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ABSTRACT

THEORY OF THREE-DIMENSIONAL INTERCHANGE RECONNECTION AND
THE DYNAMIC EVOLUTION OF THE GLOBAL SOLAR CORONAL

MAGNETIC FIELD STRUCTURE: A MECHANISM FOR THE ORIGIN AND
GENERATION OF THE SLOW SOLAR WIND

by

Justin K. Edmondson

CoChairs: Spiro K. Antiochos and Thomas H. Zurbuchen

To understand the evolution of the solar corona and the generation of the solar wind,

it is necessary to understand the structure and dynamics of the coronal magnetic

field. Phenomenologically-based “quasi-steady” models have been developed under

the assumption that the corona evolves as a time series of force-free equilibrium

states determined by the normal-flux distribution at the photosphere. These models

are successful at predicting the overall field polarity, global magnetic structures, and

position of the heliospheric current sheet. However, the quasi-steady models can-

not account for the observed bi-modal flow structure of the solar wind, nor several

heliospheric observations with implications for the dynamics of the magnetic field.

Motivated by these limitations, several researchers have proposed a fundamentally

different paradigm for the evolution of the corona, the so-called interchange model.

Based on the interchange reconnection (IR) process, this model predicts a structure

for the coronal magnetic field which substantially differs from the quasi-steady view.

Strictly speaking, IR describes three-dimensional (3D) null point reconnection, in

xii



which closed bipolar flux reconnects with coronal hole flux opening into the helio-

sphere. More generally, the 3D null point reconnection mechanism is a direct conse-

quence of the nested multi-polar field structure which occurs ubiquitously throughout

the entire corona. This dissertation aims to rigorously investigate the 3D null point re-

connection mechanism and the consequences thereof on the coronal environment. To

that end, we present several related simulations that examine current sheet formation

and stability, as well as the consequences of this type of reconnection on the struc-

ture and dynamics of the global magnetic field. We show the field topology remains

smooth during the evolutions, incompatible with predictions of the initially proposed

interchange model. In addition, we demonstrate dynamic effects of IR incompati-

ble with the quasi-steady models. Therefore, we prove the necessity of a coronal

description which includes fully-dynamic 3D magnetohydrodynamic effects. For suf-

ficiently complex magnetic field structures and evolutions, the predicted dynamics of

the quasi-steady and interchange models converge at the coronal hole boundaries. In

the end, we offer the consequences of IR on the global coronal magnetic field as a

generation mechanism for the slow solar wind.
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CHAPTER I

Introduction

The heating of the solar corona and the origin and acceleration of the solar wind

continue to be two of the most important unresolved problems in all of solar and

heliospheric physics, and even within stellar astrophysics. The magnetic field is the

most important property of the solar corona, as it is the principal conduit for coupling

the energy of the Sun’s convective envelope to the corona and, subsequently, to the

solar wind, and therefore is the primary driver of solar activity. Fundamentally then,

in order to understand the heating of the corona and the generation of the solar wind,

it is necessary to resolve the evolution, energy transport, and dissipation processes

of the evolving magnetic field structure. Therefore, the motivation underlying this

dissertation research is to investigate the structure and dynamic processes of the

coronal magnetic field central to all solar activity.

Observationally, the solar corona is known to be a magnetically dominated, highly-

conductive, inhomogeneous environment. The average large-scale solar magnetic field

exhibits a dipolar structure separated by an equatorial polarity inversion line (PIL),

that reverses direction approximately every 11 years. Heliospheric measurements

of the global inter-planetary magnetic field (IMF) structure are consistent with a

single, warped heliospheric current sheet (HCS) marking the boundary between the

inward/outward directed field polarity throughout the solar activity cycle. Coronal
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magnetic field phenomenology is characterized by two basic structures: open coronal

holes in which the field maps from the photospheric boundary out into the heliosphere

making up the IMF, and closed-loop regions in which the magnetic connections map

back to the photospheric surface within an altitude of 2.5 - 3 solar radii. Coronal hole

regions display quasi-rigid rotations with the Sun, despite the differential rotation

profile of the photospheric surface, implying an opening/closing of the largest-loops

at the HCS. Heliospheric plasma observations reveal a bi-modal solar wind structure

consisting of fast wind plasma correlated with coronal hole regions, and a slow wind

regime compositionally associated with the closed-loop regions of the corona. In

addition, the slow wind is highly variable, and confined to a relatively thick envelope

about the HCS. As such, the theoretical models built in the attempt to understand

the structure and dynamics of the solar magnetic field, as well as the origin and

generation of the solar wind, must necessarily include these observational effects.

The standard quasi-steady coronal field models are fundamentally phenomeno-

logical because they are entirely determined by the observed photospheric normal

flux distribution. Based upon the assumption that the coronal magnetic field evolves

smoothly as a series of force-free equilibrium states, they are very robust in cap-

turing the large-scale properties of the coronal magnetic field structure, such as the

overall magnetic field polarity, coronal hole pattern, and the position of the HCS.

Within the quasi-steady framework, coronal dynamics are only inferred from changes

in the photospheric flux distribution. As a consequence, the quasi-steady models

cannot describe transient activity on timescales faster than the photospheric observa-

tion time cadence. More importantly though, the quasi-steady models cannot explain

the bi-modal nature of the solar wind in that their evolutions account for only the

flows emanating from coronal holes, since the theory cannot explicitly put closed-loop

plasma onto open field lines. Quasi-steady model evolutions only implicitly suggest

a slow wind confined to a very thin envelope about the HCS by continuous open-
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ing/closing of streamer flux and plasmoid release through reconnection at the HCS;

supplemental dynamics outside the scope of the theoretical framework.

Motivated by the inability of the quasi-steady models to correctly describe the

detailed observed bi-modal wind structure, as well as heliospheric flux measurements

that suggest a constant minimum level of open flux throughout the solar activity

cycle, and several heliospheric observations with implications regarding the large-

scale dynamics of the IMF, a fundamentally different coronal field evolution paradigm

has been proposed. Over the last decade, the so-called “interchange model” has

been developed in which the global field evolves based on interchange reconnection,

an elementary reconnection interaction between open and closed field. Presently,

interchange-type reconnection and consequences thereof on coronal magnetic field

dynamics have not been rigorously investigated with fully three-dimensional (3D)

magnetohydrodynamic (MHD) calculations. But the statistical average of many field

lines of the different open/closed topologies interchanging their identities through

reconnection events, is modeled by a media-diffusion equation that predicts large-

scale dynamics of the coronal field, such as a coherent reversal of a single HCS, and

a rationalization for a minimum level of open flux maintained in the heliosphere. As

a consequence of the exchange of field line identities, the interchange reconnection

mechanism provides a venue to release closed-loop plasma onto the open field of

coronal holes, and therefore into the slow wind expansion of the solar atmosphere.

In addition, the interchange model provides a self-consistent explanation for open

flux coalescence to form the large, well-defined polar coronal holes as the solar cycle

approaches minimum activity phase; in some sense, the interchange model offers a

self-constient justification for how a particular coronal hole pattern developed. The

interchange reconnection mechanism, however, generates a highly complex, highly

discontinuous coronal field structure that includes many disconnected coronal holes,

seemingly incompatible with the observed dynamic timescales.
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Strictly speaking, interchange reconnection refers to closed loop field interact-

ing with open field (i.e., a bipole embedded within a coronal hole). More generally

though, interchange reconnection is a specific case of the more general 3D null point

reconnection process. In the highly-conductive, magnetically dominated plasma envi-

ronment of the solar corona, the global field structure consists of complex arrangement

of nested multi-polar field geometry which cannot sustain long-lived singular current

systems. As this geometric structure is stressed in various ways (i.e., by flux injection,

and/or driving flow fields at the photospheric boundary), highly dissipative singular

current systems are generated along the nested flux domain boundaries, which are

then dissipated through reconnection. Therefore, as a direct consequence of the stress-

ing of nested bipolar field structure throughout the solar corona, the general process

of 3D null point reconnection is likely a highly ubiquitous magnetic energy release

process that arises throughout the entire solar corona. In addition, the evolution is

highly dependent on the plasma dissipation mechanism that governs current sheet

formation and subsequent reconnection dynamics.

In this dissertation, I show these dynamics, which neither the quasi-steady or the

interchange model frameworks calculate explicitly, necessarily play a very important

role in solar activity. In both model paradigms, the evolution of the coronal field

structure is only implicitly captured. In this work, I characterize in detail the ele-

mentary 3D null point reconnection process within the context of low-beta magnetized

plasma evolution, and the resulting dynamics of the large-scale coronal magnetic field

structure. The evolution dynamics are calculated using fully analytic initial magnetic

field structures, in fully-dynamic 3D MHD. I show that the dynamics are highly de-

pendent on the dissipation mechanism that governs singular current sheet formation

and therefore the reconnection dynamics. The results imply only fully-dynamic MHD

calculations may even attempt to predict the proper large-scale dynamics of the coro-

nal magnetic field. In addition, the ramifications of the full 3D MHD calculations
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constrain the differences, similarities, limitations, and relationships between the two

theoretical frameworks, which for sufficiently complex coronal field structure lead to a

kind of convergence of the two competing paradigms. I argue, interchange reconnec-

tion is a self-consistent coronal plasma release mechanism generating the slow solar

wind along coronal hole boundaries, in good agreement with observational evidence.

I attempt to arrange the presentation into two basic divisions: the theoretical

framework (chapters II and III), and the dissertation research (chapters IV - VII).

The two theory chapters review the relevant coronal environment, as well as magnetic

field structure evolution within the MHD framework. Three separate, yet related,

calculations of current sheet formation and reconnection are presented in the next

three research chapters. The last chapter places the research and consequences thereof

within the larger context, and summarize the overall impact of this dissertation on

solar and heliospheric physics.

Chapter II is an overview of the current theoretical and observational understand-

ing of solar and heliospheric astrophysics in order to build the proper environmental

context. In section 2.1, I briefly review the solar interior from the thermonuclear en-

ergy generation process, through the energy transport regimes that define the various

internal layers, as well as the rotational and magnetic structure. In section 2.2, I

describe the phenomenological solar atmosphere, consisting of the photosphere, chro-

mosphere, transition region, corona, and interplanetary medium. I derive Parker’s

solar wind solution under some simplifying assumptions, and augment this solution

with the observational bi-modal wind structure and IMF. Finally, in section 2.3, I

discuss the framework of the quasi-steady and interchange models that describe the

large-scale coronal magnetic field evolution, noting the differences and consequences

in the global field structure in each case.

In chapter III, I build the theory of geometric and topological magnetic domains

within the strong-field, MHD-continuum approximation. This framework is, in gen-
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eral, the correct description of multi-polar magnetic field structures interacting with

a large-scale background coronal field, and is the most common geometry throughout

the solar corona. Section 3.1 reviews the construction of the magnetic stress ten-

sor, and describes how the individual magnetic domains are defined by the internal

stress distribution which are fundamentally based on the global boundary conditions.

In section 3.2, I examine the geometric and topological structure of the 3D mag-

netic null point, arguing the separation into nested magnetic domains requires this

structure. Section 3.3 covers the theory of current sheet formation and stability in

two-dimensional (2D). I discuss how the reconnection mechanism arises from the

resistive tearing mode instability. Finally, the reconnection process is described in

section 3.4, covering both Sweet-Parker and Petschek mechanisms. I end the chap-

ter showing how helicity constraints, preserved by the reconnection process, lead to

global force-free equilibrium of the global coronal magnetic field.

In chapter IV, I present a rigorous calculation of a high-resolution, fully-3D MHD,

self-consistent current sheet formation and stability starting from an X-Line topology

- with the intent to generalize the dynamics to 3D null point structure current sheet

formation reconnection mechanism. I show this current sheet, though subject to

plasmoid generation and expulsion by the resistive tearing mode, is stable under

steady-driving conditions.

In Chapters V and VI, the 3D null point current sheet formation, stability, and

reconnection process is placed within the larger context of coronal hole pattern and

streamer belt dynamics. Chapter V gives a topologically rigorous definition of the

interchange reconnection process; noting that only when the bipole flux system is

embedded within a coronal hole, is the 3D null point reconnection process, in the

strict sense, interchange reconnection. In chapters V and VI, several related numeri-

cal calculations of the interaction between bipolar flux systems and the global coronal

magnetic field are analyzed. Each simulation offers compelling evidence of smooth,
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continuous magnetic field topology throughout the evolutions incompatible with the

original formulation of the interchange model, as well as demonstrating large-scale

dynamics inconsistent with the quasi-steady framework. Finally, Chapter VII closes

this dissertation with a discussion of the consequences of 3D null point reconnec-

tion and embedded flux systems on the global coronal magnetic field structure and

dynamics.
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CHAPTER II

Theoretical and Observational Solar Astrophysics

To build the foundations necessary for understanding the dynamic global solar

magnetic field, it is necessary to place the solar magnetic structure properly within

the context of the solar astrophysical environment. Section 2.1 is a brief overview the

Sun as a star, discussing the standard solar model from the thermonuclear energy

generation process, through the energy transport mechanisms that characterize the

internal stratum, to the rotational and magnetic activity structures. Section 2.2

continues with a definition and description of the entire solar atmosphere above the

visible disk, including coronal phenomenology, and the fundamental structure of the

solar wind expansion. Finally, section 2.3 closes the chapter with an account of the

current representations of the global plasma and magnetic environment, building the

standard working-models that are the quasi-steady equilibrium models, contrasting

them against the interchange model, and discussing the physical implications of each.

2.1 The Solar Internal Structure

Set in the context of stellar astrophysics, the Sun is a typical main-sequence star

of spectral class G2V. The solar mass is approximately 1.989 ×1033 g, and contains

of roughly 99.8% of the total material in the solar system. Though heavy elements

such as C, O, Ca, Na, Si, Fe, etc. dominate the observed photospheric spectra, at the
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present epoch the Sun is composed of about 70% hydrogen, 28% helium, and only 2%

other metals by mass (Carroll & Ostlie (1996)). The thermonuclear energy generation

process in the solar core is via the proton-proton chain, inferred from the observed

luminosity, radius, and the effective surface blackbody temperature on the visible

disk, 3.85 ×1033 erg s−1, 6.96 ×1010 cm, and nearly 5770 K respectively (Bahcall et

al. (2003)). The Sun’s current age is approximately 4.5 billion years, and is estimated

to continue burning predominantly hydrogen for another 5 billion years. At that

stage, the Sun will begin to chiefly burn helium, heat up, and swell into a red giant.

Once the helium fuel is exhausted, the thermonuclear burning will continue through

the heavier elements up to iron, while gently shedding its outer layers at each principal

reaction transition. Since the solar mass is below the Chandrasekhar limit, our Sun’s

final state will be a white dwarf about the size of the Earth, supported against

gravitational collapse by electron degeneracy pressure (Carroll & Ostlie (1996)).

To the lowest order of approximation, the internal structure of the Sun can be

estimated using the Vogt-Russell Theorem (Carroll & Ostlie (1996)). According to

this Theorem, the mass and composition of a star uniquely determine its radius, lumi-

nosity, and internal structure. The effects of an internal rotational profile, magnetic

fields, material accretion/loss, and local spacetime curvature (i.e., gravitational tidal

forces) on the Sun’s structure are to a first approximation neglected - simply because

these properties likely did not play a principal role during the Star’s formation stage.

Using only the equations of hydrostatic force balance, energy conservation, as well as

a material equation of state (Rose (1998)), the standard model for the solar internal

structure consists of three major regimes: the thermonuclear core, the radiative zone,

and the convection zone (see Figure 2.1).

The thermonuclear engine, at a density and temperature (depending on the de-

tails of the particular model) of around 150 g cm−3 and 15 MK respectively, converts

roughly 4.5 billion metric tons of hydrogen into helium every second. The core’s size

9



Figure 2.1: Solar Interior Structure: thermonuclear core, radiation zone, convection
envelope, and photospheric granulation pattern on the visible surface.
Figure from http://www.astro.ku.dk/∼aake/talks/NAP98/cover-tr.gif
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is limited to roughly the innermost 20% - 30% of the star by radius. Deep within

the solar interior the gas and radiation field are in local thermodynamic equilibrium,

and therefore the energy generated in the core must be transported to the surface

by the diffusive processes of radiation or convection. Radiative transport dominates

roughly the inner-2/3 of the solar interior. In the outer third, the temperature gradi-

ent becomes superadiabatic, and thus the gas becomes unstable to convection (Rose

(1998)). Physically, the opacity within the convection envelope has become large

enough to inhibit efficient radiative transport. As a consequence of the different en-

ergy transport mechanisms, the temperature of the solar interior falls off non-linearly

from 15 MK at the core to 6500 K at the top of the convection zone.

At the next level of approximation, rotation and magnetic field effects become

important to the internal structure, and therefore to the coronal and heliospheric

environment. Observations of the motions of surface features reveal a differential

rotation in which the equator rotates much faster than the polar regions, approxi-

mately 26 days and 37 days respectively. Helioseismic analysis reveals this rotational

flow profile persists throughout the convection envelope, implying convection gives

rise to differential rotation. Between the convective and radiative zones is a thin

transition region over which the rotational variation with latitude disappears, the

so-called tachocline. Below the tachocline, the radiation zone (and likely the ther-

monuclear core as well) exhibits solid body rotation with a period about the same as

the equatorial regions at the surface (Christensen-Dalsgaard & Thompson (2003)).

The Sun’s large-scale magnetic field exhibits an approximate 22 year cyclic polar-

ity cycle. In the course of each ∼11-year magnetic activity phase, characterized by a

consistent overall polarity, sunspots (regions of highly concentrated, dipolar magnetic

flux) initially appear in belts at high latitudes, and the emergence slowly progresses

toward lower and lower latitudes (see Figure 2.2). Sunspot patterns in both hemi-

spheres have a leading polarity opposite that of the average background hemispheric

11



Figure 2.2: Sunspot activity cycle butterfly diagram showing the equatorward migra-
tion of emergence latitudes throughout the solar cycle (D. Hathaway)

polarity, known as Hale’s Polarity Law (Carroll & Ostlie (1996)). Also, these bipolar

active regions emerge tilted with a latitudinal tilt of roughly 35◦, in which the leading

polarity spot is closer to the equator. This cyclic activity suggests an internal dy-

namo mechanism that involves the interaction between the rotation and convective

motions. Though the details of such dynamo action are not yet understood, current

theories suggest the tachocline plays a very important role in the solar activity cycle.

The phenomenological nature of sunspots suggests that the interior magnetic field

is concentrated into discrete flux tubes (i.e., localized bundles of field lines). Though

hydromagnetic stability theory states continuous magnetic fields inhibit convective

overturning, a simple energy argument demonstrates the total energy of the con-

vection zone is decreased by magnetic fields concentrated into fibril states (Parker

(1984)). From total pressure balance and thermal equilibrium, the material density

inside the flux tube is less than that of the surrounding plasma giving rise to a buoy-

ancy force on the flux tubes within the convection zone. In addition, these flux tubes

must have magnetic energy densities at least of order the turbulent kinetic energy

density of the plasma to overcome deformations due to turbulent convection through-

out its rise and emergence at the surface. Finally, the flux intensity of the sunspots
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tends to get amplified by the strong downdrafts of the convection cell boundaries at

the solar surface.

2.2 The Solar Atmosphere

The solar atmosphere may be broadly defined as the optically thin region beyond

the convection zone in which the solar energy flux escapes as radiation (∼ 1367 W

m2, Carroll & Ostlie (1996)) and particles (∼ 1.3 × 1036 particles s−1, Kallenrode

(2004)). This tenuous environment engulfs the entire solar system, extending to the

solar wind termination shock at roughly 100 AU from the Sun, where the interstellar

medium becomes dominant. The solar atmosphere can be organized into two sepa-

rate regimes based on the principal energy partition of the plasma: the magnetically

dominated (β < 1) solar corona, and the thermally dominated (β ≥ 1) supersonic,

superalfvenic solar wind. Traditionally, coronal physics has further divided the mag-

netically dominated portion into four regions: the photosphere, the chromosphere, a

very thin transition region, and the corona. Heliospheric physics beyond the low-beta

corona, also referred to as the interplanetary medium, is concerned with the solar

atmospheric plasma expansion that comprises the solar wind. This research concerns

the coupling dynamics between the corona and heliosphere, and therefore necessarily

takes the entire system point of view.

The boundary between the solar interior and the solar atmosphere is the photo-

sphere. The visible solar disk has a sharp edge due to the fact that at this point the

plasmas optical depth at a wavelength of 5000 Å (i.e., the absorption coefficient over

path length for white light) transitions to unity over a very thin layer, approximately

500 km (equivalently 0.07% of a solar radius). Above the photosphere, electromag-

netic radiation escapes the Sun relatively unimpeded into space. The plasma density

within the photospheric layer is of order 10−7 g cm−3, and the temperature decreases

to a global minimum of roughly 6000 K . In sunspots, the local photospheric temper-
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ature is even further reduced to approximately 2/3 of the surrounding value, since the

strong field greatly inhibits convective overturning. White light observations of the

photosphere show a highly compressible, granulation pattern driven by internal con-

vection (see Figure 2.3). Typical length and turnover time scales of the granulation

pattern are of order 1 - 2 Mm and 5 - 10 minutes respectively. Larger-scale super-

granulation patters have also been observed at respective spatial and temporal scales

of ! 20 Mm and roughly 24 hours. Doppler shifted images reveal typical plasma flow

velocities around 1 - 3 km s−1 or less.

The chromosphere and transition regions are in some sense a thin collar that

couples the relatively cool, thermally-dominated solar surface, to the hot, tenuous,

magnetically-dominated corona. Across approximately 10,000 km in altitude, the

plasma density drops by nearly 8 orders of magnitude. The chromosphere, named for

the Hα (Balmer series 3→ 2 line) dominated emission spectrum, is the layer extending

about 2000 km above the photosphere. Within this region, the plasma temperature

increases from 4500 K to nearly 25,000 K. Though the intensity in the chromosphere

is nearly 10−4 of the photospheric value, a great deal of structure is seen in the He II,

Fe II, Si II, Cr II, and in particular Hα, Ca II H, and K spectra. Among a rich array

of phenomena observed within the chromosphere, supergranulation on length scales

of order 30,000 km with convective velocities similar to photospheric values become

evident. Abundant supersonic plasma jets known as spicules, driven by sound waves,

burst forth on 5 minute timescales carrying material from the photosphere into the

chromosphere and low corona. The transition region is defined as the extremely

thin layer, only several hundred kilometers, above the chromosphere over which the

temperature rises to order 106 K. As a result of such large temperature and density

gradients, the transition region may only be selectively observed at various altitudes

with ultraviolet and extreme ultraviolet (EUV) wavelengths of the 1216 Å Lyman α

at 2 ×104 K, the 977 Å C III at 9 ×104 K, and the 1032 Å O VI at 3 ×105 K.
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Figure 2.3: Photospheric granulation and sunspots in Active Region 10030, 15 July
2002 (G. Schamer, et al., Swedish 1-meter Solar Telescope (SST), Royal
Swedish Academy of Sciences)
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The magnetic field emerging from the solar interior is expelled to the inter-granular

network lanes at the photosphere, and undergoes tremendous expansion across the

chromospheric layer owing to the large decrease in plasma density. Missions such

as the Solar and Heliospheric Observatory (SOHO), Transition Region and Coronal

Explorer (TRACE) have revealed much about this dynamic expansion. The lowest

concetration field strength of flux that reaches into the chromosphere and low corona

is the so-called magnetic carpet. This ubiquitous, rapidly-varying, emergence, frag-

mentation, and cancellation structure has field strengths on the order of only a few

G. Structure on the carpet scale is continuously replenished on timescales of order 40

hours (Title & Schrijver (1998)). This field is mainly observed with SOHO’s Michel-

son Doppler Imager (MDI) experiment (also sometimes referred to as the salt and

pepper field since MDI measurements represent the radial field polarity in black and

white; see Figure 2.4), and is shown to occur across the entire solar surface. With

typical field strengths at such a low level, it is unlikely the flux of the magnetic carpet

can rise very far above the photospheric/chromospheric layers. Since the magnetic

carpet field strength is so small and turnover timescale so fast, this component is

normally neglected in the standard coronal magnetic field models.

Above the transition layer is the magnetically dominated plasma of the solar

corona, so tenuous that it is essentially completely transparent to radiation (with

the exception of radio). To altitudes less than roughly 1.5 - 2 solar radii above the

visible disk, the magnetic energy exceeds the plasma thermal energy (with localized

exceptions such as in the vicinity of a magnetic null-point or magnetic cusp). Gary

(2001) built an observational picture constraining the coronal plasma beta using var-

ious physical parameters (see Figure 2.5). This comprehensive study finds a β < 1,

across the majority of the solar corona. As a consequence of the low-beta condition,

plasma flows are confined parallel to the field lines, and any cross field transport

is greatly inhibited (at least over typical coronal dynamics timescales), resulting in
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Figure 2.4: The magnetic carpet is the weak bipolar flux ubiquitous throughout the
background (Full disk SOHO MDI image, 3 Feb, 2007)
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Figure 2.5: Solar coronal plasma beta profile (Gary (2001))

a thermodynamic structure in the corona not gravitationally stratified, but rather

consisting of highly inhomogeneous, thermally isolated flux tube systems.

As a low-beta system, the energy of the corona is mainly stored, transported, and

dissipated by the magnetic field, making the magnetic field and it’s evolution the

most important piece of the puzzle required to understand coronal dynamics. Unfor-

tunately, even with all the advances in observational and measurement techniques in

both space and ground-based observatories, the coronal magnetic field remains possi-

bly the least well-defined physical property in the solar atmosphere. Of the existing

measurement techniques, very few directly determine the magnetic field structure,

and none measure the full field at high altitudes. For the most part, the geometric

configuration is built from indirect measurements of the field strength and extrapola-

tion methods. Table 2.1 lists the various solar magnetic field measurement techniques,

both direct and indirect methods.

The radiative energy output over much of the corona is nearly 6 orders of mag-

nitude less than the photosphere, making it only visible during a total solar eclipse

where the glare from the solar disk has been blocked (Carroll & Ostlie (1996)). Typ-

18



Direct Methods

Faraday rotation
Polarization of free-free emission
Hanle effect
Zeeman splitting of spectral lines
Stokes polarimetry in infrared lines

Indirect Methods

In-situ vector field measurements by spacecraft at ! 0.5 AU
Microwave radio bursts with gyro-resonance emission
Decimetric bursts involving frequency drifts related to the Alfvén speed
Metric type II radio bursts (shock speeds related to the Alfvénic Mach number)
Circularly polarized Type III bursts (dependent upon the refractive index of the local
magnetic field)
Potential Field and Force-Free field extrapolations from magnetograms

Table 2.1: Direct and Indirect solar magnetic field measurement methods

ical plasma densities in the corona are of order 105 - 109 particles cm−3. Under these

conditions, the gas and radiation field are not in local thermodynamic equilibrium,

so a unique temperature is not strictly definable. Fortunately, a reasonably consis-

tent temperature range of order 1 - 3 MK may be inferred from consideration of line

widths produced by thermal Doppler broadening, ionization state, and radio emis-

sions. Emission lines at these temperatures, seen in the EUV and soft X-ray regimes

of the solar spectrum, are mostly produced by free-free emission of electrons scattering

off highly ionized atoms such as Fe X and Fe XIV (Carroll & Ostlie (1996)). At these

temperatures and densities, the mean-free path of a particle is approximately 3 ×106

cm, orders of magnitude smaller than any typical structure length-scales (109 - 1010

cm). Finally, the dimensionless Lundquist number Rm is a measure of the resistive

effects within a conductive, magnetized plasma; a Lunquist number Rm >> 1 implies

a highly conductive medium with negligible dissipation. For typical coronal parame-

ters, the Lundquist number Rm > 1010, save regions like singular current sheets with

thicknesses small enough to reduce Rm " 1. Therefore, in the solar corona the ideal

(frozen-in) MHD approximation is a valid plasma description.
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Driven by the convective gas motions in the high-beta photosphere, the coronal

magnetic field can develop extremely complex and dynamic structures. In general

though, the minimum energy state of the magnetic field external to an isolated,

static, magnetized astrophysical body is the dipole. A hot, expanding atmosphere,

however, has the effect of dragging field lines away with the escaping gas. With the

advent of EUV/X-ray imaging from space missions, it became possible to observe

this coronal magnetic field structure directly. Even the low-resolution images from

the early SKYLAB mission showed clearly that the large-scale corona is composed of

two physically distinct regions: closed-field regions, consisting primarily of bright X-

ray loops, and coronal holes that are dark in X-rays (Zirker (1977)). The photospheric

flux below coronal loops is observed to be bipolar implying a closed field topology with

both foot points anchored in the photosphere, and field line connections remaining

entirely within the low-beta corona. On the other hand, the photospheric flux below

coronal holes is unipolar, on average, implying the field topology there is open, in

which the field lines have only one foot point fixed in the photosphere, and the field

line connections pass into and are carried away with the solar wind, out of the low-

beta corona extending into the heliosphere1. Coronal holes, therefore, are a source

region for solar wind, which also explains why these regions are dark in X-rays. The

plasma density there is low due to the large mass and energy flux required to power

the solar wind.

On the whole, the coronal magnetic field structure resembles a dipolar configura-

tion with a combination of separate open field coronal-holes, and large-scale, closed

field helmet-streamer regions (see Figure 2.6). This global geometry is the conse-

quence of the interplay between the magnetic energy and the thermal energy of the

expanding gas. Once the thermal pressure exceeds the magnetic pressure, the gas

1Physically, as there are of yet no magnetic monopoles, the divergence free condition for the
magnetic field is always satisfied requiring all field line mappings to be continuous everywhere. The
open field lines in actuality either return to the sun, closing hundreds of astronomical units away,
or connect to the inter-stellar galactic magnetic field.
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Figure 2.6: The topological structure of the coronal magnetic field configuration is a
combination of open and closed flux topologies (S. Albers, High Altitude
Observatory, July 11, 1991).

expansion drags the field radially outward. The open and closed flux characterization

is a topological distinction, defined by the magnetic field line connections only within

the low-beta solar atmosphere. This large-scale solar coronal expansion process is

highly dependent on the particulars of the magnetic field strength distribution and

the coronal heating mechanism. Traditionally solar researchers have distinguished

the corona from the entire solar atmosphere based on this open-closed topological

characterization. In other words, for modeling and calculation purposes the solar

corona is nicely defined as the low-beta spherical annulus above the photosphere r

≡ R#, extending out to a solar wind source surface r ≡ Rss, where the field becomes

effectively radial.
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Of the rich variety of coronal field phenomenology, the simplest identifiable fea-

tures are the low-level, closed loop-like flux of the quiet-sun background, and the open

field coronal holes. The solar corona exhibits some semblance of these characteristics

consistently throughout the entire magnetic activity cycle; steadily evolving between

well-ordered at minimum activity to highly complex at maximum activity. Both the

quiet sun and coronal holes have typical field strengths on the order of 10 - 50 G and

are, in some sense, the average level of field strength continuously maintained across

the entire solar surface, suggesting a lower bound field strength threshold required

of the flux emerging from the convection envelope to expand the through the chro-

mosphere into the corona. Both open and closed topologies are inferred from EUV

and soft X-ray observations (Figure 2.7). Close examination reveals the quiet-sun

background is by no means homogeneous, but rather seems to be filled with small-

scale magnetic structures. On the other hand, coronal holes are not directly observed,

rather inferred from the dark regions (in X-ray) on the solar disk, indicating lower

density and temperature in the plasma. The open field topology provides efficient

plasma transport into the solar wind.

Coronal loop characteristics cover a wide range of sizes and field strengths. Larger-

scale “active region” loops occur over photospheric sunspots, and are typically filled

with relatively hot plasma, bright in both EUV and soft X-ray spectral ranges (Fig-

ure 2.7). The thermodynamic conditions of these loops are determined by the coro-

nal heating mechanism, apparently independent of what is happening at the photo-

spheric/chromospheric levels. Typical field strengths are several hundred G. Quies-

cent active regions have a typical lifetime on the order of several days, perhaps up

to a solar rotation period, following the lifetime of the photospheric sunspots below.

The energy that powers solar flares and coronal mass ejection (CME) is stored in

strong magnetic fields of active regions. A typical solar flare can release energies on

the order of 1032 ergs in about 10 minutes.
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Figure 2.7: Coronal magnetic field phenomenology characterization. ”Quiet-Sun”
background, bright ”Active Region” loops, and dark ”Coronal Holes”
open flux (SOHO EIT 195 Å, Jan 10, 2008).
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Figure 2.8: The coronal-hole pattern is governed by the photospheric flux distribution
following the solar magnetic activity cycle. SOHO; MDI & EIT 195 Å
comparison: A) 09-10 Jan 2008, B) 09 Nov 2002
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The large-scale coronal magnetic field complexity follows the solar activity cycle,

and in general, it is the photospheric flux distribution that governs the coronal hole

pattern (see Figure 2.8). To illustrate, during solar minimum coronal holes tend to

coalesce at the poles. As the activity cycle progresses, coronal active regions form

and dissipate with photospheric sunspots. The strong magnetic fields of active regions

distort the coronal hole boundaries, allowing open field corridors to dip into the lower

latitudes. With the increased number of sunspots, and by extension active regions,

during maximum activity, the coronal field develops an extremely complex, highly

dynamic geometric structure.

In a series of seminal papers, Parker predicted the existence of a supersonic solar

wind (Parker (1958), Parker (1963)b, Parker (1964)a, Parker (1964)b, Parker (1965),

Parker (1966)). The outward flow profile follows from consideration of the radial

component of the hydrodynamic equation of motion, continuity, and (for simplicity)

an isothermal energy equation (Velli (1994)). The solution to this system can be put

into a non-dimensionalized form for the flow Mach number as a function of radial

distance from the coronal base at r = R0,

1

2
M(r)2 − lnP (r)− gR0

r
=

1

2
M2

0 − lnP0 − g (2.1)

Where M0 and P0 are the Mach number and pressure at the base of the corona,

respectively; g = GM!
R0c2 is a non-dimensionalized gravitational constant, and c is the

thermodynamic speed of sound. Equation 2.1 is valid for both stellar atmospheric

expansion and accretion dynamics (Velli (1994))

The general solutions to this non-linear equation are illustrated by contours in

the well known (M, r) phase plane (Figure 2.9). Physical solutions for stellar coronae

expansion-flows correspond to single-valued contours initially subsonic (M0 < 1) at

the coronal base, and expanding into an inter-stellar medium with a low pressure.
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The solution manifold for steady-state outflow subject to these boundary conditions

is therefore, the transonic stellar wind curve, and the totally subsonic stellar breeze.

Of the separate expansion solutions, only the shocked supersonic stellar wind solution

is stable (e.g., Parker (1966), Velli (1994)). Finite inter-stellar pressure requires a

termination shock to shift the flow subsonic; only if the inter-stellar pressure is truly

zero will the wind remain supersonic to infinity. For a fixed pressure ratio and up-

stream (supersonic) Mach number, the Rankine-Hugonoit shock equations determine

the down-stream (subsonic) Mach number (shown as the dashed line in Figure 2.9).

The position of the termination shock is uniquely determined by the strength of the

back pressure and is given by the intersection of the dashed curve with the double-

valued region II solutions in Figure 2.9; the separation between the shock and the

transonic point decreases with increasing back pressure. Of course, the details vary

with actual conditions, but in general the solar winds transonic point is at roughly

2 - 5 solar radii, the supersonic asymptotic flow speed is reached within 30 solar

radii, and the termination shock has been measured by the Voyager missions between

roughly 80 - 100 AU.

The existence and stability of a shocked supersonic solar wind is a very robust

result stemming from the lowest order hydrodynamic analysis. At the next level

of complexity, as in the case of the solar internal structure, the effects of rotation

and a magnetic field are accounted for. On the whole, the solar wind has a plasma

β ≥ 1, as opposed to the very low-beta corona. The transition in the energy par-

tition from magnetic to thermal pressure, takes place around 2.5 - 3 solar radii, at

which point the expansion of the gas begins to drag the field lines radially outward,

defining the so-called, solar wind source surface (Schatten et al. (1969)). The radial

expansion combined with the solar differential rotation profile yields an IMF structure

with an Archimedes-spiral geometry. The observations of the IMF polarity structure,

while highly organized during solar minimum and can be rather complicated near
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Figure 2.9: The solar wind (M, r) phase plane describing stellar winds, breezes, and
accretion. The thick black curve is the physical solution corresponding
to solar wind expansion, with a termination shock (TS) connecting the
supersonic and subsonic branches of the solution in region II. The dashed
line represents the jump condition in flow speed across the shock. (Figure
adapted from Velli (1994).)
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Figure 2.10: Bi-modal solar wind structure and large-scale IMF polarity structure:
a) near minimum activity and b) near maximum activity. (McComas et
al. (2003))

solar maximum, though are always consistent with a single, global HCS separating

the large-scale inward and outward magnetic polarity throughout the entire 11 year

sunspot activity cycle (Smith et al. (2001), Jones & Balogh (2003)).

Solar wind plasma observations reveal a fundamentally bi-modal flow profile (Zur-

buchen et al. (2000)), the slow and fast wind regimes, which are a direct consequence

of the geometric structure of the global solar magnetic field. During the highly or-

ganized period near minimum activity, the steady-state slow and fast winds exhibit

relatively well ordered, nicely separate profiles (see Figure 2.10a). Observationally,

the slow wind consists of transient streams within an approximately 20◦ envelope

about the HCS (Zhao et al. (2009)), and compositionally associated with the topo-

logically closed, streamer-belt regions. The flow speed range is of order 400 - 500 km

s−1 corresponding to a thermal Mach number greater than 10. The near-Earth kinetic

temperature and particle density are of order 105 K and typically < 5 particles cm−3

respectively (as measured by the Advanced Composition Explorer (ACE) spacecraft

orbiting the Lagrangian point L1). The fast wind is a relatively homogeneous plasma
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with composition consistent with coronal holes and therefore associated with topo-

logically open flux. The faster flow speed (600 - 800 km s−1) is a consequence of the

plasma’s relatively unobstructed coronal escape along open flux lines. Near maximum

solar activity the two flow regimes are intermixed across all solar latitudes (see Figure

2.10b).

2.3 Theoretical Global Coronal Magnetic Field Structure

The energy liberation within the thermonuclear core is the source that powers

all solar and heliospheric phenomena from the deep interior all the way out to the

termination shock. The internal structure of the Sun is characterized by the domi-

nant energy transport mechanisms of radiation and convection. Owing to the highly

tenuous nature of the plasma of the solar atmosphere beyond the relatively thin pho-

tospheric, chromospheric, and transition region layers, neither radiation nor turbulent

convection are efficient means of energy transport. Therefore the magnetic field is

the principle conduit that couples the energy of the convective envelope to the solar

wind, and is the primary driver of coronal and heliospheric activity. Motivated by the

EUV/X-ray observations and by the basic theory of the solar wind given by Parker

(1958), a standard model has developed for the large-scale coronal magnetic field, the

so-called “quasi-steady” model (e.g., Antiochos et al. (2007)).

The simplest descriptions of the coronal magnetic field that captures the large-

scale structures are the so-called potential field source surface (PFSS) models (e.g,

Altschuler & Newkirk (1969), Schatten et al. (1969), Hoeksema (1991), Wang &

Sheeley (1992)). The PFSS models are based on three underlying assumptions. First,

on the largest scales and for specified boundary conditions (typically integrated line-

of-sight magnetogram observations of the photospheric normal component, and a

purely radial field assumption at the so-called solar wind source surface, around 2.5

- 3 solar radii) the magnetic field energy is a minimum. Second, since the magnetic
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field is the dominant physical characteristic throughout the majority of the corona,

gas pressure effects can be neglected at the lowest order of approximation. Finally,

owing to the fact that the typical Alfvén speed over much of the corona is roughly 103

km s−1, orders of magnitude greater than typical driving photospheric flows of 1 km

s−1, the coronal field adjusts nearly instantaneously to changes at the photospheric

boundary. Thus the evolution may be represented as a time series of stationary,

potential field, multipole expansions. The system dynamics are implicitly accounted

for by the changes in photospheric flux distribution, and not actually calculated.

Under the minimum energy and instantaneous adjustment assumptions of the

PFSS model, no currents develop in the corona. Mathematically, the vector magnetic-

field is taken to be everywhere curl-free, and therefore the equations of non-relativistic

magnetostatics reduce to a simple elliptic boundary value problem. Combining the

curl-free and divergence-free conditions, the magnetic field may be described as the

gradient of a potential function satisfying Laplace’s Equation (2.2),

∇2Φ = 0 (2.2)

In the corona, the natural representation of this equation is in spherical coordinates

{ (r, θ,φ) | r ∈ [R#, Rss] , θ ∈ [0, π] , φ ∈ [0, 2π) }. The general solution is given by a

spherical harmonic basis expansion,

Φ(r, θ,φ) =
∞∑

l=0

l∑

m=−l

[
Almrl + Blmr−(l+1)

]
Y m

l (θ, φ) (2.3)

Since the coordinate domain is a spherical-annulus between the photosphere R# and

a solar wind source surface Rss, both radial factors must be included. At the lower

boundary, r = R#, the field is given by the photospheric normal flux distribution, and

at the upper-boundary, r = Rss, the field is assumed radial. The angular coordinates

{θ, φ} are respectively the co-latitude and longitude.
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Figure 2.11: Magnetogram synoptic map for Carrington Rotation 2062: Oct - Nov
2007

The normal magnetic field distribution at the r = R# boundary is related to the

potential by,

∂Φ

∂r

∣∣∣∣
(r=R!,θ,φ)

= g (θ, φ) , (2.4)

where, the g (θ, φ) distribution is found empirically from photospheric magnetogram

observations (e.g., SOHO MDI experiment, see Figure 2.11).

In order to assure a purely radial field at the r = Rss boundary, the potential

function along that surface must be a constant. Making use of the gauge freedom to

choose the value of the potential field in order to simplify the analysis, the r = Rss

boundary condition is,

Φ(r = Rss, θ,φ) = 0 (2.5)
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Figure 2.12: PFSS model magnetic field structure corresponding to the magnetogram
synoptic map for Carrington Rotation 2062: Oct - Nov 2007. The
streamer belt magnetic field is shown in blue. Coronal holes of oppo-
site polarity are shown in red and green. The HCS follows the streamer
belt cusp at 2.5 solar radii. (Figure calculated from the PFSS model,
Community Coordinated Modeling Center, NASA Goddard Space Flight
Center.)
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Applying the two boundary conditions (2.4) and (2.5), the general expansion for

the magnetic potential can be written as,

Φ(r, θ,φ) = R#

∞∑

l=0

l∑

m=−l

Alm

(
R#

r

)l+1 [
r2l+1 −R2l+1

ss

lR2l+1
# + (l + 1) R2l+1

ss

]
Y m

l (θ, φ) (2.6)

Where the constant factors Alm are given by,

Alm =

∫

Ω

g (θ, φ) Y m
l (θ, φ)∗ dΩ (2.7)

Solar researchers typically apply some variation of equation (2.6) to compute the

coronal magnetic field. To a first approximation, these models tend to be very robust

when predicting and describing the large-scale poperties of the coronal field, capturing

the largest-scale structures (i.e., the streamer belt and coronal holes) in its lowest-

order moments (see Figure 2.12). As well, PFSS models do very well in predicting

the position of the HCS, and polarity of the global field.

Over the last decade, sophisticated MHD codes have been developed to include

both the magnetic field stresses and the gas pressure in the steady-state force balance.

The MHD codes solve the standard continuity (2.8) and momentum (2.9) equations

coupled to Maxwells equations (2.10 - 2.11) and Ohms Law (2.12) (provided in cgs

units),

∂ρ

∂t
+∇ · (ρv) = 0 (2.8)

∂ρv

∂t
+∇ · (ρvv) =

1

4π
J ×B −∇P + ρg +∇ · (νρ∇v) (2.9)

∇×B =
4π

c
J (2.10)
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∇×E +
1

c

∂B

∂t
= 0 (2.11)

E +
1

c
v ×B =

1

σ
J (2.12)

Where v, B, E, and J are the plasma velocity, magnetic and electric fields, and

current density respectively. ρ is plasma mass density, P is the plasma thermal

pressure, and g is the acceleration due to gravity. ν and σ are transport coefficients

of kinematic viscosity and plasma conductivity, respectively.

To close this set of equations, a specific form of the energy equation must be

assumed. Often the equation for internal energy conservation (2.13) is employed,

∂U

∂t
+∇ · (Uv) + P∇ · v =

1

(γ − 1)
S (2.13)

where U = P
(γ−1) , and γ is the ratio of specific heats. Energy sources (and sinks)

such as conduction and radiation can be generically represented by S. Note, if S =

0, this equation reduces to the adiabatic energy equation. Finally, a thermodynamic

equation of state is required to close the system, usually taken to be the ideal gas law

(2.14) in the solar atmosphere,

P =
( ρ

m

)
kT (2.14)

where k is the Boltzmann constant, T is the temperature, and m is the proton mass.

MHD equilibrium codes require a magnetic field structure, and in most cases sim-

ply use the PFSS calculation as the initial global magnetic field given by the photo-

spheric boundary conditions at each time step. The field is given at each point in time

by the same integrated line-of-sight magnetogram observations for the initial inner

boundary condition, but the radial field source surface outer-boundary requirement is
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Figure 2.13: MHD-PFSS solution comparison of the global coronal field for Carring-
ton Rotation 1910. Left, MHD equilibrium solution. Right, PFSS solu-
tion. (adapted from Zurbuchen (2007))

dropped, and the system is allowed to relax as it would accounting for thermal effects.

Relative to the PFSS structure, MHD equilibrium includes inherent thermodynamic

effects that tend to become pronounced, such as smoothing of cusp geometries and

extending the large-scale structures in the outer corona (see Figure 2.13). In addition,

non-dissipative current systems may develop in response to the relaxation, leading to

a series of force-free (i.e., the currents are everywhere parallel to the magnetic field)

equilibrium states. This MHD equilibrium relaxation process is highly dependent on

the details of the magnetic field configuration and the coronal heating mechanism.

Still, the force-free MHD equilibrium models are generally a good approximation for

stationary state evolutions, again justified by characteristic dynamic time-scales much

longer than the average Alfvén travel time.

These sophisticated MHD codes do have the capability to calculate fully-dynamic,

time development scenarios that include the effect of driving flow fields. Modern codes

such as the Adaptively Refined Magnetohydrodynamic Solver (ARMS) (Welsch et
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al. (2005), DeVore & Antiochos (2008), Lynch et al. (2008), Lynch et al. (2009),

Pariat et al. (2009)), the Predictive Sciences, Inc. solar corona MHD model (Mikić

et al. (1999), Linker et al. (2003), Riley et al. (2003), Lionello et al. (1999)), the

Berkeley Space Science Laboratory codes RADMHD (Abbett (2007)) and ANMHD

(Abbett et al. (2000), Abbett et al. (2001)), and the University of Michigan code

BATSRUS (Powell et al. (1999), Gombosi et al. (2000), Groth et al. (2000), Roussev

et al. (2003)), with appropriate initial magnetic field geometry and boundary flows,

can simulate full system evolutions within the described MHD framework, including

the development of dissipative current sheets. But these codes still require specific

and heuristic assumptions regarding the energy transport coefficients and heating

function to close the equations. Presently, the major drawback of these fully dynamic

calculations is their tremendous computational expense. Furthermore, a rigorous

time-dependent coronal environment model would require robust treatment of flux

emergence and cancellation, which is not yet available.

The described PFSS and MHD equilibrium time-series of stationary solutions

constitute the standard quasi-steady description of the coronal magnetic field. All in

all, these quasi-steady models tend to be very robust when describing the large-scale

properties (i.e., the polarity and geometric structure) and evolution of the coronal

magnetic field. For a given photospheric normal flux distribution, they predict a quiet-

sun, large-scale dipolar magnetic field topology with closed field loop regions, clearly

separate from the open field coronal hole regions. They capture the largest-scale

topological structures of the streamer-belt, active regions, and coronal-hole patterns.

As well, they predict a single global HCS at the source surface where the thermal

energy of the solar wind exceeds the magnetic energy of the coronal field and proceeds

to drag the field lines radially outward. Though the specifics of the dynamic evolution

are not calculated, implicit in these models is a continuous field line reconnection

process opening-up and closing-down of the magnetic field at the source surface driven
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by changes in the photospheric flux distribution (and assumed heating functions).

Concisely, the dynamics under the quasi-steady assumption are totally governed by

changes in the photospheric flux distribution; no change in the photospheric normal

flux distribution implies a static global magnetic field structure.

The force-free evolution of the quasi-steady regime is implicitly justified for a cou-

ple of reasons. First, as stated before, the large difference in timescales between the

driving flows and the Alfvén speed, allows the field to adjust nearly instantaneously

to energy injection. Second, from a phenomenological perspective, the large-scale

structures become pronounced with the first few moments in the potential field ex-

pansion. More important though, since only a singular current may represent a true

discontinuity in the magnetic stress tensor (i.e., current system such that the length

scale is small enough for substantial dissipation), the minimum energy force-free field

implies an everywhere smooth field condition (Antiochos et al. (2007)):

Smoothness Condition. In the absence of singular currents, magnetic field lines can

split only at locations where the field vanishes, such as true null points (Figure 2.14).

In the absence of long-lived singular current dissipation systems and building upon

this smoothness condition, Antiochos et al. (2007) identified very powerful restrictions

on the allowable geometric and topological structure of the coronal magnetic field,

and are listed below:

Uniqueness Conjecture. Every unipolar region on the photosphere can contain at most

one coronal hole (Figure 2.15).

Nested Conjecture. Coronal holes of nested polarity region must themselves be nested.

Nested Corollary. Any coronal hole that opens inside a nested polarity must encom-

pass the spine.

PIL Lemma. A coronal hole boundary cannot intersect a polarity inversion line.

Nested Lemma. A nested polarity region must be surrounded by either all open or all

closed field (Figure 2.16).
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Figure 2.14: Smoothness Condition. Left: Large-scale coronal background field is
smooth and continuous. The closed flux region (blue field lines) maps
across the equatorial PIL, while the open flux (red field lines) do not
map back to the surface. Right: The topological frame (spine and fan
field lines) required by the appearance of a 3D null point in the corona
that accompanies a PIL on the photosphere. (adapted from Antiochos
et al. (2007))

Two points of note are in order here. First, if long-lived current dissipation sys-

tems are included, the coronal magnetic field structure is not governed by these

theorems, and may sustain any geometric configuration. Second, in the absence of

creation and/or annihilation of magnetic null points, fully-dynamic MHD evolutions

will preserve initially separate magnetic domains, defined by the topological field line

connections. Thus, in the quasi-steady models as well as under dynamic MHD evolu-

tion the smoothness condition is preserved even in the presence of transient current

sheet discontinuities.

In addition to capturing the observed distribution of coronal holes on the Sun, the

quasi-steady models are fairly accurate in reproducing in situ measurements of the

steady-state fast solar wind plasma and IMF structure (e.g., Zurbuchen (2007), Lepri

et al. (2008)). Furthermore, the dynamics implicit in the model are in qualitative

agreement with coronal plasma observations. The observation of plasma inflows and
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Figure 2.15: Uniqueness Conjecture. Left: Configuration requires the closed flux to
the north of the disconnected coronal hole to split, closing across the
equatorial polarity inversion line. Such a configuration requires a null-
line or a long lived singular current. Right: Open flux corridor connect-
ing the disconnected coronal hole to the main polar coronal hole, satis-
fying the Smoothness Condition (adapted from Antiochos et al. (2007))

Figure 2.16: Nested Lemma. Left: A polarity region nested within the open field.
Right: A polarity region nested within the closed field (adapted from
Antiochos et al. (2007))
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outflows, (e.g., Hundhausen et al. (1984), Howard et al. (1985), Sheeley & Wang

(2002)), the observation of quasi-rigid rotation of coronal holes, and the existence of

the highly variable slow wind suggest continuous opening and closing down of flux at

the HCS, as predicted by the model.

There are several heliospheric observations, however, that appears to be in direct

conflict with the quasi-steady models. One observation in particular is the measure-

ment of electron heat flux in the solar wind. In order to close down heliospheric flux,

reconnection between open field lines must occur at an altitude below the Alfvén

point, where the magnetic energy still exceeds the thermal energy. Such a reconnec-

tion will create two loops: one having both foot points anchored to the solar surface

remaining below the Alfvén point, and the other - an inverted-loop - entirely detached

from the Sun and dragged away with the solar wind (see Figure 2.17 left). It is ex-

actly this type of reconnection process that is implied by coronal observations of the

streamer belt evolution. Conversely, the opening of previously closed flux requires

that a loop expand into the heliosphere and be dragged outward by the wind (see

Figure 2.17 right).

It has long been recognized that such processes should produce a signature in the

field-aligned suprathermal electron beams (∼70 eV to several keV) in the heliosphere

(Gosling (1990)). Streaming electrons directed away from the hot corona, indicate

open flux attached at a single foot point. Field lines with both foot points anchored in

the solar surface and dragged into the heliosphere by the solar wind would exhibit bi-

directional, counter-streaming electrons. On the other hand, inverted-loops would be

devoid of these suprathermal electron beams altogether, a so-called heat flux dropout.

Thus, the suprathermal electrons provide a local measure of the global field-line field

topology, and as such, are a predictive indicator of flux opening and closing. The

key inconsistency between heliospheric observations and the quasi-steady model is

that bi-directional electron beams and heat-flux dropouts in the solar wind are rarely
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Figure 2.17: Electron heat flux and IMF topology schematic depicting the suprather-
mal e− fieldline topology tracers for the reconnection process at the
HCS implied by the quasi-steady models. Left: Reconnection below the
Alfvén point generating a heat flux dropout in the solar wind. Right:
Bi-directional solar wind heat flux generation by fieldline dragging into
the solar wind.

observed outside interplanetary CME’s (McComas et al. (1989), McComas et al.

(1991), Lin & Kahler (1992), Pagel et al. (2005)).

Motivated by these in situ electron observations which imply negligible field line

opening or closing, along with energetic particle observations that imply field line

wandering across large a latitudinal extent in the heliosphere, and an approximately

constant open flux in the heliosphere, Fisk and co-workers have proposed an alterna-

tive theory for the solar/heliospheric magnetic field (see Figure 2.18): the interchange

model (Fisk et al. (1999), Fisk & Schwadron (2001), Fisk (2005), Fisk & Zurbuchen

(2006)). In this model the basic assumption is that the heliospheric open flux is held

constant throughout the solar cycle, except for the transient flux of CME’s. This

assumption appears to be well supported by observations, which show only small

variation from cycle to cycle in the total heliospheric flux at solar minimum when the

effect of CME’s can be accurately removed from the heliospheric data. Note, however,

that the observations for the latest minimum, cycle 23, seem to lower the minimum
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heliospheric open flux threshold, and may contradict the constant-flux assumption

altogether (Fisk & Zhao (2009)).

The basic manner in which the open field evolves in the interchange model is by

diffusive transport of the open field component of the coronal magnetic field. The

dominant process determining the open-field’s evolution is the so-called interchange

reconnection between the open and closed flux, which always conserves the amount

of each type (e.g., Crooker et al. (2002)). The working mechanism of this model

exploits the ubiquitous, rapidly varying, small-scale emergence and subductance of

closed magnetic carpet flux, which typically occurs over such short time scales that

it is neglected by the quasi-steady models. Effectively, magnetic carpet loops emerge

into the corona and come into contact with oppositely directed open field lines. Inter-

change reconnection exchanges field line identities, swaps foot points, and allows the

open flux to execute a random walk, with an average large-scale circulation pattern

across the corona (see Figure 2.19).

This diffusive motion leads to a magnetic topology consisting of a complex mix-

ture of open and closed field; in other words, disconnected coronal holes within the

loop regions. The important point here lies in the assumption that the continuous

emergence of the magnetic carpet flux generates an effective current dissipation layer

over the entire closed flux region of the solar surface, and as such allows the diffusing

open field lines to thread through this forest of randomly oriented loops.

Mathematically, the interchange model is governed by a diffusion-convection equa-

tion (2.15) in which the open magnetic field component is treated as an effective

surface density of uniquely defined open field lines that evolve independently of the

surrounding field.

∂Bo

∂t
= ∇2 (κBo)−∇ · (uBo) (2.15)
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Figure 2.18: The global open flux evolution of the interchange model is by diffusive
surface transport. (Note, this figure has been updated from the Fisk et
al. (1999) reference, to reflect proper topological interaction of the open
and closed flux at the streamer belt boundary.)
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Figure 2.19: Local evolution mechanism for the interchange model schematically de-
picting the random walk of the open field line as a consequence of inter-
change reconnection with small carpet loops. (Fisk (2005))

where Bo is the open component of the magnetic field, and u is the horizontal compo-

nent of the driving velocity field. The interchange reconnection mechanism is captured

in the diffusion coefficient κ = (δh)2

2δt , by assuming the field lines exchange identities,

and the respective foot point of the open field line jumps a distance δh, the separation

of the loop foot points.

This media diffusion equation can be derived from the magnetic induction equation

under a quasi-linear approximation (Fisk & Schwadron (2001)), and is appropriate for

cases in which systematic convective motions, such as differential rotation, meridional

flow, and granular convections of an external medium, are responsible for the diffusion

process (Parker (1963)a). The global solution predicts open flux accumulation in

regions where the rate of loop emergence is a local minimum, offering an effective

self-consistent coronal hole formation theory. Secondarily, this process also offers a

route in which small closed loops may coalesce into larger loops. Thus, in some sense,

the interchange model on the whole offers a viable explanation regarding the how

a given global coronal magnetic field configuration develops; an important aspect
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the quasi-steady models are wholly unconcerned with. In addition, the interchange

model naturally predicts a slow wind with closed loop plasma properties. The model

rationalizes why the heliospheric flux has an approximately constant lower bound

throughout the activity cycle.

It should be emphasized that the reconnection postulated by the interchange

model is quite different than that in the quasi-steady model. In the latter, recon-

nection occurs primarily at the HCS, because that is where open field lines close

down. Although field line opening does not require reconnection, the opening often

involves the ejection of a plasmoid from the top of a streamer, which implies recon-

nection again at a newly-formed HCS. Reconnection in the interchange model, on

the other hand is statistical in nature, and occurs primarily between open flux and

the closed flux of coronal loops leading to a diffusive motion of open field in the low

corona. The open field is derived to mix indiscriminately with the closed, throughout

the corona, so that reconnection between open and coronal-loop field occurs con-

tinuously. The interchange model, therefore, postulates a very different magnetic

topology than the well-separated open and closed topology of the quasi-steady. For

the interchange model to be valid the open-field topology must be discontinuous (i.e.,

disconnected coronal holes) and inherently dynamic, whereas for the quasi-steady to

hold, the topology must remain continuous throughout any coronal-field evolution.

We conclude that these topological differences are a strong discriminator between the

two models of the open field.
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CHAPTER III

Magnetic Field Structure and Dynamics

Within the low-beta solar corona, it is the magnetic field that transmits the forces

between fluid regions. These forces can propel CME’s, drive solar flares, and are

responsible for key aspects of coronal activity. Powered by the convective flows at

the photosphere, the storage and transmission of field stresses determine the field

geometry across all spatial scales. The evolution of the coronal magnetic field on

timescales faster than resistive diffusion depends on the dynamical processes of current

sheet formation, stability, and reconnection physics. In this chapter, we review the

structure and dynamics of the magnetic field. In section 3.1 we derive the magnetic

stress tensor from first principles, and place the structure of the magnetic field in

the context of topologically well-separated magnetic domains. Section 3.2 contains a

description of the 3D null-point structure associated with the 2-flux, embedded bipole

system, likely the simplest and most common magnetic configuration in the solar

corona. In section 3.3, we review the theory of current sheet formation, generalizing

the 2D formulation of Syrovatskii to 3D. As well, we examine the physics of the

resistive instabilities, with a focus on the tearing mode which is the reconnection

initiation mechanism. In the last section 3.4, we discuss field relaxation in terms

of the Sweet-Parker and Petchek reconnection mechanisms. Finally, we show that

helicity constraints require the final configuration of the global magnetic field on
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timescales much smaller than the resistive dissipation time to be force-free.

3.1 Structure of the Magnetic Field in 3-Dimensions

Fundamentally, the stress-energy storage and transport within the coronal mag-

netic field is influenced by field line connectivity. Recall the phenomenological struc-

ture of the coronal magnetic field geometry characterized by two fundamentally dis-

tinct topologies: the open and the closed flux (see chapter II, section 2.2). The

key difference between the separate topologies is that the closed lines can contain

long-lived stress (i.e., currents given by relation 2.10) whereas the open lines must be

stress-free on time scales long compared to the scale of transients. Closed field lines,

by definition, have both ends anchored in the photosphere and thus they maintain

the stresses exerted by the gas. Open field lines, on the other hand, have only one

end line-tied while the other is at infinity, so that any stress injected by photospheric

motions will propagate into the heliosphere. Thus, in general coronal magnetic field

evolution is nicely understood when described in terms of multi-polar nested flux

domains, which find a natural representation in terms of the magnetic field stress

tensor.

The magnetic field stress tensor is directly derivable from the Lorentz force in the

frame of the plasma,

F = qE +
1

c
J ×B (3.1)

Using Gausss Law and the full Ampere-Maxwell equation to eliminate the charge

and current densities, q and J , this force equation may be readily derived from the

4-divergence (metric signature = +2) of an electromagnetic field stress-energy tensor,

Fi =
∂

∂xj
(Mij)−

1

c

∂

∂t

(
Qi

c

)
(3.2)
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The stresses transmitted through the electromagnetic field are given by the Maxwell

tensor,

Mij =
1

4π
(EiEj + BiBj)−

1

8π

(
E2 + B2

)
δij (3.3)

Physically, the full electromagnetic stress-energy tensor Mij represents the Lorentz

force per unit area exerted in the i-th direction, on an area with normal in the j-th

direction. In other words, the force exerted by the field on the positive side of the

area, on the field on the negative side of the area. The orientation sign convention is

such that the tension is positive and the pressure is negative. Thus, the first terms on

the right hand side (RHS) of equation (3.3) represent the tension along the electric

and magnetic field lines, while the second terms can be interpreted as isotropic field

pressure forces.

The momentum density contained in the electromagnetic field is Qi

c2 , where Q is

the Poynting vector,

Q =
c

4π
E ×B (3.4)

The electromagnetic momentum density Qi

c2 term may be neglected with respect to the

momentum density of the plasma fluid ρvi. For non-relativistic fluids the unbalanced

dynamical pressures are at best comparable to the magnetic pressure, and the ratio

of these two terms is of order
v2

A
c2 where vA is the Alfvén speed.

For a highly conductive (η << 1), non-relativistic fluid (v << c), as in the solar

corona, comparison of the terms in Ohm’s Law
∣∣E0
B0

∣∣ ∼
∣∣v

c

∣∣, show the electric field

terms are everywhere smaller than the magnetic terms by a factor of v
c , and therefore

the electric field terms may be neglected. Thus the Maxwell tensor (3.3) reduces to,

Mij ≈
BiBj

4π
− B2

8π
δij (3.5)
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The physical interpretation of the magnetic stress tensor is exactly the same as the

Maxwell tensor tension and pressure terms.

Since the magnetic tension acts only along the direction of the field lines, the

forces transmitted throughout the field are dependent on the field line connections

to various boundary regions. These topological connections divide the total volume

into nested magnetic domains, based on the stress distribution within the field. For

example, the open and closed field line topology designations define magnetic domains

based on the field line boundary conditions. The field line connections that map to

different regions of the photosphere (i.e., closed), or from the photosphere to the

source surface (i.e., open), distribute and dissipate the stresses differently throughout

the domain. In addition, the photospheric flows can generate volumetric stresses

(i.e., small field gradients) within a given closed flux domain. On the other hand,

the domain boundaries are magnetic surfaces separating regions of different field line

boundary conditions. Therefore, sharp stress discontinuities (i.e., large field gradients)

tend to form along these surfaces since they divide regions with different Lorentz stress

distributions.

The coronal magnetic field and plasma system is energized by the flux emergence

from the interior and the boundary flows at the photosphere. In order to deter-

mine the relationship between the field stress above the photosphere and the system

drivers, consider the rate at which the electromagnetic field does work on a parcel of

plasma. Under the same assumptions used in the reduction of the full Maxwell stress

tensor (equation refMaxwellStress) to the magnetic stress tensor (equation refMag-

neticStress), we find the rate of change of magnetic energy to be directly related to

the magnetic stress tensor,

∂

∂t

(
B2

8π

)
= Mij

∂vi

∂xj
− ∂

∂xi

(
vi

B2

8π

)
(3.6)
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The first term on the RHS of equation (3.6) represents the energy input due to the

stretching of the field lines, and compression against the isotropic magnetic pressure.

The second term is the change in energy due to flux passing across the boundary

(e.g., flux emergence). In this work we do not consider velocity flows normal to the

photosphere, or flux carried away by the solar wind. Thus, we neglect the energy

change due to flux passing in/out of the low-beta corona, and the change in magnetic

energy is simply the rate at which the fluid velocity does work against the magnetic

stresses.

3.2 Structure of 3-Dimensional Magnetic Null Point

The magnetic domains are topological in nature, since they follow directly from

the field line connections of the magnetic field structure and remain intact under

general physically allowable deformations. If the Smoothness Condition (chapter

II, section 2.3) is valid in the solar corona, then the number of nested multi-polar

flux domains is correlated with the number of PIL’s at the boundary. (n) PIL’s

at the photosphere implies (n + 2) magnetic domains in the corona. To illustrate,

the simplest quiet-sun coronal field structure consists of a single equatorial PIL

and three global flux domains that are the streamer belt and two polar coronal

holes. The addition of a single bipolar flux system embedded within the global coro-

nal background, in general (i.e., excluding the highly-symmetric, nearly-unphysical

cases), involves adding one PIL at the photosphere across which low-lying field must

connect (e.g., chapter VI, Figure 6.1). Note, the open coronal hole regions do

not require a photospheric PIL, and thus in general, the relation must be aug-

mented by adding the number of disconnected coronal holes to the number of flux do-

mains, (n + 2) → (n + total number of disconnected coronal holes), which for com-

plex topologies can be countably very large.

For a potential field configuration, a boundary PIL implies the existence of a 3D
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null-point at an altitude that depends on the strength the opposite polarity spot at

the boundary (e.g., Figure 6.1). A 3D magnetic null point is very simply a point

in the field in which the magnitude is zero. Note, the global quiet-sun background

field structure does in fact include a null point at infinity. The nested flux struc-

ture that includes current systems may, depending on the strength of the currents,

exhibit deformations in the overall geometry of the domain and null-point. Though,

deformed they still retain the basic flux domain structure since volumetric currents

reflect smooth gradients in the field geometry, and current sheets are simply stress

discontinuities that form along the domain boundaries. In general, multiple magnetic

domains within the total volume require multiple boundary PIL’s each carrying a

(possibly deformed) 3D null-point.

In a potential field, the geometric field structure near the 3D null-point defines the

magnetic domain boundaries. By the Smoothness Condition (see chapter II, section

2.3) field lines are degenerate (i.e., the field line mappings through the null point are

multi-valued; see Figure 3.1 right) at the null-point, so that the field lines emanating

from or converging to the null-point constitute the topological domain boundaries,

the so-called ”separatricies”. The neighboring field lines in its vicinity, on either

side of these separatricies map to disconnected boundary regions. The basic field

structure of the 3D magnetic null-point, and therefore the domain separatricies, is

completely determined by the properties of the first-order Jacobian matrix of the

Taylor expansion of the magnetic field about the magnetic null point (Lau & Fin

(1990), Parnell et al. (1996)). For a magnetic null-point at position x0, the magnetic

field structure in the vicinity x0 + dx is found from,

Bi (x0j + dxj) =

(
∂Bi

∂xj

) ∣∣∣∣
x0

dxj + h.o.t. (3.7)

where
(

∂Bi
∂xj

) ∣∣∣∣
x0

is the Jacobian of the field evaluated at the null point x0, and h.o.t.

51



stands for “higher order terms” in the infinitesimal dx.

By the divergence free condition of the magnetic field, the Jacobian
(

∂Bi
∂xj

) ∣∣∣∣
x0

has a

zero trace, which in turn implies the eigenvalues λi necessarily sum to zero. For all real

eigenvalues, the corresponding magnetic field is potential; for 1 real and 2 complex

conjugate eigenvalues, the magnetic field has free energy associated with currents.

Regardless of the field energy state, the set of eigenvectors defines the topological

frame associated with every first-order magnetic null-point (note, higher-order nulls

exhibit highly symmetric properties that are unlikely to be found in nature since they

are unstable under general field perturbations). The eigenvalues with the real part

of the same sign correspond to eigenvectors that span a 2D plane known as the fan

surface, while the other eigenvalue/eigenvector defines the one-dimensional (1D) spine

lines (see Figure 3.1 right). The relative magnitudes of the fan-surface eigenvalues

represent the relative field line density along the surface. For general properties of

the topological spine-fan frame, see Lau & Fin (1990), Parnell et al. (1996), Longcope

(2005).

The field line structure in the vicinity of the null-point can be discerned in terms

of a position vector r (s) as a function of arc length, s. The field line mapping is

defined by,

∂

∂s
ri (s) ≡ Bi =

(
∂Bi

∂xj

) ∣∣∣∣
x0

rj (s) (3.8)

Employing the notation of Parnell et al. (1996), under the linear transformation

r (s) = P u (s), the field lines are the solutions to,

∂

∂s
ui (s) =

[
P−1

ij

(
∂Bi

∂xj

) ∣∣∣∣
x0

Pjk

]
uk (s) (3.9)

where P is the matrix of eigenvectors of
(

∂Bi
∂xj

) ∣∣∣∣
x0

. The field line mappings defined
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Figure 3.1: 2-Flux embedded bipole system schematic. The separate magnetic do-
mains are defined by the field line connections. The null-point topology
adapted from Longcope (2005).

by the solutions to equation (3.9) are degenerate (i.e., multi-valued) at the null point,

as can be seen by tracing the solutions (direction depending on the sign of the eigen-

values) through the null point.

The simplest illustration of the 3D null-point and multi-domain geometry is the

2-flux embedded bipole system (see Figure 3.1 left) expected to be found ubiquitously

throughout the solar corona. The fan surface, whether emanating from or converging

to the 3D null-point, is the magnetic surface separating the various magnetic domains,

since the field lines map the overall volume boundary to the null-point. The magnetic

domains are themselves topological in that they are preserved under the physically

allowed evolutions of both ideal and resistive MHD. Though reconnection alters the

topological connections of individual field lines, the process as applied to the magnetic

domains serves only to transfer flux across the domain boundaries.

Under certain conditions, the 3D null-point is, in general, a unique invariant of

the system topology. This topological invariance implies an additional corollary to

the smoothness condition,
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Smoothness Corollary. In the absence of flux injection, magnetic null points are pre-

served.

A qualitative proof follows from very simple physical arguments, though 3D MHD

calculations are required for a full rigor. Simply put, for smooth, continuous photo-

spheric flow fields, magnetic null points may only be created by the injection of new

field structures, such as bipolar flux emergence at the photosphere without helicity

into the background field. The non-equilibrium requires current sheet discontinuities

along the magnetic domain boundaries, which in turn dissipate by reconnection. In

the absence of helicity, or if the boundary conditions allow the helicity to escape the

system (i.e., open field lines act as a helicity sink), the system may relax all the way

to a potential field. Thus the final state of the current sheet dissipation is a 3D

null-point in order to account for the new magnetic domain topology (see Figure 3.1

left). On the other hand, in MHD evolution existing magnetic null points are not

destroyed, only deformed by field stressing and current sheet generation. Presently,

the micro-evolution of the magnetic field and reconnection physics in the vicinity of a

null-point is not well understood. As a consequence of the smoothness corollary, the

fan surfaces associated with each null-point system are also preserved, and therefore

the magnetic domains themselves are conserved topological features of the system.

3.3 Dynamics of Current Sheet Formation and Stability

In a high conductivity, low-beta environment, such as the solar corona, the mag-

netic field is strong enough to dominate the plasma dynamics. Introducing energy and

helicity through boundary flows and flux injection generate stresses within the field

that significantly affect the geometric structure. Within the framework of MHD, the

evolution of the magnetic field is governed by the standard Induction Equation; com-

bining equations 2.10, 2.11, and 2.12, and defining the plasma resistivity transport
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coeficient η ≡ c2

4πσ , the standard Induction equation is,

∂B

∂t
= ∇× (v ×B − η∇×B) (3.10)

Equation (3.10) gives a complete MHD description of the magnetic field evolution,

which depends on the velocity field, and the plasma resistive transport coefficient.

The velocity term governs the ideal evolution (i.e., η = 0), in which the motions

of the magnetic field and the plasma are coincident (i.e., frozen-in). The resistivity

term describes the rate at which the magnetic field may slip through the plasma

(generating heat in the process). The Lundquist number Rm ≡ vL
η (also known as

the magnetic Reynolds number), defined by the ratio of the velocity term to the

resistivity term, is a measure of the relative importance of these two effects. A

high Lundquist number indicates a non-dissipative system in which the ideal, frozen-

in description of the plasma is a good approximation across the majority of the

medium. Note, dissipative effects may become important even in high-conductivity

systems, in places where the characteristic scale lengths are small locally reducing the

Lundquist number Rm " 1. Thus, even in the highly-conductive coronal environment,

the effective Lundquist number is reduced at places such as pinch sheets where the

corresponding characteristic length scale is reduced, and resistive physics becomes

very important.

Over the majority of the volume of the corona, the Lundquist number is so high

that the system evolution may be described as ideal (i.e., η = 0). However, in the

presence of so-called singular lines, even arbitrarily high conductivity does not ensure

ideal evolution. Along these lines the electric current density becomes large enough

for dissipation to significantly affect the system evolution. Thus, in these regions the

given magnetic field and the frozen-in condition are relegated to initial and boundary

conditions, and the problem requires a self-consistent solution of the full system of
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Figure 3.2: 2D X-Point collapse schematic: the non-linear 2D X-point collapse to
form a pinch sheet thin enough such that resistive dissipation becomes
dominant (adapted from Syrovatskii (1981)).

MHD equations (chapter II, equations 2.8 - 2.12) for both the magnetic field and the

velocity field

The simplest case of a singular line is the 2D X-point topology (see Figure 3.2 left).

When the system is in relative motion, a non-linear collapse occurs in the vicinity of

the singular line, such that a current sheet develops with a thickness small enough

to provide the necessary dissipation for arbitrarily high conductivity (see Figure 3.2).

Note that near the X-point the thermal pressure dominates, thus the plasma ther-

modynamic evolution plays an important role in the formation and development of

the dissipative current sheet. In fact, only if the conductivity were truly infinite,

would the current be confined to an infinitely thin sheet. The research presented in

this dissertation generalizes these 2D X-Line results to 3D X-Line (chapter IV) and

null-point (chapters V and VI) topologies.

The current sheet discontinuity that forms in the vicinity of the singular line

when the magnetic field is stressed is subject to a number of MHD instabilities such
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as the resistive-MHD modes of tearing, rippling, and gravitational modes (Furth et

al. (1963)), as well as thermal instabilities and various types of current driven micro-

instabilities resulting in anomalous resistivity enhancements (ion-acoustic, drift-mode,

Buneman, etc.)1. The basic idea is that the free magnetic energy available from the

sheared field structure drives the instability, in that the energy becomes accessible

to the plasma through resistive transport. Furth et al. (1963) showed how diffusion

of the field through the plasma drives the three resistive-MHD modes which produce

current filaments within the sheet of thickness l on timescales faster than the diffusion

time τη = l2

η (provided the sheet is wide enough that τA + τη). In each case, the

restoring force is always the Lorentz force which acts to straighten the field lines, and

if the instability is to take place, the driving force must be of the same magnitude

or greater than the restoring force (see Figure 3.3). In the case of the gravitational

mode, the driving force arises from a gravitational force transverse to the sheet, such

that the density gradient drives the plasma into the current sheet. The driving force

for the rippling mode is a positive resistivity gradient into sheet, thus the resistive-slip

of the field through the plasma increases for field closer to the center of the sheet.

The rippling mode may arise, for example, as a result of a temperature dependence

of the resistivity profile.

The tearing mode is the most important of the three resistive-MHD instabilities,

since it does not require any external drivers such as the gravitational force, or a

resistivity stratification for excitation. This is a long wavelength mode (i.e., for wave-

lengths longer than the width of the sheet), and occurs in any sheared field geometry

regardless of shearing angle. The driving force in this case, is not an actual vector

force in the classical sense; rather it is a process that keeps the magnetic pressure

in a locally reduced state with respect to the surrounding field. To illustrate, con-

sider if there were no diffusion, a local pinching of field lines would locally increase

1We consider only the resistive-MHD modes, in particular the tearing mode, leaving the other
instabilities outside the scope of this work.
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Figure 3.3: Generalized resistive-MHD instability schematic over a single wavelength.
The driving force vector FD is shown in blue, and the restoring Lorentz
force vector FR in yellow.

the magnetic pressure, which would then act to restore the equilibrium. Including

the resistivity however, leads to reconnection between neighboring lines. The tension

force in the newly reconnected field lines sweeps the flux away from the pinch-off

point, lowering the local magnetic pressure clearing the way for new flux to enter

and continue the perturbation. Note the pinch wavelength must necessarily be long

enough so that the tension-sweep will saturate the tendency for the field lines above

and below to straighten out. The process generates an alternating series of X-point

and O-point (also known as magnetic islands) topologies within the sheet (see Figure

3.4), each singular point being a place of current density enhancement.

The local dynamics of a 1D current sheet subject to a 2D perturbation has been

shown to be unstable to the tearing mode for perturbation wavelengths large relative

to the length of the sheet. A rigorous calculation of the linear growth rate for the

magnetic islands generated by the tearing mode shows the linear stage of island

58



Figure 3.4: Resistive tearing mode instability schematic over a single wavelength.
The reconnection process generates an alternating series of X-points and
O-points within the sheet.

formation and growth occurs on a timescale intermediate between the relatively short

Alfvén time τA, and the relatively long resistive timescale τη = Rm τA based on the

current sheet thickness, and is given by (Furth et al. (1963)),

γ ≈ 0.55
(∆a)

4
5

τAR
3
5
m

(3.11)

Where a is the sheet half-thickness, and ∆ is the normalized jump in perpendicular

gradient of the field perturbation normal to the current sheet discontinuity. The

product ∆a is related to the tearing mode wavelength in the sheared field, and though

the exact value varies from place to place along the length of the current sheet, this

quantity is roughly of order unity with respect to the global parameters of the system.

Non-linear effects tend to saturate the system, limiting the growth of the island sizes

to order the current sheet thickness. For pinch sheets of finite length, the overall

magnetic reconnection process sweeps the islands out the nearest end on timescales

of order the local Alfvén speed.
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2D MHD pinch sheet stability theory predicts a thin current discontinuity to be

unstable to the tearing mode all the time, even in the presence of a guide field (Furth

et al. (1963), Galeev & Zeleny (1976), Bulanov et al. (1979)). We generalize these

results to 3D for both a singular X-line (chapter IV), and a null-point (chapters

V and VI) as the current systems generated from field stressing relate to the global

evolution and dynamics of the coronal environment. We show, in the case of a neutral

sheet, the analogues to the 2D magnetic islands are 3D “magnetic plasmoids” with

an enhanced density structure. In addition, though such structures are subject to

the kink instability, the 3D perturbations limit the correlation length of the quasi-

ergotic, slinky-like fieldlines, and allow individual plasmoids to evolve independently

of each other as they are ejected from the current sheet. Thus, even though 3D

current sheet discontinuities remain unstable to the resistive tearing mode, the current

filaments that develop are ejected in such a way that the entire current sheet remains

“dynamically stable”, regenerating its integrity after each expulsion.

3.4 Magnetic Reconnection Dynamics

Traditionally, the phenomenon of magnetic reconnection is broadly recognized as

the rapid dissipation of magnetic stresses by a change in the local field topology

structure. Field lines with opposing polarity components squeeze together across the

current sheet, and following directly from the local resistive physics the lines of force

subsequently reconnect altering the magnetic connections between distant elements

of plasma. However, the global domain structure of the magnetic field, defined by

the foot point boundary conditions and transmitted stress distributions, is unaffected

by the reconnection process. The local topological modification simply relaxes the

sheared field by shifting flux between domains, thereby reducing the length of the cur-

rent sheet. This topological relaxation process conserves the total flux of the system.

Therefore, recast in the framework of global magnetic domains, the phenomenon of
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magnetic reconnection may be characterized simply as a flux exchange across the do-

main boundaries, in which the free energy associated with the sheared field geometry

is rapidly converted to bulk flow kinetic energy, and particle acceleration2.

The rate of flux exchange between domains (i.e., rate of reconnection) can be

qualitatively estimated from general considerations of the interplay between the mag-

netic energy and thermal energy of the plasma. Since the reconnection mechanism

conserves total flux, the rate of flux exchange between the domains separated by the

current sheet boundary, follows from the ratio of merging flow into the sides of the

current sheet to the flow out the ends, vin
vout

(see Figure 3.5). The Lundquist number is

very large away from the resistive region of the current sheet implying ideal, frozen-in

evolution of the field and plasma system. Thus, the rate of in-flow is nominally, the

relative motions of the plasma due to the system drivers. To determine the rate of

out-flow, we note the total pressure P + B2

8π of the system must be balanced across

the current sheet. Since the sheared component of the magnetic field changes direc-

tion across the current sheet, the magnetic pressure decreases to a local minimum

at the center of the sheet (note, the magnetic pressure of a guide component will

be a constant across the sheet). To compensate for the constant total pressure, the

thermal pressure must increase to a local maximum. Therefore, the amount of in-

crease in thermal pressure at the center of the pinch sheet is simply the magnetic

pressure of the sheared component exerted against the sides, ∆P = B2

8π . This in-

crease in thermal pressure at the center of the sheet expels the fluid out the ends of

the current sheet. By setting the dynamic pressure equal to the increase of thermal

pressure, 1
2ρv2

out = ∆P = B2

8π , the exit speed of the fluid is simply the Alfvén speed,

vout = B

(4πρ)
1
2
≡ VAlfvén. In effect, it is the magnetic pressure outside the current sheet

that is driving the field merging and reconnection.

2An MHD description cannot account for particle acceleration, since the only transport coeffi-
cients available to connect the macro-continuum physics with the micro-kinetic physics are, at most,
the resistivity and viscosity coefficients.
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Figure 3.5: Basic reconnection structure illustrating the relationship between the field
geometry, current sheet, and in/out flows.

A rigorous derivation of the reconnection rate based on conservation principles

(see Appendix A) was first worked out by Parker (1957). For a current sheet of

dimensions L × δ (as shown in Figure 3.5), Parker showed the reconnection rate is,

modulo a constant, inversely proportional to the square root of the Lundquist number,

vin

VAlfvén
∝ 1

(Rm)1/2
(3.12)

Note, by continuity, the reconnection rate is simply the current sheet aspect ratio,

vin
vout

= δ
L . Equation (3.12) is effectively an upper-limit on the in-flow speed as a

function of the Lundquist number such that the conservation of energy is not violated.

For typical coronal Lundquist numbers of 104 - 106, the corresponding in-flow speed

is of order 0.01 VAlfvén - 0.001 VAlfvén.

Motivated in part by the fact that the Sweet-Parker reconnection rate (3.12) based

on the global Lundquist number is too slow to explain the energy release timescales

for solar flares, Petschek (1964) suggested there is no a priori reason that the extent
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of the dissipation region should be identified with the overall sheet dimension L. The

basic idea is to drive up the merging rate by reducing the size of the dissipation re-

gion over which the resistive physics is valid. Recall, the external magnetic pressure

drives the field merging, and hence by conservation of energy the sheared component

of the magnetic field must either decrease, or at best remain constant, as it is car-

ried toward the current sheet. On the other hand, flow field necessarily includes a

stagnation point, and such flows have the geometric property that two neighboring

elements separate without bound as the flow passes the stagnation point. Thus, out-

side the dissipation region, since the field is frozen-in, the sheared field components

are stretched without bound. The Sweet-Parker rate is based on the fact that the

length of the dissipation region is large enough so there is no appreciable spread in

neighboring fluid elements before the merging fields enter the dissipation region. As

a consequence, the merging flow velocities remain very low with respect to the Alfvén

speed.

The only self-consistent solution to a system with a narrow dissipation length that

maintains energy conservation requires a steady-state hydromagnetic shock structure

(see Figure 3.6). The shocks in the flow field allow the merging velocities to remain

constant all the way down to the dissipation region scales, thereby halting the growth

of the sheared field components as they approach the stagnation point. The magnetic

field geometry of the standing Alfvén waves associated with the shocks is determined

by the system dynamics. The geometry of Figure 3.6 (top), illustrates the standing

Alfvén wave initiated on the merging field lines near the local diffusion region, and is

the situation first suggested by Petschek (1964). Whereas in Figure 3.6 (bottom), the

Alfvén wave is initiated on the merging field lines by some external perturbation3.

Even though both magnetic field geometries in Figure 3.6 are consistent with the

shock structure, it is more likely the disturbance in the magnetic field generating

3This configuration permits the most rapid reconnection, though requires an additional standing
Alfvén wave in the magnetic field along the out-flow direction (Sonnerup (1970)).
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the standing Alfvén wave initiates with the local dissipative region (i.e., the Petschek

geometry). The reconnection rate associated with the Petschek geometry is (Petschek

(1964)),

vin

VAlfvén
∝ 1

ln (Rm)
(3.13)

For coronal Lundquist numbers of order 104 - 106, fast reconnection merging rates

are a significant fraction of the Alfvén speed, ∼ 0.1VAlfvén.

Depending on the driving conditions at the boundary and the stress distribu-

tion within the global magnetic field structure, the local reconnection rate can vary

continuously from the relatively slow Sweet-Parker (3.12) to fast Petschek (3.13). Re-

connection can develop in several ways based on the global stress distribution, the

plasma resistivity profile, and the evolution of the boundary conditions away from the

current sheet. First, if the merging flux is not replenished, the reconnection rate will

reflect the global stress distribution and dissipate enough of the current sheet so that

a force-free equilibrium is reached. Second, for steady driving conditions replenishing

the merging flux at a fixed rate, the reconnection rate will reflect the driving rate.

Third, if the conditions allow, the merging rates may adopt any value, the reconnec-

tion rate is likely to take on the fastest possible rate in accordance with the stress

distribution, dissipating the current sheet entirely. In the solar corona, current sheet

dissipation is likely to be a complicated mixture of each of the three cases depend-

ing on the strength and geometry of the driving flows and flux emergence, and the

topology of the global field structure (i.e., open flux or closed flux).

Finally, the distribution of helicity in the global magnetic structure plays a major

role in the extent of the current sheet dissipation by reconnection in the solar corona4.

Physically, magnetic helicity is a measure of the overall twist in the magnetic field

structure, or equivalently quantifies the links between flux tubes. A gauge-invariant

4A full mathematical treatment of helicity and related quantities is given in Appendix B.
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Figure 3.6: The fast reconnection structure requires standing hydromagnetic shocks
(thick lines) attached to a small dissipative region. Top: Magnetic field
geometry in which standing Alfvén waves initiate with the local dissipa-
tion region. Bottom: Magnetic field geometry in which standing Alfvén
waves initiate externally to the system.
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definition of helicity (see Appendix B.1) in terms of the full magnetic field B and its

vector potential A, and the corresponding potential fields, BP and AP , associated

with the normal components at the boundary is,

K =

∫

V

(A + AP ) · (B −BP ) dµ (3.14)

Clearly, a purely potential field structure contains zero helicity. Thus, any equilibrium

magnetic field that includes helicity must have global stresses above the minimum

energy state distributed throughout the structure.

An ideally evolving global boundary transports helicity (see Appendix B.2) into

the volume according to,

dK
dt

= 2 c

∫

∂V

[ (AP · v)B − (AP ·B)v ] · n dS (3.15)

where n is the unit normal to the global boundary. Since the potential field BP is by

definition normal to the boundary, its corresponding vector potential AP is necessarily

tangent to the boundary. Thus, the terms on the RHS describe the helicity transport

by flow components tangent and normal to the global boundary respectively.

Helicity stress is only dissipated through Ohmic heating (see Appendix B.3) ac-

cording to,

dK
dt

= −2

∫

V

ηJ ·B dµ (3.16)

When compared to the dissipation of magnetic energy at a current sheet disconti-

nuity across which reconnection occurs, we find the helicity is dissipated during the
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reconnection process according to,

∣∣∣∣
∆K
K

∣∣∣∣ ≤
(

∆t

τd

) 1
2

(3.17)

Therefore, since the reconnection processes are effectively instantaneous (∆t → 0),

and occur at internal magnetic domain boundary surface discontinuities (i.e., η is

appreciably different from zero over only a small fraction of the total internal volume),

magnetic reconnection conserves helicity.

Away from the global boundary, the stresses tend to distribute the helicity as

uniformly as possible, encompassing the largest amount of flux within magnetic field

structure. In general, the minimum energy state of the global magnetic field geometry,

subject to helicity conservation, is a force-free configuration (see Appendix B.4),

∇×B = αB (3.18)

Globally closed field topologies cannot dissipate the helicity stress on timescales less

than the resistive dissipation, which leads to force-free equilibrium configurations that

include current sheets maintained by residual stresses regardless of the reconnection

mechanism. On the other hand, the globally open field topology acts as a helicity

sink, since the stresses may distribute to infinity.
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CHAPTER IV

The Formation and Dynamics of 3-Dimensional

Current Sheets in the Solar Corona

Magnetic reconnection has long been postulated to be the fundamental process

underlying most solar activity (Parker (1972), Parker (1988), Priest (1981)). The

basic scenario is that free energy in the form of electric currents is generated in

the corona as a result of either the emergence of non-potential flux from below or

the stressing of pre-existing coronal field by photospheric motions. Given the high

Lunquist numbers for typical coronal parameters > 1010, these currents could persist

almost indefinitely, but some process (or processes) brings the scale of the currents

down to values where the frozen-in-flux condition can be broken. The magnetic free

energy is then released to the coronal plasma by reconnection. Depending on the

properties of the reconnection the energy release may result primarily in heating, as

in models for coronal heating (e.g., Klimchuk (2006), Rappazzo et al. (2008)), or in

violent mass motions as in models for chromospheric explosions, coronal jets, and

coronal mass ejection (Lynch et al. (2008), Lynch et al. (2009), Pariat et al. (2009)),

or even in bursts of particle acceleration as in flare models (e.g., Miller et al. (1997),

Drake et al. (2006)).

It is evident from this discussion that the formation of current singularities, which

0The material described in this chapter is a modified version of Edmondson et al. (2009)b.
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are generically termed “current sheets” is central to reconnection and to solar activ-

ity. Various mechanisms have been discussed for current sheet formation, but the one

that is most intuitive and most likely to apply to the corona is the null-point deforma-

tion process described in Syrovatskii’s seminal work (Syrovatskii (1971), Syrovatskii

(1978)a, Syrovatskii (1978)b, Syrovatskii (1981)). The fundamental argument is that

for a magnetic topology with discontinuous connectivity, in particular, at a classic 2D

X-type null point (actually an X-line) with four topologically distinct flux systems,

any stress applied to the system is likely to lead to discontinuous stress at the null

and separatrices and, hence, to the rapid formation of current sheets there. This

picture has been shown to be fully robust by many investigations, both analytic and

numerical (Syrovatskii (1981), Antiochos (1990), Karpen et al. (1995), Karpen et al.

(1996), Karpen et al. (1998), Birn et al. (1998), Antiochos et al. (2002)). Although

Syrovatskii’s theory was originally formulated for a 2D null-point configuration, the

mechanism appears to be physically valid in 3D as well, with only straightforward

modification (Antiochos (1996), as well as chapter V - Edmondson et al. (2009)a, and

chapter VI - Edmondson et al. (2009)c).

In addition to the large-scale current sheet formation process, the mechanism

that breaks the frozen-in-flux condition locally is critical for magnetic reconnection.

In fact, it may well be that this microscale mechanism controls the energy release

rate of the reconnection and, thereby, determines its global manifestations. After

decades of intense study, a generally-accepted picture has emerged for the simplest

possible situation, steady-state reconnection in a 2D X-point topology under the

MHD approximation. The studies have shown that if the dissipation mechanism,

usually a simple isotropic resistivity, is spatially localized at the X-point (Parker

(1973), Biskamp (1993)), then the reconnection takes on the Petschek (1964) form

with a pair of slow mode shocks, a current sheet short (in the 2D plane) compared

to the global scale, and a reconnection rate of order the Alfven speed (Petschek
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(1964), as well as chapter III, section 3.4). On the other hand, if the resistivity

is roughly uniform, then the reconnection adopts the Sweet-Parker (Sweet (1958),

Parker (1963)b) form, with a current sheet length of order the global scale and a

reconnection rate much less than the Alfven speed (see Appendix A). The physical

origin for this sensitivity to the spatial localization of the resistivity is well understood;

it was originally discussed by Parker (1972) and elaborated on by Kulsrud (2001). It

should be emphasized, however, that both the Sweet-Parker and Petschek models are

steady state models only and, therefore, do not address the self-consistent problem

of current-sheet formation and disruption.

Previous MHD studies of solar activity in a 2.5D1 null-point coronal topology

driven by photospheric motions, found that the resulting evolution was well repre-

sented by the combination of the Syrovatskii and Sweet-Parker models (Karpen et

al. (1995), Karpen et al. (1996), Karpen et al. (1998), Antiochos et al. (2002)). A

smooth horizontal photospheric flow produced discontinuous stress at the null, result-

ing in its deformation to a current sheet and, hence, to reconnection there. Those

studies all used numerical resistivity, which has no pre-defined spatial localization

and, consequently, tends to produce a long global-scale current sheet and reconnec-

tion resembling the Sweet-Parker model rather than Petschek. A major new feature

of these driven models, however, is that if the current sheet becomes sufficiently long,

it is subject to tearing mode instabilities (Furth et al. (1963)), which result in the

formation of magnetic islands and can enhance the reconnection rate (Karpen et al.

(1995), Karpen et al. (1996), Karpen et al. (1998), Antiochos et al. (2002)). The

general conclusion, therefore, from the 2.5D MHD studies with numerical or uniform

resistivity is that reconnection in the solar corona is well described by the standard

Syrovatskii-Sweet-Parker scenario, but with the addition of magnetic island formation

and the resulting dynamics.

12.5 dimensional (2.5D) refers to a fully-3D system that is translationally invariant in one direc-
tion.
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The key question is whether this conclusion remains valid for a realistic 3D sys-

tem. Due to the intrinsic complexity of 3D topologies, current-sheet formation and

reconnection in such systems have only recently begun to be explored (Lynch et al.

(2008), Lynch et al. (2009), Pariat et al. (2009), as well as chapter V - Edmondson et

al. (2009)a, and chapter VI - Edmondson et al. (2009)c). For systems that are fully

3D, such as an isolated X-point topology with no special symmetry (e.g., Pariat et

al. (2009)), the geometry is so different from the 2D model that it is difficult to relate

the knowledge gained from the lower-dimensionality studies to the 3D evolution. One

approach to bridging the gap between 2D and 3D is to consider a system that is

initially 2D, but allow for a fully 3D evolution. The goal here is to be able to use

some of our physical intuition gained from the large body of 2D reconnection in order

to understand the more complex 3D system.

Such an approach has been used to investigate the 3D evolution of a pre-existing

1D current sheet (Dahlburg et al. (2003), Dahlburg et al. (2005), Dahlburg et al.

(2006)). These studies produced an interesting and potentially important result. As

expected, the sheet tears to form 2D magnetic islands, but these are susceptible to

a 3D secondary instability, which is much faster than the tearing mode growth rate.

The physical interpretation is that a magnetic island in 3D is actually a twisted flux

rope, which can be susceptible to kink-type ideal instabilities. It was found that

this secondary instability induces a burst of energy release. The results provide a

physical mechanism for producing the type of reconnection bursts required by Parker’s

nanoflare model (Parker (1972)) for coronal heating (Klimchuk (2006)). Although

these results are interesting and potentially highly important, they are not fully self-

consistent, because the current sheet is assumed a priori rather than generated by

photospheric motions. Furthermore, the initial current sheet is 1D, rather than having

physical dimensions determined by the global scales in the problem.

In this chapter an investigation of the self-consistent formation and reconnection of
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a 3D current sheet driven by photospheric motions is done. The goal is to use as much

as possible the insights gained from the 2D studies to understand the 3D evolution. A

2D X-line similar to the previous studies (Karpen et al. (1995), Karpen et al. (1996),

Karpen et al. (1998), Antiochos et al. (2002)) is assumed for the initial topology,

except that the Parker ansatz of considering the magnetic field in a Cartesian box

with the bottom and top of the box representing photospheric regions of different

polarity is employed. As will be evident below, this assumption allows us to stress

the field with a simple 1D flow at the photosphere, which preserves the photospheric

flux distribution there. Although the initial field is 2D and the driving flow is 1D,

the evolution is calculated in full 3D from the outset allowing us to investigate 3D

current sheet formation and disruption. The numerical details of the model and the

results are described below.

4.1 2.5D Magnetic X-Line Model

The magnetic field for our study is given by a rigorous analytic model. Initially,

the field is translationally-symmetric and potential. It is constructed from an infinite,

continuous-line dipole density (analogous to the electrostatic field due to a continuous

line of charge) embedded in a constant background field. The vector potential is given

by (see Appendix C),

Az (x) = B0

[
y − 2αy

y2 + (z − h)2

]

+ αB0y

(
2

d

)2 N∑

n=1

(
1

n2

)
(
1− 1

n2
y2+(z−h)2

d2

)

(
1− 1

n2
y2+(z−h)2

d2

)2

+
(

1
n2

2(z−h)
d

)2 (4.1)

The first terms on the RHS of equation 4.1 represent the constant background field

of strength B0, oriented parallel to the positive z-direction, and the field due to a

single line-dipole density of strength αB0 (where α is a dimensionless scale factor)

72



Figure 4.1: Initial magnetic field X-Line topology for self-consistent 3D current sheet
formation. 4-flux system topology in the plane perpendicular to the trans-
lational symmetry axis derived from an infinite, continuous line dipoles
density, oriented anti-parallel to the background field.

positioned at z = h, and oriented anti-parallel to the background field. The model is

translationally symmetric in the x-direction (i.e., independent of the x coordinate),

and the y-direction is determined from the standard right-handed coordinate system.

The general topological form is therefore, that of a 4-flux system with an X-type

null-point in the y-z plane (see Figure 4.1). The separate flux systems are defined by

the field line connections that either close across the dipole polarity inversion lines,

or connect the upper and lower z-boundaries.

For simplicity, periodic boundary conditions in the y-direction is assumed; con-

sequently, the magnetic field must be vertical to within the machine error a finite

distance, y = ±d
2 , from the central system. A purely vertical field entails an infi-

nite series adjustment (i.e., N → ∞), where the nth term physically represents two

continuous line-dipoles separated by a distance y = nd, mirrored on either side of

the central system. Mathematically, only an infinite series will yield a truly vertical

magnetic field at y = ±d
2 , since a finite number of terms will result in an asymmetry

due to an unbalanced horizontal field component based on the imbalance of dipole

systems away from the overall system symmetry plane y = 0. Unfortunately, a closed

form solution to this infinite series does not exist (the series may be manipulated
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into a sum of two associated hypergeometric functions, but these are themselves only

a repackaging of infinite series). Even without a closed form solution, we can show

convergence with the (numerical) integral test (see Appendix C.2) since successive

terms in the series are monotonically decreasing. We find the convergence integral

solutions are bounded everywhere within the domain,

{
(y, z − h)

∣∣∣∣ −
d

2
≤ y ≤ d

2
, 0 < (z − h) <

d

2

}
(4.2)

For implementation of the model, convergence of the infinite series is not com-

pletely necessary though since we are working with a finite grid resolution. A vertical

magnetic field at the y = ±d
2 boundaries only requires enough terms in the series such

that the magnitude of the horizontal field is less than the machine error. Even for a

modest number of terms in the series, the error between the true field and the vertical

is far less than necessary. For this simulation we take N = 25, which corresponds to

51 total line-dipole systems, each separated by d units in the y-direction. The calcu-

lation domain in the y-direction is therefore set to y ∈ [ -1/2 , 1/2 ] * d inclusive, to

satisfy the periodicity. Consequently, only the dynamics of a single line-dipole system

about the origin is calculated.

The simulation extent in the z direction is restricted by the 0 < (z − h) ≤ d
2 con-

dition. The lower bound (excluded) follows from keeping any unbounded singularities

associated with evaluating the field exactly at the line-dipole out of the calculation

domain. The upper boundary (included) keeps successive terms in the series mono-

tonically decreasing to satisfy convergence. Since there are no restrictions on the

vector direction of the field at the upper/lower z boundaries, a smaller simulation

domain in the z-dimension is employed to cut down on the computational expense.

We set the z-domain to z ∈ [ 1/d , 1/d + 1/4 ] * d inclusive, and restrict h < 1.

Finally, due to the translational symmetry in the x-direction, there are no restric-
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tions on the size of the domain - other than the computational expense of solving

the fully-3D set of MHD equations at a very high grid resolution. Therefore we set

the x-domain x ∈ [ -1/4 , 1/4 ] * d, large enough only to insure any 3D structures

that develop in the x-direction will in fact be completely covered throughout their

evolution.

We calculate the simulation using the ARMS code, solving the standard set of 3D

compressible, ideal MHD equations (2.8, 2.9, and 3.10, with η = ν ≡ 0) in Cartesian

coordinates. In place of the conservative energy equation we solve the adiabatic

equation for the temperature,

∂T

∂t
+∇ · (Tv) + (γ − 2) T ∇ · v = 0 (4.3)

with the ratio of specific heats γ = 5
3 . We use the ideal gas law (equation 2.14) for

the plasma equation of state. Gravity is not included in this calculation, as we are

interested in current sheet structure development and evolution in the large scale-

height environment of the low-beta corona.

A point of note, the coordinate units are conspicuously missing from the above

discussion. The reason for this is scalability, which makes the most important aspect

in this calculation is the dimensionless low-beta condition. We calculate the system

in cgs units, but the MHD equations above are non-dimensionalized by introducing

scale factors for mass density ρ0, magnetic field strength B0, characteristic length L,

and charicteristic time τ0. Each of these quantities is of order unity, and adjusted to

maintain the low-beta condition as well as keep the global average Alfvén speed of

order unity. The background field B0 and line-dipole density field strength αB0 were

chosen to place the null well inside the calculation domain, such that any bound-

ary effects do not influence the current sheet formation and dynamics. The thermal

pressure is chosen to retain the low-beta condition over the majority of the calcu-
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lation domain. With these parameters, the plasma beta remains small throughout

the majority of the domain. Figure 4.2 illustrates the plasma beta across the mag-

netic structure, with the white contour showing the β = 1 surface. Only within a

small region in the neighborhood of the singular null-line does the plasma beta rise

substantially above unity. We emphasize, however, that although the system as a

whole is low-beta, the plasma pressure does play an important role in the evolution.

The plasma pressure dominates the region near the null-line, and therefore the for-

mation of the current sheets and the subsequent reconnection dynamics are critically

dependent on the plasma evolution.

We calculate this simulation within the ideal MHD framework, thus the current

sheet formation, evolution and reconnection dynamics are governed by numerical re-

sistivity. Figure 4.3 shows the initial numerical grid development for the simulation.

We start with a base level consisting of 2 × 2 × 1 blocks distributed uniformly in

{x, y, z} with 83 grid points per block. The above block definition is the minimum

resolution away from the null-point region. Initially, the grid is refined a maximum

of 6 levels over {−1
4 ≤ x ≤ 1

4 ,−
1
d ≤ y ≤ 3

d ,
3
d ≤ z ≤ 6

d} ∗ d, a volume large enough

to encompass the majority of the entire would-be current sheet development volume.

We employ adaptive mesh refinement (AMR) to increase the effective Lunquist num-

ber Rm near the current sheet. Our mesh refinement criterion tests a normalized

field gradient in regions of weak magnetic field strength since we are generating a

neutral sheet. The grid refines up to a maximum refinement level of 9 for a nor-

malized gradient greater than 0.5, and de-refines for normalized gradients less than

0.125. The resolution at the maximum refinement level 9 corresponds to a length of

approximately d
4096 per grid point - far smaller than the scale of the initial magnetic

structures. We keep the AMR criterion independent of the current density magnitude

in order to avoid computationally expensive grid refinements with the development

of magnetic field gradients away from the singular null region of interest.
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Figure 4.2: Initial X-Line beta profile. The color-scale denotes the beta magnitude:
Red is β < 1, Purple is β > 1. The white contour marks the β = 1
boundary.
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Figure 4.3: Initial X-Line grid definition in the perpendicular plane. This grid defi-
nition is uniform in the translationally symmetric (x) direction.

In the strong field (i.e., low-beta) approximation, driving motions slow compared

to the Alfvén speed yield a force-free evolution. Similar to the plasma beta, the

local Alfvén speed varies considerably over the domain, ranging from nearly zero in

the vicinity of the null, to approximately 7 in the very strong field region near the

coordinate origin. Thus, we define an average global Alfvén speed based on the total

magnetic energy EM , and total material MC in the corona,

VA =

√
2 EM

MC
(4.4)

where EM is the total magnetic energy, and M the total mass of the system. The

density parameter ρ0 is initialized to set this global Alfvén speed parameter equal to

unity (constant; see Figure 4.4), and the driving flow speed is designed against this

reference.

The system is energized by applying a slow, spatially uniform, flow profile at the

upper z-boundary. The maximum magnitude reaching only about 4.5% of the global
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Figure 4.4: X-Line driving flow profile comparison against average global Alfvén
speed (arbitrary units). Note, the driving flow profile is remains an order
of magnitude less than the global average Alfvén speed.

79



average Alfvén speed, V = 0.045 VA. In addition, a time shifted cosine profile is

employed in order to minimize transient wave effects as the motions start (see Figure

4.4),

V = Vy (t) y (4.5)

Vy (t) =






V
2

[
1− cos

(
π t

100

)]
0 ≤ t ≤ 100

V t > 100
(4.6)

The calculation time partition at t = 100 is chosen so that the AMR grid resolution

is well established, covering the entire length of the current sheet (see Figure 4.5), by

the end of this first phase. After t = 100 the driver speed is held constant so that

any burstiness in the system must be an intrinsic property of the reconnection rather

than a response to a time-variable driver. At the z-coordinate boundaries, we impose

line-tied conditions so that the only way for the magnetic field to change topology is

through reconnection.

The characteristic length L = χd is chosen, where χ varies depending on the

particular dynamical process under study. For example, the current sheet thickness

is important in analyzing the linear stage of the tearing mode instability, while the

fully developed current sheet length is the relevant spatial scale for the non-linear

dynamics following the tearing mode. The characteristic length scale defines an Alfvén

timescale τA = L
VA

= χd
VA

. A point of note, since the global average Alfvén speed VA is

unity, the characteristic length L and Alfvénic timescale τA are equivalent. Combining

the characteristic length L and Alfvén time τA scales with the Lunquist number Rm,

yields the dissipation timescale τη = Rm τA, and the numerical resistivity η = VAL
Rm

, for

the high-resolution current sheet; parameters important for determining the tearing

mode growth rate, as well as plasmoid formation and ejection times.
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Figure 4.5: X-Line Numerical Grid Refinement. Initial grid definition and refinement
times shown against the current density magnitude development. The
AMR refines the grid at times t = 40.19, 50.317, 60.187, and 70.003,
reaching full current sheet coverage at refinement level 9 for t ≥ 70.003.
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4.2 Results: Initial Configuration and Current Sheet Devel-

opment

The initial state is built with h = 0, placing the line-dipole density at the coordi-

nate origin. The global scale length is d = 40, which sets the calculation domain to

{ (x, y, z) |x ∈ [−10, 10] , y ∈ [−20, 20] , z ∈ [1, 11] }. The field strengths are set to B0

= 3 and αB0 = 20, respectively, which places the initial null at near mid-altitude in

the z-direction (Figure 4.1). The thermal pressure and mass density are P0 = 10−2

and ρ0 = 1.0, maintaining the overall low-beta condition (Figure 4.2). We find that

beta reaches a global minimum of approximately 10−4 at the lower-z boundary near

the high field strength of the line-dipole density. With these numbers, the absolute

magnitudes of the total integrated kinetic and thermal energies in this system re-

main of order unity throughout the evolution (Figure 4.6), in arbitrary units since all

quantities may be re-scaled for coronal comparison.

In the early development stage, t ≤ 40.19, the driving speed and, hence, the

footpoint displacements ramp up slowly so that only weak currents appear in the

corona. Note that if the central bipole were not present, so that the initial field is

purely uniform and vertical, then the field would remain purely potential throughout

the evolution, except for transient currents. The photospheric motions would generate

a uniform By that increases linearly with the total photospheric displacement in the

y-direction. In other words, the field lines would simply tilt more and more as their

top footpoints undergo increasing displacement. The bipole, however, acts like an

obstacle to the background field so that the field must deform around it as it tilts and,

hence, currents form near the bipole. Note that inside the bipole, itself, essentially

no current appear, because its flux is not distorted directly by the motions of the top

boundary.

The current formation process is intuitively obvious from the geometry of our
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Figure 4.6: Current sheet formation Energy-Time plot. The system kinetic and ther-
mal energy evolution in arbitrary units. The grid refinement times are
clearly seen in the kinetic energy profile. The fully-developed current
sheet is analyzed after t = 100.
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system, as can be seen from Figure 4.2, for example. Prior to the boundary driving

motion, the inner and outer spine lines (actually planes in 3D) are perfectly vertical

and their “ends” meet at the null point. The motion moves the top footpoint of the

outer spine to the right, which imparts a stress to the field dragging the end of the

outer spine to the right. The inner spine, however, feels no stress and stays more-or-

less fixed. Consequently, the spines dislocate, causing the null point to deform into a

current sheet. This process begins almost immediately in our system, but the width

of the current sheet is limited by the finite gas pressure in the system so that, at first,

its width is still larger than the grid scale.

As the driving flows progress, the null-line continues to stress, forming a neutral

pinch sheet. The AMR begins at t = 40.19 (see Figure 4.5) as the null-region begins

to show substantial deformation, and the corresponding width of the current structure

generated in the vicinity of the weak field decreases down to the grid scale. At the

refinement times t = 40.19, 50.317, 60.187, and 70.003, clearly illustrated by the

discontinuities in the kinetic energy plot, the neutral current sheet system remains

confined to the grid scale. In the final phase of the development stage and throughout

the dynamics stage, t ≥ 70.003, the grid has reached its maximum resolution of 9

times refinement, covering the entire pinch sheet that separates the inner and outer

spine lines. At this level of refinement, the current sheet thickness is, on average, of

order the grid point spacing, δ = 2.44× 10−4d = 9.77× 10−3. The effective Lunquist

number for the current sheet in the high-resolution region follows directly from the

grid refinement, Rm = 256.

4.3 Results: Plasmoid Formation and Ejection

Since gravity is not included, the relatively long-wavelength tearing mode is the

most important resistive-MHD instability for the current sheet system under study. In

2D, magnetic island formation by the tearing mode generates alternating X-type and
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O-type field line topologies along the length of the current sheet (Biskamp (1993)). In

3D, the analogue of the 2D islands are plasmoids characterized by enhanced density

twisted flux rope structures. Even without a guide field, as is this case, 3D perturba-

tions generate quasi-ergotic field lines from reconnections with different cross-sectional

planes along the current sheet axis. For sheets of finite length, these magnetic plas-

moids are ejected in the direction of the closest end of the current sheet. Therefore,

we differentiate the tearing mode process into two stages: plasmoid formation and

plasmoid ejection. The formation stage can be taken as the initial field line pinching

and linear growth of the plasmoid, and its characteristic length is the current sheet

thickness (i.e., χ = 1
4096). The ejection stage, in contrast, occurs once the plasmoid

growth is of order the current sheet thickness and non-linear effects come to dominate

the dynamics. In this case, the characteristic length of the system is taken as the

length of the current sheet (i.e., χ = 0.02) in the perpendicular plane.

Furth et al. (1963) showed the linear growth rate γ for the resistive tearing mode

instability in 2D, is intermediate between the fast Alfvénic timescale τA, and the slow

dissipation timescale τη. The linear growth rate depends on the jump in the properties

of the magnetic field across the current sheet, the thickness of the pinch sheet, and

(nearly) the geometric mean of the two characteristic timescales, and is given by,

γ ≈ 0.55
(∆a)

4
5

τAR
3
5
m

where ∆ is the jump in the gradient of the normal-field perturbation component,

across the current sheet, and a is the sheets half-thickness. The quantity ∆ is de-

pendent completely on the properties of the ideally-evolving field, and therefore in

general, the product ∆a is of order unity (i.e., ∼ 0.1 - 1.0). Recalling the global Alfvén

speed VA = 1, the Lunquist number across the maximum grid resolution covering the

current sheet is Rm = 256 and the current sheet thickness 2a = 9.765 × 10−3, the

85



Alfvén timescale in the formation stage is τA = 9.765×10−3. Thus, the linear tearing

mode growth rate γ is estimated to be between 0.32 and 2.02. The top panels of Fig-

ure 4.7 (t = 111.66, 112.02, and 112.54) illustrate the tearing mode’s linear growth

stage for a typical time and perpendicular plane. We find the average tearing mode

wavelength is nearly 1/3 - 1/2 of the instantaneous current sheet length, and occur

on a timescale of order τ < 0.88, which in turn implies a growth rate γ = 1/τ > 1.14,

in agreement with the predicted theory.

We emphasize this simulation is entirely 3D for all time. The 3D perturbations

affect the evolution from the outset in such a way that the plasmoids that form by

the tearing mode in a given perpendicular plane do not develop a coherent flux rope

structure over any significant length between perpendicular planes. In the case of

the truly neutral sheet, the only guide field that emerges is seeded by the numerical

perturbations, which limits the correlation length to only a few grid cells.

Non-linear effects begin to saturate the system when the plasmoid width becomes

comparable to the current sheet width, limiting the size of the plasmoids in the

perpendicular plane, and initiating the ejection stage. For the most part we find

plasmoid formation near the center of the sheet. Since the tearing mode wavelength

is of order 1/3 - 1/2 of the instantaneous current sheet length, we find on average,

there are 3 to 4 plasmoids in any given perpendicular plane. It is unclear from this

single high-resolution simulation, how the tearing mode wavelength (i.e., the number

of plasmoids that form in a perpendicular plane at fixed time) depends on the Lunquist

number.

The plasmoid ejection timescale varies depending on the location of plasmoid

formation along the current sheet length, as well as the instantaneous length of the

current sheet itself. The ejection speed reflects the local outflow speed, typically about

30% of the Alfvén speed. Any given plasmoid splits the current sheet as it sweeps out

the ends - especially the larger plasmoids - temporarily reducing the instantaneous
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Figure 4.7: 2D Tearing Mode: 2D Island (3D plasmoid cross-section) formation-
ejection in the perpendicular plane (x = 0). Linear growth stage within
the t = 111.66 through t = 112.54. Non-linear ejection stage t = 112.54
through t = 115.55.
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global scale length in any given perpendicular plane. We account for this effect,

on average by setting the ejection stage characteristic length to 2/3 of the global

spine-to-spine distance (i.e., L = 0.02 d). This leads to ejection stage characteristic

length scale and Alfvénic timescale of L = 0.8 and τA = 0.8, respectively. Figure 4.7

illustrates a typical non-linear ejection in the panels t = 112.54 through t = 115.55, in

which the plasmoid forms roughly in the center of the sheet, and ejects on a timescale

of approximately 3 - 4 τA, a direct result of the tearing mode wavelength.

Since the plasmoid correlation length in the third dimension is limited by the

3D perturbations, the plasmoids are short enough that the ejections evolve effectively

independently between the perpendicular planes. Though there is evidence of kinking

for these short structures, they never become sufficiently large to affect the overall

integrity of the sheet. To illustrate this point, we use the fact that the plasmoids

have an associated local density enhancement, clearly seen in the background color

map of Figure 4.7 (ρ ≥ 2 saturate red). Though this is somewhat of an arbitrary

threshold, ρ = 2 seems to correlate nicely with the width of the quasi-ergotic field

lines of the twisted flux rope in the perpendicular plane (a higher threshold would

show a smaller plasmoid, and a lower threshold would smear the plasmoid into the

background). The point of view covered by Figure 4.8, shows the current sheet from

the top down. The white stripe is the same perpendicular plane of Figure 4.7. The

purple is the strong current magnitude (|J | = 5 iso-surface), and the red structures

are the 3D plasmoid density enhancements (ρ = 2 iso-surface). The white arrow of

Figure 4.8 follows the plasmoid formation, evolution, and ejection, complimenting the

black arrow in Figure 4.7. The important features to notice are that the plasmoid

structures evolve independently, dividing and coalescing, as they are ejected. Though

they do “kink”, the length of the plasmoids in the third dimension never becomes

long, and they are ejected quickly enough for the sheet to recover its integrity. As

evident from Figure 4.8, the structure of the plasmoids is highly irregular and fully
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Figure 4.8: 3D Tearing Mode: 3D plasmoid (enhanced density structures) formation-
ejection.
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3D.

4.4 Results: Steady-State Dynamics

The steady-state stage of this investigation (t ≥ 100) is characterized by a “dy-

namically stable”, fully-3D neutral current sheet with an aspect ratio of around 40:1.

The system dynamics clearly favor a fairly quiet steady-state reconnection, as opposed

to explosive, bursty reconnection that leads to large-scale turbulent break-up of the

current sheet. The relatively quiet dynamics are likely a direct consequence of the

form of the driving flows, which produce magnetic stress that is localized primarily to

the separatrices between the flux systems. This stress can be relaxed directly by the

reconnection. To that end, the fully developed current sheet maintains a more-or-less

constant global length of roughly 0.02 d (i.e., approximately 2/3 of the spine-to-spine

separation; see Figure 4.9), implying the reconnection rate and the field stressing

rate have converged. We note, however, that the instantaneous length at any given

perpendicular plane varies with each plasmoid ejection.

During the steady-state dynamics stage, the average 40:1 aspect ratio of the cur-

rent sheet is consistent with the Sweet-Parker reconnection rate δ
L = 1√

2πRm
= 0.025.

However, the instantaneous reconnection rate defined by the ratio of in-flow to out-

flow value, may increase considerably. For example, Figure 4.10 shows the velocity

magnitude at the x = 0 mid-plane and t = 136.48 (well into the dynamics stage).

The black contours are current density magnitude 5, illustrating the extent of the

strong current system. The reconnection jets are clearly seen in the purple contours

of the figure. The average in-flow speed along the length of the sheet is effectively the

driving flow speed, Vi = 0.045 VA. Averaging the out-flow speed over the reconnection

jets, we find Vo = 0.337 VA. Therefore at t = 136.48, the instantaneous reconnection

rate in the x = 0 mid-plane is Vi
Vo

= 0.134. The reason for the local increase in the

reconnection rate is that the system is not in a pure steady-state, rather it must ac-
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Figure 4.9: Global current sheet development at t = 0.0, 100.1, 111.66, 115.74, and
147.64. The fully developed current sheet has little curvature and re-
tains an overall characteristic length L = 0.02 d, roughly 2

3 spine-to-spine
distance.
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Figure 4.10: Local velocity field magnitude at the mid-plane at time t = 136.48.
The black contours are current density magnitude 5, showing the ap-
proximate extent of the strong current sheet. The reconnection jets are
clearly seen as the purple contours in the velocity space.

count for the effects of both driving and local transient plasmoid formation/ejection

dynamics. Though, the overall average current sheet length is consistent with the

Sweet-Parker rate, the plasmoid ejection dynamics alter both the local Alfvén speed

through the density enhancements, as well as the instantaneous current sheet length,

both of which adjust the in-flow to out-flow ratio.

As a consequence of the localized reconnection rate enhancement due to plasmoid

ejections the system develops localized, transient Petschek geometries at the ends of

the current sheet. This effect is seen by comparing the strong current magnitude with

the plasma density and overlying field lines (see Figure 4.11). From the lower panel

of Figure 4.11, tthe field line (shown in white) structure at the current sheet split

clearly shows sharp Alfvénic bends in the field line structures. These Petschek-type

Alfvén waves at the ends of the current sheet have very short lengths and are highly

transient, forming with the splitting of the current sheet as the plasmoids are ejected,
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and dissipating as a single sheet is recovered. In addition, the local reconnection rate

enhancement never increases above the predicted fast Petschek rate, 1
ln(Rm) ≈ 0.1803.

Once the current sheet lengthens sufficiently so that the reconnection balances the

slow driving velocity, approximately .04 VA, the sheet stops growing. From this point

on the structure around the null region, Figure 4.5, can be characterized as quasi-

static with the stretching by the photospheric displacements balanced by the shrinkage

from reconnection. Of course, the system is not in a true steady state, because

the flux in the right-hand closed arcade of Figure 4.2 decreases continuously due to

the reconnection while the flux in the left increases. Eventually the flux imbalance

will grow to the point that the reconnection stops, but we see no evidence for this

saturation, at least, for the footpoint displacements of our simulation. Although not

extreme, the displacements are clearly substantial. Figure 4.9 shows that by the end

of the calculation, the footpoints on the upper boundary have moved a distance of

order the size of the closed bipole. It is intriguing that at this quasi-steady state, the

angle of the uniform background field with respect to its original vertical direction

is of order 20◦, close to the stress angle required by Parker for his coronal heating

model (Parker (1983)). We emphasize, however, that the topology of our system is

significantly different than that of Parker’s.

The result that the current sheet is so stable is especially surprising, given that the

sheet achieves aspect ratios as high as 40:1. The dynamics are very consistent with

steady-state Sweet-Parker reconnection except for the addition of magnetic island

formation. These islands do not grow to be large in any dimension, primarily because

they are ejected from one current sheet end or the other on the same time scale as their

growth time. We emphasize, however, that structure in the x-direction does form at

both small and global scales, and that this 3D structure is critically important. The

small-scale structure is due primarily to the formation of magnetic islands at random

locations along the sheet. The large-scale structure is evident as a periodic structure
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Figure 4.11: Current sheet splitting leads to localized, transient Petschek geometry
at t = 111.66 by plasmoid ejection. Top: Current density color scale; red
signifying strong currents (magnitude greater than 5). Bottom: Plasma
density color scale with field lines over layed; red signifying densities
greater than 2. Note, the hard bends in the field lines at the right hand
reconnection jet are the Alfvén waves associated with plasmoid ejection.
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Figure 4.12: Large-scale, periodic structure developing in the field lines along the 3rd

dimension with exactly four wavelengths in the domain.

in the field lines with exactly four wavelengths in the domain (see Figure 4.12). This

structure is clearly seeded by the finite grid of the calculation, as expected, but only

the small-scale structure has any physical importance.

We claim that the small-scale structure in the x direction is directly responsible

for the lack of burstiness in the reconnection. Figure 4.8 shows that with regard

to the magnetic islands, there is absolutely no symmetry in the x-direction. They

are fully 3D and their formation location is random throughout the current sheet.

This 3D structure suppresses the secondary instability that generated the bursts of
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reconnection seen in previous current sheet studies (Dahlburg et al. (2003), Dahlburg

et al. (2005), Dahlburg et al. (2006)). In those studies the system was seeded with

2D perturbations that produced magnetic islands (actually twisted flux tubes) with

infinite length in the x-direction. The secondary instability is basically an ideal, kink-

like mode of the highly twisted flux tubes. 2D perturbations, however, are somewhat

unphysical, because they assume the noise in the system has very long coherence

length in a preferred direction. In the present simulations the noise is purely 3D

and leads to magnetic islands whose scale is scale in the x-direction is similar to

that along the current sheet length. Hence, there is no energy available for a kink

mode. Furthermore, the 3D nature of the magnetic islands that we find is likely to

limit the effectiveness of the islands in trapping particles, which could have important

implications for flare acceleration mechanisms (e.g., Drake et al. (2006)).

One caveat to the conclusions above is that there is no guide field for the recon-

nection in our simulation. Due to the form of the driving a true neutral sheet is

generated. It may well be that if a guide field were present, it would add some coher-

ence along the x-direction so that long flux-tube-like magnetic islands would form.

The situation is analogous to the issue of the formation flare ribbons. A strong guide

field is necessary in order to provide the reconnection coherence required to produce

the distinct ribbon structure. On the other hand, if the guide is too strong, it will

suppress any kinking and, hence, the secondary instability (Dahlburg et al. (2003),

Dahlburg et al. (2005), Dahlburg et al. (2006)). It is concluded, therefore, that sim-

ulations with varying amounts of guide field should be the next step in studying the

formation and dynamics of coronal current sheets.
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CHAPTER V

Interchange Reconnection and Coronal Hole

Boundary Dynamics

In chapter II, section 2.3 we reviewed the topological properties and reiterated

the constraints placed on the possible structure of the open field by the quasi-steady

models. In particular, the uniqueness conjecture, which states that irrespective of the

complexity of the photospheric flux distribution, in the absence of long-lived current

dissipation systems, every unipolar region on the photosphere can contain at most

one coronal hole (Antiochos et al. (2007)). Note that such a topology in which the

open field has well-defined, connected structure is the exact opposite of that of the

interchange model. The validity of the uniqueness conjecture and of the quasi-steady

model, in general, turns out to depend critically on the properties of interchange

reconnection. The key point is that reconnection between open and closed flux is ex-

pected to be a generic feature of the solar corona and, therefore, must be incorporated

into all coronal models, including the quasi-steady. Due to the magnetic carpet (see

Figure ??; Schrijver et al. (1997)), coronal holes are obviously not magnetically unipo-

lar; they contain numerous small bipoles and, therefore, closed flux. As these bipoles

move with the photospheric flows, they will interact with the open field and undergo

interchange reconnection. In order for the quasi-steady assumption to remain valid

0The material described in this chapter is a modified version of Edmondson et al. (2009)a.
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during such open-closed interactions, the magnetic topology must remain smooth,

with the open and closed flux topologically well separated. Reconnection, however,

requires the formation of current sheets, which are topological discontinuities, and

generally give rise to important dynamics, which tend to invalidate the quasi-steady

assumption. Consequently, it is not clear that the magnetic topology would remain

smooth during actual time-dependent interchange reconnection. Our first objective

in this calculation, therefore, is to calculate the rigorous 3D evolution of a closed field

bipole as it moves through and interacts with open field, and determine whether the

resulting structure and dynamics are compatible with the quasi-steady assumptions

or whether the topology becomes discontinuous as in the interchange model.

A related and equally important issue is the interaction of the closed field of a

bipole with a coronal hole boundary. Antiochos et al. (2007) analyzed the quasi-steady

model, and found that this type of interaction plays a central role in determining the

coronal topology, including uniqueness and several other properties. In that work,

they argued reconnection would enforce the uniqueness constraint, but this was only a

conjecture. The second objective of this calculation is to calculate the time-dependent

dynamics of coronal hole boundaries rigorously and test the conjectures. We describe

below two numerical simulations that illustrate interchange reconnection in 3D, and

discuss the implications for large-scale coronal magnetic field structure and dynamics.

It should be emphasized that since the physical systems we calculate are very general

and expected to be ubiquitous on the Sun, our results are important for understanding

not only the quasi-steady, but any model for the coronal magnetic field, including the

interchange.

5.1 The Topology of 3D Interchange Reconnection

In order to perform a rigorous study of interchange reconnection, we first need a

physically robust magnetic field. This requires a quantitative description of a com-
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plete field topology, not simply a largely two-dimensional sketch of a few open and

closed field-lines as used in many previous studies. The simplest and most common

magnetic configuration that can describe interchange reconnection is that of a global

bipolar field with open and closed regions, and a small-scale closed bipolar region.

We can calculate this field exactly with an analytic source-surface model that uses

the method of images (Antiochos et al. (2007)). The scalar potential for the source

surface field due to a global dipole at sun-center and an arbitrary number of smaller

dipoles below the solar surface (see Appendix D) is given by,

Φ (x) = (M 0 · x)

[
1

R3
− 1

|x|3

]

+
∑

i

(M i · x)

[(
R3

|ri|3

)
1

|x− R2

|ri|2 ri|3
− 1

|x− ri|3

]
(5.1)

where M i and ri are the magnetic dipole and position vectors respectively of dipole

source i, and R is the source surface radius. Note that, for simplicity, we have taken

the global dipole M 0 at Sun center (x = 0) to be vertical, parallel to the polar axis,

and the smaller dipoles M i to be horizontal, perpendicular to the radius vector. Their

orientation in the horizontal plane, however, can be arbitrary. From this potential,

the magnetic field in the volume is obtained directly from B = ∇Φ, and as can be

verified by straightforward calculation, is purely radial at the source surface, r = R.

Although the formula above can be used to describe fields of arbitrary complexity,

the fundamental topology of interchange reconnection is most clearly seen by focusing

on the case of a global dipole and a single near-surface dipole. Such a field is shown in

Figure 5.1, for the source surface position at R = 3 R#, a Sun-center dipole of strength

|M 0| = 10 G oriented toward polar north. The active-region bipole is positioned at

|ri| = 0.9 R# (below the photosphere) and 49.5◦ latitude (i.e., north of the equator

inside the northern coronal hole), with a magnitude |M i| = 50 G oriented along the

surface (i.e., with no radial component) toward the south pole. As expected, the
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global dipole produces a large-scale, axi-symmetric coronal magnetic field consisting

of polar coronal holes and closed flux at lower latitudes (Figure 5.1). The near-surface

dipole produces a small bipolar flux distribution that, for the particular parameters

selected, is completely inside the northern, positive-polarity coronal hole. Figure 5.1b

shows a close-up of the photospheric flux distribution in the hole. Note the presence

of the closed polarity inversion line surrounding the negative-polarity region of the

bipole. The field near this polarity inversion line is low-lying and must close across

it; consequently, there must be some closed flux inside the coronal hole. This is true

irrespective of the size of the negative polarity region. There must be a closed field

region associated with every bipole in a coronal hole.

Figure 5.1b shows the coronal magnetic field above the small bipole. Its structure

consists of a hemispherical volume of closed flux surrounded by a background of

open coronal-hole flux. The closed-field is topologically separated from the open by

a dome-shaped surface. This topology is simply that of the well-known embedded

bipole with its fan surface, spine lines, and null point (see chapter III, section 3.2;

Greene (1988), Lau & Fin (1990), Antiochos (1990), Priest & Titov (1996)). The

intersection of the fan surface with the photosphere forms a closed separatrix curve

that defines the boundary between the flux that closes across the polarity inversion

line to that connecting to the source surface. In other words, this photospheric

separatrix curve is a coronal hole boundary. All the field lines whose photospheric

footpoints lie on this curve can be considered to converge onto the null point, where

they split into the inner and outer spine lines. It should be emphasized that although

the topology is discontinuous at the fan and spines (i.e., the magnetic connectivity

is clearly multi-valued there), the magnetic field itself is smooth everywhere. In fact,

formula (5.1) yields a potential field that is analytic everywhere in the interior of the

volume. Furthermore, there is no mixing of open and closed field. All of the flux

inside the fan is closed, whereas all of the flux outside is open. The fan, itself, is a
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Figure 5.1: 3D Global Potential Field Configuration: Magnetic topology of a small
near-surface dipole and global dipole. a) Colored contours show magni-
tude of radial field at photosphere, the two white curves indicate polarity
inversion lines (radial field vanishes). The yellow field lines above the sur-
face correspond to streamer belt closed flux and the white field lines to
the open, coronal hole flux that maps to the source surface. b) Close-up
of the field near the embedded bipole showing the outer fan field lines and
spine.
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singular surface as with every coronal hole boundary in that the fan field lines split

at the null, so they can be considered to both be open and closed.

The field of Figure 5.1 is the fundamental topology in which interchange reconnec-

tion takes place. It is, by far, the most common multi-polar magnetic topology on the

Sun, because it is present whenever a parasitic polarity region on the photosphere oc-

curs inside some larger, unipolar flux. This topology is expected for essentially every

magnetic carpet, or larger, bipole on the photosphere. Numerous observations show

clear evidence for this topology in coronal holes (e.g., Golub et al. (1974)), and both

potential and force-free extrapolations of almost every observed photospheric flux

distribution find this topology in both open and closed magnetic regions (Aulanier et

al. (2007), Fletcher et al. (2001), Luhmann et al. (2003)).

The key question for the coronal models is whether the embedded bipole topology

remains smooth, with well-separated regions, once photospheric motions stress the

field so that closed and open lines interact via interchange reconnection. A rigorous

answer to this question requires solution of the fully-dynamic MHD equations, as

presented below, but we claim that considerable insight can be obtained by consid-

ering the heuristic model for the stressing and reconnection illustrated by Figure 5.2.

There are two basic assumptions underlying this model. First, we can separate the

ideal and resistive response of the system so that it evolves, first, purely ideally to

some quasi-equilibrium, and then it relaxes by reconnection. This approach is not

without justification, because reconnection will not begin until the system has formed

substantial current sheets. The second assumption is that the two flux systems on

either side of the fan surface move independently of each other, except that they al-

ways share a common boundary, the fan surface, which itself is free to deform. Again

this assumption has justification; since the photospheric connectivity is discontinuous

at the fan, the magnetic stresses due to photospheric driving will be discontinuous

there, which will give rise to discontinuous motions in the corona. Note that even if
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viscosity were included in the system so that no true discontinuity forms, we would

expect the gradients of the motions across the fan to grow exponentially in time and,

consequently, the currents there to reach the dissipation scale rapidly.

We can use this model to determine how the embedded-bipole topology would

respond to a simple footpoint motion that displaces the closed flux system bodily to

the right, while keeping the open flux more-or-less fixed (Figure 5.2b). For such a

stressing, we expect that, during the ideal response, the inner spine line connecting to

the parasitic polarity dislocates from the outer spine connecting to the source surface.

Since each spine line fans out at the null to form its own surface, such a dislocation

implies that the fan surface separates into two surfaces that are in contact everywhere,

but with field lines that are misaligned. The effect of dislocating the spine lines and

fan surfaces, therefore, is to deform the null point into a 3D null patch and to form

a 3D current sheet at the fan. If the system were purely ideal then, in principle, it

could achieve an equilibrium state containing these discontinuities.

A small resistivity can now be included to consider the subsequent evolution due

to reconnection. The system will attempt to relax, as much as possible, back to the

potential state to minimize its energy. In particular, reconnection at the null-patch

can destroy the current sheets and, as illustrated in Figure 5.2c, deform the null patch

back to a point, thereby realigning the spines, and if possible, the fans. Note that the

evolution just described is nothing more than the 3D generalization of Syrovatskiis

classic current sheet formation and null-point reconnection theory (e.g., Syrovatskii

(1981), Antiochos (1996)).

The arguments above suggest that the topology resulting from reconnection will

maintain clearly separated open and closed field, as in the initial state. A key point,

however, is that since reconnection conserves any helicity injected to the system by the

photospheric motions, it cannot undo the photospheric motions and bring the system

back to a purely potential field. In the evolution illustrated by Figure 5.2c, the spine
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Figure 5.2: Interchange reconnection schematic: A) Initial field configuration. B)
Stressed field configuration. C) Current sheet and reconnection jets D)
Interchange reconnection flux exchange
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lines do not actually move, instead different flux tubes become the spines because of

interchange reconnection. It may be, therefore, that the lowest energy state available

to the system under the helicity constraints is one with long-lived (up to a dissipation

time) current sheets. In fact, such a state seems inevitable if the photospheric motion

is large, so that the dislocation of the spines is large. It is evident from Figure 5.2

that reconnection shifts the inner spine to the left by transferring closed flux from

overlying the left side of the polarity inversion line to the right. The amount of flux

available for such transfer, however, is limited; consequently, if the ideal motions

produce too large a dislocation of the spines, reconnection will not be able to realign

them.

Furthermore, there is no guarantee that reconnection will even preserve the ba-

sic spine-fan topology. 3D reconnection is likely to produce topologically complex

structures so that the boundary between open and closed field becomes chaotic and

the identification of a 1D spine line or a 2D fan surface is no longer possible. This

hypothesis seems even more likely if the closed bipole moves so that it encounters

a large-scale coronal hole boundary. In that case the outer spine line would have

to change from open to closed (or vice versa) and the fan would interact with the

hole boundary. In order to determine the evolutionary topology and dynamics of 3D

interchange reconnection, we calculate numerically two simple, but highly illustrative

cases. In the first case (open-to-closed) an embedded bipole moves through an open

field region and across a coronal hole boundary, into a closed field region. In the

second case (closed-to-open), we consider the reverse situation where a bipole moves

from the closed field into the open.

We solve the set of 3D compressible, ideal MHD equations (2.8, 2.9, 2.13, and

3.10, with η = ν = S ≡ 0) in spherical coordinates with the ARMS code. The

ratio of specific heats γ is taken to be 5/3. The ideal gas law (equation 2.14) is

used as the plasma equation of state. Gravity, given by g = −GM!r
r3 , is included in
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Figure 5.3: Global magnetic field topological structure. Open field coronal hole re-
gions are shown in white. The closed field, streamer belt region is shown in
yellow. The spine fan topological characteristics of the embedded bipole
are shown in red.

the calculations, but its effects are small with regard to the interchange reconnection

dynamics. The primary reason for adding gravity is to keep the coronal plasma beta

from becoming too large at large heights.

The simulation domain consists of the spherical volume bounded below by the

photosphere at r = 1 R# and bounded above by the source surface, which is taken to

be at r = 3 R#. Within this domain, the initial magnetic field configuration is given

by the analytic expression (5.1). The origin-dipole strength is set to |M 0| = 10 G,

which yields a field strength of approximately 5 G at the photosphere far from the

embedded bipole. A single dipole with magnitude |M i| = 50 G, is placed below the

surface at |ri| = 0.9 R#, the angular position of which varies between the two cases,

although near the global coronal hole in both cases. Figure 5.3 shows the field for the

case of the bipole initially in the coronal hole.

A minor point to note is that we set the global dipole to be aligned with the

y-axis (θ = π
2 , φ = π

2 ) of the coordinate system rather than the vertical, as is the

usual case. This implies that the coronal holes now occur centered about two points

on the equator of our spherical coordinate system (at φ = ±π
2 ) rather than the
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coordinate poles (Figure 5.3 left). Furthermore, we select the parameters of the

embedded dipole so that it is located at and oriented along the coordinate equator,

and impose photospheric flows that move the resulting embedded bipolar region along

this equator toward a coronal hole boundary. The reason for this choice of geometry is

that the poles have metric singularities in spherical coordinates, making them difficult

to treat numerically, especially in 3D. The simplest and most effective procedure for

dealing with these singularities is to remove from the computation domain a small

conical region centered about each pole, (θ < 11.25◦ in the north and θ > 168.75◦ in

the south), visible in Figure 5.3 (left) as the holes in the Sun. We chose the magnetic

and velocity fields so that all the structure and dynamics occurs at the equator,

as far from these conical regions as possible. Note that there is no solar rotation

in our simulation; hence, our choice of parameters for the magnetic field and flow

fields corresponds only to a trivial rotation of coordinate axis and has no physical

consequences.

Since the initial magnetic field is potential, we set the initial plasma distribution

to be spherically symmetric and in hydrostatic equilibrium:

T (r) = T0

(
R0

r

)
(5.2)

n (r) = n0

(
R0

r

)µ−1

(5.3)

where the exponent µ = R0
H0

= 11.66. The pressure scale height H0 = 2kT0
mg . The surface

parameters are initialized to: T0 = 1 MK, P0 = 1 dyne cm−2. These plasma profiles

and parameters were selected so that the plasma beta would be small throughout

the domain. We find that the plasma beta reaches a minimum of approximately

0.0325 inside the strong field of the bipole and an average value ≤ 0.1 near the source
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surface; consequently the system is low-beta, as in the true corona. Furthermore, the

gravitational energy of the plasma is small compared to the magnetic field energy.

We emphasize, however, that although the system as a whole is low beta, the plasma

pressure does play an important role in the evolution. Near the coronal null the

plasma pressure dominates; therefore, the formation of the current sheets and the

subsequent reconnection dynamics are critically dependent on the plasma evolution.

Similar to the plasma beta, the Alfvén speed varies considerably over the domain,

but an average global Alfvén speed based on the total magnetic energy EM , and total

material MC in the corona, can be defined as,

VA =

√
2 EM

MC
(5.4)

With this definition, the Alfvén speed in both simulations is approximately 400 ×105

cm s−1. An Alfvén time of a little less than 115 minutes (τA ≈ 6900 s) is similarly

defined using a global length scale of 4 RS about the length of the largest loops).

At the lower boundary, the photosphere, we impose line-tied, no-flow-through

(Vr = 0) conditions. In both simulations, the embedded bipole is driven toward the

coronal hole boundary by an incompressible surface flow applied at the photosphere,

Figure 5.4. The flow field is constructed as a 1st-order Fourier trigonometric series

in the spherical angular coordinates. The azimuthal component, Vφ is assumed to

have cosine profiles in both colatitude (θ) and longitude (φ) angular coordinates, and

corresponding wave numbers that yield adjoining vortices (kθ = 1.0 and kφ = 0.5).

The polar flow component, Vθ, is then calculated by applying the vanishing divergence

condition for this 2D flow field.

Vφ (θ, φ, t) = Vφ f (t) cos

(
2πkθ

θ − θC

θH − θL

)
cos

(
2πkφ

φ− φC

φH − φL

)
(5.5)
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Figure 5.4: Driving flow field vectors. Color scale: red indicates zero velocity magni-
tude, purple indicates spatial extent of flow field.

Vθ (θ, φ, t) = Vθ f (t)

(
kφ

kθ

) (
θH − θL

φH − φL

) (
1

sinθ

)

sin

(
2πkθ

θ − θC

θH − θL

)
sin

(
2πkφ

φ− φC

φH − φL

)
(5.6)

f (t) =
1

2

[
1− cos

(
2πkt

t

tH

)]
(5.7)

where, kt = 0.5, and tH = 1.5 × 104 s = 2.17 τA. The magnitudes of these angular

velocity components are set to be approximately an order of magnitude smaller than

the average Alfvén speed defined above; |Vθ| = 1.875 × 106 cm s−1 = 0.047 VA, and

|Vφ| = 5 × 106 cm s−1 = 0.125 VA. Note, however, that the driving speeds above are

much smaller than the local Alfvén speed in the embedded bipole region, which is

at least an order of magnitude larger than VA. In order to minimize transient wave

effects as the motions start, the velocity magnitude has a shifted cosine profile in

time. The flow is chosen to have a broad latitudinal range (θH = 0.9 π, θC = 0.5 π,

θL = 0.1 π) in order to minimize the distortion of the flux distribution within the

embedded bipole as it moves across the photosphere (Figure 5.4 left).
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We use the velocity expressions above to describe the flows for both the case with

the bipole initially in the coronal hole and the case with it initially in the closed field,

except for a change in the longitudinal extent of the motions (and the obvious change

in sign). In the first case, initially in the coronal hole, we set φH = 0.4 π, φC = 0.2 π,

φL = 0.0; whereas for the second case, we set φH = 0.75 π, φC = 0.375 π, φL = 0.0.

These values for the flow parameters were selected so that the bipole would definitely

cross the coronal hole boundary in both cases.

At the top boundary, the source surface, we impose no-flow-through, free-slip

conditions. The free slip conditions allow us to model the physical distinction between

open and closed field without having to incorporate in the simulations the added

complexity of a solar wind. Field lines that reach the source surface are open, because

only one end is line-tied at the photosphere; whereas, those that do not are closed,

because both ends are line-tied. The no-flow-through condition allows us to preserve

the open or closed property of a field-line under an ideal evolution. In our simulations,

a field line can change from being open to closed or vice versa only as a result of

reconnection.

Finally, Figure 5.5 shows the numerical grid that is used for the simulations.

We start with a base level consisting of 2 × 3 × 6 blocks distributed uniformly in

{r, θ,φ} with 83 grid points per block. The initial minimum resolution is 3 levels

refined above the 2 × 3 × 6 base, and the grid is then refined a maximum of 6 levels

over a volume encompassing the entire photospheric flow field and to a radius above

the magnetic null point. The resolution at this highest refinement level corresponds

to approximately 2.2 ×109 cm by 1.875◦ by 1.875◦, which is much smaller than the

scale of the embedded bipole or the flow field. Note that the grids are nearly identical

for the two cases, except for minor adjustments due to the different initial position

of the bipole and the latitudinal extent of the flow fields. In order to quantitatively

compare the results of the two cases we have kept the grid fixed throughout the two
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Figure 5.5: Numerical grid structure. Top panels: Grid refinement in the radial di-
rection. Bottom panels: Grid refinement across the surface. Note, the
initial minimum refinement is refined to 3 levels above the base 2 × 3 ×
6 blocks.

111



simulations.

5.2 Results: Open-to-Closed Convection-Driven Dynamics

Figure 5.3 shows the initial configuration for this simulation. The near-surface

dipole is located at a latitude of 36.4◦, which places the outer spine inside the coronal

hole, but very near the coronal hole boundary (Figure 5.3 right). We chose this initial

location so that the interaction between the embedded bipole field and the coronal

hole boundary would occur before extreme distortion of the closed bipole field. The

evolution for the convection of the bipole from the open to closed field regions can be

considered to consist of 4 phases:

Phase 1 : From t = 0 to t ≈ 5900 s, the bipole moves toward the coronal hole

boundary with evidence for only minor reconnection. Due to the finite grid of the

simulation, some numerical resistivity is always present; therefore, if one examines

field lines on a fine enough scale (less than the grid size), it is always possible to

find some systematic flux transfer indicative of reconnection. The null point, how-

ever, remains almost undistorted during phase 1, and only weak currents (scale size

substantially larger than the grid size) form there, so any reconnection is slow. The

distance traveled by the inner spine during this phase is approximately 34 ×108 cm,

which is a small fraction of the scale of the bipole (the diameter of the polarity inver-

sion line in the direction of the motion is approximately 170 ×108 cm, see Figure 5.3

left). As a result of the photospheric motions, the closed field region in front of the

bipole is compressed, generating stresses on the open field. These stresses displace the

inner and outer spines, exactly as in Figure 5.2, resulting in the eventual formation

of a current sheet at the deformed null.

Figure 5.6 presents a close-up of the null region, at t = 0, 5,880, 7,480, and

10,000 seconds. The white lines indicate initially open field lines and the yellow
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closed. Plotted on the vertical symmetry plane that bisects the bipole are filled

contours of current density and 10 black contours of beta with magnitude ranging

from 1 to 100. This high-beta region corresponds physically to the null volume where

the field is susceptible to strong distortion. It is evident from Figure 5.6 that the

deformation of the null region stays small up through t ≈ 5800, because the beta

contours remain approximately circular. The currents clearly build up as the bipoles

motion progresses, but at this time they are still small compared to the currents

produced by the driving motions.

Phase 2 : From t ≈ 5900 s to t ≈ 7500 s the continued motion of the bipole results

in sufficient deformation of the null region that the structure of the currents there

decreases down to the grid scale, and rapid reconnection occurs. This interchange

reconnection exchanges the closed field of the bipole with the open field between it

and the coronal hole boundary. It can also be seen in Figure 5.6. Note that the panel

corresponding t = 7480 has substantially fewer white field lines to the right of the

closed fan surface.

We find that once interchange reconnection turns on, it stays on and smoothly

moves the outer spine through the open field and closer to the coronal hole boundary.

There is little evidence for explosive dynamics such as bursty reconnection or large

mass outflows. The dynamics produced by the interchange reconnection in this evolu-

tion are dramatically different than those in our simulations of breakout CME’s (e.g.,

Lynch et al. (2008)) or of coronal jets driven by magnetic twist (Pariat et al. (2009)).

The reason for this difference is that in the case of the CME and jet calculations,

the photospheric motions are chosen so that that the magnetic stress is kept away

from any separatrix surface. As a result, substantial free magnetic energy builds up

inside the closed field volume until it is released by an explosive burst of reconnection,

usually accompanied by some ideal instability or loss-of-equilibrium. In contrast, the
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large-scale translational motions of the simulation in this chapter tend to move the

bipole bodily, producing little magnetic stress inside its closed field. We find that only

weak volumetric currents appear inside the fan and very little free energy is stored

there.

The motions do produce significant stress, however, on the large-scale field where

the connectivity is discontinuous, the outer fan separatrix and outer spine. This

stress leads to the formation of current sheets at the fan and null region, which are

quickly dissipated by reconnection without large energy release or strong impulsive

behavior, at least, for the Lundquist number of this simulation (approximately 1000).

Our result indicates that in order to obtain the large energy release to explain jets

or plumes, for example, the closed field inside the fan would have to be stressed by

small-scale photospheric motions as in Pariat et al. (2009) or emerge through the

photosphere containing large stress. Both effects are almost certain to be true in the

Sun due to the presence of subsurface convective flows and the photospheric granule

and supergranule motions.

Phase 3 : Interchange reconnection continues until eventually the outer spine reaches

the coronal hole boundary. At some instant around t ≈ 7480 s the null of the closed

field bipole lies exactly on the separatrix surface between open and closed field and,

hence, the outer spine becomes a separator line that connects the bipole null and the

null at the source surface. Of course, this is a singular event. At this time the coronal

hole boundary can be taken to jump discontinuously from lying in front of the bipole

to behind, so that the fan bipole enters the main closed field region (Figure 5.6). Note

that we see no evidence for any special dynamics during this period. The transition

from the bipole being surrounded by open field to closed appears smooth. This result

is to be expected, because the bipole field has such small scale that its interaction

with the large-scale closed field just outside the coronal hole boundary is essentially
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Figure 5.6: Open-to-closed evolution. a) t = 0 s, initial configuration. b) t = 5,880 s,
current sheet formation. c) t = 7,480 s, global topology change of external
spine. d) t = 10,000 s, final configuration.

identical to that of the open field inside that boundary. As far as the magnetic field

of the bipole is concerned, there is negligible difference between the open and closed

field regions. Furthermore, this result agrees with observations, which indicate that,

in general, no special dynamics are seen at coronal hole boundaries (Kahler & Hudson

(2002)).

Phase 4 : During the final phase of the evolution, from t ≈ 7500 s to t = 10000 s

the bipole field moves steadily through the closed field by reconnecting with this flux.

Note that although the total duration of the imposed flows is 15000 s, we end the

simulation at t = 10000 s; consequently the bipole is still being driven even at the end

of the final phase. The reconnection during this phase is no longer of the interchange
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type, because it involves two closed field systems, but there appears to be little change

in the dynamics. The current sheet at the deformed null region keeps increasing in

length while decreasing in width (Figure 5.6), and the reconnection remains smooth

with no apparent burstiness. We expect that if the bipole driving were to stop, the

current sheet would decrease in length and the reconnection would eventually end,

albeit with some residual currents left in the system.

A critical issue is the topology of the open-closed boundary throughout this four-

phase evolution. The quasi-steady models require that the reconnection maintains

a smooth topology with well-separated open and closed field regions (Antiochos et

al. (2007)). In order to determine the topology we have traced a dense sample of

field lines from the source surface down to the photosphere and plotted their location

there. Figure 5.7 shows the results for the open to closed simulation at three times

during the simulation.

The black region in each panel is the area on the photosphere that is magnetically

connected to the source surface, in other words, the open field region. Also shown are

the polarity inversion lines on the photosphere (thin black lines) and filled contours

of Br at the photosphere, with red indicating strong negative and blue strong positive

field. We note that in the first panel, at t = 5069 s, the bipole is completely surrounded

by open field, so it is still in the coronal hole. The coronal hole forms an open corridor

that extends around the negative polarity spot, but this corridor is fully connected at

both ends to the main coronal hole open field region. This result shows that the mere

observation of open field in strong active region magnetic fields does not constitute

evidence for the validity of the interchange model. The quasi-steady models can easily

account for such observations.

As the bipole moves toward the closed field region, this open-field arch decreases in

width due to interchange reconnection until by t = 7083, only a very thin corridor of
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Figure 5.7: Open-to-closed: Photospheric open flux disribution at t = 5,069, 7,083,
and 8,960 seconds.

open field remains (Figure 5.7). The key question is whether this corridor continues

to be well-connected to the main open field region or whether it breaks up into

disconnected segments. It does appear from Figure 5.7 that the corridor has breaks,

but this is an artifact produced by the finite resolution of the numerical grid and the

geometry of the photospheric flux distribution. Since the negative flux is concentrated

into a spot just above the strong positive flux, it is relatively easy to find field lines that

connect to this negative spot. This result is also evident in the initial potential field

(Figure 5.1). If one draws a line connecting the centers of the positive and negative

spots, the fan surface has a high density of field lines in that direction but low density

in the perpendicular direction, so that the fan surface appears to have gaps in this

perpendicular direction. We know from the analytic expressions, however, that the

fan forms a smooth continuous surface. In topological terms, the reason for these

apparent gaps is that the eigenvalues of the field Jacobian evaluated at the initial

null point are highly asymmetric, so that the one corresponding to the eigenvector

117



parallel to the center-to-center line is substantially larger than the eigenvalue for the

perpendicular direction (e.g., Lau & Fin (1990)). This asymmetry is maintained

as the spots move and, hence, the open field corridor that eventually develops also

appears to have gaps. However, when we plot field lines from the photosphere upwards

with very high resolution, we find that at t = 7083 there are always open field lines

separating the closed flux that connects to the negative spot from the closed flux that

connects across the equatorial inversion line.

As the bipole moves toward the closed field region, the open field corridor continues

to thin until eventually the outer spine coincides with the open-closed field boundary

boundary, so that the corridor achieves singular width. Since our simulation has

finite temporal and spatial resolution, we cannot capture this critical event when the

corridor is singular. It is possible that near this time the open field corridor breaks

up into discontinuous pieces, because the deformation of the null and the presence of

current sheets there cause the outer spine to deform to a sheet-like structure and the

fan to some fractal volume. We do not see such topologies in the simulation, the outer

spine remains ray-like, but this may be due only to the finite resistivity inherent to

our numerical code. Even if such singular topologies do occur, we expect that their

structure would be only of order the dissipation scale and, consequently, disappear

quickly. Our simulation shows only a smooth topological transition for the bipole as

it moves from the open to closed regions, in good agreement with the results of the

quasi-steady models (Figure 5.7).

5.3 Results: Closed-to-Open Convection-Driven Dynamics

The closed-to-open case is, for the most part, closely analogous to the open-to-

closed evolution. The near-surface dipole is initially located at the latitude of 36.0◦

placing the outer spine inside the closed field, very near the coronal hole boundary in

order to minimize distortion during the interaction (Figure 5.8a). Again, we organize
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the evolution of the bipole from the closed to open field regions into 4 phases:

Phase 1 : From t = 0 to t ≈ 3758 s, the bipole moves toward the coronal hole

boundary with little reconnection or current sheet formation. The distance traveled

by the inner spine during this phase is approximately 80 ×108 cm, about half of the

dipole polarity inversion line diameter. The photospheric motions expand the entire

global closed field region, generating magnetic field stresses behind the dipole. The

inner and outer spines separate as a result of these stresses, eventually deforming the

null and generating a current sheet. Figure 5.8 shows the evolution similar to the

open-to-closed case, at t = 0, 3,758, 9,273, and 10,000 seconds. Clearly, from Figure

5.8, the deformation of the null region stays small up through t ≈ 3758 s as the beta

contours are still approximately circular. The currents within the null region build

up as the bipole motion progresses, but they are still small compared to the driving

motion currents.

Phase 2 : From t ≈ 3758 s to t ≈ 9273 s, the continued motion deforms the null

region, decreases the current structure to the grid scale, and initiates rapid reconnec-

tion. Though not strictly interchange reconnection because the bipole is embedded

in a globally closed field region, reconnection exchanges the closed flux inside the

bipole fan separatrix with the large-scale closed field. Once again we find that the

system evolves by continuous reconnection, smoothly shifting the outer spine through

the embedding field, with little evidence of bursty reconnection or large material out-

flows. As above, only weak volumetric currents appear inside the fan and very little

free energy is stored there.

An important difference between this case and the open-to-closed case is that

the displacement required for the bipole to cross the coronal hole boundary is much

larger than before. The required displacement is approximately 680 ×108 cm, nearly
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Figure 5.8: Closed-to-open evolution. a) t = 0 s, initial configuration. b) t = 3,758 s,
current sheet formation. c) t = 9,273 s, global topology change of external
spine. d) t = 10,000 s, final configuration.
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4 times the bipole polarity inversion line diameter. This result is due to the difference

between the response of open field and closed field to photospheric stressing. Since

the open field is free to slip at the source surface, significant compression stresses do

not build up between the front of the bipole and the coronal hole boundary. For this

case, the photospheric motions stress primarily the closed field, which is line-tied at

both footpoints. Consequently, the stress at the null and fan surface originates from

behind the bipole as a result of the stretching of the closed field there. However,

the eventual results of this stress are the same: current sheets form along the fan

and deformed null region and dissipate quickly by reconnection without large energy

release or strong impulsive behavior.

Phase 3 : At some time around t ≈ 9273 s, reconnection between the bipole flux

inside the fan surface and the external field shifts the outer spine line to the coronal

hole boundary, so that the boundary jumps discontinuously across the bipole fan

surface (Figure 5.8). Again, this singular topological transition appears smooth,

showing no evidence of any special dynamics.

Phase 4 : During the final phase of the evolution, from t ≈ 9273 s to t = 10000

s the bipole field moves steadily through the coronal hole by reconnecting with the

open field. The reconnection during this phase is true interchange, because the bipole

is now embedded in the open field region. The current sheet aspect ratio continues

to increase at the deformed null region (Figure 5.8), and the reconnection remains

smooth. We expect that if the bipole driving were to stop, reconnection would even-

tually dissipate the current sheet. Since the motion is now within the open field,

any helicity injected by the photospheric motions may escape the system allowing a

realignment of the inner and outer spines. For this case it is possible that the system

can achieve a true minimum-energy, potential state, except perhaps for any volumet-
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Figure 5.9: Closed-to-open: Photospheric open flux disribution at t = 7,752, 8,902,
and 9,915 seconds.

ric currents deep inside the closed bipole field.

Finally, we find that the evolution of the magnetic topology (Figure 5.9), is essen-

tially identical to that above. Initially, the parasitic spot is completely surrounded by

closed flux. At some point near t ≈ 8902 s, the bipole is so close to the coronal hole

boundary that the outer spine shifts its global topology, and a very thin open field

corridor forms. Using the same arguments as in the open-to-closed case, the open

field corridor is expected to be well connected to the main coronal hole even though

in the figure it appears to have breaks. Once the motion is completely inside the open

field region, the corridor continues to thicken as flux is transferred across the bipole

fan surface (Figure 5.9). The sequence shown in Figure 5.9, therefore, is simply the

reverse of that in Figure 5.7.
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CHAPTER VI

Reconnection-Driven Coronal Hole Boundary

Dynamics

Although the quasi-steady models appear to agree with coronal remote-sensing

observations, they have great difficulty in accounting for some of the most basic

properties of the solar wind. In situ measurements near Earth and throughout the

heliosphere have clearly established that there are two types of solar wind, “fast”

and “slow”, with distinct plasma and magnetic signatures (e.g., Zurbuchen (2007)

and references therein). The fast wind has speeds generally > 600 km s−1, is roughly

steady except for considerable Alfvénic turbulence, and has elemental abundances

that are typical of the solar photosphere. The slow wind, on the other hand, typically

has speeds < 500 km s−1, is highly time-varying, and has abundances typical of the

closed-field corona (e.g., Feldman et al. (2005), Zurbuchen (2007)). By mapping

the solar wind back to its source regions on the Sun, it has now been definitively

established, especially by Ulysses data (Gloeckler et al. (1992), Geiss et al. (1995)),

that the fast wind originates from those solar regions observed as coronal holes. The

fast wind, therefore, is the true quasi-steady wind as in Parkers original theory (Parker

(1958)).

The exact source regions and physical mechanisms underlying the generation of

0The material described in this chapter is a modified version of Edmondson et al. (2009)c.
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the slow wind, however, are still not known, and remain an active area of Heliophysics

research. Three general types of models have been proposed, differing primarily by

the source location of the slow wind. In one class of models (e.g., Wang & Sheeley

(1992), Arge & Pizzo (2000)) the slow wind is hypothesized to originate from open

field near the edges of coronal holes, where magnetic flux tubes expand substantially

faster than a simple radial expansion. The argument is that a larger expansion factor

leads to the slowing of the solar wind flow. The difficulty with these models is that

the composition of the slow solar wind is indicative of closed-field plasma and not

of plasma originating on open field lines. In another class of models the slow wind

is presumed to originate from the base of the heliospheric current sheet, at the tops

of streamers (e.g., Suess et al. (1996), Woo & Martin (1997)). The hypothesis is

that the open/closed interface at the tips of streamers is unstable and leads to the

frequent ejection of plasmoids into the current sheet. Indeed, such a process would

release closed-field plasma into the wind, but only over a narrow angular extent.

The high-beta plasma sheet surrounding the actual field reversal is observed to be

narrow, of order a few degrees, which agrees well with the observed angular extent

of the so-called streamer stalks in coronagraph images (Wang et al. (1999)). The

slow wind, however, has an observed angular extent of order 20◦ to 40◦, substantially

larger than the plasma sheet (Zhao et al. (2009)). In the final class of models the

slow wind is presumed to originate from the whole closed-field region as a result of

interchange reconnection with open flux that diffuses throughout the corona (e.g.,

Fisk et al. (1999), Fisk & Schwadron (2001), Fisk (2005), Fisk & Zurbuchen (2006)).

This model can naturally account for both the composition and the angular extent

of the slow wind. The problem, however, is that the diffusion of open field deep into

closed-field regions appears to be in disagreement with the Lorentz forces expected

for the low-beta corona (Antiochos et al. (2007)).

In this chapter we demonstrate a process that combines aspects of the second and
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third class of models, and that may be critical for understanding both the composition

and the angular extent of the slow wind. The underlying idea is that reconnection

between the flux of an embedded bipole and the large-scale coronal field can result

in the “tunneling” of the bipole flux through the helmet-streamer boundary and into

the coronal hole. Interchange reconnection between the bipole field and the open flux

of the coronal hole can then inject closed-field plasma into the wind. Note that in this

tunneling process the coronal-hole boundary jumps from one side of the bipole field

to the other; hence, the whole side of the streamer undergoes “disruption” as opposed

to just the Y-point cusp region at the top of the streamer arcade. Consequently, the

angular extent of the closed-field plasma injected into the wind may be substantially

larger than the instantaneous width of the streamer stalk.

As will be shown, an important aspect of this process is that it is incompatible with

the quasi-steady models, which implicitly assume that the evolution of the corona and

wind can be calculated as a series of steady states determined by the slowly changing

boundary conditions at the photosphere. We describe below the MHD dynamics of

the global magnetic field driven by a class of photospheric flows for which the quasi-

steady assumption is likely to fail, namely, flow fields that inject helicity with little

change to the photospheric normal-flux component. These drivers generate long-

lived, large-scale currents within the corona that can have major effects on the global

coronal magnetic-field structure (i.e., the coronal-hole pattern and streamer belt),

the dynamics of which are completely missed by the steady-state solutions. In fact,

we argue that these dynamics may be exactly what is missing from the quasi-steady

models, in order to reconcile those models with the existence of the slow solar wind.

In the previous chapter (V) we calculated the 3D MHD evolution of an embedded

bipole subject to a translational motion applied at the photosphere. In that case,

the dynamics of the coronal magnetic field were determined by the interplay between

the change in flux distribution at the photosphere and stress relaxation due to recon-
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nection. We found that the coronal bipole topology remained smooth, maintaining

well-separated open and closed domains throughout the evolution. In particular, all

of the open-field regions remained topologically connected (to the available spatial

grid resolution), suggesting that a complex distribution of these bipolar regions im-

pinging on coronal-hole boundaries would lead to an intricate system of open-field

corridors extending from the main coronal hole (Antiochos et al. (2007)). These re-

sults are in good agreement with the magnetic topology and evolution predicted by

the quasi-steady models.

The key feature of our simulations described in chapter V is that magnetic recon-

nection acts so as to maintain the coronal field close to the quasi-steady solution. As

a result of general energy injection (i.e., flux injection, helicity injection, translational

motions, or any combination thereof) the null-point topology of the embedded bipole

deforms by the inner and outer spine lines separating and forming a current sheet,

much like the classic theory of Syrovatskii (1981). Reconnection at this current sheet

then leads to the exchange of flux between the bipole and surrounding field, causing

the stress to decrease and bringing the spine lines back toward alignment. In chapter

V, we energized the system by translational motions, and the resulting reconnection

process moved the bipole with the photospheric motion while maintaining a near

current-free state as predicted by the quasi-steady models. This result is not uni-

versal, however, because as is shown below it is possible to prescribe motions at the

photosphere that bring the system far from the potential state. In this alternative

scenario, the dynamic MHD evolution is radically different from that predicted by

the quasi-steady models, with important implications for our understanding of the

slow solar wind.
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6.1 Model for Reconnection-Driven Dynamics

To study the reconnection-driven dynamics of the large-scale streamer belt we

employ the simplest multipolar model for the solar coronal magnetic field: three

polarity regions on the photosphere separated by two distinct polarity inversion lines.

The magnetic system consists of a global dipole - which produces the polar coronal

holes of open field and a large-scale equatorial streamer belt of closed field - and a

strong, bipolar active region, as shown in Figure 6.1. The initial field (equation 5.1)

is the same model used in chapter V with the source surface taken at 3 solar radii.

The coronal magnetic field is obtained directly by taking the gradient of equation

(5.1), and is given by,

B =
∑

BS
i +

∑
B∗

i

BS
i = M i

(
RS

i

|x− r0,i|

)3

[3 (mi · ni) ni −mi]

B∗
i = M ∗

i

(
RS

i

|x− r∗0,i|

)3

[3 (m∗
i · n∗

i ) n∗
i −m∗

i ]

where the position unit vectors are ni ≡ (x−r0,i)
|x−r0,i| , and the dipole orientation unit vec-

tors are mi ≡ Mi
|Mi| for both source (S) and image (∗) dipoles. The image dipoles are ge-

ometrically related to their real counterparts with field strengths M ∗
i = −M i

(
R

|r0,i|

)3

,

and position vectors r∗i = ri

(
R

|r0,i|

)2

, where R is the distance to the source surface.

The RS
i are simple scale factors. The origin dipole (i = 0) is M 0 = 10 z G, and

has a corresponding image at infinity that produces a constant field, B0 = 0.1852 z

G. This combination yields a field strength of approximately 4 G at the photosphere

far from the active region. The active region is modeled with five real dipoles spread
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Figure 6.1: 3D Global Potential Field Configuration: Large-scale view of initial coro-
nal magnetic field configuration. Color shading shows the magnitude of
the radial field at photosphere; the two thick black curves indicate polar-
ity inversion lines where the radial field vanishes. The green field lines
correspond to streamer-belt closed flux, and the blue field lines to the
coronal-hole open flux that maps to the source surface. The closed field
of the embedded bipole is shown in yellow, the fan and spine field lines
in magenta.
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uniformly in azimuth, all of equal magnitudes |M i| = 150 G, and scale factors RS
i

= 0.01 R#. The positions are given by r0,i = 0.8 R# r + 0.01π (i− 3) φ, where i =

{1, 2, . . . 5}. For these parameters, the active-region dipole sources produce a large

bipolar flux distribution embedded completely within the closed field of the streamer

belt, in the vicinity of the coronal-hole boundary.

The basic topological structure of the initial coronal magnetic field above the

parasitic spot consists of a roughly hemispherical volume of flux, surrounded by the

closed flux of the streamer belt. A single closed PIL surrounds the negative-polarity

region of the bipole, across which the near field must close. The topology of this two-

flux system is simply that of the well-known embedded bipole with its fan surface,

spine lines, and null point (see chapter III, section 3.2; Greene (1988), Lau & Fin

(1990), Antiochos (1990), Priest & Titov (1996)). Figure 6.2 illustrates the topologi-

cally invariant quantities that are the 3D null-point, the 1D spine lines, and the 2D

dome-shaped fan surface. A complete characterization of these topological invariants

requires only the magnetic field near the null-point position: the local structure of

the spine lines and fan surface are uniquely determined by the eigenvalues and eigen-

vectors of the fields first-order Jacobian expansion at the null. The intersection of

the fan surface field lines at the photosphere forms a 1D, closed, separatrix curve

that defines the topological boundary between the local active-region flux and the

streamer-belt field. The magnetic connectivity of the field lines whose photospheric

footpoints lie on this curve (i.e., that make up the fan surface) converge onto the null

point, and thus are multi-valued at the null point. We emphasize that although the

topology is discontinuous, the magnetic field is smooth everywhere. All of the bipolar

flux inside the fan closes across the local PIL, whereas all of the streamer-belt flux

outside the fan closes across the equatorial PIL.

We solve the set of 3D compressible, ideal MHD equations (2.8, 2.9, 2.13, and

3.10, with η = ν = S ≡ 0) in spherical coordinates with the ARMS code. The ratio of
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Figure 6.2: Topological structures of the 3D embedded bipole field. The thick inner
and outer spine lines are shown in purple. The fan surface, shown with
thin black lines, separates the bipole flux volume from the background
field. The (continuous) footpoint boundary of the fan surface is repre-
sented by the white dots at the photosphere. The polarity inversion lines
are shown in yellow.

specific heats γ is taken to be 5/3. For the plasma equation of state the ideal gas law

(equation 2.14) is used. The effects of gravity, g = −GM!r
r3 , are small, but included

in the calculations to keep the plasma beta from becoming too large at large heights.

Our simulation domain consists of the spherical annulus bounded radially by the

photosphere and the source surface, 1 ≤ r
R!
≤3. The longitudinal extent is −π ≤

θ ≤ π. We trim the latitude domain to 0.0625 ≤ φ ≤ 0.9375 π, since the poles have

coordinate metric singularities that are difficult to treat numerically. Note that the

interesting dynamics in this simulation occur near the equator, far away from these

excluded latitudes.

The initial magnetic field is potential, thus we set the initial coronal plasma dis-

tribution to be spherically symmetric and in hydrostatic equilibrium:

T (r) = T0

(
R0

r

)
(6.1)
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n (r) = n0

(
R0

r

)µ−1

(6.2)

where the exponent µ = R0
H0

= 5.97 and the pressure scale height H0 = 2kT0
mg . The

surface parameters are initialized to T0 = 1.94 MK, P0 = 0.25 dyne cm−2. These

plasma profiles and parameters were selected so that the plasma beta would be small

throughout the domain. We find that beta reaches a minimum of about 0.004 inside

the strong field of the bipole and an average value of less than 0.1 near the source

surface, though it does grow higher in the cusp region of the streamer belt. The

system is high-beta only in the near vicinity of the null. We emphasize, however,

that although the system on average is low beta, the plasma pressure does play an

important role in the evolution. The plasma pressure dominates in the vicinity of the

null, above the bipole flux domain; therefore, the formation of the current sheets and

the subsequent reconnection dynamics there are critically dependent on the plasma.

Much like the plasma beta, the Alfvén speed varies considerably over the domain,

but an average global Alfvén speed can be defined in terms of the total magnetic

energy EM and the total coronal mass MC :

VA =

√
2 EM

MC
(6.3)

With this definition, the global average Alfvén speed is approximately 730 km s−1.

An Alfvén time of a little less than 2,000 s is similarly defined using a global length

scale of 2 R#, approximately the half-length of the largest loops.

At the lower boundary, the photosphere, we impose line-tied, no-flow-through (Vr

= 0) conditions. The velocity profile (Figure 6.3) is a slow, incompressible, asymmet-

ric, rotational motion applied to the negative polarity spot inside the active region

PIL, constructed to preserve the normal flux distribution in time. The velocity field
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Vt tangent to the surface is similar to that used by DeVore & Antiochos (2008), viz.,

Vt (θ, φ) = f (t) V0

[
1− cos

(
π

Br (θ, φ)−B1

B2 −B1

)]
r ×∇tBr (θ, φ) (6.4)

where ∇t is the gradient operator tangent to the surface. The flow is non-zero only

between radial field values of B1 = -30 G and B2 = -3 G; consequently, the flow

vanishes at both the PIL and the inner spine footpoint. We set the constant factor

V0 = 9.0 × 1014 cm2 s−1 G−1 so that the maximum velocity is approximately 45 km

s−1, approximately 6% of VA. The temporal variation factor f (t) is,

f (t) =






1
2

[
1− cos

(
2π t

4,000

)]
for 0 ≤ t ≤ 2, 000 s

1 for 2, 000 ≤ t ≤ 20, 000 s

1
2

[
1− cos

(
2π t−18,000

4,000

)]
for 20, 000 ≤ t ≤ 22, 000 s

0 for 22, 000 ≤ t s

(6.5)

The smooth cosine profiles minimize transient wave effects as the motions start and

stop. The temporal extent of the driving rotation is long enough to stress the field so

that the external spine line changes its global topology; we then turn off the motions

and let the field relax. Although the initial state is symmetric about the meridional

plane, the photospheric flows destroy the symmetry so that the evolution is fully 3D

and asymmetric.

At the top boundary, the source surface, we impose no-flow-through, free-slip con-

ditions. The free-slip conditions allow us to keep the physical distinction between open

and closed field without having to incorporate in the simulations the added complex-

ity of a full solar wind. Field lines that reach the upper boundary are physically open,

because only one end is line-tied at the photosphere, and thus any stress imparted

by photospheric motions may propagate out to infinity on Alfvénic timescales. Field

lines in which both footpoints connect to the line-tied photosphere are closed and can
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Figure 6.3: Driving flow field vectors of the photospheric velocity field plotted over
color shading of the flow speed and black contours of the radial field
component Br.
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Figure 6.4: Numerical grid structure showing the refinement in the angular and radial
directions.

sustain Lorentz stresses for time scales all the way up to the global dissipation time.

Under an ideal MHD evolution, the no-flow-through condition forces conservation of

the open/closed designation of a field line; thus, the topology of any field line can

change only as a result of reconnection.

Finally, Figure 6.4 shows the numerical grid for the simulation. We start with a

base level consisting of 2×4×8 blocks distributed uniformly in { r, θ,φ }, with 83 grid

points per block. This sets the minimum resolution far from the bipolar active region.

The initial grid is further refined up to a maximum of four levels, over a volume large

enough to encompass the entire rotational flow field and extending radially from the

photosphere to the source surface. The resolution at this highest refinement level

corresponds to approximately 1.1 ×109 cm by 0.70◦ by 0.70◦, which is much smaller

than the scale of either the embedded bipole or the flow field, sufficient to resolve fields

and scalars and their derivatives, so numerical diffusion does not substantially affect

the calculation, other than the numerical resistivity responsible for the reconnection

dynamics. The grid is held fixed throughout the simulation.
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6.2 Results: Reconnection-Driven Dynamics

The overall system evolution is most clearly seen in the time history of the mag-

netic and kinetic energies (Figure 6.5). An inspection of the kinetic energy profile

reveals three stages to the evolution, defined by the location of the outer spine field

line. The first stage, t ∈ [0, 18, 000] s, occurs during the initial energy injection and

is characterized by a topologically closed outer spine. The second stage occurs for

t ∈ [18, 000, 36, 000] s, and is characterized by a topologically open spine line. During

this phase, any helicity injected by the boundary flow field and conserved by inter-

change reconnection can escape the system along open field lines. Recalling that the

system drivers are turned off at t = 22,000 s, the field relaxes by ejecting enough

helicity and energy to close the outer spine line around t ≈ 36,000 s. This re-closing

of the outer spine line characterizes the third and final stage, t > 36,000 s, during

which the dynamics effectively cease for time scales less than the global dissipation

time.

The dynamics are illustrated from two complementary points of view in Figures 6.6

and 6.7 at times t = 0, 9,000, 19,000, 23,000, 30,000, and 37,500 seconds. Figure 6.6

illustrates the geometric expansion of the bipole flux volume as a result of the magnetic

stresses imparted by the photospheric flow field, as well as the spatial structure of the

resulting currents. We show field lines and current-density magnitude in the initial

symmetry plane bisecting the bipole flux volume. The rotation immediately destroys

this symmetry, however, as we noted above. The field-line color map identifies the

different flux systems: yellow field lines indicate the closed bipole flux, green the

closed flux of the global streamer belt, and blue the open coronal holes. All closed-

flux footpoints are traced from fixed photospheric positions away from the driving

flows, while the open field lines are traced from footpoints on the source surface.

Consequently, the movie shows the true evolution of the selected field lines. Plotted

on the vertical background (in the plane of the sky) are filled contours of current-
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Figure 6.5: Energy-Time Plot: Solid line shows the change of the global magnetic
energy from its initial value; dashed line shows the global kinetic energy.
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Figure 6.6: Bipole field geometry evolution. t = 0 s, initial configuration; t = 9,000
s, strong current sheet formation; t = 19,000 s, global topology change of
external spine (closed to open); t = 23,000 s, external spine open topology;
t = 30,000 s; global topology change of external spine (open to closed); t
= 37,500 s, relaxation phase.
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density magnitude. The color scale saturates for current-density magnitudes greater

than 1.0 A m−2, in order to show the spatial extent of the strong currents.

A critical issue is the topology of the open/closed boundary throughout the sys-

tems evolution. From consideration of a sequence of potential states, Antiochos et al.

(2007) argued that reconnection can maintain a smooth topology with well-separated

open- and closed-field regions in agreement with the quasi-steady models. Our pre-

vious MHD simulations (Chapter V, sections 5.2 and 5.3) support this assertion for

a fully dynamic system, at least down to the numerical grid resolution and time ca-

dence. Figure 6.7 shows the evolution of the open field in the present simulation by

tracing a dense sample of field lines from the source surface down to the photosphere,

and plotting their footpoint locations there. The black region in each panel is the

area on the photosphere that is magnetically connected to the source surface, i.e., is

the open-field region. Also shown are the polarity inversion lines on the photosphere

(thin black lines) and filled contours of Br at the photosphere, with red indicating

strong negative and blue strong positive field.

Let us now consider the detailed evolution of the system as determined by our sim-

ulation. From t = 0 to t ≈ 9,000 s, the rotational flow twists the bipole, stressing the

field with evidence for only negligible reconnection. The null point remains relatively

undistorted, and only weak currents with a scale size substantially larger than the

grid size form there. As a result of the photospheric motions, the closed-field bipole

expands and shears, transmitting the stresses to the separatrix and into the global

streamer belt. These stresses tend to displace the inner and outer spines, in both a

radial direction due to the volumetric expansion and a longitudinal direction due to

the rotational shearing, resulting in the eventual formation of a current sheet at the

deformed null. It is evident from Figure 6.6 that the deformation of the null region

stays small up through t ≈ 9,000 s, because the spatial extent of the large current

contours in the vicinity of the null point remain small. The currents clearly build up
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Figure 6.7: Photospheric open flux distribution evolution showing the formation of
the open-field corridor. Times are the same as in Figure 6.6.
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as the driving motions progress, but during this phase they are small compared to

the body currents within the bipole flux volume and are much larger than the grid

scale. Furthermore, the bipole remains well within the closed field of the streamer

belt, and thus no changes are seen in the top panels of Figure 6.7.

From t ≈ 9,000 s to t ≈ 18,000 s the continued rotation of the bipole flux suffi-

ciently deforms the null region that the current structure there decreases down to the

grid scale and rapid reconnection ensues. This reconnection is technically not yet in-

terchange reconnection, because the bipole flux is still embedded within the streamer

belt, but the closed field of the bipole does exchange with the globally closed flux.

Since the initial symmetry is broken by the rotational flow, the reconnection dur-

ing this phase is not easily seen. However, we can infer that rapid reconnection has

initiated at this time by the greatly increased rate of expansion of the bipole field

volume, especially on the southern end overlying the fastest flow speeds. We find

that once reconnection turns on, it stays on, and the null patch tunnels its way to-

ward the coronal-hole boundary, smoothly transferring the outer spine through the

streamer-belt flux.

Between t ≈ 18,000 s and t ≈ 19,000 s, the stress of the twisting motions and the

amount of reconnection are enough to transfer the external spine line to the coronal-

hole boundary. At some instant, the null of the closed-field bipole lies exactly on

the separatrix surface between open and closed field, hence the outer spine becomes a

separator line that connects the bipole null to the null at the source surface. We expect

from the coronal hole uniqueness theorem (Antiochos et al. (2007)) that the outer

spine line opens during this time. Numerically, it is extremely challenging to capture

this singular topological transition. Unlike in the real Sun where field lines can open

and close simply in response to changing gas pressure, our no-flow-through boundary

conditions at the source surface imply that the only way for a field line to change

from open to closed or vice versa is via reconnection at the null patch. Therefore,
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the appearance of the thin open-flux extension connected to the northern coronal

hole on the western side of the bipole (Figure 6.7) implies that the null patch has

tunneled its way through the closed field and crossed into the coronal hole. Although

the corridor may appear discontinuous, this is only an artifact of the finite numerical

grid resolution and of the extreme deformation of the null. Except possibly over a

short grid-dissipation time scale, we expect that the open-field corridor is actually

well connected and encircles the entire bipole flux domain, as it does in chapter V.

Prior to the creation of the open-field corridor, there is little evidence for explosive

dynamics such as bursty reconnection or large mass outflows. As the null patch eats

its way through the streamer belt, removing more and more flux from between the

bipole and the coronal-hole boundary, we find that the kinetic energy increases rapidly

just before the appearance of the open-field corridor (Figure 6.5).

In the next phase of the evolution, from t ≈ 19,000 s to t ≈ 36,000 s, the closed

bipole field is embedded completely within the open field of the coronal hole. Recall

that between t = 20,000 s and t = 22,000 s, we steadily decrease the driving flows

to zero, so that beyond t = 22,000 s the system undergoes pure relaxation. The

reconnection during this phase is truly interchange, occurring between open and closed

field. There is a gradual decrease in kinetic energy over time (Figure 6.5), but we

see no dramatic change in the system dynamics. The reconnection remains fairly

smooth with no impulsive burstiness and no evidence of any ideal instability such

as the kinking that drove impulsive reconnection in our model for coronal hole jets

(Pariat et al. (2009)).

Throughout this phase, the helicity that was injected at the photosphere and

conserved by the reconnection process is ejected from the computational domain along

open field lines. Since the photospheric driving has ceased by this time, this ejection

of magnetic helicity is the main process by which the system relaxes. The relaxation

of the stress inside the bipole field can be seen from a slight volumetric contraction of
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the closed bipole flux. Along with magnetic energy and helicity, closed-field plasma

is ejected from the system; but since we use an adiabatic energy equation, the plasma

cools rapidly as it expands outward. Furthermore, our no-flow-through condition

at the base does not allow for chromospheric evaporation, so the amount of plasma

released into the wind is clearly underestimated by this simulation. The time scale

of the relaxation phase is determined almost exclusively by the rate of reconnection,

because the propagation of helicity out of the system occurs on the global Alfvén time

scale, which is of order 2,000 s.

After sufficient stress has been ejected from the system along the open field, the

external spine closes down sometime between t ≈ 35,500 s and t ≈ 36,500 s (Figure

6.8). The interchange reconnection and helicity ejection within the open field impart

a kind of “dynamic inertia” to the relaxing system so that the spine overshoots the

coronal-hole boundary into the closed-field region. The amount of overshoot and the

final location of the external spine are expected to depend upon the details of the

reconnection process, which in turn depend upon the dissipation mechanism. For

t > 36,000 s, we find that the system achieves a quasi-steady force balance with the

closed outer spine in the vicinity of the coronal-hole boundary (Figure 6.9). During

this phase helicity is conserved, so that the only true relaxation process available to

the system is a de-twisting of the photospheric shear by resistive dissipation.

Figure 6.10 shows two separate viewpoints at four typical times, t = 0, 19,000,

23,000, and 45,500 seconds, in the evolution of the global streamer-belt/bipole sys-

tem. It is evident from the figure that the rotational flow field does not change the

photospheric normal flux distribution, yet we find a major reconfiguration of the

global streamer belt as the bipole flux volume passes across the dynamically shift-

ing coronal-hole boundary. Note that when the bipole has shifted into the coronal

hole, the streamer-belt envelope has dipped below the parasitic spot (see Figure 6.10,

t = 23,000 s). The opening of the bipolar flux low down in the corona, far from
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Figure 6.8: Late-stage external spine topology change. Between t = 35,500 and 36,500
s, enough stress is ejected from the system to close the fan and external
spine field lines (blue).
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Figure 6.9: Final global field configuration at t = 45,500 s, showing the closed external
spine (purple), neighboring closed flux that was initially open (blue), and
the large-scale streamer field (green).

the dynamically evolving streamer-stalk cusp, implies closed-field plasma release and,

therefore, a widening of the angular extent of the slow-wind source region.

We find that embedded bipole regions near coronal-hole boundaries can tunnel

through the boundaries via reconnection, thereby releasing their plasma onto open

field lines. The reconnection while inside the helmet streamer causes the null point

and spine to tunnel into the coronal-hole, whereas the interchange reconnection while

inside the coronal-hole causes enough stress release for the null and spine to drop

back inside the helmet streamer. Consequently, the coronal-hole boundary jumps

back and forth to include or exclude the embedded bipole region throughout the

evolution. Depending on the size of the bipole, the jump could be substantial. This

type of evolution is exactly what is needed in order to explain the observations that

the slow wind has both a closed-corona composition and a large angular extent. Note

that if we were to maintain the photospheric flows in our simulation, we expect that

the system would undergo a continuous sequence of reconnection-driven openings
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Figure 6.10: Streamer belt re-configuration at times t = 0, 19,000, 23,000, 45,500 s.
The green and blue field lines respectively illustrate the initial closed field
lines of the streamer belt and a patch of initially open flux in the coronal
hole. The yellow field is the low-lying bipole flux that closes across
the parasitic spot polarity inversion line. The left and right columns
respectively present isometric and profile views.

145



and closings, which would result in a sequence of closed-field plasma releases into

the wind. Furthermore, the temporal evolution of this plasma release appears to

be compatible with observations that coronal-hole boundaries do not exhibit strong

dynamics in coronal images. We note from Figure 6.5 that although there is clearly

an increased energy release rate when the bipole enters the coronal hole, this release is

quite gradual with a long time scale, of order hours. From the viewpoint of comparison

with observations, a key result is that the reconnection does not produce bursty

dynamics. Energy is released during the reconnection, primarily as mass flows, but

the release does not show impulsive behavior. The reason for this difference is that

there is no sign of any ideal instability in our simulation; everything is driven by the

slow photospheric driving and by the fairly gentle coronal reconnection.
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CHAPTER VII

Conclusions

The results of this dissertation research have a number of important implications

for both theories and interpreting observations of the corona, and the heliosphere. The

calculations demonstrate that local current sheet formation, dissipation mechanism,

and subsequent reconnection dynamics are as important to the global dynamics as

the velocity drivers at the photospheric boundary. We demonstrate that, though

there are differences between the X-Line (chapter IV) and 3D null point (chapters

V and VI) evolutions depending on the specifics of the energy injection, the general

result of a Syrovatskii-type current sheet formation along topological separatricies

seems very robust. The corresponding reconnection dynamics across the current sheet

proceeds in a smooth manner, maintaining a clear topological separation between the

nested magnetic domains. In effect, under MHD evolution, the general topological

complexity always reflects the initial topological complexity. Of course, this work

was done within the framework of MHD and the reconnection was calculated using

numerical resistivity, and thus cannot account for physical affects, such as particle

acceleration and direct plasma heating. With these caveats in mind, we enumerate

the major conclusions of the simulations below. We begin with the local current sheet

development and reconnection dynamics, and discuss the differences between the X-

Line and the 3D null point formulations. From there we analyze the consequences of
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the fully-dynamic 3D MHD calculations in terms of the limitations of the fundamental

assumptions of both the quasi-steady and interchange models. Finally, we offer that,

depending on the complexity of the coronal magnetic field structure, the predictions

of both theoretical paradigms seems to converge, with interchange reconnections as

a viable mechanism for the generation of the slow solar wind.

The calculation discussed in chapter IV constitutes, in a sense, a minimalist ex-

tension of 2D current sheet formation and reconnection to the fully 3D regime. The

advantage of our approach is that it lends for straightforward comparison to previous

2D and 3D work and allows for very high numerical resolution applied at the current

sheet. The results have a number of important implications for solar activity and for

reconnection, in general. First, it is clear that a current sheet does form due to the

photospheric motions, even though the motions are the smoothest possible uniform

flow. This result demonstrates convincingly that a multipolar topology, even the ex-

tremely simple one of our model, will inevitably lead to current sheets in the corona.

The formation process is physically identical to the Syrovatskii model: an initial X-

type null deforms as a result of applied stress to a current sheet (technically a neutral

sheet) bounded by two Y-type nulls. For our particular magnetic configuration and

photospheric driving, the currents are confined to the deformed null point region and

are small at the separatrix surfaces. But, if we were to apply a flow at the upper

surface that drove the field in the initial-symmetry direction, parallel to the current

sheet axis, current singularities would form along the separatrices, as well.

The current sheet formation process is rapid and efficient. It is evident from Figure

4.5 that the structure at the deformed null thins down to the highest resolution for

fairly small displacement of the outer spine, less than 20◦. The thinning of the current

structure is expected to occur exponentially (e.g., Antiochos et al. (1999)), so that

even for the very large Lunquist numbers of the real corona, current structures down to

the dissipation scale form on essentially ideal time scales. An important implication of
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this result is that current sheets are likely to be present in the corona even though the

magnetic field there is generally observed to be near the potential state. As illustrated

in Figure 4.9, even a modest distortion from the potential state is sufficient to generate

structure at the dissipation scale. Note, however, that these current singularities occur

at very specific locations, the topological boundaries between different flux systems.

It is still an open question as to whether current sheets form ubiquitously in the

corona (Parker (1972), van Ballegooijen (1985), Antiochos (1987)).

A striking result of the simulation in chapter IV, is the extreme stability of the

current sheet and reconnection dynamics, Figure 4.6. The dynamics are much less ex-

plosive than simulations of reconnection with isolated 3D null-point topologies (Pariat

et al. (2009), chapter V - Edmondson et al. (2009)a, and chapter VI - Edmondson et

al. (2009)c), and even less impulsive than 2.5D simulations with null-lines (Karpen et

al. (1995), Karpen et al. (1996), Karpen et al. (1998)). We believe that the origins of

the differences between the results of chapter IV and previous simulations of coronal

reconnection lie in the form of the driving field. First, the photospheric motions in

this calculation deform only the large-scale external flux system, not the small-scale

embedded bipole; consequently, there is no need for free energy to spread outward.

Second, the motions inject no helicity into the corona; the field lines are not twisted

or sheared. Therefore, the reconnection, by itself, can lower the magnetic energy to

the minimum-energy potential state without the need for propagating helicity over

global scales. The implications for the corona are that slow photospheric driving of

the large-scale coronal field can result in the quasi-steady energy release by recon-

nection, without dramatic dynamics. Such a process is exactly what is required to

account for the near-steady heating of solar quiet regions.

From a global theory point of view, it is clear that the quasi-steady models are

limited in their ability to reproduce coronal dynamics and, in certain cases, can fail

completely. In chapter V, we assumed a form for the photospheric flows that was most
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compatible with the quasi-steady models: a translation that changed the normal flux

distribution at the photosphere by moving the bipole flux system without introducing

significant internal structure (see chapter V, section 5.1). In chapter VI, we assumed

the opposite situation of a flow that preserves exactly the photospheric flux distribu-

tion but produces a substantial internal twist in the bipole. Unlike the quasi-steady

PFSS and equilbruim MHD models which assume a time series of current-free coro-

nal fields given uniquely by the photospheric normal flux distribution, the field in

these calculations does not remain current-free during the evolution. Large currents

do form in the corona in response to the photospheric motions, and these currents

are long-lived. Consequently, the position and geometry of the open-closed boundary

will be different than that calculated from the quasi-steady model, which is important

for comparison with observations. Given the proper boundary conditions, the MHD

models can, in principle, calculate the field and currents precisely, but determining

such boundary conditions from available observations may not be possible.

A key conclusion is that the velocity field at the photosphere is not a sufficient

boundary condition to determine the structure of the corona, even the large-scale

structure such as the geometry of the open-field regions. It is evident from Figures 5.7,

5.9, and 6.7, that the coronal-hole structure is determined by both the flows imposed

at the photosphere and the reconnection that results in the corona. In our simulations,

reconnection plays the decisive role in determining the location and topology of the

open-field regions. All of the open-field evolution seen in these figures is due solely

to reconnection. This implies that the coronal dissipation mechanism is critical to

predicting coronal structure. In the calculations, we use numerical diffusion, which

is adequate for obtaining the qualitative features of the evolution, but is unlikely

to be valid for quantitative comparison with data. Unfortunately, the true coronal

dissipation mechanism is largely unknown and, hence, no model at present can be

expected to calculate coronal structure robustly. This is especially true in situations
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such as those considered above in which an embedded bipole region is located near

a coronal-hole boundary, so that even a small amount of reconnection can have a

large effect on that boundary. An intriguing point is that given observations with

sufficient resolution and sensitivity we may be able to use the observed geometry and

evolution of the coronal-hole boundary to place constraints on the reconnection and,

consequently, infer the properties of the dissipation mechanism.

One aspect of this general result is that the uniqueness conjecture (Chapter II,

section 2.3; Antiochos et al. (2007)) appears to hold even during interchange recon-

nection. We see no evidence for disconnected coronal holes as the bipole evolves,

which argues against the basic assumptions of the interchange model. The basic

topology of the interchange process is that of the closed field of a bipole interacting

with surrounding open field, as in Figure 5.2. The reconnection occurs along the

fan surface, primarily at the null. Note that the topology is continuous and, hence,

it is not valid physically to assume a picture in which reconnection takes place be-

tween an isolated open and closed field line. The difference between the continuous

topology of Figure 5.2 and the often-used discontinuous picture of Figure 2.19 may

seem minor, because in both models the open field undergoes a jump in footpoint

position as a result of reconnection. The key point, however, is that in the continuous

model the reconnection releases energy only after a large current sheet forms. If the

reconnection at the null is highly efficient, the open field will smoothly transfer from

one side of the bipole to the other with no heating or mass acceleration. It should be

pointed out, however, that we have calculated the evolution of only a single bipole

moving in a simple trajectory. The interchange model of Fisk et al. (1999) inherently

assumes that the evolution of the open field is dominated by its reconnections with a

dynamic complex of random bipoles, as in the magnetic carpet. It may well be that

if a sufficiently complex distribution of bipoles is present, then key features of the

interchange model, such as large-scale open-flux diffusion patterns, start to become

151



valid. It remains unclear though, if a differential rotation surface pattern, and full

solar wind solution were also included in the model, that a global circulation pattern

in the open flux may develop, as suggested by Fisk and co-workers.

From our simulations, the magnetic topology appears to remain fairly smooth

throughout the interchange reconnection process, even when a bipole crosses the hel-

met streamer boundary. To the resolution of the simulations, the open-field topology

remains smooth with a well-connected corridor satisfying uniqueness (Antiochos et

al. (2007)). Our numerical resolution is quite high for 3D MHD simulations, but of

course, the simulation is still very far from resolving the true range of scales in the

corona. Within this limitation, we do not see the type of disconnected open flux

postulated by the Fisk-type interchange models (e.g., Fisk et al. (1999), Fisk & Zur-

buchen (2006)). Our results, therefore, constitute strong support for the topologically

smooth quasi-steady models as far as the photospheric-normal distribution changes.

This result, however, is sensitive to the details of the reconnection process, especially

the effective resistivity. It may be that for sufficiently high Lundquist numbers and

true coronal dissipation, the fan/spine topology breaks up into a turbulent-like struc-

ture so that open- and closed-flux regions become intermixed. We expect that such

a topology would survive only for short time scales, but if the system were continu-

ously driven, then an intermixed topology might be maintained in a limited region

surrounding the coronal-hole boundary. The net effect would be to turn the 2D

coronal-hole boundary of the quasi-steady models into a 3D dynamic structure with

small but finite thickness, which could have major implications for understanding the

origin of the slow wind.

The reconnection-driven dynamics calculated in this dissertation have all the es-

sential features to explain the origin of the slow wind. The fact that slow wind is

seen only near the heliospheric current sheet, within 20◦ - 40◦, implies that the origin

of the slow wind must be associated with coronal hole boundaries. It is tempting to
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conjecture that this process of releasing the closed-field plasma of embedded bipoles

onto open field is the origin of the slow wind. The key question, however, is whether

the process is sufficiently frequent. The results shown in Figures 5.7, 5.8, and 6.7,

indicate that if there are many bipoles moving randomly in response to photospheric

motions, the coronal hole boundary is likely to consist of a complex dynamic web of

open-field corridors. Such a dynamic topology would blur the distinction between the

interchange and quasi-steady models, at least in the vicinity of coronal hole bound-

aries. We conjecture that a mixing of the two types of models is, in fact, the key

to understanding the origins of the slow wind. Further studies using observed pho-

tospheric flux distributions and more accurate plasma energetics (including thermal

conduction and chromospheric evaporation) will be needed in order to determine the

importance of our results for the actual corona and wind.

There are a number of follow-up investigation that will be done. First, the study of

self-consistent generation and stability of a high resolution current sheet in 3D MHD

(chapter IV) is concerned with only the neutral sheet case (i.e., no magnetic field

component oriented along the current direction). In this case, plasmoid formation

due to the tearing mode instability was shown to be of very short correlation length

in the third dimension - only of order the grid scale. The obvious next step is to

include a guide field in the plane of the current sheet, and characterize the plasmoid

structure and overall current sheet stability. This can be done in two ways: one,

by including a guide field component in the initial magnetization state, or two, by

adding a driving velocity component in the translationally symmetric direction. This

situation will better reflect the solar coronal structure which is likely to have a variety

of magnetic field shearing angles across the current sheet singularities. Second, the

two-flux system dynamics calculations of chapters V and VI were concerned with the

basic magnetic interaction (i.e., the 3D null point reconnection process) that is the

simplest, non-trivial configuration of the solar coronal environment. The next step will
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be to increase the complexity of the system. Most importantly, we will include a full

solar wind solution, which will allow an estimate and characterization of the material

being released onto open field lines by the interchange reconnection interaction. In

addition, the structural complexity of the system will be increased by introducing

multiple bipolar flux systems and complex photospheric driving flow fields, consistent

with observed photospheric magnetogram and velocity fields. These proposed tasks,

as well as properly treated flux emergence calculations, can strengthen the important

structural theorems provided in chapter II, section 2.3. The generalization of such

strong theoretical constraints will play a very important roll in our understanding of

the magnetic field structure and heating of the solar corona, and thus the generation

of the solar wind.
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APPENDIX A

Derivation of the Sweet-Parker Reconnection Rate

In this appendix, the Sweet-Parker reconnection rate is derived from basic con-

servation principles.

A.1 Derivation of Sweet Parker Reconnection Rate

Assume the current sheet has dimensions: Length = L and Width = δ. Conser-

vation mass requires the material flowing into the current sheet at speed Vin along

the top and bottom, must balance the material flowing out of the current sheet along

the sides at speed Vout.

Vin L = Vout δ (A.1)

Assuming all the magnetic flux that enters the current sheet along the top and bottom

reconnects, conservation of energy implies the magnetic energy density powers the

fluid out-flow kinetic energy density,

B2

8π
=

1

2
ρV 2

out (A.2)
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Figure A.1: Steady-state Sweet-Parker reconnection configuration.

Solving for Vout, and noting the definition of the Alfven speed,

Vout =
B

(4πρ)1/2
= VAlfven (A.3)

Equation (A.3) states that, physically, the fastest possible out-flow velocity is the

characteristic Alfven speed.

From Ampere’s Law we find,

∫
B · dl =

∫
J · dS (A.4)

Bx (2L) = 4πJz (Lδ) (A.5)

Solving for δ,

δ =
Bx

2πJz
(A.6)
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Combining equations (A.1), (A.3), and (A.6),

Vin L = VAlfven
Bx

2πJz
(A.7)

The reconnection rate is defined as the unsigned ratio of the in-flow to the out-flow

speeds,

Vin

VAlfven
=

Bx

2πLJz
(A.8)

In order to determine the relationship between the magnetic field component Bx, and

the current density Jz, we examine the electric field. Outside the current sheet, ideal

(i.e., frozen-in) MHD applies. Thus, Ohms Law reduces to,

E + V in ×B = 0 (A.9)

Thus, the out of plane component of the electric field external to the current sheet

is, in terms of the in-flow speed and magnetic field component along top (bottom) of

the current sheet,

(Ez)external = −VinBx (A.10)

On the other hand, the electric field inside the current sheet is found from dissipative

physics,

E = ηJ (A.11)

In terms of components, all are out-of-plane,

(Ez)internal = ηJz (A.12)
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For steady-state flow, the internal and external electric field components are equal,

(Ez)internal = (Ez)external (A.13)

ηJz = −VinBx (A.14)

Thus,

Bx

Jz
= − η

Vin
(A.15)

Substituting equation (A.15) into equation (A.8),

Vin

VAlfven
=

η

2πLVin
(A.16)

V 2
in

V 2
Alfven

=
( η

2πL

) (
1

VAlfven

)
(A.17)

Noting the definition of the Lundquist number,

Rm ≡
LVin

η
(A.18)

Thus, the Sweet-Parker reconnection rate is, modulo a constant, inversely propor-

tional to the square root of the Lundquist number,

Vin

VAlfven
=

1

(2πRm)1/2
(A.19)
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APPENDIX B

Magnetic Helicity: Definition, Transport,

Dissipation, and the Force-Free Condition

In this appendix, the force-free condition over the low-beta corona is derived for

magnetic helicity injection.

B.1 Magnetic Helicity for General Boundary Conditions

Magnetic helicity, in a physical sense is a measure of the linking between two field

lines, or equivalently the amount of twist of a given flux tube. Mathematically, the

helicity is a volume dependent quantity defined as,

K =

∫

V

A ·B dµ (B.1)

where the vector potential A satisfies,

∇×A = B

A(x) = − 1

4π

∫

V

(x− x′)×B(x′)

|x− x′|3 dµ
′

(B.2)
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The helicity integral (B.1) is invariant under the gauge transformation A′ →

A +∇φ, provided: i) the volume V is simply connected (i.e., φ is single valued), and

ii) bounded by a magnetic surface (i.e., B · n|∂V = 0).

K =

∫

V

(A +∇φ) · (∇×A +∇×∇φ) dµ

K′ =
∫

V

A ·∇× A +∇φ ·∇× A dµ

K′ =
∫

V

A ·B +∇ · (φB) dµ

K′ = K +

∫

∂V

φB · n dS (B.3)

Gauge invariance (K′ = K) follows if assumptions (i) and (ii) above are satisfied.

In addition, a helicity integral measuring the mutual linking of two different,

divergence free, vector fields (V and W ) may be defined,

H(V , W ) =

∫

V

AV ·W dµ (B.4)

If the argument vector fields are closed (i.e., tangent to the boundary, V ·n|∂V =

0 and W · n|∂V = 0), then equation (B.4) is symmetric in it arguments.

H(V , W ) = H(W , V )

On the other hand, if the vector magnetic field B is open (i.e., B · n|∂V 0= 0,

at least over some section of the boundary), then equation (B.4) is not unique since

the field linking geometry is, in general, not unique for a given boundary normal

distribution. However, the current-free, potential field BP solution consistent with

the boundary condition B ·n|∂V = g, is a unique configuration. In fact, the potential
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field BP is the minimum energy state of the magnetic field geometry for the given

normal-field distribution at the boundary. Therefore, in order to construct a unique

mutual helicity integral (B.4) for a general magnetic field B with a given normal

boundary distribution B · n|∂V = g, decompose into the sum of open and closed

components which respectively satisfy,

∇×BP = 0 BP · n|∂V = g

Bcl = B −BP Bcl · n|∂V = 0

Equation (B.4) becomes,

H(B, B) = H(Bcl + BP , Bcl + BP )

H(B, B) = H(Bcl, Bcl) + 2 H(BP , Bcl) + H(BP , BP ) (B.5)

The first two terms on the RHS of equation (B.5) measure the self-linking of the

closed component, and the mutual linking of the closed component with the open

component. The last term is ill defined by equation (B.5) since the closed field

assumption is not satisfied. Physically, the potential field is the unique minimum

energy state of all possible magnetic field geometries for a given normal-component

distribution at the boundary, so it is natural to reset the zero helicity datum to this

level (i.e., H(BP , BP ) ≡ 0). With this definition, the mutual helicity integral (B.4)

reduces to,

H(B, B) = H(Bcl, Bcl) + 2 H(BP , Bcl) (B.6)

Since equation (B.6) represents the helicity of a single magnetic field configuration,

K = H(B, B)
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K = H(B −BP , B −BP ) + 2 H(BP , B −BP )

K =

∫

V

(A + AP ) · (B −BP ) dµ (B.7)

Equation (B.7) is a gauge invariant (A′ → A + ∇φ, for both vector potentials

describing the full field and potential field) measure of the relative helicity for a general

magnetic field configuration with a normal component at the domain boundary.

B.2 Ideal Transport of Magnetic Helicity

In this section, the transport of magnetic helicity in the framework of ideal MHD

is derived. Starting by taking the total time derivative of equation (B.7), assuming a

fixed volume V ,
dK
dt

=
d

dt

∫

V

(A + AP ) · (B −BP ) dµ

dK
dt

=

∫

V

∂

∂t
(A + AP ) · (B −BP ) + (A + AP ) · ∂

∂t
(B −BP ) dµ

It can be shown,
∂A

∂t
·B = ∇ ·

(
A× ∂A

∂t

)
+ A · ∂B

∂t

Substituting the above vector identity and combining relevant terms,

dK
dt

=

∫

V

∇ ·
[
(A−AP )×

(
∂A

∂t
+

∂AP

∂t

)]
+ 2

(
A · ∂B

∂t
−AP · ∂BP

∂t

)
dµ

dK
dt

=

∫

V

2

(
A · ∂B

∂t
−AP · ∂BP

∂t

)
dµ+

∫

∂V

(A−AP )×
(

∂A

∂t
+

∂AP

∂t

)
·n dS (B.8)

Noting the vector identity,

(A−AP )×
(

∂A

∂t
+

∂AP

∂t

)
· n =

∂

∂t
(A + AP ) · [(A−AP )× n]
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Recall, by definition, the open field boundary condition,

B · n|∂V = BP · n|∂V ⇒ A× n|∂V = AP × n|∂V

Thus, the surface integral in equation (B.8) vanishes leaving only the volume integral.

dK
dt

=

∫

V

2

(
A · ∂B

∂t
−AP · ∂BP

∂t

)
dµ (B.9)

Making use of Faraday’s Law and the definition of the potential field,

∂B

∂t
+ c ∇×E = 0 BP ≡ ∇Φ

Equation (B.9) becomes,

dK
dt

= −2

∫

V

A · (c ∇×E) + AP · ∂

∂t
(∇Φ) dµ (B.10)

It can be shown,

A · (∇×E) = E ·B −∇ · (A×E)

AP · ∂

∂t
(∇Φ) = ∇ ·

(
AP

∂Φ

∂t

)
− ∂Φ

∂t
(∇ ·AP )

Substituting into equation (B.10),

dK
dt

= 2 c

∫

V

∇ ·
(

A×E + AP
1

c

∂Φ

∂t

)
−

(
E ·B +

1

c

∂Φ

∂t
(∇ ·AP )

)
dµ (B.11)

At this point, it is useful to choose the Coulomb gauge for both vector potentials A

and AP ,

∇ ·A = 0 ⇒ A · n|∂V = 0
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By fixing the Coulomb gauge, equation (B.11) reduces to,

dK
dt

= 2 c

∫

∂V

(A×E) · n dS − 2 c

∫

V

E ·B dµ (B.12)

Again recalling the definition of the open field boundary condition,

A× n|∂V = AP × n|∂V

And assuming ideal MHD evolution,

E = − v ×B

Equation (B.12) becomes,

dK
dt

= 2 c

∫

∂V

[ (v ×B)×AP ] · n dS

Expanding the triple vector product,

dK
dt

= 2 c

∫

∂V

[ (AP · v)B − (AP ·B)v ] · n dS (B.13)

Equation (B.13) is the equation for ideal transport of magnetic helicity. The terms

on the RHS describe the helicity transport due to motions respectively parallel and

perpendicular to the boundary. AP is the unique vector potential for the potential

field BP (given by the boundary normal distribution B · n|∂V = g), and satisfies,

BP = ∇×AP

∇ ·AP = 0 AP · n|∂V = 0

165



B.3 Helicity Dissipation

The dissipation of magnetic helicity follows from resistive slippage of the field

through the plasma. Starting with equation B.12,

dK
dt

= 2 c

∫

∂V

(A×E) · n dS − 2 c

∫

V

E ·B dµ

Assuming a fixed boundary flux B · n|∂V = constant, such that no helicity may

transported across the boundary. And using Ohm’s Law E = ηJ to express the

electric field in terms of the current density. Equation B.12 reduces to,

dK
dt

= −2

∫

V

ηJ ·B dµ (B.14)

On the other hand, the magnetic energy is defined as,

W =
1

8π

∫

V

B ·B dµ (B.15)

The rate of dissipation of the magnetic energy is therefore,

dW
dt

=
1

4π

∫

V

B · ∂B

∂t
dµ (B.16)

Substituting Faraday’s Law for ∂B
∂t + c∇×E = 0, equation B.16 becomes,

dW
dt

=
−c

4π

∫

V

E ·∇× B dµ (B.17)

Where the vector identity B · (∇×E) − E · (∇×B) = ∇ · (E ×B), and the

fixed boundary flux condition have been used. Finally, substituting Ampere’s Law

∇×B = 4π
c J , and Ohm’s Law E = ηJ , the dissipation of magnetic energy, expressed
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in terms of the current density, is,

dW
dt

= −
∫

V

ηJ2 dµ (B.18)

Note, the negative sign simply says the magnetic energy decreases by resistive dissi-

pation. The helicity and magnetic energy dissipation rates may be compared using

the Cauchy-Schwartz Inequality for the volume integrals of B · B (B.15) and J · J

(B.18), ∣∣∣∣
dK
dt

∣∣∣∣ ≤
(

2 ηW
∣∣∣∣
dW
dt

∣∣∣∣

) 1
2

(B.19)

To apply condition (B.19) to reconnection events, define a length scale L ≡ K
W .

This length scale, in turn, may be used to define a dissipation time τd ≡ L2

fη , where

f 2 1 is the fraction of the total volume over which the resistivity is appreciable

enough for current sheet generation and reconnection. Thus, any reconnection process

that occurs over a time ∆t, will dissipate an amount of magnetic helicity according

to the integral of (B.19), ∣∣∣∣
∆K
K

∣∣∣∣ ≤
(

∆t

τd

) 1
2

(B.20)

Noting that reconnection events take place effectively instantaneously (∆t → 0),

over a very small fraction of the volume, equation (B.20) shows helicity is preserved

under reconnection.

B.4 Force Free Condition

The force-free condition on a general magnetic field configuration follows directly

from energy minimization subject to a volumetric helicity conservation.

δ

∫

V

[
1

2
(B ·B)− λ(A ·B)

]
dµ = 0 (B.21)
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Modulo a constant on the energy term depending on the choice of units, and the

vector potential A satisfies,

B = ∇×A

At this point, indicial notation better illustrates the derivation. Rewriting equa-

tion (B.21),

δ

∫

V

[
1

2
(εijk∂jAk)(εilm∂lAm)− λ Ai(εijk∂jAk)

]
dµ = 0 (B.22)

Where εijk is the alternating tensor. The Lagrangian density here is,

L(Ai, ∂jAk) ≡
1

2
(εijk∂jAk)(εilm∂lAm)− λ Ai(εijk∂jAk) (B.23)

The Euler-Lagrange equations satisfy,

∂j

(
∂L

∂(∂jAk)

)
− ∂L

∂Ai
= 0

Which for this system become,

∂j

(
1

2
εijk(εilm∂lAm)− λ Aiεijk

)
+ λ (εijk∂jAk) = 0 (B.24)

Noting the antisymmetric properties of the alternating tensor,

εijk = −εkji

Collecting like terms and relabeling dummy indices equation (B.24) becomes,

εkji∂j(εilm∂lAm)− 2 λ (εkji∂jAi) = 0
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Returning to vector notation,

∇× (∇×A) = α (∇×A)

Finally,

∇×B = αB (B.25)
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APPENDIX C

X-Line Potential Field Model

In this appendix, the analytic vector potential field model used in Chapter IV is

derived in section C.1, and the infinite series is shown to converge in section C.2.

C.1 Derivation of the Vector Potential Field due to a Linear

Dipole Density Distribution

The differential potential due to a differential charge distribution dq, at position

r, is (Jackson (1975)):

dΦ (x) =
dq

|x− r| (C.1)

Given a linear charge density |λ| = |Q|
2L , where Q is the total charge and 2L

is the total length. The total differential potential due to a positive linear charge

distribution +dq = +λdl at position r, and a negative linear charge distribution

−dq = −λdl at position r + ε (see Figure C.1), is given by,

dΦ (x) =
+λ

|x− r| +
−λ

|x− (r + ε)| (C.2)
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Figure C.1: Linear dipole density distribution general set-up
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To 1st order in ε,

[
1

|x− r| +
1

|x− (r + ε)|

]
λdl ≈ −(x− r) · (ελdl)

|x− r|3 (C.3)

Define the dipole density distribution as M ≡ λε, such that,

dΦ (x) = −M · (x− r)

|x− r|3dl (C.4)

Thus, the generalized total potential field is,

Φ (x) = −M ·
∫

C

(x− r)

|x− r|3dl (C.5)

where the dipole density distribution M follows the path C in space.

At this point, choose a coordinate system such that the linear charge densities are

given by, |dq| = |λ|dx (see Figure C.2).

The position vector r and the differential dl may now be written as, r = xex−hez

and dl = dx, respectively. Fixing the dipole orientation along the negative z-axis,

M = −Mez. (And for notational purposes, designate the observation point x0.) The

total potential field is now expanded,

Φ (x0) = −M

+L∫

−L

(z0 + h)
[
(x0 − x)2 + y2

0 + (z0 + h)2] 3
2

dx (C.6)

This is easily integrated to yield,

Φ (x0) =
M (z0 + h) (x0 + L)

[
y2

0 + (z0 + h)2] [
(x0 + L)2 + y2

0 + (z0 + h)2] 1
2

− M (z0 + h) (x0 − L)
[
y2

0 + (z0 + h)2] [
(x0 − L)2 + y2

0 + (z0 + h)2] 1
2

(C.7)
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Figure C.2: Linear dipole density distribution in fixed coordinate system such the the
integration path C may be easily defined.
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Which for L+ 1, looks like,

Φ (x0) = − M (z0 + h)

y2
0 + (z0 + h)2

(
1 +

x0

L

) [
1− x0

L
+ O

(
L−2

)]

− M (z0 + h)

y2
0 + (z0 + h)2

(
1− x0

L

) [
1 +

x0

L
+ O

(
L−2

)]
(C.8)

In the limit as L→∞, the potential field observed at position x0, due to a single

linear dipole moment density distribution M , oriented in the negative z-direction,

placed a distance h below the x-y plane is,

Φ (x0) = − 2M (z0 + h)

y2
0 + (z0 + h)2 (C.9)

To include a null-point in the magnetic field geometry, we simply add a constant

vertical field in the z-direction, of magnitude B0, oriented anti-parallel to the dipole

density direction.

Φ (x0) = B0z −
2M (z0 + h)

y2
0 + (z0 + h)2 (C.10)

In accordance with the periodic numerical boundary conditions requiring a vertical

magnetic field at the boundaries of the y-domain, we must generalize this distribu-

tion. Since equation (C.10) is linear in the dipole moment density distribution, we

may easily generalize this distribution to an infinite series of linear dipole density

distributions, at positions y = nd, mirrored about the origin. Thus,

Φ (x0) = B0z −
+∞∑

n=−∞

2M (z0 + h)

(y0 − nd)2 + (z0 + h)2 (C.11)

Note, oppositely directed horizontal field components are balanced at the y positions

y =
∣∣ (

n + 1
2

)
d

∣∣. Since this model for the total potential due to a periodic set of

linear dipole density distributions, separated by a distance d in the y-direction, is
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translationally symmetric (i.e., independent of one of the coordinate variables), we

may solve for the corresponding vector potential A (x0) = A (x0) ex by setting,

∇Φ (x0) = ∇A (x0)× ex (C.12)

Which in this coordinate system reduces to,

∂

∂z
Φ (x0) = − ∂

∂y
A (x0) (C.13)

A (x0) = − ∂

∂z

∫ [
B0z −

+∞∑

n=−∞

2M (z0 + h)

(y0 − nd)2 + (z0 + h)2

]
dy (C.14)

A (x0) = − ∂

∂z

[
B0zy −

+∞∑

n=−∞
2MArctan

(
y0 − nd

z0 + h

)
+ g (x, z)

]
(C.15)

Making use of the gauge freedom for the magnetic vector potential, we set g (x, z) = 0,

A (x0) = −B0y +
+∞∑

n=−∞

2M (y0 − nd)

(y0 − nd)2 + (z0 + h)2 (C.16)

Rearranging the series, we find the final form of the magnetic field model vector

potential A (x) = A (x) ex,

A (x) = B0y −
My

2

(
2

d

)2 (
d2

y2 + (z − h)2

)

+ My

(
2

d

)2 +∞∑

n=1

(
1

n2

)
(
1− 1

n2
y2+(z−h)2

d2

)

(
1− 1

n2
y2+(z−h)2

d2

)2

+
(

1
n2

2(z−h)
d

)2 (C.17)

Over the domain, {(y, z)
∣∣− d

2 ≤ y ≤ d
2 , 0 < (z − h) < d

2}.
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C.2 Proof of Convergence for the Infinite Series Vector Po-

tential Model

Now that the model (equation C.17) has been derived, it is a simple matter to

show convergence. Proof of convergence for the infinite series,

+∞∑

n=1

an =
+∞∑

n=1

(
1

n2

)
(
1− 1

n2
y2+(z−h)2

d2

)

(
1− 1

n2
y2+(z−h)2

d2

)2

+
(

1
n2

2(z−h)
d

)2 (C.18)

is done by the integral test, since the function is monotonically decreasing in its

successive terms (i.e., an+1 > an). Convergence follows from the (numerical) integral

test. It suffices to show,

CT (y, z − h) =

∞∫

1

(
1

n2

)
(
1− 1

n2
y2+(z−h)2

d2

)

(
1− 1

n2
y2+(z−h)2

d2

)2

+
(

1
n2

2(z−h)
d

)2dn (C.19)

is everywhere bounded over the domain {(y, z)
∣∣ − d

2 ≤ y ≤ d
2 , 0 < (z − h) < d

2}.

Plotting the CT (y, z − h) surface over the domain, where the parameter d = 40

(coinciding with the value taken in chapter IV), we find the solution is bounded

everywhere (see Figure C.3) and thus the series converges.
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Figure C.3: Convergence of the Linear Dipole Density Distribution: Surface plot of
CT (y, z − h) surface over the domain is everywhere finite, therefore the
infinite series in the model (equation C.17) converges.
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APPENDIX D

Coronal Potential Field Source Surface Model

In this appendix, the analytic potential field model used in Chapters V and VI is

derived from the method of images.

D.1 Derivation of Dipole Distribution Potential Field with a

Source Surface at Radius R

The potential field due to a single positive point charge +q, at position r, in the

presence of a grounded, conducting sphere (Jackson (1975)):

Φ (x) =
q

|x− r| −
(

R

|r|

)
q

|x−
(

R
|r|

)2

r|
(D.1)

The potential field due to a positive point charge +q, at position r, a negative

point charge q, at position r + ε, and a spherical source surface at radius R (Figure
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Figure D.1: Potential field model method of images set-up.

D.1):

Φ (x) =




(+q)

|x− r| −
(

R

|r|

)
(+q)

|x−
(

R
|r|

)2

r|





+




(−q)

|x− (r + ε)| −
(

R

|r + ε|

)
(−q)

|x−
(

R
|r+ε|

)2

(r + ε)|



 (D.2)
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Rearranging terms,

Φ (x) = q

[
1

|x− r| −
1

|x− r − ε|

]

+ qR




(

1

|r + ε|

)
1

|x−
(

R
|r+ε|

)2

(r + ε)|
−

(
1

|r|

)
1

|x−
(

R
|r|

)2

r|



 (D.3)

To first order in ε the first term becomes,

q

[
1

|x− r| −
1

|x− r − ε|

]
≈ −(qε) · (x− r)

|x− r|3 (D.4)

And the second term becomes,

qR




(

1

|r + ε|

)
1

|x−
(

R
|r+ε|

)2

(r + ε)|
−

(
1

|r|

)
1

|x−
(

R
|r|

)2

r|





≈
(

R

|r|

)3 (qε) ·
(

x−
(
|x|
R

)2

r

)

|x−
(

R
|r|

)2

r|3
(D.5)

Define the dipole vector M ≡ qε, and assuming all charges |q| have equivalent

magnitudes, the potential field reduces to,

Φ (x) =

(
R

|r|

)3 M ·
(

x−
(
|x|
R

)2

r

)

|x−
(

R
|r|

)2

r|3
− M · (x− r)

|x− r|3 (D.6)

Note the first term on the RHS is nonlinear in the observation distance |x|, there-

fore this field in general, is not that of a dipole distribution. To produce the special

case of a dipole distribution potential field, require M · r = 0 (i.e., force the set of

point dipoles parallel to the surface). Thus, the potential field due to a point dipole

M , at position r, and a spherical source surface at radius R, requires an image dipole
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Figure D.2: Single real-image dipole pair potential field model.

vector
(

R
|r|

)3

M , at position
(

R
|r|

)2

r. Collecting terms,

Φ (x) = (M · x)




(

R

|r|

)3 1

|x−
(

R
|r|

)2

r|3
− 1

|x− r|3



 (D.7)

Equation D.7 describes the potential field due to a single real and geometrically

related image dipole pair (see FigureD.2).

To include the potential field due to a dipole M 0 at the origin with a spherical
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source surface at radius R, take the limit that the position |r|→ 0,

Φ (x) = lim
|r|→0

(M 0 · x)




(

R

|r|

)3 1

|x−
(

R
|r|

)2

r|3
− 1

|x− r|3



 (D.8)

Φ (x) = (M · x)

[
1

R3
− 1

|r|3

]
(D.9)

Therefore, the total potential field with a spherical source surface at radius R

is the sum of the dipole positioned at the origin M 0, along with a single real and

geometrically related image dipole pair,

Φ (x) = (M 0 · x)

[
1

R3
− 1

|r|3

]

+ (M · x)




(

R

|r|

)3 1

|x−
(

R
|r|

)2

r|3
− 1

|x− r|3



 (D.10)

Since this potential field is linear in the real-image dipole pairs, this model can

therefore be extended to the superposition of a set of discrete real-image dipoles,

Φ (x) = (M 0 · x)

[
1

R3
− 1

|r|3

]

+
∑

i

(M i · x)




(

R

|ri|

)3 1

|x−
(

R
|ri|

)2

ri|3
− 1

|x− ri|3



 (D.11)

To generalize, this potential field model can be extended to a continuous distri-

bution dipole density distribution M (x), and a point dipole at the origin M 0 (see
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Figure D.3: Dipole density distribution potential field model.

FigureD.3),

Φ (x) = (M 0 · x)

[
1

R3
− 1

|r|3

]

+

∫∫∫
(M (x′) · x)




(

R

|x′|

)3 1

|x−
(

R
|x′|

)2

x′|3
− 1

|x− x′|3



 d3x′ (D.12)

To recover the discrete set of dipoles M i, at positions ri,

M (x′) =
∑

i

M i δ
3 (x′ − ri) (D.13)

where δ3 (x′ − ri) is the 3-dimesnional delta function.
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Longcope, D. W., Topological Methods for the Analysis of Solar Magnetic Fields,
Living Rev. Solar Phys., 2, (2005), 7, http://www.livingreviews.org/lrsp-2005-7

Luhmann, J. G., Li, Y., Zhao, X., & Yashiro, S., 2003, Sol. Phys., 213, 367

Lynch, B. J., Antiochos, S. K., DeVore, C. R., Luhmann, J. G., & Zurbuchen, T. H.,
2008, ApJ, 683, 1192

Lynch, B. J., Antiochos, S. K., Li, Y., Luhmann, J. G., & DeVore, C. R., 2009, ApJ,
697, 1918

McComas, D. J., Gosling, J. T., Phillips, J. L., Bame, S. J., Luhmann, J. G., &
Smith, E. J. 1989, J. Geophys. Res., 104, A5, 9809

McComas, D. J., Phillips, J. L., Hundhausen, A. J., & Burkpile, J. T. 1991, Geophys.
Res. Lett., 18, 73

McComas, D. J., Elliot, H. A., Schwadron, N. A., Gosling, J. T., Skoug,
R. M., & Goldstein, B. E. 2002, J. Geophys. Res. Lett., 30, 1517, DOI:
10.1029/2003GL017136
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