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ABSTRACT  

 
IN SILICO HAPLOTYPING, GENOTYPING AND 

ANALYSIS OF RESEQUENCING DATA 
USING MARKOV MODELS 

 
by  

Yun Li 
 
 
Co-Chairs: Gonçalo R. Abecasis and Michael Lee Boehnke 

 

Searches for the elusive genetic mechanisms underlying complex diseases have long 

challenged human geneticists.  Recently, genome-wide association studies (GWAS) 

have successfully identified many complex disease susceptibility loci by genotyping a 

subset of several hundred thousand common genetic variants across many individuals. 

With the rapid deployment of next-generation sequencing technologies, it is anticipated 

that future genetic association studies will be able to more comprehensively survey 

genetic variation, both to identify new loci that were missed in the original round of 

genome-wide association studies and to finely characterize the contributions of identified 

loci. GWAS, whether in the current genotyping-based form or in the anticipated 

sequencing-based form, pose a range of computational and analytical challenges. 

 

I first propose and implement a computationally efficient hidden Markov model that can 

rapidly reconstruct the two chromosomes carried by each individual in a study. To 



 

 ix

achieve this goal, the methods combine partial genotype or sequence data for each 

individual with additional information on additional individuals. Comparisons with 

standard haplotypers in both simulated and real datasets show that the proposed method 

is at least comparable and more computational efficient. 

 

I next extend my method for imputing genotypes at untyped SNP loci. Specifically, I 

consider how my approach can be used to assess several million common variants that 

are not directly genotyped in a typical association study but for which data are available 

in public databases. I describe how the extended method performs in a wide range of 

simulated and real settings. 

 

Finally, I consider how low-depth shot-gun resequencing data on a large number of 

individuals can be combined to provide accurate estimates of individual sequences. This 

approach should speed up the advent of large-scale genome resequencing studies and 

facilitate the identification of rare variants that contribute to disease susceptibility and 

that cannot be adequately assessed with current genotyping-based GWAS approaches. 

 

My methods are flexible enough to accommodate phased haplotype data, genotype data, 

or re-sequencing data as input and can utilize public resources such as the HapMap 

consortium and the 1000 Genomes Project that now include data on several million 

genetic variants typed on hundreds of individuals. 
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Chapter 1 

Introduction 

1.1 Complex diseases 

 

The study of complex diseases is complex. Unlike most simple Mendelian disorders, 

complex diseases have a significant impact on human health due to their high population 

incidence, and they have therefore received great attention (Lander and Schork 1994; 

Hoh and Ott 2003; Dewan et al. 2007, MaCarthy et al. 2008). Despite great advances 

made and continuous efforts put into understanding the genetic basis of these complex 

diseases, we still have limited knowledge regarding causal genetic variants underlying 

common genetically complex diseases such as cancer, diabetes, cardiovascular diseases, 

and psychological disorders. For example, although over 200 regions of the genome have 

been identified to be associated with various complex diseases to date (Hindroff et al. 

2009, also see www.genome.gov/gwastudies), the proportion of heritability explained by 

the identified variants is modest at best (Visscher et al. 2008). 

 

Unraveling the genetic basis of complex diseases is a challenge for geneticists. The main 

reasons include but are not limited to multiple common alleles with modest effects, 

complex gene-gene and gene-environment interactions, rare variants that contribute to 

disease susceptibility, confounding non-inherited genetic effects, and diagnostic 
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difficulties of (sub)phenotypes.  

 

Due to the relatively limited knowledge of the contributing genetic variants, and even less 

of the underlying etiology, early efforts to identify genes conferring susceptibility to 

complex diseases mostly took the form of linkage and positional cloning (Botstein and 

Risch 2003, McCarthy et al. 2008), where disease genes are identified solely based on 

their relative position within a known map of genetic markers.   

 

One traditional type of positional closing is linkage analysis, which has been used for 

studying both Mendelian and complex diseases. A typical genome-wide linkage study 

examines several hundred microsatellites or thousands of single nucleotide 

polymorphisms (SNPs) across the genome on families with multiple affected individuals. 

Initial linkage scans may identify regions of interest, typically 10-20 Mb in size if the 

phenotypic trait is complex. Subsequent fine mapping and positional candidate gene 

studies, where a denser map of genetic variants is scrutinized across the linked regions, 

are carried out to refine the linked regions and to more precisely pinpoint the contributing 

causal variants. Such a paradigm has achieved phenomenal successes in the study of 

disorders that have a relatively simple relationship between the phenotypic trait and 

underlying genetic variants. Such disorders are mostly Mendelian; examples include 

cystic fibrosis (Eiberg et al. 1984), haemochromatosis (Feder et al. 1996) and lactose 

intolerance (Enattah et al. 2002). However, linkage-based approaches have been much 

less effective in localizing genes for common complex diseases, owing mainly to the 

diseases’ complex inheritance patterns, the coarse resolution of linkage mapping, and the 
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relatively small magnitude of the contribution to disease risk for most common variants. 

 

1.2 Genome-wide association studies (GWAS) 

 

In the last ten years, genome-wide case-control association studies have been proposed as 

a potentially more powerful alternative to linkage studies for complex diseases (Risch 

and Merikangas 1996). The association-based approach typically starts with the 

collection of a large number of genetically unrelated individuals, including both 

individuals affected with the disease of interest and unaffected controls. Association 

studies sample “unrelated” individuals with and without the disease phenotype of interest. 

The individuals under study are “unrelated” only to the extent of not being related 

genetically in the most recent three to five generations. Since these “unrelated” 

individuals share shorter stretches of their chromosomes than among family members, a 

much denser set of SNPs is typically selected, assayed and tested for disease-marker 

association. SNPs have gradually become the marker of choice, replacing microsatellites, 

owing to their great abundance and to the availability of high-throughput analysis 

technologies for SNPs. 

 

GWAS typically involve the examination of several hundred thousand SNPs across the 

entire genome on thousands of individuals. GWAS is the gene mapping strategy that has 

delivered on the promise of detecting genetic variants whose individual contributions to 

complex disease susceptibility are small (for examples, see 

www.genome.gov/gwastudies). Mapping resolution can be much finer than that of 
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traditional linkage approaches, where the linked regions are typically 10-20 Mb in size 

and thus are still largely intractable for effective localization of the causal variants. Such 

greatly refined mapping resolution is attainable both because unrelated individuals share 

much shorter stretches of their chromosomes than family members due to historical 

recombination events, and because of the large number of SNPs examined. 

 

The number of common (minor allele frequency [MAF] > 1%) SNPs in the human 

genome is believed to be approximately ten million (Kruglyak and Nickerson 2001; 

Hinds et al. 2005; The International HapMap Consortium 2007). Despite the large 

number of SNPs (typically several hundred thousand) assayed in GWAS, the effects of 

most of the ten million SNPs must be evaluated indirectly using either genotyped SNPs 

or haplotypes thereof as proxies. Phasing and imputation are therefore of great 

importance for effective identification of disease-causing variants, where phasing is the 

inference of haplotypes from unphased genotypes and imputation is the estimation of the 

allelic states of SNPs that are not directly genotyped. 
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1.3 The next-generation: Resequencing-based approaches 

 

With the advent and rapid advances in very high throughput resequencing technologies 

(Bentley 2006), it is believed by some that genotyping-based approaches will soon 

become obsolete. One advantage of resequencing-based approaches is that they naturally 

capture variants that are currently absent from public databases including, potentially, 

population specific variants. Thus, resequencing is one natural and important next step 

toward elucidating the underlying functional mechanisms in the gene regions discovered 

in current association studies, and it may be used as a technique for association studies 

eventually. 

 

The cost of ultra high-throughput resequencing, although it has dropped tremendously, 

remains daunting for application to a large number of individuals at high depth. 

Alternatively, for a large number of individuals, the design of low-pass short-read 

shotgun resequencing is particularly attractive. However, there are few, if any, existing 

tools to combine efficiently partial resequencing information across individuals. Novel 

computational and statistical tools are essential to stimulate the advent of large-scale 

genome resequencing-based approaches and to facilitate the identification of rare variants 

that contribute to disease susceptibility but that cannot be adequately assessed with 

current genotyping-based approaches. 
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1.4 The scope of this dissertation 

 

GWAS and next-generation resequencing studies pose a wide range of computational and 

statistical challenges that have not yet been adequately addressed. In this dissertation, I 

propose and implement computationally efficient hidden Markov models that can analyze 

data from both GWAS and resequencing studies, involving hundreds of thousands to 

several million markers in thousands of individuals. 

 

These methods can (a) rapidly reconstruct the two chromosomes (haplotypes) that are 

carried by each individual in a study (current high-throughput genotyping assays only 

measure small fragments of each chromosome and do not provide long sequences as 

output); (b) combine data from individual studies (which typically examine several 

hundred thousand up to about one million genetic variants) with data from public 

resources (which include information on millions of genetic variants); (c) combine data 

from different studies that examine different sets of genetic variants (this is especially 

important to achieve the large sample sizes required for detecting variants that make only 

small contributions to disease risk); or (d) combine low-depth shotgun resequencing data 

on a large number of individuals to provide accurate estimates of individual sequences. 

These methods are expected to speed up the advent of large-scale genome-wide 

resequencing studies and enable the identification of rare disease variants whose effects 

cannot be satisfactorily evaluated in current genotyping-based studies.  

 

Chapter 2 of this dissertation introduces the basic form of the underlying hidden Markov 
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models and evaluates its utility in haplotype reconstruction from unphased genotypes. 

Applications to both simulated datasets and datasets from real studies show that my 

method is comparable, if not superior to current state-of-the-art haplotypers. In addition, I 

evaluate in various scenarios the benefits of incorporating additional data from public 

databases such as the International HapMap Consortium, which now include data on 

millions of genetic markers on hundreds of individuals.  

 

Chapter 3 focuses on imputing missing genotypes for GWAS. Missingness is defined 

broadly to include genotypes of unassayed markers in an association study. In particular, I 

consider how to impute genotypes for and how to assess the effects of several million 

common SNPs (mostly not directly genotyped) in each individual GWAS by efficiently 

combining with data from public databases (e.g., HapMap). Using both simulated and 

real studies, I show how the evaluation of unmeasured variants can effectively increase 

sample sizes, leading ultimately to the identification of genetic variants whose effects are 

moderate and that cannot be powerfully detected without combining data across several 

large scale GWAS, which might well examine different sets of genetic markers.  

 

Chapter 4 presents and demonstrates the utility of an extended hidden Markov model that 

handles shotgun resequencing data. Enabling effective combination of partial information 

(i.e., low-depth sequencing data in this particular context) from a larger number of 

individuals, my method allows more cost-efficient allocation of limited sequencing 

resources. The performance of my method, measured by a wide range of statistics 

including proportion of polymorphisms detected, genotype-specific imputation accuracy 
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at detected sites, and information generated for statistical analysis, is extensively 

evaluated through simulations. I also performed analysis with preliminary data from real 

whole-genome resequencing studies, results from which are consistent with my 

predictions from simulations. 

 

In summary, I have developed computationally efficient models for the analysis of 

large-scale genetic data derived from GWAS or resequencing based studies. I believe that 

more advanced laboratory techniques and further successes in the area of complex 

disease gene identification will require even better computational tools and improved 

statistical methods to enable us to tackle the large datasets of SNP and structure variants 

now being identified and genotyped. I aim to extract subtle signals from large and 

complex data sets. The subtle signals together may explain a larger amount of variation in 

phenotypic traits. Their identification will help in our understanding of the genetic nature 

of common human diseases in a genomic era, where multiple loci and their interactions 

can be examined simultaneously.  
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Chapter 2 

Haplotype Reconstruction 

2.1 Introduction 

 

For autosomes, the genetic material carried by each diploid individual is composed of 

two chromosomes (or haplotypes). Haplotype information carried by individuals in a 

sample may inform many genetic analyses, including linkage-disequilibrium mapping of 

disease genes and inference about evolutionary processes such as selection and 

recombination. However, obtaining haplotype information directly from diploid 

organisms in laboratories remains expensive, laborious and time-consuming. On the other 

hand, advances in high-throughput genotyping technologies have enabled the generation 

of accurate genotypes on hundreds of thousands of genetic markers rapidly and 

inexpensively. In this chapter, I consider how to reconstruct haplotypes from unphased 

genotypes in samples of genetically unrelated individuals. 

 

Haplotyping in population samples shares the same underlying rationale with phase 

inference in samples of related individuals. That is, individuals share local stretches of 

their chromosomes derived from their common ancestors. The difference lies in the 

relative size of the locally shared stretches, which are much longer in related individuals 

(parent-offspring pairs, for example, tend to share stretches in size of tens of 
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centi-Morgans, resulting from typically one to two recombination events per 

chromosome in meiosis). In other words, each of our chromosomes is a mosaic of others’ 

chromosomes, with the lengths of mosaic pieces varying depending on the degree of 

genetic relatedness. Linkage-disequilibrium (LD), the nonrandom association of alleles 

among linked loci due to lack of sufficient historical recombination events accumulated, 

encapsulates such information and is exploited by almost all computational and statistical 

approaches proposed for haplotype inference. My method, described in detail in the 

following section, models multi-marker LD and accounts appropriately for its decay over 

distance and for the block-like patterns of haplotypes. In addition, the model benefits 

from the incorporation of additional data from public databases by augmenting the pool 

of reference chromosomes, mosaics of which construct the desired haplotypes of 

individuals under study. Figure 2.1 provides a simplified illustration of the underlying 

mechanism. 

 

2.2 Methods 

 

My approach was inspired by the Markov models commonly used for pedigree analysis 

(for examples, see Lander and Green 1987; Kruglyak et al. 1996; Abecasis et al. 2002) 

and shares several features with other hidden Markov models (HMM) used to describe 

sampled haplotypes as a mosaic of a set of reference haplotypes (Scheet and Stephens 

2006; Mott and Flint 2002; Mott et al. 2000; Li and Stephens 2003; Daly et al. 2001). My 

method produces high-quality estimates of individual haplotypes given phase unknown 

genotypes and can also provide useful measure of the quality of inferred haplotypes.  



 

 11

 

To estimate haplotypes, my approach starts by randomly generating a pair of haplotypes 

that is compatible with the observed genotypes for each sampled individual. These initial 

haplotype estimates are then refined through a series of iterations. In each iteration, a new 

pair of haplotypes is sampled for each individual in turn using a hidden Markov model 

(HMM) that describes the haplotype pair as an imperfect mosaic of a set of reference 

haplotypes. The reference haplotypes can be phased haplotypes from external sources or 

internally constructed haplotypes of other individuals in the sample. Model parameters 

that characterize the probability of change in the mosaic pattern between every pair of 

consecutive markers and the probability of observing an imperfection in the mosaic at 

each specific point, are also updated using a hybrid of approximate Gibbs’ sampler and 

Expectation-Maximization (EM) algorithm. After many iterations (typically 20-100), a 

consensus haplotype can be constructed by merging the haplotypes sampled in each 

iteration (one merging algorithm is described in Appendix 2.1).  

 

We have implemented the model outlined in the paragraph above in a software package 

MACH 1.0 (MACH abbreviated for Markov Chain Haplotyping). Paragraphs below 

describe the underlying statistical model.  

 

Hidden Markov Model.  My model resolves a set of unphased genotypes G into an 

imperfect mosaic of several reference haplotypes. Assume that H template haplotypes are 

each genotyped at L loci and let Tj(i) denote the allele observed at locus j in reference 

haplotype i. Furthermore I define a series of indicator variables S1, S2, …, SL that denote a 
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hypothetical (and unobserved) mosaic state underlying the unphased genotypes. At a 

specific position j there are H2 possible states. A specific state, such as Sj = (xj, yj), 

indicates that the first chromosome uses reference haplotype xj as a template whereas the 

second chromosome uses reference haplotype yj as a template at the particular locus j.  

 

The key interest is in making inferences about the sequence of mosaic states S that best 

describe the observed genotypes. Knowledge of S will implicitly order alleles at 

heterozygous sites and suggest an allele for each untyped location. I calculate the joint 

probability of the observed genotypes and an underlying haplotype state as: 

 

∏∏
==

−=
L

j
jj

L

j
jj SGPSSPSPP

12
11 ),|(),|()(),|,( εθεθSG  

 

In the model above, P(S1) denotes the prior probability of the initial mosaic state and is 

usually assumed to be equal for all possible configurations, P(Sj|Sj-1) denotes the 

transition probability between two mosaic states and reflects the likelihood of historical 

recombination events in the interval between j-1 and j, P(Gj|Sj) denotes the probability of 

observed genotypes at each position conditional on the underlying mosaic state and 

reflects the combined effects of gene conversion, mutation and genotyping error. Detailed 

description of the model parameters θ and ε can be found in the Parameter Estimation 

section. 

 

One key assumption made for the above model to hold is no interference. Otherwise, the 

first-order Markov does not suffice for modeling the transition probabilities. Biologically 
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speaking this assumption is wrong. Statistically speaking the degree of departure is 

negligible since the probabilities of interference are in an even lower order than the 

already tiny state-changing (crossing over, or recombination) probabilities. Second, the 

model assumes that gene conversion, mutation and genotyping error events are not 

context specific such that P(Gj|S, G) = P(Gj|Sj).  

 

Monte-Carlo Haplotyping Procedure. To estimate haplotypes in a sample of genotyped 

individuals my model first assigns a random pair of haplotypes to each individual, 

consistent with the observed genotypes. To do so, the model randomly orders alleles at 

each heterozygous site and sample alleles at untyped sites according to population 

frequencies. Then, it updates the haplotypes for each individual in turn by using the 

current set of haplotype estimates for all individuals as templates and sampling S 

proportional to the P(S|G, θ, ε) ∝ P(G,S| θ, ε). Note that since the Sj’s define a Markov 

Chain this sampling can be done conveniently using Baum’s forward and backward 

algorithm (Baum 1972). A new set of haplotypes for an individual is then defined 

according to P(S|G, θ, ε), allowing imperfect mosaics and respecting observed genotypes 

in case of mismatches with the sampled set of haplotypes. The update procedure is 

repeated several times, looping over all individuals (more updates result in gradual 

refinement of the estimated haplotypes, but very accurate haplotype estimates can often 

be obtained in ~20 iterations, see Table 2.1). After a pre-specified number of iterations 

are completed, a consensus haplotype solution is generated by identifying a set of 

haplotypes that can be transformed into any of the reconstructed haplotypes across 

iterations with a minimal number of switches according to an algorithm described in 
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Appendix 2.1.  

 

Parameter Estimation. Parameters in the above procedure are the transition probabilities 

P(Sj|Sj-1, θ) and emission probabilities P(Gj|Sj,ε). Transition probabilities are defined as a 

function of the crossover parameter θj: 
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The possible values of P(Sj|Sj-1) reflect both the overall rate of change in the mosaic for 

the interval, given by θj, and the fact that when a change occurs a new mosaic state is 

selected at random among all H possible states.  

 

Now let T(Sj) = [T(xj) , T(yj)]  denote the genotype implied by state Sj and define the 

emission probabilities P(Gj|Sj) as a function of the locus-specific error parameter εj: 
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Initially, my model sets θj = θ = 0.01 and εj = ε = 0.01 or some other suitable constant. 

While sampling a new mosaic state for each individual, my algorithm keep track of the 

number and location of change points in the mosaic and also of the number of times that 

the genotype implied by the sampled mosaic state matches or does not match the 

observed genotype. Let ,i jCO  be the number of changes in mosaic states from marker j 

to marker j+1 for individual I, and ,i jMM  the number of mismatched alleles between 

the observed genotypes and genotype implied by the sampled mosaic state at marker j for 

individual I, both taking values 0, 1 or 2. These quantities are then used to update the θj 

and εj parameters for the next iteration: 
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It is important to avoid setting either θj = 0 or εj = 0, as that could make it difficult for the 

Markov sampler to investigate different mosaic configurations. To avoid this, a combined 
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crossover parameter is estimated for intervals with a small number of sampled changes in 

mosaic state and an analogous procedure is employed for markers with a small number of 

observed mismatches between the constructed mosaic and observed genotypes. The 

formula below provides the recipe for dealing with small θj’s. The same rule applies to 

εj’s. 

 

1

1

[ * ( )]

( )
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θ θ θ
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θ θ
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Overall, I expect the θj’s will reflect a combination of population recombination rates, 

and the relatedness between the haplotypes being resolved and the true underlying 

haplotypes. For example, if chromosomes carried by individuals of European descent are 

used as templates to resolve genotypes of Asian individuals, I expect, on average, higher 

θ estimates than when chromosomes of other Asian individuals are used as templates. I 

also tried using distance between flanking markers to inform estimates of θj (since θ’s are 

generally larger over larger intervals), but did not find noticeable improvements. I expect 

that εj will reflect the combined effects of genotyping error, gene conversion events, 

recurrent mutation and – when genotype data from multiple platforms or laboratories is 

used – assay inconsistencies between different platforms.  

 

Computational Efficiency.  A number of optimizations are possible to increase the 

computational efficiency. For example, since haplotype states are unordered, only 

H(H+1)/2 distinct states must considered at each location, rather than H2 distinct states. 
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Below, I summarize some of the other efficiencies that we identified and how these are 

implemented in MACH 1.0.  

 

Transition Matrices. When sampling a mosaic state S conditional on the observed 

genotypes G, we rely on Baum’s forward and backward algorithm. The algorithm 

requires a series of left and right conditioned probability vectors which provide an 

indication of the relative probability of a specific state at a given location conditional on 

observed genotypes at markers to its left (or right). For example, the probability of 

observing state (x,y) at location j conditional on all preceding genotypes is simply: 

 

1 2 1

1 1 1 1
( , )

( , ) ( ( , ) | , ,... )

                 ( , ) ( ( , ) | ( , )) ( | ( , ))
j j j

j j j j j
a b

Left x y P S x y G G G

Left a b P S x y S a b P G S a b
−

− − − −

= =

= = = =∑  

1 2

1( )Left S i
H

= =  or simply 1( ) 1Left S i= =  since the factor of 2

1
H

 applies to all left 

probabilities. 

 

The calculation of these probabilities can be sped up by taking advantage of the regular 

patterns in the transition matrices. Specifically, I define the following quantities: 

 

1 1 1( ) ( , ) ( | ( , ))

( )

j j j
b

a

C a Left a b P G S a b

C C a

− − −= =

=

∑

∑
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Then, the previous definition becomes: 

 

2
1 1 1

2 2

1

( , ) ( , ) ( | ( , ))(1 )

( )(1 )
                     

( )(1 )
                     

                     /

( ) 1

j j j j j

j j

j j

j

Left x y Left x y P G S x y

C x
H

C y
H

C H

Left S i

θ

θ θ

θ θ

θ

− − −= = − +

−
+

−
+

= =

 

 

My algorithm calculates C(a) and C along the way and uses this updated definition to 

calculate left conditional probabilities for each possible state. Thus, computational 

requirements become O(H) rather than O(H2) using the original definition. An analogous 

speed up is available for right conditioned probabilities.  

 

Memory Efficiency. One large computational constraint when applying such an 

algorithm on a genomic scale is the storage required to track left conditioned probabilities. 

Typically, this requires storage of L vectors each with H2 elements (or, as noted above 

H(H+1)/2 elements). This requirement becomes cumbersome as the number of 

polymorphic sites increases. We devised a solution that requires storage of only 2*sqrt(L) 

vectors. For notational convenience let K = sqrt(L). My algorithm pre-allocates 2K 

vectors and organizes these into two groups: a framework set of K vectors, and a working 

set of another K vectors. When left conditional probabilities are first calculated, 

proceeding left to right, we store every Kth vector in the framework set and discard other 

intermediate results. Then, as these vectors are used in the second pass of the chain 
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(which combines left and right conditional probabilities, proceeding right to left), we 

recalculate K of these vectors at a time (starting from the nearest vector in the framework 

set) and store them in the working set of K vectors. Completing the full chain requires 

calculation of all L vectors of left conditional probabilities, recalculation of K of these 

vectors L/K times, and calculation of L vectors of right conditional probabilities. Overall, 

this solution no more than doubles computing time (since each vector of left conditional 

probabilities must be calculated twice), but reduces memory requirements from O(L) to 

O(L1/2). The solution is general and can be applied to many other Hidden Markov 

Models. 

 

Reducing the Number of Templates. If all available chromosomes are used as templates, 

the computational complexity of my algorithm increases cubically with sample size 

because of the need to explore the (2N-2)2 configurations (or again, as noted above 

H(H+1)/2 configurations where H=2N-2) for N individuals. One way to avoid this is to 

restrict the size of the template pool. When there are more than a pre-specified number of 

potential templates (say H = 200 or 300), I typically select a random subset of these for 

each update. With this restriction, the complexity of my algorithm increases only linearly 

with sample size since we examine a fixed number (H(H+1)/2) of configurations) for N 

individuals. Furthermore, even though each update is based on only a random sample of 

the available haplotypes, the overall quality of solutions still increases with sample size. 

When the focus is on genotype imputation (Chapter 3), rather than haplotyping, an 

alternative is to use as templates individuals who have been genotyped for the markers 

being imputed (e.g. the HapMap reference samples). Both of the above solutions are 
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heuristics that trade off some accuracy for computational efficiency due to exploiting 

partial information: a random subset in the first case and a selected set (haplotypes of 

individuals with the most genotype information) in the second case. An alternative 

strategy for reducing the size of the template pool is to group haplotypes locally by 

exploiting local similarities and redundancies among the haplotypes in the pool with no 

(if only identical haplotypes are grouped locally) or little (if similar haplotypes are 

grouped locally) loss of information. These redundancies have already been exploited to 

increase computational efficiency in the handling of other Markov models (Abecasis et al. 

2002; Markianos et al. 2001), and our preliminary implementations (Chen et al. 

unpublished data) suggest that speed-ups of 5-10x are possible.  

 

2.3 Data  

 

Simulated datasets. To evaluate the performance of my approach, I simulated two sets of 

100 1Mb regions that mimic the degree of LD in the HapMap CEU or YRI samples 

(Schaffner et al. 2005). In each region, I simulated genotypes for ~200 SNP markers, 

ascertained to mimic HapMap allele frequency patterns (details described in Marchini et 

al. 2006), in 90 individuals with 2% of the genotypes masked at random to model 

genotype missingness for genotyped markers.  

 

Real datasets from FUSION. The Finland-United States Investigation of 

Non-Insulin-Dependent Diabetes Mellitus Genetics (FUSION) Study aims to identify 

genes that predispose to type 2 diabetes (T2D). In a recent genome-wide association scan, 
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1,161 Finnish individuals with type 2 diabetes (T2D) and 1,174 normal glucose tolerant 

Finnish controls were genotyped at 317,503 SNPs using the Illumina HumanHap300 

BeadChip. In addition, 122 offspring were genotyped using the same chip, yielding 119 

mother-father-offspring trios, one mother-father-two-offspring quartet and one 

parent-offspring pair (Scott et al. 2007). Excluding the one-parent-offspring pair and one 

of the two offspring from the quartet, I obtained a dataset consisting of 120 trios. 

Assuming no genotyping error and no parent-to-offspring recombination events, I 

established the “true” haplotypes of the 240 parents at every SNP locus except where all 

three people were heterozygous or where there was missing data. I then used my method 

to infer haplotypes of these parents based solely on their genotypes.  

 

2.4 Results 

 

Accuracy of reconstructed haplotypes 

Simulated datasets. I applied my method to the simulated datasets, reconstructed 

individual haplotypes and tallied three measures of haplotyping quality (Marchini et al. 

2006): (1) the number of incorrectly imputed missing genotypes; (2) among heterozygous 

sites, the number of consecutive sites that are phased incorrectly with respect to each 

other (this is the number of “flips” required to transform estimated haplotypes into the 

true haplotypes), and (3) the number of correctly imputed haplotypes across the entire 

1Mb region. The three measures were averaged over all 100 regions and the results are 

summarized in Table 2.1. For comparison, the table also includes results from Beagle 

(Browning and Browning 2007), PHASE (Stephens and Scheet 2005; Stephens et al. 
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2001), and fastPHASE (Scheet and Stephens 2006), the latter being the two state of the 

art haplotyping algorithms according to Marchini et al. (2006). Table 2.1 clearly shows 

that my method is competitive in all three measures: it results in slightly fewer incorrectly 

imputed genotypes, requires slightly fewer flips to transform imputed haplotypes into the 

true haplotypes, and produces slightly more correctly imputed haplotypes over the entire 

1Mb stretch. Furthermore, estimates of haplotypes and missing genotypes obtained in 

5-20 minutes using my method are comparable in quality to those produced by PHASE 

runs averaging ~1 day. 

 

Real data of FUSION trios. I applied my haplotyper to the 240 FUSION parents, 

ignoring genotype information from their offspring. Reconstructed haplotypes were 

compared to the “true” haplotypes inferred from trio data at loci with no uncertainty. For 

each autosomal chromosome, two regions of length ~2Mb were picked, inferred and 

evaluated. The average number of flips and correctly inferred haplotypes across the 44 

regions are tabulated in Table 2.2, along with results from PHASE (Stephens and Scheet 

2005; Stephens et al. 2001) and fastPHASE (Scheet and Stephens 2006). The number of 

correctly imputed genotypes was not applicable since I did not attempt to mask any 

parental genotypes for imputation. My method is clearly comparable to the two 

state-of-the-art haplotypers in terms of accuracy and computational resources invested. 

For example, haplotypes reconstructed in 10 iterations were already of reasonable 

accuracy compared with those inferred by fastPHASE. In addition, my method is very 

flexible regarding computational investment, with the overall quality of inferred 

haplotypes improving with the number of iterations invested. Haplotypes of similar 



 

 23

accuracy could be obtained in ~10 hours (200-300 iterations) using my method, while 

taking over three days for PHASE.  

 

Quality measures.  

 

Results shown above have focused on assessing the accuracy of point estimates of 

reconstructed haplotypes. Quality measures, or measures of uncertainty, provide 

important auxiliary information that can facilitate proper and more powerful downstream 

analyses. My method generates two quality measures quickly and conveniently: (1) the 

estimated number of incorrectly inferred genotypes, and (2) the estimated number of flips 

needed to transform inferred haplotypes into the correct haplotypes. Figure 2.2 shows that 

these quality measures provide reasonably accurate evaluation of proposed solutions and 

that they slightly underestimate quality in cases where the error rates are high.  

 

Benefits from External Information. 

 

One useful feature of the proposed method is that it allows incorporation of external 

information such as data from the International HapMap Project. I consider it worthwhile 

to evaluate if, when, and how much haplotype inference benefits from external 

information. In particular, I simulated scenarios where the number of sample individuals 

to be haplotyped ranges from relatively small (60) to relatively large (500). In addition, I 

simulated an external set of 120 known haplotypes, from the same underlying population 

as the individuals under study. I then ran my haplotyper with or without joint modeling 
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with the external set of 120 haplotypes, holding computational investment constant. Table 

2.3 summarizes the accuracy of inferred haplotypes. Again, I simulated two populations, 

mimicking HapMap CEU and YRI respectively. I noticed haplotyping is slightly harder 

in the African population than in the European population as expected because of the 

lower level of LD in the African population. More importantly, Table 2.3 shows that 

higher quality haplotypes can be obtained with the aid of external information, especially 

when the number of sample individuals is relatively small. For example, the average 

number of per-person flips decreases by more than 20% (from 1.98 to 1.53) with the aid 

of “HapMap” chromosomes in simulated datasets mimicking HapMap CEU. Benefits 

from the incorporation of external data drop gradually when the number of individuals 

under study increases. As shown in the table, when the number of sampled individuals is 

relatively large (500), discarding external data generates constructed haplotypes that are 

as accurately as (if not even slightly more accurate than) utilizing external data. This table 

attempts to compare the two approaches (with and without joint modeling with external 

data) when investing the same amount of computation. Obviously, if one exploits all 

available information (that is, using the combined pool of external haplotypes and 

haplotypes of other sample individuals being reconstructed), a better solution would be 

obtained than if one ignores external information. Similar patterns carry over to simulated 

datasets mimicking HapMap YRI. The consequences of borrowing information from 

inappropriate external data (for example, borrow HapMap YRI information for the 

analysis of Caucasian individuals) are evaluated in Chapter 3.  
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2.5 Discussion 

 

In this chapter, I have presented a hidden Markov model for haplotyping a sample of 

unrelated individuals and have demonstrated, through applications to both simulated and 

real datasets, that it is competitive with (indeed outperforms) other methods including 

Beagle, PHASE, and fastPHASE. Major advantages of my methods include its ability to 

fully exploit multilocus LD information, its computational efficiency and flexibility, and 

its ability to perform joint modeling with external data from public databases.  

 

My method is computationally feasible for large datasets, which will be further 

demonstrated in the following chapters. My algorithm is approximately linear in the 

number of markers and approximately quadratic in the number of reference haplotypes. 

The pool of reference haplotypes can be reconstructed haplotypes of all other individuals 

in the same sample, known haplotypes from public databases, the combined pool of 

reconstructed and known haplotypes, or a random subset of the combined pool. 

Furthermore, when different levels of missing data are present, my model allows 

assigning more weights to haplotypes of individuals with more information when 

constructing the pool of reference haplotypes. Finally, because each chromosome is 

modeled as a mosaic of the reference chromosomes, the proposed model naturally 

handles samples of potentially mixed ethnic and genetic origins by searching for the 

closest-match local stretches.  
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Figure 2.1 Cartoon Illustrations of Haplotype Reconstruction and Genotype 
Inference. 
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Figure 2.2 Quality Measures for Accuracy of Reconstructed Haplotypes. 

0 10 20 30 40 50 60

0
20

40
60

Round 1000

Actual Errors in Inferred Genotypes

E
st

im
at

ed
 E

rr
or

s

0 200 400 600 800 1200

0
40

0
80

0

Round 1000

True Flips

E
st

im
at

ed
 F

lip
s

0 10 20 30 40 50 60

0
20

40
60

Round 2000

Actual Errors in Inferred Genotypes

E
st

im
at

ed
 E

rr
or

s

0 200 400 600 800 1200

0
40

0
80

0

Round 2000

True Flips

E
st

im
at

ed
 F

lip
s

 

 
 
 



 

 28

Table 2.1 Quality of Haplotype and Missing Genotype Estimates in Simulated Datasets. 
 
      Dataset Mimicking HapMap CEU   Dataset Mimicking HapMap YRI 

Method # Iterations 
Computation

Time # Errors # Flips # Perfect   # Errors # Flips # Perfect 
20 ~2 m 11.6 216 26.5   17.9 256 22.6 
60 ~5 m 10.8 200 28.4  16.6 232 24.1 
200 ~15 m 10.6 192 29.1  16.3 222 25.1 
1000 ~1.4 h 10.6 182 29.3  16.3 218 25.5 

MACH 

3000 ~ 3.9h 10.5 178 29.7  16.1 214 25.7 
           

PHASE - ~25 h 12.6 201 25.3  19.8 270 19.9 
           
fastPHASE - ~17 m 12.9 220 20.1  22.9 331 11.7 
           
BEAGLE - ~2 sec 13.9 230 21.1   23.1 332 13.1 

 
The table summarizes results from the analysis of two sets of 100 simulated 1 Mb regions. The two sets reflect the degree of LD in the 
HapMap CEU and YRI samples, respectively. In each region, ~200 markers were ascertained to mimic HapMap allele frequency 
spectra and 2% missing data was introduced at random.  
 
The data were then analyzed with one of four haplotypers (MACH, PHASE, fastPHASE, and BEAGLE) and the quality of haplotype 
solutions and imputed genotypes was evaluated. The number of missing genotypes imputed incorrectly (#Errors), the number of 
switches in haplotype phase required to convert the estimated haplotypes into the simulated haplotypes (#Flips) and the number of 
perfectly estimated haplotypes (#Perfect) were recorded. Averages of these three quantities are tabulated.  
 
Mach 1.0 was run with default settings and different numbers of iterations. PHASE version 2.1.1(Stephens and Scheet 2005; Stephens 
et al. 2001) was run with default settings, as recommend by Matthew Stephens. Parameters for fastPHASE version 1.3 (Scheet and 
Stephens 2006) was run with default settings, as recommended by Paul Scheet. All timings refer to a 2.33 GHz Pentium Xeon.  
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Table 2.2 Quality of Reconstructed Haplotypes in FUSION Trio Dataset. 
 

Method # Iterations 
Computation 

Time (in hours) # Flips # Perfect 
10 ~0.4 355 111 
60 ~2.2 249 135 

200 ~6.9 238 138 
300 ~11.9 235 138 
1000 ~43.1 226 139 

MACH 

5000 ~194.0 216 140 
     

PHASE - ~76.8 236 137 
     
fastPHASE - ~0.7 544 45 
 
The table summarizes results from reconstructing haplotypes for 240 parents in a real 
dataset: FUSION.  
 
For comparison, the table also lists results from PHASE and fastPHASE. Computational 
time (in hours), the number of switches in haplotype phase required to convert the 
estimated haplotypes into the simulated haplotypes (#Flips) and the number of perfectly 
estimated haplotypes (#Perfect) are tabulated. Numbers shown are averages from 44 
autosomal regions. 
 
Mach 1.0 was run with default settings and different numbers of iterations. PHASE 
version 2.1.1(Stephens and Scheet 2005; Stephens et al. 2001) was run with default 
settings, as recommend by Matthew Stephens. Parameters for fastPHASE version 1.3 
(Scheet and Stephens 2006) was run with default settings, as recommended by Paul 
Scheet. All timings refer to a 2.33 GHz Pentium Xeon. 
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Table 2.3 Benefits of Incorporating External Information for Haplotyping. 
 

  Dataset Mimicking HapMap CEU   Dataset Mimicking HapMap YRI 
with “HapMap” without “HapMap”  with “HapMap” without “HapMap” #sampled 

individuals # Flips # Perfect # Flips # Perfect   # Flips # Perfect # Flips # Perfect 
60 1.49  0.37  1.98  0.29   1.85  0.31  2.53  0.23  
100 1.37  0.40  1.68  0.35   1.61  0.36  2.06  0.30  
200 1.26  0.43  1.35  0.41   1.40  0.41  1.51  0.39  
500 1.21  0.44  1.18  0.45    1.33  0.42  1.26  0.44  

 
Haplotypes of individuals in study sample were inferred with or without the aid of an external (“HapMap”) set of known haplotypes. 
Computational investment was held constant: a random subset of 118, 200 or 300 haplotypes was used as reference haplotypes when 
the number of sample individuals was 60, 100, or 200/500, regardless of the incorporation of “HapMap”. 
 
Both statistics, namely the number of switches in haplotype phase required to convert the estimated haplotypes into the simulated 
haplotypes (#Flips) and the number of perfectly estimated haplotypes (#Perfect), are summarized per-person and are averaged over 
100 datasets.  
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Appendix 2.1 Algorithm to Merge Haplotypes for Consensus. 
 
After running a pre-defined number of iterations of the proposed hidden Markov model, 
the set of consensus haplotypes for each diploid individual is generated according to the 
following algorithm: 
 
Step 1: Change the relative order of the pair of haplotypes sampled from each iteration so 
that the first heterozygous site is AL1/AL2. The two alleles AL1 and AL2 are defined for 
each marker consistently (albeit arbitrarily) across iterations. 
 
Step 2: For each subsequent SNP, find the most frequently occurring haplotype 
configuration across iterations.  
 
Step 3: If the most frequent configuration is in heterozygous state (i.e., AL1/AL2 or 
AL2/AL1), flip the relative order of the haplotype pair in iterations where the 
configuration is the other heterozygous state. 
 
Step 4: Repeat Step 2 and Step 3 until the last SNP is reached. 
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Chapter 3 

Genotype Imputation (In Silico Genotyping)  

in Candidate Gene and Genome-Wide Association Studies   

3.1 Introduction 

 

It has been estimated that there are ~ 10 million common (minor allele frequency [MAF] 

> 1%) SNPs in the human genome (Kruglyak and Nickerson 2001; Hinds et al. 2005; The 

International HapMap Consortium 2007). Most ongoing genome-wide association studies 

(GWAS) rely on a commercial SNP genotyping panel that directly assays only a small 

fraction of SNPs in the human genome (Carlson et al. 2003; The International HapMap 

Consortium 2007). In these scans, the majority of SNPs in the genome must be evaluated 

indirectly using one or more of the genotyped SNPs as proxies (Barrett and Cardon 2006; 

Pe’er et al. 2006). Overall, GWAS provide a powerful method for successful 

identification of susceptibility loci in complex diseases. 

 

For complex diseases, individual genome-wise association scans allow us to identify 

common alleles that make large contributions to disease risk, and a subset of the loci with 

smaller effects (Hirschhorn and Daly 2005). Meta-analysis of multiple genome-wide 

scans is needed to yield sufficient power to identify alleles that make smaller 

contributions to disease risk. In 2007, Scott et al. (2007), Zeggini et al. (2007), and 
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Diabetes Genetics Initiative (2007) provided an early example of the power of the 

combined analysis of multiple scans. Genotype imputation was used to combine GWAS 

for blood lipid levels (Kathiresan et al. 2008, Willer et al. 2008), height (Sanna et al. 

2008), type-2 diabetes (Zeggini et al. 2008), body-mass index (Loos et al. 2008), and 

Crohn’s disease (Barrett et al. 2008). The success of these meta-analyses can be dramatic: 

in the case of blood lipid levels (Kathiresan et al. 2008, Willer et al. 2008), a 

meta-analysis of three studies with relatively modest findings (each identifying one to 

three strongly associated loci), resulted in a total of 19 strongly associated loci including 

7 loci not previously implicated in regulating cholesterol and lipoprotein levels in 

humans.  

 

Although it should be possible to use one or more of the SNPs genotyped in each study as 

proxies for SNPs genotyped in the other studies (de Bakker et al. 2005; Carlson et al. 

2004; Lin et al. 2004; Nicolae 2006; Zaitlen et al. 2007), meta-analyses of GWAS can be 

cumbersome because of the limited overlap between the different commercial panels and 

the fact that different choices of proxies for a particular SNP can lead to somewhat 

different conclusions. In my view, one particularly attractive approach for cross study 

analysis is to combine genotypes generated by the International HapMap Consortium 

(2007) with genotypes from individual studies, using a haplotyping algorithm that can 

handle genome scale data to impute genotypes at untyped markers. This strategy results 

in a situation where all studies are “genotyped” for all the markers examined by the 

HapMap consortium (albeit some markers would be genotyped using conventional means 

and other would be genotyped in silico [Burdick et al. 2006] ). The approach relies again 
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on the intuition introduced in Chapter 2 that even two apparently “unrelated” individuals 

share short stretches of haplotype derived from their common ancestors. Once one of 

these stretches is identified using genotypes for a few SNPs, alleles for intervening SNPs 

that are measured in some of the individuals, but not the others, can be imputed. Provided 

shared haplotype stretches are identified correctly, imputed genotypes will be accurate 

unless they have been disrupted by gene conversion or mutation events. 

 

In this chapter, I provide a unified hidden Markov model for genotype imputation, also 

implemented in our software package MACH 1.0. The proposed Markov model describes 

sampled chromosomes as mosaics of each other and potentially external phase known 

haplotypes of additional individuals in a manner that efficiently uses all available 

genotype and haplotype data to impute each missing genotype. In particular, I show that 

genotype imputation using HapMap haplotypes as a reference is very accurate whether 

we have large amounts of data from genome-wide association scans or smaller amounts 

of data typical in fine-mapping studies. Furthermore, I show my approach is applicable to 

a variety of populations. I assess the performance of the genotype imputation for several 

currently available genotyping panels and illustrate how it might benefit from future 

advances, such as the 1000 Genomes Project (see www.1000genomes.org).  

 

3.2 Methods 

 

Genotype Imputation. Genotype imputation analyses proceed similarly to the 

haplotyping analyses described in Chapter 2, but do not require each sampled haplotype 
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configuration to be stored. Instead, at the end of each iteration after burn in, a series of 

counters is updated to indicate the number of times each genotype was sampled at a 

particular position. Once all iterations are completed, these counters give are used to 

estimate the relative probability of observing each possible genotype, to impute the most 

likely genotype, to estimate the fractional allelic count, and to calculate various measures 

of the quality of imputed genotypes.  

 

An alternative to sampling from a series of iterations is the most likely estimate (MLE) 

approach. The MLE approach is particularly advantageous when the model parameters 

(namely the crossover parameter θ’s and the error parameter ε’s) are known or are 

previously inferred. In such situations, Markov chains are not necessary since parameters 

no longer need to be updated. Instead, I take an external reference panel of haplotypes as 

“truth” and then find the probabilities of each of the three possible genotype guesses (at 

any biallelic SNP locus) for an uncertain (missing) genotype. The posterior probabilities 

are calculated by summing over normalized probabilities of all potential configurations of 

the mosaic states S compatible with the particular genotype guess, using only the external 

reference panel of known haplotypes.  

 

The posterior probabilities of each potential mosaic state are key quantities of interest. I 

adopt Baum’s (1972) forward and backward algorithm to obtain them. Specifically, I 

define the forward and backward probabilities as follows: 

 

1 2( , ) Pr( , ,..., , ( , ))m m mf x y g g g S x y≡ =  
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1( , ) Pr( ,..., | ( , ))m m M mb x y g g S x y+≡ =  

 

Define the starting point for the forward probability as:  

 

1 1 1( , ) Pr( , ( , ))f x y g S x y≡ =  

2
1 1 1 ( , ) 1Pr( | ( , )) Pr( ( , )) ( ) 1/x yg S x y S x y e g H= = ⋅ = = ⋅  

where , {1, 2,..., }x y H∈  and H is the number of reference haplotypes. 

 

The remaining forward probabilities can be obtained through the following recursive 

formulation: 

 

1 2( , ) Pr( , ,..., ; ( , ))m m mf x y g g g S x y= =  

[ ]1 1
( , )

Pr( | ( , )) ( , ) Pr( ( , ) | ( , ))m m m m m
a b

g S x y f a b S x y S a b− −= = ⋅ ⋅ = =∑  

 

where , , , {1,2,..., }x y a b H∈  and again H is the number of reference haplotypes. 

 

Similarly the starting point and recursive formulation of the backward probabilities are: 
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Lastly, the posterior probabilities of each potential mosaic state are obtained through the 

following formula: 
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Given the posterior probabilities, I can either sample the hidden state or obtain the most 

likely estimate accordingly. Without loss of generality, consider a SNP with alleles A and 

B. Let nA/A, nA/B, and nB/B be the number of times each possible genotype was sampled 

after I = nA/A + nA/B + nB/B iterations. For downstream analysis of imputed alleles, I 

typically consider either the most likely genotype or the expected number of copies of 

allele A. The most likely genotype is simply the genotype that was sampled most 

frequently. The expected number of counts of allele A is the genotype score g = (2nA/A + 

nA/B) / I. With the MLE alternative, the most likely genotype is the genotype guess with 

the largest posterior probability among the three. Let pA/A, pA/B, and pB/B denote the 

posterior probabilities of the three possible genotype guesses with the obvious constraint 

pA/A + pA/B + pB/B = 1. The expected number of copies of allele A is simply 2pA/A + pA/B. 
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Both of the genotype score and posterior probabilities can be conveniently incorporated 

into a variety of analyses, including regression-based association analyses of discrete and 

quantitative traits. See Chapter 5 for detailed discussions on post-imputation analysis. 

 

Estimates of Imputation Quality. To measure the accuracy of imputation for a single 

imputed genotype for individual I at marker j (IGi,j), I define the genotype quality score 

Qi,j = nIgi,j / I. Alternatively, Qi,j = max (pA/A, pA/B, and pB/B) in the MLE approach. This 

quantity can be averaged over all genotypes for a particular marker to quantify the 

average accuracy of imputation for that marker: 

 

1

N

ij
i

j

Q
Q

N
==
∑

 where N is the total number of individuals. 

 

I have found that a better measure of imputation quality for a marker is the estimated r2 

between true allele counts and estimated allele counts, which will be further discussed in 

results section of this chapter. This quantity can be estimated by comparing the variance 

of the estimated genotype scores with what would be expected if genotype scores were 

observed without error. For a given SNP, let Var(g) be the variance of estimated genotype 

and let p = mean(g)/2  be the estimated frequency of allele A. Assuming 

Hardy-Weinberg equilibrium (HWE), the following quantity measures the observed 

dispersion of genotype scores over its expected value and can be used as an estimate of r2 

with true genotypes.  
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E(r2 with true genotypes) = Var(g) / [2p(1-p)], where 

Var(g) = 21

1

1 ( )
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=

−
−

∑
∑  where 

N is the total number of individuals and 

gi is the genotype score for individual i. 

 

The intuition behind this estimator is that mis-calling the major allele homozygotes, the 

dominating type of imputation error, results in under-dispersion. Relaxing the HWE 

assumption, an alternative estimator is defined:  

 

 E(r2 with true genotypes) = I * Var(g) / ((nA/A + nB/B)/I – [(nA/A- nB/B)/I]2) 

 

Empirically, I have found that while both definitions lead to similar conclusions, the first 

definition appears to be marginally better (refer to Figure 3.4 and Results section for 

details).  

 

Association Analysis Using Imputed Genotypes. For downstream analysis for 

disease-marker association testing, I recommend using imputed genotype scores g 

(ranging continuously between 0 and 2) to properly account for imputation uncertainty. 

Specifically, in the examples described below, for FUSION GWAS, I used the imputed 

genotype scores as covariates in a logistic regression that also included age, sex and 

geographic origin as covariates; for analyzing simulated case control data, I fitted a 

logistic regression model where the imputed genotype score is the sole predictor.  
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3.3 Data 

 

Age-Related Macular Generation (AMD) Candidate Gene Study. In the Michigan 

AMD study (Li et al. 2006), 544 unrelated Michigan individuals affected with AMD and 

268 unaffected controls were genotyped at 84 SNP loci in a ~123Kb region overlapping 

AMD-predisposing gene CFH on chromosome 1. In addition, the study genotyped the 

same 84 SNP loci on the 60 HapMap CEU founders.  

 

FUSION GWAS. As introduced in Chapter 2, the FUSION study genotyped 1,161 

Finnish individuals with type 2 diabetes (T2D) and 1,174 Finnish controls at 317,503 

SNPs using the Illumina HumanHap300 BeadChip in stage one of a two-stage 

genome-wide scan for T2D susceptible genes (Scott et al. 2007). Subjects collected are 

from the FUSION (Valle et al. 1998; Silander et al. 2004) and Finrisk 2002 (Saaristo et 

al. 2005) studies. Among the 317,503 GWA SNPs, 290,690 autosomal SNPs had minor 

allele frequency (MAF) >= 5% and passed quality-control (QC) criteria.  

 

HapMap Data. The International HapMap consortium (2007) generated genotype data 

on over three million polymorphic SNPs for 270 individuals. Individuals genotyped 

include 30 father-mother-adult child trios of northern and western European ancestry 

living in Utah from the Centre d’Etude du Polymorphisme Humain (CEPH) collection 

(CEU); 30 trios from the Yoruba in Ibadan, Nigeria (YRI); 45 unrelated Han Chinese 

individuals in Beijing, China (CHB); and 45 unrelated Japanese individuals in Tokyo, 
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Japan (JPT). The CEU and YRI samples each form an analysis panel, representing two 

major continental and ethnic groups. The CHB and JPT samples together form an 

analysis panel, representing the East Asian population.  

 

The International HapMap consortium estimated haplotypes for the 210 unrelated 

individuals (60 CEU parents, 60 YRI parents, 45 unrelated CHB individuals and 45 

unrelated JPT individuals), separately for each analysis panel using coalescent based 

statistical methods that take the relatedness of the CEU and YRI trios into proper account. 

For each analysis panel, over two million polymorphic SNPs were identified, 

successfully genotyped and subsequently phased: ~2.56 million SNPs in CEU, ~2.86 

million in YRI and ~2.42 million in CHB+JPT. 

 

Human Genome Diversity Project (HGDP) Data. In a recent global survey for 

haplotype variation and evaluation of tagSNP portability (Conrad et al. 2006), the Human 

Genome Diversity Project has collected genotypes for SNPs spread across 36 genomic 

regions on 927 unrelated individuals from 52 worldwide populations. The 52 populations 

encompass samples from all major continental groups across the world. Specifically, 

sampled individuals were from Africa, Europe, Middle East, Central and South Asia, East 

Asia, Oceania and the Americas. The 36 genomic regions were selected across a wide 

spectrum of local gene densities and LD levels to maximize the extent to which the 

regions were representative of the human genome. Each region spanned ~330 Kb 

including a central “core” region of ~90 Kb, where genotyping of ~60 SNPs was 

attempted, and two ~120 Kb flanking regions on either side, where ~12 SNPs were 
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attempted. In total, 1,864 SNPs in 32 autosomal chromosomal regions (average minor 

allele frequency 15% - 24%, depending on population).  

 

Simulation Datasets for Power Assessment. To assess whether my imputation-based 

approach might improve power in individual association scans, I simulated 10,000 

chromosomes for a series of 1 Mb regions, using a coalescent model that mimics LD in 

real data, accounts for variations in local recombination rates, and models population 

history consistent with Europeans or Africans. In other words, I simulated LD patterns 

mimicking the HapMap CEU or YRI within each of 1 Mb regions (Schaffner et al. 2005).  

 

I then took a random subset of 120 simulated chromosomes to generate a region specific 

pseudo-“HapMap”. Out of the pool of the remaining 9,880 chromosomes, I simulated a 

series of datasets each with 500 cases and 500 controls. Specifically, the case-control 

datasets were generated by picking one of the polymorphic sites at random as a “disease 

susceptibility locus” and subsequent sampling the two alleles at the disease locus 

probabilistically according to their corresponding frequencies expected among cases and 

controls (see Appendix 3.1). The susceptibility allele varies in frequency between 2.5% 

and 50% and larger effect sizes were simulated for rarer disease alleles to ensure 

comparable power in situations where the disease locus was available for direct testing. 

In addition, I simulated 2,000 datasets where the “disease allele” had no effect to 

calibrate region-wide type I error rates. 

 

For the simulated HapMap data, polymorphic sites were ascertained and thinned to match 



 

 43

the corresponding (CEU or YRI) Phase II HapMap (The International HapMap 

Consortium 2007) marker density, allele frequency spectrum and LD pattern, leading in 

the end to ~1,000 SNPs in each region for the panel of 120 HapMap chromosomes. 

Based on the thinned HapMap panel, I selected a set of 100 tagSNPs for each region that 

included the 90 tagSNPs with the largest number of proxies and 10 additional SNPs 

picked at random among the remaining tags. The tagSNP selection approach taken above 

resulted in tagSNP sets that captured (at a conventional r2 cutoff of 0.8) ~78% of the 

common variants (MAF > 5%) in the simulated CEU HapMap, similar to the real life 

performance of the Illumina HumanHap300 BeadChip SNP genotyping platform.  

 

Finally, each of the simulated datasets was analyzed using the selected tagSNP panel and 

one of the four analysis strategies: (a) single marker chi-squared association tests, (b) 

single and multi-marker association tests as suggested by the PLINK (Purcell et al. 2007) 

program based on LD in the simulated HapMap, (c) tests using imputed allele counts for 

all the markers in the simulated HapMap, or (d) multiple-imputation (MI) version of (c). 

For (d), I performed 10 multiple independent imputations by starting from different 

random initial setup and combined results according to the standard Rubin’s (1978) rule 

where the MI point estimator is simply the sample average of those from multiple 

imputed complete datasets and MI variance estimator is a weighted sum of 

between-imputation and average within-imputation variances .  
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3.4 Results 

 

Age-Related Macular Generation (AMD) Candidate Gene Study. To mimic the 

common practice of picking, genotyping and subsequently testing tagSNPs, I selected 

eleven tagSNPs to cover the 84 SNPs with an r2 threshold of 0.8, based on LD calculated 

from the HapMap founders. I then masked genotypes at the remaining 73 non-tagSNPs in 

the Michigan individuals and inferred missing genotypes with the aid of CEU genotypes 

at all 84 SNP loci. Table 3.1 shows that imputed alleles differ from experimental ones 

only ~1.0% (~0.9%) of the time taking <1 minute’s (~3 hours’) computing time. In 

comparison, fastPHASE (Scheet and Stephens 2006) takes ~5 minutes to achieve an 

allelic discordance rate of ~1.0% and PHASE takes approximately one day to reach an 

allelic discordance rate of ~1.4%. In this particular example, PHASE (Stephens and 

Scheet 2005; Stephens et al. 2001) does not perform as well probably because it is not 

particularly designed and thus suitable for imputing a large proportion of missing 

genotypes (notice in this experiment, over 85% of genotypes are missing). The highly 

accurate imputed genotypes generated evidence for association that was very similar to 

that initially observed (Figure 3.1). The only outlier is the last SNP in the region and is in 

relatively low LD with any of the eleven tagSNPs.  

 

FUSION GWAS. I applied my method to impute genotypes for untyped markers in the 

FUSION GWAS. Since a previous analysis suggested LD patterns in the HapMap CEU 

and in FUSION are similar (Willer et al. 2006), I used genotypes for the 290,690 
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autosomal markers (with MAF >= 5% and passing FUSION QC criteria) in the Illumina 

HumanHap300 BeadChip and for ~2.5 million polymorphic markers in the phased 

HapMap CEU chromosomes as input. After running the Markov chain procedure 

described above, I estimated the most likely genotype at each position (taking a majority 

vote across all iterations) and the expected number of copies of the minor allele at each 

position (a fractional value between 0 and 2) for each individual. I obtained similar 

results running 50-100 iterations of the Markov chains or using a smaller number of 

iterations (10-20) to estimate model parameters and then calculating most likely estimates 

for the missing genotypes and allele counts. The latter (MLE) approach requires less 

computational investment, especially when model parameters are estimated using a 

representative subset (say, several hundred) of individuals from the large pool of several 

thousand or more individuals examined in a large scale GWAS.  

 

Different chromosomes were conveniently analyzed in parallel and, overall, imputing 

genotypes for all 2,335 unrelated individuals took <2 days for each of the largest 

chromosomes on a 2.40 GHz Pentium Xeon processor. In total, I imputed genotypes for 

2,266,562 SNPs per individual. On average, my method used stretches of ~150 Kb from 

the HapMap CEU panel to reconstruct haplotypes for individuals in the FUSION sample.  

 

To evaluate the quality of imputed genotypes, I contrasted my estimates of the most 

likely genotypes and the expected number of copies of the minor allele with actual 

genotype data for three sets of markers: (1) 521 SNP markers in a ~20 Mb region of 

chromosome 14 previous examined to fine-map a candidate linkage region (Willer et al. 
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2006), (2) 1,234 SNP markers selected to augment coverage of the Illumina 

HumanHap300 BeadChip in regions surrounding 222 candidate genes (Gaulton et al. 

2008), and (3) 12,702 markers (also passing FUSION QC criteria) with MAF < 5% that 

were excluded from the set of 290,690 used for imputation. I expected the last two panels 

of markers to be harder to impute, because they represent SNPs that are not well tagged 

by the Illumina HumanHap300 BeadChip or that have lower MAF. I observed that 

98.60% of the imputed alleles match actual genotyped alleles in the fine-mapping panel 

of 521 SNPs, 96.24% in the candidate gene panel of 1,234 SNPs and 98.73% in the lower 

MAF SNP panel. Furthermore, the average r2 between imputed genotypes and actual 

genotypes was 90.4%, 79.1% and 74.0% in the three SNPs panels, respectively. This 

represents an improvement of 14-39% compared to the best available single marker 

tagSNPs, which provided an average r2 of 76.5%, 52.8% and 35.5% in the three SNP 

panels, respectively. Figure 3.2 shows the improvement in r2 for the first fine-mapping 

panel of 521 SNPs. I observed the overall distributional upward shift after imputation and 

that coverage (defined at an r2 threshold of 0.8) increases from 62.0% to 87.1%. 

 

As introduced in the Methods section, my model produces three estimates of imputation 

quality and these can be used to focus subsequent analyses on subsets of high quality 

genotypes. First, it produces a quality score that estimates the accuracy of each imputed 

genotype and is simply the proportion of iterations where the most likely genotype was 

selected (instead of an alternative solution). In an MLE approach, the quality score is the 

posterior probability of the most likely genotype. It produces an overall measure of the 

accuracy of imputation for each marker, which is the genotype quality score averaged 
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across all individuals. By comparing the distribution of sampled genotypes in each 

iteration with the estimated allele counts that results from averaging over all iterations (or 

MLE estimates), it produces an estimate of the r2 between imputed and true genotypes. 

Quality measures for individual genotypes were good predictors of imputation accuracy 

(Figure 3.3, Right Panel) and show that most imputed genotypes are called with a high 

degree of confidence (Figure 3.3, Left Panel). For example, as measured by their quality 

scores, the top 95% of genotypes had average quality scores of 98.9% and actually 

matched experimental genotypes 98.6% of the time. Most of the errors affect a single 

allele so that, when measured on a per allele basis (rather than per genotype basis), 

concordance increases to 99.3%.  

 

To avoid preferential removal of rare genotypes or alleles, I recommend using the per 

marker quality scores to select a subset of imputed SNPs for analyses. The per marker 

quality measures provide an accurate aggregated estimate of the quality of imputed 

genotypes. Overall, I saw a correlation of 0.77 between the estimated and actual accuracy 

of imputed genotypes for each marker. I also saw a correlation of 0.84 between the r2 

estimated by my method and the actual r2 that resulted from comparing allele counts with 

their imputed estimates. Figure 3.4 shows the ROC curve (Pepe 2003) for the two quality 

measures, showing that the estimated r2 measure is more effective than the estimated 

accurary to discriminate poorly imputed markers from well imputed ones. In the FUSION 

GWAS scan, I used an r2 threshold of 0.30 to decide which markers were well imputed 

and should be included in further analyses, and which were not. At this threshold, ~70% 

of poorly imputed markers (those where r2 with experimental genotype is < 20%) were 
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removed at the cost of only ~ 0.50% of better imputed markers (those where r2 with 

experimental genotype is > 50%).  

 

The results summarized so far compare a variety of imputed genotypes with 

experimentally derived counterparts. However, a more interesting comparison focuses on 

imputed genotypes that appear to show strong evidence for association, as those might 

motivate further downstream experiments. To evaluate the accuracy of imputed 

genotypes for these “strongly associated SNPs”, I compared imputed and experimental 

genotypes for markers that were selected for follow-up genotyping (for example, because 

imputed genotypes resulted in strong evidence for association but nearby directly 

genotyped markers did not). Table 3.2 summarizes the comparison of allele frequencies, 

association test statistics, and individual genotype calls between imputed genotypes and 

actual genotypes later determined by laboratory genotyping. Overall, it is clear that even 

among these strongly associated SNPs imputation provided accurate estimates of the true 

association test statistics and thus of the true p-values. The largest observed discrepancies 

were for rs17384005, rs11646114 and rs4812831 which were also the three markers for 

which my imputation approach estimated lower r2 with actual genotypes. Figure 3.5 plots 

the –log(P-values) from imputation against those from the actual genotypes. We can see 

that (1) Largest departures typically have low estimated r2 (<.55) values; (2) SNPs with 

high estimated r2 values (>.97 shown) show little departure from the 45 angle line; and (3) 

Imputation generates reasonably accurate analyzing results even for SNPs with low r2 

values (<.3) with any tagSNP. 

 



 

 49

Remarkably, I observed that imputed genotypes could also be used to obtain very 

accurate estimates of LD between pairs of untyped markers, or of LD between a 

genotyped marker and an untyped marker. As shown in Figures 3.6 (r2) and 3.7 (D’), 

estimates of LD between two SNPs obtained using imputed data are much closer to the 

results obtained by actually genotyping the two SNPs than estimates obtained by looking 

up the two markers in the HapMap CEU database. 

 

Experiences with the FUSION GWAS, summarized above, show that imputation can be 

an effective way to estimate unobserved genotypes and/or allele counts. These genotypes 

can then be used in a variety of downstream analyses, including logistic regression 

analyses for discrete trait association and linear regression analyses for quantitative trait 

association, and to facilitate meta-analysis with studies genotyped on different platforms 

(Willer et al. 2008, Zeggini et al. 2008). 

 

Experiment on HapMap Data. I set out this experiment to assess whether my method 

can generate imputed genotypes of similar quality when different commercial genotyping 

panels are used or in different populations. Answers to this question have important 

implications for imputation based meta-analyses that combine studies using different 

genotyping platforms. In this experiment, I used genotype data generated by the 

International HapMap Consortium (2007). I considered each of the HapMap samples in 

turn and masked available genotypes so as to mimic an experiment using one of the 

several commercially available DNA genotyping chips. For example, to evaluate 

Affymetrix 500K SNP chip, I masked genotypes for all markers that are not on the chip 
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as missing for the individual being considered. I then used haplotypes for the remaining 

individuals on the same HapMap analysis panel (either YRI, CEU or CHB+JPT) to 

impute the missing genotypes. The results are summarized in Table 3.3 and clearly show 

that a large number of SNPs can be imputed very accurately using any of the 

commercially available panels (e.g., with r2 > 0.80 to experimental genotypes) and that, 

compared to relying on single marker tagging, imputation results in improved coverage 

of the genome.  

 

Depending on the commercial panel and population being investigated, coverage of the 

genome (proportion of SNPs with r2 > 0.80) increased by 8-46% for low MAF alleles 

(MAF < 5%) and by 6-34% for more common alleles (MAF >= 5%). In agreement with 

this result, the average r2 between each untyped SNP and its imputed counterpart was up 

to 40% higher on average when using imputed genotypes than when using the best 

available single marker proxy. The results shown in Table 3.3 are likely to represent an 

upper bound on the performance of my method in real settings, because additional errors 

will result from discrepancies in genotyping protocols between individual laboratories 

and the HapMap and from differences in LD patterns between the HapMap and the 

samples being studied. Nevertheless, they suggest my method is likely to be helpful for a 

variety of currently available commercial SNP panels and in different populations.  

 

Experiment on the HGDP data. The preceding experiment on the HapMap samples has 

demonstrated the utility of my imputation method in all three HapMap populations. Since 

I advocate imputation incorporating haplotypes of the HapMap individuals as templates, I 
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am interested in the performance of my method in a wide range of world populations, 

with potentially larger deviations in allele frequencies and LD patterns from the HapMap 

populations. In this experiment, I evaluated the performance of my imputation method in 

the 927 samples from 52 populations in the Human Genome Diversity Project (HGDP). 

To evaluate the performance of genotype imputation across these diverse populations, I 

selected a thinned marker set out of the 1,864 SNPs in the 32 autosomal regions. The 

thinned marker set had 872 SNPs spaced ~10 Kb apart across all 32 regions. I then used 

these SNPs to impute genotypes for the remaining 992 unselected SNPs and evaluated 

my approach.  

 

Figure 3.8 shows the proportion of incorrectly imputed alleles in each of the populations. 

Results are presented using either a single HapMap analysis panel as a reference (either 

CEU, YRI, or CHB+JPT) or using all HapMap samples together as a larger reference 

panel. For each of the 52 populations, the reference panel that resulted in the smallest 

overall imputation error rate is highlighted. Overall, African samples were the most 

difficult to impute, with allelic error rates ranging between 5.13% for the Yoruba and 

11.86% for the San when the HapMap YRI panel was used as a reference. In other parts 

of the world, I generally observed that the HapMap CEU provided a good reference panel 

for European populations and that the HapMap CHB+JPT provided a good reference 

panel for East Asian populations, resulting in error rates of <3.34% and <2.89% 

respectively. Outside Europe and East Asia, when imputation was applied to populations 

from the Middle East, Central and South Asia, the Americans and Oceania, it was 

generally better to use the combined HapMap samples as a reference than to use any 
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single HapMap analysis panel as a reference. It is interesting to note that, in all cases, 

combining the three HapMap analysis panels into a single reference set was either the 

best option or the second best option. Furthermore, in situations where this combined 

reference panel reduced imputation accuracy, it resulted in an average increase of only 

0.15% in error rates. The figure also illustrates that, when a larger number of individuals 

are genotyped for both the panel markers and additional markers to be imputed, it is 

possible to bypass the HapMap reference panel altogether. In the last panel of the figure, 

rather than using the HapMap data as reference to impute missing genotypes, I used a 

combined dataset including all other HGDP populations.  

 

Figure 3.9 focuses on the estimated r2 between imputed and observed allele counts. In 

each stripe, accuracy of imputation is assessed using a different reference panel. 

Superimposed in pink is the coverage that would be provided by single marker tagging 

approaches. Broadly, it is clear that imputation using an appropriate reference panel will 

improve coverage. Using an inappropriate reference panel (for example using the 

HapMap CEU to impute genotypes for one of the African populations), can result in 

imputed genotypes and allele counts that are not as strongly correlated with the true 

genotypes as the best available single marker tagSNP but, even then, the loss appears to 

be small. Importantly – in all cases – combining the three HapMap analysis panels 

resulted in substantial improvements in coverage over single marker tagging – suggesting 

that this might be a cautious approach when the choice of the reference panel is unclear.  

 

Simulation Experiment for Power Assessment. Results comparing power of the four 
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analysis approaches are summarized in Table 3.4. The first row in the table shows the 

empirically determined significance thresholds used for each analysis. More precisely, the 

thresholds are the 5th percentiles obtained from the 2,000 sets simulated under the null 

hypothesis. Since both the multi-marker and imputation approaches increase the total 

number of tests, note that the p-value threshold increases slightly when multi-marker tests 

are adopted and increases further when imputation is used. Subsequent rows summarize 

power for disease markers of different allele frequencies. In populations with strong LD, 

it is clear that for common susceptibility alleles the single marker tests provide high 

power and imputation or multi-marker analyses provide only small gains in power. 

However, for rarer alleles (such as those with frequencies < 5%) or in regions of more 

modest LD, imputation can provide dramatic increases in power. For instance, power 

increased from 24.4% to 56.2% when the disease allele frequency was 2.5% and 

imputation was used in the panel with CEU-like LD.  

 

Multiple imputation (MI) procedure had little effect on either the empirical significance 

threshold or the power. The finding is not surprising because estimated allele dosages are 

quite stable across multiple imputations (such that average within-imputation variances 

accounts for 99% of the MI variance estimates), owing to the ability of my method to 

accurately calibrate model parameters and subsequently to identify shared chromosome 

stretches. My method shares features with both “hot deck” and “cold deck” imputation 

methods. For instance, the deck is “hot” because individuals to be imputed are also used 

for model parameter inference. On the other hand, the deck is “cold” because the fixed 

set of individuals collected separately by the International HapMap project is used as 
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donors in most of the GWAS settings described in this chapter. My method differs from 

both in a number of ways. First, the imputed value is not “copied’ from the “hot” deck of 

individuals but rather from the “cold” deck of external individuals.  Second, the imputed 

value is not an observed value from some donor but rather a weighted sum of observed 

values from multiple potential donors, with weights proportional to the haplotype 

similarity to the recipient. In addition, my method allows both individuals under study 

and external individuals to serve as donors. Although it has unique features, my method 

may still benefit from more sophisticated hot and cold deck imputation methods, given its 

commonalities with both approaches. More research borrowing strength from the 

extensive multiple imputation literature is warranted. In the meantime, results from 

standard MI are reassuring. Perhaps more importantly, they suggest that multiple 

imputations are not absolutely necessary when (1) imputation uncertainty is taken into 

account by analyzing estimated allele dosages; and (2) the significance threshold is 

determined empirically, based on null sets in my simulations and by permuting 

phenotypes in real studies. 

 

3.5 Discussion 

 

In summary, the evaluation of imputed genotypes in the FUSION, HapMap, and HGDP 

samples clearly shows that imputation can be very accurate in a wide range of 

populations using a variety of currently available commercial SNP genotyping panels. 

Furthermore, investigation in the simulation experiment demonstrates the promising 

potential of my imputation method ultimately to improve power of detecting disease 
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causing variants in individual association studies. Particularly important, imputation 

jointly analyzing data from individual studies with the external HapMap reference panel 

produces genotypes (experimental or in silico) on the same set of several million 

HapMap SNPs, across studies that examine individuals from different geographical or 

ethnic origins and that use different genotyping platforms. In this way, I believe it will 

continue to be an important tool for combining data across studies to achieve the large 

sample sizes for detecting variants whose individual contributions to disease risk are 

small.  

 

A key ingredient for any imputation based approach is to ensure that alleles are 

consistently labeled across studies. In my evaluation of the FUSION and HGDP samples, 

using the HapMap as a reference, I was fortunate that a subset of the HapMap individuals 

were also genotyped in each study for quality control. Contrasting the genotypes for these 

quality control HapMap samples with those generated by the HapMap Consortium made 

the usually laborious process of ensuring consistent allele labeling across laboratories 

much easier, and I strongly recommend that all labs conducting genome-wide association 

studies genotype a small number of the HapMap individuals for this purpose.  

 

So far, I illustrated the accuracy of genotype imputation that relies on existing resources 

(such as the PHASE II HapMap) and genotyping technologies (including a variety of 

currently available commercial genotyping chips). It is likely that both these resources 

and technologies will continue to evolve rapidly and it is interesting to consider how 

these developments might impact imputation based approaches. For example, it is clear 
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that genotyping chips of the future will be able to examine an ever larger number of 

tagSNPs in a cost-effective manner. Extrapolating from Table 3.3, it is clear these should 

provide improved genomic coverage, eventually allowing investigators to impute nearly 

all HapMap SNPs with high accuracy. Nevertheless, it is also clear from Table 3.3 that 

when coupled with imputation based analyses current genotyping chips are already likely 

to provide excellent coverage of the genome in populations with LD patterns similar to 

CEU, JPT, and CHB. Thus, I expect the main advantages of new higher density chips will 

be in the examination of populations with less extensive LD, such as the YRI. 

 

Another interesting possibility to consider is the impact of a larger HapMap reference 

panel on imputation, or similarly, the utility of using extra genotype data on a subset of 

individuals in a study to aid imputation in the remaining individuals in the study. To 

evaluate these possibilities, I generated a reference panel with varying numbers of 

Finnish individuals (between 60 and 500, see Table 3.5) and used these reference panels 

to impute genotypes for 521 SNPs in an independent set of 500 individuals from the 

FUSION studies of type 2 diabetes. Imputation accuracy and genomic coverage increase 

noticeably with the larger reference panels, with overall discrepancy rates between typed 

and untyped alleles as low as 0.40% when a reference panel of 500 unrelated individuals 

is available. One of the reasons for this increase in accuracy is that the length of 

haplotypes shared between individuals in the reference panel and those in the study 

sample increases gradually as the size of the reference panel increases. For example, 

mosaic fragments used to reconstitute the FUSION samples using the 500-sample 

reference panel were slightly > 1 Mb long on average. These long stretches are easier for 
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my Markov model to identify and are also likely to descend from a more recent 

commonancestor. This means they will have undergone fewer rounds of gene conversion 

and mutation, which gradually erode haplotype similarities and reduce the quality of 

imputed genotypes. Overall, I expect that either genotyping a number of the study 

samples for markers of interest or increasing the size of the public reference panels will 

greatly improve the quality of genotype imputation.  
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Table 3.1 Quality of Imputed Genotypes in the AMD Candidate Gene Study. 
 

Algorithm #iterations Genotype 
Matching Error (%) 

Allele 
Matching 
Error (%) 

Computation 
Time 

20 1.80  0.97  < 1 min 
200 1.79  0.96  ~5 min Mach 1.0 

Approximation (100) 
2,000 1.77  0.95  ~1 hr 

20 1.77  0.95  ~4 min 
200 1.75  0.94  ~20 min Mach 1.0 

Approximation (200) 
2,000 1.70  0.91  ~3 hr 

     
PHASE -- 2.60  1.37  24 hr 

     
fastPHASE  -- 1.81  0.97  ~5 min 
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Figure 3.1 Disease-SNP Association Chi-Square Test: Imputed versus Experimental 
in the AMD Candidate Gene Study. 
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Figure 3.2 Improvement in r2 for the Fine-mapping Panel of 521 SNPs in FUSION. 
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Figure 3.3 Assessment of Quality Measures for Individual Imputed Genotypes. 
 

 
 



 

 62

Figure 3.4 ROC Curve Comparing Two Measures of Data Quality. 
 

 

 
For imputed SNPs on chromosome 14 among 1,190 FUSION individuals, for which both 
imputed and actual genotypes were available I evaluated the ability of two different 
measures of data quality (the estimated concordance between imputed and true genotypes 
and the estimated r2 between imputed and true genotypes) to discriminate between poorly 
and well imputed SNPs. Both estimates of imputation quality are calculated without 
using the actual observed genotypes. 
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Table 3.2 Comparison of Imputed and Experimental Genotypes for a Subset of SNPs Showing Strong Association in FUSION. 
 

 
FUSION 

Allele Frequency 
 

 p-value 
 

OR 
  Imputed vs. Actual 

genotypes, r2 
 

SNP Imputed Genotyped  Imputed Actual  Imputed Actual  
Max. R2 w/ 

GWAS SNPs  Actual Estimated  

 Observed 
allelic 

concordance 
rs1738400 0.175 0.149  1.9 x 10-5 0.011  1.84 1.15  0.11  0.241 0.309  0.874 
rs1735641 0.580 0.715  3.0 x 10-5 8.0 x 

4
 1.30 1.25  0.34  0.562 0.920  0.878 

rs1161618 0.502 0.545  1.5 x 10-5 4.8 x 
5

 1.40 1.27  0.27  0.755 0.585  0.919 
rs2466291 0.579 0.618  6.3 x 10-4 0.0016  1.26 1.22  0.47  0.829 0.830  0.935 
rs2021966 0.609 0.603  9.1 x 10-5 2.6 x 

4
 1.32 1.25  0.46  0.811 0.769  0.937 

rs4812831 0.165 0.129  1.6 x 10-4 0.0055  1.53 1.28  0.45  0.587 0.516  0.944 
rs1164611 0.119 0.092  9.1 x 10-5 0.002  1.66 1.38  0.13  0.687 0.512  0.956 
rs8079544 0.091 0.106  8.9 x 10-4 0.013  1.50 1.27  0.22  0.707 0.731  0.961 
rs1409184 0.671 0.646  8.2 x 10-4 0.0011  1.26 1.22  0.58  0.865 0.873  0.963 
rs9402346 0.669 0.646  4.5 x 10-4 0.0014  1.26 1.22  0.62  0.881 0.915  0.965 
rs1800774 0.664 0.696  3.9 x 10-5 7.3 x 

6
 1.39 1.35  0.29  0.861 0.617  0.972 

rs1083776 0.138 0.152  1.5 x 10-5 8.6 x 
5

 1.49 1.40  0.46  0.822 0.930  0.975 
rs7750445 0.138 0.158  2.0 x 10-5 4.1 x 

5
 1.47 1.41  0.50  0.836 0.965  0.977 

rs1103662 0.080 0.071  1.7 x 10-5 1.9 x 
5

 1.67 1.66  0.75  0.876 0.901  0.987 
rs1270874 0.231 0.224  1.4 x 10-4 3.9 x 

4
 1.33 1.30  0.24  0.933 0.954  0.988 

rs1449725 0.579 0.573  5.3 x 10-6 1.1 x 
5

 1.33 1.31  0.90  0.965 0.977  0.990 
rs2267339 0.640 0.643  2.8 x 10-5 4.5 x 

6
 1.33 1.34  0.72  0.951 0.873  0.990 

rs1291082 0.035 0.033  2.5 x 10-6 6.3 x 
6

 2.57 2.20  0.39  0.843 0.720  0.994 
rs175200 0.476 0.479  6.6 x 10-5 5.5 x 

5
 1.28 1.28  0.85  0.989 0.976  0.997 

rs1329726 0.059 0.062  7.5 x 10-5 9.0 x 
5

 1.72 1.65  0.28  0.973 0.916  0.998 
rs4402960 0.683 0.681  1.7 x 10-4 1.2 x 

4
 1.27 1.28  1.00  0.994 1.026  0.998 

rs1001998 0.629 0.619  4.8 x 10-4 4.2 x 
4

 1.25 1.25  0.66  0.99 0.953  0.998 
rs6103716 0.371 0.371  7.3 x 10-5 4.8 x 

5
 1.28 1.29  0.33  0.996 0.978  0.999 

rs3802177 0.372 0.371  9.9 x 10-4 0.0012  1.23 1.22  1.00  0.996 1.015  0.999 
rs1708135 0.075 0.078  7.3 x 10-6 5.5 x 

6
 1.70 1.68  0.87  0.989 0.954  1.000 

rs1801282 0.165 0.165  9.5 x 10-4 0.0011  1.31 1.30  1.00  0.999 1.002  1.000 
 
The table shows a comparison of the results from analysis of imputed data with results from actual genotyping for a subset of the 
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SNPs that reached a p-value of < 10-3 in my analysis of the FUSION data. Successive columns include SNP name, estimated allele 
frequency in FUSION cases and controls, using either imputed data or actual genotype data, p-value and odds ratio for association test 
comparing allele frequencies in cases and controls using imputed genotypes, p-value and odds ratio for association test comparing 
allele frequencies in cases and controls using experimentally derived genotypes, r2 between the best single marker tag in the GWAS 
panel and this SNP, r2 between imputed and observed genotypes (actual r2 and estimated from my method as a measure of imputation 
quality) and, finally, proportion of alleles matched between imputed and actual genotypes.  
 
Note that because these are all imputed SNPs that show strong association in the FUSION data, they are subject to a “winner’s curse” 
effect. Thus, SNPs where imputation resulted in inflated p-values were more likely to be selected for follow-up in this analysis.  
 
Not all imputed SNPs showing association at this significance level were genotyped experimentally. Rather, a subset of SNPs was 
selected for genotyping either because (a) they showed substantially stronger evidence for association than other nearby genotyped 
SNPs and stronger evidence for association than nearby imputed SNPs or (b) they were selected to improve coverage of the genome in 
and around 222 candidate genes (Gaulton et al. 2008). All SNPs with a p-value < 10-3 in the imputed data and which were 
subsequently genotyped are tabulated. 
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Figure 3.5 FUSION T2D Association P-values: Imputed vs Genotyped. 
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Figure 3.6 Imputation Improves Quality of LD Estimates: r2. 
 

 
 
For imputed SNPs on chromosome 14, the figure compares estimates of LD obtained by 
genotyping both SNPs (“Results from Actual Genotyping”, X axis) with estimates of LD 
obtained by imputing genotypes for both SNPs using markers on the 317K marker chip 
(“Results from Imputed Data”, Y axis, Top left), obtained by imputing genotypes for one 
of the SNPs (“Results from Imputed Data”, Y axis, Bottom Left) or obtained from the 
HapMap CEU panel (“Results from HapMap CEU”, Y axis, Top and Bottom Right). 
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Figure 3.7 Imputation Improves Quality of LD Estimates: D’. 
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Table 3.3 Coverage of the Phase II HapMap with Commercial Genotyping Panels, before and after Imputation. 
 
              Coverage by Single-Marker Tags   Coverage by Imputed SNPs 
 # Panel SNPs  # Imputed SNPs  MAF< 5%  MAF >= 5%  MAF< 5%  MAF >= 5% 

  Used 
 

Lost    
MAF<5% MAF>=5%   

average
r2 r2 > 0.8  

average 
r2 r2 > 0.8   

average
r2 r2 > 0.8 Error  

average
r2 r2 > 0.8 Error 

CEU                                     
A100 100,844 1,609  259,261 2,086,690  0.36 0.22 0.50 0.31  0.47 0.32 1.80% 0.63 0.46 7.85%
A250S 195,864 4,393  251,807 2,002,214  0.48 0.31 0.65 0.44  0.61 0.46 1.33% 0.79 0.65 4.12%
A250N 216,747 4,836  250,364 1,983,146  0.50 0.34 0.67 0.48  0.63 0.49 1.26% 0.80 0.68 3.94%
A500 412,611 9,229  234,049 1,809,352  0.61 0.44 0.77 0.61  0.73 0.60 0.93% 0.89 0.82 2.12%
I300 305,050 3,115  267,573 1,871,586  0.30 0.08 0.84 0.74  0.70 0.54 1.08% 0.93 0.90 1.39%
I550 513,779 238  254,183 1,681,501  0.59 0.40 0.90 0.85  0.79 0.67 0.76% 0.95 0.94 0.90%
I650 578,864 14,627   244,431 1,630,298   0.66 0.48  0.91 0.86   0.80 0.68 0.72%  0.95 0.94 0.88%
A1000 676,182 87,766  209,636 1,580,321 0.71 0.57 0.86 0.76 0.79 0.68 0.73% 0.93 0.91 1.23%
I1000 779,800 130,014  225,439 1,456,134 0.70 0.54 0.93 0.89 0.81 0.71 0.67% 0.96 0.95 0.73%
YRI                  
A100 100,627 3,223  326,772 2,320,439  0.21 0.08 0.33 0.14  0.35 0.18 2.22% 0.50 0.26 10.32%
A250S 210,242 4,698  318,680 2,220,904  0.30 0.13 0.47 0.22  0.50 0.29 1.73% 0.69 0.44 6.05%
A250N 231,026 4,971  317,321 2,201,821  0.32 0.15 0.49 0.26  0.53 0.33 1.64% 0.71 0.49 5.68%
A500 441,268 9,669  300,455 2,013,203  0.41 0.21 0.60 0.36  0.65 0.46 1.24% 0.83 0.69 3.30%
I300 271,991 15,346  315,631 2,163,803  0.33 0.15 0.52 0.26  0.60 0.39 1.42% 0.79 0.60 3.97%
I550 474,049 19,355  301,391 1,981,088  0.42 0.20 0.68 0.46  0.70 0.51 1.09% 0.88 0.80 2.13%
I650 573,953 28,487   300,785 1,881,962   0.46 0.23  0.75 0.56   0.73 0.55 0.98%  0.90 0.85 1.72%
A1000 737,369 91,811  275,794 1,749,271 0.54 0.31 0.73 0.54 0.74 0.58 0.92% 0.90 0.83 1.91%
I1000 788,503 149,152  274,766 1,702,039 0.53 0.30 0.78 0.60 0.76 0.59 0.88% 0.92 0.88 1.47%
JPT+CHB                  
A100 95,521 1,994  299,643 1,919,001  0.35 0.22 0.47 0.28  0.44 0.32 1.68% 0.60 0.42 8.86%
A250S 186,411 4,368  290,265 1,840,510  0.49 0.33 0.63 0.42  0.58 0.45 1.23% 0.76 0.61 5.00%
A250N 205,274 4,713  288,661 1,823,236  0.51 0.36 0.65 0.46  0.59 0.48 1.17% 0.77 0.64 4.70%
A500 391,685 9,081  268,427 1,663,552  0.62 0.47 0.76 0.60  0.69 0.59 0.84% 0.87 0.80 2.60%
I300 274,751 12,851  287,456 1,755,289  0.54 0.38 0.75 0.58  0.69 0.57 0.88% 0.88 0.82 2.25%
I550 467,073 13,322  269,299 1,587,153  0.67 0.52 0.87 0.78  0.75 0.67 0.64% 0.93 0.91 1.26%
I650 531,807 23,155   259,962 1,534,915   0.71 0.57  0.88 0.80   0.76 0.69 0.61%  0.94 0.92 1.19%
A1000 638,817 86,838  239,528 1,455,644 0.72 0.59 0.85 0.75 0.75 0.67 0.65% 0.92 0.89 1.50%
I1000 728,837 136,560  239,252 1,365,519 0.73 0.61 0.90 0.85 0.78 0.70 0.57% 0.95 0.94 0.91%
 
For each platform, the table lists the number of SNPs in the platform that overlap with the phased HapMap chromosomes (release 21a). 
The number of SNPs that were not in the phased HapMap (Lost) is also listed, most of these were monomorphic. This number is 
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followed by the number of SNPs that I attempted to impute, either with minor allele frequency <5% or >5%. I did not attempt to 
impute singletons for which the minor allele is observed only once. Coverage statistics using conventional single-marker tagging are 
provided and refer to the maximum r2 between a HapMap SNP not on the panel and its best tag on the panel. Coverage statistics using 
imputation are also tabulated, and refer to the relationship between imputed allele counts for each SNP and true allele counts for the 
same SNP. 
 
To evaluate the coverage of each genotyping platform using imputation, I focused on the markers that overlapped between the 
platform and the Phase II HapMap. I then considered each HapMap founder in turn and masked all genotypes for all markers not 
present in the commercial platform being evaluated. Finally, I used the remaining (unmasked) genotypes together with haplotypes for 
the other HapMap founders to impute the masked genotypes. The proportion of alleles that were imputed incorrectly, together with the 
correlation between imputed allele counts and actual allele counts, are tabulated for each platform.  
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Figure 3.8 Evaluation of Imputation Accuracy across HGDP Panels: Percentage of Alleles Imputed Incorrectly. 

 
For each of 52 populations in the Human Genome Diversity Project (HGDP) a set of 872 SNPs distributed evenly across 32 regions, 
each ~330 kb in length, was used to impute 992 other SNPs. The 992 imputed SNPs were located near the middle of each imputed 
region. Imputation was done using either the HapMap YRI, CEU, CHB+JPT, or a combination of 3 HapMap panels as a reference 
(first 4 panels, best panel is shaded in gray) or using the remaining HGDP samples as a reference. In each case, the proportion of 
correctly imputed alleles is tabulated. The figure is based on a re-analysis of data from Conrad et al. (2006). 
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Figure 3.9 Evaluation of Imputation Accuracy across HGDP Panels: Coverage at r2 Threshold 0.8 

 
Genotypes for a set of 992 SNPs were imputed in the HGDP and were then compared with actual genotypes. For each SNP, an r2 
coefficient was calculated in each populations between true genotypes and imputed genotype scores. These r2 values were then 
averaged across all SNPs for each population. The best set of HapMap reference individuals for each population is shaded. The 
coverage obtained by using the best available tagSNP (rather than imputed genotypes) is overlaid in pink. Coverage is defined as the 
percentage of SNPs having r2 > .8 with the imputed counterpart or with the best available tagSNP respectively. See Figure 3.7 legend 
for further details. 
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Table 3.4 Imputed Genotypes Result in Increased Power. 
 

Power (LD mimics CEU)   Power (LD mimics YRI) 

  

Single 
Marker 
Tags 

Multi Marker 
Tags 

Imputed 
Allele 

Counts 
Multiple 

Imputation   

Single 
Marker 
Tags 

Multi 
Marker 
Tags 

Imputed 
Allele 

Counts 
Multiple 

Imputation 

Empirical P-value Threshold 0.00081 0.00071 0.0003 0.00029  0.00067 0.00067 0.00017 0.00017 
MAF = 2.5% 24.40% 25.00% 56.20% 56.00%  21.20% 22.60% 43.60% 43.60% 
MAF = 5% 55.80% 56.40% 74.00% 74.00%  35.60% 36.00% 55.00% 54.80% 
MAF = 10% 77.40% 78.40% 87.80% 87.80%  62.40% 63.80% 73.00% 73.00% 
MAF = 20% 85.60% 86.20% 91.40% 91.60%  68.80% 70.60% 78.20% 78.20% 
MAF = 50% 93.00% 93.60% 96.40% 96.40%   75.40% 77.40% 86.60% 86.60% 

 
The table summarizes results from the analysis of two sets of 100 simulated 1 Mb regions. For each region, I generated a 

simulated HapMap including ~1,000 SNPs and used this panel to pick 100 tagSNPs that provided good coverage of the region 
(average coverage at an r2 threshold of 0.8 of the ~800 common “HapMap” SNPs ~78% in CEU and ~61% in YRI). I then simulated 
and analyzed a series of case control studies, each with 500 cases and 500 controls. Association tests were carried out at each tagSNP 
(“Single Marker Tags”), initially. I then augmented these results with the analysis of multi-marker tags as suggested by PLINK29 
(“Multi Marker Tags”), with the analysis of imputed allele counts (“Imputed Allele Counts”), or with a multiple-imputation version of 
the imputed allele count analysis based on 10 independent imputations (“Multiple Imputation”).  

In each case, I first simulated and analyzed 2000 null (20 per region) datasets by assigning random chromosomes to each case and 
control. These analyses were used to establish the empirical p-value threshold that, when applied to the top signal in each region, 
resulted in a type I error rate of 5%. Then, for each tabulated minor allele frequency (MAF), I simulated 500 case-control datasets (5 
per region, 500 cases and 500 controls each) where a variant with the specified MAF was associated with susceptibility. Power refers 
to the proportion of replicates where the top p-value exceeds the empirical p-value threshold.  

Note that the susceptibility variant was picked at random among all simulated SNPs with the requisite MAF and was not 
necessarily included in the tagSNP set or in the markers ascertained for each region specific HapMap. To ensure comparable power 
across varying MAF, I increased genotype relative risk for rarer SNPs. Specifically, I set GRR = 2.500, 2.020, 1.715, 1.530 and 1.440 
for SNPs with MAF = 2.5%, 5%, 10%, 20% and 50%, respectively. These settings correspond to ~85% for single marker tests of the 
susceptibility variant and a p-value threshold of 0.0005 is used (0.05 / 100, corresponding to a Bonferroni threshold that assumes 100 
independent SNPs are tested).  
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Table 3.5 Effect of Increasing Reference Panel Size on Imputation Accuracy. 
 

# Reference 
Panel Size 

Genotype 
Matching Error 

Allele 
Matching Error Mean r2 Median r2 

60 2.54% 1.31% 91.5% 97.5% 
100 1.73% 0.88% 93.6% 98.2% 
200 1.03% 0.52% 96.1% 98.8% 
500 0.79% 0.40% 97.1% 99.1% 

 
To evaluate the impact of a larger reference panel on the accuracy of genotype imputation, 
I used different numbers of individuals from the FUSION study genotyped for markers 
on the Illumina 317K SNP chip and also 521 SNPs on a candidate region of chromosome 
14 (Willer et al. 2006) to impute genotypes for an independent set of 500 FUSION 
individuals on whom only the Illumina 317K SNP chip genotypes were available. The 
imputation procedure converged after ~300 iterations with panel size = 60, ~200 
iterations with panel size = 100, and <100 iterations for panel sizes = 200 or 500 
individuals.  
 
Imputed genotypes were compared with experimental genotypes to determine accuracy at 
the genotype and allele level and to evaluate the r2 between true and imputed genotypes. 
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Appendix 3.1 Calculations for Simulated Case Control Datasets. 
 
Define the following notations:  
 
K: disease prevalence; 
A: risk allele at the disease SNP locus; 
a: non-risk allele at the disease SNP locus; 
pd: frequency for allele A at the disease SNP site; 
GRR: genetic relative risk 
Genotype penetrances: 
 0 Pr( |  aa) Pr(D|aa)f disease genotype≡ ≡  

 1

0

Pr(D|Aa) 
= , under multiplicative model
f

f GRR
≡

∗
 

 2
2

0
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f
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≡

∗
 

 
Applying Bayes’ Rule, one can easily obtain the following probabilities: 
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Chapter 4 

Analysis of Resequencing Data 

4.1 Introduction 

 

With the rapid development of very high throughput shotgun re-sequencing technologies 

(Bentley 2006), it is often proposed that genotyping based approaches will soon become 

outdated. One obvious advantage of re-sequencing is its ability to capture variants that 

are currently not recorded in public databases including, potentially, population specific 

variants that contribute to disease susceptibility.  

 

I therefore further extended my hidden Markov model so that it can use whole genome 

re-sequencing data as input. In this setting, it uses information from individuals with 

similar haplotypes to reconstruct patterns of variation in regions where deep coverage is 

not available for a specific sample. Re-sequencing data I consider are of varying depths 

with realistic per base-pair error rates such that per-base pair genotype calls based on a 

smaller number of reads from each individual separately can hardly reach reasonable 

accuracy. For example, given the per base-pair error rate is more than 0.1% we cannot 

call any SNP with confidence using single-read coverage in the human genome where the 

average pairwise polymorphism rate is on the order of one per kilobase (kb). In addition, 

I consider situations where the read length can be very short (in simulated experiments 
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below, reads were only 32 base pair in length). The use of such short-length reads is 

typical for current array-based sequencing technologies because it allows massive 

parallelization, reduces costs substantially, and enables super high throughput. However, 

data obtained from short reads are more challenging to assemble for reasons including 

typically higher experimental error rates and little information about phasing.  

 

4.2 Methods 

 

A Heuristic Introduction. Input re-sequencing data are summarized as counts of each 

allele at each base-pair position for each individual. For example, with depth four, we 

might see three traces with allele “A” and one with allele “G” at a particular base pair. 

Obviously, this could result from a true polymorphism at the locus or a sequencing error.  

More reads available for each individual (that is, a deeper re-sequencing) aids the 

discrimination of true polymorphisms from false positives due to sequencing errors. 

However, when individuals in a study are re-sequenced at low-depth, it is worthwhile to 

borrow information from other individuals who share similar haplotypes. My algorithm 

models the observed counts conditional on sequencing depth, starts with a solution of 

haplotypes compatible with the observed counts, and proceeds by updating one individual 

at a time until convergence.  

 

Hidden Markov Model for Shotgun Sequence Data. When shotgun re-sequencing, or 

another single molecule re-sequencing technology, is used on diploid individuals, 

genotypes are not directly observed. In this case, I assume the data consists of counts Aj 
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and Bj indicating how many times base A (or B) was observed at site j. Therefore, on top 

of the model introduced in Chapter 3, I define my hidden Markov model as: 

 

∏ ∑∏
==

−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
L

j G
jjjjj

L

j
jj

j

GBAPSGPSSPSPP
12

11 )|,()|()|()(),,|,,( δεθSBA  

 

Here, I sum over possible genotypes at each site and calculate the probability of the 

observed traits for each possible genotype set. In addition, I define the probability of 

observing a specific set of traces given the underlying genotype as: 
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The parameter δ denotes the per base pair sequencing error rate and can be separated 

from the effects of mutation and gene conversion captured in ε (the locus-specific error 

parameter introduced in Chapter 2), unless the re-sequencing depth is very low.  

 

Consistent with notations from the previous chapters, P(S1) denotes the prior probability 

of the initial mosaic state and is usually assumed to be equal for all possible 

configurations, P(Sj|Sj-1) denotes the transition probability between two mosaic states and 

reflects the likelihood of historical recombination events in the interval between j-1 and j, 

P(Gj|Sj) denotes the probability of true genotypes at each position conditional on the 
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underlying mosaic state.  

 

In principle, the method could be applied to all sites where an alternative base call is 

observed at least once. However, since I simulated many short reads and at an error rate 

of 0.2%, the minor allele was observed at least once at nearly every position in many of 

my simulation experiments. For reasons of computational efficiency, I applied my 

method only to positions were the minor allele was observed in multiple traces. 

Specifically, I defined mkj as the number of traces where the minor allele was observed at 

position j in individual k. Then, I defined the score ∑ +=
k

kjkjj mmw 2/)1(  and applied 

my haplotyping algorithm to all sites where wj exceeded a predefined threshold (other 

sites were assumed to contain the major allele). The score gives higher weight to sites 

where the minor allele is observed multiple times in the same individual. I used 

thresholds for wj of 5, 7, 9, 11, and 13 depending on whether the total coverage (defined 

as depth * individuals) was 200, 400, 800, 1200, or 1600x. When the number of 

individuals sequenced was 400, these thresholds were reduced to 4, 6, 8, 10, and 12 

respectively. This means that, for example, when 400 individuals were re-sequenced at 4x 

depth (total depth = 1600x) I considered only sites where the minor allele was observed 

in at least 12 traces from different individuals or slightly fewer traces concentrated in one 

or more individuals.  

 

4.3 Results and implications 

 

To evaluate the possibilities, I simulated sequence data for ten 1 Mb regions. I simulated 
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reads that were only 32 base pairs long and with a per base-pair error rate of 0.2%. Very 

roughly, these correspond to the expected performance of the next generation 

re-sequencing technologies from companies such as Illumina Solexa. I then re-sequenced 

between 100 and 400 individuals at different depths and used my approach to reconstruct 

haplotypes and genotypes for each individual. Note that the simulated reads are typically 

too short to include useful information on phase (because they will generally include only 

zero or one site that differs from the reference sequence). In addition, given the large 

number of bases examined, they will also suggest a large number of false-positive 

polymorphic sites so that it is important not only to confirm true polymorphic sites, by 

examining overlapping similar reads from the same individual or, potentially, from other 

individuals who share a similar haplotype.  

 

For each site, I counted the number of times that the reference base or an alternative base 

was sequenced for each individual. For computational convenience, I only considered 

sites where both bases were observed several times (as described in the Methods section 

above) in downstream analyses and assigned the most frequently sampled base to all 

other sites. On this scale, the shotgun re-sequencing approach typically characterized 

~4,209 polymorphic sites across the sampled individuals – ~4x the SNP density of the 

Phase II HapMap. Even relatively light shotgun re-sequencing provided very accurate 

haplotypes for each individual. For example, when 400 individuals were sequenced at 4x 

depth, there were only 18.97 errors per individual on average (over 1,000,000 base-pairs). 

Across ~980,000 sites that were monomorphic in the population only 82 false 

polymorphisms were called on average. Accuracy was also excellent at sites that were 
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polymorphic in the population. For example, 3,558 of the 3,641 (97.72%) simulated 

polymorphic sites with MAF > 0.5% were identified and, at these sites, bases were 

estimated with an accuracy of 99.93% (see Table 4.1).  

 

For any given depth, imputed genotype accuracy increased with the number of sequenced 

individuals (for example, accuracy at sites with MAF > 0.5% was ~98.8% when 100 

individuals were sequenced at 2x coverage but increased to ~99.7% when 400 individuals 

were sequenced at the same depth; the number of errors per individual decreased 

similarly from 106.3 per individual to 40.3 per individual). In addition, the depth required 

to achieve a given accuracy decreased as the number of sequenced individuals increased: 

achieving 99.9% accuracy for sites with population MAF > 0.5% requires ~8x depth for 

100 individuals, ~6x depth in 200 individuals and only 4x depth in 400 individuals. Again, 

advantages of re-sequencing larger numbers of individuals reflect the fact that as more 

individuals are sequenced the mosaic fragments identified by my haplotyper increase in 

length. This is also reflected in the accuracy of estimated haplotypes, which – when 

compared with simulated haplotypes – have ~1 switch per 50 kb when 100 individuals 

are examined, but ~1 switch per 500kb when 400 individuals are examined.  

 

Proportion of variants detected. One major objective of re-sequencing analysis is to 

detect genetic variations that were not recorded in existing databases. Therefore, it is 

important to examine the proportions of variants discovered with different allocations of 

limited resources. Table 4.2 tabulates the proportions of SNPs identified using my 

re-sequencing data analyzer when different numbers of individuals are re-sequenced at 
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different depths. For more meaningful and informative comparisons, I arrange SNPs into 

different minor allele frequency categories according to simulated population allele 

frequency. Several illuminating observations can be made from this table.  

 

First, rarer SNPs are more difficult to identify, particularly with non-ignorable 

re-sequencing error.  For instance, when 100 individuals are re-sequenced with an 

average of merely two reads per base pair, nearly all (~99%) the relatively common 

(MAF > 5%) SNPs can be identified while only ~1% of the very rare (MAF < .5%) SNPs 

can be identified. Although re-sequencing technologies have advanced greatly over the 

past decade, they are not yet perfect and techniques allowing vast parallelization and 

super high-throughput further incur errors. As noted previously, observed polymorphisms 

can derive either from a true underlying genetic variation, or from a re-sequencing error. 

Naïve approaches can hardly discriminate the two sources when re-sequencing error and 

the true allele frequency are comparable. My approach improves the discriminating 

power by taking into account multiple similar reads (of the rarer allele) from the same 

individual and by borrowing information from other individuals sharing similar 

haplotypes.  

 

These particular features of my re-sequencing data analyzer lead to a second observation: 

the proportion of variants detected increases with the number of individuals re-sequenced, 

holding re-sequencing depth constant. This is particularly true for rarer SNPs for the 

obvious reason that common SNPs are easily detected with a rather small number of 

individuals at even low depth. For example, the detected proportion of the 15,336 very 
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rare SNPs (MAF < 0.5%) more than doubles (increases from 3% to 7%) when 400 

individuals are re-sequenced at 4x depth compared with when only 100 individuals are 

re-sequenced at the same depth.  

 

Finally, larger proportions of rarer SNPs can be detected when a smaller number of 

individuals are re-sequenced at high depth than when a larger number of individuals are 

re-sequenced at low depth, holding the overall re-sequencing investment constant. For 

example, 59% of the 1,074 SNPs with MAF between 0.5% and 1% are detected with 100 

individuals re-sequenced at 8x coverage. The detection proportion decreases to 45% 

when 400 individuals are re-sequenced at 2x coverage. While spreading out the same 

amount of investment to a larger number of individuals helps the identification of 

common SNPs, it does not help in the rare SNP category. On the other hand, with a larger 

number of re-sequenced individuals at the same overall investment, we obtain overall 

larger amount of information and have a larger reference pool which potentially better 

elucidates the LD structure. Therefore, such a more-individual-lower-coverage 

re-sequencing design can be more cost efficient for the establishment of a large public 

database, serving as reference for individual association studies. The benefits of a larger 

low-pass reference panel are quantified in section “Using resequencing data as 

imputation reference”. 

 

Table 4.3 provides additional perspectives regarding the proportions of variants detected 

by exploring different re-sequencing error rates. Specifically, this table shows the number 

of false discoveries and detected SNPs in different MAF categories when 400 individuals 
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are re-sequenced at different depths (1x, 2x and 4x) with different simulated 

re-sequencing error rates (error = 0.3%, 0.5% and 1.0%). As expected, common SNPs are 

not influenced much. For instance, the 2,947 SNPs with MAF > 5% are always 100% 

detected regardless of re-sequencing depth and error rate except for 1x depth at 1.0% 

re-sequencing error rate, where two SNPs are missed and 99.93% are identified. However, 

larger re-sequencing error rate makes it more challenging to effectively discriminate very 

rare SNPs from false positives. For example, 351 of the 15,336 (2.29%) very rare (MAF 

< 0.5%) SNPs can be detected at the cost of 46 false polymorphisms with a re-sequencing 

error of 0.3% while only 139 (0.91%) are detected at the cost of tripling the number of 

false positives (140 false positives) with a re-sequencing error of 1.0%. Therefore, 

re-sequencing accuracy within a certain range (within 1%) is essential for shotgun 

re-sequencing technologies to be useful for rare SNPs with MAF < 0.5% even with 

sophisticated analysis tools. 

 

Imputation accuracy for detected variants. Identification of polymorphic sites is 

merely the starting point for marker characterization. I also want to provide accurate 

allelic states, with the correct corresponding haplotype backgrounds. It is important to 

distinguish being found polymorphic and being correctly imputed. In an extreme case of 

no re-sequencing error, assume we re-sequenced 100 individuals at 1x coverage and 

obtained two and only two different reads at a particular SNP locus. Such data under the 

assumption of no re-sequencing error allow us to declare polymorphic at the locus but 

without imputation, we have little information regarding the remaining 198 missing 

alleles. A constructive re-sequencing database needs not only to correctly catalog the 
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polymorphic site, but also to accurately document alleles/haplotypes at cataloged 

polymorphisms. Table 4.4 and 4.5 demonstrate the capability of my re-sequencing data 

analyzer to provide high quality imputed genotypes at discovered loci under different 

settings.  

 

First and obviously, imputation quality improves with re-sequencing depth, holding the 

number of re-sequenced individuals constant. For example, imputation accuracy 

increases from ~97% (95.01% - 97.91%) when 100 individuals are re-sequenced at 1x 

depth to over 99.99% when the same individuals are re-sequenced at 16x depth.  

 

Secondly, when more individuals are re-sequenced at the same depth, imputation 

accuracy improves because the increased chances of finding more closely related 

individuals lead to more accurately reconstructed haplotypes and improved genotype 

imputation.  

 

Thirdly, given total investment fixed, a larger number of individuals re-sequenced at 

lower coverage provides a larger pool of chromosomes at rather small reduction in 

accuracy. For example, at a total investment of 800x, we can have: (1) 100 individuals 

with an average ~99.9% (99.85% - 99.94%) accuracy; or (2) 200 individuals with an 

average ~99.8% (99.68% - 99.90%) accuracy; or (3) 400 individuals with an average 

~99.6% (99.37% - 99.76%) accuracy. I have shown in Chapter 3 that a larger reference 

panel increases imputation quality. Simply put, the reason is: one is more likely to find a 

person more closely related (genetically) to him/her in a larger sample of people. 
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Therefore, the low-pass sequencing design of a large number of individuals, with such 

ignorable reduction in accuracy, is a promising alternative for the establishment of a large 

reference database.  

 

Although elevated re-sequencing error makes it more challenging for SNP discoveries 

(especially for rarer SNPs), Table 4.5 shows an agreeable tendency that imputation 

accuracy is only minimally affected by re-sequencing error. For example, average 

imputation accuracy for 400 individuals re-sequenced at 2x depth is ~99.55% (99.37% - 

99.76%) when re-sequencing error rate is 0.3%; ~99.54% (99.35% - 99.75%) with an 

error rate of 0.5%; and ~99.50% (99.33% - 99.72%) with an error rate of 1.0%.  

 

Designing a resequence-based study. The above comparisons of different allocations of 

sequencing efforts have clearly suggested the benefits of a low-pass sequencing design. 

In this section, I compare the performances of two designs scaling up to realistic studies 

of complex traits: one deep sequencing of 400 individuals at 30x coverage and one 

low-pass sequencing of 3000 individuals at 4x coverage. I first simulated 10 replicates of 

45,000 chromosomes extending 100Kb with realistic LD patterns mimicking those of 

HapMap CEU (Schaffner et al. 2005). I proceeded to sequence 400 or 3000 individuals at 

an average depth of 30x or 4x with short reads of length 32 bases and a per-base error 

rate of 0.5%. I then took sites potentially polymorphic (through trials and errors to keep 

the number of false polymorphisms below 100) to the imputation engine, borrowing 

information across individuals.  
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Figure 4.1 compares the capability of two designs for polymorphism detection. Both 

designs provide excellent power (~100%) to detect variants with MAF > 0.5%. For rare 

variants, the proportion of SNPs detected is influenced by two factors: the proportion of 

variants present in the sample and the power of detection conditional on the sequencing 

depth. The two factors exert their impacts in opposite directions given fixed sequencing 

investment. For example, ~12% SNPs with population frequency <0.1% show at least 

one copy of the minor allele among a sample of 400 individuals while ~49% of such rare 

variants are polymorphic among a sample of 3,000 individuals. However, due to the 

rather shallow coverage of 4x for the 3,000 individuals, only a small fraction (~8%) of 

the ~49% can be detected, resulting in ~4% such rare SNPs being detectable with the 

particular low-pass design. The deep coverage design continues to have better 

performance in the MAF category of 0.1-0.2%, detecting 65% of the variants, whereas 

the low-pass design is able to detect 58%. We see the benefits of the low-pass design in 

the MAF category of 0.2-0.5%, with the low-pass design detecting 94% of the variants 

and the deep-depth design detecting 87%.  

 

The quality of genotype calls (Table 4.6) from the low-pass design at the detected 

variants, while not as good that from deep sequencing, is still impressive. For example, 

for variants with frequency >1%, low-pass sequencing call accuracy is always >99.9% 

and for heterozygous sites it is always >99.84%. High rates of polymorphism detection 

and accurate calling of genotypes are possible because my model effectively combines 

information across individuals with similar haplotypes, so that the coverage of each 

haplotype is, effectively, quite deep.  
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If rare variant detection and accurate calls are the main goals, the deep coverage design is 

indeed valuable. In real studies, we are most likely equally (if not more) interested in 

finding genetic variants associated with trait(s) of interest. Now consider the following 

setting: a disease with prevalence 10%, a rather high genetic relative risk of 2, and a 

relatively large sample size of 3,000 cases and 3,000 controls. The power to detect 

association is 0% when the disease allele frequency is below 0.2%. The power increases 

to 2% and 32% respectively when the disease allele frequency is 0.5% and 1% (Skol et al. 

2006). Therefore, losing SNPs with MAF below 0.2% has essentially no effect on the 

identification of genetic variants influencing complex traits. Of course, a deep coverage 

design may be appreciated more when more sophisticated methods are applied for the 

analysis of rare variants (Li and Leal 2008, Madsen and Browning 2009). 

 

Even sophisticated methods are still constrained by available information. Conceptually, 

the information for association testing provided by low-pass sequencing of large numbers 

of samples is much greater than that for deep sequencing of fewer samples because of the 

much larger sample size. One standard measure closely related to the statistical power is 

r2, the squared correlation between a genetic variant and its proxy (Pritchard and 

Przeworski 2001). In the context of imputation, r is the correlation between the true 

variant genotype and its imputed counterpart. Assuming information for association 

testing scales as nr2 where n is the sample size, low-pass sequencing provides much 

greater information than does deep sequencing given the same overall sequencing effort 

(Figure 4.2). For example, for variants of frequency 0.1-0.2%, 0.2-0.5%, 0.5-1.0%, 
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1.0-2.0% or 2.0-5.0%, 4x sequencing of 3,000 individuals provides 4.8, 5.2, 6.0, 6.9 and 

7.2 times as much information as 30x sequencing of 400 individuals. Design-wise, 

therefore, low-pass sequencing is a logical strategy to maximize information for gene 

discovery. 

 

Using resequencing data as imputation reference. Having shown the capabilities of my 

method to detect SNPs and accurately impute SNP genotypes from re-sequencing data 

over a broad set of simulation conditions, I expect that my method will allow economical 

association studies that evaluate SNP variation in large numbers of individuals even more 

exhaustively than is currently possible, by using shotgun re-sequencing of whole 

genomes as reference. To evaluate the possibility, I simulated a smaller and a larger 

“re-sequencing HapMap”. The smaller “re-sequencing HapMap” reference panel consists 

of 120 perfect haplotypes (that is, true haplotypes from simulation) from 60 individuals 

re-sequenced at > 16x coverage with a potential trio design (thus a total re-sequencing 

investment of >960x). The larger “re-sequencing HapMap” reference panel has 800 

haplotypes from analyzing 400 individuals re-sequenced at 2x depth (thus a total 

re-sequencing investment of 800x). I then simulated an independent random sample of 

500 individuals from the same underlying population. For the study sample of 500 

individuals, I genotyped only 100 or 200 tagSNPs selected randomly from SNPs 

discovered both in the smaller and in the larger “re-sequencing HapMap”. Imputation of 

“re-sequencing HapMap” SNPs in the study sample proceeded in the same fashion as 

described in Chapter 3, using haplotypes from either the smaller or larger reference panel. 

Obviously, we are analyzing a much larger number of variants with a “re-sequencing 
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HapMap” as reference. The SNP density in the current HapMap phase II is ~1,000 SNPs 

in 1Mb and my “re-sequencing HapMap” has ~4,000 SNPs in 1Mb for simulated CEU 

and ~6,000 for simulated YRI. After imputing all the “re-sequencing HapMap” SNPs in 

the study sample of 500 individuals, I recorded average imputation errors per person 

across the entire 1Mb region, number of false positives, SNPs discovered and imputation 

accuracy in each minor allele frequency class (categorized according to simulated sample 

allele frequency [i.e., calculated from true genotypes of the 500 sample individuals]). 

Results are summarized in Table 4.7. 

 

Table 4.7 clearly shows the benefits of a larger “re-sequencing HapMap”. The average 

number of per-individual errors across the entire 1Mb region decreases by more than 15%: 

from 416 (302) when the smaller “re-sequencing HapMap” is used as reference and 100 

(200) tagSNPs are genotyped in the study sample to 349 (255) when the larger 

“re-sequencing HapMap” is used.  

 

In addition, in terms of false discoveries and true polymorphisms detected, I observe 

obvious gains in all but the very rare SNP (MAF < 0.5%) category with the usage of the 

larger reference panel. For example, I have 200 false polymorphisms when using the 

smaller reference panel and genotyping 200 tagSNPs. The number reduces to 155 when 

the larger reference panel is used. The total number of discovered SNPs with MAF at 

least 0.5% increases from 4,586 (4,802) to 4,688 (4,953) with the use of the larger 

“re-sequencing HapMap” when 100 (200) tagSNPs are genotyped. Particularly 

noteworthy, the gains can be substantial in some “marginal” MAF categories (i.e., 
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categories where MAF is high enough eventually to reach reasonable statistical power 

with a huge sample size under meta-analyses of already large-scale studies; and at the 

same time low enough to be easily missed by genotype based association designs). For 

example, in the MAF 1-2% category, ~15% more SNPs can be detected with the larger 

“re-sequencing HapMap”: 581 (653) up to 665 (745). Loss in SNP detection in the very 

rare category (MAF < 0.5%) is exaggerated in two senses. First, I have true/perfect 

haplotypes in the smaller reference panel. The reality, however, is never perfect and as 

discussed extensively in previous sessions rarer SNPs are more likely to be influenced. 

Secondly, the comparisons are not totally fair given the number of false discoveries differ 

substantially. For a fairer comparison of the rare SNPs, one should perform a separate 

analysis where the numbers of false positives are comparable.  

 

Furthermore, comparable or better quality imputed genotypes can be obtained using the 

larger “re-sequencing HapMap” panel. The improvement in quality manifests itself more 

clearly in the more common SNP categories where imputation tends to be harder because 

of more uncertainties. For example, average imputation accuracy in the common SNP 

category (MAF > 5%) increases from 95.80% (97.88%) to 97.07% (98.68%) using the 

larger “re-sequencing HapMap” when 100 (200) tagSNPs are genotyped in the study 

sample. For the rarer SNP categories (MAF < 1% groups), imputation qualities appear 

slightly lower with the larger reference panel, but are still well over 99% and probably 

will not make any noticeable differences for downstream analyses. Table 4.8 show similar 

patterns with the focus on estimated r2 between imputed and observed allele counts. 
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4.4 Discussion 

 

Genome sequencing technologies are improving extremely rapidly. Whereas the first two 

human whole-genome assemblies took years to complete (Lander et al. 2001, Venter et al. 

2001), several additional genomes have been assembled in the past 18 months (Bentley et 

al. 2008, Levy et al. 2008; Wheeler et al. 2008). These advances in whole genome 

sequencing have resulted from the development of massive throughput sequencing 

technologies, which differ from standard Sanger-based sequencing (Sanger et al. 1977) in 

many ways. For example, the data produced by these new technologies typically have 

somewhat higher error rates (on the order of 1% per base). Since these technologies 

produce a very large amount of data, one typically accommodates these error rates by 

sequencing every site of interest many times to achieve a high-quality consensus.  

 

I expect that the continued development of these technologies will significantly change 

how genotype imputation is used. An example is given by the 1000 Genomes Project (see 

www.1000genomes.org), which aims to deliver whole genome sequences for >2,000 

individuals from several different populations by the end of year 2009. To do this in a 

cost-effective manner, the project is using a strategy that combines massively parallel 

shotgun sequencing with the same statistical machinery that underlies genotype 

imputation. Specifically, a relatively modest amount of shotgun sequence data is being 

collected for each individual: Each of the target bases will be sequenced only 2-4x on 

average (statistical fluctuations around this average mean that many bases will not be 

covered even once), rather than 20-40x used in previous applications of these 
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technologies to whole-genome resequencing. To call polymorphisms accurately in each 

genome, the Project will then use imputation-based approaches as described in this 

chapter to combine information across individuals who share a particular haplotype 

stretch. As shown in the simulations described in this chapter, I have predicted that when 

400 diploid individuals are sequenced at only 2x depth (1x per haploid genome) and the 

data are analyzed though my imputation engine that combines data across individuals 

sharing similar haplotype stretches, polymorphic sites with a frequency of >2% can be 

imputed with >99.5% accuracy with a sequencing error of 1% per base (Table 4.5).  

 

The ability to combine relatively modest amounts of sequence data across many 

individuals to generate high-quality sequence data for all may become one of the most 

common uses of imputation technologies in the near future. For a given sequencing effort, 

genotype imputation-based analyses may allow an increase in the number of individuals 

to be sequenced by five- to tenfold with minimal loss of accuracy in individual genotypes. 

Such an increase in sample size is critical when attempting to map the genes for complex 

diseases. Of course, even before massively parallel sequencing technologies are deployed 

more widely, one immediate change will occur with the completion of the 1000 Genomes 

Project. Specifically, I expect these data will provide accurate genotype information on 

>10 million common variants and will quickly replace the HapMap Consortium 

genotypes as the reference panel of choice for imputation studies. Thus imputation-based 

analyses will be able to examine even more genetic markers, and each of these markers 

will, on average, be imputed much more accurately.  
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To evaluate the feasibility in practice, I analyzed preliminary shotgun sequence data 

generated by the 1000 Genomes Project on 52 CEU individuals sequenced at ~4.7x 

average depth per individual. I used estimated haplotypes for these individuals to fill in 

missing genotypes in a case-control study of type 2 diabetes. Even with this small 

reference panel, ~6 million SNPs are estimated to be imputed of good quality and 

missing alleles in our type 2 diabetes case-control study could be imputed with an 

average error rate of ~2.6%. As the size and quality of the reference panel increase, I 

expect this average error rate to improve rapidly (as illustrated previously in Table 3.5). 

Recall from Chapter 3 that using HapMap as reference, ~2million imputed SNPs were 

estimated to be of good quality and alleles were imputed with an average error of ~1.4%. 

Therefore, while the number of individuals sequenced by the 1000 Genomes Project is 

similar to that in HapMap, there is value in using both as references because the former 

provides information at more markers and the latter provides information of higher 

quality.   
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Table 4.1 Accuracy of Imputed Genotypes Using Shotgun Re-sequence Data as Input.  
 

1,000,000 bases

Average False
Sequencing Total Errors Positives Allelic Detected Allelic Detected Allelic Detected Allelic Detected Allelic Detected Allelic

Depth Investment per Individual SNPs Accuracy SNPs Accuracy SNPs Accuracy SNPs Accuracy SNPs Accuracy SNPs Accuracy

2x 200x 106.32 99 97.11% 176 98.79% 90 98.78% 176 98.81% 465 98.78% 2109 98.84%
4x 400x 45.01 43 98.42% 440 99.51% 188 99.62% 286 99.60% 550 99.62% 2115 99.66%
8x 800x 12.90 59 99.30% 995 99.92% 309 99.94% 369 99.94% 582 99.94% 2115 99.94%

12x 1200x 4.60 42 99.41% 1,310 99.98% 357 99.98% 395 99.99% 585 99.99% 2116 99.98%
16x 1600x 2.19 33 99.49% 1,432 99.99% 368 100.00% 397 100.00% 585 100.00% 2115 99.99%

2x 200x 57.52 219 98.87% 365 99.56% 186 99.52% 295 99.46% 565 99.41% 2116 99.59%
4x 400x 25.18 52 99.47% 734 99.84% 310 99.85% 378 99.85% 587 99.86% 2116 99.90%
6x 1200x 14.36 45 99.67% 1,270 99.95% 386 99.95% 405 99.94% 590 99.94% 2116 99.96%
8x 1600x 9.29 34 99.68% 1,654 99.98% 425 99.97% 415 99.97% 590 99.97% 2116 99.97%

1x 400x 84.95 212 99.02% 183 99.50% 149 99.32% 296 99.15% 570 98.94% 2116 99.14%
2x 800x 40.34 243 99.44% 532 99.72% 307 99.68% 393 99.64% 589 99.65% 2116 99.77%
3x 1200x 25.98 143 99.65% 906 99.86% 389 99.84% 413 99.83% 590 99.84% 2116 99.89%
4x 1600x 18.97 82 99.77% 1,258 99.92% 431 99.90% 421 99.91% 590 99.91% 2116 99.94%

with MAF >5%

n = 100 individuals resequenced using a shotgun approach

n = 200 individuals resequenced using a shotgun approach

n = 400 individuals resequenced using a shotgun approach

with MAF<.5% with MAF .5-1% with MAF 1-2% with MAF 2-5%

979,642 Monomorphic Sites 20,358 Polymorphic Sites, Segregated According to Population Frequency

16716 sites 510 sites 425 sites 590 sites 2116 sites

 
I simulated 1Mb regions in individuals with HapMap CEU-like degrees of LD. Then, I generated shotgun sequence data for a 

subset of individuals (n = 100, 200 or 400) at varying depths (1x – 16x). The depths were selected to represent a total investment of 
between 400x and 1600x coverage of the region (200x coverage was also examined for n=100). Simulated reads were 32-bp long and 
had a per base error rate of 0.2%. Read counts at sites where multiple copies of each alternative base were observed were then 
provided as input to our software package. 

The “Average Errors per Individual” column summarizes the overall haplotyping accuracy, across polymorphic and monomorphic 
sites. For example, when 400 individuals were sequenced at 4x depth, an average of 18.97 imputed genotypes differed from the actual 
simulated genotypes in each individual. The next several columns summarize results for positions where the haplotyper called a 
polymorphism. The number of false positive sites is listed together with the accuracy of bases at those sites. Typically, only a few false 
positive polymorphisms were called (in 400 individuals at 4x depth, 82 false positive polymorphisms were observed). The next 
columns summarize results for sites that were truly polymorphic in the population and these are grouped by frequency (calculated 
from a sample of N = 10,000 chromosomes). For each frequency class, information is provided on the number of polymorphic sites 
identified and the overall base calling accuracy at those sites. Note that especially for rare SNPs, many sites are not scored as 
polymorphic simply because they are invariant in the set of individuals selected for sequencing. 
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Table 4.2 Proportion of Variants Discovered, by Re-sequencing Investment. 
 

15336 sites 1074 sites 934 sites 1200 sites 2947 sites
with MAF<.5% with MAF .5-1% with MAF 1-2% with MAF 2-5% with MAF >5%

Sequencing % Detected % Detected % Detected % Detected % Detected
Depth SNPs SNPs SNPs SNPs SNPs

1x 0% 4% 11% 40% 94%
2x 1% 16% 34% 74% 99%
4x 3% 34% 61% 92% 100%
8x 7% 59% 83% 98% 100%
16x 10% 73% 91% 99% 100%

1x 1% 9% 26% 71% 99%
2x 2% 25% 55% 93% 100%
4x 5% 55% 84% 99% 100%
8x 10% 80% 96% 100% 100%

1x 1% 17% 49% 93% 100%
2x 2% 45% 83% 100% 100%
4x 7% 79% 97% 100% 100%

n = 100 individuals resequenced using a shotgun approach

n = 200 individuals resequenced using a shotgun approach

n = 400 individuals resequenced using a shotgun approach

21,491 Polymorphic Sites, Segregated According to Population Frequency

 

I simulated 1Mb regions in individuals with HapMap YRI-like degrees of LD. Then, I generated shotgun sequence data for a 
subset of individuals (n = 100, 200 or 400) at varying depths (1x – 16x). The depths were selected to represent a total investment of 
between 100x and 1600x coverage of the region. Simulated reads were 32-bp long and had a per base error rate of 0.3%. Read counts 
at sites where multiple copies of each alternative base were observed were then provided as input to our software package. 

SNPs in this table are classified according to minor allele frequency (calculated from a sample of N = 10,000 chromosomes). For 
each minor allele frequency group, percentages of detected SNPs are tabulated.  



 

 

96

Table 4.3 Proportion of Variants Discovered, by Re-sequencing Error Rate. 
 

978,509 15336 sites 1074 sites 934 sites 1200 sites 2947 sites
Monomorphisms with MAF<.5% with MAF .5-1% with MAF 1-2% with MAF 2-5% with MAF >5%

False
Sequencing Positives # Detected # Detected # Detected # Detected # Detected

Depth SNPs SNPs SNPs SNPs SNPs SNPs

1x 53 105 187 462 1112 2947
2x 46 351 485 776 1194 2947
4x 55 1021 847 910 1200 2947

1x 276 113 182 449 1100 2947
2x 95 257 401 716 1188 2947
4x 99 842 793 901 1200 2947

1x 102 38 70 249 953 2945
2x 140 139 259 593 1166 2947
4x 61 430 610 846 1198 2947

21,491 Polymorphic Sites, Segregated According to Population Frequency

n = 400 individuals resequenced using a shotgun approach, error = 0.3%

n = 400 individuals resequenced using a shotgun approach, error = 0.5%

n = 400 individuals resequenced using a shotgun approach, error = 1.0%

 
I simulated 1Mb regions in individuals with HapMap YRI-like degrees of LD. Then, I generated shotgun sequence data for a 

subset of 400 individuals at varying depths (1x – 4x). The depths were selected to represent a total investment of between 400x and 
1600x coverage of the region. Simulated reads were 32-bp long and had varying per base error rates (0.3%, 0.5% and 1.0%). Read 
counts at sites where multiple copies of each alternative base were observed were then provided as input to our software package. 

SNPs in this table are classified according to minor allele frequency (calculated from a sample of N = 10,000 chromosomes). For 
each minor allele frequency group, numbers of detected SNPs are tabulated. In addition, numbers of false discoveries are included.  
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Table 4.4 Accuracy of Genotype Predictions, by Re-sequencing Investment. 
 

15336 sites 1074 sites 934 sites 1200 sites 2947 sites
with MAF<.5% with MAF .5-1% with MAF 1-2% with MAF 2-5% with MAF >5%

Sequencing 
Depth Accuracy Accuracy Accuracy Accuracy Accuracy

1x 97.91% 97.46% 97.02% 96.71% 95.07%
2x 98.36% 98.26% 98.28% 98.27% 98.07%
4x 99.17% 99.30% 99.38% 99.48% 99.47%
8x 99.85% 99.91% 99.92% 99.93% 99.94%
16x 99.99% 99.99% 99.99% 100.00% 99.99%

1x 98.58% 98.35% 98.29% 98.38% 98.39%
2x 99.02% 99.11% 99.20% 99.36% 99.52%
4x 99.68% 99.76% 99.81% 99.85% 99.90%
8x 99.96% 99.96% 99.97% 99.98% 99.98%

1x 98.94% 98.88% 98.87% 99.00% 99.16%
2x 99.37% 99.47% 99.53% 99.64% 99.76%
4x 99.83% 99.87% 99.89% 99.92% 99.96%

n = 100 individuals resequenced using a shotgun approach

n = 200 individuals resequenced using a shotgun approach

n = 400 individuals resequenced using a shotgun approach

21,491 Polymorphic Sites, Segregated According to Population Frequency

 

I simulated 1Mb regions in individuals with HapMap YRI-like degrees of LD. Then, I generated shotgun sequence data for a 
subset of individuals (n = 100, 200 or 400) at varying depths (1x – 16x). The depths were selected to represent a total investment of 
between 100x and 1600x coverage of the region. Simulated reads were 32-bp long and had a per base error rate of 0.3%. Read counts 
at sites where multiple copies of each alternative base were observed were then provided as input to our software package. 

SNPs in this table are classified according to minor allele frequency (calculated from a sample of N = 10,000 chromosomes). For 
each minor allele frequency group, imputation accuracies are tabulated.  
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Table 4.5 Accuracy of Genotype Predictions, by Re-sequencing Error Rate. 
 

15336 sites 1074 sites 934 sites 1200 sites 2947 sites
with MAF<.5% with MAF .5-1% with MAF 1-2% with MAF 2-5% with MAF >5%

Sequencing 
Depth Accuracy Accuracy Accuracy Accuracy Accuracy

1x 98.94% 98.88% 98.87% 99.00% 99.16%
2x 99.37% 99.47% 99.53% 99.64% 99.76%
4x 99.83% 99.87% 99.89% 99.92% 99.96%

1x 98.99% 98.93% 98.92% 98.99% 99.11%
2x 99.35% 99.46% 99.53% 99.63% 99.75%
4x 99.82% 99.86% 99.89% 99.91% 99.95%

1x 99.01% 98.71% 98.75% 98.86% 98.99%
2x 99.33% 99.37% 99.47% 99.59% 99.72%
4x 99.77% 99.83% 99.86% 99.90% 99.94%

21,491 Polymorphic Sites, Segregated According to Population Frequency

n = 400 individuals resequenced using a shotgun approach, error = 0.3%

n = 400 individuals resequenced using a shotgun approach, error = 0.5%

n = 400 individuals resequenced using a shotgun approach, error = 1.0%

 

I simulated 1Mb regions in individuals with HapMap YRI-like degrees of LD. Then, I generated shotgun sequence data for a subset of 
400 individuals at varying depths (1x – 4x). The depths were selected to represent a total investment of between 400x and 1600x 
coverage of the region. Simulated reads were 32-bp long and had varying per base error rates (0.3%, 0.5% and 1.0%). Read counts at 
sites where multiple copies of each alternative base were observed were then provided as input to our software package. 
 
SNPs in this table are classified according to minor allele frequency (calculated from a sample of N = 10,000 chromosomes). For each 
minor allele frequency group, imputation accuracies are tabulated.  
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Figure 4.1 Low-pass vs. Deep Sequencing: Polymorphism Discovery. 
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Table 4.6 Low-pass vs. Deep Sequencing: Imputation Accuracy at Discovered Loci. 
 

Statistic Design <.1% .1-.2% .2-.5% .5-1% 1-2% 2-5% >5% 
Accuracy (all) 400 at 30x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 3000 at 4x .9997 .9994 .9988 .9985 .9988 .9984 .9990 
Accuracy (het) 400 at 30x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 3000 at 4x .8711 .8248 .8193 .9039 .9726 .9884 .9985 
r2 400 at 30x .9930 .9949 .9961 .9974 .9981 .9988 .9998 
 3000 at 4x .6635 .6390 .6897 .8021 .9192 .9577 .9927 
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Figure 4.2 Low-pass vs. Deep Sequencing: Information/Effective Sample Size. 
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Table 4.7 Imputation Quality using a Smaller or Larger “Re-sequencing HapMap”: Accuracy. 
 

Reference Reference
Sample Sample Average False

Sequencing Total Errors Positives Detected Detected Detected Detected Detected
Depth Investment per Person SNPs Accuracy SNPs Accuracy SNPs Accuracy SNPs Accuracy SNPs Accuracy SNPs Accuracy

416 167 99.47% 452 99.64% 419 99.44% 581 99.11% 952 98.32% 2635 95.80%
302 200 99.40% 527 99.60% 475 99.46% 653 99.21% 1017 98.75% 2657 97.88%

349 138 98.92% 289 99.23% 423 99.31% 665 99.19% 982 98.76% 2618 97.07%
255 155 98.82% 342 99.22% 486 99.34% 745 99.27% 1061 99.09% 2660 98.68%

>960x

1,000,000 
bases 11,476 Polymorphic Sites, Segregated According to Sample Frequency

2x 800x

with MAF >5%with MAF<.5% with MAF .5-1% with MAF 1-2% with MAF 2-5%

Imputation of 500 individuals based on the Smaller Sequencing Hapmap: 60 individuals sequenced at > 16X, 120 perfect reference haplotypes

Imputation of 500 individuals based on the Larger Sequencing Hapmap: 400 individuals sequenced at 2X, 800 imperfect reference haplotypes

>16x

2965 sites

988,524 Monomorphic 
Sites

5125 sites 1156 sites 1021 sites 1209 sites

 
Simulated “re-sequencing HapMap” reference panels mimic HapMap YRI-like LD pattern. Simulated reads were 32 base pair in 

length. Sequencing error rate was set at 0.1% for a random 90% of the region while the remaining 10% was considered 
non-sequencable. The smaller “re-sequencing HapMap” reference panel consists of 120 true/simulated haplotypes of 60 individuals 
and the larger one consists of imputed haplotypes from analyzing 400 individuals sequenced at 2x coverage. To approximate the true 
haplotypes of the 60 individuals in the smaller reference panel, a coverage of 16x or more is required (probably also with the aid of 
information from family members, for instance, using a trio design as for the current HapMap CEU and YRI). Thus, the larger panel 
represents a total sequencing investment of 800x and the smaller over 960x.  

A study sample of 500 individuals was simulated from the same underlying population of the “re-sequencing HapMap”. A set of 
100, or 200 tagSNPs were selected randomly from the pool of SNPs found in both the larger and smaller “re-sequencing HapMap” 
and genotyped in the study sample. Genotypes of all “re-sequencing HapMap” SNPs were then imputed by jointly modeling tagSNP 
genotypes of the study sample individuals and haplotypes in the “re-sequencing HapMap” reference panel.  

SNPs in this table are classified according to minor allele frequency (calculated from the sample of 500 individuals). For each 
minor allele frequency group, numbers of detected SNPs and imputation accuracies are tabulated. In addition, average imputation 
errors per individual across the entire 1Mb region, the number of false polymorphisms and their corresponding imputation accuracies 
are also included.  
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Table 4.8 Imputation Quality using a Smaller or Larger “Re-sequencing HapMap”: r2. 
 

Reference Reference
Sample Sample

Sequencing Total Detected Detected Detected Detected Detected
Depth Investment SNPs r2 SNPs r2 SNPs r2 SNPs r2 SNPs r2

452 46.02% 419 45.86% 581 47.23% 952 51.15% 2635 66.89%
527 46.73% 475 51.43% 653 55.46% 1017 63.18% 2657 81.33%

289 33.55% 423 48.18% 665 55.76% 982 63.18% 2618 76.17%
342 37.81% 486 53.27% 745 62.24% 1061 73.13% 2660 87.78%

2x 800x

with MAF >5%with MAF<.5% with MAF .5-1% with MAF 1-2% with MAF 2-5%

Imputation of 500 individuals based on 120 perfect reference haplotypes: 60 individuals sequenced at > 16x

11,476 Polymorphic Sites, Segregated According to Sample Frequency

Imputation of 500 individuals based on 800 imperfect reference haplotypes: 400 individuals sequenced at 2x

>16x

2965 sites5125 sites 1156 sites 1021 sites 1209 sites

>960x

 
 

Simulated “re-sequencing HapMap” reference panels mimic HapMap YRI-like LD pattern. Simulated reads were 32 base pair in 
length. Sequencing error rate was set at 0.1% for a random 90% of the region while the remaining 10% was considered 
non-sequencable. The smaller “re-sequencing HapMap” reference panel consists of 120 true/simulated haplotypes of 60 individuals 
and the larger one consists of imputed haplotypes from analyzing 400 individuals sequenced at 2x coverage. To approximate the true 
haplotypes of the 60 individuals in the smaller reference panel, a coverage of 16x or more is required (probably also with the aid of 
information from family members, for instance, using a trio design as for the current HapMap CEU and YRI). Thus, the larger panel 
represents a total sequencing investment of 800x and the smaller over 960x.  
 A study sample of 500 individuals was simulated from the same underlying population of the “re-sequencing HapMap”. A set of 
100, or 200 tagSNPs were selected randomly from the pool of SNPs found in both the larger and smaller “re-sequencing HapMap” 
and genotyped in the study sample. Genotypes of all “re-sequencing HapMap” SNPs were then imputed by jointly modeling tagSNP 
genotypes of the study sample individuals and haplotypes in the “re-sequencing HapMap” reference panel.  

SNPs in this table are classified according to minor allele frequency (calculated from the sample of 500 individuals). For each 
minor allele frequency group, numbers of detected SNPs and squared correlations between imputed and true allele counts are 
tabulated.  
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Chapter 5 

Conclusions and Discussions 

 

Identifying and characterizing the genetic variants that impact human traits, ranging from 

disease susceptibility to variability in personality measures, is one of the central 

objectives of human genetics. Ultimately, this aim will be achieved by examining the 

relationship between interesting traits and the whole-genome sequences of many 

individuals. Although whole-genome resequencing of thousands of individuals is not yet 

feasible, geneticists have long recognized that good progress can be made by measuring 

only a relatively modest number of genetic variants in each individual. This type of 

“incomplete” information is useful because data about any set of genetic variants in a 

group of individuals provides useful information about many other unobserved genetic 

variants in the same individuals. In this dissertation, I have proposed a series of hidden 

Markov models to maximally utilize “incomplete” genetic information garnered by 

individual studies as well as by large public efforts such as the International HapMap 

project and the 1000 Genomes Project.  

 

5.1 Review of Previous Chapters 

 

In Chapter 2, I introduce the basic form of the underlying hidden Markov models in the 
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context of phase inference, along with a number of techniques to gain computational 

efficiency. Besides providing the theoretical underpinnings, I give intuition why the 

proposed method works. I proceed to evaluate its performance both in simulated settings 

and in real studies. By comparing with a number of standard haplotyping methods, I 

demonstrate that the proposed method is at least comparable in the quality of 

reconstructed haplotypes, and is more computationally efficient, if not both. In addition, I 

introduce the concept of utilizing data from public databases for a more efficient joint 

analysis.  

 

Following the introduction of the concept of a joint analysis with publicly available data, 

Chapter 3 focuses on the inference and assessment of untyped variants that are not 

directly examined in individual genetic studies of certain trait(s) of interest but for which 

information is available in public databases. I present an extended hidden Markov model 

generating most likely estimates of genotypes at the untyped loci to more efficiently 

achieve the goal of genotype imputation (as opposed to phase inference in Chapter 2). 

My model conveniently generates several estimates for each missing genotype (including 

most likely genotype guess, the expected count of a reference allele and the posterior 

probabilities of each potential genotype guess) so that imputation uncertainty can be 

taken into account in subsequent analysis. Moreover, two measures at the SNP level 

(across individuals) are proposed as quality filters.  

 

I showcase the merits of the proposed genotype imputation method in a broad range of 

simulated and real settings, involving up to millions of genetic markers in tens of 
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thousands of individuals. In brief, my model generates highly accurate estimates of the 

missing genotypes and provides quality measures than can well discriminate 

well-imputed markers from badly-imputed ones. The statement holds true for a random 

set of markers across the genome, and perhaps more importantly, for subsets of markers 

that show strong association with trait(s) of interest.  

 

Chapter 3 examines the applicability of my method to non-Caucasian populations, the 

choice of appropriate public reference panels particularly for study populations that do 

not have an obvious matching population from public databases, the extent of 

information gain when started with different sets of directly assayed genetic markers 

across different populations, the impact of larger reference databases, and the boost in 

statistical power achieved by imputation. Simulated datasets I generated for power 

evaluation have been shared with a large group of collaborators as a benchmark to 

compare different imputation methods on untyped markers. 

 

In Chapter 4, I further extend my model to accommodate massive parallel sequence data. 

I preview the role of the imputation-based approach in the era of sequencing-based 

studies. Although sequencing costs have dropped drastically, whole-genome deep 

sequencing of a large number of individuals is still not practical. I therefore propose 

low-pass designs where a relatively large number of individuals are sequenced at low 

depth and information is combined across individuals using the proposed 

imputation-based model. I demonstrate the merits of such designs through extensive 

simulation studies in terms of polymorphism discovery and genotype calling among the 
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sequenced individuals, as well as the utility of the reconstructed chromosomes as 

reference data for individual genotyping-based studies. Preliminary analysis on real data 

from the 1000 Genomes Project generates results consistent with expectations based on 

simulations. The proposed method is influencing the design of several large-scale genetic 

studies by enabling an alternative that results in a much larger effective sample size. The 

increase in sample size is critical for mapping genes influencing complex traits. 

 

5.2 Remarks on Subsequent Analysis 

 

Genotype imputation has been adopted by a larger and larger number of GWAS and has 

become a routine for meta-analysis. The imputation-based gene-mapping is a two-step 

process. First, genotypes at untyped markers are imputed. Then imputed genotypes are 

tested for association with phenotypes. This dissertation has so far focused on the first 

step.  

 

At the end of the first step, my software generates at each marker locus three sets of 

summary statistics that can be potentially used for subsequent association analysis: (1) an 

imputed “best-guess” genotype for each individual, which corresponds to the marginal 

mode of the posterior distribution of the underlying genotype integrated over all possible 

haplotype configurations; (2) an expected allelic count, or dosage for each individual; and 

(3) the marginal posterior probabilities of the three potential underlying genotypes. (3) 

contains the most information while (1) the least. For example, for a marker with two 

alleles A and B, if the posterior probabilities for A/A, A/B, and B/B are 0.9, 0.1, and 0 
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respectively, the best-guess genotype would be A/A and the dosage for allele A would be 

0.9*2 + 0.1 = 1.9.  

 

With the three summary statistics, one can use the following three strategies for 

subsequent analysis: (1) least-squares regression on the “best-guess” imputed genotype; 

(2) regression on the expected genotype score or “dosage”; or (3) mixture regression 

models that more fully incorporate posterior probabilities of genotypes at untyped SNPs 

 

Using (1) for subsequent analysis ignores the uncertainty in the imputed genotypes. 

When imputation is accurate, the correspondence between the true and imputed 

genotypes is strong and analyzing the best-guess genotypes might result in little bias and 

power loss compared with an analysis of the true genotypes. However, if imputation 

accuracy is low, there could be substantial bias and power loss. I therefore recommend 

NEVER using the best-guess genotypes for subsequent gene-mapping analysis.  

 

On the other extreme, one can use mixture regression models to take full advantage of the 

individual posterior probabilities. This approach should be superior when imputation 

uncertainty is not reflected by allelic dosages. For example, this may occur when the 

posterior probabilities are high for the two homozygotes, and the allelic dosage would 

indicate a heterozygous underlying genotype. 

 

We have used simulations to assess the relative performance of three approaches across a 

range of sample sizes, minor allele frequencies, and imputation accuracies to compare the 
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performance of the different methods under multiple genetic models (Zheng et al. 

unpublished data). The mixture models performed the best in the setting of a small 

sample size (below 200) and low imputation accuracies (Rsq below 0.3). 

 

For most realistic settings of GWAS, such as modest genetic effects, large sample sizes, 

and high average imputation accuracies, dosage-based analysis (i.e., regressing the 

phenotype of interest on the dosages) provides adequate performance. In fact, for these 

settings, small gains from using the full mixture models are rendered negligible by the 

increased model complexity and associated cost of estimating additional parameters.  

 

5.3 Limitations and Future Directions 

 

As one of the first attempts to deal with data of this scale, my method can be further 

improved. First, in my hidden Markov models, the two sets of parameters are not 

sampled according to conditional probabilities but rather are estimated by counting the 

proportion of relevant event (crossover or mismatch event). I have explored the 

performance of sampling the parameters from a Beta distribution with parameters 

(#crossovers/#mismatches + 2, #non-crossovers/#matches + 2), derived from a 

non-informative conjugate prior of Beta (1, 1). In the FUSION chromosome 14 data, the 

performance was slightly worse. Specifically the average allelic discordance and average 

squared correlation between imputed genotype scores and true genotypes are 1.41% and 

0.916, instead of 1.37% and 0.919 when using the original model. The slightly worse 

performance is likely due to more noise introduced. More work is warranted to explore 
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how such fully Bayesian approaches influence imputation quality, and more importantly 

how they influence subsequent analysis. By doing the proper drawing under a Gibbs’ 

sampling framework, a proper multiple imputation procedure can be adopted for 

subsequent marker-trait analysis.  

 

Secondly, I have not assessed the theoretical properties of the proposed heterogeneous 

hidden Markov models. Although having good performances in real and simulated 

datasets, such models need to be rigorously examined in terms of desirable statistical 

prosperities. Specifically, I would like to evaluate the following two aspects: (1) 

conditions that lead to model convergence; and (2) whether the estimated paratmers are 

consistent. 

 

In addition, I would like to further explore other measures of imputation quality measures. 

Similar in nature to the r2 measure introduced in Chapter 3, others (Huang et al. 2009; 

Browning and Browning 2009) have proposed alternative predictors of imputation quality. 

Their performance needs to be evaluated, particularly for rare variants.  

 

5.4 Conclusion 

 

In summary, I have developed computationally efficient models for the analysis of 

large-scale genetic association studies. My methods are flexible enough to accommodate 

phased haplotype or genotype data. My approach is one of the first attempts to deal with 

data of this scale in a manner that is statistically and computationally efficient. My 
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models can handle millions of genetic markers measured on tens of thousands of 

individuals. My methods have played a key role in mapping genes associated with the 

risk of complex diseases and genes influencing complex non-disease traits. Table 5.1 

provides a partial list of recent genome-wide association scans that use my imputation 

method (Li et al. 2009). Our software MACH has been downloaded by more than 100 

research groups. My implemented post-imputation analysis software mach2dat and 

mach2qtl (for binary and quantitative traits respectively) have also been widely used. I 

believe the methods will continue to facilitate the identification of genes that contribute 

to the risk of complex diseases, in particular, through the combined analysis of 

large-scale studies that examine different sets of genetic markers, and through maximally 

exploiting information from resequencing-based studies.   
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Table 5.1 Examples of GWAS that Have Used MACH for Genotype Imputation. 
 

First Author Journal Publication 
Date Title 

Aulchenko Nature Genetics 2008/12 Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts 
Barrett Nature Genetics 2008/06 Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease 

Broadbent Hum Mol Genet 2007/11 Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus 
on chromosome 9p 

Chambers Nature Genetics 2008/05 Common genetic variation near MC4R is associated with waist circumference and insulin resistance 

Chen J Clin Invest 2008/07 Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels 
Dehghan The Lancet 2008/10 Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study 
Ferreira Nature Genetics 2008/07 Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder 
Hung Nature 2008/04 A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25 

Kathiresan Nature Genetics 2008/12 Common variants at 30 loci contribute to polygenic dyslipidemia 
Lettre Nature Genetics 2008/04 Identification of ten loci associated with height highlights new biological pathways in human growth 
Loos Nature Genetics 2008/05 Common variants near MC4R are associated with fat mass, weight and risk of obesity 

Rafiq Diabetologia 2008/10 Gene variants influencing measures of inflammation or predisposing to autoimmune and inflammatory diseases are 
not associated with the risk of type 2 diabetes 

Sanders Am J Psychiatry 2008/01 No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications 
for psychiatric genetics 

Sanna Nature Genetics 2008/01 Common variants in the GDF5-UQCC region are associated with variation in human height 
Scott Science 2007/04 A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants 
Scott PNAS 2009/04 Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry 
Willer Nature Genetics 2008/01 Newly identified loci that influence lipid concentrations and risk of coronary artery disease 
Willer Nature Genetics 2008/12 Six new loci associated with body mass index highlight a neuronal influence on body weight regulation 

Zeggini Nature Genetics 2008/03 Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for 
type 2 diabetes 
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