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Fluorescence resonance energy transfer (FRET) microscopy can measure the spatial distri-

bution of protein interactions inside live cells. Such experiments give rise to complex data sets

with many images of single cells, motivating data reduction and abstraction. In particular,

determination of the value of the equilibrium dissociation constant (Kd) will provide a

quantitative measure of protein–protein interactions, which is essential to reconstructing

cellular signaling networks. Here, we investigate the feasibility of using quantitative FRET

imaging of live cells to estimate the local value of Kd for two interacting labeled molecules. An

algorithm is developed to infer the values of Kd using the intensity of individual voxels of 3-D

FRET microscopy images. The performance of our algorithm is investigated using synthetic

test data, both in the absence and in the presence of endogenous (unlabeled) proteins. The

influence of optical blurring caused by the microscope (confocal or wide field) and detection

noise on the accuracy of Kd inference is studied. We show that deconvolution of images

followed by analysis of intensity data at local level can improve the estimate of Kd. Finally, the

performance of this algorithm using cellular data on the interaction between yellow fluor-

escent protein-Rac and cyan fluorescent protein-PBD in mammalian cells is shown.
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1 Introduction

Protein–protein interaction networks form a fundamental

regulatory mechanism controlling the behavior of living cells.

Characterization of these interactions, in particular the

measurement of protein affinities, is of interest for various

applications including tissue engineering, drug discovery and

development of predictive models of cell behavior. Although

many methods have been developed to measure the binding

affinities of interacting proteins, including in vitro assays [1–6],

methods for quantitative local characterization of protein–

protein binding in live cells still require improvement.

Fluorescence microscopy is the method of choice for direct

visualization of proteins in native cellular environments

[7–10], and recent developments in imaging techniques

promise measurement of protein interactions with improved

spatial and temporal resolution [5, 8, 11]. Protein–protein

binding inside live cells can be visualized by fluorescence

resonance energy transfer (FRET) [12]. FRET is the non-

radiative transfer of fluorescence energy from an excited
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fluorescent donor to a nearby lower energy fluorescent

acceptor via dipole–dipole interactions. This process results in

decreased emission of the donor and increased emission

from the acceptor. The range over which FRET can occur is

less than 10 nm and thus the appearance of FRET is indica-

tive of spatial proximity of the two interacting proteins. The

spatial proximity can be used to infer the association of donor

and acceptor-labeled proteins [13]; however, independent

verification of the interaction may be required. In cellular

systems, FRET can be used to ascertain the binding of

specific protein pairs by fluorescently labeling them with

different variants of fluorescent proteins. Typical experi-

mental data in form of large numbers of images of multiple

cells make analyses difficult and time consuming. Although

qualitative information on the binding affinity has been

routinely inferred from the images, methods for quantitative
characterization of protein interactions are needed.

Determining the values of key physical parameters

characterizing protein–protein binding, e.g. the equilibrium

dissociation constant Kd, from FRET experiments will

require additional steps beyond image acquisition. Micro-

scope images are blurred by the optical imaging process

such that points within an image plane contain light from

out-of focus planes and adjacent points. Microscope blurring

is characterized by the point spread function (PSF) of the

microscope, which is the image of a single point source.

This optical blurring limits the accuracy of intensity-based

calculations. Confocal microscopes reduce blurring as

compared with conventional wide-field microscopes, but

significant optical distortion is still present. Image decon-

volution algorithms can deblurr data from both confocal and

wide-field microscopes [14, 15]; however, their impact on the

estimation of concentrations from image intensities and

hence Kd is not well understood. Further quantification of

fluorescent images will need a calibration function to map

image intensities to molecular concentrations [16]. In the

case of FRET microscopy, image intensities need to be

corrected for spectral overlap of the donor and acceptor

emissions and possible direct excitation of the acceptor at

the donor excitation wavelength. Also, an independent

estimate of FRET efficiency (E) is needed to characterize

protein binding. There are a number of algorithms available

for measurement of FRET as well as estimation of apparent

FRET efficiencies [17–24]. The presence of unlabeled

proteins (endogenous, photobleached or misfolded) which

can compete with labeled species for binding introduces an

additional complication; there have been efforts to estimate

the FRET efficiency in this case [25] but the impact of such

unlabeled proteins in inferring Kd remains unknown.

In this study, we demonstrate the feasibility of inferring

local values of the apparent equilibrium disassociation

constant (Kd) within a cell from FRET images using a

synthetic data set. We use a simultaneous image deconvo-

lution and spectral unmixing algorithm to accurately recover

the concentration distribution of proteins [26] and study how

the accuracy of the algorithm can aid in estimation of local

values of Kd. We investigate the impact of noise of the

detection systems and the presence of unlabeled (e.g.
endogenous) species or multiple binding affinities on the

accuracy of Kd inference for both the wide-field microscope

and also confocal microscope. Finally, we apply this algo-

rithm to infer Kd from image data on binding of yellow

fluorescent protein (YFP)-Rac and cyan fluorescent protein

(CFP)-PBD in mammalian cells.

2 Materials and Methods

2.1 Reaction system

We consider the case of a bimolecular elementary reaction

of labeled acceptor protein (A�) and donor-labeled protein

(D�) tagged with variants of fluorescence protein appro-

priate for FRET to occur:

A� þD�  !
Kd

A�D�

where A�D� is the acceptor–donor complex. Binding is

quantified by the equilibrium dissociation constant (Kd)

defined for a volume element v as

Kd ¼
½A��½D��

½A�D��
ð1Þ

where [A�], [D�] and [A� D�] denote the concentrations of the

labeled acceptor, donor and complexes in the volume under

consideration. We assume that the continuum approximation

holds within the volume, and hence Kd can be described by a

mean value rather than its probabilistic equivalent.

In a general case where there are significant amounts of

unlabeled acceptor (A) and/or donor (D) proteins present,

binding reactions between labeled and unlabeled species or

between two unlabeled species can also occur:

AþD !
Kd

AD

A� þ D !
Kd

A�D

AþD�  !
Kd

AD�

All reactions between A and D species, whether labeled or

not, are assumed to have the same value of Kd and equili-

brium relationships analogous to Eq. (1) can be written for

each of these reactions.

2.2 FRET imaging experiment

The cell with tagged proteins is imaged using fluorescence

microscopy to obtain images with intensities corresponding

to the concentrations of the acceptor, donor and acceptor–

donor complex proteins. In accordance with the nomen-

clature of Hoppe et al. [18], the following images of cellular

contents are taken in a FRET experiment:

5372 K. Mehta et al. Proteomics 2009, 9, 5371–5383

& 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



IA: Image at acceptor excitation and acceptor emission

(acceptor image)

ID: Image at donor excitation and donor emission (donor

image)

IF: Image at donor excitation and acceptor emission

(FRET image)

The images IA, ID and IF can be acquired on a conven-

tional wide-field microscope or a confocal microscope and

they need to be analyzed further to gather information on

the concentrations of the individual species.

2.3 3-D FRET stoichiometry reconstruction for

improved local concentration estimates

We use the recently developed method termed 3-D FRET

Stoichiometry (3-D FSR) [26] to take 3-D images corre-

sponding to IA, ID and IF and, by accounting for optical

blurring due to the imaging process and donor–acceptor

spectral overlap, obtain improved estimates for the concen-

trations of acceptor [A�], donor [D�] and donor–acceptor

complex [A�D�] in individual 3-D image pixels (voxels).

Briefly, iterative maximum likelihood estimation is used for

image deconvolution. An initial guess is convolved with the

known PSF of the microscope and mixed as per the spectral

overlap of donor–acceptor fluorophores to generate an esti-

mate of the image which is then compared with the

measured image to generate the next iterate. The optimi-

zation is allowed to proceed until a specified number (25) of

iterations, the value of which is guided by our previous

work. The algorithm corrects for spectral overlap using

the spectral mixing model for FRET, which can be repre-

sented as

ID

IA

IF

2
4

3
5 ¼ c

x 0 �x
0 g=a 0
xb g 1� bx

2
4

3
5�

½D��tot

½A��tot

E½A�D��

2
4

3
5 ð2Þ

This equation relates the images (IA, ID and IF) to the

concentrations of total (unbound1bound) labeled acceptor

and donor ([A�]tot and [D�]tot) and the concentration of the

acceptor–donor complex times the FRET efficiency E
(E[A�D�]). In absence of any spectral overlap, the matrix in

Eq. (2) would be an identity matrix. The constants in the

matrix are the characteristics of the microscope and fluor-

escent probes [19]. The matrix operation and parameters are

equivalent to FRET stoichiometry [18], with the exception

that x/g has been replaced with x. The parameters used for

our computations are in accordance with Hoppe et al. [19]

and are x5 0.2298, a5 0.025, b5 0.7275 and g5 0.0514.

There are a number of ways to independently estimate the

FRET efficiency with individual merits and demerits [24].
For this study, we assume that E is known. The factor c is

the calibration constant necessary to obtain absolute

concentration values. Various approaches can be used to

obtain c; however, the estimation of c for local cellular

subcompartments remains challenging (e.g. [10, 16, 27]). For

the in silico imaging described here, we assume that c 5 1

intensity unit/mM, while for the data on YFP-Rac2(V12)

binding with CFP-PBD, we estimated the value of c from

experiments as described in Section 2.6.

2.4 Computing Kd from image data

For a general case when both labeled and unlabeled mole-

cules are present, the measured total labeled acceptor and

donor concentrations include additional species:

½A��tot ¼ ½A
�� þ ½A�D� þ ½A�D�� ð3Þ

½D��tot ¼ ½D
�� þ ½AD�� þ ½A�D�� ð4Þ

Similarly, unlabeled total acceptor and donor concentrations

can be expressed as

½A�tot ¼ ½A� þ ½AD�� þ ½AD� ð5Þ

½D�tot ¼ ½D� þ ½A
�D� þ ½AD� ð6Þ

We define the variables rA and rD as the ratio of total labeled

to unlabeled protein concentrations for acceptor and donor

inside the cell respectively:

rA ¼
½A��tot

½A�tot

ð7Þ

rD ¼
½D��tot

½D�tot

ð8Þ

We assume that estimates of rA and rD are available from

independent population-level experiments (e.g. Western blot

analysis) or single cell experiments. Local values of rA and rD

within particular 3-D volume elements (voxels) can vary due to

the uncertainty in the measurement as well as fluctuations in

the spatial distributions of the labeled and unlabeled species.

Algebraic manipulation of Eq. (1) (and analogous

relationships with unlabeled species) along with Eqs. (3)–(8)

gives

Kd ¼

ðrAð½D
��tot � ½A

�D��Þ � ½A�D��ÞðrDð½A
��tot

�½A�D��Þ � ½A�D��Þ

rArD½A
�D��

ð9Þ

which allows a value for Kd to be calculated for each indivi-

dual voxel. Individual voxel data can be combined to generate

a probability distribution of inferred Kd (normalized by the

total number of voxels in the original object) from the

experimental data. The probability that the calculated value of

Kd falls within a fraction f of a given value K�d is given by the

area under the probability density distribution:

PrðKd 2 ½K
�
d � fK�d;K

�
d þ fK�d�Þ ¼

Z K�
d
þfK�

d

K�
d
�fK�

d

pðKdÞdKd ð10Þ

If the signal intensity in individual voxels is low, neighbor-

ing voxels may be binned to form elementary volume
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compartments before calculation of Kd. Only those voxels (or

compartments) where both labeled proteins A� and D� are

present are useful in calculation of Kd and hence it is most

efficient to perform calculations for only those compart-

ments. Furthermore, blurring redistributes light to empty

voxels, resulting in spurious estimates of Kd which are

amplified by the non-linear form of Eq. (9). Thus we pre-

select voxels for calculation of Kd based on the intensity/

concentration of molecules by using a threshold criteria to

identify compartments i with useful data:

ð½A��i > G�Max½A��Þ and ð½D��i > G�Max½D��Þ ð11Þ

G is the threshold parameter and defines the minimum

intensity value as a fraction of the maximum intensity value

that should be present in the compartment for it to be used

for the estimation of Kd. The intensity of the acceptor–donor

complex is not included in the criteria to avoid selection

biases based on the value of Kd.

2.5 Generation of synthetic test data

We generate synthetic images to test our methods for

inferring Kd. Synthetic data generation consists of creating a

cell object containing fluorescent molecules and complexes

and then simulating the imaging process by convoluting the

object with the PSF of a wide-field or confocal microscope.

First, a spherical cell object is generated using cubic 3-D

volume pixels (voxels). Each voxel is randomly assigned

discrete counts of labeled and unlabeled (if also present)

acceptor and donor proteins chosen from a uniform distribu-

tion over a specified interval. The total numbers of labeled and

unlabeled proteins in the object are determined from assumed

values of the ratios rA and rD. As rA and rD are parameters

which can be determined at best only on a whole cell-averaged

basis, for individual voxels we assume that the ratio of labeled

and unlabeled proteins is normally distributed with coefficient

of variation sr. Using these sampled values of rA and rD and

the total numbers of acceptor and donor proteins (A1A� and

D1D�) together with an assumed value of Kd, we calculate the

numbers of complexes (AD, A�D, AD�, A�D�) in each voxel

so as to satisfy Eqs. (3)–(8).

To simulate the imaging process, we mix the intensities on a

voxel-by-voxel basis to simulate spectral mixing, using infor-

mation on the spectral overlap of CFP and YFP to determine the

mixed image as per the scheme outlined by Hoppe et al. [19]. In

addition, we convolve this object with theoretical PSFs for either

a wide-field or a confocal microscope. PSFs were generated in

MATLAB 7.3 (MathWorks, USA) (Fig. 1). To simulate the

spatial arrangement of multiple cells or compartments within a

single cell, images of two or four spheres with smaller radii were

created. Their radii were adjusted to keep the total volume

constant. Each image is set to be equal to 100� 100� 100

voxels with each voxel a cube of 60 nm side.

Any imaging process with a detection device has asso-

ciated inherent noise; the presence of shot noise is unavoid-

able [28]. We simulate the shot noise in our images by using a

Poisson-distributed detection noise model with variance and

mean equal to the original intensity of the object. The S/N is

here defined as the square root of the mean original intensity

of the object, and we simulate various noise levels by chan-

ging the intensity of the original object.

2.6 Live cell FRET imaging

COS7 cells were transfected as in [26, 29] with previously

described plasmids encoding YFP-Rac2(V12), CFP-PBD,

CFP, YFP and YFP-CFP. The cells with linked YFP-CFP

were used as positive control, and cells expressing free CFP

and YFP molecules were used as negative control. All YFP

molecules were actually monomeric citrine, containing the

Q69M (pH desensitizing) and A206K (monomeric) muta-

tions. PBD is the (p21 binding domain) from human PAK1.

This domain provides an excellent test system because it has

been demonstrated numerous times to interact exclusively

with the small GTPases, Cdc42, Rac1 and Rac2 [30, 31].

Imaging was performed as described in [26]. Briefly, a novel

high-speed microscope was used to collect 3-D FRET micro-

A

B

y

x

z

x

y

x

z

x

C

Figure 1. PSFs and synthetic test data. 3-D PSFs for a wide-field

(A) and confocal microscope (B) were used to generate model

data. The 3-D space had dimensions of 100� 100� 100. The x–y

slice is at midplane along z (z 5 50), and the x–z slice is shown at

y 5 50. The theoretical PSFs were generated for emission

wavelength 5 530 nm. NA 5 1.2 and voxel size 5 60� 60� 60 nm.

Figures show grayscale-mapped images with a colormap scale

of [0–0.001]. (C) Synthetic spherical cells contained acceptor–

donor interactions. The diameter of the single large sphere (left)

was 50 pixels, equivalent to 3 mm diameter. For images

containing two and four spheres, the cell diameter was adjusted

to conserve total volume. The spheres were centered in z-plane

and were symmetrically arranged in the x–y plane.
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scopy data by acquiring IA, ID and IF images at each z-plane of

a living cell. Acquisition of each 3-D data set took approxi-

mately 2.5 s. Estimates of [D�], [A�] and [DA�] were obtained

by reconstruction of these data with 3-D FSR. The photo

bleaching correction, as estimated from a representative

experiment by the photon flux in each images IA, ID and IF

measured in successive z-planes, was found to be less than 2%

in each signal, resulting in at the most 6% correction in the

final value of Kd, and hence was neglected for this study.

To estimate the value of the calibration constant c, we

imaged yeast cells expressing a chromosomal YFP fusion to

Arf1 (Arf1-YFP) present at �20 000 copies/cell [32, 33].

Assuming that the cell is a 5mm diameter sphere, we can

estimate an average number of 0.636 molecules per image

voxel. Further, summing the 3-D intensity for whole yeast

cells the intensity of a voxel on average was found to be

about 0.2 units, and hence c is approximately 0.31 intensity

units/molecule. The concentration of any species ([s]i) in

voxel i can then be computed from

½s�i ¼
Is;i

vcNav
ð12Þ

where Is,i is the intensity corresponding to species s in the

voxel, Nav is the Avogadro constant, and v is the volume of

the voxel. The value of E for these data was taken as 0.37,

estimated as per the previously published results [19].

3 Results and discussion

3.1 Impact of optical blurring in estimating protein

concentrations

Synthetic images of a single sphere of uniform unit intensity

were generated and then convolved with the PSF of either a

wide-field or a confocal microscope to mimic imaging. In the

absence of the optical distortion, we expect the image intensity

distribution to be a single spike at unit intensity. Blurring, or

optical distortion caused by optical imaging, disperses the

intensity distribution and is more significant for the wide-field

than the confocal microscope (Figs. 2A and B). Deconvolution

of the measured images improves estimation of the local

intensities (Figs. 2C and D), returning a peak intensity closer

to the true intensity of the object, albeit with some distortions

arising from the loss of information during imaging (these

distortions can be seen by the shift in intensity for the

reconstructed wide-field histogram (Fig. 2D) and multiple

peaks in the reconstructed confocal histogram (Fig. 2C)).

Recovery of true voxel intensities is also affected by the

shape and spatial arrangement of fluorophores. To investi-

gate this, we repeated the convolution (imaging) and

deconvolution steps above with a two- or four-sphere

arrangement (Fig. 1C) while conserving the total volume of

objects imaged. Figure 2E shows the fraction of pixels

having intensity within 20% of the original object for the

one-, two- and four-sphere systems. As spatial heterogeneity

is increased, the intensity histogram is more dispersed for

multiple spheres than for a single larger sphere. This effect

cannot be eliminated by deconvolution; however, the

deconvolved images are significantly more accurate than the

raw images. Deconvolution of acquired images can there-

fore improve the accuracy of measurement of local mole-

cular concentrations by estimating the true intensity of the

individual voxels. Deconvolution hence will be essential for

estimation of Kd.

3.2 Inferring Kd from the image data

We next investigate the feasibility and accuracy of inferring Kd

from measured image data. First, we considered a simple case

in which all proteins under investigation are labeled and there

is no measurement noise. We assumed uniform concentra-

tions of acceptor, donor and acceptor–donor complex inside

the 3-D volume of the test object. The test object was imaged

by simulation using the 3-D FRET microscopy model [26] and

these images are reconstructed by 3-D FSR to produce the

corrected images shown in Figs. 3A and 4A for wide-field and

confocal microscopes, respectively. Appropriate voxels were

selected using the threshold criterion (Eq. (11)) and the

corresponding Kd probability distribution was calculated using

Eq. (9) (Figs. 3B and 4B). The fraction of voxels returning

values of Kd within a specified fraction of the true value are

shown in Figs. 3C and 4C. The dispersion in the probability

distribution is a direct result of the optical distortion brought

about by the imaging process. The distributions have a maxi-

mum near the true Kd for both the confocal and the wide-field

microscopes, indicating that the proposed method is useful for

identifying the local binding affinity from image data,

although optical distortion can limit its accuracy. The effect of

optical distortion on estimation of Kd increases with spatial

heterogeneity (two and four sphere system; Figs. 3C and 4C).

In all cases, the confocal microscope allows greater accuracy in

measurement of Kd than the wide-field microscope.

Biological values of Kd are likely to vary widely. We repeated

our inference procedure for various values of Kd and found

that the shape of the probability distribution is unchanged.

This is expected since the magnitude of intensities of the

donor, acceptor and donor–acceptor complex images have no

impact on deconvolution, and hence, in the absence of

detection noise, while the absolute distortion does get scaled,

the shape of the curve does not change (data not shown).

To investigate the effect of detection noise on inference of

Kd, we modeled the image detection process with Poisson

noise. The Kd probability distribution was calculated from

3-D FSR-reconstructed data with various noise levels,

Figs. 5A–C. As expected, increasing noise disperses the

probability distribution and limits the accuracy of our infer-

ence. To quantify the accuracy, we plot the probability of

recovering the Kd within a specified fraction of the true value

(Fig. 5D). As shown in the figure, even at low S/N, the

algorithm can recover information on the true value of Kd.
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3.3 Using thresholds to counter optical distortion

and noise

Optical blurring can result in the assignment of low but

non-zero intensity values to voxels that originally have no

source of fluorescence. Low voxel intensities may also be the

result of background noise. We use threshold criteria to

exclude from calculations any voxels that have intensities

lower than a fraction G of the maximum intensity of the

acceptor and donor species in the deconvolved image data

(Eq. 11). Figure 6 shows the effect of using thresholds on

the Kd probability distribution for confocal microscopes.

Comparing the distributions obtained using different

threshold values (Figs. 6A–C), we can see that by limiting

the calculations of Kd to voxels/compartments with a suffi-

cient number of acceptor and donor proteins, one can

improve the accuracy of Kd inference. This improvement is

seen irrespective of the type of microscope and also for the

case with larger spatial heterogeneity (multiple sphere

system; data not shown).

Increasing the value of threshold parameter (G) will result

in fewer compartments used for computation, and hence the

possible loss of meaningful data. On the other hand, keeping

the threshold to a lower value will result in a broader distri-

bution owing to the contribution of low-intensity voxels. Figure

6D shows the effect of increasing G on the mean value of the

Kd probability distribution. The results indicate that there is a

saturating effect of the threshold parameter above a critical

value of the threshold. The optimal value of the threshold

parameter will depend on the microscope and cellular system

under investigation and could be found empirically, e.g. by

constructing the curve similar to Fig. 6D.

3.4 Inferring Kd in the presence of multiple protein-

binding states

Multiple values of Kd for a particular protein–protein pair

within a single cell may be possible due to multiple protein

states or cellular environments. To investigate the performance

of our Kd inference algorithm for such a case, we generated

synthetic data for a hypothetical case with two distinct binding

constants occurring at different concentration ratios (1:1 and

3:1) and used our algorithm to obtain the Kd probability
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Figure 2. Deconvolution is essential for quantitative measurement of protein concentrations. The imaging process was simulated using a

sphere of unit intensity and assuming a PSF for a confocal or wide-field microscope (Fig. 1). 3-D FSR was used to deconvolve images.

Confocal image and intensity histogram are shown prior to (A) and subsequent to (C) deconvolution. The intensity colormap is set to

[0, 1.5] for all images for comparison. Wide-field image and intensity histogram for the intensity interval [0.1, 1.5] are shown prior to (B)

and subsequent to (D) deconvolution. Solid line indicates the true intensity distribution. (E) The fraction of voxels within720% of the true

value ([0.8, 1.2]) is plotted for both the confocal and the wide-field microscope images, both before (blurred) and after deconvolution. The

wide-field raw image before deconvolution has negligible voxels in the range, and hence does not appear in the histogram. Results for the

two- and four-sphere case (see Fig. 1) are also shown.
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distribution (Fig. 7). To quantify the relative concentrations of

each binding state, we determined the fraction of the total

voxels with a particular value of Kd. This will entail the

calculation of area under the probability distribution. However,

since the spread of the probability distribution depends on the

absolute value of Kd, the correct approach is to normalize the

area under the curve by the value of Kd. Mathematically, it is

equivalent to calculating the area under the curve from a semi-

log probability density distribution

A ¼

Z
pdKd

Kd
¼

Z
pd logðKdÞ ð13Þ

Figure 7 shows that our algorithm can distinguish and

correctly identify the existence of the two different binding

states as indicated by the two distinct peaks for both confocal

and wide-field microscopes. For the case where both the states

are in equal concentrations, the ratio of the area under the first

peak to the area under the second peak in the Kd probability

distribution is 1.17 for the confocal (Fig. 7A) and 1.27 for the

wide-field image (Fig. 7B), reasonably close to the true value of

unity (Area was computed from the semi-log plot of the

probability distribution with f50.1, 0.2 and 0.3 (Eq. (10)) and

averaging the three results for each case). For the case where

the concentration ratios were adjusted to 3:1 in the original

image, we found the ratios of 3.22 for confocal (Fig. 7C) and

3.17 for wide-field image (Fig. 7D), again in agreement with

the true number (3.33). Thus, our algorithm can successfully

identify the relative concentrations of the two binding states.

We note that the ability to distinguish two values of Kd

increases as they become more different from each other, and

if they are more spatially segregated.

3.5 Inferring Kd when unlabeled proteins are

present

We extend our analysis to the case in which unlabeled

proteins A and/or D are present and compete with labeled

species A� and D� for binding. We now need independent

measurements of the ratio of labeled to unlabeled proteins,

rA and rD. (Eqs. (7) and (8)) to infer binding affinity. In the

limit where rA and rD are very large, there are few unlabeled

species present, and the system corresponds to the cases

described in the earlier sections.

Figure 8 shows the performance of the inference proce-

dure when unlabeled proteins are present. A random variation

of the parameters rA and rD based on a normal distribution is

superimposed to account for voxel-to-voxel variation in the

number of labeled and unlabeled molecules arising from

diffusion. Although the algorithm cannot recover the true
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Figure 3. Inferring Kd from wide-

field image data: Effect of optical

distortion. (A) Acceptor [A], donor

[D] and FRET image, [DA] follow-

ing imaging (convolution) by a

wide-field microscope, spectral

un-mixing, and deconvolution of

synthetic images. The calculated

Kd image is also shown. (B) The Kd

probability distribution for the

sphere in (A) was calculated. The

solid vertical line indicates the true

value of Kd and the dotted vertical

lines indicates the interval 1/

�10%. (C) To investigate the effect

of spatial arrangement, calcula-

tions were also repeated for the

two- and four-sphere arrange-

ments of Fig. 1. The fraction of

voxels with Kd within 10–40% of

the true value are plotted for the

one-, two- and four-sphere

arrangements. The colormap is set

to [0, 2] for all images, except the

Kd image, where the colormap is

set to [0, 7.5] and the units of Kd

are expressed in mM.
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value of Kd for the case when rA and rD are small (o0.05; data

not shown), the spread of the distribution is not affected when

unlabeled proteins are present and the distribution is similar

to the case of no unlabeled species (Figs. 3 and 4). Figure 8

also shows the effect of these voxel-to-voxel variations on the

inferred probability distribution of Kd. Variations in para-

meters rA and rD will affect the accuracy of the inferred Kd as

per Eq. (9), and hence we expect the probability distribution to

be broader for larger variation in rA and rD.

3.6 Application to cellular data on Rac-PBD binding

We applied our algorithm to FRET images obtained from

imaging COS7 cells expressing the constitutively active

mutant YFP-Rac2(V12) which binds to co-expressed CFP-

PBD. Two negative controls, cells expressing free CFP

and YFP-Rac2(V12) and cells with free over-expressed

CFP and YFP, were used. Linked CFP and YFP molecules

(CFP-YFP) were used as a positive control. Representative

donor, acceptor and FRET images for all the four cases

are shown in Fig. 9. We expect high affinity binding of

CFP-PBD with YFP-Rac2(V12), (Fig. 9A), approaching

the positive control case where CFP and YFP are linked

and expressed in the cell (Fig. 9D). In contrast, free

CFP binds poorly to YFP-Rac2(V12) (Fig. 9B) or to free YFP

(Fig. 9C).

Next, we calculated Kd probability distributions from the

images, neglecting competition from unlabeled species

under the assumption that the ectopically expressed

proteins were in excess. Figure 9 also shows computed

spatial distribution of protein-binding affinities (calculated

as 1/Kd from the deconvolved image data) and Fig. 10

shows the computed probability distribution for all four

cases. Increasing the value of the threshold parameter G
from 0.1 to 0.3 did not significantly alter the location

of the peak of the distribution (data not shown). We see a

single, sharp peak in the probability density distribution

curve corresponding to the real binding event of

YFP-Rac2(V12) with CFP-PBD (Fig. 10A) at Kd�6mm,

and a similar sharp peak (at higher affinity) for the linked

CFP-YFP case (Fig. 10D) at Kd�1.4 mm. Dispersion in the

value of Kd as indicated by the spread of the distribution

calculated from the experimental data (Figs. 10A and D) is

on the order of 1 log, which is slightly higher than

the dispersion in the value of Kd calculated from the

synthetic data, even with noise, which is on the order

of 1/2 log (cf. Fig. 5). The greater dispersion shown in
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Figure 4. Inferring Kd from confo-

cal image data: Effect of optical

distortion. (A) Acceptor, donor and

FRET images following imaging

(convolution) by a confocal

microscope, spectral un-mixing,

and deconvolution of synthetic

images. The calculated Kd image is

also shown. (B) The Kd probability

distribution for the sphere in (A)

was calculated. The solid vertical

line indicates the true value of Kd

and the dotted vertical lines indi-

cate the interval 1/�10%. (C) To

investigate the effect of spatial

arrangement, calculations were

also repeated for the two- and

four-sphere arrangements of Fig.

1. The fraction of voxels with Kd

within 10–40% of the true value is

plotted for the one-, two- and four-

sphere arrangements. The color-

map is set to [0, 2] for all images,

except the Kd image, where the

colormap is set to [0, 7.5] and the

units of Kd are expressed in mM.
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Figs. 10A and D is due to the use of wide-field rather than

confocal microscopy, the inclusion of all noise in the

experimental situation rather than only shot noise as in

Fig. 5, and the smaller signaling volume in Figs. 10A and D

(dispersion increases as object size decreases; not shown,

but intuitive from Figs. 3 and 4).
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Figure 5. The effect of detection noise on inference of Kd.

Poisson noise was superimposed on the convolved object to

simulate detection noise. (A–C) The probability density distri-

bution of Kd is plotted for various levels of noise: (A) (S/N)2 5 5,

(B) (S/N)2 5 20, (C) (S/N)2 5 50. (D) Area under the probability

density distribution curve within fraction f of the true value,

where f varies from 10 to 40%. Solid vertical lines in the plot

(A–C) indicate the true value of Kd (in mM).

Figure 6. Using thresholding to improve Kd inference. The Kd probability

distribution for confocal microscope for a single sphere was calculated

using selected voxels according to the threshold criteria (Eqn. (11)). G5 0.0

(solid line), 0.1 (dashed line) and 0.3 (dotted line) for various levels of noise:

(A) (S/N)2 5 5, B) (S/N)2 5 20, C) (S/N)2 5 50.). The right portion of the curve is

identical for all cases. The true Kd of the system is 5 mM and is shown by the

solid vertical line. (D) Calculated mean of the Kd probability distribution for

various values of the threshold parameter G. Similar results are obtained

with a wide-field microscope (data not shown).
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In the case of the free CFP controls (Figs. 10B and C), the

peak location is about 2–5 orders of magnitude higher than

for Figs. 10A and D, indicating poor binding as expected.

We attribute the small but non-zero affinity with a broad

distribution seen in the negative controls (Figs. 10B and C)

to non-specific binding of the two molecules; the slight

peak at very low affinity (Kd�107 mm) is partly due to the

logarithmic binning used to construct the probability

distributions. We also note that computational errors

associated with low-intensity FRET images can make

the accurate detection of extremely low-affinity binding

difficult. It is necessary to increase the number of iterations

and the tolerance of the deconvolution algorithm, as

done here, to prevent the appearance of spurious peaks in

the probability distribution, especially for the negative

controls.

The probability distribution for the binding of

YFP-Rac2(V12) with CFP-PBD (Fig. 10A) can be used to

compute a mean or cell-averaged value of Kd. The mean

value of Kd as measured by our algorithm is �6mM,

somewhat higher than the reported in vitro value of 0.2 mM

[34]. The difference is likely at least in part real and due to

significant differences between a cellular and in vitro
environment. Inaccuracies in calibration and/or imaging

and image processing may also contribute. However, our

results clearly indicate at least 3–5 orders of magnitude

difference between the binding affinities of the positive and

negative control, confirming that the algorithm can identify

and also quantitatively distinguish the binding of Rac to

PBD.

4 Concluding remarks

We have presented a method for inferring the local value of

protein–protein equilibrium dissociation constant Kd from

FRET microscopy imaging of cells. We have shown that

deconvolution of both wide-field and confocal microscope

image data is essential to inferring local molecular concen-

trations, and hence the value of Kd, and our algorithm can

identify the existence of multiple binding states and their

relative abundance. Using synthetic test data, we show that

our algorithm can provide accurate values of Kd despite

reasonable levels of noise and the presence of unlabeled

proteins.

Our method builds on research done in the area of image

deconvolution and spectral unmixing for measuring FRET

efficiency [26] and the effect of free donors and acceptors

[25] by quantifying the protein interactions via measure-

ment of Kd. Our inference procedure utilizes the informa-

tion from small volume elements of the cell (voxels),

providing a distribution probability distribution for Kd and

avoiding potential inaccuracies from averaging the signal

from the whole cell [4]. A key strength of our algorithm is

Figure 7. Inferring multiple

values of Kd. Inferred Kd prob-

ability distributions are derived

from synthetic data when the

protein can bind with two

possible values of Kd (Kd 5 5

mM and Kd 5 10 mM). The four-

sphere system shown in Fig.

1C is used for the computa-

tions. Distributions are shown

for confocal (A) and wide-field

(B) microscopes with synthetic

data generated so that two of

the four spheres have accep-

tors and donors binding with

affinity Kd 5 5 mM., and in the

remaining two spheres

proteins bind with affinity

Kd 5 10mM. (C) and (D) show

the corresponding distribu-

tions derived from confocal

and wide-field microscopes

respectively, when the three of

the four spheres have data

corresponding to high affinity

binding state (Kd 5 5mM) and

remaining one sphere has data

corresponding to binding state

Kd 5 10mM. True values of Kd

are shown by solid vertical

lines.
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the ability to quantify local protein interactions, and thus it

can also be applied when there is protein sequestration or

with non-cytosolic proteins. As imaging is conducted in a

time frame that is much smaller than typical protein turn-

over times, the algorithm will not be affected by turnover.

We have focused on intensity-based FRET measurements

since they allow measurement of [D], [A] and E[DA], which

are not readily accessible by FLIM. However, one can

imagine ways in which the analysis could be extended to

other types of FRET experiments including FRET-FLIM-

based measurements of protein interactions [35, 36].

The efficiency and accuracy of our approach can be

affected by a number of factors, apart from the usual para-

meters affecting FRET microscopy. Difficulty in measuring

the value of the calibration factor c is the primary limiting

step in accurate determination of the local value of Kd. The

presence of a significant number of unlabeled proteins adds

the variances associated with the estimation of the local

values of the ratio parameters rA and rD to the prediction of

the Kd value. Finally, our procedure involves considerable

computation as compared with the use of cell-averaging

methods.

While FRET imaging is not a direct measure of the

molecular interaction, it is one of the better means of

visualizing protein interactions in the native environment of

the cell and hence the ability to use FRET data to quantify

the protein–protein interactions at the subcellular scale is

significant. Obtaining values of protein–protein-binding

affinities may allow meaningful comparisons between the

effects of different drugs or inhibitors, giving useful insights

into the mechanisms of their action. In addition, quantita-

tive values of protein–protein-binding affinities are impor-

tant for reconstructing protein networks inside the cell.

Analysis of FRET imaging data with the methods described

here might be further extended to analyze time course

image data for the kinetic parameters of protein-protein

interactions.

A

B

C

D

Acceptor Image 
[A*]

Donor Image 
[D*]

FRET image 
E[D *A*]

Binding Affinity 
Image
(1/Kd)

Figure 9. 3-D FSR imaging of mammalian cells. Representative

images of total donor [D�]tot, total acceptor [A�]tot, donor

acceptor complex E[D�A�] and the spatial distribution of binding

affinity (1/Kd) after deconvolution and reconstruction from cells

expressing different YFP and CFP constructs. (A) Images of cell

expressing YFP-Rac2(V12) and CFP-PBD. (B) Images of cell

expressing YFP-Rac2(V12) and free CFP (negative control). (C)

Images of cell expressing free CFP and free YFP (negative

control). (D) Images of cell expressing fused CFP-YFP (positive

control). Images shown are x–y plane images at a representative

z-plane and are grayscale with the same intensity map for the

first three images on the same row ([A�]tot, [D�A�]tot and

E[D�A�]) to enable visual evaluation of binding affinity. Affinity

images (1/Kd), were computed from these deconvolved images

for each case. For the affinity images only, the colormap

(grayscale) is set to [0, 0.5]/mm for lines A and D and to [0, 0.05]/

mm for lines B and C to facilitate visual comparison.

Figure 8. Effect of partial labeling of interacting proteins. The

probability distribution of the inferred Kd is shown for rA 5 rD 5 1.

In the individual voxel the ratios were allowed to vary according

to normal distribution with standard deviation 10% (A) and 30%

(B). For low values of rA and rD (few labeled molecules), the

algorithm will fail to recover the true values of Kd. (data not

shown). The figures were simulated for a confocal microscope

PSF, and the true value of Kd was set at 5 mM as shown by solid

vertical lines.
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Finally, FRET imaging can be performed with high 3-D

resolution over time inside living cells. The terabytes of

image data produced by these technologies will far outstrip

human capacity to interpret, digest or analyze biochemical

pathways. Thus, the development of analysis tools to infer

key biophysical quantities from these image data, such as

protein-binding affinities described here, will be essential.

This work was supported by US Army Research Laboratories and
Research Office grant DAAD 19-03-1-0168. The authors thank the
anonymous reviewers for their useful comments and suggestions.

The authors have declared no conflict of interest

5 References

[1] Shoemaker, B. A., Panchenko, A. R., Deciphering protein-

protein interactions. Part I. Experimental techniques and

databases. PLoS Comput. Biol. 2007, 3, e42.

[2] Selbach, M., Mann, M., Protein interaction screening by

quantitative immunoprecipitation combined with knock-

down (QUICK). Nat. Methods 2006, 3, 981–983.

[3] Kerppola, T. K., Complementary methods for studies of protein

interactions in living cells. Nat. Methods 2006, 3, 969–971.

[4] Chen, H., Puhl, H. L., III, Ikeda, S. R., Estimating protein–

protein interaction affinity in living cells using quantitative

Forster resonance energy transfer measurements.

J. Biomed. Opt. 2007, 12, 054011.

[5] Piehler, J., New methodologies for measuring protein

interactions in vivo and in vitro. Curr. Opin. Struct. Biol.

2005, 15, 4–14.

[6] You, X., Nguyen, A. W., Jabaiah, A., Sheff, M. A. et al.,

Intracellular protein interaction mapping with FRET hybrids.

Proc. Natl. Acad. Sci. USA 2006, 103, 18458–18463.

[7] Fricker, M., Runions, J., Moore, I., Quantitative fluorescence

microscopy: from art to science. Annu. Rev. Plant Biol. 2006,

57, 79–107.

[8] Fernandez-Gonzalez, R., Munoz-Barrutia, A., Barcellos-Hoff,

M. H., Ortiz-de-Solorzano, C., Quantitative in vivo micro-

scopy: the return from the ‘omics’. Curr. Opin. Biotechnol.

2006, 17, 501–510.

[9] Thaler, C., Koushik, S. V., Blank, P. S., Vogel, S. S., Quanti-

tative multiphoton spectral imaging and its use for

measuring resonance energy transfer. Biophys. J. 2005, 89,

2736–2749.

[10] Lippincott-Schwartz, J., Snapp, E., Kenworthy, A., Studying

protein dynamics in living cells. Nat. Rev. Mol. Cell. Biol.

2001, 2, 444–456.

[11] Sako, Y., Imaging single molecules in living cells for

systems biology. Mol. Syst. Biol. 2006, 2, 56.

[12] Kenworthy, A. K., Imaging protein–protein interactions

using fluorescence resonance energy transfer microscopy.

Methods 2001, 24, 289–296.

[13] Lakowicz, J., Principles of Fluorescence Spectroscopy,

Plenum, New York 1999.

[14] Swedlow, J. R., Quantitative fluorescence microscopy and

image deconvolution. Methods Cell. Biol. 2007, 81, 447–465.

Figure 10. Inferring Kd from

3-D FSR images of mammalian

cells. Inferred Kd probability

distributions calculated for all

four cases (Figs. 9A–D) are

shown. (A) YFP-Rac2(V12)1

CFP-PBD, (B) YFP-Rac2(V12)1

CFP. (C) YFP1CFP. (D) CFP-YFP

Probability distributions were

constructed using a histogram

method with bins of size

0.15mM on the log scale. The

curves shown for (A) and (B)

are constructed from the

values of three different

experiments. The threshold

value was fixed at G5 0.1. The

mean value of Kd calculated

from the distribution above

based on calculations from

individual pixels are 6.4, 1720,

129 and 1.19mM, for the four

cases, respectively. It should

be noted that the distributions

for (A–D) are not normal, and

hence the mean values are not

representative of the distribu-

tion.

5382 K. Mehta et al. Proteomics 2009, 9, 5371–5383

& 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



[15] McNally, J. G., Karpova, T., Cooper, J., Conchello, J. A.,

Three-dimensional imaging by deconvolution microscopy.

Methods 1999, 19, 373–385.

[16] Wu, J. Q., Pollard, T. D., Counting cytokinesis proteins

globally and locally in fission yeast. Science 2005, 310,

310–314.

[17] Gordon, G. W., Berry, G., Liang, X. H., Levine, B., Herman, B.,

Quantitative fluorescence resonance energy transfer

measurements using fluorescence microscopy. Biophys.

J. 1998, 74, 2702–2713.

[18] Hoppe, A., Christensen, K., Swanson, J. A., Fluorescence

resonance energy transfer-based stoichiometry in living

cells. Biophys. J. 2002, 83, 3652–3664.

[19] Hoppe, A., Anonymous Imaging Cellular and Molecular

Biological Functions, 2007, pp. 157–181.

[20] van Rheenen, J., Langeslag, M., Jalink, K., Correcting

confocal acquisition to optimize imaging of fluorescence

resonance energy transfer by sensitized emission. Biophys.

J. 2004, 86, 2517–2529.

[21] Chen, H., Puhl, H. L., III, Koushik, S. V., Vogel, S. S., Ikeda,

S. R., Measurement of FRET efficiency and ratio of donor to

acceptor concentration in living cells. Biophys. J. 2006, 91,

L39–L41.

[22] Raicu, V., Jansma, D. B., Miller, R. J., Friesen, J. D., Protein

interaction quantified in vivo by spectrally resolved fluor-

escence resonance energy transfer. Biochem. J. 2005, 385,

265–277.

[23] Chen, Y., Periasamy, A., Intensity range based quantitative

FRET data analysis to localize protein molecules in live cell

nuclei. J. Fluoresc. 2006, 16, 95–104.

[24] Berney, C., Danuser, G., FRET or no FRET: a quantitative

comparison. Biophys. J. 2003, 84, 3992–4010.

[25] Wlodarczyk, J., Woehler, A., Kobe, F., Ponimaskin, E. et al.,

Analysis of FRET signals in the presence of free donors and

acceptors. Biophys. J. 2008, 94, 986–1000.

[26] Hoppe, A. D., Shorte, S. L., Swanson, J. A., Heintzmann, R.,

3D-FRET reconstruction microscopy for analysis of

dynamic molecular interactions in live cells. Biophys. J.

2008, 13, 13.

[27] Fink, C., Morgan, F., Loew, L. M., Intracellular fluorescent

probe concentrations by confocal microscopy. Biophys.

J. 1998, 75, 1648–1658.

[28] Garini, Y., Young, I. T., McNamara, G., Spectral imaging:

principles and applications. Cytometry A 2006, 69, 735–747.

[29] Hoppe, A. D., Swanson, J. A., Cdc42, Rac1, and Rac2 display

distinct patterns of activation during phagocytosis. Mol. Biol.

Cell 2004, 15, 3509–3519.

[30] Bokoch, G. M., Biology of the p21-activated kinases. Annu.

Rev. Biochem. 2003, 72, 743–781.

[31] DerMardirossian, C., Schnelzer, A., Bokoch, G. M., Phos-

phorylation of RhoGDI by Pak1 mediates dissociation of Rac

GTPase. Mol. Cell 2004, 15, 117–127.

[32] Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S. et al.,

Global analysis of protein localization in budding yeast.

Nature 2003, 425, 686–691.

[33] Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W.

et al., Global analysis of protein expression in yeast. Nature

2003, 425, 737–741.

[34] Hoppe, A. D., Development of quantitative FRET micro-

scopy for study of RHO GTPase and phosphoninositide

signaling in phagocytosis. Ph.D. Thesis, 2003, pp. 116–118.

[35] Lleres, D., Swift, S., Lamond, A. I., Detecting protein-protein

interactions in vivo with FRET using multiphoton fluores-

cence lifetime imaging microscopy (FLIM). Curr. Protoc.

Cytom. 2007, Chapter 12, Unit12.10.

[36] Buranachai, C., Kamiyama, D., Chiba, A., Williams, B. D.,

Clegg, R. M., Rapid frequency-domain FLIM spinning

disk confocal microscope: lifetime resolution, image

improvement and wavelet analysis. J. Fluoresc. 2008, 18,

929–942.

& 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com

Proteomics 2009, 9, 5371–5383 5383


