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Figure 4.1: Pax7 is not required for extraocular muscle formation. Sagittal sections 
of wildtype (A, C, E, G, I) and Pax7LacZ/LacZ  (B, D, F, H, J) embryonic extraocular 
muscles. At e12.0, Pax7LacZ/LacZ embryos have normal expression of PITX2 (A, B) , 
MYF5 (C, D), MYOD (E, F, autofluorescent red blood cells shown in green), and 
MYOG (G, H), as compared to their wildtype littermates. By e14.5, these mice also have 
normal differentiation of all seven extraocular muscles as indicated by expression of 
developmental myosin heavy chain (dMHC) (I, J). OS, optic stalk; ON, optic nerve.  
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Figure 4.2: PITX2 is expressed prior to markers of muscle specification. Transverse 
sections of e10.5 (A, D, G, J, M), e11.5 (B, E, H, K, N) and e12.5 (C, F, I, L, O) 
wildtype extraocular muscle primordia. At e10.5, robust PITX2 expression is seen in the 
EOM primordia (A, C, G, J). MYF5 expression is seen only in a small patch of cells at 
e10.5 (M, arrow), while wide expression is seen later (N,O). Expression of the other 
MRFs, MYOD and MYOG does not begin until e11.5 (E, H). PAX7 and PITX1 
expression are first seen at e11.5 (B, K), but PITX1 is only expressed in a small subset of 
cells (K, L). At e12.5, cells with both PITX2 and MYOD or MYOG expression are seen, 
as well as cells that express only one of the proteins (F, I).   
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Figure 4.3: MRF promoters drive expression in mouse EOM primordia and contain 
predicted PITX2 binding sites. The previously described Myod1 258bp core enhancer, 
which is 20 kb upstream of its -2.5 kb promoter drive LacZ expression in the extraocular 
muscle primordia at e11.5 (A, arrow, image from Goldhamer et al., 1995). The Myod1 
enhancer and promoter contain conserved (green tick marks), aligned (conserved in 
location but not sequence, red tick marks) and non-conserved (blue tick marks) predicted 
PITX2 binding sites identified by rVISTA (Loots et al., 2002). The VISTA plots show 
conservation between mouse and human along the length of the promoter. Locations 
amplified in ChIP are shown above the VISTA plot. The Myf5 -5.5 kb promoter drives 
LacZ expression in the extraocular muscle primordia at e10.5 (B, arrow, image from 
Patapoutian et al., 1993) and it contains predicted PITX2 sites identified by rVISTA. The 
Myog -1.5 kb promoter drives expression in the EOM primordia at e11.5 (C, arrow, 
image from Cheng et al., 1995) and contains predicted PITX2 binding sites identified by 
rVISTA.  
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Figure 4.4: PITX2 is expressed in muscle cell lines. Immunocytochemistry shows that 
MYOD (C, D), as well as PITX2 protein (E, F) are expressed in both the C2C12 limb 
muscle precursor cell line and the mEOM extraocular muscle precursor primary cell line. 
Omission of the primary antibody in the staining process results in mild background 
staining in the cytoplasm (A, B). Note that the mEOM cells have smaller nuclei and less 
extensive cytoplasm than the C2C12 cells.  
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Figure 4.5: PITX2 binds specific sites in MRF promoters. Chromatin immuno-
precipitation of sheared chromatin from C2C12 (A, C, E) and mEOM (B, D, F) was 
immunoprecipitated with anti-PITX2 or control (serum, IgG control) antibodies. Regions 
10 kb upstream of each promoter with no identifiable PITX2 binding sites were used as 
negative-controls. Chromatin bound to PITX2 was enriched for sequences containing the 
Myod1 B and C sites over control in both C2C12 and mEOM cells (A, B). The Myod1 
enhancer and site A were not enriched over the controls (A, B). The Myf5 promoter 
showed enrichment of the B and D sites but not the A and C sites in the PITX2 IP over 
the control IPs in both cell lines (a faint band is visible in the Pitx2 IP lane for site D in 
the mEOM cells) (C, D). The B, C and D sites in the Myog promoter all showed PITX2 
enrichment over controls in the C2C12 cell line (E), but only the B site is enriched in the 
mEOM cells (F). When primer dimer is visible, arrows indicate the specific PCR product.    
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Figure 4.6: PITX2 activates the human MYOD1 promoter in muscle and non-muscle 
cell lines. Increasing doses of PITX2-expression vector transfected into CHO and C2C12 
cells results in an increasing response of the human MYOD1 promoter in luciferase 
reporter assays. Mutations in PITX2 shown to be deficient in promoter activation (R53P 
and K50E) activate the MYOD1 promoter significantly less than the equivalent wildtype 
dose. The MYOD1 promoter responds at significantly higher levels over baseline in the 
C2C12 muscle precursor cell line than in the CHO Chinese hamster ovary cell line.  
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Figure 4.7: A minimal fragment of the mouse Myod1 promoter responds to PITX2. 
A diagram shows the mouse Myod1 promoter constructs, with the predicted PITX2 
binding sites (red asterisks) and ChIP sites (green > <) indicated (A). The mouse Myod1 
promoter also responds to wildtype but not mutant forms of PITX2 in C2C12 cells (B). 
Deleting 1.1 kb at the 5’ end of the promoter, which contains ChIP site A, does not 
significantly affect its ability to respond to PITX2, nor does deleting a further 1.5 kb, 
which contains ChIP site B. The minimal -124 bp Myod1 promoter is sufficient to 
respond to PITX2 (B). The sequence of the -124 bp Myod1 promoter fragment, which 
includes 196 bp of the 5’ untranslated region (C). The transcriptional start site is 
indicated by a black arrow. Conserved (green) and non-conserved (blue) predicted PITX2 
binding sites are shown. Underlined regions indicate sequences deleted in the promoter 
deletion (red), 5’ UTR deletion (purple), deletion A (orange), and deletion B (yellow).  
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Figure 4.8: A predicted PITX2 binding site is not required for activation of the 
Myod1 minimal promoter. Mutagenesis of the conserved predicted PITX2 binding site 
found in ChIP site C in the Myod1 minimal promoter does not significantly affect its 
ability to respond to PITX2 in C2C12 cells. The location of the conserved binding site is 
indicated in Figure 4.7C and 4.9A.  
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Figure 4.9: A small region of the Myod1 promoter responds to PITX2. A diagram of 
the Myod1 minimal promoter shows the conserved (green PITX2) and non-conserved 
(blue PITX2) predicted PITX2 binding sites (A). Regions removed by various deletion 
constructs are shown in black, and regions subjected to adenine mutagenesis are shown in 
red (A). The promoter region upstream of the Myod1 start site is required for PITX2 
responsiveness, while the 5’UTR is not in C2C12 cells (B). Two overlapping deletions of 
the Myod1 promoter region both reduce PITX2 responsiveness in C2C12 cells (C). Short 
scanning adenine mutants of the Myod1 minimal promoter were created to identify the 
precise location of the PITX2-responsive region (D). Only mutation H is significantly 
reduced from the wildtype response in C2C12 cells (D). Mutations J, K, and L remain to 
be studied.    
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ChIP Site Forward primer Reverse Primer 
Product 
size 

Myod1 A  TTTGCCTCCCAATGCTAAAC ATCTCGCTGCTCTCAGCTTT  189 
Myod1 B TACCCCCTGGACATTGTCAT GCTATGGGTTTGTGCCATCT 194 
Myod1 C CAAGCTCCGCCCTACTACAC TGAAGAAAGCAGTCGTGTCC 158 
Myod1 enh GGGCATTTATGGGTCTTCCT CCAACTGGCTGTGTTGTGAG 152 
Myod1 -10 kb CACAGTGCCTGCACATAAGG ACCAGAGGGTGTCATTCCTG 157 
Myf5 A CCAATGAAATCCTTGGTGTG GGTCCTGCTATGGTGATGAA 297 
Myf5 B CCTCTCCAGGCTGCTAAATG CTCTGGAAGCTGGGCACAC 164 
Myf5 C CCCTGCGTCTTTAGTTCCAC ACTGGGAAGCTGCTGTCACT 136 
Myf5 D AATGTCTTGCTACCGTGCTG GGTCCCTTTGACGCTAATGA  157 
Myf5 -10 kb TCCTTCTCCCACTCTTTCTGA  GACATGGCAACTGTGGAATG 169 
Myog A AGAAACCCAGAAGGGCAAAT  GAAGGCAATGTAGAGTAGTCTGTGA 198 
Myog B CTCTCTCCTCCATGGTCCAA GGGTCTCATGGGACTGACAT 160 
Myog C TCCCCTTCCCTCTCCTTTT CTTGGACCATGGAGGAGAGA 146 
Myog D AAGGCTTGTTCCTGCCACT  GAGAGGGAAGGGGAATCACA 196 
Myog -10 kb TCCAGACAGGGTCTGAGGAC  AGCCAGGGCTACACAGAGAA 202 
 
Table 1: Chromatin immunoprecipitation primers.  Primers used in the chromatin 
immunoprecipitation experiment in Figure 4.5. The approximate location of the regions 
the primers amplify within the gene promoters are indicated in Figure 4.3.  
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Mm Myod1 
cloning primers Forward Primer Reverse Primer 
-2.7 Mm Myod1  TTCTCGAGATGTCCCTCTTGTCCCTGTG  TTACTAGTTCGTCTGCTGTCTCAAAGGA  
-1.6 Mm Myod1  TTCTCGAGCCATGGTGAATGCTGAATGA TTACTAGTTCGTCTGCTGTCTCAAAGGA  
Sequencing 1 GGAGCCATTAAGAAGAATGGTG   
Sequencing 2 GAGAGGGCTTTCCAGTTTGTAA   

 
Table 2. Cloning primers for the Mus musculus Myod1 promoters. Bold sequences 
indicate XhoI and SpeI sites added for cloning purposes. Two Myod1 sequencing primers 
were also needed to sequence the entire promoter.  
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Myod1 minimal promoter construct Forward & Reverse Primers 
Conserved site mutagenesis  cgggcttttaggctacccggtagacagagcccagggcgcctggcg 
TGGATAAAT to GGTAGACAG cgccaggcgccctgggctctgtctaccgggtagcctaaaagcccg 
Non-conserved site mutagenesis gaaagttaagacgactctcacggatggtggttatgctggacccaggaactgggccat 
CTTGGGTTGAG to ATGGTGGTTAT atggcccagttcctgggtccagcataaccaccatccgtgagagtcgtcttaactttc 
Promoter deletion GATCCGAGCTCGGTACCAGGATAAATAGCCCAGGGCGC 
deletes 83 bp GCGCCCTGGGCTATTTATCCTGGTACCGAGCTCGGATC  
5' UTR deletion CCCAGGACACGACTGCTTTCGAACTGGGCCATGGAAGACG 
deletes 155 bp CGTCTTCCATGGCCCAGTTCGAAAGCAGTCGTGTCCTGGG  
Deletion A GCGGCCGTTACTAGTGGATCCTTTCCAGCTCCCGG 
deletes 51 bp CCGGGAGCTGGAAAGGATCCACTAGTAACGGCCGC 
Deletion B ACACTCCTATTGGCTTGAGGGCTACCCTGGATAAATAGCCC 
deletes 43 bp GGGCTATTTATCCAGGGTAGCCCTCAAGCCAATAGGAGTGT 
Mutagenesis C tggatccgagctcggtaccaagcttagaaaaaaactactacactcctattggcttgaggcg 
CTCCGCC to AAAAAAA cgcctcaagccaataggagtgtagtagtttttttctaagcttggtaccgagctcggatcca 
Mutagenesis D ctcggtaccaagcttagctccgccaaaaaaaaaacctattggcttgaggcgcccccgc 
CTACTACACT to AAAAAAAAAA gcgggggcgcctcaagccaataggttttttttttggcggagctaagcttggtaccgag  
Mutagenesis E gcttagctccgccctactacactaaaaaaaacttgaggcgcccccgcccccagc 
CCTATTGG to AAAAAAAA gctgggggcgggggcgcctcaagttttttttagtgtagtagggcggagctaagc  
Mutagenesis F ttagctccgccctactacactcctattggaaaaaaaagcccccgcccccagcctc 
CTTGAGGC to AAAAAAAA gaggctgggggcgggggcttttttttccaataggagtgtagtagggcggagctaa 
Mutagenesis G actacactcctattggcttgaggcaaaaaaacccccagcctccctttccagctcc 
GCCCCCG to AAAAAAA ggagctggaaagggaggctgggggtttttttgcctcaagccaataggagtgtagt 
Mutagenesis H cctattggcttgaggcgcccccgaaaaaaaactccctttccagctcccgggctt 
CCCCCAGC to AAAAAAAA aagcccgggagctggaaagggagttttttttcgggggcgcctcaagccaatagg 
Mutagenesis I gaggcgcccccgcccccagcaaaaaaatccagctcccgggcttttag 
CTCCCTT to AAAAAAA ctaaaagcccgggagctggatttttttgctgggggcgggggcgcctc 
Mutagenesis J gaggcgcccccgcccccagcctcccttaaaaaaaaccgggcttttaggctac 
TCCAGCTC to AAAAAAAA gtagcctaaaagcccggttttttttaagggaggctgggggcgggggcgcctc 
Mutagenesis K cgcccccagcctccctttccagctcaaaaaaatttaggctaccctggataaatagcc 
CCGGGCT to AAAAAAA ggctatttatccagggtagcctaaatttttttgagctggaaagggaggctgggggcg 
Mutagenesis L cccagcctccctttccagctcccggaaaaaaaagctaccctggataaatagcccaggg 
GCTTTTAG to AAAAAAAA ccctgggctatttatccagggtagcttttttttccgggagctggaaagggaggctggg  

 
Table 3. Primers for the identification of the PITX2 responsive region in the Myod1 
minimal promoter.  
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Chapter 5: Conclusions 

 
 
 Like most scientific endeavors, the research in this thesis has raised as many 

questions as it has answered. Prior to the initiation of my research, it was known that 

Pitx2 was a critical gene in eye development that was expressed in two embryonic 

lineages, the neural crest and mesoderm (Gage et al., 2005). Pitx2 knockout mice were 

described to have an eye phenotype that included hypercellular corneas, optic nerve 

dysplasia, and absence of the extraocular muscles (Gage et al., 1999; Kitamura et al., 

1999; Lu et al., 1999). Pitx2 was shown to be required in a dose-dependent manner for 

regulating extraocular muscle size and differentiation as well as the expression levels of 

muscle-related genes at e12.5, including the muscle regulatory factors (Diehl et al., 

2006). The creation of lineage-specific knockouts of Pitx2, as described in this thesis, 

enabled the assignment of many aspects of the Pitx2null/null eye phenotype to a requirement 

for gene function in either the neural crest or mesoderm. It has also provided new insights 

into the underlying mechanisms of Pitx2 functions, as well as the discovery of new 

functions in eye development.  

 

 The neural crest-specific knockout of Pitx2 enabled the identification of new cell-

autonomous and non-cell autonomous functions of Pitx2. We identified cell autonomous 

roles for Pitx2 in sclera and ocular blood vessel formation. These defects are present in 

the global Pitx2 knockout mice but were not previously recognized. The sclera is critical 

for eye shape and thus visual acuity, but scleral development is poorly understood 

(Dakubo et al., 2008; Sundin et al., 2005). The identification of Pitx2 as a required 

developmental transcription factor is a critical finding for improving our understanding of 

the development of this important tissue. It remains to be determined what function Pitx2 

plays in scleral development; it could be required for cell proliferation, cell survival 
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and/or cell fate specification. Analysis of cell death and proliferation in the Pitx2 mutant 

sclera can easily be achieved by staining for markers such as Ki67 and TUNEL, as well 

as a careful analysis of the expression of Pitx2 mRNA. If the defect is in scleral cell fate 

specification, it will be important to determine if the function of Pitx2 is to activate the 

expression of other transcription factors or if it is involved in directly regulating the 

deposition of extracellular matrix proteins that form the membranous sclera (Zhou et al., 

2006).  Recent work by others showing that Pitx2 is indirectly downstream of Indian 

hedgehog signaling from the choroid vasculature may also help lead to new insights 

(Dakubo et al., 2008).  

 

 The cell-autonomous role of Pitx2 in ocular blood vessel development seems to 

be confined to the neural crest, because the mesoderm-specific Pitx2 knockout mice have 

apparently normal vasculature. Neural crest-derived pericytes have been shown to play 

critical roles in the formation of the ocular blood vessels and Pitx2 may be important for 

enabling these cells to enhance proliferation of the vascular endothelial cells, but 

apparently these cells do not require Pitx2 to respond to these signals (Klinghoffer et al., 

2001; Uemura et al., 2002). The role of Pitx2 in pericyte function remains unknown, but 

it may include enabling the cells to receive angiogenic signals or to signal the endothelial 

cells through the release of factors like VEGF (Vidro et al., 2008).  

 

 The neural crest-specific knockout of Pitx2 also provided further insight into the 

non-cell autonomous functions of Pitx2. We found that the “dysmorphic optic nerves” 

examined only at relatively early timepoints (e12.5) in the global Pitx2 knockout mice, 

were actually optic nerves that failed to extend, causing the optic cups to be pulled to the 

center of the head, where they are directly attached to the hypothalamus (Gage et al., 

1999; Kitamura et al., 1999). This results in a complete disruption of cornea development 

because the optic cup is separated from the surface ectoderm, a phenotype which is quite 

distinct from the “hypercellular corneas” that were originally reported (Gage et al., 1999; 

Kitamura et al., 1999; Lu et al., 1999). The Pax2/Pax6 boundary between the optic nerve 

and RPE was also disrupted in these mice, which we hypothesized was due to the 
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displacement of the eyes closer to the source of Pax2-activating Sonic hedgehog 

(Macdonald et al., 1995).  

 

 Our laboratory has recently examined neural crest-specific β-catenin knockout 

mice, which help shed some light on the non-cell autonomous neural crest-specific 

functions of Pitx2 (Brault et al., 2001). These mice have normal activation of Pitx2 in the 

neural crest at e10.5 (Figure 5.1A, B), but they lose almost all neural crest expression of 

Pitx2 between e11.5 and e12.5 (Figure 5.1C, D). These mice do not have displacement of 

the optic cup, but do have severe optic nerve defects (Figure 5.1F, G) and disruption of 

the RPE/optic nerve boundary (Figure 5.1E) similar to the Pitx2-NCKO eyes. While we 

cannot rule out the fact that these defects are caused by other disrupted functions of β-

catenin in the neural crest, the similarities to the Pitx2-NCKO phenotype indicate that 

they are primarily caused by the loss of Pitx2 expression. These findings have caused us 

to modify our hypotheses about Pitx2 function in the neural crest.  

 

 First, this indicates that while Pitx2 expression in the neural crest is required for 

signaling to the optic nerve, it has additional functions in anchoring the optic cup 

adjacent to the surface ectoderm between e9.5 and e11.5. The mechanism may be that 

Pitx2 expression in the mesenchyme activates the expression of cell adhesion molecules 

that adhere to the lens and RPE to prevent the movement of the optic cup. Several 

important cell adhesion molecules are downregulated in Pitx2null/null eyes and we are 

currently examining them to determine if they mediate this process and are direct targets 

of Pitx2. The nature of the signaling from the mesenchyme to the optic nerve that is 

dependent on Pitx2 also remains to be determined. Bmp3 has been suggested as a 

candidate because it is expressed in the mesenchyme surrounding the developing optic 

stalk and BMP receptors are found in the developing chick optic stalk (Belecky-Adams 

and Adler, 2001; Dudley and Robertson, 1997). Bmp3 mutant mice have no reported eye 

phenotype, but other BMPs are expressed in the ocular mesenchyme so they could be 

redundant (Belecky-Adams and Adler, 2001; Daluiski et al., 2001).  Zebrafish Fgf3/8 

morphants have a fused optic stalks, which bears some resemblance to the Pitx2 NCKO 

centrally placed eyes (Walshe and Mason, 2003). These genes should be investigated as 
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possible Pitx2 targets.  Besides a candidate gene approach, qRT-PCR profiling of 

signaling molecule expression could be done on microdissected eye mesenchyme to 

identify the signaling molecules expressed there.  

 

 Second, this indicates that disruption of the Pax2/Pax6-dependant RPE/optic 

nerve boundary may not secondary to the displacement of the eyes, but in fact a primary 

defect. It is easy to imagine that genes activated by a distant Sonic hedgehog signal might 

require refinement of their expression domains on a local level. It appears that Pitx2 

expression in the adjacent mesenchyme may be necessary to refine the expression domain 

of Pax2 to prevent it from being inappropriately expressed in the posterior RPE. This 

could be mediated by an extracellular modifier of hedgehog signaling, such as Gas1, 

which is downregulated in Pitx2null/null eye primordia based on microarray analysis (Philip 

Gage, personal communication)(Allen et al., 2007; Martinelli and Fan, 2007). Gas1 is 

expressed in the periocular mesenchyme as well as the RPE, and Gas1 mutant mice do 

indeed have RPE specification defects, but their ventral RPE is converted to neural retina 

(Lee et al., 2001). It could be that Gas1 expression in the mesenchyme is required to 

refine the RPE/optic nerve boundary, but Gas1 expression in the RPE itself is required to 

maintain the RPE fate. This hypothesis requires much further investigation. Pitx2 mutant 

eyes should be examined for the expression of hedgehog target genes such as Patched 

and Gli1 in the RPE and optic nerve to determine if hedgehog signaling is actually 

disrupted. It may be that other mesenchyme-derived signals are required to repress Pax2 

expression in the RPE. Next, it remains to be proven that Gas1 is actually a direct target 

in the mesenchyme. Finally, a neural crest-specific knockout of Gas1 would be required 

to separate the neural crest and RPE functions of Gas1.  

 

 While the neural crest knockout of Pitx2 uncovered many functions of this 

important gene, it did not enable us to determine the role of Pitx2 in cornea development. 

Because the optic cup moves through the periocular mesenchyme as it is shifted away 

from the surface ectoderm, the signals from the lens and optic cup are unable to properly 

specify a population of corneal endothelium and stromal cells (Figure 2.4)(Coulombre 

and Coulombre, 1964; Genis-Galvez, 1966; Matt et al., 2005; Matt et al., 2008; Molotkov 
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et al., 2006). This makes it impossible to determine which aspects of the corneal 

phenotype are primary defects caused by the absence of Pitx2, and which are secondary 

to the displacement of the optic cup. Pitx2 is likely to be required for normal corneal 

development, because human patients with PITX2 mutations have corneal defects (Asai-

Coakwell et al., 2006; Xia et al., 2004). The temporal knockouts of Pitx2 that we have 

described in Chapter 3 may be a way to study Pitx2 function in the cornea without the 

complication of eye displacement. Some mice treated with tamoxifen to induce global 

Pitx2 knockout at e10.5 do not have eye displacement and mice treated even later would 

probably be spared eye displacement. The corneas of these mice can be examined for 

formation of the corneal endothelium, corneal stroma compaction, and expression of 

cytokeratins in the corneal epithelium and keratocan and AP-2β in the corneal stroma 

(Liu et al., 1998; Moser et al., 1997; West-Mays et al., 1999; Zieske, 2004). If the later 

temporal knockouts survive long enough, the role of Pitx2 in the formation of the 

trabecular meshwork and Schlemm’s canal can be examined. The success of these 

experiments will greatly enhance our understanding of the role of Pitx2 in anterior 

segment development.  

  

 The creation of mesoderm specific Pitx2 knockout mice also uncovered new 

functions for this gene. The requirement for Pitx2 in eyelid closure was a new finding. 

The mechanism underlying this defect is unclear. Most genes identified in eyelid closure 

are expressed in the surface ectoderm and involved in formation of the periderm, cell 

migration and the fusion event (reviewed in Martin and Parkhurst, 2004; Xia and Karin, 

2004). Fgf10 is the one of the few genes required for eyelid closure that is expressed in 

the mesenchyme, besides Foxc1 and Foxc2, which were found to have normal expression 

patterns in mutant eyelids. Fgf10 mutant mice have short eyelids and some rudimentary 

periderm formation, similar to the Pitx2-mko mice (Tao et al., 2005).  Fgf10 expression 

should be examined in Pitx2 mutant eyelids and evaluated as a potential target of Pitx2. 

Alternately, Pitx2 could regulate proliferation in the eyelid mesenchyme or other 

signaling molecules that activate gene expression in the surface ectoderm.  
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 The non-cell autonomous requirement of Pitx2 for retinal fissure closure was also 

a newly identified function for Pitx2. Since the initial observation was made, we have 

observed rare retinal colobomas in Pitx2+/null and Pitx2neo/neo embryos, indicating it can 

occur due to reduced Pitx2 levels (data not shown). Human patients with PITX2 

mutations also have coloboma in some cases (Ozeki et al., 1999).  Pitx2 function in either 

the mesoderm adjacent to the outside of the optic fissure or the hyaloid vasculature on the 

inside of the fissure is required for signaling to initiate fissure closure. In either case, the 

process is dependant on Pitx2, which is one of the few mesenchymal genes involved in 

optic fissure closure (Gregory-Evans et al., 2004).  

 

 Although there are cells of mesoderm origin that contribute to the anterior 

segment of the eye, we did not find that Pitx2 function is required in these cells for the 

development of anterior segment structures. These cells are hypothesized to be immune 

surveillance cells, but we were unable to assess their specification and differentiation. 

Little is known about the embryonic development of these immune cells and the Pitx2-

mko mice do not survive past late gestation (Gage et al., 2005). Markers are available to 

label dendritic and Langerhans cells in the adult cornea, so the function of Pitx2 in the 

mesodermal cells of the anterior segment could be better assessed with a late Pitx2 

temporal knockout model (Hamrah et al., 2003a; Hamrah et al., 2003b; Hamrah et al., 

2002).   

 

 The mesoderm-specific knockout of Pitx2 also showed that the requirement for 

Pitx2 in the extraocular muscles was cell-autonomous. We showed that Pitx2 was 

required for extraocular muscle precursor survival in a dose dependant manner, which 

explains the previously described dependence of extraocular muscle number and size on 

Pitx2 dose (Diehl et al., 2006). The requirement for Pitx2 in extraocular muscle survival 

extends beyond a single developmental stage, which suggests that Pitx2 is playing a more 

active role in cell survival than simply permitting precursor cells to continue past a single 

checkpoint. The window in which Pitx2 is required for survival can be determined using 

the Pitx2 temporal knockout mice. It would be interesting if Pitx2 is required for survival 

even after the EOM precursors are specified as muscle that expresses Myf5, MyoD, and 
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Myog, because this would suggest that the requirement for Pitx2 is not a developmental 

check to dispose of unspecified or incorrectly specified cells.  

 

 The mechanism by which Pitx2 prevents EOM precursor apoptosis remains to be 

determined, although we have ruled out a role for p53. This is an important area for 

future studies. It will be important to investigate the role of Pitx2 in proliferation of the 

EOM precursors and how this might relate to the apoptosis phenotype. We were unable 

to find any proliferation changes in Pitx2null/null EOM primordia, and proliferation was 

generally low in the mesoderm at the timepoints we examined, although this may be due 

to the comparison with the highly proliferative optic cup. Expression of CyclinD1 and 

CyclinD2, which are direct Pitx2 targets, remain to be examined (Kioussi et al., 2002). If 

the apoptosis is not due to alterations of the cell cycle, the loss of Pitx2 may result in 

apoptosis through other mechanisms such as activation of caspase-2 and caspase-3, and 

the function of Bax, Bak, and AIF, which are important for interdigital apoptosis in the 

limbs, and activation of caspase-9 and Apaf-1, which are important in the neuronal 

apoptosis in the brain (reviewed in Mirkes, 2008). The expression and activation of these 

factors can be examined in Pitx2null/null EOM primordia at e9.5.   

 

 The early requirement for Pitx2 in extraocular muscle precursor survival has 

made it difficult to address the function of Pitx2 in later extraocular muscle development. 

The potential functions of Pitx2 include specification of the cells as myoblasts by 

activation of the muscle regulatory factors (MRFs), specification of the unique properties 

of extraocular muscle, and/or specification and regulation of satellite cells. We have 

addressed the ability of Pitx2 to directly regulate the MRFs with chromatin 

immunoprecipitation (ChIP) and luciferase reporter assays using cultured cell lines. We 

found that PITX2 binds specific regions in the promoters of each of the MRFs, Myf5, 

Myod1, and Myog, in both limb and extraocular muscle precursor cell lines. We showed 

that PITX2 is able to activate the Myod1 promoter in a dose dependant manner, and it 

does so more robustly in a muscle cell line than an unrelated cell line. The specific 

PITX2-responsive site in the Myod1 promoter remains to be identified, but all typical 

PITX2 binding sites have been ruled out. This indicates that PITX2 binds a non-canonical 
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site or has a co-factor in activating the Myod1 promoter that alters its DNA binding site. 

Identification of the PITX2-responsive site may help identify this co-factor, if it 

resembles the binding site for a known transcriptional co-factor, such as MEF2 (Phan et 

al., 2005; Toro et al., 2004). Otherwise, this co-factor could be identified by using mass-

spectroscopy to characterize co-precipitants of a PITX2 immunoprecipitation of C2C12 

lysate, or by screening a C2C12 cDNA library with a PITX2 yeast two-hybrid assay. 

These experiments could also identify the muscle specific co-factor that elevates the 

PITX2-dependant response of Myod1 in muscle cells. It would also be useful to 

determine the effect of PITX2 on the Myf5 and Myog promoters to verify the ChIP 

findings, determine if they activated or repressed, and if they also use muscle-specific co-

factors for activation.  

 

 Unfortunately, the lineage-specific knockouts of Pitx2 did not provide much 

insight into the interactions between the neural crest and mesoderm lineages in 

extraocular muscle development. We did find that Pitx2 expression in the neural crest is 

not required for the specification and differentiation of extraocular muscles, but the 

displacement of the eyes made it difficult to assess whether all of the muscles were 

present and of normal size. It was also difficult to determine Pitx2 function in the 

formation of tendons from the neural crest. We did not examine the expression of 

Scleraxis, which marks developing tendons in the head, but if expression is altered, it 

would not be possible to determine if it was primary or secondary to the loss of Pitx2 in 

the tendon precursors because the attachment points at the orbit and the sclera are 

disrupted (Grenier et al., 2009; Pryce et al., 2007). The similarity between the fibrous 

connective tissue of the sclera, which requires Pitx2 function, and the tendons suggests 

that Pitx2 expression in the neural crest may be important for tendon formation. The 

mesoderm specific knockout mice did not provide any information on how extraocular 

muscle precursors lacking Pitx2 interact with wildtype neural crest, because the 

precursors die prior to the initiation of these interactions. The Pitx2 temporal knockout 

mice may prove useful for studying the interactions between neural crest and mesoderm 

during extraocular muscle development, if a timepoint can be identified when Pitx2 is not 
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required for EOM precursor survival. Otherwise, it may be necessary to identify and 

inhibit the cause of EOM precursor apoptosis in Pitx2null/null embryos.  

 

 It is also important to determine if Pitx2 is required to specify the unique 

properties of extraocular muscles. The extraocular muscles have fiber types and gene 

expression patterns that are atypical from other skeletal muscles and these unique 

properties must be specified during development, although the timing and mechanisms 

are unknown (reviewed in Porter, 2002; Spencer and Porter, 2006). Because Pitx2 is the 

only transcription factor required for extraocular muscle development identified to date, it 

seems like a promising candidate in some respects (Diehl et al., 2006; Gage et al., 1999; 

Kitamura et al., 1999). It is known to have critical functions in EOM development, and it 

could directly activate the expression of some of the unique proteins that are only 

expressed in the EOMs. However, Pitx2 is also required for the development of the  

muscles of mastication from the first branchial arch. While these muscles share a few 

properties of the EOMs, such as high resistance to fatigue and an increased proportion of 

satellite cells, they are largely different, suggesting that Pitx2 alone does not specify the 

unique properties of EOMs (Noden and Francis-West, 2006). Pitx2 may still be involved 

in the specification of the unique properties of EOMs, which could be assessed in later 

temporal knockouts of Pitx2. It has already been shown that post-natal deletion of Pitx2 

does not result in fiber type changes in the short term, although it does result in decreases 

of some EOM-specific proteins. It may be that Pitx2 is important for specifying the 

unique fiber types at an earlier timepoint in development, or it may be that other factors 

are involved. There may be as yet unidentified extraocular muscle-specific transcription 

factors or microRNAs that specify many of the unique properties. Alternately, it may be 

the expression of transcription factors Pitx2, Tbx1, and Musculin, and absence of Tcf21,  

a combination distinct from expression patterns in both the branchial arches and somitic 

muscles, specifies the unique properties of extraocular muscles (Grenier et al., 2009; 

Kelly et al., 2004; Lu et al., 2002).  

 

 A final aspect of Pitx2 function in extraocular muscle cells that remains unknown 

is its function in satellite cells, the muscle stem cell population. Little is known about the 
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satellite cells in the muscles of the head, except that they exist in a greater proportion per 

fiber than in the somitic muscles (Karpati et al., 1988; Noden and Francis-West, 2006). It 

is unclear whether their specification or function is different than the satellite cells of the 

trunk. An easy first step in this area would be to examine the cranial muscles of Pax7 

mutant mice. Pax7 knockout mice lose almost all of their satellite cells to apoptosis 

during development and the remaining satellite cells express Pax3, at least in the somite 

derived muscles (Relaix et al., 2006). The state of the satellite cell population in any Pax7 

mutant cranial muscles has not been described in the literature (Kuang et al., 2006; 

Oustanina et al., 2004; Relaix et al., 2006; Seale et al., 2000). These muscles would be 

expected to have more severe loss of satellite cells in the absence of compensatory Pax3 

expression, unless other factors participate in satellite cell specification in the head. Pitx2 

could be such a factor in satellite cell specification; it is expressed during cranial muscle 

development like Pax3/Pax7 in the somites, and it is expressed in the satellite cells of 

adult extraocular muscles (Shih et al., 2007b; Zhou et al., 2009). A post-natal knockout of 

Pitx2 in the extraocular muscles was recently described, but the presence and function of 

satellite cells was not examined (Zhou et al., 2009). It will be very important to determine 

if satellite cells can survive without Pitx2 expression, and if they do, Pitx2 mutant 

satellite cells may be extremely useful in determining the in vivo role of Pitx2 in 

activating MRF expression. When a muscle is injured, satellite cells become activated 

from their quiescent state, proliferate, and initiate the expression of Myf5, MyoD, and 

Myogenin in a manner that roughly recapitulates development (Kuang et al., 2006; Relaix 

et al., 2006). If Pitx2null/null EOM-derived satellite cells could be generated with a 

temporal or tissue-specific knockout, they could be activated and assessed for their ability 

to initiate MRF expression. However, it is possible that Pax7 is the primary activator of 

MRF expression in activated satellite cells in the cranial muscles, as it is in the somitic 

muscles. The formation and function of satellite cells in the extraocular muscles and other 

cranial muscles is an area that deserves much future study and the necessary genetic tools 

are readily available. 

 

 The critical functions of Pitx2 in extraocular and branchiomeric muscle 

development raise interesting questions about what functions it might have in somitic 
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muscle development. Pitx2 is expressed at some point in development in virtually all 

muscles, but its expression overlaps with its paralogs Pitx1 in the limb muscles and Pitx3 

in the trunk muscle (L'Honore et al., 2007; Lanctot et al., 1997; Shang et al., 1997; Shih 

et al., 2007b). The expression of the Pitx genes is not seen in the somites until after 

myogenesis has already initiated, so they cannot be required for initial activation of the 

MRFs, although they might be responsible for MRF maintenance (L'Honore et al., 2007; 

Shih et al., 2007b). In the developing somites, Pitx2 expression is downregulated in the 

later stages of myogenesis, while the expression of Pitx3 is simultaneously upregulated. 

In Pitx3 knockout mice, Pitx2 fails to be downregulated, in an apparent compensation for 

the loss of Pitx3 (L'Honore et al., 2007). The Pitx genes have similar homeodomains and 

DNA binding sites and activate some of the same targets in the pituitary (Charles et al., 

2005; Quentien et al., 2002a).  The overlapping expression patterns and compensatory 

ability of the Pitx genes suggest functional redundancy, but complicate the analysis of 

their functions during myogenesis. Double or triple knockouts of the Pitx genes are 

necessary to determine their functions during muscle development, but this has so far 

proved very challenging. Pitx1;Pitx2 double knockout embryos were extremely difficult 

to generate; Pitx1+/-Pitx2+/- mice display severely reduced viability, and only one Pitx1-/-

Pitx2-/-  embryo was ever found (Marcil et al., 2003). Pitx2; Pitx3 double mutant mouse 

embryos have proved similarly difficult to generate, suggesting that the Pitx genes may 

have overlapping functions in early embryo viability (Jacques Drouin, personal 

communication). To overcome these difficulties, UBC-CreERT2+; Pitx2flox/flox; Pitx3flox/flox 

embryos could be generated and treated with Tamoxifen prior to e9.75, when Pitx2 

expression is initiated in the somites. Since, Pitx1 is only expressed in a few limb 

muscles, the functions of the Pitx genes in somitic muscle development could be 

uncovered with these mice (L'Honore et al., 2007; Lanctot et al., 1997; Shang et al., 

1997). Identifying these functions in somitic muscle development could also provide new 

insights into the role of Pitx genes in extraocular and branchiomeric muscle development.  

 

 In conclusion, we have identified new cell autonomous and non-cell autonomous 

functions of Pitx2 in eye development in both the neural crest and mesodermal lineages 

of the periocular mesenchyme. Many of the underlying mechanisms for these functions 
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remain to be identified, but these represent tractable problems. The ongoing requirement 

of Pitx2 for cell survival in the extraocular muscles presents particular challenges for 

identifying its later functions there. While some creative genetic tricks may be able to 

overcome these challenges, the identification of the mechanism by which the absence of 

Pitx2 leads to cell death and a method of inhibiting it would greatly aid the understanding 

of Pitx2 functions in muscle development. The differences in the functions of Pitx2 

between the two lineages further underscores the multifunctional nature of this important 

transcription factor, and may ultimately enable the identification of cell type-specific 

Pitx2 co-factors that modulate its function in the many cell types where it is expressed.  
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Figure 5.1: β-catenin is required for PITX2 expression in the neural crest after 
e10.5. β-catenin neural crest specific knockout control (A, C, F) and mutant (B, D, E, G) 
eyes. At e10.5, PITX2 is expressed in the neural crest in both the control and mutant 
embryos (A, B, arrows) even though the expression of β-catenin is lost. By e12.5, the 
expression of PITX2 in the neural crest surrounding the optic cup is severely reduced in 
the mutant, especially around the optic stalk (C, D). The mutant eyes also display 
expansion of PAX2 expression into the outer layer of the optic cup which forms the RPE, 
shown here in reverse contrast (E, arrow). By e14.5, the mutant optic nerves are severely 
dysmorphic and hyperblastic (F, G, arrows), but the eyes are not internally displaced. β-
catenin expression is not affected in the mutant optic nerves (data not shown).  
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