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ABSTRACT 
 

Increased renewable deployment is necessary to reduce environmental impacts, 
and improve the sustainability of the U.S. electricity sector. This dissertation explores 
implications of increased photovoltaic (PV) utilization using an integrated energy 
economic framework with four methods: life cycle modeling of manufacturing and end of 
life management for PV technologies; grid dispatching modeling for a comparative 
assessment of CO2 abatement potential at different fuel mix scales; cost benefit analysis 
of PV under a cap and trade market for greenhouse gases and regional pollutants; 
constrained optimization to evaluate the deployment and cost reduction of photovoltaics 
under technological and policy scenarios in the future.  

The dispatching model demonstrated that the actual CO2 abatement of PV 
electricity is dependent on both displaced peak load resources and PV installation 
capacities. Using average fuel mixes either over- or under-estimates the abatement. Due 
to the predominant displacement of the low carbon intensive natural gas at the margin in 
ERCOT, the marginal abatement was lower by 15% when compared to the average cases 
(for PV capacity of 1 to 1,000 kWp). In CAL-ISO using an average fuel mix approach 
underestimated the CO2 abatement. Regional grid CO2 indicators measure the combined 
effect of solar radiation and carbon intensity of the grid, on CO2 abatement through PV 
electricity generation. PV electricity generated in the MRO and SPP grids provided the 
highest CO2 abatement.  

Inclusion of allowance prices in PV performance evaluation is a unique feature of 
the economic model. PV economic performance increased by 23% from the base case 
(BC ratio 0.29 at r = 2%) with the inclusion of permit prices. A collective improvement in 
manufacturing cost, efficiency and resource availability raises the benefit-cost ratio to 
2.73. Cumulative CO2 reduction outlined in the Waxman – Markey bill (H.R. 2454) until 
2050 was used to establish CO2 reduction targets for the constrained optimization model. 
PV was tested against natural gas and wind using seven different modeling scenarios, but 
was only deployed after 2040. This modeling framework was also used to study the 
influence of technological breakthroughs, gas energy costs, subsidies and renewable 
portfolio standards on PV deployment in the future. 
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