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INTRODUCTION

The vapor pressure of a liquid is one of its most important and useful
thermodynamic properties. It is, therefore, not surprising that the experimental
determination of vapor pressure has received the careful attention of many invest-
igators during the past seventy-five years. The results of their efforts have been
extremely fruitful so that the literature now contains a vast amount of data on the
vapor pressure of many different compounds, Naturally, the precision with which
the data have been taken varies, depending upon the objective of any specific in-
vestigation. The cruder, less expensive, and less time-consuming observations
have given results whose reliability is of the order of a few percent, while the ex-
ceedingly tedious, careful, and rather costly studies have yielded results whose
reliability is of the order of a few hundredths of one percent.

Paralleling the accumulation of experimental vapor-pressure data has
been the development of various algerbraic relations to correlate the data, The
majority of all correlations have as their starting point the well-known Clapeyron

equation,
dP/dT = AH/TaAV (1)

where P is pressure, T is temperature, AH is the change of enthalpy in passing
from the liquid to the gas phase, and AV is the change of volume from the liquid
to the gas. By assuming that the volume of the liquid is negligible, that the gas
behaves ideally, and that the enthalpy change does not vary with temperature or
pressure, integration of Eq. (1) gives the simplest form of vapor-pressure rela-
tion,

InP=A+B/T (2)

At low pressures, where the assumptions are quite good, Eq. (2) does
an excellent job of representing the data. One of the really surprising things about
this equation, however, is that it does a fair job of representing the data all the way
to the critical point where the 1iquid no longer exists. This fact was noted by early

investigators who plotted In P versus 1/T, as suggested by Eq. (2). They found

that within the limit of precision of their observations plots of In P versus 1/T



yielded practically straight lines from the triple point to the critical point, This
can hardly be said to be expected because all three of the assumptions leading to
Eq. (2) become extremely bad as the critical temperature is approached. For
some reason, though, the assumptions evidently fail in a compensating manner,
8o that the linearity of In P and 1/T is approximately preserved all the way to the
critical point.

It was not too long before more refined data became available, and these
indicated that the In P - 1/T plots curve down very slightly at the low temperatures
or high values of 1/T. Accordingly, modifications of Eq. (2) were suggested to
account for this long sweeping downward curvature at low temperatures. The mod-
ifications seemed so successful that it appeared the problem of representing vapor-
pressure data had been solved. Unfortunately, this did not prove to be the case,
for the experimental investigators went back to their laboratories and refined their
measurements even further. When again their results were plotted on the In P-1/T
coordinates, it was found that not only was there a slight downward curvature at the
low temperatures, but there was a slight upward curvature at the highest temperatures.
Only the most precise data reveal this minute '"S'"-shaped behavior or inflection in
the curve, but it is real and has been called attention to more or less independently
by Thodos (12), Waring (13), Plank and Riedel (7), and Martin and Hou (3),

One would guess that it should not have been too difficult to modify Eq. (2)
further to account for the slight ""S" - ing of the most precise vapor-pressure data,
but this did not prove to be the case. Although many persons studied the problem
and many suggestions were made as to the proper form an equation should have in
order to correct for the small deviations from a straight line, none of them has been
successful, as far as can be determined from the published literature which has
reached the authors’' attention. The only practical solution to the problem so far
has been to utilize two or more equations, each representing the data over certain
limited ranges of temperature. In the overlapping ranges of temperature the equa-
tions are adjusted so that they predict the same vapor pressures, and occasionally
even the same derivatives of pressure with respect to temperature. Although this
has proven to be a workable arrangement, it is awkward and not completely satis-
fying. It would be much more desirable to develop a single equation which can
represent the data within its experimental precision over the entire temperature

range, In the course of developing equations to calculate thermodynamic properties
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on an automatic computer, it was decided worthwhile to spend some time studying va-
por-pressure behavior with the objective of trying to develop such a single equation,

At the start of the study there were available a number of summaries of the
more important vapor-pressure equations which had-been presented in the literature,
One of these by Waring (13) is considered exceptionally good because it not only pre-
sents a few of the better equations, but it also points out some of the necessary char-
acteristics which must be possessed by any universal wide-range vapor-pressure
equation. Additionally, the senior author of the present paper had had considerable
experience applying several forms of equations to a number of different compounds.
One of the forms is the rather well-known equation,

InP=A+B/T+ClnT+DT (3)

It was found that no other equation containing only four arbitrary constants would

do as good an overall job of representing the data as this one. It appeared there

was something fundamental in character in this equation besides the fact that its

first two terms are the same as Eq. (2). That this is the case will be shown shortly
in comparing with the new equation which is developed in this paper. Nevertheless,
as good as is Eq. (3), it always had to be applied over limited ranges of temperature.
The usual situation found one set of constants serving to fit the upward curving part
of the ''S" at higher temperatures and another set of constants being used for the
downward curving portion at lower temperatures, A number of different kinds of
terms were added to Eq. (3) to try to get a single equation which would cover the com-
plete temperature range for a given compound. These were usually terms which in-
creased rapidly near the critical temperature in order to account for the upward
curvature. Also the last term of Eq. (3) was modified by raising the power on T

up to as high as 25. None of these techniques would accomplish the desired job,

however, so it was decided to start over with a new analysis of the problem.



DEVELOPMENT OF THE NEW EQUATION

The best approach appeared to be to select a single compound for which
there were available data of the highest known experimental precision and of the
widest possible range in pressure. If an equation could be developed to fit this
compound, such an equation would more than likely be applicable to any compound.
The logical selection for this purpose was ordinary water. The literature showed
that more time and effort had been spent studying the vapor pressure (also the
latent heat and volume changes) of water than of any other compound. There was
available a compilation of all of the experimental data as presented by Osborne,
Stimson, and Ginnings (6) which was complete and contained all of the latest in-
formation. Consequently, the following analysis was based on their numbers.

Because of the rather complicated function that vapor pressure is of tem-
perature, it was decided to differentiate the data several times until a simpla func-
tion wouid result, with the hope that latter function would be amenable to algebraic
treatment, The first graph constructed from the Osborne, Stimson, and Ginnings
tables was the conventional In P versus 1/T, as shown in Fig. (1). The "S" effect
has been slightly exaggerated on this plot to emphasize its existence, as it is not
readily obvious on a graph of this small size. On the original large-scale plot there
was not the slightest question about this characteristic of the curve,

The second step was to differentiate the curve of Fig. (1) to obtain the
derivative, d(ln P)/d(1/T), as a function of T. Since direct graphical differentia-
tion is dependent upon the operator and the particular technique employed, numer-
ical differentiation of the tabulated data was chosen as a better alternative. Also
the tabulations of Osborne et al were at convenient 5° intervals of temperature all
the way from the triple point to the critical point, which made numerical differentia-
tion simple. The results of this calculation are given in Fig, (2), where it is noted
that the ordinate is the variable M defined by the equation M = -d(In P)/d{(1/T),
which is the negative of the derivative of Fig. (1). Only the smooth curve of the
results is shown, though the original plot showed the derivatives as lines rather
than points, for the 50 interval over which they were obtained.

A third graph was constructed by numerically differentiating the data lead-
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ing to Fig. (2). The result of this operation is shown in Fig. (3) where the derivative,
dM/dT, is plotted versus T. Again only the smooth curve is shown, though the numer-
ical differentiation procedure gave some scatter to the actual line intervals plotted.
A fourth and last graph was obtained by performing one more differentiation. This
was also done by the numerical procedure and the smoothed result is shown in Fig.
(4). Here the scatter of the plotted data was so great that it was apparent nothing
more would be gained by further differentiation. If the shape of this last curve of
dZM/dTZ versus T could be verified, it was felt that a solution to the problem of
developing a vapor-pressure equation might easily be obtained because the curve
is seen to be a practically straight line up to very high temperature where it under-
goes an upward sweep, The algebraic description of such a curve would be fairly
simple since it would be merely a linear function over the greater part of the tem-
perature range and simply contain a term which would add appreciably only at high
temperature.

Because of the scatter of the second derivatives on Fig. (4), a check of the
shape of the curve was undertaken by means of the Clapeyron relation. If Eq. 1
is written in the form,

dP = (AH/AV)AT/T (4)

it is seen that the simple operations of dividing both sides by P and multiplying the
right-hand side by T/T gives

dP/P = (TAH/PAV)(dT/T2)
> -d(ln P)/d(1/T) = TAH/PAV = M (5)
In this form the slope of the curve on ln P - 1/T coordinates is given by undifferen-
tiated data involving the latent heat and volume changes as well as the pressure and
temperature, Since these data were tabulated by Osborne et al, the quantity M was
calculated as TAH/PAV and plotted versus T, The result was identical with Fig. (2),
but the variation in the plotted points was much less because no differentiation of
primary data was required. Following the same procedure as before,~ the TAH/PaAV
data were numerically differentiated with respect to temperature and the results
plotted as dM/dT versus T on Fig. (3). The curve agreed well with that obtained
from only the vapor-pressure data, but again the scatter of points was reduced.
Of course, the agreement between the several curves obtained from the two kinds

of data was expected because of the statement given in the Osborne et al paper that
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the tabulations were internally consistent with the Clapeyron equation.

A second numerical differentiatimn of the TAH/PAV data was made to give
d2M/d T2 which was plotted on Fig. (4). Because of the smaller scatter of the data,
the curve was much better defined than that given by the thrice-differentiated pres-
sure-temperature data. There was no doubt now but what the curve was a straight
line (and almost horizontal) over most of its length, curving upward only at the
highest temperatures,’

To represent alge braically the curve of Fig. (4), it was apparent that the
function would probably contain two parts: first, a linear function, and second, a
term which would be appreciable only at high temperature and would damp out at
low temperatures, Several different forms of the second term were tried, such
as simple powers of T, exponentials, and logarithms of T. These were added to
either a constant or a constant plus another constant times temperature. The final
selection of the whole function which seemed to fit the data the best was

d2M/dT2=a + ¢/(b - T)B (6)

Various values of n were assumed until the desired shape of the curve was obtained.
These included 1/2, 1, 3/2, 2, and 3. The value of 2 was selected as being slightly
better than 3, so that the completely determined function became

d®M/dT2 = a + ¢/(b - T)2 (7)

Now by integration the desired vapor-pressure equation may be obtained in
a straight-forward fashion. Thus,
dM/dT =aT+c/(b-T)+ L} (8)
and
M=aT?/2-cln(b-T)+ )T+, (9)
where I} and I, are constants of integration. From the definition of M, rearrangement

and final integration gives

M = -d(1n P)/d(1/T) = T%d(ln P)/dT

or
d(ln P) = (M/T%dT
or
d(ln P) = [a/2 - (¢/T?In(b - T) + I}/T + I/T2] dT
or

InP=aT/2-(c/b)InT - [c(b-T)/bT] In(b-T)+I}InT - I,/T + 13 (10)
Combining terms and defining new constants results in the final form of the vapor-
pressure equation,

InP=A+B/T+ClInT+DT+[E(b- T)/bT] In(b - T) (11)

-9-
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It is seen immediately that this equation has four terms exactly the same as Eq. (3).
These first four terms arise from the horizontal portion of the curve of Fig. (4), which
is represented by a. The upward curving portion of this curve is represented by
¢/(b - T)2, and this leads to the additional fifth term of Eq. (11).

The constants of Eq. (11) for water were obtained by first determining b
so that the upward sweep on Fig. (4) would be properly represented. The other con-
stants, A B, C D and E, were determined by passing the equation through five
representative vapor-pressure data points, A least squares procedure was also tried
for these five constants, but it was not as successful as that involving the selection
of five points. The constants were also checked against the various derivative curves.
The equation with the constants evaluated is

In P = 78.57024489 - w - 9 965956346 In T

200. 2299050(655. 83 - T) 1n (655.83 - T)
655.83 T

+ 0,.007757635855 T +

(12)

where P is in Kg/cm? and T is in °K which is taken to be (°C + 273.16). The calcula-
tions of these constants and of the vapor pressures from the equation were carried out
on an IBM.-650 machine or a desk calculator using ten significant figures. This is why
the constants are given to ten figures. It is clear that these could be rounded off some-

what to reflect the precision of the data.

-11-



COMPARISON OF THE EQUATION WITH EXPERIMENTAL DATA

Initially the new equation was compared with the tabulated data of Osborne et
al (6), and a smooth deviation curve was obtained. This at first appeared to mean
that Eq. (12) differed from the truth in some systematic manner; however, it was
noted that Osborne did not tabulate actual experimental results. The values given
in the tables were the result of equations which had been formulated to represent
the data over various ranges of temperature. Such a comparison, therefore, was
not a real test of the precision of the new equation, for it simply compared one equa-
tion against another. A true test required making the comparison with the original
results from the laboratory. Consequently, a search was made of all of the published
vapor-pressure measurements of water taken since 1900, and those which were con-
sidered the most reliable were selected for comparison, It was a bit surprising to
find that the accord between some investigations was not quite as good as one would
be led to believe from the smooth tabulations, The accompanying table and Fig. (5)
present the comparisons between the equation and the experimental data, Not all
of the original data of each investigator is reported here, but the choice of the par-
ticular points is believed representative and without prejudice.

In studying the comparisons it is to be noted that the percent deviations are
nowhere very large, since in the worst case there is a difference of only 0. 41 per-
cent. This occurs with the data of Holborn and Henning (2). It is clear, however,
that at certain temperatures their data are in considerable disagreement with those
of Scheel and Heuse (9), Osborne, Stimson, Fiock, and Ginnings (5), Egerton and
Callendar (1) and Smith, Keyes, and Gerry (10), so that the equation appears to be
closer to the truth than their data at these temperatures, The next least satisfactory
comparisons are those with Scheel and Heuse (9) where the greatest deviations are
0.16 and 0. 12 percent. It is interesting here that in the neighborhood of 0°C Scheel
and Heuse have a discrepancy of 0.16 percent in their own results. In their most
refined experiment at 0°C, they obtained a vapor pressure of 4. 576 mm Hg, as a re-
sult of six independent measurements, This deviates from the equation by only
-0. 044 percent. Scheel and Heuse (8) in an earlier experiment, and Thiessen and
Scheel (11) obtained 4. 579 for this pressure, which differs from the equation by
+ 0,022 percent, These extremely small positive and negative deviations indicate
the equation is doing a very satisfactory job right at 0°C, Since the true values of

vapor pressure will not likely differ greatly from the equation over the next 169,

-12-
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it appears that the next 7 points of Scheel and Heuse from 0 to 16°C simply average
around the prediction of the equation and can hardly indicate a trend from the equa-
tion, Between 200 and 70°C the preponderance of the experimental data indicates

a negative deviation and one may conclude the equation may be as much as 0.1 per-
cent off at the worst point. Despite the inconsistencies of a few tenths of a percent
between Scheel and Heuse (9), Holborn and Henning (2), and Moser and Zmaczynski
(4), the fact that the deviations are all in one direction would indicate the equation
probably is predicting just a little bit high., However, because of the differences
between experimental investigators, it would be advantageous to have a new inde-
pendent investigation made of the vapor pressure between 20° and about 70°C. Until
such an investigation is made, one cannot really ascertain the truth in this region.
When this problem was first encountered, it was thought that the volume and latent-
heat data could be used to check the vapor-pressure through the Clapeyron equation.
It was found, though, that there were no good volume data available for this purpose.
In all the existent tabulations the volumes were calculated by using the latent-heat
and vapor-pressure data in the Clapeyron equation, If accurate experimental volume
data ever become available, the vapor pressures in this region can be determined,.

In connection with the problem of the low-pressure data, it is interesting to note
that Osborne, Stimson, and Ginnings (6) in their tables selected the vapor pressure
at 0°C to be 4, 581 mm Hg, which is 0.1 percent higher than the best measurements
of Scheel and Heuse (9). Also, Smith, Keyes, and Gerry developed a vapor-pressure
equation to fit the data over the limited range of 10° to 1500C, At 0°C their equation
predicts the pressure to be 4. 5893 mm Hg which is 0. 29 percent above the average
of the six measurements of Scheel and Heuse (9). They feel that 4. 579, as obtained
by Thiessen and Scheel (11) and the earlier investigation of Scheel and Heuse (8) is
a better value, but they state ''it must correspond either to sub-cooled liquid water
or ice, " because the normal triple point of water is khowntobe 0.01°C. They conclude
with the statement, '""We believe it (the 4. 579) to be probably the vapor pressure of
sub-cooled water at zero degrees."

One can only conclude that in the low temperature range (i. e., below 70°C)
one cannot tell with certainty just what the vapor pressure is within much better than
0. 05 to 0.1 percent.

In the other region from 70 to 374, 15°C the equation fits the data within 0. 05

percent or better, with no particular obvious trends. In fact the equation gives an
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excellent average of the results of Holborn and Henning (2), Moser and Zmaczynski (4),
Osborne, Stimson, Fiock, and Ginnings (5), Smith, Keyes, and Gerry (10), and
Egerton and Callendar (1), By a slight adjustment of the equation constants, it was
found that the deviations from Scheel and Heuse between 20 and 70°C could be reduced
by a factor of a half, but at higher temperatures the data of the other investigators
would not be averaged quite so well. However, the maximum deviation at higher
temperatures from 80 to 374. 11 was reduced to less than 0.1 percent, which is bet-
ter than the equation presented, but the average deviation was increased slightly.

Upon examination of all the data from the triple point to the critical, it
appears that the new equation does a remarkable job of fitting the data almost within
the experimental precision of the measurements of the various investigators, thus
offering substantiation for its validity.

There does not seem to be available any vapor-pressure data for other com-
pounds of sufficient accuracy to test the equation down to a few hundredths of a percent.
Also what would be more helpful would be to have latent heat and volume data as well
as vapor-pressure data. This would permit obtaining more precise values of dZM/dTZ.
Since the development of the equation, the authors have applied it to other compounds,
both polar and non-polar, and it yields scattered deviation curves which indicate it
fits the data within the experimental precision., Interestingly enough, it has been
found in these other applications that the constant b may be taken as about 8°C above
the critical temperature just as in the case of water. It is expected that the appli-
cation to other compounds will be published in the near future,

One other point is to be mentioned concerning the selection of the algebraic
form of Eq. (6). The first term was taken to be a constant even though the graph of
d2M/dT2 showed a definite positive slope. The reason for this selection was that
the slope is very small and the second term, c/(b - T)3, makes a contribution equiva-
lent to a term such as mT which would account for the slope. Some attention, how-
ever, was given to making the first term, a + mT. It was then found that the expo-
nent n might better be 3 than 2. This new combination of a + mT + c¢/(b - T)3 was
integrated three times to give an equation of the form,

InP=A+B/T+ClnT+DT+ ET2+ Fln(b- T) (13)
In some ways this is a simpler expression than Eq. (11), since the last term does
not have the coefficient of the logarithm occurring as a temperature function. Pre-
liminary tests with this equation indicated it could do a very satisfactory job of rep-
resenting the data, Unfortunately, though, time did not permit a complete checking

-15-



of this, so that the equation can only be offered here as a good possibility. It is hoped

that a thorough comparison of Eq. (11) and (13) can be made during the coming year.
CONCLUSIONS

1. A differential analysis of the precise vapor-pressure latent heat, and vol-
ume data for water shows rather conclusively that d2M/dT? is a straight line with a very
small positive slope over a wide temperature range, with an upward sweep as the crit-
ical temperature is approached.

2. The representation of the d2M/dT2 curve with the expression a + ¢/ (b- T)%
is excellent for n = 2. It also appears that the curve may be well represented by
a+ mT+ c¢/(b - T)3, though this requires further checking.

3. From the algebraic expression for d2M/dT2 and the fact that M= -d(ln P)/
d(1/T), three successive integrations give an equation for vapor pressure as a function
of temperature,

4. When applied to the experimental data of water, covering a 36, 000-fold
range in vapor pressure, the new Equation (12) differs only a few hundredths of a per-
cent fuomn the most reliable data and appears to be within about 0. 1 percent of data
whose precision is only of that order of magnitude. Over most of the temperature
range the equation averages the results of several investigators.

5. In the case of the specific application to water, the deviations between
different investigators indicate that the low-temperature range might well be the sub-
ject of further experimental study. From 70°0C to the critical point, 374.15°C, the
experimental data are in excellent accord. There is, however, appreciable variation
between the various workers in the range from 0 to 70°C,

6. Applications to other compounds, polar and non-polar, indicate the new
equation fits their vapor-pressure data equally well. Since the equation is capable
of fitting data to within a few hundredths of a percent, it is clear that only the most
precise data can be used to test the true characteristics of the equation. In these
other applications the constant b is about 8°C above the critical temperature, as it

is for water,

=16 -
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TABLE I
COMPARISON OF VAPOR-PRESSURE EQUATION FOR

WATER WITH EXPERIMENTAL DATA

8851.132005

Equation: In P = 78. 57024489 e 9.965956346 In T
+0, 007757635855 T 4 200 229905(655 83 - T)In(655.83-T) ) .o p - Kg/cm?
655 83 T
and T = °K =
OC + 273.16

(1 atm = 1. 033228 Kg/cm? = 760 mm Hg = 29. 9212 in Hg =
14. 6960 psia = 1 013250 bar)

Temperature Pressure Kg cm#® Percent Dev Investigator
°C Experimental Calculated (Pexp Pcale)/Pexp
0. 000 0. 0062252 0 0062238 +0.022 T.&S (11)and S. &H, (190%8
0.000 0. 0062211 0 0062238 -0 044 S &H. (1910)(9)
1 520 0.0069553 0 0069474 +0 112 "
3,766 0.0081625 0.0081530 +0.117 "
4 574 0 0086356 0.0086298 +0 067 "
5.612 0.0092896  0.0092784 +0.119 "
6.988 0 0102113 0.0102044 +0 067 "
9.578 0.0121676 0.0121705 -0 024 R
15.479 0. 0179347 0. 0179400 -0 028 "
21.000 0 0253522 0 0253805 0 112 "
34.478 0.055720 0. 055786 -0 120 "
41.710 0.082339 0.082471 -0. 161 "
49 293 0 121480 0 121616 ~0 111 "
50. 026 0. 126036 0.126151 -0. 091 "
50 692 0.129874 0 130354 -0.369 H. &H. (2)
51 357 0 134143 0. 134692 -0 410 "
62. 043 0. 222647 0. 223361 -0 321 "
69.897 0. 316304 0.316593 -0 091 "
73 486 0. 368865 0 369073 -0.056 M &Z (4)
77.604 0.437901 0 438160 -0. 059 "
79 574 0.474605 0 474869 ~-0. 056 H. &H (2)
79. 869 0.479975 0. 480582 -0.127 "
83,656 0.55857 0. 55876 -0.034 M. &Z. (4)
89. 872 0 71140 0 71153 -0.019 "
89.977 0.71408 0.71437 -0. 041 H &H. (2)
97 815 0.95523 0 95514 +0. 009 M &2z (4)
104,123 1.19485 1. 19465 +0 017 "
i10. 000 1.46129 1.46050 +0. 054 0.,S ,F. & G. (5)
110.000 1.46079 1.46050 +0 020 H. &H. (2)
110. 347 1.47792 1.47758 +0.023 M. &Z. (4)
114 598 1.70133 1.70090 +0.025 "
120. 000 2.02492 2 02381 +0. 055 0., ,F, & G. (5
120. 000 2, 02417 2.02381 +0.018 H &H (2)
120. 374 2.04839 2 04793 +0.022 M. &Z (4)
128. 641 2 64409 2. 64330 +0. 030 "
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TABLE I (cont'd)

Temperature Pressure, Kg/cm® Percent Dev, Investigator
oC Experimental Calculated (Pexp- Pcalc)/Pexp

130. C00 2, 75438 2,75348 +0.034 O.,S8.,F. & G. (5

130. 000 2,75382 2. 75348 +0.013 H, &H. (2)

140. 000 3. 68459 3. 68359 +0. 027 O.,8.,F. & G. (5)

140. 000. 3.68359 3.68359 0.000 H. &H. (2)

150, 000 4. 85297 4. 85224 +0. 015 O.,S.,F., & G. (5)

150, 000 4,.85168 4. 85224 -0.011 H. &H. (2)

150.-000 4, 85276 4. 85224 +0. 011 S.,K. & G. (10)

160. 000 6. 3025 6. 3009 +0. 025 0,S.,F. & G (5)

160. 000 6.2986 6. 3009 -0. 037 H. &H. (2)

160. 000 6. 3060 6. 3009 +0. 081 S.K.,& G. (10)

180. 000 10. 2246 10. 2237 +0. 009 O.,S.,F. & G (5)

180. 000 10,2154 10. 2237 -0.082 H. &.H. (2)

180. 000 10. 2247 10. 2237 +0.010 S., K. & G. (10)

180.000 10,2378 10. 2237 +0.138 E. & C. (1)

200. 000 15. 8572 15. 8568 +0.002 O,S.,F. & G. (5

200. 000 15. 8342 15,8568 -0.142 H.&H. (2)

200. 000 15. 8621 15. 8568 +0.033 S5.,K. & G. (10)

200, 000 15, 8652 15. 8568 +0.053 E. & C. (1)

220, 000 23.6572 23.6590 -0. 007 0.,5.,F. & G, (5)

220. 000 23,6578 23,6590 -0.005 S., K. & G (10)

220.000 23,6640 23, 6590 +0. 021 E. & C. (1)

240, 000 34.1395 34, 1411 -0.005 O.,S.,F. & G. (5

240, 000 34.1420 34, 1411 +0.003 S., K. & G. (10)

240,000 34, 1461 34, 1411 +0. 015 E, & C. (1)

260. 000 47,8680 47. 8668 +0. 003 Q.,S.,F. & G. (5)

260. 000 47,8612 47.8668 -0.012 S.,K. & G. (10)

260.000 47, 8643 47,8668 -0, 005 E.&C, (1)

280, 000 65. 461 65. 458 +0. 004 0.,8.,F. & G. (5)

280. 000 65.448 65. 458 -0.016 S., K. &G. (10)

280.000 65.471 65.458 +0. 020 E. & C. (1)

300. 000 87.615 87.611 +0. 004 O.,S.,F. & G. (5)

300. 000 87.593 87.611 -0.020 S.,K. & G. (10)

300,000 87.599 87.611 -0.014 E.&C. (1)

320. 000 115.120 115,121 -0.001 0.,S.,F. & G.(5)

320. 000 115.104 115,121 -0.015 S.,K. & G. (10)

320.000 115.139 115,121 +0. 016 E.&C. (1)

340. 000 148, 957 148. 956 +0. 001 O.,S.,F. & G. (5

340. 000 148.929 148. 956 -0.018 S.,K. & G. (10)

340. 000 148. 942 148. 956 -0.009 E.&C. (1)

360, 000 190, 421 190. 426 -0.003 O.,S.,F. & G. (5)

360. 000 190. 383 190. 426 -0.023 S., K. & G. (10)

360.000 190, 423 190. 426 -0.002 E. &.C. (1)

364. 000 199. 804 199. 809 -0.003 0.,S.,F. & G. (5

370. 000 214. 675 214. 687 -0.006 O0.,S.,F. & G. (5)

370.000 214. 5640 214, 687 -0.022 S.,K. & G. (10)

370.000 214,745 214. 687 +0. 028 E. & C. (1)
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TABLE I (cont'd)

Temperature Pressure, Kg/cmé Percent Dev, Investigator
oC Experimental Calculated (Pexp- Pcalc)/Pexp

372. 000 219, 866 219,883 -0.008 0.,5.,F. & G (5)

372.000 219. 957 219. 883 +0.034 E. & C. (1)

374.000 225. 228 225.212 +0. 007 O.,S.,F. & G (5)

374.000 275.293 225.212 +0.036 E, & C. (1)
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