ENGINEERING RESEARCH INSTITUTE THE UNIVERSITY OF MICHIGAN ANN ARBOR

Semi-Annual Report EFFECT OF GAMMA RADIATION ON VARIOUS PETROCHEMICAL REACTIONS July 1956, to January, 1957

Project Supervisors

Joseph J. Martin Kenneth F. Gordon

Research Assistants

William V. Dicke Richard C. Schwing Wayne D. Kuhn Dwight F. Decker

Project 2420

STANDARD OIL COMPANY (INDIANA)
WHITING, INDIANA

TABLE OF CONTENTS

			rage
List	of Tab	les	iii
	of Fig		i
Objec			V
Abstr			tv
I,		duction	
II.		ry of Results	l
		Catalytic Cracking of Cetane	1 1 2 2 2 3 3 4
		Para-Xylene Experiments	2
	C.	Ethyl Mercaptan Reactions	2
		Alkylation and Copolymerization	2
III.		ytic Cracking of Cetane	3
	Α.	Discussion of Results and Conclusions	3
		Results	
		Experimental Procedure	11
IV.		Xylene Experiments	11
	Α.	Ethylene and Para-Xylene	11
		(1) Discussion of Results and Conclusions	11
		(2) Results	11
		(3) Equipment and Procedure	13
	В.	Propylene and Para-Xylene	13
		(1) Discussion of Results and Conclusions	13
		(2) Results	13
		(3) Equipment and Procedure	13
V.	•	Mercaptan Experiments	15
	Α.		15
		(1) Ethylene	15
	_	(2) Propylene	17
		Results	21
		Equipment and Procedure	23
VI.		ation and Copolymerization	25
		Discussion of Results and Conclusions	25
	В.	Results	25 25
		(1) Isobutane	
		(a) Ethylene	25 25
		(b) Propylene	27 27
		(c) Butylene	27
		(2) N-Butane (3) Aniline and Ethylene	27 27
		· · · · · · · · · · · · · · · · · · ·	27
	C.	(4) Butylene and Propylene Procedure	28
VII.	Appen		30
v 0	TAPOIL	A T 4 F	-

LIST OF TABLES

No.		Page
Ι.	Product Distribution and Average Molecular Weights of Gas Samples from Catalytic Crack-ing of Cetane	9
II.	Summary of Catalytic Cracking of Cetane	10
III.	Ethylene and Para-Xylene - Summary of Results	12
IV.	Propylene and Para-Xylene - Summary of Results	15
V.	Ethylene and Ethyl Mercaptan - Summary of Results	18
VI.	Propylene and Ethyl Mercaptan - Summary of Results	22
VII.	Summary - Alkylation Experiments	26

LIST OF FIGURES

No.		Page
1.	Cetane in Product, Wt. percent of total feed, vs. Space Velocity	5
2.	Liquid Product Lighter than Cetane, Wt. percent of total feed, vs. Space Velocity	6
3.	Carbon Deposit on Catalyst, Wt. percent per 100 grams of Feed, vs. Space Velocity	7
4.	Gaseous Product, Wt. percent of total feed, vs. Space Velocity	8
5.	Ethylene Loading Apparatus	14
6.	Glass Vessels for Propylene-Para-Xylene Experi- ments.	16
7.	Propylene-Ethyl Mercaptan Rate Study, 20°C	19
8.	Propylene-Ethyl Mercaptan Rate Study, 50°C	20
9.	Propylene Loading Apparatus	24
10.	Combination Gas Loading Apparatus	29
11.	Density of Ethyl Mercaptan vs. Temperature	34
12.	Liquid Density of Iso-butane at Saturated Pressure vs. Temperature °F.	35
13.	Liquid Density of Propylene at Saturated Pressure vs. Temperature ${}^{\circ}F$.	36
14.	Vapor Pressure of Various Liquids vs. Temperature (Range, -162°C to +60°C)	37
15.	Vapor Pressure of Various Liquids vs. Temperature (Range, -20°C to 240°C)	3 8

The University of Michigan	Engineering Research Institute
ОВЈ	ECTIVE
The aim of this work is to	o explore the effects of gamma
radiation on a number of chemic	cal reactions which may be
of interest to the petroleum and It is believed that these explanations	
a better understanding of the m	mechanism of radiation-induced
reactions. Also, such studies eralizations of radiation effects	
reactions.	, and the second
	V

ABSTRACT

Gamma radiation produced no appreciable effects on the catalytic cracking of cetane at a radiation level of 42 kilorep per hour. Small differences could have been masked by experimental and analytical variables.

Para-Xylene inhibits the polymerization of ethylene by gamma radiation at pressures of 500-900 psig and at room temperature. Propylene in the presence of para-xylene does not react when irradiated.

Ethylene reacts with ethyl mercaptan at pressures of 450-1500 psig and room temperature only when irradiated and forms predominately (90-98 %), diethyl sulfide. Only under radiation will propylene react with ethyl mercaptan at temperatures of 20-50°C and pressures of 80-170 psig forming ethyl propyl sulfide (95-100 %). When 1:1 molal ratios of propylene and ethyl mercaptan are present, the reaction is of the first order with respect to total pressure. The reaction rate constant is dependent upon the dose rate.

Experiments with isobutane-ethylene, isobutane-propylene, isobutane-butylene, n-butane-ethylene, aniline-ethylene, and butylene-propylene indicate that there were no significant reactions in these mixtures using gamma radiation.

I. INTRODUCTION

The following study of the effect of gamma radiation on various petrochemical reactions was undertaken for Standard Oil Company of Indiana. The work was done under the auspices of the Engineering Research Institute of the University of Michigan, Project No. 2420. The present report is a continuation of the work reported in the annual report to Standard Oil Company of Indiana of August, 1955 to July, 1956, Effect of Gamma Radiation on Various Petrochemical Reactions, and covers the work period from July, 1956 to January 1st, 1957.

The program, in the six month period covered, consisted of four separate phases. The first was a continuation and analysis of the catalytic cracking studies of cetane. The second dealt with the reaction of para-xylene with ethylene and propylene using gamma radiation. The third phase consisted of a study of the effects of gamma radiation on the addition of ethyl mercaptan to ethylene and propylene. The last phase consisted of the study of alkylation and polymerization effects of gamma radiation on:

- a) isobutane, ethylene
- b) isobutane, propylene
- c) n-butane, ethylene
- d) iso-butane, butylene
- e) butylene, propylene
- f) ethylene, aniline

II. SUMMARY OF RESULTS

A. <u>Catalytic Cracking of Cetane</u>

From the results of the experiments conducted, it is possible to conclude that the irradiated experiments showed no differences from the non-irradiated experiments greater than 3 %, which is the probable experimental error. However, the work was not sufficiently aetailed or comprehensive to rule out the possibility that small effects could have been masked by experimental and analytical variables.

B. Para-Xylene Experiments

(1) Ethylene

Ethylene will polymerize at pressures of 500-900 psig at room temperature in the presence of gamma radiation. It will not polymerize at these conditions without gamma radiation. However, this polymerization at the above conditions is inhibited by para-xylene. Due to the small quantities of solid product recovered, a quantitative statement cannot be made.

(2) Propylene

Since no component boiling higher than p-xylene was found in the distillation of the liquid from the p-xylene-propylene reaction, it was concluded that gamma radiation produced no detectable polymer or addition product in the propylene and para-xylene mixture.

C. Ethyl Mercaptan Reactions

(1) Ethylene

Ethylene will not react with ethyl mercaptan at room temperature and pressures from 450-1500 psig. However, this reaction will take place with gamma radiation forming predominately diethyl sulfide at a conversion of from 90 to 98 per cent in 72 hours at a dose rate of 59 kilorep per hour.

(2) Propylene

Propylene will react with ethyl mercaptan at temperatures from 20-50°C and pressures of 80-170 psig only under the influence of gamma radiation. When 1:1 molal ratios of propylene and ethyl mercaptan are present, the reaction is of the first order with respect to total pressure. The reaction rate constant is dependent upon the dose rate. The liquid samples contained from 96-99.7 per cent ethyl propyl sulfide. The reaction had a 95-100 per cent conversion of the ethyl mercaptan.

D. Alkylation and Copolymerization

Reactions with isobutane-ethylene, isobutane-propylene, isobutane-butylene, n-butane-ethylene, aniline-ethylene and butylene-propylene indicate that there were no significant reactions using gamma radiation at room temperature. However, the work was not sufficient to draw any definite conclusions. The preliminary work did indicate that the small amount of products formed was due to polymerization of the olefin and not due to a reaction between the olefinic molecule and the saturated molecule.

III. CATALYTIC CRACKING OF CETANE

A. <u>Discussion of Results and Conclusions</u>

Fig. 1 is a plot of the percentage of unconverted cetane recovered in the liquid product. The data applies to both the irradiated and non-irradiated runs at different space velocities. The data can be used as a direct measure of the amount of cracking that took place. It can be seen from Fig. 1 that there is no evidence to indicate that gamma radiation either inhibits or promotes the cracking of the cetane molecule.

Fig. 2 is a plot of the weight per cent of material lighter than cetane in the liquid product. There is no trend to indicate that gamma radiation has changed the product distribution resulting from the catalytic cracking reaction.

Fig. 3 is a plot of the carbon deposit on the catalyst per 100 grams of feed against space velocity. Again there is no trend to indicate that gamma radiation has an effect on the amount of carbon deposit on the catalyst.

Fig. 4 compares the gas produced at different space velocities. It shows that in every case more gas was produced in the non-irradiated runs than in the corresponding irradiated runs at the same space velocity. Two hypotheses were postulated in an effort to explain this result:

- (1) The reaction mechanism for the irradiated runs tended to crack the cetane molecule near the center thereby producing a shift in product distribution resulting in less of the light gaseous hydrocarbon molecules and more of the heavier liquid molecules.
- (2) Gamma radiation promoted polymerization of the light olefins to produce heavier liquid compounds and thereby reducing the volume of gas.

The analyses of the gas collected during the course of the runs as shown in Table I , indicate that the molecular weights and product distribution for the irradiated and non-irradiated runs at the same space velocity are nearly identical.

These run gas analyses present the strongest evidence to refute the two proposed theories since for either proposed theory to be valid, the gar from the irradiated and non-irradiated runs must have different product distributions and also would be expected to have different molecular weights.

From the results of runs conducted, it is possible to conclude that gamma radiation has no appreciable effect on catalytic crack-

ing. However, the work was not sufficiently detailed or comprehensive to rule out the possibility that small effects could have been masked by experimental and analytical variables.

B. Results

Table II is a summary of the experimental conditions and results of the 23 catalytic cracking runs. Of the 23 experiments, ll were made with gamma radiation. The other twelve were used as control runs to better determine any effects of the radiation. The average temperature recorded in Table I was taken as the integral average of the temperature profile across the catalyst bed. As can be seen from Table I, there was no significant pressure drop observed in any of the runs reported. The radiation dose reported was calculated as shown in the Appendix, pages 34-35, of the Annual Report from August, 1955 to July, 1956. The space velocity in the Table is defined as:

weight of feed/hr. weight of catalyst

The data in the column headed, Material Lighter than Cetane, %, was obtained from a liquid product analysis determined by gas chromatography by Standard Oil (Indiana).

Runs lc through 8c were conducted with 1.2 inches of catalyst bed. However, it was decided that more accurate data could be obtained if more gas was formed during the run. Therefore, 3.6 inches of catalyst bed was used for runs 9c to 23c which resulted in decreased space velocities. However, only runs 16c through 23c are plotted in the following Figures 1 through 4 since these were the only runs where consistent conditions were maintained. The data for these runs were collected after modifying the equipment to permit a uniform method of duplicating the irradiated and non-irradiated runs. The temperature difference (max. 15°C) was neglected in making the plots.

Considerable difficulties were encountered in maintaining constant-temperature conditions throughout the run due to irregular vaporization of the feed and to the comparatively short life of the catalyst, which does not permit a waiting period to reach steady state before the products are collected. The first problem was corrected by introducing a glass-wool plug at the top of the reactor to obtain a better distribution of the feed. The latter was controlled by establishing a given temperature profile in the catalyst before each run was started. With these difficulties overcome, it can be noted (runs 18c-23c) that for runs at the same space velocity the temperature difference was only 1°C. The operation at different feed rates resulted in different temperature profiles in the catalyst bed and accounts for the range in average catalyst bed temperatures from 519 to 543°C.

Cetane in Product, Wt. % of Total Feed vs. Space Velocity Figure 1.

Runs 16c through 23c% plotted

Liquid Product Lighter than Cetane, Wt. % Figure 2. of Total Feed vs. Space Velocity

Runs 16c through 23 c% plotted

Figure 3. Carbon Deposit on Catalyst, Wt. % per 100 grams of Feed vs. Space Velocity
Runs 16c through 23c% plotted

SPACE VELOCITY, W/HR-W

Figure 4. Gaseous Product Wt. % of Total Feed vs. Space Velocity.

Runs 16c through 23c% plotted

						,			
TABLE I.		PRODUCT DISTRIBUTION AND AVERAGE GAS SAMPLES FROM CATALYTIC GRACK	UTION AI M CATAL	ND AVERA	MOLECU ING OF	LAR WEIGHTS CETANE	SHT S		- The
Run Number Space Velocity	16c 3.73	17c8 3.71	18c 5.58	19c 1.86	20c x 1.87	21c¥ 5.58	22c 0.933	23c¥ 0.932	e Univer
${\tt G}_{\sf G}$ Olefins and Napthenes	a, ○	0.1	0.1	0.4	0.1	0.1	0.1		sity
G_5 Olefins and Napthenes	3.3	٥. د	ග ග	3.6	2.0	5	1.7	2.1	of M
Normal Pentane		0.1	0.1		0.1	o. 0	o. 0	٠. د	lichi
Isopentane	о. С	7,3	1.4	O &	H 8	1.4	1.4	1.4	gan
Normal Butane	9.	ស្វ	8	۲. «	٦ 8	0.0	N N	J. 9	•
) Isobutane	5.3	5.7	5.1	5.3	5.3	4.6	5.2	5.5	E
Butenes	21.8	20.1	21.0	19.8	18.6	80.8	14.9	15.8	ngin
Propane Propylene	7.9	8 8 8 8 8 8	7.4	7.5	7.2	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	888 84.	8.4	ieering
Ethane Ethylene	80 0.0	8 8 8 8	80 0.0 4.	4.6	5.0	3.6	5.2	4.7	g Rese
We thane	4.8	4.5	5.2	8.9	8 • 9	2.	o, •	o	arch
Hydrogen	o, o,	0 0	8.3	φ. Θ	8.7	8.4	10.5	11.5	ı Ins
Total	100.0	66	6.66	100.1	100.1	8.66	100.1	6.66	stitu
Specific Gravity	1.439	1.417	1,426	1.401	1,386	1.401	1.300	1.297	te
Average Molecular Weight	41.6	40.2	41.4	40.7	40.2	40.6	37.7	37.6	

23c 5/20/56	53.6 52.8 52.8 52.8 52.8 5.0 61.0 61.0 61.0 61.0	24. vC C. ve	01 02 02 03 03 04 04 05 04 05 05 05 05 05 05 05 05 05 05 05 05 05
22c } 6/16/56	3.6 28.28 36.28 36.28 61.1 61.1 62.0 62.0 62.0 63.3	26.13 2.00.11 2.00.11 2.00.11 2.00.11 2.00.10 2.00.	13.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
21c ⅓ ∈/13/56	3.6 533 533 533 542 655.20 153.1 153.1 141 7.621 6.621	115.24 0.363 0.015 0.050 0.727 0.23 0.175 2.14	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20c % 6/2/36	3.6 527 527 6115 6115 84.3 94.3	62.03 0.035 0.035 1.12 1.33 1.5 0.511 0.511 0.526 3.01	0.00 0.00 4 0.00 0.00 4 0.00 0.00 0.00 0
19c 6/7/56	3.6 5233 5233 5233 531 611.05 611.05 613.05 7.414 1.66	55.04 0.4665 0.0505 1.30 1.30 1.35 2.4 2.35 2.35 4.0.4	23.25 23.25 23.25 23.25 24.44 24.45
16c 7/31/56	3.6 534 534 535 526 526 15 141 141 0.628 5.55	116.7 (.359 0.025 0.025 0.737 18 0.154 0.159	17.6 1.5 1.5 1.5 1.5 1.5 1.5 3.7 3.3
17c ¥ 7/15/56	3.6 526 526 526 62 121 121 121 121 131 131 131 131 131 13	67.27 C. 2855 C. 10154 C. 505 C. 506 C. 506	13.7 1.5 1.5 1.7.7 1.7.7 1.4.4 33.2 1.3 3.3 1.5 3.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
16c 7/16/56	3.6 527 521 506 520 - 25.20 122.6 122.6 122.6 3.73	66.75 0.362 0.0255 0.041 1.125 20 0.460 0.456 41.6	16.1 2.0 2.0 2.0 2.0 13.0 3.7 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
1 5c 7/13/56	3.6 531 531 531 536 526 526 627 72 72 641 641 641 641 641 641 641 641 641 641	62.15 0.286 0.0313 0.0313 0.686 25 25 0.714 3.66 0.740	12. 2.1. 1.1. 17.0 16.5 16.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
14c 7/12/56	3.6 529 529 534 25.20 122.2 11.0 122.2 122.2 122.2 0.415 0.415	61.4 0.274 0.0074 0.0074 0.650 1.525 1.525 1.003 4.24 40.9	12.3 0.50 101.0 14.65 17.6 27.6 27.6
13c r 7/v/56	3.6 522 522 523 225 4 2 122.4 122.4 94.4 0.416	50.7 * 0.2965 0.0121 0.0121 15 15 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	15.3 C.64 1.1 143.4 145.5 7.35 37.3
12c 7/6/56	85.85 85.85 11.85 12.80 11.80 11.80 85.80 85.80 85.80 85.80 85.80	72.0 0.399 0.028 1.056 1.265 1.185 3.35 1.196 42.9	21.6 2.05 11.2 105 26.8 13.2 40.0 36.8
11c ' 6/12/56	25.13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	51.3 0.0028 0.0028 0.0663 13 13	
10e 6/12/56	3.6 4488 4471 4471 24.5 1.5 1.5 1.5 0.15 0.15 0.15 0.15 0.15	75.2 C.1345 C.0143 C.364 C.435 13 42.2	
9c 6/11/56	25.02 12.02 12.02 12.02 12.03 13.04 14.04 15.04	0.1460 0.0300 0.431 0.516 14 14 50.8	
8c °, 6/6/56	1.2 541 543 543 543 543 6.11 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0002 0.011 0.223 0.266 9	
7c 6/4/56	1.2 5.44 5.44 5.44 1.2 1.2 0.1 0.4 0.4 11.51	0.0758 0.185 0.221 12 38.3	
6/2/56	1.2 544 544 549 1.2 1.2 1.2 1.2 92.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	00.00	
5/31/56	1.2 542 547 547 0 1.20 1.20 1.20 1.20 1.20 0.40.5 0.40.5	0.0938 0.230 0.274 12	
1c 2c 3c 4c 5c 3/24/56 5/25/56 5/29/56 5/31/56	5.8 5.8 5.8 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	0.0560 0.0560 0.155 0.157 42.8	
3c x 5/28/56	1.2 500 500 500 40 12.55 12.55 12.50 12.50 12.50 12.80	82 22 421.338 1	
2c 5/25/56	4888 4888 5888 6888 1188	5.00 5.00 5.00 6.00 6.00 6.00 6.00 6.00	
1c 5/24/56	1.2 4.55 500 500 1.2 1.2 1.2 5.2.5 0.409 11.29	0.0168	red)*** (1) (2) (3) (3) (4) (5) (5) (6) (7)
Run Number Date	Appeth of bed, inches Arenge remo	Liquid product, gm. Jif gas, SCF Lightford gas, SCF Lightford gas, SCF SCF total Easterner Gardia - SCF Control on associate Angel on assoc	off gas, gas, gas, (mol.wt.5e assumed)** inserted gas, gas, gas, (mol.wt.5e assumed) insertal onlines, weight (inser basis) insertal products, weight (input basis) Getane converted, weight (input basis) Cetane converted, weight (output basis)

C. Experimental Procedure

The equipment and procedure followed in the catalytic cracking studies are fully defined in the Annual Report, August, 1955 to July, 1956. The details are listed on pages 26 through 27 of that report. Fig. 19, Catalytic Cracking Unit Flow Diagram, of the above report, shows the same equipment hat was used for all catalytic cracking and Fig. 21, Catalyst Arrangement in Reactor without Spacer, is a diagram of the reactor used for experiments 9c through 23c, since it was desired to use a larger catalyst bed. The catalyst was obtained from Standard Oil of Indiana, No.3A5427 W.S.

The radiation facilities for the experiments are described in detail on pages 1 through 4 in the above report.

IV. PARA-XYLENE EXPERIMENTS

A. Ethylene and Para-Xylene

(1) Discussion of Results and Conclusions

Ethylene will not polymerize by itself or in the presence of para-xylene at room temperature and at pressures from 500-900 psi. However, at these conditions and with gamma radiation, ethylene does polymerize in the presence of para-xylene or by itself. Table III indicates that this polymerization is inhibited by para-xylene. But due to the small quantities of solid product recovered, a quantitative statement cannot be made.

(2) Results

The run conditions and results are reported in Table III. In most cases a white emulsion was present in the liquid product after venting off the gas. Most of the liquid was then distilled off at 138°C, the boiling point of para-xylene. The remaining emulsion was then placed on a watch glass and allowed to evaporate, leaving a solid product. In the distillation there was no fraction obtained with a boiling point higher or lower than 138°C.

The reactions containing ethylene, without para-xylene present, yielded a white fluffy polymer. The reactions containing para-xylene and ethylene yielded a dense polymer after distillation and solidification. It will be noted in Table III that some products are listed as being brown in color. However, it is believed that the product was initially white and that the distillation was carried too far and caused discoloration.

The products are now being analyzed at the Standard Oil Laboratories in Whiting.

F RESULTS
SUMMARY O
ARA-XYLENE
LENE & P
• ETHY
TABLE III

The	Unive	-	of M	ichiga	n •	Eng	ineering	Resea	arch	Instit	ute
	35	27.5	870	77	870	72	27.5	0.88	4.3	Instit	white
9/15/56 1	70	11.4	760	64	430	72	1.31	0.065	4.20	0.0057	brown sludge
8 9/11/56 9/15/56 10/31,	0	15.3	810	89	810	72	15.3	0.37	4.32	0.0242	white soft powder
	3.0	14.73	810	77	800	72	12.4	0.2433	4.17	0.0165	dense white solid
6 8/31/56 8/31/56	12.5	18,20	810	77	795	72	10.8	0.2178	4.17	0.0119	dense white solid
4 8/27/56 8/31/56	25	21,65	810	44	805	72	9,25	0.2754	4.17	0.0129	dense white solid
48/27/56	0	12.6	875	06	860	76	12.6	0.33	3.59	0.0262	white soft powder
3 8/24/56	12,5	0.8	509	80	480	75.5	4.35	0.0912	4.95	0.0114	brown solid
2 8/24/56	0	5,15	510	72	100	77.5	5.15	ı	4.8	1	
1 8/24/56 8/24/56 8/24/56	25	11.2	530	72	530	77.5	80 80	0.1835	5.12	0.0163	brown waxy solid
Run Number Date	Volume of para- xylene, cc	Ethylene, gm	Initial pres- sure, psig	Initial Tem- perature, °F	Final Pressure, psig	N Final Tempera- ture	Ethylene gas phase, gm (recovered)	Solid product,	Dose, megarep	Gm product per gm C ₂ H ₄ charged	Remarks

(3) Equipment and Procedure

A 100 cc stainless steel reactor equipped with a pressure gauge was used. This reactor is the same as shown on page 12, Fig. 7 of the Annual Report, August, 1955 to July, 1956. The reactor was filled with para-xylene by means of a pipette. The para-xylene and reactor were then cooled down to -76°C. The ethylene loaded mechanism was attached as shown in Fig. 5 of the present report. After the reactor was cooled, a vacuum of approximately 300 microns was established in the system. The desired amount of ethylene, as calculated from the pressure drop of the loading vessel, was then condensed into the reactor from the 300 cc loading vessel. The reactor was then closed and removed from the loading system.

Comparable reactions were run so that they would have a constant initial pressure with varying amounts of para-xylene and consequently, varying amounts of ethylene. The experiments were carried out at the temperature of the source room.

B. <u>Propylene</u> and <u>Para-Xylene</u>

(1) Discussion of Results and Conclusions

Since no component was found in the liquid product distillation between that of p-xylene and the added high boiler, it was concluded that gamma radiation produced no detectable results on the propylene and para-xylene mixture. The experiments were discontinued.

(2) Results

The four para-xylene-propylene runs are listed in Table IV. The experiments were so designed that the only variable would be the amounts of propylene and para-xylene present. The radiation was held constant for each run. The vials were all irradiated at the temperature of the source room.

An analysis of the liquid left in the glass vials after the propylene was allowed to vent off was attempted in a Podbiel-niak Column with cetane being added as a high boiling liquid. For reactions l_p -3 no component with a boiling point between p-xylene and cetane was detected. Run l_p was not distilled but the p-xylene was allowed to evaporate and a few drops of viscous liquid was obtained as a product.

(3) Equipment and Procedure

The 100 cc vials for the propylene and para-xylene experiments are the same as those described on page 5, Fig. 5, of the Annual Report, August, 1955 to July, 1956. The apparatus shown

Figure 5. Ethylene Loading Apparatus

in Fig. 6 was used to load the vials with propylene and para-xylene.

The first step in the procedure was to evacuate the complete system to a pressure of 150 microns. The desired amount of propylene was then condensed in the vial at a temperature of -76°C (dry ice-chloroform-carbon tetrachloride mixture). Para-xylene was then injected into the vial by means of a syringe through the rubber serum stopper on one of the lead-out ports of the glass vial utilizing the vacuum of the system. The vial was then glass sealed with a flame and removed from the system.

The amount of propylene condensed was calculated from the specific gravity of liquid propylene at this temperature and the volume of the vial.

Recovery was attempted by breaking open the glass vials and letting the propylene evaporate. The para-xylene was then collected.

Run Number l_p 2_p 3_p 4_p Date $9/6/56$ $9/6/56$ $9/7/56$ $9/7/56$ Volume p-xylene, 7.5 15 22.5 0 cc at $76^{\circ}F$ Volume of propylene, 22.5 15 7.5 26 cc at $-76^{\circ}C(-103^{\circ}F)$ Dose, megarep 9.0 9.0 9.0 9.0	TABI	LE IV. F	PROPYLENE & PAR	RA-XYLENE	
Volume p-xylene, 7.5 15 22.5 0 cc at 76°F Volume of propylene, 22.5 15 7.5 26 cc at -76°C(-103°F)	Run Number	lp	2_{p}	$\mathfrak{Z}_{\mathbf{p}}$	4 p
Volume of propylene, 22.5 15 7.5 26 cc at -76°C(-103°F)	Date	9/6/56	9/6/56	9/7/56	9/7/56
cc at -76°C(-103°F)	Volume p-xylene, cc at 76°F	7.5	15	22.5	0
Dose, megarep 9.0 9.0 9.0	Volume of propylene, cc at -76°C(-103°F)	, 22.5	15	7.5	26
	Dose, megarep	9.0	9.0	9.0	9.0

V. ETHYL MERCAPTAN EXPERIMENTS

A. <u>Discussion of Results and Conclusions</u>

(1) Ethylene

A study of the structure of ethyl mercaptan and ethylene indicates that any of the following reactions or combinations thereof are possible: $C_2H_5SH + C_2H_4 \rightarrow C_2H_5SC_2H_5$

$$2C_2H_5SH \rightarrow C_2H_5S-SC_2H_5 + H_2$$

 $C_2H_5SC_2H_5 + C_2H_4 \rightarrow C_4H_9SC_2H_5$
 $nC_2H_4 \rightarrow (-C_2H_4-)_n$

However, from the analysis of the liquid products, it can be seen that the addition of ethylene to ethyl mercaptan tended to form diethyl sulfide (C_2H_5 -S- C_2H_5). This reaction was definitely predominate even though a very small amount of the ethyl mercaptan did react with itself forming ethyl sulfide. However, the latter reaction only resulted in from 0.5 per cent to 7.0 per cent of the sample. It should also be noted in Run No. 3 that 10 per cent of the liquid sample was the compound C_6H_14S , believed to be $C_4H_9SC_2H_5$. There is no explanation as to why there is a greater amount of this higher sulfur compound formed in this case as compared to the other runs (per cent of higher sulfur compounds are listed in the miscellaneous column).

It should be noted here that the reaction will not take place without gamma radiation. A reactor was filled under the test conditions and allowed to stand for three days. During this time there was no reaction. However, when the reactor was irradiated, a reaction took place. It is concluded, therefore, that for ethylene to react with ethyl mercaptan at room temperature, the reaction must be initiated by gamma radiation. However, the data given in Table V do not permit other conclusions since there were not sufficient experiments conducted.

(2) Propylene

Rate studies were made on the addition of propylene to ethyl mercaptan at temperatures of 20°C and 50°C. The results are shown in Table VI and in Fig. 7 and 8. The graphs are plots of the concentration of propylene vs the radiation time for experiments No. 4 and 5 in Table VI. The concentration was calculated from the pressure of the reaction at different radiation times. (See Appendix-Sample Calculations, page 31). The log concentration versus radiation time for both runs plot as a straight line, indicating a first order reaction, depending on the concentration of the mercaptan. It is believed that the reaction rate constant is not a strong function of temperature but is dependent on dose rate. The latter is supported by the fact that without radiation there was no reaction. If temperature had an effect on the reaction rate constant, it would be expected to increase the constant, not decrease it as the data shows. However, the discrepancies in the two reported reaction rate constants, 0.0371 1/hr as compared to 0.0326 1/hr, is believed to be due to the fact that the reactor received different dose rates caused by the necessity of a constant temperature bath for the 50°C reaction (59K-rep/hr and 40K-rep/hr respectively).

The log concentration versus radiation time plot for Run No. 5 was a straight line with a reaction rate constant of 0.0326 l/hr for the first part of the reaction and a straight line of different slope with a reaction rate constant of 0.0213 l/hr for the latter part of the run. The change in rate constants

		Iniversity of Michigan • Engineering Research	h Institute ——
	10/9/56	8 0 0 1 8 1 1 1 1 8 1 1 1 1 1 1 1 1 1 1	
	6 9/29/56	18.3 25.0 26.0 26.0 27.0 4.50 4.50 4.50 1.10 1.20	
F RESULTS	5 9/28/56	18.3 2.43.7 10.3 10.3 810 610 460 460 460 470 610 610 610 610 610 610 610 610 610 61	
, SUMMARY C	4 9/26/56	0 1 0 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	nnd s
ETHYL MERCAPTAN, SUMMARY OF RESULTS	$\frac{3}{9/19/56}$	8*** 6 1 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	n pressure lfur compounds
+	2 9/18/56	18.3 11.9 1.44/1 5.58 24.30 270 4.20 1.00 99.0 1.00 99.0	made due to contamination to be vented to relieve pressure gher molecular weight sulfur com
V. ETHYL ENE	1 9/18/56	818 800.1 000.0 1,000 000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 000	due to co vented t molecular
TABLE	Run Number Date	reaptan char =0.915@-75% charged,gms H4/moles C2F gas,gms(NW=28 roduct, gms pressure,psig ure, F garep product anal- mercaptan sulfide Disulfide Disulfide Very of reac	* No analysis made due to contam ** Reactor had to be vented to re *** Indicates higher molecular wei

Propylene - Ethyl Mercaptan Rate Study, 20 °C

Figure 7. Run No. 4 Propylene and Ethyl Mercaptan 1/1 mole ratio at 20°C Dose rate 59 K-rep/hr.

Figure 8. Run No. 5 - Propylene and Ethyl Mercaptan 1/1 mole ratio at 50°C Dose rate 40K-rep/hr.

is believed to be caused by accidently moving the reactor during its radiation time resulting in a decreased dose rate and thereby causing a lower reaction rate constant.

Two reactors were loaded and run under test conditions without radiation, one at 20°C and one at 50°C, for a two day period without any evidence of a reaction. However, when these same reactors were radiated a reaction took place. It was concluded, therefore, that the reaction between propylene and ethyl mercaptan will take place in the temperature range of 20-50°C only when initiated by gamma radiation.

The addition of propylene to ethyl mercaptan takes place almost exclusively with the propylene adding to the sulfur atom. The liquid samples analyzed indicated that the ethyl propyl sulfide formed from this reaction constituted from 96-99.7 per cent of the liquid sample while other sulfur compounds completed the total.

B. Results

The results of the seven experiments with ethylene and ethyl mercaptan are reported in Table V. The five experiments with propylene and ethyl mercaptan are given in Table VI. The ethylene experiments were conducted with constant amounts of ethyl mercaptan and constant radiation time. However, in the propylene experiments these quantities were varied. In addition the temperature of Runs 4 and 5 of the propylene experiment was varied to study the possible rate effects.

A distillation was attempted on the liquid product from Run No. 1 of the ethylene experiments. Since approximately 90 per cent of this product was distilled over in a boiling range from 84 to 95°C, a reaction was indicated. The boiling point of ethyl mercaptan is 37°C. Another distillation was attempted on the liquid product from Run No. 4 of the ethylene experiments. This run consisted of radiating pure ethyl mercaptan, and the distillation showed that all the product distilled over at 37°C.

The liquid products of Runs No. 3 and 4 of the propylene experiments were also distilled. All the liquid from Run No. 3 distilled at a constant temperature of 114°C. Six cc of the liquid from Run No. 4 distilled at 37°C (the boiling point of ethyl mercaptan) and 36 cc distilled in a temperature range of 116-119°C. This boiling point range corresponds to the boiling points of the possible addition products of the reaction.

In most of the ethylene experiments there was a certain amount of solid poly-ethylene found in the liquid product. There

The University of M	lichigan •	Engineering	Research	Institute	

	TABLE VI. PROP	YLENE & ETF	IYL MERCAPT	ROPYLENE & ETHYL MERCAPTAN, SUMMARY O	OF RESULTS	
	Run Number Date	10/6/56	2/10/7/56	3/11/01	4 11/3/56	5 11/13/56
	1.Ethyl mercaptan charged, gms 2.Propylene charged, gms 3.Molar ratio, Propylene	19.8 13.45 1/1	8.94 25.2 4.17/1	19.0 28.1 2.18/1	20°.8 20°.1	8 8 8 6 7 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	4.Liquid product, gms 5.Gas vented, gms (M.W.=42.1)	32,21	13.00	27°75 14°3	40.02 8.04	48.0 0.175
	6.Initial pressure, psig 7.Final Pressure,psig 8.Dose, megarep	80°08 0°08	100 60 4°8	0 4	80 43 1,37	168 20.7 3.0
- [9.Temperature, (°C)	22	272	212	000	50.2
22		8,96	104	89,2	46	98°5
1	Ω		1.3	0.3		
			ം വ	g		
	A value	4,200	3,020	3,080	7,420	5,750
	* Indicates higher molecular weight	lar weight	sulfur compounds	pounds		

was no attempt made to recover the solid product from the liquid. The complete product was sent to the Standard Oil Laboratories at Whiting for analysis.

C. Equipment and Procedure

The experiments were carried out in the same 100-cc stainless steel pipe reactors as mentioned earlier and shown on page 12, Fig. 7, of the Annual Report.

The procedure for loading was to first evacuate the system to approximately 300 microns and then immerse the reactor in a liquid nitrogen bath. In the ethylene experiments, ethylene was condensed in the reactor from the 275 cc loading vessel as shown in Fig. 5. After the desired amount of ethylene, as calculated from the pressure drop of the loading vessel, was condensed, the reactor and its cooling bath were removed from the loading system. A rubber serum stopper attached to a glass tube was then connected to the reactor. Ethyl mercaptan was introduced into the reactor from a syringe utilizing the vacuum in the reactor at liquid nitrogen temperature.

The procedure for loading propylene was very similar in that the system was first evacuated and then immersed in a dry ice bath. The desired amount of propylene was then condensed in the calibrated vial as shown in Fig. 9. The dry ice bath on the calibrated vial was removed and the propylene was allowed to condense in the reactor. Ethyl mercaptan was introduced into the reactor in the same manner as for the ethylene experiments.

The amount of ethylene charged was calculated from the pressure drop of the loading vessel as shown in the Appendix. The accuracy of this measurement is believed to be approximately 10 per cent. The accuracy of the propylene loading measurement are considered better since they were based on liquid volume measurements at a known specific gravity.

The ethyl mercaptan was cooled to 0°C before any attempt was made to work with the compound. A rubber serum stopper was attached to the top of the bottle containing the compound, and the ethyl mercaptan was withdrawn using a syringe.

After the reactor was irradiated, it was cooled in a dry ice bath. The reactor was then allowed to warm to room temperature while the gas was vented through a wet test meter and measured. A gas sample was taken at dry ice temperature and at room temperature for the ethylene series.

VI. ALKYLATION AND COPOLYMERIZATION

A. <u>Discussion of Results and Conclusions</u>

The results of the various alkylation and copolymerization experiments are shown in Table VII. It should be noted from the table that there were no significant reactions with gamma radiation. The small amount of products formed seem to be a result of the olefin, for example ethylene, polymerizing by itself without any reaction with the saturated molecule. Also, in the case of propylene and butylene, it is believed that the residues left in the reactor were polymerization products of the olefins.

The large amount of product reported in the aniline-ethylene experiment is the weight of the aniline that was originally charged into the reactor and then recovered.

The only copolymerization experiment reported, butylene-propylene, showed no significant results.

It is believed that further work on the alkylation reactions must be conducted before any conclusions can be reached.

B. Results

(1) Isobutane

(a) Ethylene

Ethylene and isobutane, 20 gms and 22.1 gms respectively, were loaded into the reactor. This corresponds to a mole ratio of ethylene to isobutane of 1.87:1. The reaction received a dose of 6.9 megarep at room temperature, 70°F, the pressure remained constant at 510 psig. A white, fluffy product was recovered that weighed 2.3 grams and resembled polyethylene. It had a melting point of 127°C. In addition another isobutane-ethylene experiment was made. Since there was an error made in loading, it is not known how much isobutane was loaded with the 17.2 gms of ethylene. The reaction received 82 hours of radiation at an unknown dose rate which is indeterminate due to moving of the reactor. A solid was recovered weighing 0.21 gms and having a melting point of 123-127°C.

(b) Propylene

Two experiments were run at approximately 1:1 mole ratio. The first experiment contained 20.4 grams of isobutane and 14.9 grams of propylene and was held at 80 psig at 70°F. The mixture received a dose of 8.67 megarep. There was no liquid product.

TABLE VII. SUMMARY ALKYLATION EXPERIMENTS

		77.1		Olefi		
			len e Run 2	Propy. Run 1	lene Run 2	Butylene Run l
1.	Isobutane Amount of 1-C4H10 loaded Amount of olefin loaded Mole ratio Temperature (°C) Pressure (psig) Radiation (megarep)		17.2	20.4 14.9 1/1 20 80 8.67	26.8 18.2 1/1 110	21.2 20.3 1/1 20
	Product recovered (gm) Description	2.3 white, fluffy solid	0.21 white fluffy solid		oily resi- due	
1	N-Butane Amount of n-C4H10 loaded Amount of olefin loaded Mole ratio Temperature (°C) Radiation (megarep)	22.2 19.8 1/1 20 9.5				
	Liquid product recovered Description	0.55 white, fluffy solid				
3.	Aniline Amount aniline loaded Amount of olefin loaded Temperature (°C) Pressure Radiation (megarep)	19.7 20 970 4.2				
	Liquid product Description	22.84 dark red liquid (pure ani				
4.	Butylene Butylene loaded Amount of olefin loaded Mole ratio Temperature (°C) Pressure Radiation (megarep)			14.1 10.6 1/1 100 405 2.19		
	Liquid product Description	 26		emall an	-	

The second experiment contained 18.2 grams of propylene and 26.8 gms of iso-butane and was conducted at a temperature of 110°C and at a pressure of 2400 psig. This received an unknown amount of radiation. An oily residue was left on the side of the reactor but there was not a sufficient quantity of it for recovery.

(c) Butylene

One experiment was conducted with butylene and iso-butane in 1:1 mole ratio. The reactor contained 21.2 gms of isobutane and 20.3 gms of butylene. After radiation, a small amount of camphorous smelling liquid was detected on the walls of the reactor.

(2) n-Butane

One experiment was carried out with 19.8 gms of ethylene and 22.2 gms of n-butane. The reaction was conducted under ambient conditions and received a dose rate of 9.5 megarep. A white, flaky solid was recovered that resembled polyethylene. The product weighed 0.55 gms. There was no liquid product present.

(3) Aniline and Ethylene

Twenty five cc of aniline was loaded into the stainless steel reactor. Then 19.7 gms of ethylene was charged into the reactor with a resulting pressure of 970 psig at 20°C. The experiment was conducted at ambient conditions and received a total dose of 4.2 megarep. A dark red liquid product was recovered that weighed 22.84 gms. However, it is believed that all of the product was pure aniline. Another experiment was conducted by irradiating pure aniline. In this case also a red liquid was recovered that distilled over at the boiling point of pure aniline.

(4) Butylene and Propylene

An experiment to determine the copolymerization effects of propylene and butylene was also made. A 1:1 mole ratio of the two materials (10.6 gm of propylene and 14.1 gms of butylene) was heated to 100°C with a resulting pressure of 405 psig. The reaction received a dose of 2.19 megarep. After venting the reactor, a small amount of viscous liquid was found at the bottom of the reactor. However, the amount was insufficient for recovery. In addition, there appeared a very small amount of brownish solid material attached to the sides of the reactor.

C. Procedure

The stainless steel bombs were used as reaction vessels. The system was as shown in Figure 10. The complete system was first evacuated to a pressure of 300 microns. The reaction vessel and calibrated vial were then immersed in a dry ice bath. The calculated amount of reactant was condensed in the calibrated vial. The dry ice bath was then removed from the vial, and the reactant was allowed to condense in the reaction vessel. This procedure was followed for each of the two reactants.

APPENDIX

A. Sample calculations for Run No. 16c (Catalytic Cracking of Cetane)

Average reaction temperature was determined by the integral of the temperature profile, i.e., the average throughout the reaction zone.

Off gas. vol. = 0.362 S.C.F. (S.C.F. at 60° C and 1 atmosphere) Off gas M.W. = 41.6 (Determined from mass spec. analysis)

Off gas weight = 0.362 S.C.F. x 1.197 $\frac{\text{gm moles}}{\text{S.C.F.}}$ x

41.6 $\frac{gm}{gm \text{ mole}}$ = 18.1 gm

Weathered gas vol. = 0.0285 S.C.F. Weathered gas M.W. = 58 (assumed)

Weathered gas weight = 0.0285 S.C.F. x 1.197 $\frac{\text{gm moles}}{\text{S.C.F.}}$ x

 $\frac{58 \text{ gm}}{\text{gm mole}} = 2.0 \text{ gm}$

Purge gas vol = 2000 cc (at 748 mm and 83°C) = 0.0623 S.C.F. Purge gas composition = 35.4 wt % organic material + 64.6 % Nitrogen Ave. M.W. of organic material = 45.6 (from mass spec.)

Weight organics in purge gas=0.0623 S.C.F. \times 0.354 \times

1.197
$$\frac{\text{gm moles}}{\text{S.C.F.}}$$
 x 45.6 $\frac{\text{gm}}{\text{gm mole}}$ = 1.2 gm

Liquid product weight = 68.8 gms
Total product weight = 18.1+2.0+1.2+68.8=90 gms
Total feed = 94.0 gms

Material balance = $\frac{90.2}{94.0}$ x 100 = 96.0 %

Gas product wt % (input basis) = $\frac{18.1+2.0+1.2}{94.0}$ x 100=22.7%

The University of Michigan • Engineering Research Institute

Liquid lighter than cetane, wt % = 20 % from liquid analysis Liquid lighter than cetane = 0.20 x 68.8 gms = 13.8 gms.

Liquid products, wt % (input basis)= $\frac{13.8}{94.0}$ x 100=14.7 %

Cetane converted = 13.8 + 18.1 + 2.0 + 1.2 = 35.1 gms

Cetane converted, wt % (input basis)= $\frac{35.0}{94.0}$ x 100 = 37.3 % Cetane converted, wt % (output basis)= $\frac{35.2}{90.2}$ x 100= 38.9 %

B. Sample Calculations for

Ethyl Mercaptan and Propylene Rate Study No. 2

$$C_2H_5SH + CH_2 = CH_2 \xrightarrow{50^{\circ}C} C_2H_5SC_2H_5$$

1. Activity Coefficient

P = Total Pressure, psia

 P_{V} = Vapor Pressure, psia

r = Activity Coefficient

 $x_{p} = x_{m}$ = Mole fraction propylene and mercaptan

 $P = \xi_r P_{v} x$

at 50° C Vap. Pressure $C_3H_6 = 297$ psia

Vap. Pressure $C_2H_5SH = 23.8$ psia

When equal mole quantities of C_3H_6 and C_2H_5SH were loaded into a reactor at $50^{\circ}C$ the observed pressure was 182 psia.

182 = (r x 297)(.5) + (23.8)(.5)
r=1.14(arbitrarily assuming activity coefficient for ethyl
mercaptan = 1.0)

- 2. Mole % C₃H₆ and C₂H₅SH at any time
 - (a) It was assumed that the only reaction was an addition between C_3H_6 and C_2H_5SH and that the vapor pressure of the product is negligible.

The University of Michigan • Engineering Research Institute -

(b) After 1510 minutes of radiation the pressure was observed to be 110 psia.

$$96 = (279) \cdot (1.14) \cdot (X) + 23.8 (X)$$

$$X = \text{mole \% C}_3H_6 \text{ and C}_2H_5SH = 0.304$$

3. % Conversion and Concentration of ${\rm C_3H_6}$ and ${\rm C_2H_5SH}$

 $a = 1 = initial number of moles of <math>C_3H_6$ and C_2H_5SH

 $y = moles of C_3H_6$ and C_2H_5SH reacted

n = moles of C₂H₅SH

$$c_2H_5SH + c_2H_4 \longrightarrow c_2H_5-S-c_2H_5$$
a-y a-y y

At any time, the total number of moles = 2a-y

$$X = \frac{2-y}{2a-y}$$

$$0.304 = \frac{1-y}{2-y}$$

$$y = 0.563 = \%$$
 conversion

$$n = .5 - .563 (.5) = 0.218$$

- 4. Order of Reaction and Rate Constant
 - (a) If 1st order reaction

$$\frac{-dn}{dt} = k n$$

upon integrating

$$log n = -kt + I$$

Since a plot of log n vs. t was a straight line, the reaction is 1st order

The University of Michigan • Engineering Research Institute

- (b) Rate Constant -k = slope of log n vs tor $\log \frac{n_0}{n} = -kt \qquad n_0 = \text{initial } C_2H_5SH = 0.500$ $\log \frac{0.500}{0.218} = -k \frac{1510}{60}$ $-k = 0.0328 \text{ hr}^{-1}$
- C. Ethylene Loading Calculation

Volume of measuring vessel = $274 \text{ cc.} = 0.00968 \text{ ft}^3$

Initial pressure of measuring vessel = 600 psig

Final pressure of measuring vessel = 300 psig.

Temperature during loading = 60°F

Volume per pound of $\text{C}_2\text{H}_4\,,\quad \overline{\text{V}}\text{;}$ taken from Chem. Eng. Handbook by J. H. Perry

600 psig. = 615 psia. = 41.8 atmospheres

from Perry's Handbook: at 41.8 atm and 60°F

$$\overline{V}_1 = 0.208 \text{ ft}^3/1\text{b}$$

Initial wt. of C_2H_4 charged = $\frac{V}{V_1} = \frac{0.00968 \text{ ft}^3}{0.208 \text{ ft}^3/1\text{b}} = 0.0465 \text{ lb}$.

300 psig = 315 psia = 21.4 atmospheres

from Perry's Handbook: at 21.4 atmospheres and 60°F

$$\overline{V}_2 = 0.540 \text{ ft}^3/\text{lb.}$$

Final wt. of C_2H_4 charged = $\frac{V}{\overline{V}_2} = \frac{0.00968 \text{ ft}^3}{0.540 \text{ ft}^3/1\text{b}} = 0.0179 \text{ lb.}$

wt. of C_2H_4 charged in reactor = (0.0465 lb-0.0179 lb)

$$454 \frac{gm}{1b} = 13.0 gm$$

ABSOLUTE PRESSURE IN mm OF Hg

1,000

10,000

UNIVERSITY OF MICHIGAN

3 9015 03095 0078

Production Notes Form

Univ. of Michigan Preservation/MOA 4 Project

MOA 4 ID#: <u>UMR 27/2</u> Shipment #: <u>2</u>
Call #:
Date Collated: 6/14/99 Collated by: DD
Total # of Pages:
Illustrations: YesNo drawings
Foldows (Mana)
Foldouts/Maps:YesNo
Bookplates/Endsheets:YesNo
Missing Pages:YesNo
Irregular Pagination:YesNo
Other Production Notes: Yes _No P. 10 Small 4ex+