IN(K) = STHEXPe(=L3/ST)/(SIGT1*#SIGT1+(ALPHP¥ST)ePe240)

JN(K) = IN(K)*ST
BEGUM K = K+1

IT =0

JJ =0

THROUGH RABEYAs FOR M=1sls MeGe(K-1)/2

IT = I1 + IN(2%M-1)
RABEYA JJ = JI+HIN(2%¥M=-1)

IK = 0

JK =0

THROUGH MALEKA» FOR M=1sls MeGe(K=3)/2
IK = IK+ IN(2%M)

MALEKA JK = JK + UN(2*M)
PSI3 = H3/360%(IN(O)+4%#1I+2%¥IK+IN(K=1))
PSIP3 = H3/3¢0%{JIN(0)+4*¥JJ+2%JK+IN(K~1))

NAHID PSI = PSI + PSI1 + PSI3 ~ 2%PSI2
PSIP = PSIP+PSIP1~-PSIP3
R
R CALCULATIONS OF INTEGRALS CAP-PI AND CAP-PI PRIME
R

TP1 = LP1/1540
WHENEVER TPlelLeleO oANDe TPleGeOe5

HP1 = (140-TP1)/2040

OR  WHENEVER TPleLEeOe5 oANDe TP1eGe0e00001
HP1 = (140-TP11/4040

OTHERWISE

CPI1 = 0

CPIP1 = O

TRANSFER TO PI2
END OF CONDITIONAL

K =20

THROUGH MATIORs FOR ST=TP1lsHPls STeGeleO

IN(K) = ST*EXPe(=LP1/ST)/(SIG2%¥SIG2+{(BETAP*ST)ePe2)
JN(K) = IN(K)*ST

MATIOR K = K+1
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THROUGH RAHMANs FOR M=1sls MeGe(K=-1)/2
Il IT + IN(2%M-1)
RAHMAN JJ JJ + UN(2%M=-1)
IK 0
JK =0
THROUGH KHALEQs FOR M=19ls MeGe(K=3)/2
IK = IK+ IN(2%M)
KHALEQ JK = JK + UN(2¥M)
CPI1 = HP1/3¢0*(IN(O)+4*II+2%¥IK+IN(K~-1))
CPIP1 = HP1/340¥ (JN(Q)+4¥JJ+2¥IK+IN(K=1))
PI2 TP2 = LP2/1540
WHENEVER TP2eLele0 ¢ANDe TP2¢Ge0e5
HP2 = (1¢0-TP2)/2040
OR  WHENEVER TP2eLEeOe5 eANDe TP2¢Ge000001
HP2 = (140-TP2)/4040
OTHERWISE
CPI2 = 0
TRANSFER TO PI3
END OF CONDITIONAL
K =0
THROUGH KERRs FOR ST=TP29HP29 STeGelse0
IN(K) = STHEXPe(=LP2/S5T)/(SIG2%#SIG2+(BETAP¥ST)ePe2)

KERR K = K+1

I1 =0

THROUGH BOHRs FOR M=19ls MeGe(K~1)/2
BOHR Il = I1 + IN(2%M=1)

IK =0

THROUGH PAULs FOR M=13ly MeGe(K=3)/2
PAUL IK = IK+ IN(2%M)

CPI2 = HP2/3+40%(IN(O)+4%I1+2*IK+IN(K=1))
PI3 TP3 = LP3/1540

WHENEVER TP3eLeleO oANDe TP3eGe0e5

HP3 = (140~TP3)/2040

OR  WHENEVER TP3eLEe0e¢5 «ANDe TP3eGe0+00001
HP3 = (140-TP3)/64040

OTHERWISE
CPI3 =0
CPIP3 = 0

TRANSFER TO YIP

END OF CONDITIONAL

K =20

THROUGH ZWEs FOR ST=TP3sHP3s STeGeleO

IN(K) = STHEXPe(~LP3/ST)/(SIG2%¥SIG2+(BETAP#ST)ePe2)
JN(K) = ST*IN(K)

ZWE K = K+1
IT =0
JJ =0

THROUGH IFELs FOR M=19ls MeGe(K=-1)/2

IT = II + IN(2%M-1)
IFEL JJ = JI+IN(2¥M=-1)

IK = 0

JK =0

THROUGH OSBORNSFOR M=1s1s MeGe{K=3)/2
IK = IK+ IN(2%¥M)
OSBORN JK = JK + UN(2¥M)
CPI3 = HP3/340%(IN(O)+4*I142%IK+IN(K=1))
CPIP3 = HP3/3¢0%{JIN(O)+4%JJ+2%* JK+IN(K=1))
YIP CPI = CPI+CPI1+CPI3-2%CPI2
KENJI CPIP = CPIP+CPIP1-CPIP3
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Pl = 1-{AZ/SIGT1%*(0e5=YF)/2+A1*(SINe(T)/ALPHP*(1=SIGT1/ALPHP#*
1 ATANe (ALPHP/SIGT1))+SIGT1*COSe(T)*¥ELOGe (1+{ALPHP/SIGT1)ePe2)
2 /(2% (ALPHP)ePe2)) —AL*¥(SIGT1*#COSe(T)*PSI+ALPHP*SINe(T)*PSIP)
3)/(TF#*PHIBL)

P2 = 1-CON1/SIG2 *{0e5-YM )-CON2#(SIG2/(2%BETAP*BETAP)*

1 ELOGe(1+(BETAP/SIG2)ePe2)*{(CBP+CBA) + (1-SIG2/BETAP*ATAN.

2 (BETAP/SIG2))*(SBP~SBA)/BETAP-SIG2%(CBP+CBA)*CPI-BETAP¥

3 (SBP-SBA)#*CPIP) + CON3*(SIG2/(2*BETAP*BETAP)*ELOGe (1+(BETAP
4 /SIG2)ePe2)*(SBP+SBA) + (CBP+CBA)#(1-SIG2/BETAP*ATANS (BETAP
5 /SIG2))/BETAP - SIG2%(SBP+SBA)*#CPI+BETAP* (CBP-CBA)*CPIP)

PRINT RESULTS Es Pls P2

WHENEVER IMSeEel

F(J) = SIGA/((SIGT1-P1l*(SIGSTH+SIGSU) ) *E)*P1

FNAJ) = (1-P2)*SIGA/(SIGT1=-P1*¥(SIGSTH+SIGSU))/E

J o= U+l

OTHERWISE

F(J) = SIGA*#P1/(E*SIGT1)

FN(J) = SIGA*(1~-P2)/(E*SIGTL1)

J = L+l

END OF CONDITIONAL

CONTINUE

F1 =0

FN1 = 0

THROUGH KILLs FOR M=1sls MeGelJ~1)/2

F1 = F1+F(2%M-1)

FN1 = FNI+FN(2¥M~1)

F2 = 0

FN2 = 0

THROUGH EEN 9 FOR M=19ls MeGe(J=3)/2

F2 = F2+F(2%#M)

FN2 = FN2+FN(2%M)

RIL = H/3¢0%(F(O)+4*F1+2%F2+F (J=-1))

Ri17 = H/3¢0%(FN(O)+4*¥FN1+2%¥FN2+F (J=1))

PRIN, RESULTS RI1sRIZsPHIZsPHIB1sPHIP1sPHIP2
R INTERFERED RESONANCE INTEGRAL

AMU = (1-ALPU}*(A(1ls1l)-1)

AMTH = (1-ALPTH)*(A(1ls1)~1)

AMOX = (1=-ALPOX)*(A(1lsl)=1)

AMM = (1-ALPM)*(A(1ls1)~1)

LNU = ELOGe(1/ALPU)

LNTH ELOGe (1/ALPTH)

LNOX ELOGe (1/ALPOX)

LNM = ELOGe (1/ALPM)

EXDU = EXPe (-DELU)

WHENEVER LNU «GeDELU

IU = CD/(1=-ALPU) * (EXDU=EXPe (=LNU)) + PHIZ/(1-ALPU)*(1-EXDU)
1 +PHIP1* (EXDU-EX)/AMU

OTHERWISE

IU = PHIZ + PHIP1#*(EXPe({(A(191)-1)%¥LNU=A(1s1)*DELU)=EX)/AMU

END OF CONDITIONAL

WHENEVER LNTHeGeDELU

ITH = CD/(1=-ALPTH)#(EXDU-EXPo(~-LNTH)) + PHIZ*(1-EXDU)/

1 (1-ALPTH) + PHIP1#(EXDU - EX)/AMTH

OTHERWISE

ITH = PHIZ + PHIP1¥ (EXPe{(A(1ls1)~1)¥LNTH-A(1s1)*DELU)-EX)/
1 AMTH

END OF CONDITIONAL

WHENEVER LNOXeGeDELU

IOX = CD/{1-ALPOX)*#(EXDU-EXPe{(~-LNOX)) + PHIZ*{1-EXDU)/(1-

N on
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1 ALPOX) + PHIP1*(EXDU-EX)/AMOX

OTHERWISE

[OX = PHIZ + PHIP1®*(EXPe((A(1ls1)-1)*LNOX-A(1l91l}*DELU)I-EX)/
1 AMOX

END OF CONDITIONAL

WHENEVER LNM

¢GeDELU

IMOD = CD/(1-ALPM)#(EXDU-EXPe(=LNM))
1+PHIP2* (EXDU~EX) /AMM
OTHERWISE
IMOD = PHIZ +PHIP2#(EXPe ((A(191)~1)#LNM=A(1s1)*DELU)=EX)/AMM
END OF CONDITIONAL

WHENEVER IMSeEel

RI

RI

PRINT
PRINT
PCINA
PRINT

= (SIGSO#IOX#RI1 +
OTHERWISE
= ((SIGSO#IOX + SIGSU*IU +SIGSTH*#ITH)#RI1 +(SB-SA)/SA*
1 SIG2*#IMOD*RI2)/PHIB1
END OF CONDITIONAL

DELRI =
PCERR =

RI=-UNIRI

DELRI#10040/RI

+ PHIZ#(1-EXDU)/(1-ALPM)

(SB=-SA) /SA*SI1G2*IMOD*R12)/PHI1B1

s PCERR

~ UNIRI#*CD)/(UNIRI*CD)

COMMENT SOINTERFERED RESONANCE INTEGRALS
RESULTS RIsUNIRIWDELRI
=(RI#*PHIBI
RESULTS PHIB2sPCINA
TRANSFER TO START

ouT1 PRINT COMMENT $O0ERROR IN TAB SUBROUTINES
TRANSFER TO START
INTEGER NFRoNSRoHMsHNsMoNs J oK
END OF PROGRAM
$DATA
XT=e009¢01 «e02y 003 o064y e05 e06 e07» e 08 e09
e10 o1l «12 e13) eléby 015, el1l6 o170 e18» e19
«20) «21 022 023 o249 ¢25, 026 27 e289 0299
¢30, «31» «32 ¢33 034 0325 e36 e37 038 e39
o440y o4l 042y 43 obhly 045y 046y 4Ty 048 049
50, e51s «52 e53, e54y e55, 056 e57 e58 e59
«60 061! 062’ o063 0649 065 066 067' 0689 0699
«70 e 71l « 72 e73) o Ths o759 e 76 o777y e78 e79
«80y o811 082 e83y e84y e85, e86 e87y «889 «899
0909 0919 0929 093! 0949 0959 096’ 097’ 0989 099’
14009 1401y 16029 16039 104y 1e059 1069 16079 1e08s 1409,
1e¢10y lells 1al2s 1el3s lel&s lel5s 1elbs 1lel7s 1el8s 1619
1e20y 1le2ls 122y 1422» le249 16259 1e269 1627y 1628y 1429
1e¢309 1631y 1a329 163329 1e34y 1355 1e369 1e37y 138y 1639,
le&0y led4ls lel2s le&3s lebbs le45s 1e469 leb4Ts 1e48y 1a49s
1e¢50y 1e51ls 14523 16533 1e54s 16555 1eS69 1579 1e58s 1e59,
160, 1e61y le62y 1le63s leb4y le65y le66y leb7> 1668y 1069
1e709 1e7ly 172y 173y leThs 1leT759 1e76s 1e77s 16789 1e79
1e80s 1le8ls 1e82y 183y 1eB4s 1e85s 1869 1e8T79 1e88s 16899
16909 1e91ls 14923 169339 1le9y 16959 1969 10979y 16989 16999
20 2el 225 202 2eb 265 2e60 2e7s 2089 299
3¢0, 3¢l 3429 3e3 3eby 3¢5y 3eb 37 308y 349y
440 Gelo Lely 4e3y Gelby Ge5y 4Laeby G4eTy 408y 4e9y
5S¢0y 5e1 562 563 S5eb 559 569 579 589 59y
560> 6ol 6els 6e3y Gels 6e5y 6ebys 6eTs 68y 699
TeCo Telys Tels Te3y Tels Te5y Teb TeTs Te8y Te9s
840y 8elys 842 8e3y Bels 8eSy 8ebo 8eT7y 8e8y 8¢9
900 9ely 9e¢2s 963 Seliy Se5y Geb 9e7y 9e8y 9¢9910e0
YT= +500C» 04902766 e 4809683, e4719977, 04633239
045469188y H446T609, e4388327 e4311197, 04236096



¢4162915,
3822761
035194539
03246841,
¢300Q418»
2776693,
02572864
¢2386625)
02216044,
«2059475,
¢1915506,
¢1782910
01660612
«1547667,
¢1443238,
¢1346581,
1257030
01173988,
01096920,
1025239,
«0958809,
«0896932,
00839347,
«0785723,
«0735763,
«0689191,
00645755,
e 0605227,
«0567395,
e0532064y
«0499C57,
e0468209
«0439367,
00412393,
«0387157,
¢0363540,
20341430,
00320727,
3e¢01334E=~2
1e62954E~2
0¢89306E=~2
4494538E~-3
2¢761326E-3
1e55244E -3
0.8778CF~3
4¢98TTE~w0o
2¢8460E~4y
1¢6300E-uy
0e9366E-4)
5e3970E-5)
2e1181E-5,
1+8C57E-5,
1e0479E~5,
6¢0927E~6>

. W w w w v e

«4091557,
3759380
¢3462638,
3195585
02953956,
02734416,
2534276
023513213,
02183657,
02029715,
01888114,
¢1757658,
¢1637303,
1526125,
1423307,
01328122,
01239919,
«1158113,
«1082179,
01011643,
e0946074
«0885083,
«0828315,
00775447’
00726186
¢ 0680260,
00637424,
«0597452,
20560135,
00525283
+0492720
00462284
0433827,
00407211,
«0382308)
«0359001»
¢0337180»
00316746

2066136E-2)
le844349E-2
0e79290E-2)
4439865E-3
2¢45969E=3
1e38454E=-3)
0e78368E-3,

4e456G9E-4,
2¢5451E—-4y
1e4586E-4,
0eB8386E-4)
4e8352E~5)
207549E~5,
1e6192E=~5,
0e¢9400E-5y

5e¢46T7TE-6
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04021937,
e3697408,
3407005,
e3145343,
e2908374,
02692913,
02496373,
02316612,
e2151818,
02000448,
¢1861166)
01722810y
01614360,
«1504917,
01403681,
¢1309943,
¢ 223063,
01142472,
¢1067654,
e0998145,
e0933521,
00873402,
e0817439,
e0765316)
e 0716742,
00671453,
00629207,
¢0589782,
00552973,
¢0518592,
00486467,
00456439,
00428361
¢0402097,
00377522
00354521,
e0332986
e0312817,

2035207E-2,
1e27932E-2,
0e70425E~2y
3e¢91360E-3,
2¢19156E-3,
1e23507E-3y

¢3953977,
03636795,
¢3352518,
¢3096086,
e2863652,
026521659
02459141,
2282508,
02120516
e1971664,
¢1834656,
¢1708358,
¢1591778,
01484037,
01284355,
01292037,
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