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CHAPTER I

Introduction

The forces that motivate research in nanometer length scale devices are manyfold.

On the one hand, the field is driven by a quest for greater device efficiency, including,

the further miniaturization of devices, the ability to increase the speed of information

transfer, lower power requirements and large reduction of noise induced errors. On

the other hand, nano-scale devices have the ability to directly exploit unique quantum

effects such as electroluminescence (flux enabled spectroscopic transitions), negative

differential resistance and absolute negative conductance. Examples of such nano-

scale devices include the quantum dot and the molecular wire. A host of experimental

research has already been performed on both of these types of systems[62, 58, 94,

93, 41, 72, 64, 63, 91, 90, 17, 127, 46, 116, 138, 102, 28, 32, 31, 56, 42, 96, 75, 78, 1,

81, 80, 45, 113, 95, 33, 34, 121, 86, 66, 130, 129, 47, 43, 97, 132, 60, 85, 27, 122, 103].

The ever-increasing ability to fabricate such devices demands the development

of a theoretical formalisms and computational models to both predict and explain

their underlying physics and chemistry. As a result, a host of theoretical methods

and models have been developed to study these fundamental aspects. [133, 36, 118,

134, 35, 135, 3, 11, 55, 39, 109, 9, 11, 10, 110, 87, 24, 23, 65, 104, 29, 101, 59, 57,

18, 70, 123, 13, 14, 79, 65, 111, 30, 112, 98, 76, 89, 128, 124, 115, 108, 22, 20, 116,

1
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Figure 1.1: Two examples of open systems: molecular junction C centered between two electrodes
L,R under source-drain bias V carries current I (left) and a system of two coupled
quantum dots l,r connected to two electrodes source,drain (right – image taken from
[93]).

138, 21, 126, 82, 7, 6, 120, 61, 2, 5, 112, 73, 74, 26, 83, 25, 4, 8] These approaches

are based on an open system picture of the device (fig. 1.1) [67, 12, 54]. In this

picture, the quantum mechanical junction connects two large (typically semi-infinite)

electrodes.[105, 119, 136, 40, 88, 114] A source drain bias and time dependent driving

fields are then applied to the system and the response is characterized. For simplicity,

vibrational modes are neglected and the structure of the device is assumed to be rigid.

Only electron motion is considered.

Outline of dissertation

This work focuses on the development and implementation of a methodology for

modeling open systems under the influence of weak time dependent driving fields.

Chapter II provides experimental background and a brief summary of the devel-

opment goals for this methodology. In addition, justifications for basing the derived

methodology on the non-equilibrium Green function (NEGF) formalism is provided.

Chapters III, IV and V give a detailed pedagogical and working description of the

aspects of NEGF formalism relevant to the methodology developed in this work. An

introduction to propagation formalism and many body (field) theory is provided in

Chapter III. The description in these chapters culminates with the introduction of
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the crucial quantity of interest, the lesser Green function (GF) and the derivation

of its properties and fundamental equation of motion (chapter IV). Finally, a rele-

vant derivation of GF-theory for a time independent Hamiltonian is provided in V.

This is the basis for already widely used theories, such as Landauer theory. More

importantly, the results from this chapter will provide the ”initial” conditions for

the time-dependent (TD) theory provided in later chapters, thus connecting my TD

methodology to already well known and frequently used steady state quantities.

Chapter VI describes, in detail, my formal contributions to this area of research.

The time dependent NEGF equations of motion used to characterize the time de-

pendent propagation of an open system in terms of its manifold of states is derived.

Furthermore, the special case of a system under the influence of a time-independent

applied potential is derived from these equations. This constant potential theory

(CPT) indicates that ”constant” dynamic responses, such as steady state current,

cannot be captured by a simple steady state theory where the system is statisti-

cally equilibrated (chapter V). Instead, these properties are inherently dynamic and

manifest themselves on the transition density matrix elements.

Chapter VII applies the theory developed in chapter VI to simple two and four

site open systems under an applied time independent ramped potential (source-drain

bias), and an applied oscillating potential (laser field). Among other results, two

fundamental phenomena are simulated, namely, electroluminescence and population

inversion induced absolute negative conductance.

Chapter VIII describes formal and numerical disagreements between CPT and

Landauer theory and sketches a formal path that can potential resolve these issues.

Finally, this work is summarized in chapter IX.



CHAPTER II

Experimental Motivation and Methodological Objectives

2.1 Time Dependent Experiments

In this chapter, we provide a few examples of experimental research that moti-

vate the study of time dependent open systems and transient transport modeling in

particular. The volume of experimental work in this field is expansive.[62, 58, 94, 93,

41, 72, 64, 63, 91, 90, 17, 127, 46, 116, 138] Thus, this section is not intended to give

detailed summaries of all of this work. Instead, a focus is placed on describing some

of the different types of experiments that have been performed in time dependent

transport. For example, we describe work on absolute negative conductance caused

by temporal driving fields since we model this effect in a later chapter. We now

elaborate on some of these works.

In 1995, Keay and co-workers[58] fabricated a ten quantum well n-doped GaAs

hetero-structure with eleven potential barriers and characterized photon assisted

electronic transport that lead, in particular, to the observation of current suppression

and absolute negative conductance at low applied source-drain bias (fig. 2.1). The

mechanism for this absolute negative conductance is depicted in figure 2.2 for the

case of two quantum wells. When the source drain bias shifts the ground state of the

first well into alignment with the excited state of the second well and population is

4
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Figure 2.1: I-V characteristics for varying strengths of applied (1.30 THz/5.38meV) radiation field.
Figure taken from [58].

Figure 2.2: Schematic diagram depicting forward and reverse current mechanisms in a two quantum
well system. Figure taken from [58].
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Figure 2.3: Photon assisted transport mechanisms involving the ground ǫ0 and first excited ǫ1
quantum dot states and microwave frequency f . Left panels: electrons are pumped from
the left electrode to either quantum dot state and subsequently traverse under bias to
the right electrode. Center top panel: electrons traverse directly from the left electrode
through the ground quantum dot state to the right electrode. Center bottom: Electrons
traverse from left electrode through excited quantum dot state to right electrode ONLY
AFTER the coulomb blockade is lifted via pumping the ground state electron out of
the quantum dot. Right panels: electrons traverse from left electrode to quantum
dot states and are subsequently pumped from the quantum dot to the right electrode.
Figure taken from [94].

transfered by the radiation field from the ground to first excited state in the second

well, a reversal in the direction of the current can be achieved. This mechanism can,

in a sense be seen as population inversion induced absolute negative conductance. In

section 7.3 we will show theoretically and computationally that population inversion

can indeed lead to absolute negative conductance.

In 1997, Oosterkamp and coworkers[94] performed an experiment on a single quan-

tum dot coupled to two electrodes. A gate voltage was applied to the quantum dot

that changed its on-site energy relative to the electrodes. The quantum dot was

also subjected to a microwave oscillating potential. The ground and first excited

single electron states of the quantum dot, ǫ0 and ǫ1, respectively, exhibited resonant

transport at energies ǫ0 ± hν and ǫ1 ± hν. Figure 2.3 depicts the pumping mecha-

nisms of these systems, where electron pumping assists in transport. Electrons are
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Figure 2.4: Current as a function of gate voltage and applied microwave field strength. Figure taken
from [94].

either pumped from the electrode to a given quantum dot state (fig. 2.3 left panels),

resonate through the quantum dot states (fig. 2.3 center panels), or are pumped

from the quantum dot states to the electrodes (fig. 2.3 right panels). In the case

of resonant tunneling directly through the states, two distinct mechanisms are ob-

served. The simpler mechanism involves tunneling through the ground state without

the assistance of the microwave pump (fig. 2.3 center top). The second mechanism

involves the alleviation of the coulomb blockade by pumping the electron in the

ground quantum dot state out to the electrodes (fig. 2.3 center bottom). Figure 2.4

depicts the emergence of resonant current sidebands with increasing microwave field

amplitude. The sidebands displaced from the state by the microwave frequency as

expected. In this run, the microwave field frequency (110 µeV, or 27 GHz) was kept

lower than the ǫ0 to ǫ1 excitation energy (110 µeV) to avoid this resonance.

In 1998 Oosterkamp and co-workers[93] performed a photoassisted electronic trans-

port experiment on a two-coupled quantum dot system (fig. 2.5). Through painstak-

ing effort, a single state in each quantum dot was decoupled from the other states

in that quantum dot to create a two state system with a tunable coupling coefficient
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Figure 2.5: Image of two-coupled quantum dot system. The two quantum dots (l and r) are also
coupled to source and drain electrodes. The electrodes 1,2,3 and F are used to vary the
dot-dot and dot-electrode interaction energies. Figure taken from [93].

between the states (i.e. and tunable potential barrier between the two quantum

dots). When the coupling energy between the two dots was small compared to the

applied source-drain bias, each state was localized to a quantum dot. When the

coupling strength was large compared to the source-drain bias, the two states were

delocalized over both quantum dots forming a bonding and anti-bonding orbital. Os-

cillating microwave fields of varying frequencies were then applied to the system and

current was measured as a function of applied source drain bias. Figure 2.6 shows the

current voltage profiles for several cases of microwave carrier frequency. Note that

the intensity of current increases at voltages corresponding to the microwave carrier

frequency clearly indicating that photon pumping assists in the transport properties

of the quantum dot system.

2.2 Theoretical Synopsis

Both steady state and time dependent problems summarized above require a

characterization of the electrons’ behavior resolved in terms of the electron’s energies.

In addition, the thermal decoherent nature of the electronic initial conditions require
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Figure 2.6: (a-c) photon assisted transport mechanisms above their appropriate regions in d–the
solid lines represent single dot state energies (analogous to atomic orbital energies)
while the dashed lines represent level of delocalization for coupled two-dot state ener-
gies (analogous to molecular orbital energies); (d) I-V profiles for varying microwave
frequencies. Figure taken from [93].

a density matrix description. In a closed system, such as an isolated molecule, these

two requirements can be simultaneously met because every diagonal element of the

density matrix corresponds to a single state of the system (as seen in the diagonal

representation). In an open system, such as a molecular junction, this is no longer

true. The density of states for such a system is often dominated by bands of infinite

numbers of scattering states in a given conducting channel. Yet the density matrix

for the junction is described by a finite number of basis functions and is, therefore,

of finite dimension. This difference between open and closed systems is most readily

seen from their respective molecular orbital diagrams. Consider, for example, two

systems whose electronic structure is described by one pz orbital on each atom (fig.

2.7). The density matrix, ρ(t), for the closed system (fig. 2.7a) is a 2x2 matrix.

Furthermore, there is a one to one correspondence between the matrix elements and

the eigenstates. That is, in the diagonalized representation, each diagonal ρii(t)

gives the population in state i, etc., for i = 1, 2. Now, consider the open system
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(fig. 2.7b). In this case, the junction is defined by the two central atoms while the

two shaded outer atoms represent the electron reservoirs. The coupling between the

junction and the reservoirs contributes extra states. There is no longer a one-to-

one correspondence between the elements of the density matrix and the states. To

resolve this issue, a density matrix representation for the two central atoms that

gives dynamical information on the manifold of all four states must be derived. A

way of expressing such a density matrix is ρij(Ek, t) where, as in the closed system

case, i, j = 1, 2 are the two central atomic orbital indices and k = 1, .., 4 are the

indices of the four states. We have gained a third index k that distinguishes between

the four states because the indices i, j no longer do.

Figure 2.7: Molecular orbital diagrams for (a) two atom closed (isolated) system; (b) open system
composed of two (central) atoms connected to two outer atoms

Now, one question remains. What is the meaning (if any) of the elements of

the 2x2 density matrix. Note that, unlike the closed system, there is no single 2x2

Hamiltonian for the two central atoms that can simultaneously diagonalize ρij(Ek, t)

for all four Ek states. This is a consequence of entangling the two central-atom

system with the two outer atoms.

On the other hand, the atomic orbital (AO) basis is the set of two pz orbitals,

one on each of the two central atoms. The AO basis functions do not depend on
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k. Thus, in the AO representation, the diagonal element ρ
(AO)
ii (Ek, t) gives the k-th

state contribution to the charge density of the i-th atom. The off-diagonal element

ρ
(AO)
12 (Ek, t) gives the k-th state contribution to the bond order between the two

central atoms. The total AO charge density matrix is found by summing over all

four k states:

(2.1) ρ(AO)(t) =
4
∑

k=1

ρ(AO)(Ek, t)

Furthermore, for any given operator expressed in the two atom AO basis, the trace

of ρ(AO)(Ek, t) with this operator gives the k-th state contribution to the expectation

value of the operator. Summing over the k traces gives the total expectation value

of the operator.

(2.2) 〈O(t)〉 =
4
∑

k=1

Tr
[

ρ(AO)(Ek, t)O
]

Finally, this simple example may be extended to the case of a finite junction

bonded to two electrodes, each with an infinite number of atoms. Such a system

would be represented by a density matrix of not four Ek-states, but rather, an infi-

nite number of Ek-states grouped into continuous energy bands. Mathematically, it

becomes more convenient to replace Ek with a continuous variable E. The sum in

the equations above is replaced by an integral.

(2.3) ρ(AO)(t) =

∫

dEρ(AO)(E, t)

(2.4) 〈O(t)〉 =

∫

Tr
[

ρ(AO)(E, t)O
]

dE

As before ρ(AO)(E, t)dE gives the contribution to the electronic charge (charge den-

sities and bond orders) of the states with energies between E and E + dE. The

trace of ρ(AO)(E, t) with a given AO operator gives the contribution of the states
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with energies between E and E+ dE to the expectation value of that operator. The

integral over E of the trace of the operator with ρ(AO)(E, t) gives the expectation

value of the operator.

Example: Two state system

For example, the wave packet for a two state system can be written as

(2.5) Ψ(r, t) = a1e
−iǫ1tψ1(r) + a2e

−iǫ2tψ2(r)

where ψ1 and ψ2 are eigenfunctions of a system described by a given Hamiltonian

Ĥ,

(2.6) Ĥψi(r) = ǫiψi(r).

For simplicity, we assume that ψ1 and ψ2 are real valued. The total electronic density

for this wave packet is given by,

(2.7) ρ(r; t) ≡ |Ψ(r, t)|2 = |a1|2|ψ1(r)|2 + |a2|2|ψ2(r)|2 + 2a1a2ψ1(r)ψ2(r) cos(∆ǫ t)

where the occupation numbers of eigenstates 1 and 2 are given by |a1|2 and |a2|2

respectively, and ∆ǫ ≡ ǫ2 − ǫ1. Multireference electronic structure methods such as

configuration interaction (CI) solve for the ground and excited electronic eigenstates

and, more importantly, eigenenergies of a closed molecular system (eqn. 2.6). One

can subsequently use this information to construct and propagate wave packets in

time (e.g. eqn. 2.5) and calculate time dependent electron densities (e.g. eqn. 2.7).

However, one can consider an alternative representation of the same problem,

focusing on the density, but with a crucial change. Instead of calculating expression
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2.7, one may define an expression for the correlated density,

ρc(r; t,∆t) ≡Ψ(r, t+ ∆t/2)Ψ∗(r, t− ∆t/2)

=|a1|2e−iǫ1∆t|ψ1(r)|2 + |a2|2e−iǫ2∆t|ψ2(r)|2

+ 2a1a2ψ1(r)ψ2(r)e
−iǭ∆t cos(∆ǫ t).

(2.8)

where ǭ = (ǫ1 + ǫ2)/2. Fourier transforming this expression produces an energy

resolved correlated density of the form,

ρ̃c(r;E, t) ≡
∫

d(∆t)eiE∆tρc(r; t,∆t)

=δ(E − ǫ1)|a1|2|ψ1(r)|2 + δ(E − ǫ2)|a2|2|ψ2(r)|2

+ 2a1a2ψ1(r)ψ2(r)δ(E − ǭ) cos(∆ǫ t).

(2.9)

This energy resolved density matrix captures all of the physics of the given system

described by Ĥ. One can now extract certain properties of the system by spatially

integrating ρ̃c(r;E, t) with a given operator of interest. For example, a spatial integral

of ρ̃c(r;E, t) produces the occupied density of states,

(2.10) ñ(E, t) ≡
∫

d3rρ̃c(r;E, t) = δ(E − ǫ1)|a1|2 + δ(E − ǫ2)|a2|2.

A color map of ñ(E, t) (fig. 2.8 - left) is given for a1 = 1, a2 = 0.7 and ∆ǫ = 1 (in

arbitrary units). The delta functions have been replaced by broadened Lorentzian

functions for ease of graphing. An important aspect of this representation is the

ability to determine an occupation number of a selected state by integrating ñ(E, t)

only over that state. For example,

(2.11)

∫ ǫ1+|δ|

ǫ1−|δ|

dE ñ(E, t) = |a1|2

where δ represents a small window in E about ǫ1. Note that the integral over all E

gives the total occupation number,

(2.12) n(t) =

∫

dE ñ(E, t) = |a1|2 + |a2|2.
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In general, if a driving field is applied to the system, the occupation numbers can

change in time and the physics of population transfer between states can be explored

with this representation. In addition to characterizing population dynamics, this

representation can be used to explore quantum interferences between states. For

example, a spatial integral of ρ̃c(r;E, t) with the dipole operator will select the

interference fringes that indicate a quantum superposition of states (fig. 2.8 - right),

(2.13) µ̃(E, t) ≡
∫

d3rρ̃c(r;E, t)r = 2a1a2µ12δ(E − ǭ) cos(∆ǫ t)

where µ12 ≡ 〈ψ1|r̂|ψ2〉 is the transition dipole matrix between states 1 and 2. Note

that the interference fringes between states 1 and 2 fall exactly in between the energies

of these two states. As with the total occupation number, the total dipole response

is given by integrating µ̃(E, t) over all E,

(2.14) µ(t) =

∫

dE µ̃(E, t) = 2a1a2µ12 cos(∆ǫ t).

For closed systems, this representation may seem redundant, given that it is simpler

to calculate the eigenstates of Ĥ explicitly and then temporally propagate their wave

packet or density matrix from initial conditions. Since all eigenstates are known, one

can determine the behavior of the system by specifically selecting the eigenstates of

interest. However, for an open infinite system, one often has a continuum of states

distributed in energy bands, but one is usually only interested in the dynamics of

a small subsystem that can be described in terms of a finite discrete set of states.

In this case, the energy resolved TD representation described above offers a detailed

description of the system as it evolves on a continuum of states, but allows for the

use of a finite discrete basis set.

To illustrate this, we now extend the above example from a two state system to

a system of arbitrary (even infinite) number of states. In an open system, these
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states are often infinitesimally spaced in E and form bands. In this case, the energy

resolved density, ρ̃c(r;E, t), becomes

(2.15)

ρ̃c(r;E, t) ≡=
∑

i

δ(E− ǫi)|ai|2|ψi(r)|2 +2
∑

i

∑

j>i

aiajψi(r)ψj(r)δ(E− ǭij) cos(∆ǫijt)

where the index i spans over all of the states, ∆ǫij ≡ ǫj − ǫi, and ǭij =
ǫi+ǫj

2
. For

an open system, most of the eigenstates ψi are delocalized over a very large volume.

One can write these states in terms of a spatially localized basis set {φn(r)}, such as

an atomic orbital (AO) basis set or the p-orbital basis set in figure 2.7,

(2.16) ψi(r) =
∑

n

C(i)
n φn(r).

In this case, the energy resolved density can be expressed in terms of this localized

basis set,

(2.17) ρ̃c(r;E, t) =
∑

m,n

ρ̃(AO)
m,n (E, t)φn(r)φm(r)

where,

(2.18)

ρ̃(AO)
m,n (E, t) ≡

∑

i

δ(E − ǫi)|ai|2C(i)
n C(i)

m + 2
∑

i

∑

j>i

aiajC
(i)
n C(j)

m δ(E − ǭij) cos(∆ǫijt).

In the case of AOs, for example, the coefficients ρ̃
(AO)
n,n (E, t) gives the charge density

contribution of the n-th AO, while for m 6= n ρ̃
(AO)
m,n (E, t) gives the contribution to

the bond order between AOs m and n for the eigenstate located at E. A subsystem

of interest can be fully described by selecting and propagating only those coefficients

of interest. Thus, for example, the properties of a subsystem, adequately described

by two AOs, can be calculated using a 2 × 2 AO density matrix,

(2.19) ρ̃(AO)(E, t) =







ρ̃
(AO)
1,1 (E, t) ρ̃

(AO)
1,2 (E, t)

ρ̃
(AO)
2,1 (E, t) ρ̃

(AO)
2,2 (E, t)






.
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where the only continuous variable is E. In a continuous basis (e.g. plane wave)

representation, this calculation would require two continuous variables since the basis

indices m and n would become continuous. Dynamic propagation operators must

often be expressed as tensors (as will be described in a later chapter). In this case,

using a continuous basis would require four continuous indices, instead of the one

variable E. This becomes a serious bottleneck since calculation over these indices

scales like a power law. For example, a grid of only ten points in E may require 10000

in a continuous basis expansion. This clearly illustrates the advantage of using an

energy resolved approach to characterize the dynamic evolution of the manifold of

states on an open system. In practice, one must find ways to calculate ρ̃
(AO)
m,n (E, t) on

a finite discrete localized basis set describing the subsystem of interest without having

to calculate the entire set of states ψi. The approach used to solve this problem will

be described in the following chapters.

Having described the positive aspects of this approach, it must be noted that

this approach is only exactly applicable to systems described by a time independent

Hamiltonian. It is, therefore, a valid approximation to apply to the problem of weak

TD classical driving fields where, for example, the Rabi frequency is much smaller

than either the transition energy between states or the width of energy bands in

question. In the strong field case (where the Rabi frequency is comparable to the

transition energy) the physical meaning of E becomes unclear. Hence, a focus is

placed on developing a time dependent perturbation theory approach to propagating

the dynamics in this energy resolved framework.

The example given above is based on a single particle. The wave packet Ψ is

a function of one set of three dimensional coordinates designated by r. Most elec-

tronic devices are systems of many electrons and many methods exist for treating
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such systems. These approaches reduce the many electron problem to an effective

one electron problem. The fundamental problem for such methodologies involves

appropriately treating the two electron coulomb repulsion potentials in the Hamil-

tonian. These approaches fall into two classes, namely, density functional theory

(DFT) approaches [9, 11, 10, 110, 87, 24, 23, 65, 104, 29, 101] and non-equilibrium

Green function (NEGF) approaches [44, 3, 11, 55, 59, 57, 18, 70, 123, 13, 14, 79].

DFT approaches map these interactions to a one-body mean field potential that

is a functional of the density []. These approaches have the advantage that they are

purely one variable (t) methodologies. This is ideal for closed systems and very sen-

sible for open systems under the influence of strong TD driving fields where the time

independent Hamiltonian states are no longer offer the favored representation. On

the other hand, these are typically capable of only calculating ground states accu-

rately. Furthermore, they assume that the number of electrons is held constant while

open system problems require that the chemical potential be held constant but allow

the number of electrons in the system to vary. Finally, although DFT approaches

have been very successful in calculating the overall TD effects of the electron-electron

repulsions, it is unclear as to whether the potential energy functionals will be able

to properly characterize energy resolved effects.

NEGF approaches, on the other hand are not ground state methodologies. In

NEGF, the electron density is traced over all possible states, including states of

varying electron number. Furthermore, the theory is formulated in the grand canon-

ical statistical picture ensuring that the chemical potential is held constant while the

electron number is free to vary. Finally, NEGF is a two variable theory that can easily

be reformulated in the energy resolved picture expressed above. This reformulation

can also be performed to a great extent on the terms that simulate electron-electron



18

Figure 2.8: Plots of n(E, t) (left) and µ(E, t) (right).

repulsion although a reformulation of this repulsive interaction is the topic of future

work and will not be covered here. In NEGF theory, these terms are functionals of

the energy resolved density described above.

For these reasons, the methodology derived and implemented here will be based

on the NEGF formalism and applied to the problem of weak interacting potentials

in the context of time dependent perturbation theory.

To conclude this chapter, it is worth mentioning a note on notation and units.

First, the notation in the following chapters differs slightly from the notation used

here and one should take note of these changes. The energy variable, E is replaced

by ω̄ and the time variable t is replaced by t̄. Second, the formalism is written in

atomic units where Planck’s constant, ~, and the fundamental unit of charge, e are

both set equal to unity.



CHAPTER III

Contour Propagation and Many Body Formalism

3.1 Introduction: The Electronic Hamiltonian

We start with the many electron time-dependent Schrodinger equation:

(3.1) i
∂

∂t
Ψ(~r1, ..., ~rn, t) = Ĥ(~r1, ..., ~rn, t)Ψ(~r1, ..., ~rn, t).

Nuclear degrees of freedom are not explicitly stated because we are working within

the Born-Oppenheimer approximation where the time-evolution of nuclear motion is

orders of magnitude slower than the electron dynamics. In this regime, the electronic

Hamiltonian can be decoupled from the nuclear Hamiltonian and the electronic states

are assumed to depend parametrically on the nuclear degrees of freedom. This para-

metric dependence allows us to calculate electron dynamics for fixed nuclear degrees

of freedom. The many-body Hamiltonian Ĥ(~r1, ..., ~rn, t) can be expressed in terms

of two types of terms, namely, terms that depend only on one coordinate (one-body

terms) and interaction terms that depend on two coordinates (two-body) terms,

(3.2) Ĥ(~r1, ..., ~rn, t) =
n
∑

i=1

ĥ(~ri, t) +
n
∑

i=1

∑

j>i

v̂(~ri, ~rj).

Note that we assume that all time-dependence in the Hamiltonian takes a one-body

form. Time dependent classical fields expressed in the dipole approximation meet

this criterion. For electronic systems, the one-body terms include the electron kinetic

19
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energy operators, electron-nuclear attraction terms and the applied time-dependent

perturbation terms

(3.3) ĥ(~r, t) = −1

2
∇2

~r −
∑

I

ZI

|~r − ~RI |
+ E(t)~r

The two-body terms are the coulomb repulsion terms,

(3.4) v̂(~ri, ~rj) =
1

|~ri − ~rj|

3.2 Propagator Theory And The Keldysh Contour

An open electronic system, such as a molecular junction, is a finite electronic

system in contact with an electron reservoir at constant chemical potential (fermi

energy) µ. Such a system can exchange electrons with the reservoir and the number

of electrons within the system is generally not conserved. At thermal equilibrium,

the system is described by a grand-canonical ensemble. The corresponding density

and partition function are

(3.5) ρ̂◦ = exp[−β(Ĥ − µN̂)]/Z, Z = Tr{ρ̂◦}.

where Ĥ is the time-independent Hamiltonian for the total quantum system. The

number operator, N̂ , commutes with Ĥ. The eigenvalue of N̂ is the number of elec-

trons (occupied one-body orbitals) in the eigenstate of Ĥ. The partition function Z

traces the grand canonical density operator ρ̂◦ over all possible numbers of electrons.

At the initial steady state the trace (Tr{ρ̂◦Ô}) describes the expectation value of

the operator (Ô) for the unperturbed (isolated) system with the density operator ρ̂◦

defined over a complete set of states in the Hilbert space.

We now consider the TD Schrodinger equation (TDSE) in the Heisenberg picture.

LetH(t) be the Hamiltonian of a system, which remains at equilibrium up to t◦, when
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it is being perturbed:

(3.6) Ĥ(t < t◦) = Ĥ◦.

The time evolution of the expectation value of Ô (for t > t◦) is

O(t) ≡Tr{Û(t, t◦)ρ̂◦Û(t◦, t)Ô}

=Tr{ρ̂◦Û(t◦, t)ÔÛ(t, t◦)}

=Tr{ρ̂◦ÔH(t)},

(3.7)

where ÔH(t) is the Heisenberg representation of Ô. The propagator, Û(t, t′) relates

the solution of the TDSE at time t to time t′. It is generally expressed as a time-

ordered exponential operator,

Û(t, t′) =T̂
[

e−i
R t

t′
dt1(Ĥ(t1)−µN̂)

]

=1̂ +
∞
∑

n=1

(−i)n

n!

∫ t

t′
dt1 · · ·

∫ t

t′
dtnT̂

[

Ĥ(t1) · · · Ĥ(tn)
]

.
(3.8)

The time ordering operator T̂ ensures that the Hamiltonian operators are positioned

from left to right in reverse chronological order. Explicitly, the time ordering operator

acting on a set of operators, Ôn(tn), can be expressed as follows,

T̂
[

Ô1(t1) · · · Ôn(tn)
]

≡
∑

P

Θ(tP (1) − tP (2))Θ(tP (2) − tP (3)) · · ·Θ(tP (n−1) − tP (n))×

ÔP (1)(tP (1)) · · · ÔP (n)(tP (n)).

(3.9)

The sum in eqn. 3.9 is taken over all possible permutation functions, P (n) that map

each index in the set {1...n} to a given permutation of this set. Each term in the

sum has n− 1 Heaviside step functions Θ(t) and n time dependent operators Ô(t).

The exponential operator in ρ̂◦ (eqn. 3.5) can be rewritten as a time-evolution
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operator, Û , evaluated on a complex temporal coordinate.

e−β(Ĥ◦−µN̂) =

e−i(Ĥ◦−µN̂)(−iβ)

=e−i(Ĥ◦−µN̂)(t◦−iβ−t◦)

=e−i(Ĥ◦−µN̂)(
R t◦−iβ

t◦
dt1)

=T̂I

[

e−i(
R t◦−iβ

t◦
dt1(Ĥ(t1)−µN̂))

]

=Û(t◦ − iβ, t◦)

(3.10)

where the total Hamiltonian, Ĥ(t) is simply extended (analytically continued) onto

the complex plain. To ensure that this continuation leads to an analytical Hamilto-

nian on the complex plane, Ĥ(t) is conveniently set to the initial time Hamiltonian

H◦ for complex times between t◦ and t◦ − iβ. The time ordering operator, T̂I , is

defined in a manner analogous to eqn. 3.9.

T̂I

[

Ô1(t1) · · · Ôn(tn)
]

≡
∑

P

Θ(τP (1) − τP (2))Θ(τP (2) − τP (3)) · · ·Θ(τP (n−1) − τP (n))×

ÔP (1)(τP (1)) · · · ÔP (n)(τP (n)).

(3.11)

for times t0 − iτ where 0 ≤ τ ≤ β. Thus, the expression for O(t) becomes,

(3.12) O(t) =
Tr{Û(t0 − iβ, t0)Û(t0, t)ÔÛ(t, t0)}

Tr{Û(t0 − iβ, t0)}
.

One can interpret the j-th element (state) within the trace in the numerator of eqn.

3.12 by

(3.13) 〈Ej, Nj|{Û(t0 − iβ, t0)Û(t0, t)ÔÛ(t, t0)}|Ej, Nj〉.
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This amounts to five steps. First, the ket, |Ej, Nj〉 is propagated from t0 to t by

Û(t, t0). Second, this propagated result is transformed in Hilbert space by the oper-

ator Ô. Third, this transformed ket vector is propagated back to t0 by Û(t0, t) and,

fourth, propagated onto the complex plane by Û(t0 − iβ, t0). Fifth, this final result

is projected onto the state represented by the bra vector, 〈Ej, Nj|, in eqn. 3.13. The

temporal path of steps one through four is a contour C on the complex plane (fig.

3.1), where the branch from t0 to t is distinguished from the t to t0 branch by applica-

tion of the operator Ô. At this point Ô is relabeled as Ôt to indicate the time at which

Ô is applied. The contour C is referred to as the Keldysh contour (KC)[59]. The

KC relates a dynamic electronic system experiencing a time-dependent perturbation

to its thermally equilibrated initial state.

A contour ordering operator T̂C is defined in order to combine the separate prop-

agators in eqn. 3.12 and to derive a single equation of motion in terms of a complex

time variable on the KC.

T̂C

[

Ô1(t1) · · · Ôn(tn)
]

≡
∑

P

ΘC(tP (1), tP (2))ΘC(tP (2), tP (3)) · · ·ΘC(tP (n−1), tP (n))×

ÔP (1)(tP (1)) · · · ÔP (n)(tP (n)).

(3.14)

The complex contour step function ΘC(t1, t2) is one if t1 is at the same point as t2 or

if t1 is closer to the end point t0−iβ on the KC. It is zero otherwise. The permutation

function, P , retains the same definition as for the case of the time ordering operator

T̂ . This operator is analogous to the time ordering operator. However, it arranges

operators from left to right in order of increasing temporal distance from t0 − iβ

along the contour. Thus, a point in time t1 may be farther away from the end of

the contour t0 − iβ than a point t2, even though t1 may fall chronologically after t2
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Figure 3.1: The Keldysh Contour.

on the real time axis. The propagators in eqn. 3.12 are now combined into a single

contour ordered operator (see appendix A),

(3.15) O(t) =
Tr{T̂C

[

e−i
R

C
dt1(Ĥ(t1)−µN̂)Ôt

]

}

Tr{Û(t0 − iβ, t0)}
.

where the integral operator
∫

C
dt is a path integral over the KC, and t is a complex

time variable on the KC. Furthermore (appendix A), this expectation value can be

written in terms of KC propagators, ÛC(t, t′),

(3.16) O(t) =
Tr{T̂C

[

ÛC(t0 − iβ, t0)ÛC(t0, t)ÔtÛC(t, t0)
]

}

Tr{ÛC(t0 − iβ, t0)}
.

where,

ÛC(t, t′) =

T̂C

[

e
−i

R

C
t′→t

dt1(Ĥ(t1)−µN̂)t1

]

=1̂ +
∞
∑

n=1

(−i)n

n!

∫

Ct′→t

dt1 · · ·
∫

Ct′→t

dtnT̂C

[

Ĥ(t1) · · · Ĥ(tn)
]

.

(3.17)

and
∫

Ct′→t
dt1 is a path integral on the KC over the portion between t′ and t.

Equilibrium vs. Non-equilibrium theory

The difference between an equilibrium theory and a non-equilibrium theory is a

fundamental one. In equilibrium theory it is assumed that a system’s final state will
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be identical to its initial state. This assumption is not made in the non equilibrium

picture. In calculating the dynamical expectation value of an operator (eq. 3.7), an

equilibrium theory assumes that the system ends in the same state in which it began.

Thus, Û(t◦, t) has the same effect on the density operator at t as Û(tf , t), where tf

is the final time, and

(3.18) O(t) = Tr{ρ̂◦Û(tf , t)ÔÛ(t, t◦)},

allowing for the replacement of the contour ordering propagator with the time or-

dering propagator. The Gellmann-Lowe theorem[44] ensures that this is the case at

tf → ∞ for a density operator defined by the pure ground state at t◦ → −∞, namely

ρ̂◦ = |Ψ◦〉〈Ψ◦|. However, in quantum statistical systems, the equilibrium assumption

does not generally hold and it is necessary to develop a formalism that does not

depend on it. One must then retain the original propagator Û(t◦, t) and resort to

contour ordering.

3.3 Electron Book Keeping: Second Quantization

The purpose of second quantization is to reduce the many-body problem to an

effective one-body problem while preserving the symmetry properties, and conse-

quently, statistics of the particles. In the context of electronic structure theory

for isolated systems, the electronic properties are described entirely by the many-

electron state function, a function of the position and spin coordinates of all of the

electrons. Second quantization allows these properties to be represented in terms

of one set of space-spin coordinates while preserving the anti-symmetric nature of

the many-electron state and the resulting Fermi-Dirac statistics. There are several

very useful consequences of this representation that will be demonstrated in the sec-

tions below. First, the many-electron wave function, with its large set of space-spin
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coordinates will be replaced by an electronic charge density expressed in terms of

the absolute space-spin coordinates of the molecular system. Second, a direct for-

mal expression for the electron number operator, N̂ , is obtained. Third, the second

quantized representation retains the same form independent of change in the number

of electrons in the system. The second and third points may seem insignificant for

isolated molecules because N̂ does not change. However, for an open system, such

as a molecular junction, this number is not conserved and can change. Thus, second

quantization becomes a formally very useful approach to handling a molecule with

changing number of electrons.

This chapter does not present a full derivation of the second quantized represen-

tation of electronic structure. It provides a motivation for the use of such a repre-

sentation by ’sketching’ the steps that one would use to transform a many-electron

state representation into a second quantized representation. A detailed derivation of

the second quantized representation may be found in chapter 1 of ref. [44].

The expectation value of an N-electron operator, Ô(x1, ...,xN ), (written in terms

of the electrons’ space-spin coordinates xs) can be expressed as

〈Ô(t)〉 =

∫

...

∫

d4x1...d
4xNΨ∗(x1, ...,xN , t)Ô(x1, ...,xN)Ψ(x1, ...,xN , t)(3.19)

where the integrals are over a total of four components (three spatial and one spin).

Without loss of generality, a dynamic many-electron wave packet, Ψ(x1, ...,xN , t)

may be expanded as a linear combination of slater determinants of one-electron
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orbitals, ψi(xs) (s-th electron, i-th orbital energy level),

Ψ(x1, ...,xN , t) =

∑

En

Cn(t)ΨEn
(x1, ...,xN )

=
∑

En

Cn(t)√
N !

det





























ψǫj
(x̂1) . . . ψǫk

(x̂1)

...
. . .

...

ψǫj
(x̂N) . . . ψǫk

(x̂N)















.















(3.20)

where the one-electron orbitals ψǫj
are occupied within the many electron eigenstate

ΨEn
(x1, ...,xN ) with energy En and occupation number N . In the second quantized

representation, a given eigenstate ΨEn
(x1, ...,xN) is replaced by an abstract ket-

vector |En;ni...nj...nk〉 where ni is the occupation number of the i-th single electron

orbital, ψǫi
(0 or 1 for electrons). In this representation, eqn. 3.19 takes a form

similar to,

〈Ô(t)〉 =
∫

...

∫

d4x1...d
4xNΨ∗(x1, ...,xN , t)Ô(x1, ...,xN )Ψ(x1, ...,xN , t)

=
∑

m,n

∫

...

∫

d4x1...d
4xNC

∗
m(t)Cn(t)×

Ψ∗
Em

(x1, ...,xN )Ô(x1, ...,xN)ΨEn
(x1, ...,xN)

=
∑

m,n

C∗
m(t)Cn(t)×

〈Em;ni...nj...nk|
(∫

d4xÔ(x)

)

|En;n′
i...n

′
j...n

′
k〉

(3.21)

where the number of spin-space coordinates has been reduced to one set, x.

3.3.1 Non-interacting operators

To motivate this, we first look at a general non-interacting operator,

(3.22) Ô(x1, ...,xN) =
N
∑

s=1

ô(xs, t)



28

Most operators of interest can be expressed in this form, including the number op-

erator and the non-interacting Hamiltonian. Examples will be given below. A slater

determinant can be written as a sum of products of one-body orbitals,

(3.23) det





























ψǫj
(x̂1) . . . ψǫk

(x̂1)

...
. . .

...

ψǫj
(x̂N) . . . ψǫk

(x̂N)















.















=
∑

P

(−1)NPψP (ǫj)(x̂1)...ψP (ǫk)(x̂N)

where the sum is carried out over all possible permutations P of the orbital energy

indices ǫj and NP is the number of interchanges required to take the product back to

its canonical order ψǫj
(x̂1)...ψǫk

(x̂N) as expressed by multiplying the orbitals along

the diagonal of the slater matrix. in order. Hence, the expectation value of a many

particle operator can be decomposed into a linear combination of terms of the form,

∫

...

∫

d4x1...d
4xNψ

∗
ǫi
(x1) · · ·ψ∗

ǫj
(xs) · · ·ψ∗

ǫk
(xN)Ô(x1, ...,xN )×

ψǫ′i
(x1) · · ·ψǫ′j

(xs) · · ·ψǫ′
k
(xN)

(3.24)

Substituting eqn. 3.22 into eqn. 3.24 transforms eqn. 3.24 into the following form.

∫

...

∫

d4x1...d
4xNψ

∗
ǫi
(x1) · · ·ψ∗

ǫj
(xs) · · ·ψ∗

ǫk
(xN)Ô(x1, ...,xN)×

ψǫ′i
(x1) · · ·ψǫ′j

(xs) · · ·ψǫ′
k
(xN)

=
N
∑

s=1

∫

d4xsψ
∗
ǫj

(xs)ô(xs)ψǫ′j
(xs)×

∫

...

∫

d4x1...d
4xN [ψ∗

ǫi
(x1) · · ·ψ∗

ǫj
−

(xs−1)ψ
∗
ǫj+

(xs+1) · · ·ψ∗
ǫk

(xN)×

ψǫ′i
(x1) · · ·ψǫ′j

−

(xs−1)ψǫ′j+
(xs+1) · · ·ψǫ′

k
(xN)]

(3.25)

The factor
∫

ψ∗
ǫj

0̂ψǫ′j
in the last term of eqn. 3.25 is a one-body integral. For a given

term
∫

ΨEm
ÔΨEn

in eqn. 3.21, every product of the form eqn. 3.25 will produce

such a one body integral with the specific indices j and j′, but over differing values

of the index s. However, the variable of integration in such integrals is a dummy
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variable and, thus, all of the terms of the form eqn. 3.25 that compose the term

∫

ΨEm
ÔΨEn

can be gathered together and written using the abstract ket vectors,

|En;ni...nj...nk〉 as follows.

∫

...

∫

d4x1...d
4xNΨ∗

Em
(x1, ...,xN)Ô(x1, ...,xN)ΨEn

(x1, ...,xN )

=

∫

d4xψ∗
ǫj

(x)ô(x)ψǫ′j
(x)〈ni...nj−nj+ ...nk|n′

i...n
′
j−
n′

j+
...n′

k〉

=〈Em;ni...nj−nj+ ...nk|
(∫

d4xψ∗
ǫj

(x)ô(x)ψǫ′j
(x)

)

|En;n′
i...n

′
j−
n′

j+
...n′

k〉

(3.26)

where the indices j− and j+ refer to the orbitals that originally came immediately

before and after the j-th orbital, ψ∗
ǫj

(xs) , respectively. This inner product must now

be rewritten to correspond to the original states |En;ni...nj...nk〉 (i.e. states that

include the orbitals ψǫj
, ψǫ′j

. To this end, we note that

(3.27) |En;ni...nj−nj+ ...nk〉 = âj|En;ni...nj...nk〉

where âj is an operator that removes the orbital ψǫj
from a state ΨEm

if it exists. If

it does not exist, it annihilates the entire state,

(3.28) âj|En;ni...nj−nj+ ...nk〉 = 0

Likewise, the conjugate transpose of âj, â
†
j adds the orbital ψǫj

to a state that does

not have it

(3.29) |En;ni...nj...nk〉 = â†j|En;ni...nj−nj+ ...nk〉

and annihilates a state that does possess it,

(3.30) â†j|En;ni...nj...nk〉 = 0
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These addition and removal operators and the properties (shown above) that allow

them to preserve the Pauli exclusion principle, lead to the following anti-commutation

relations [44],

(3.31) {âi, âj} = {â†i , â†j} = 0

(3.32) {âi, â
†
j} = δij

The fact that the relations are anti-commutative is intuitively expected since per-

muting two orbitals within a state ΨEn
causes a π phase shift in the state. Hence, all

Fermi-Dirac statistics are elegantly captured by these anti-commutation relations.

Using these operators, eqn. 3.26 can be written as,
∫

...

∫

d4x1...d
4xNΨ∗

Em
(x1, ...,xN)Ô(x1, ...,xN)ΨEn

(x1, ...,xN )

=〈Em;ni...nj...nk|
(∫

d4xψ∗
ǫj

(x)â†j ô(x)ψǫ′j
(x)âj

)

|En;n′
i...n

′
j...n

′
k〉

(3.33)

This procedure can be carried out for all values of j and j′ giving a field operator

representation for Ô in the abstract Hilbert space of states |En;ni...nj...nk〉, of the

form,

(3.34) Ô =

∫

d4xψ̂†(x)o(x)ψ̂(x)

where,

(3.35) ψ̂(x) =
∞
∑

j=1

ψǫj
(x)âj

In summary, replacing the state ΨEn
(x1, ...,xN ) by |En;ni...nj...nk〉 requires replace-

ment of the operator Ô(x1, ...,xN) by Ô as defined in eqn. 3.34. These field

operators have anti-commutation relations similar to (and readily derivable from)

equations3.31, 3.32

(3.36) {ψ̂(x), ψ̂(x′)} = {ψ̂†(x), ψ̂†(x′)} = 0
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(3.37) {ψ̂(x), ψ̂†(x′)} = δ(r − r′)δα,α′

where the space-spin coordinates x1, x2 have been divided into their respective spatial

and spin parts, r, r′ and α, α′. We now show several examples of important non-

interacting operators.

Number Density Operator

The number density operator for a system of N electrons, each at a position ~rn,

is

(3.38) n̂(x1, ...xN) =
N
∑

n=1

δ(~rn − ~r).

The expectation value of n̂ is the dynamic electron number density,

〈n̂(t)〉 =
∫

...

∫

d4x1...d
4xNΨ∗(x1, ...,xN , t)n̂(x1, ...,xN )Ψ(x1, ...,xN , t)

=
∑

m,n

C∗
m(t)Cn(t)ψ∗

ǫm
(r)ψ∗

ǫn
(r)δαm,αn

(3.39)

The scalar part of the second quantized representation of this operator, becomes

(3.40) n(x′) = δ(~r′ − ~r)

and the second quantized representation is itself,

(3.41) n̂(r) =

∫

d4x′ψ̂†(x′)δ(~r′ − ~r)ψ̂(x′) = ψ̂†
↑(r)ψ̂↑(r) + ψ̂†

↓(r)ψ̂↓(r)

where, for example, ψ̂↓(r) is the field operator summing over all spatial orbitals with

spin −1/2,

(3.42) ψ̂↓(r) =
∞
∑

j=1

ψǫj ,↓(r)âj,↓
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An explicit form for the number operator N̂ is now attainable,

(3.43) N̂ =

∫

d3rn̂(r) =
N
∑

j=1

[

â†j↑âj↑ + â†j↓âj↓

]

which is very instrumental in explicitly expressing the grand-canonical density oper-

ator and its formal consequences.

Current Density Operator

The current density operator is given by,

(3.44) ĵ(x1, ...,xN ) = −i
N
∑

j=1

[

∇rj
δ(rj − r) + δ(rj − r)~∇rj

]

.

The scalar part of the second quantized operator is,

(3.45) j(x) = −i
[

∇r′δ(r
′ − r) + δ(r′ − r)~∇r′

]

.

and the second quantized form is,

ĵ =

− i

∫

d4x′ψ̂†(x′)
[

∇r′δ(r
′ − r) + δ(r′ − r)~∇r′

]

.ψ̂(x′)

=i
∑

α=↑,↓

[(

∇rψ̂
†
α(r)

)

ψ̂α(r) − ψ̂†
α(r)

(

~∇rψ̂α(r)
)]

.

(3.46)

The final term in eqn. 3.46 is expressed in terms of spatial field operators (eqn. 3.42)

and presents an alternative way of writing the scalar portion of the current density

operator that will be useful in later chapters, namely,

(3.47) j(x,x′) = iδr − r0 lim
r′→r

[

∇r′ − ~∇r

]

.

where the primed gradient acts on the electron addition field operator, ψ̂†, the un-

primed gradient acts on the electron removal operator, ψ̂ and the current density is

given at r0.
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Dipole operator

The dipole operator is given by,

(3.48) µ̂(x1, ...,xN , t) =
N
∑

j=1

r̂j

The scalar portion of the second quantized represented dipole operator is,

(3.49) µ(x) = r

The second quantized representation is,

(3.50) µ̂ =
∑

α=↑,↓

∫

d3r
′
ψ̂†

α(r)rψ̂α(r)

Non-Interacting Hamiltonian

A non-interacting many-electron Hamiltonian with a time-dependent classical

driving potential of the form

(3.51) v̂(x1, ...,xN , t) = v(t)
N
∑

j=1

f̂(rj)

can be expressed as,

(3.52) ĥ(x1, ...,xN , t) =
N
∑

I=1

[

−1

2
∇ri

2 −
∑

I

ZI

|ri − RI |
+ v(t)f̂(rj)

]

where the index I runs over the RI nuclear coordinates. The scalar portion of the

second quantized Hamiltonian is the one-electron Hamiltonian.

(3.53) h(x) = −1

2
∇r

2 −
∑

I

ZI

|r − RI |
+ v(t)f̂(r)

This fact will allow for the reduction of the many-body time-dependent equations of

motion into effective one-body equations of motion. The second quantized represen-

tation is,

(3.54) ĥ =
∑

α=↑,↓

∫

d3r
′
ψ̂†

α(r)

[

−1

2
∇r

2 −
∑

I

ZI

|r − RI |
+ v(t)f̂(r)

]

ψ̂α(r)
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3.3.2 Pairwise Interacting Operators

Pairwise interacting operators take the form,

(3.55) Ô(x1, ...,xN) =
N
∑

s=1

∑

t≥s

ô(xs,xt)

where there is an interaction between every two particles. The most common example

of a pairwise operator in the context of electronic structure is the coulomb repulsion

between electrons, described by,

(3.56) ô(x1,x2) =
2

|r1 − r2|

Note that the electron repulsion operator does not depend on the spin coordinates.

The procedure for constructing a second quantized representation of a pairwise inter-

acting operator is an extension of the procedure for a non-interacting operator 3.3.1.

Only now, a pair of electronic orbitals is pulled from each state ΨEn
(instead of a

single orbital). The field operator representation for a pairwise interacting operator

thus becomes,

(3.57) Ô =

∫

d4x1

∫

d4x2ψ̂
†(x2)ψ̂

†(x1)ô(x1,x2)ψ̂(x1)ψ̂(x2)

Total Hamiltonian

Thus, the total Hamiltonian can be written as,

(3.58) Ĥ(t) =

∫

d~xΨ̂†(~x)h(~x, t)Ψ̂(~x) +

∫

d~x

∫

d~x′Ψ̂†(~x)Ψ̂†(~x′)J(~x, ~x′)Ψ̂(~x)Ψ̂(~x′).

In this expression J corresponds to two-particle interactions and h is the one par-

ticle Hamiltonian, which includes the kinetic energy and a possible time-dependent

applied external perturbation (v(~x, t)).
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3.3.3 Field Operators in the Heisenberg Representation

Finally, the field operators can, like all other operators, be expressed in the Heisen-

berg picture. This is the picture in which the Green function is defined. In our case

however, the temporal variable, t, is defined on the KC and derivatives with respect

to t are taken on the KC.

(3.59) ψ̂H(x) = ÛC(t0, t)ψ̂(x)ÛC(t, t0)

(3.60) ψ̂†
H(x) = ÛC(t0, t)ψ̂

†(x)ÛC(t, t0)

where x = (x, t). The Heisenberg equations of motion remain the same for the KC

as for the real time axis.

(3.61) i
∂

∂t
ψ̂H(x) = ÛC(t0, t)

[

ψ̂(x), Ĥ(t)
]

ÛC(t, t0)

(3.62) i
∂

∂t
ψ̂†

H(x) = ÛC(t0, t)
[

ψ̂†(x), Ĥ(t)
]

ÛC(t, t0)

One can apply the Heisenberg equations of motion to the total Hamiltonian (eqn.

3.58). Using the anti-commutation relations for field operators (eqn. 3.36, 3.37) and

the assumption that J(x1,x2) = J(x2,x1), these equations of motion become,

(3.63) i
∂

∂t
ψ̂H(x) = h(x)ψ̂H(x) +

∫

d4x
′
J(x,x′)ψ̂†

H(x′)ψ̂H(x′)ψ̂H(x)

(3.64) i
∂

∂t
ψ̂†

H(x) = −h(x)ψ̂†
H(x) −

∫

d4x
′
J(x,x′)ψ̂†

H(x)ψ̂†
H(x′)ψ̂H(x′)



CHAPTER IV

The one body Green Function

4.1 Definitions

The central quantities of Keldysh and NEGF formalisms are the one-body Green

Functions (GF)[44, 57, 18] or propagators, which are functions of two space-spin

and time coordinates (x = ~x, t), with time variables defined on the Keldysh contour

(KC) shown in figure 3.1). The two variable nature of these functions will allow for

the energy resolved characterization of the system as described in chapter I. The

need for the two variables is also a direct consequence of the nature of the electronic

structure, which involves two body electrostatic Coulomb interactions. These two

time variables are ordered on the contour, where their relative positions determine

the type of GF. The propagators are defined by the pair of field operators (ψ̂(x) and

ψ̂†(x′)) at times t and t′ respectively:

G(x, x′) ≡− i

∑

n〈En, Nn|ÛC(t0 − iβ, t0)T̂C [ψ̂H(x)ψ̂†
H(x′)]|En, Nn〉

∑

n〈En, Nn|ÛC(t0 − iβ, t0)|En, Nn〉

= − i
T r[ÛC(t0 − iβ, t0)T̂C [ψ̂H(x)ψ̂†

H(x′)]]

Tr[ÛC(t0 − iβ, t0)]

(4.1)

where the trace Tr[...] is taken over all states |En, Nn〉 = |En;ni · · ·nj · · ·nk〉 with

state energy En and occupation number Nn. In the Heisenberg picture, these oper-

ators take the form (eqns. 3.59, 3.60):

(4.2) ψ̂H(x) = ÛC(t0, t)ψ̂(x)ÛC(t, t0)

36
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(4.3) ψ̂†
H(x) = ÛC(t0, t)ψ̂

†(x)ÛC(t, t0)

The contour ordering operator is defined in a slightly different manner from T̂C in

eqn. 3.14. For single field operators (Ôj ∈ {ψ̂(x), ψ̂†(x)}), it has the property that

every consecutive permutation of field operators on the KC changes the sign of the

contour ordered product.

T̂C

[

Ô1(t1) · · · Ôn(tn)
]

≡
∑

P

(−1)NP ΘC(tP (1), tP (2))ΘC(tP (2), tP (3)) · · ·ΘC(tP (n−1), tP (n))×

ÔP (1)(tP (1)) · · · ÔP (n)(tP (n)).

(4.4)

where all quantities are, as defined in section 3.2 and NP is the number of consecutive

permutations necessary to return the product to the form on the left side of eqn. 4.4.

Equation 4.4 can be used to expand the total GF (eqn. 4.1), allowing it to be

expressed as a sum over two types of GFs related to the relative positions of the two

time variables on the KC:

(4.5) G(x, x′) = ΘC(t, t′)G>(x, x′) + ΘC(t′, t)G<(x, x′),

where the step function, ΘC(t, t′), is 1 if t is later than t′ on the Keldysh contour.

The lesser GF, G<(x, x′) and greater GF, G>(x, x′) have the following forms.

(4.6) G<(x, x′) ≡ i
T r[ÛC(t0 − iβ, t0)ψ̂

†
H(x′)ψ̂H(x)]

Tr[ÛC(t0 − iβ, t0)]
.

(4.7) G>(x, x′) ≡ −iT r[ÛC(t0 − iβ, t0)ψ̂H(x)ψ̂†
H(x′)]

Tr[ÛC(t0 − iβ, t0)]
.

The GF of greatest interest is the lesser GF, which (as is shown in section 4.2)

gives the electronic number density when evaluated at on the real branch of the KC.

However, both the lesser and greater GFs are used to define several other GFs that
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correspond to different branches of the KC. These GFs allow for the evaluation of the

lesser GF from the given Hamiltonian. We start with the definition of the Matsubara

GF,

(4.8) GM(xτ , x
′
τ ′) = Θ(τ − τ ′)G>(xτ , x

′
τ ′) + Θ(τ ′ − τ)G<(xτ , x

′
τ ′)

where xτ = (x, t0 − iτ) and x′τ ′ = (x′, t0 − iτ ′). The active time variable t0 − iτ

and t0 − iτ ′ are found on the complex branch of the Keldysh contour. Note that

the imaginary axis describes the thermally equilibrated system as explained in the

previous chapter. Next, we restrict G< and G> to the real branches of the Keldysh

contour. Note that, since the contour ordering operator T̂C has been removed in

defining G< and G>, the contour ordered propagators ÛC can, for real t and t′, be

replaced with real time propagators Û . We thus define the retarded GF, GR and the

advanced GF GA on the real time axis as,

GR(x, x′) =Θ(t− t′) [G>(x, x′) −G<(x, x′)]

= − iΘ(t− t′)
Tr
[

ÛC(t0 − iβ, t0)
{

ψ̂H(x), ψ̂†
H(x′)

}]

Tr[ÛC(t0 − iβ, t0)]

(4.9)

GA(x, x′) = − Θ(t′ − t) [G>(x, x′) −G<(x, x′)]

=iΘ(t′ − t)
Tr
[

ÛC(t0 − iβ, t0)
{

ψ̂H(x), ψ̂†
H(x′)

}]

Tr[ÛC(t0 − iβ, t0)]

(4.10)

The Matsubara, retarded and advanced GFs play an instrumental role in describing

the steady state physics of the system and in providing the initial conditions for a

dynamic treatment of the system. Finally, we divide the lesser GF into two real time

branches, where

(4.11) G<
1 (x, x′) = Θ(t− t′)G<(x, x′)

(4.12) G<
2 (x, x′) = Θ(t′ − t)G<(x, x′)
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Note that G<(x, x′) = G<
1 (x, x′) +G<

2 (x, x′). These forms are necessary for a proper

energy regime description of the manifold of states as described in chapter V.

4.2 Properties

In this section, certain important properties of and relations between the vari-

ous GFs described above are derived. In particular, the relation between the lesser

GF and the energy resolved electron density is shown. This leads to the connec-

tion between the lesser GF and the occupied density of states. Furthermore, the

relation between this GF and the expectation value of a non interacting operator

is derived. Finally, various conjugate transform identities and the Kubo-Martin-

Schwinger (KMS) boundary conditions are derived. These relations assist in finding

a closed for for the equilibrated lesser GF in terms of the Hamiltonian.

4.2.1 Green Function of Time Independent Hamiltonian

For the case of a time independent Hamiltonian, one can show that the Green

function (eqn. 4.1) and all of its branch restricted forms (eqns. 4.6-4.12) become

temporally dependent only on the difference between the two time variables ∆t =

t− t′.

(4.13) G(x, x′) = G(x,x′; t− t′)

To show this, one simple substitutes the explicit form for the propagator of a time

independent Hamiltonian,

(4.14) Û(t, t0) = e−i(Ĥ0−µN̂)(t−t0)

into the definition of the Green function (eqn. 4.1). This is shown for G<. A similar

derivation can be performed for G> and thus this rule is valid for the total GF, G.

Likewise GR and GA can be shown to obey this property. The Matsubara GF, GM
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always obeys this property since the Hamiltonian is always time independent on the

complex part of the KC. Using the cyclic property of the trace,

G<(x, x′) =i
T r[e−β(Ĥ0−µN̂)e−i(Ĥ0−µN̂)(t0−t′)ψ̂†(x′)e−i(Ĥ0−µN̂)(t′−t)ψ̂(x)e−i(Ĥ0−µN̂)(t−t0)]

Tr[e−β(Ĥ0−µN̂)]

=i
T r[e−β(Ĥ0−µN̂)ψ̂†(x′)ei(Ĥ0−µN̂)(∆t)ψ̂(x)e−i(Ĥ0−µN̂)(∆t)]

Tr[e−β(Ĥ0−µN̂)]
.

(4.15)

For GM , the same property can be verified, namely,

(4.16) GM(xτ , x
′
τ ′) = G(x,x′; τ − τ ′)

provided that, as long as the time variable is not conjugated in the complex time

propagator,

(4.17) Û(tτ , t0) = e−i(Ĥ0−µN̂)(t0−(t0−iτ)) = e(Ĥ0−µN̂)τ = Û †(tτ , t0) 6= Û †(t0, tτ ).

where tτ = t0 − iτ .

4.2.2 Populated Density of States

For the case of a time independent Hamiltonian, one can show that the Fourier

transform of the spatially integrated lesser Green function with respect to ∆t, gives

the populated density of states. That is,

ρ(ω̄) =

− i

∫

d4xG<
m(x,x; ω̄)

=
∑

n,k

e−β(En−µNn)

Z
δ(ω̄ − (∆E−

n (k) − µ))

(4.18)

where,

(4.19) G<
m(x,x′; ω̄) ≡

∫ ∞

−∞

d(∆t)eiω̄∆tG<(x,x′; ∆t),



41

Z is the grand canonical partition function (eqn. 3.5) and ∆E−
n (k) is the energy

required to remove an electron from an occupied orbital ψǫk
in the many body state

|En, Nn〉. Furthermore, selecting one of the peaks, ∆E−
n (k) in eqn. 4.18 without

spatially integrating, gives the electronic density of the k-th orbital, |ψǫk
|2, in state

|En, Nn〉.

(4.20) lim
δ→0+

∫ ∆E−

n (k)−µ+δ

∆E−

n (k)−µ−δ

dω̄G<
m(x,x; ω̄) =

e−β(En−µNn)

Z
|ψǫk

(x)|2.

To show this, we start by expanding the equation of the lesser Green function for a

time independent Hamiltonian,

G<(x,x; ∆t) =i

∑

n〈En, Nn|e−β(Ĥ0−µN̂)ψ̂†(x)ei(Ĥ0−µN̂)(∆t)ψ̂(x)e−i(Ĥ0−µN̂)(∆t)|En, Nn〉
Tr[e−β(Ĥ0−µN̂)]

=
i

Z

∑

n,m

〈En, Nn|e−β(Ĥ0−µN̂)ψ̂†(x)|Em, Nm〉〈Em, Nm|×

ei(Ĥ0−µN̂)(∆t)ψ̂(x)e−i(Ĥ0−µN̂)(∆t)|En, Nn〉

. =i
e−β(En−µNn)

Z

∑

n,m

e−i(∆Enm−µ∆Nnm)(∆t)|〈Em, Nm|ψ̂(x)|En, Nn〉|2

(4.21)

where Enm ≡ En − Em and Nnm ≡ Nn −Nm. Fourier transforming this result with

respect to ∆t gives

(4.22)

G<(x,x; ω̄) = i
e−β(En−µNn)

Z

∑

n,m

δ(ω̄ − (∆Enm − µ∆Nnm))|〈Em, Nm|ψ̂(x)|En, Nn〉|2

The coefficient 〈Em, Nm|ψ̂(x)|En, Nn〉 is non-zero only when the state |En, Nn〉 has

one less electron than the state |Em, Nm〉, that is, |Em, Nm〉 = |Em, Nn − 1〉 The

field operator will probe for the vacant orbital in |En, Nm − 1〉. If, for example, the

j-th orbital is occupied in |En, Nn〉 and unoccupied in |Em, Nm〉 then the states are

written in abstract Hilbert space as,

(4.23) |En, Nn〉 = |En, ni...nj...nk〉
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(4.24) |Em, Nm〉 = |Em, ni...nj−nj+...nk〉

In this case,

〈Em, Nm|ψ̂(x)|En, Nn〉 =

∑

l

ψǫl
(x)〈Em, ni...nj−nj+...nk|âl|En, ni...nj...nk〉

=ψǫj
(x)

(4.25)

and,

(4.26) G<(x,x; ω̄) = i
e−β(En−µNn)

Z

∑

n,k

δ(ω̄ − (∆Enm − µ∆Nnm))|ψǫk
(x)|2

Integrating this spatially gives eqn. 4.18, since
∫

d4x|ψ|2(x) = 1. Likewise, selec-

tively integrating over the energy of a specific state without integrating spatially

gives eqn. 4.20.

4.2.3 Expectation Value

The lesser GF can be used to calculate the expectation value of a non-interacting

operator (eqn. 3.22). To show this, we note that the expectation value of an operator

is given, in the Heisenberg picture, by eqn. 3.7. Substituting the field operator

representation of a non-interacting operator (eqn. 3.34) into this equation gives,

O(t) =

∫

d4xTr{ρ̂◦Û(t◦, t)ψ̂
†(x)o(x)ψ̂(x)Û(t, t◦)}

=

∫

d4x lim
x′→x

[

o(x)Tr{ρ̂◦Û(t◦, t)ψ̂
†(x′)ψ̂(x)Û(t, t◦)}

]

=

∫

d4x lim
x′→x

[

o(x)Tr{ρ̂◦Û(t◦, t
′)ψ̂†(x′)Û(t′, t)ψ̂(x)Û(t, t◦)}

]

=

∫

d4x lim
x′→x

[

o(x)Tr{ρ̂◦ψ̂†
H(x′)ψ̂H(x)}

]

= − i

∫

d4x lim
x′→x

[o(x)G<(x, x′)]

(4.27)

where we have assumed that ρ̂◦ is already normalized by the grand canonical par-

tition function (i.e. Tr[ρ̂◦] = 1). We now define a mixed representation lesser GF,
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G<
m(x,x′; t̄, ω̄), where the word mixed implies that one variable is temporal, t̄, while

the other is spectral ω̄.

(4.28) G<
m(x,x′; t̄, ω̄) ≡

∫ ∞

−∞

d(∆t)eiω̄∆tG<(xt̄+ ∆t/2,x′t̄− ∆t/2)

where xt is a short-hand form of (x, t). Note that, for G<(x, x′), t̄ ≡ (t + t′)/2 and

∆t = t− t′. For this GF, the expectation value of an operator becomes,

O(t) = − i

∫

d4x lim
x′→x

[o(x)G<(x′, x)]

= − i
1

2π

∫

d4x lim
x′→x

[

o(x)

∫ ∞

−∞

dω̄eiω̄∆tG<
m(x,x′; t̄, ω̄)

]

= − i
1

2π

∫

d4x

∫ ∞

−∞

dω̄ lim
x′→x

[o(x)G<
m(x,x′; t̄, ω̄)]

(4.29)

Equations 4.27 and 4.29 show that the expectation value of a non-interacting op-

erator can be calculated by integrating the scalar form of the operator o(x) with

the lesser GF. We now use, as examples, the operators listed in section 3.3. Before

proceeding, it is worth reviewing the notation used for different variables. In the

following examples, the variable x is the covariant notation for including both space-

spin and time coordinates. That is, x = (x, t) where x represents the spacial, r, and

spin, α, coordinates, and t represents the time.

Number Density

The scalar form of the second quantized electron number density at r0 is given by

n(x) = δ(r − r0) (eqn. 3.40),

n(x) = − i

∫

d4x lim
x′→x

[δ(r − r0)G
<(x′, x)]

= − i
[

G<
↑,↑(r0t, r0t) +G<

↓,↓(r0t, r0t)
]

(4.30)

where the arrows represent the spin state. Thus, the lesser GF evaluated at x′ = x

gives the time dependent electron number density of the system. The systems in this
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work are either closed (spin singlet) or spinless systems. In this case,

(4.31) n(x) = −iG<(r0t, r0t)

The expectation value of the number operator in the mixed representation (for the

spinless case) is,

n(xt̄) = − i
1

2π

∫

d4x

∫ ∞

−∞

dω̄ lim
x′→x

[δ(r − r0)G
<
m(x,x′; t̄, ω̄)]

= − i

∫ ∞

−∞

dω̄G<(r0, r0; t̄, ω̄)

(4.32)

Note that eqn. 4.13 states that n(xt̄) will only be t̄-dependent if the Hamilto-

nian contains a time dependent driving potential. If this driving potential is weak

compared with the transition energies (or widths of energy bands) of the time in-

dependent Hamiltonian Ĥ◦, then eqn. 4.18 becomes approximately correct for the

time-dependent case as well and −iG<(r0, r0; t̄, ω̄)dω̄ gives the dynamically (t̄) evolv-

ing electron number density contribution of states with electron removal energies

between ω̄ and ω̄ + dω̄. Thus, the mixed representation form for the lesser GF,

G<(x,x′; t̄, ω̄), gives the energy resolved density matrix described in chapter I in the

position representation. This quantity, which forms the basis of this work has now

been formally defined. What is left is to derive an equation of motion for it.

Current Density

Likewise, the scalar form for the second quantized current density operator (eqn.

3.45) is given by ĵ(x) = i
[

∇r′ − ~∇r

]

. The expectation value of the current density

is given by (for a spinless system),

j(x) =

∫

d4x lim
x′→x

[

δr − r0

[

∇r′ − ~∇r

]

G<(x′, x)
]

= lim
r′→r

[

∇r′ − ~∇r

]

G<(rt, r′t)

(4.33)
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or alternatively, in the mixed representation form, by

j(xt̄) =
1

2π

∫

d4x

∫ ∞

−∞

dω̄ lim
x′→x

[[

∇r′ − ~∇r

]

G<
m(x,x′; t̄, ω̄)

]

= lim
r′→r

[

∇r′ − ~∇r

]

G<
m(r, r′; t̄, ω̄)

(4.34)

One may define an energy resolved current density J(r, t̄, ω̄) analogous to the energy

resolved number density, −iG<(r, r; t̄, ω̄), where J(r, t̄, ω̄)dω̄ gives the contribution

to the total current density of the states with electron removal energy between ω̄ and

ω̄ + dω̄. A similar procedure can be followed for other operators of interest, such as

the dipole operator and the non-interacting Hamiltonian.

The Wealth of Information contained in G<

Note that , if the electronic orbitals, ψǫj
are purely real, than the number density,

dipole and Hamiltonian operators will be purely real, while the current density oper-

ator is pure imaginary (see eqn. 4.29). Real operators will select the imaginary part

of G< (real part of the density) since tracing with the real part must give zero, or

the expectation value will be complex. On the other hand, an imaginary operator,

such as the current density operator, selects the real part of G<. Thus, the lesser

Green function contains a wealth of information. Density related information, such

as electron number density and dipole moment is carried by the imaginary part of

G< while gradient related information, such as current density (flux), is typically

carried by the real part of G<.
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4.2.4 Boundary Conditions and Conjugate Transpose Relations

Finally, we list several important properties of the various branch defined GFs.

We start with an important relation between G>(xt,x′t) and G<(xt,x′t),

G>(xt,x′t) −G<(xt,x′t) =

− i
T r
[

ÛC(t0 − iβ, t0)
{

ψ̂H(xt), ψ̂†
H(x′t)

}]

Tr[ÛC(t0 − iβ, t0)]

− i
T r
[

ÛC(t0 − iβ, t0)
{

ÛC(t0, t)ψ̂(x), ψ̂†(x)ÛC(t, t0)
}]

Tr[ÛC(t0 − iβ, t0)]

= − iδ(r − r′)δα,α′

(4.35)

where we have used the anticommutation relation for field operators given by eqn.

3.37 and the space-spin coordinates x1, x2 have been divided into their respective

spatial and spin parts, r, r′ and α, α′. Next, we elaborate on the conjugate transform

relation for G<,

G<∗(x, x′) =

− i

T r

[

[

ÛC(t0 − iβ, t0)ψ̂
†
H(x′)ψ̂H(x)

]†
]

Tr[Û †
C(t0 − iβ, t0)]

= − i
T r
[

ψ̂†
H(x)ψ̂H(x′)Û †

C(t0 − iβ, t0)
]

Tr[ÛC(t0 − iβ, t0)]

= − i
T r
[

ψ̂†
H(x)ψ̂H(x′)ÛC(t0 − iβ, t0)

]

Tr[ÛC(t0 − iβ, t0)]

= − i
T r
[

ÛC(t0 − iβ, t0)ψ̂
†
H(x)ψ̂H(x′)

]

Tr[ÛC(t0 − iβ, t0)]

= −G<(x′, x)

(4.36)

where, in the last step, we have used the cyclic property of the trace. Furthermore,

it can be shown that the G<(x, x) must be purely imaginary even if G<(x, x′) has
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real components. Thus, the density is purely real as expected. To demonstrate this

G<(x, x) is expressed in terms of its real and imaginary components and relation

4.36 is applied,

G<∗(x, x) =ℜ[G<(x, x)] − iℑ[G<(x, x)]

= −G<(x, x)

= −ℜ[G<(x, x)] − iℑ[G<(x, x)].

(4.37)

Equation 4.37 gives,

(4.38) 2ℜ[G<(x, x)] = 0

as stated. With a similar approach, one can derive similar properties for the other

branch restricted GFs,

(4.39) G<∗
1 (x, x′) = −G<

2 (x′, x)

(4.40) GR∗(x, x′) = GA(x′, x).

Now we derive the conjugation property for the mixed representation lesser GF, G<
m,

G<∗
m (x,x′; t̄, ω̄) =

−
∫ ∞

−∞

d(∆t)e−iω̄∆tG<(xt̄− ∆t/2,x′t̄+ ∆t/2)

= −
∫ ∞

−∞

d(∆t)eω̄∆tG<(xt̄+ ∆t/2,x′t̄− ∆t/2)

= −G<
m(x′,x; t̄, ω̄)

(4.41)

The second line is an application of relation 4.36 and the third line comes about with

the substitution ∆t→ −∆t in the integration variable. Likewise,

(4.42) G<∗
1m(x,x′; t̄, ω̄) = −G<

2m(x′,x; t̄, ω̄)
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(4.43) GR∗
m (x,x′; t̄, ω̄) = GA

m(x′,x; t̄, ω̄)

for the other (analogously defined) mixed represented branch restricted GFs.

Finally, we derive the Kubo-Martin-Schwinger (KMS) relations between G< and

G>. These temporal boundary conditions are instrumental in deriving a form for the

Matsubara GF, GM . We note that,

G>(xt0 − iβ, x′) =

− i
T r
[

ÛC(t0 − iβ, t0)ψ̂H(xt0 − iβ)ψ̂†
H(x′)

]

Tr[Û †
C(t0 − iβ, t0)]

= − i
T r
[

e−β(Ĥ0−µN̂)
[

eβ(Ĥ0−µN̂)ψ̂(x)e−β(Ĥ0−µN̂)
]

ψ̂†
H(x′)

]

Tr[ÛC(t0 − iβ, t0)]

= − i
T r
[

ψ̂(x)e−β(Ĥ0−µN̂)ψ̂†
H(x′)

]

Tr[ÛC(t0 − iβ, t0)]

= − i
T r
[

e−β(Ĥ0−µN̂)ψ̂†
H(x′)ψ̂(x)

]

Tr[ÛC(t0 − iβ, t0)]

= −G<(xt0, x
′)

(4.44)

Similarly, one can show that

(4.45) G<(x,x′t0 − iβ) = −G>(x,x′t0)

4.3 Equations of Motion

The general equations of motion are derived by taking the partial derivatives of

G(x, x′) with respect to t and t′, and using the equations of motion for field operators

(eqns. 3.63, 3.64). This gives equations of motion in terms of one-body GFs,

i
∂

∂t
G(x, x′) =δC(t, t′)δ(~x− ~x′) + h(x)G(x, x′)

− i

∫

d4x
′′
J(x,x′′)

Tr[T̂C [ψ̂H(x)ψ̂†
H(x′)ψ̂†

H(x′′t)ψ̂H(x′′t)]]

Tr[Û(t0 − iβ, t0)]

(4.46)
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−i ∂
∂t
G(x, x′) =δC(t, t′)δ(~x− ~x′) + h(x)G(x, x′)

− i

∫

d4x
′′
J(x′,x′′)

Tr[T̂C [ψ̂H(x)ψ̂†
H(x′)ψ̂†

H(x′′t′)ψ̂H(x′′t′)]]

Tr[Û(t0 − iβ, t0)]

(4.47)

that depend on a term with two pairs of field operators. This four operator term is

expressed as a variational ansatz[57, 18, 13, 14],

−i
∫

d4x
′′
J(x,x′′)

Tr[T̂C [ψ̂H(x)ψ̂†
H(x′)ψ̂†

H(x′′t)ψ̂H(x′′t)]]

Tr[Û(t0 − iβ, t0)]

=

∫

d~x′′
∫

C

dt′′ΣJ [G](x, x′′)G(x′′, x′)

(4.48)

−i
∫

d4x
′′
J(x′,x′′)

Tr[T̂C [ψ̂H(x)ψ̂†
H(x′)ψ̂†

H(x′′t′)ψ̂H(x′′t′)]]

Tr[Û(t0 − iβ, t0)]

=

∫

d~x′′
∫

C

dt′′G(x, x′′)ΣJ [G](x′′, x′)

(4.49)

Thus, the GFs satisfy the electronic equation of motion:

(4.50)

i
∂

∂t
G(x, x′) = δC(t, t′)δ(~x− ~x′) + h(x)G(x, x′) +

∫

d~x′′
∫

C

dt′′ΣJ [G](x, x′′)G(x′′, x′),

(4.51)

−i ∂
∂t′
G(x, x′) = δC(t, t′)δ(~x−~x′)+h(x′)G(x, x′)+

∫

d~x′′
∫

C

dt′′G(x, x′′)ΣJ [G](x′′, x′),

where the space-spin coordinate integral
∫

d~x′′ is taken over the entire spatial (and

spin) space and the time integral
∫

C
dt′′ is taken on the Keldysh contour (denoted

C). The delta function δC(t, t′), like the step function ΘC(t, t′), is also defined on

the Keldysh contour. The complete one body Hamiltonian h(x) = h0(~x) + v(x)

contains the electron kinetic energy and electron nuclear attractions h0, and the

time dependent external potential acting on the electrons v(x). Note that ΣJ is

assumed to be a functional of the one body Green function. Applying variational

calculus to this ansatz produces a dynamic equation of motion for ΣJ that, together

with eqns. 4.50-4.51 is typically solved self-consistently[123]. The equations for ΣJ
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may be propagated directly or expanded perturbatively (diagramatically) assuming

that a perturbative approximation is valid for the coulomb repulsion.

A full propagation of eqns. 4.50-4.51 together with the dynamic equations of

motion for ΣJ is computationally very costly. It is thus essential to taylor these

equations to specific classes of problems. This work focuses on the problem of weak

resonant driving fields applied to open systems dominated by bands of highly delocal-

ized states. Thus, as a first approximation, ΣJ is neglected with the assumption that

significant coulomb repulsion effects are included modelistically within an effective

noninteracting Hamiltonian. The equations of motion then become,

(4.52) i
∂

∂t
G(x, x′) = δC(t, t′)δ(~x− ~x′) + h(x)G(x, x′)

(4.53) −i ∂
∂t′
G(x, x′) = δC(t, t′)δ(~x− ~x′) + h(x′)G(x, x′).

The remainder of this work will focus on solving for G< in this limit. The electron

correlation self-energy can ultimately be introduced in a limited fashion as needed,

but its effects are not covered in this work. We now take eqns. 4.52-4.53, where t

and t′ are on the KC and specialize them to the branches on which G<, GR, GA and

GM are defined. We start with G<. As, with G(x, x′), one can differentiate G<(x, x′)

separately with respect to t or t′ and substitute the field operator equations of motion

in the absence of a pairwise potential,

(4.54) i
∂

∂t
ψ̂H(x) = h(x)ψ̂H(x)

(4.55) i
∂

∂t
ψ̂†

H(x) = −h(x)ψ̂†
H(x)

to give,

(4.56) i
∂

∂t
G<(x, x′) = h(x)G<(x, x′)
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(4.57) −i ∂
∂t′
G<(x, x′) = h(x′)G<(x, x′).

A similar approach can be taken with G> to give,

(4.58) i
∂

∂t
G>(x, x′) = h(x)G>(x, x′)

(4.59) −i ∂
∂t′
G>(x, x′) = h(x′)G>(x, x′).

Note that substituting eqn. 4.5 into eqns. 4.52-4.53 will also give eqns. 4.56-4.59.

With the same approach, one can show that,

(4.60) i
∂

∂t
G{R,A}(x, x′) = δ(t− t′)δ(~x− ~x′) + h(x)G{R,A}(x, x′)

(4.61) −i ∂
∂t′
G{R,A}(x, x′) = δ(t− t′)δ(~x− ~x′) + h(x′)G{R,A}(x, x′).

where G{R,A} is either the retarded or advanced GF. Finally,

(4.62) − ∂

∂τ
GM(x, x′) = iδ(τ − τ ′)δ(~x− ~x′) + h(x)GM(x, x′)

(4.63)
∂

∂τ ′
GM(x, x′) = iδ(τ − τ ′)δ(~x− ~x′) + h(x′)GM(x, x′).

Equations 4.56-4.63 are known as the Kadanoff-Baym (K-B) equations[57, 70] and

correspond to the application of eqns. 4.52,4.53 to different branches of the KC.

4.4 Non-orthogonal basis set

Localized non-orthogonal basis functions, such as atomic orbital basis functions,

are used to convert the equations in sections 4.1-4.3 from a spatial grid represen-

tation to a matrix representation that increases the computational efficiency. For

certain non-orthogonal basis sets, such as those composed of gaussian basis func-

tions, the spatial part of the problem can be calculated analytically, leaving only the
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temporal portion to non-analytical computation. If, for a molecular junction, there

is a monotonic relationship between the arrangement of the basis functions and the

spatial coordinate that starts at the beginning of one electrode, traverses through

the junction and ends at the end of the second electrode then such a basis set can be

used to define the projection of the electrodes’ manifold of states onto the junction

region. The total GF can be defined as,

(4.64) G(x, x′) =
∑

i,j

Gi,j(t, t
′)φi(x)φ∗

j(x
′).

where φi(x) is an element of the non-orthogonal basis set. In a similar fashion, the

branch restricted GFs can be expressed,

(4.65) G{<,>,R,A}(x, x′) =
∑

i,j

G
{<,>,R,A}
i,j (t, t′)φi(x)φ∗

j(x
′).

(4.66) G<
1,2(x, x

′) =
∑

i,j

G<
1,2;i,j(t, t

′)φi(x)φ∗
j(x

′).

and,

(4.67) GM(xτ,x′τ ′) =
∑

i,j

GM
i,j(τ, τ

′)φi(x)φ∗
j(x

′).

Likewise, in the mixed representation,

(4.68) G{<,>,R,A}
m (x,x′, t̄, ω̄) =

∑

i,j

G
{<,>,R,A}
m;i,j (t̄, ω̄)φi(x)φ∗

j(x
′).
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4.4.1 Expectation Values in the Non-orthogonal Basis

The expectation value of a non-interacting operator can be written in terms of

the lesser GF (eqn. 4.27). Applying the basis set form for the lesser GF gives,

O(t) = − i

∫

d4x lim
x′→x

[o(x)G<(x, x′)]

= − i

∫

d4x lim
x′→x

[

o(x)
∑

i,j

G
{<,>,R,A}
i,j (t, t′)φi(x)φ∗

j(x
′)

]

= − i
∑

i,j

[∫

d4xφ∗
j(x)o(x)φi(x)

]

G<
i,j(t, t)

= − iT r [oG<(t, t)]

(4.69)

where,

(4.70) oij ≡
∫

d4xφ∗
j(x)o(x)φi(x)

Likewise, for the mixed representation lesser GF,

(4.71) O(t) = −i
∫

dω̄Tr [oG<
m(t̄, ω̄)]

We now give some examples.

Electron Number

One can show that the total number of electrons in a system is given by,

(4.72) N(t) = −i
∫

dω̄Tr [SG<
m(t̄, ω̄)]

where S is the overlap matrix,

(4.73) Sij ≡
∫

d4xφ∗
j(x)φi(x).

Note that for an orthonormal basis, S = 1.
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Electron Current Density

Note that the current density operator becomes a spatially dependent matrix due

to the delta function in eqn. 3.47.

(4.74) j(rt) = −i
∫

dω̄Tr [j(r)G<
m(t̄, ω̄)]

where j(r) is a three spatial-component matrix (j(r) = îjx(r) + ĵjy(r) + k̂jz(r)) that,

when traced with G< gives the spatially resolved vector current density. This current

density operator, in basis form, becomes

(4.75) jij(r) = iδαα′

[

φi(r)∇rφ
∗
j(r) − φ∗

j(r)∇rφi(r)
]

.

where α and α′ represent the spin components of the basis functions.

Dipole Operator

In a similar fashion, the expectation value of the dipole moment is given by,

(4.76) d(t) = −i
∫

dω̄Tr [dG<
m(t̄, ω̄)]

where d is the transition dipole matrix,

(4.77) dij ≡
∫

d4xφ∗
j(x)rφi(x).

Note that d(t) can be Fourier transformed to give the excitation spectrum,

(4.78) d(∆ω) =

∫

dtei∆ωtd(t).
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4.4.2 Boundary Conditions and Conjugation Relations in the Non-orthogonal Basis

We now show the basis-set representation of relations in section 4.2.4. We start

with eqn. 4.35 and, for simplicity, assume a spinless system,

G>(xt,x′t) −G<(xt,x′t) =

∑

i,j

[

G>
ij(t, t) −G<

ij(t, t)
]

φi(x)φ∗
j(x

′)

= − iδ(r − r′).

(4.79)

Multiplying both sides of eqn. 4.79 by φ∗
k(x) and integrating with respect to

volume in x gives,

∑

i,j

Ski

[

G>
ij(t, t) −G<

ij(t, t)
]

φ∗
j(x

′)

= − iφ∗
k(x

′)

= − i
∑

j

δkjφ
∗
j(x

′).

(4.80)

Rewriting this equation, gives,

(4.81)
∑

j

{

∑

i

Ski

[

G>
ij(t, t) −G<

ij(t, t)
]

+ i
∑

j

δkj

}

φ∗
j(x

′) = 0.

In order to satisfy eqn. 4.81 independent of the spatial form of the basis functions

φi(x), each factor that multiplies φ∗
j(x

′) in this equation must be set equal to zero.

Thus, the basis set dependent form of eqn. 4.35 becomes,

(4.82) G>(t, t) − G<(t, t) = −iS−1

Next, we express the conjugate transform relation for the lesser GF (eqn. 4.36) in
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the basis set representation,

G<∗(x, x′) =

∑

i,j

G<∗
i,j (t, t′)φ∗

i (x)φj(x
′)

=
∑

j,i

G<∗
j,i (t, t′)φ∗

j(x)φi(x
′)

= −G<(x′, x)

= −
∑

i,j

G<
i,j(t

′, t)φi(x
′)φ∗

j(x).

(4.83)

Thus,

(4.84)
∑

j,i

[

G<∗
j,i (t, t′) +G<

i,j(t
′, t)
]

φ∗
j(x)φi(x

′) = 0.

As before, the factor multiplying the basis functions must be identically zero, and

thus,

(4.85) G<†(t, t′) = −G<(t′, t)

Similarly,

(4.86) G<†
1 (t, t′) = −G<

2 (t′, t)

(4.87) GR†(t, t′) = −GA(t′, t)

(4.88) G<†
m (t̄, ω̄) = −G<

m(t̄, ω̄)

and finally, the boundary conditions for G< and G> involving the complex branch

of the KC,

(4.89) G>(t0 − iβ, t′) = −G<(t0, t
′)

(4.90) G<(t, t0 − iβ) = −G>(t, t0)
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4.4.3 Equations of Motion in the Non-orthogonal Basis

With the same approach used to derive eqn. 4.82, one can show that, in the basis

set representation, the equations of motion are,

(4.91)

[

iS
∂

∂t
− h(t)

]

G<(t, t′) = 0

(4.92) −i ∂
∂t′

G<(t, t′)S − G<(t, t′)h(t′) = 0

(4.93)

[

iS
∂

∂t
− h(t)

]

G{R,A}(t, t′) = δ(t− t′)1

(4.94) −i ∂
∂t′

G{R,A}(t, t′)S − G{R,A}(t, t′)h(t′) = δ(t− t′)1

(4.95)

[

−S
∂

∂t
− h(t)

]

GM(t, t′) = iδ(t− t′)1

(4.96)
∂

∂t′
G{R,A}(t, t′)S − GM(t, t′)h(t′) = iδ(t− t′)1

where hi,j(t) =
∫

d4xφ∗
i (~x)h(x)φj(~x). Note that we have only listed the branch

restricted equations of motion.

4.4.4 Orthogonalization

An orthogonalized basis set, where S = 1 can be defined and is related to the

non-orthogonal (atomic orbital) basis set as follows. For GFs,

(4.97) G⊥ = S1/2GS1/2

while for operators (such as h(t) or j) are transformed to,

(4.98) o⊥ = S−1/2oS−1/2
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where the symbol ”⊥” represents the operator in the orthogonal representation. This,

for example transforms the above equations of motion for the lesser GF into,

(4.99)

[

i1
∂

∂t
− h⊥(t)

]

G<
⊥(t, t′) = 0

(4.100) −i ∂
∂t′

G<
⊥(t, t′) − G<

⊥(t, t′)h⊥(t′) = 0

The equations of motion for the other branch restricted GFs can be transformed in

a similar fashion. Note that h is not diagonalized. It has simply been rotated into a

basis that produces an orthogonal overlap. This basis projects the overlap couplings

onto the Hamiltonian. For a typical atomic orbital basis (one composed of slater

type orbitals), this orthogonalization procedure will delocalize the atomic orbitals,

extending them typically over nearest to third nearest neighbors. The orthogonalized

basis, however, will still typically follow the coordinate that traverses from the left

electrode through the junction to the right electrode making it feasible within the

atomic orbital projection schemes describe in the next chapter.

4.4.5 A Specific Example: One Electron Gaussian Basis Set

Gaussian basis functions are frequently employed in quantum chemistry pack-

ages because matrix elements of most pertinent operators can be solved analytically

with a gaussian basis. Those that cannot be solved completely analytically, such as

coulomb interaction terms, can often be reduced to expressions of the error function,

and thus, numerically evaluated by most programming languages. These basis func-

tions are real valued and therefore, I will neglect the complex conjugation notation

when referring to them. For a detailed explanation of basis sets see the section on

polyatomic basis sets in [117]. Here we will provide a synopsis of how the operators

relevant to this work are calculated using simple s-type gaussian basis functions of
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the form,

(4.101) φα(r,RA) =

(

2α

π

)3/4

e−α|r−RA|2

where r is the spatial coordinate of electronic charge density and RA is the nuclear

position coordinate of atom A. Both r and RA are taken relative to one absolute

origin (e.g. the center of mass of the molecule in the body frame of reference). We

assume, for simplicity, that each atom has one electron and therefore one orbital is

associated with each nucleus. Furthermore, the system is assumed to be spinless,

and therefore, reduces from four dimensions (3-spatial and 1-spin, denoted by x in

previous sections) to three dimensions (all spatial, denoted by r)). The operators of

my focus are the overlap operator (eqn. 4.73), the dipole operator (eqn. 4.77), the

current density operator (eqn. 4.75), and the current operator. The Hamiltonians

considered in this work are expressed as either model tight-binding matrices, or

semi-empirical functions of the overlap operator. Thus kinetic energy and coulomb

interaction operators are not considered here. For a detailed derivation of these

operators, see appendix A of reference [117].

The overlap matrix element between electron on atom A and electron on atom B

(eqn. 4.73) is given by[117],

(4.102)

SAB =

∫

d3rφα(rA,RA)φβ(rB,RB) = (αβ)3/4(
2

α+ β
)3/2 exp

[

αβ

α+ β
|RA − RB|2

]

.

Note that, the on-site overlap element SAA (RA = RB) is unity.

Next, we focus on the dipole operator (eqn. 4.77). Due to the vector nature of this

operator, we factor the basis function into its cartesian one-dimensional component

functions.

(4.103) φα(rA,RA) = Xα(xA, XA)Yα(yA, YA)Zα(zA, ZA)
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where, for example,

(4.104) Xα(xA, XA) =

(

2α

π

)1/4

e−α(xA−XA)2 .

Using the above form, the matrix elements of the dipole operator are expressed as

follows,

dAB =

exdABx
+ eydABy

+ ezdABz

=ex

∫

dxXα(xA, XA)xXβ(xB, XB)

∫

dyYα(yA, YA)Yβ(yB, YB)

∫

dzZα(zA, ZA)Zβ(zB, ZB)

+ ey

∫

dxXα(xA, XA)Xβ(xB, XB)

∫

dyYα(yA, YA)yYβ(yB, YB)

∫

dzZα(zA, ZA)Zβ(zB, ZB)

+ ez

∫

dxXα(xA, XA)Xβ(xB, XB)

∫

dyYα(yA, YA)Yβ(yB, YB)

∫

dzZα(zA, ZA)zZβ(zB, ZB)

(4.105)

where ex, ey, ez represent the unit vector components in each of the cartesian direc-

tions x, y and z. We now focus on the evaluation of the dipole matrix element’s x

component, given that the y and z components are analogous in their evaluation. In

particular, we focus on the dipole integral over the x coordinate.

∫

dxXα(xA, XA)xXβ(xB, XB) =

(

2

π

)1/2

(αβ)1/4

∫

dxxe−α(xA−XA)2e−β(xB−XB)2

=

(

2

π

)1/2

(αβ)1/4 exp

[

− αβ

α+ β
(XA −XB)2

] ∫

dxxe−p(x−XP )2

=

(

2

π

)1/2

(αβ)1/4 exp

[

− αβ

α+ β
(XA −XB)2

]

×
[∫

dx(x−XP )e−p(x−XP )2 +XP

∫

dxe−p(x−XP )2
]

=

(

2

π

)1/2

(αβ)1/4 exp

[

− αβ

α+ β
(XA −XB)2

]

XP

∫

dxe−p(x−XP )2

=XP

∫

dx

∫

dxXα(xA, XA)Xβ(xB, XB)

(4.106)
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where p = α+β and XP = (αXA +βXB)/(α+β). Substituting the result from eqn.

4.106 into eqn. 4.105 and repeating this procedure for the y and z components gives

the final result,

(4.107) dAB =
αRA + βRB

α+ β
SAB.

Thus, the dipole matrix element between two gaussian s-type orbitals is simply the

gaussian reciprocal square width weighted average of position scaled by the overlap

matrix element between the two centers A and B . Note that, the on-site dipole

matrix element is simply equal to the position of the respective nucleus (dAA = RA)

as expected.

Finally, we consider the current density operator representation in this simple

basis set. Like the dipole operator, the current density operator is a vector operator

(eqn. 4.75). Substituting equation 4.101 into eqn. 4.75 gives,

(4.108) jAB(r) = 2i [(α− β)r + βRB − αRA]φα(r,RA)φβ(r,RB).

One can use this operator to calculate the total current operator through a given

plane. For example, the current through the xy-plane that intersects the z-axis at

z = z0 will involve integrating the above expression, (evaluated at z0) over the area of

the xy plane. In this case, only the z-component is necessary because the differential

area vector on the xy-plane is oriented in the z direction (i.e. dA = ezdxdy).

Performing this planar integral gives,

IABz
=

∫

dxdy × jz(x, y, z0)

=i
25/2(αβ)3/4

π1/2(α+ β)
exp

[

αβ

α+ β

[

(XA −XB)2 + (YA − YB)2
]

]

×

exp
[

−
[

α(z0 − ZA)2 + β(z0 − ZB)2
]]

[(α− β)z0 + βZB − αZA] .

(4.109)
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Note that, as the distance between either nucleus (A or B) and the plane increases,

the matrix element drops off sharply (as a gaussian) in magnitude. Thus, one can

confine the current operator to a finite device region in most molecular systems.

Dipole and current operators for a simple two state system

To gain physical insight, we will often deal with non-molecular systems that are

described by tight binding models where a Hamiltonian is composed merely of ”on-

site” energies and nearest neighbor ”hopping” energies. A concrete basis set such

as the one described above is often not defined for such systems. Only the initial

Hamiltonian and overlap matrix are defined by the tight binding conditions. It

is therefore useful to elaborate on some guidelines for deriving dipole and current

operators from the structure of the initial Hamiltonian. For simplicity, we assume

that the initial Hamiltonian describes a symmetric system. We start with the dipole

matrix. Given an already diagonalized two-state initial Hamiltonian of the form,

(4.110) Hdiag =







ǫ1 0

0 ǫ2






.

the dipole operator will take the form,

(4.111) µdiag =







0 µ

µ 0






.

The diagonal elements of this operator must be zero for a system symmetric about

the origin (but not necessarily zero for a non-symmetric system). This is because

the individual states for such a system will also be symmetrically distributed and

therefore, cannot produce a dipole moment. On the other hand, a tight-binding

Hamiltonian of the form,

(4.112) Htb =







ǫ β

β ǫ






.
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will produce a dipole operator of the form,

(4.113) µtb =







µ 0

0 −µ






.

Physically, the two diagonal elements of a tight-binding Hamiltonian each describe

a geometric ”site” in the system (e.g. an individual atom in a diatomic molecule).

Assuming that this system is symmetric and centered at the origin, the off diagonal

elements must be zero and the diagonal elements represent a ramping potential.

This can be seen mathematically by applying eqn. 4.107 to each element with α = β

(system symmetry) and RA = −RB (center at origin).

We now focus on a practical approach for deriving the current operator from the

Hamiltonian. To do this, we must first understand where the derivation of the current

density operator in the spatial representation (eqn. 3.45) originates. We note that,

by the assumption of spatial probability continuity, the probability current through

an interface can be monitored by calculating the rate of change of the probability on

one side of the interface. For example, in a one dimensional system, the probability

current through a point x = x0 is given by,

I(x0) =
∂

∂t

∫ ∞

x0

dxP (x, t)

=
∑

E

∫ ∞

−∞

dxψ∗
E(x)

∂

∂t

[

Û(0, t;x)Θ(x− x0)Û(t, 0;x)
]

ψE(x)

(4.114)

where P (x, t) is the normalized TD probability density as a function of the single

spatial coordinate x and E is the eigenenergy of eigenstate ψ
(
Ex). The last term in

eqn. 4.114 is written in the Heisenberg representation, where Θ is the Heaviside step

function that counts population for x > x0, and Û(t′, t;x) is the time dependent

propagator from t to t′ written in the spatial (x) representation. Applying the
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Heisenberg equation of motion, we note that,

∂

∂t

[

Û(0, t;x)Θ(x− x0)Û(t, 0;x)
]

=

iÛ(0, t)
[

Ĥ(x, t),Θ(x− x0)
]

Û(t, 0)

= − i

2
Û(0, t)

[

∂2

∂x2
,Θ(x− x0)

]

Û(t, 0)

= − i

2
Û(0, t)

(

∂

∂x
δ(x− x0) + δ(x− x0)

∂

∂x

)

Û(t, 0).

(4.115)

We assume that the time dependent terms in the Hamiltonian and the Coulomb

interaction terms commute with Θ(x). The final step employs the commutation

relation [ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂. From this form, the Schrodinger form of the

operator is apparent,

(4.116) j(x) = − i

2

(

∂

∂x
δ(x− x0) + δ(x− x0)

∂

∂x

)

This treatment can be extended to three dimensions to give the previously stated

result (eqn. 3.45).

This treatment can approximately be extended to deriving a probability current

operator for a tight-binding Hamiltonian for which an explicit spatial basis is not

specified. The approach is approximate because the probability current is defined

as the transfer of probability from one site to the other. That is, the tight-binding

equivalent to the above step function, Θ(x− x0), is,

(4.117) Θtb =







0 0

0 1






.

This is different from the scenario described above, where probability is transfered

from one spatial region to the other because the basis functions for a given site

will often overlap slightly with other sites. Typical overlaps, however, tend to be
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small and this approximation is reasonable and particularly useful for qualitative

models. As noted above, the probability current operator in the Schrodinger picture

is given by i[Ĥtb,Θtb]. Hence, for a tight-binding Hamiltonian, the probability current

operator is,

jtb =i













µ β

β µ






,







0 0

0 1













=i







0 β

−β 0






.

(4.118)



CHAPTER V

Steady State Theory

This chapter provides a detailed summary of the NEGF approach as applied to

a statistically equilibrated time independent system. An explicit form for the lesser

Green function in terms of the time independent Hamiltonian is derived. Further-

more, the partition free approach for calculating the device properties of an open equi-

librated system (fig. 1.1) is described.[71, 38, 134, 19, 35] In this approach, electrode

effects are contained in a self energy (SE) term that is added to the Hamiltonian.[37]

The SE depends only on the isolated Hamiltonian of the electrode and can often be

calculated analytically or by rapid iterative approaches. Calculation of SEs elimi-

nates the need to exactly compute the states of the total system (eqn. 2.6). Finally,

two commonly used approaches to compute SEs are briefly summarized, namely, the

wide band approximation and the decimation approach.

5.1 Equations of Motion

In this section, the steady state formalism is derived. This formalism contains

the fundamental expressions on which steady state transport is based. It also de-

fines the system in the absence of a driving field and therefore serves as the initial

point of the time propagation treatment discussed in later chapters. The proper

thermalization of the full system has to be treated correctly. The initial G<
0 (i.e.

66
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the unperturbed equilibrated system) must describe well the steady state, which is

thermally equilibrated with the electron baths. We emphasize that in this physically

proper non-partitioned view[30] the different subsystems are allowed to reach ther-

mal equilibration as one system. Namely, their coupling is not part of the turned on

perturbation. This has been highlighted by several recent studies.[110, 65, 112] The

Keldysh formalism is used to properly account for the thermal equilibration of the

device with the electrodes and its affect on G<.

5.1.1 Time independent Hamiltonian: Real Branch of the Keldysh Contour

In section 4.2 it is shown that the variable ω̄ (the Fourier conjugate to ∆t) is

the independent variable for the populated density of states. In the absence of the

time dependent driving fields, G<, the GF that contains all information regarding

the electron density, depends temporally only on ∆t and therefore, only on ω̄. Thus,

to solve the steady-state problem, we will now focus on solving for G<(ω̄), the basis

set represented lesser GF for a time independent Hamiltonian. Since ω̄ is conjugate

to ∆t for real times, we will restrict ourselves in this subsection to solving for the

equations of motion on the real branch of the Keldysh contour.

We start, however, by solving for the retarded GF for the case of a time indepen-

dent Hamiltonian, GR(ω̄) because this Green function is necessary for defining the

evolving lesser GF in terms of the Hamiltonian of the equilibrated system. In the

basis set representation, the equation of motion for the retarded GF is,

(5.1)

[

iS
∂

∂(∆t)
− h0

]

GR(∆t) = δ(∆t)1
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Here, we have substituted the time differential relation

∂

∂t
=
∂(∆t)

∂t

∂

∂(∆t)
+
∂(t̄)

∂t

∂

∂(t̄)

=
∂

∂(∆t)
+

1

2

∂

∂(t̄)

=
∂

∂(∆t)

(5.2)

into eqn. 4.93 noting that, for a time independent Hamiltonian, GR is not dependent

on t̄. The step function in the definition of GR (eqn. 4.9) makes non-zero only for

positive ∆t. Equation. 5.1 is therefore Fourier transformed with an infinitesimal

positive imaginary displacement in ω̄, labeled η. That is, the Fourier transform

operation performed on eqn. 5.1 is of the form,

(5.3) lim
η→0+

∫ ∞

−∞

d(∆t)ei(ω̄+iη)∆t

to ensure that lim∆t→∞GR(∆t) = 0. Applying eqn. 5.3 to eqn. 5.1 gives

(5.4) [(ω̄ + iη)S − h0]G
R(ω̄) = h̃R(ω̄)GR(ω̄) = 1

or,

(5.5) GR(ω̄) = [(ω̄ + iη)S − h0]
−1

The Electrode Self Energy

Electrode self energy expressions are widely used in formalisms implementing the

Landauer approach (described later in this chapter) and its more sophisticated self-

consistent field extension. In these schemes, the Hamiltonian of a cluster model is

subdivided into three regions. The subspaces within the cluster model include two

surface regions connected by the junction region.

If h0 is the Hamiltonian for the entire (electrode-junction-electrode) system then

S, h0, 1 and GR(ω̄), in the atomic orbital representation, are matrices of infinite
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dimension. We are interested in the small finite dimensional submatrix of GR(ω̄)

that contains information about the junction (denoted by index C), but under the

influence of the left and right electrodes (denoted by indices L and R respectively).

To calculate this submatrix, eqn. 5.4 is partitioned into these L, C and R regions,

(5.6)















h̃0LL h̃0LC 0

h̃0CL h̃0CC h̃0CR

0 h̃0RC h̃0RR





























GR
LL(ω̄) GR

LC(ω̄) 0

GR
CL(ω̄) GR

CC(ω̄) GR
CR(ω̄)

0 GR
RC(ω̄) GR

RR(ω̄)















=















1LL 0 0

0 1CC 0

0 0 1RR















Note that h̃R
LR(ω̄) and h̃R

RL(ω̄) are both assumed to be 0 In other words there is no

direct interaction between the two electrodes. All interactions occur via the junction.

This partitioned matrix equation of motion gives three submatrix equations,

(5.7) h̃0CLG̃
R
LC(ω̄) + h̃0CCG̃R

CC(ω̄)h̃0CRG̃R
RC(ω̄) = 1CC

(5.8) h̃0LLG̃
R
LC(ω̄) + h̃0LCG̃R

CC(ω̄) = 0

(5.9) h̃0RCG̃R
CC(ω̄)h̃0RRG̃R

RC(ω̄) = 0

Solving equations 5.8 and 5.9 for GR
LC(ω̄) and GR

RC(ω̄) respectively and substituting

into eqn. 5.7 gives

(5.10)
[

(ω̄ + iη)SCC − h0CC − ΣR
L(ω̄) − ΣR

R(ω̄)
]

GR
CC(ω̄) = 1CC

where the left and right electrode self-energies, respectively,

(5.11) ΣR
L(ω̄) ≡ h̃R

CL(ω̄)gR
LL(ω̄)h̃R

LC(ω̄)

(5.12) ΣR
R(ω̄) ≡ h̃R

CR(ω̄)gR
RR(ω̄)h̃R

RC(ω̄)
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include the projected effect of the electrodes on the junction region and have the

same matrix dimension as the junction Hamiltonian (C). The retarded GFs for the

electrodes are given by

(5.13) GR
LL(ω̄) = [(ω̄ + iη)SLL − h0LL]−1

(5.14) GR
RR(ω̄) = [(ω̄ + iη)SRR − h0RR]−1

for the left and right electrodes respectively. These functions are by definition of

very large (e.g. infinite) dimension (L, R) because they represent the semi-infinite

electrodes bonded to the junction. Consequently, eqn. 5.13-5.14 are very seldom

evaluated in their explicit form. Generally, approximations, iterative approaches

that capitalize on the periodicity of the electrode, or analytical forms and used. We

will use two such models in future sections (i.e. the wide-band limit approximation

and the tight-binding decimation technique).

To summarize, the retarded GF of the junction, GR
CC(ω̄) can be written as

(5.15) GR
CC(ω̄) =

[

(ω̄ + iη)SCC − h0CC − ΣR
L(ω̄) − ΣR

R(ω̄)
]−1

The lesser GF

We now solve for the lesser GF, G<(ω̄). We start from the lesser GF in the time

domain, which can be written as G<(∆t) = G<
1 (∆t)+G<

2 (∆t) (see eqns. 4.11, 4.12)

and apply eqn. 4.86 along with Fourier transform eqn. 5.3 to give,

(5.16) G<(ω̄) = G<
1 (ω̄) − G<†

1 (ω̄)

Thus, a solution to G<
1 (ω̄) is necessary to find a solution to G<(ω̄).

We can solve for G<
1 (ω̄) by developing an equation of motion for it in terms of ∆t

and Fourier transforming this equation as above. Differentiating G<
1 (ω̄) with respect
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to ∆t and applying eqn. 4.91 for a time independent Hamiltonian gives the following

equation of motion for G<
1 (∆t).

(5.17)

[

iS
∂

∂∆t
− h0

]

G<
1 (∆t) = iSG<(t0, t0)δ(∆t)

We note that G<
1 (∆t), like GR(∆t) is written in terms of a step function of ∆t (eqn.

4.8), making it non-zero only for positive ∆t. Thus, the same approach that was used

for GR(∆t) above, can be applied to G<
1 (∆t). Fourier transforming this equation

with eqn. 5.3, gives

(5.18) h̃G<
1 (ω̄) = iG<(t0, t0).

This equation of motion can be partitioned just as for the case of the retarded GF,

giving,

(5.19) G<
1CC(ω̄) = iGR

CC(ω̄)G<
p(ω̄).

where

(5.20) G<
p(ω̄) = G<

CC(t0, t0)− h̃R
CLg

R
LL(ω̄)G<

LC(t0, t0)− h̃R
CRgR

RR(ω̄)G<
RC(t0, t0)

All that is required now is to solve for G<(t0, t0). To this end, we employ the

Matsubara function and its equation of motion.

G<(t0, t0) and the Matsubara GF

We now employ the use of the Matsubara GF, GM in order to solve for G<(t0, t0).

The Matsubara GF (GM), which corresponds entirely to the imaginary part of the

Keldysh contour, describes exactly the system at thermal equilibrium. We restrict

ourselves to the representation in which the overlap is orthogonal and, consequently,

h0 commutes with the overlap operator. To solve for the Matsubara GF correctly, we
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must satisfy four relations. The first is the definition of GM (eqn. 4.8) in basis-set

form,

(5.21) GM(∆τ) = Θ(∆τ)G>(∆τ) + Θ(−∆τ)G<(∆τ)

where GM(xτ,x′τ ′) has been replaced by the short-hand notation GM(∆τ) and ∆τ ≡

τ − τ ′ is an imaginary time (see eqn. 4.8 and thereafter). The second relation of

significance, is the equation of motion for the Matsubara GF, (eqn. 4.62),

(5.22)

[

−1
∂

∂∆τ
− h0

]

GM(∆τ) = iδ(∆τ)1

We have converted the equation of motion for GM (eqn. 4.62) to an equation in terms

of ∆τ (eqn. 5.22) by employing the same strategy used for the retarded GF in section

5.1.1. The third and fourth relations are the KMS conditions (eqns. 4.89-4.90),

(5.23) G>(τ ′ − β) = −G>(τ ′)

(5.24) G<(β − τ) = −G>(−τ).

We now assume an ansatz of the form,

(5.25) GM(∆τ) = Θ(∆τ)eh0(∆τ−b)B + Θ(−∆τ)eh0(∆τ−a)A

which satisfies eqn. 5.21. Imposing the KMS relations on this ansatz requires that

A = −B and β + a = b. This gives the ansatz the form,

(5.26) GM(∆τ) =
[

Θ(−∆τ)eh0(∆τ−a) − Θ(∆τ)eh0(∆τ−a−β)
]

A

Substituting eqn. 5.26 into the equation of motion (eqn. 5.22) and setting a = 0

gives

(5.27) A = −i
[

1 + e−βh0
]−1
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giving a final form for the Matsubara GF,

GM(∆τ) =i
[

Θ(∆τ)eh0(∆τ−β) − Θ(−∆τ)eh0(∆τ
]

×
[

1 + e−βh0
]−1

(5.28)

and thus,

(5.29) G<(∆τ) = ieh0(∆τ−β)
[

1 + e−βh0
]−1

(5.30) G>(∆τ) = i
[

1 + e−βh0
]−1

Consequently, at initial time t0 (i.e. when ∆τ = 0),

(5.31) G<(t0, t0) = ie−βh0
[

1 + e−βh0
]−1

(5.32) G>(t0, t0) = i
[

1 + e−βh0
]−1

Note that in the diagonalized representation, equation, G<(0) ascribes, to each eigen-

value of h0, its Fermi-Dirac occupation number. On the other hand, G>(0) gives

the complement, or Fermi-Dirac vacancy number for a given eigenenergy. Therefore,

at t0, the lesser GF amounts to defining the occupation numbers for the states that

will be evolving in time.

5.2 Self Energy Models

The treatment of the device-electrode interaction, where the effect of the elec-

trodes on the molecular electronic states has to be well described, is a fundamental

challenge in modeling molecular conductance. The coupling of a molecule to the

macroscopic electrodes mixes the discrete molecular levels with the continuum of

states in the electrode. New molecular states emerge from the manifold of states

contributed electrode. Furthermore, conduction is an irreversible process that can
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be defined only with the presence of the dissipating bath. Thus, conductivity calcu-

lations need to address the interaction between the molecule and its environment in

non-equilibrium conditions.

Clearly, the use of a truncated model in describing an open system leads to dif-

ficulties arising from the varying number of electrons within the model. This has

been addressed by different approaches. The simplest involves the jellium models for

representing the leads[48, 69, 68, 40]. The partition free approach described above,

however, naturally leads to the use of self energy (SE) models to represent the cou-

pling of the molecule to the lead.[37] The SE matrices are projections of the bulk

electronic properties of the electrode, which is characterized by its chemical potential,

to a finite subspace under the influence of the device, as described above.

5.2.1 Wide Band Limit

The wide band approximation assumes that the density of states of the electrode

is dominated by a wide band of states and is, therefore, independent of ω̄. For a

non-orthogonal basis, the density of states, ρ(ω̄) can be related to the retarded GF

by[37],

(5.33) ρ(ω̄) =
i

π
Tr[GR(ω̄)S]

where S is the overlap matrix. Assuming ρ(ω̄) = ρ0 one can easily show that a

suitable (but not necessarily unique) form for the retarded GF is,

(5.34) gR
L = −i 1

πρ0

S−1
LL,

where an equivalent gR
rr for the right electrode is also used. This model can be

enhanced to represent a finite band width by setting the surface GF to zero at

energy regions beyond the modeled band structure.
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The wide band limit approach may be implemented, for example, for gold elec-

trodes, where the DOS is dominated by the S band.[119]

5.2.2 Decimation Approach

Unlike the wide band approximation above, the decimation approach makes no

trivial assumptions about the electrode density of states. The semi-infinite electrode

is assumed to be periodic. A subspace of an extended molecular model is used to

provide a surface and bulk unit cell and their interactions with their nearest neighbor

cell.

This assumption of periodicity has been used to express an iterative set of equa-

tions for deriving the portion of the retarded GF of the electrode projected onto the

electrode’s surface layer:[77, 84]

γi+1(E) = γi(E)gb,i(E)γi(E)(5.35)

βi+1(E) = βi(E)gb,i(E)βi(E)(5.36)

gs,i+1(E) = [g−1
s,i (E) − γi(E)gb,i(E)βi(E)]−1(5.37)

gb,i+1(E) = [g−1
b,i (E) − γi(E)gb,i(E)βi(E) − βi(E)gb,i(E)γi(E)]−1,(5.38)

where gs is the surface GF, Gb is the bulk GF and the process is initiated by the

electronic integrals matrices calculated at the appropriate DFT level with:

gb,0 ≡ gs,0 = α−1; γi,0 = β†; βi,0 = β(5.39)

This calculation is repeated at every value of ω̄ leading to a SE that is non-trivially

energy dependent.

When applying this decimation approach to the calculation of SEs, one should

be aware that these SEs are defined by providing limits on the device region and

the bulk repeating unit. In principle, this partitioning should not affect calculated
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properties, such as conductivity, when the models used in the calculation are well

converged. However, if, for example, only a margin of the surface, which is greatly

altered by the adsorption, is included in the calculation, the model is bound to fail

in describing faithfully transport properties. It is thus important electrode regions

that carry significant populations of the localized device states in the device region.



CHAPTER VI

Time Dependent Theory

A related problem of high interest is the study of conductance under the in-

fluence of a TD perturbation such as an alternating-current (AC) field or a laser

field. A large body of research has revealed a host of fascinating quantum ef-

fects associated with photoassisted conductance in mesoscopic systems such as ab-

solute negative conductance, Coulomb blockade and Kondo effects driven by AC

fields.[62, 58, 94, 76, 89, 98, 128] Even more fundamental is the inability of most

treatments to describe deviation from DC conductance under steady conditions of

molecular or nanoscale electronic channels.[55, 3, 11] More recently, AC response to

a potential pulse (“ringing” mode) has been associated with the presence of bound

states.[39, 109] These states are localized to the device. Consequently they do not

facilitate resonant tunneling through broadening in contrast to conducting molecular

states entangled with the electrodes.

This underlies most of the motivation for implementing TD treatments as an al-

ternative to the widely-used NEGF scheme for describing electron transport. Some of

these treatments use TD-DFT formalism. [9, 11, 10, 110, 87, 24, 23, 65, 104, 29, 101]

These TD treatments have the potential to describe time-dependent effects related to

the applied potential bias and the transient conductance evolving towards a steady

77
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state. However, the coupling of the propagated electronic density to electron reser-

voirs results with difficulties for achieving reliable modeling. The time propagation

of open systems as referred to above is especially challenging due to the need to prop-

erly treat dissipation effects. These effects mainly originate from the non-equilibrium

nature of the extended systems. The Kadanoff-Baym (K-B) equations of motion

(e.o.ms) as defined by the Keldysh contour[57, 18, 70, 13, 14] inherently account

for all quantum-mechanical states of an open system including all ionization states.

Namely, all possible occupation numbers are used in averaging through the use of

the Grand-canonical probability expression. The particle exchange with the baths

leads to system equilibration that broadens the device region based energy states.

A formal expression describing TD conductance based on Keldysh NEGF formal-

ism was developed over a decade ago[55]. In Keldysh formalism, the complexity of

the full TD description requires using temporally non-local electron-electron inter-

action self-energy[13, 14] (SE) terms. For steady state descriptions, on the other

hand, more tractable one-variable expressions can be used. A full Keldysh NEGF-

based approach employing a mixed time-frequency representation by integrating a

TD Dyson equation has been reported.[79] Treatments that use DFT to describe the

electron-electron SEs through a high level mean field expression in Keldysh formal-

ism have also been achieved.[110, 65, 111] These treatments provide useful insight

to the time-dependence of the modeled conducting channel responding to different

forms of a TD bias pulse.

Most descriptions of dynamic transport, that are based on many body GFs-based

formalisms, follow the seminal work of Jauho et al., where a partitioning scheme is

utilized for describing the unperturbed system[55]. In this picture the coupling of

the two bulks through the device region is turned on only as part of the perturbation
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to which the dynamical response is studied. In this case, the unperturbed system’s

components are kept each in thermal isolation. A more meaningful description in-

cludes equilibration of the device-based conducting channels with the electron baths

infinitely prior to switching on the perturbation. This physically more appropriate

non-partitioned approach was suggested first by Cini for a simple model system [30]

and was recently used in several real time based propagations.[110, 65, 112] The

equilibration in the initial electronic density accounts for dipoles induced across the

different regions. These initial state effects might be dissipated in the steady-state

description (if convergence is achieved). They are, however, crucial for addressing

transient effects upon the application of the potential bias perturbation.

The propagated electronic device states undergo broadening to form energy bands

due to their coupling to an extended system. Our approach is based on solving the

K-B electronic equations of motions (e.o.ms) as defined by the Keldysh contour

with SEs expressed in the frequency domain. This is performed within the non-

partitioned scheme, where we time-propagate an open system with bulk-induced

broaden electronic states. In this scheme, the response of the device discrete states

to the band structure is directly accounted for by the propagated electronic density.

It is important to emphasize several key ingredients and features of our approach.

Our frequency space based scheme provides a desirable and efficient alternative to

procedures which are based on real time propagation schemes [110, 65, 112] as dif-

ficulties in defining efficient time propagation or stepping techniques are avoided.

These difficulties are especially important when dealing with dissipation effects due

to open systems. This is achieved here by using SE expressions in the frequency

domain and utilizing highly efficient perturbation approaches. In general, the SE

models defined in the frequency domain (FD) are also more compact in represent-
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ing energy-coherence driving time-dependent perturbations, whereas the real time

representations of the SEs result with more complex expressions. Pure real-TD ex-

pansions require using (sufficiently) larger models of the bulk for reliably describing

electron flow.

6.1 The mixed representation

In this section, we derive a master equation projecting the full system to the

device region in the mixed time-frequency representation. An analytical expression

is subsequently implemented and used to study TD aspects of the electron transport,

where a wide-band type of an approximation is used for the bulk. In our approach,

we directly calculate the time dependence of frequency resolved current, namely, the

energy resolved, or Wigner form of the current distribution. This provides the most

fundamental physical insight of the device response to the applied potential.

The brute force solution of an expansion involving two-time-domain variables is

computationally intensive (eqns. 4.91, 4.92). Most steady state descriptions, on

the other hand, utilize the ability to simplify the expression by collapsing the two

time-variables to a single time difference variable. Pure time-domain representations

require using sufficiently large clusters to reliably treat conductance through a device

region. In the frequency domain on the other hand self-energy expressions can use

a cluster model to effectively represent an open system. Here we note that the

convergence of bulk-coupling self energy models with their size has been analyzed by

us.[100] Frequency domain bulk-SE models are employed in our TD approach.

6.1.1 Equation of Motion

We now focus on the e.o.m. for the transformed GF: G<(t̄, ω̄). This mixed time-

frequency representation, as used below, provides substantial physical insight into the
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electronic response aspects of the propagated model system. We combine equations

4.99 and 4.100 by rewriting in terms of the time variables: t̄ ≡ t1+t2
2

and ∆t ≡ t1− t2

and noting that ∂/∂t̄ = ∂/∂t1 + ∂/∂t2.

(6.1)
∂

∂t̄
G<(t̄,∆t) = i

[

G<(t̄,∆t)h(t̄− ∆t

2
) − h(t̄+

∆t

2
)G<(t̄,∆t)

]

The Fourier transform (eqn. 4.19) is applied to the re-expressed time domain K-B

equation (eq. 6.1) to give,

∂

∂t̄
G<(t̄, ω̄) =

i [G<(t̄, ω̄),h0] + i

∫

dω′[G<(t̄, ω̄ + ω′)v(t̄, ω′) − v(t̄, ω′)G<(t̄, ω̄ − ω′)].

(6.2)

where,

(6.3) v(t̄, ω̄) =
1

π
e−i2ω̄t̄

∫ ∞

−∞

dtei(2ω̄)tv(t) =
1

π
e−i2ω̄t̄ṽ(2ω̄)

The combination of the two adjoined K-B equations (eq. 6.1) facilitates the use

of time-dependent perturbation theory as the propagation method. Here, both the

perturbation v(t) and h0 are Hermitian as they still represent the full (not truncated)

system. Furthermore, we rewrite G<(t̄, ω̄) as the sum of a contribution in the absence

of a perturbation G0,<(ω̄) and the remainder ∆G<(t̄, ω̄) ≡ G<(t̄, ω̄)−G0,<(ω̄). The

G0,<(ω̄) is t̄ independent by definition of the GF (eq. 4.1). This allows us to rewrite

eq. 6.2 in a form suitable for TDPT where the zeroth order term is the lesser GF in

the absence of a perturbation (see appendix for further discussion):

∂

∂t̄
∆G<(t̄, ω̄) =

i [∆G<(t̄, ω̄),h0] + i

∫

dω′[G<(t̄, ω̄ + ω′)v(t̄, ω′) − v(t̄, ω′)G<(t̄, ω̄ − ω′)].

(6.4)

We recast eq. (6.2) into an iterative equation by writing G<(t̄, ω̄) as a dressed

form,

(6.5) ∆G<(t̄, ω̄) = e−ih0(t̄−t0)∆G<(t̄, ω̄)eih0(t̄−t0).
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thus eliminating the terms with h0 in eq. (6.2) and leaving only the perturbing terms

with v(t̄, ω̄). The resulting time-differential equation is expressed as:

∂

∂t̄
G<(t̄, ω̄) =

i

∫ ∞

−∞

dω′eih0(t̄−t0) [G<(t̄, ω̄ + ω′)v(t̄, ω′) − v(t̄, ω′)G<(t̄, ω̄ − ω′)] e−ih0(t̄−t0)

(6.6)

Integrating provides:

(6.7) G<(t̄, ω̄) = G<(t◦, ω̄) − i

∫ t̄

−∞

dt̄′
∫

dω′

{

eih0(t̄′−t0) [G<(t̄′, ω̄ + ω′)v(t̄′, ω′) − v(t̄′, ω′)G<(t̄′, ω̄ − ω′)] e−ih0(t̄′−t0)
}

Hence, the solution for this e.o.m. by time-dependent perturbation expansion is

provided by:

(6.8) G<(t̄, ω̄) = G0,<(ω̄)+

i

∫ t̄

t0

dt̄′e−ih0(t̄−t̄′)

∫

dω′ [G<(t̄′, ω̄ + ω′)v(t̄′, ω′) − v(t̄′, ω′)G<(t̄′, ω̄ − ω′)] eih0(t̄−t̄′).

We note through an appropriate choice of h0 as discussed above, G<(t̄, ω̄) =

G0,<(ω̄) in the absence of a perturbation. Thus, t̄-independence of the initial GF is

satisfied and no TD artifacts are introduced at the unperturbed conditions.

Here we also note that h0 represents the full system and is still assumed to be

Hermitian. However, upon defining a finite space for propagation and due to coupling

to the bulks, non-hermitian terms have to be added to the propagation Hamiltonian.

In the next subsection we implement a master equation, which properly represents

the bulk effects within a finite (device) region. In treating molecular or nanoscale

electron transport one naturally refers to the device region as the propagated space

under the effect of coupling to the two electrodes.

A general master equation to project onto the device region is derived by rewriting
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eq. 6.2:

i
∂

∂t̄
∆G<

cc(t̄, ω̄) = [hcc,∆G<
cc(t̄, ω̄)]

+

∫

dω′[vcc(t̄, ω
′)G<

cc(t̄, ω̄ − ω′) − G<
cc(t̄, ω̄ + ω′)vcc(t̄, ω

′)]

+

∫ ∞

−∞

dt′[ΣR(t̄− t′)∆Gcc
<(t′, ω̄)e−ihcc(t̄−t′)

− eihcc(t̄−t′)∆Gcc(t
′, ω̄)ΣA(t′ − t̄)].

(6.9)

The subscript cc refers to the device central subspace and G<
cc(t̄, ω̄) = G0,<

cc (ω̄) +

∆G<
cc(t̄, ω̄). The full derivation of the last equation is provided in the appendix.

Wide Band Limit

We simplify the SE expressions by assuming

(6.10) Σ(t) = Σ0δ(t).

The general master equation in the mixed representation (eq. 6.9) takes the following

form:

(6.11) i
∂

∂t̄
∆G<

cc(t̄, ω̄) =
[

(hcc + ΣR
0 )∆G<

cc(t̄, ω̄) − ∆G<
cc(t̄, ω̄)(hcc + ΣA

0 )
]

+ i

∫ ∞

−∞

dω′[vcc(t̄, ω
′)G<

cc(t̄, ω̄ − ω′) − G<
cc(t̄, ω̄ + ω′)vcc(t̄, ω

′)].

This transforms the imaginary part of the general relation (eq. 6.8) by the appro-

priate decay factor. This leads to a time propagation equation, which is the WBL

form of the general master equation (see eq. 6.9):

G<
cc(t̄, ω̄) =G0,<

cc (ω̄) + i

∫ t̄

t0

dt̄′e−i(hcc+ΣR
0

)(t̄−t̄′)

∫

dω′×

[G<
cc(t̄

′, ω̄ + ω′)vcc(t̄
′, ω′) − vcc(t̄

′, ω′)G<
cc(t̄

′, ω̄ − ω′)] ei(hcc+ΣA
0

)(t̄−t̄′).

(6.12)
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The complexity in this expression is due to the convolution integral in ω̄ and the

infinite nature of the system contributing dissipation effects. We use TD perturba-

tion theory to simplify the full propagation solution for (G<(t̄, ω̄)). The first order

treatment corresponds to single photon transition dynamics, or alternatively, yields

the conductance at zero bias for a simple potential bias perturbation. A second order

expansion is required to treat two photon excitations. The first order TD expansion

of the GF is:

G<
cc(t̄, ω̄) =G0,<

cc (ω̄) + i

∫ t̄

t0

dt̄′e−i(hcc+ΣR
0 )(t̄−t̄′)

∫

dω′×

[

G0,<
cc (ω̄ + ω′)vcc(t̄

′, ω′) − vcc(t̄
′, ω′)G0,<

cc (ω̄ − ω′)
]

ei(hcc+ΣA
0 )(t̄−t̄′)

(6.13)

where G0,<
cc (ω̄) is the propagated (zeroth order) GF. At any given time step, t̄ = tn,

G<(t̄, ω̄) can be updated from the previous time step, tn−1, with a proper shift by the

propagator. We also note that, for simulations involving a larger time-step to pulse

duration ratio, fewer frequency convolution data points are required for obtaining a

well converged result. This leads to an efficient and manageable simulation. Here,

this mixed representation is used in evaluating the current on a model system as

described next.

6.2 The two-frequency representation

The two-frequency representation of the formalism allows for the treatment of

electrodes via self energies of non-trivial energy dependence on the same level as the

time independent Hamiltonian. Equations of motion are derived for the quantity:

(6.14) G<(∆ω, ω̄) ≡
∫ ∞

−∞

dt̄ei∆ωt̄G<(t̄, ω̄)

One can then retrieve the mixed representation by Fourier transforming ∆ω back to

t̄. Alternatively, one may propagate the mixed representation using a finite differ-

ence method. This method, however, requires the calculation of the memory term at
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every t̄ and ω̄. This approach becomes ideally suited for short times and necessary

for driving fields strong enough so that a Rabi oscillation cannot be approximated by

an n-th order time dependent perturbation expansion within the temporal domain of

interest. However, such an approach can become expensive at moderate to long times

because the memory term must be calculated for every time and frequency. Even

in the case of short pulses, there is a limit defined by the time-energy uncertainty

principle that requires us to include larger domains in ω̄ for smaller domains in t̄.

For all of these reasons, a two-frequency approach is more suited to weak fields of

moderate to long temporal duration since the memory term is much easier to calcu-

late in this representation for such problems. However, the two frequency approach

presents an interesting dilemma to be described in the derivation. This dilemma

involves a choice between artificially imposing the equilibrium constraint (sec 3.2) or

introducing high frequency oscillations into the two frequency spectrum.

6.2.1 Equation of Motion

One may choose to Fourier transform the generalized quantum master equation

in the mixed representation (eq. 6.9). However, Fourier transforming the time

derivative term in eq. 6.9 will introduce the term ∆G<
cc(t̄ → ∞, ω̄), producing

an equation that requires knowledge of the very solution that is being sought. Such

an approach would be acceptable if the equilibrium assumption (sec. 3.2) is made

at the microcanonical level. Then the term ∆G<
cc(t̄ → ∞, ω̄), would exactly cancel

with the term ∆G<
cc(t̄ → −∞, ω̄), that is also introduced by Fourier transforming

the time derivative term in eq. 6.9. Thus, a formalism that is independent of both,

the equilibrium assumption and the need for a-priori knowledge of the final solution

requires a different starting point, namely, the integrated form of eq. 6.9 in the
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representation where hcc is diagonalized,

i∆G<
cc,ij(t̄, ω̄) =

∫ ∞

−∞

dt′ Θ(t̄− t′)e−i∆ǫij(t̄−t′)×
{∫

dω′[vcc(t
′, ω′)G<

cc(t
′, ω̄ − ω′) − G<

cc(t
′, ω̄ + ω′)vcc(t

′, ω′)]ij

}

+

∫ ∞

−∞

Θ(t̄− t′)e−i∆ǫij(t̄−t′)

∫ ∞

−∞

dt′′
∑

k,l

[Γijkl(t
′ − t′′)∆G<

cc,kl(t
′′, ω̄)]

(6.15)

where t0 → −∞ and
∫ t̄

−∞
dt′ →

∫∞

−∞
dt′Θ(t̄ − t′) and the electron reservoirs (elec-

trodes) are described by a memory kernel of the form,

(6.16) Γijkl(t) ≡ ΣR
ik(t)e

iǫjtδlj − ΣA
lj(−t)e−iǫitδik

Applying the Fourier transform to eqn. 6.15 gives

∆G<
CC,ij(∆ω, ω̄) =

Gij(∆ω)
[

vCC(∆ω)G0,<
CC(ω̄ − ∆ω/2) − G0,<

CC(ω̄ + ∆ω/2)vCC(∆ω)
]

ij

+
1

π
Gij(∆ω)

∫

dω′[vCC(2ω′)∆G<
CC(ω̄ − ω′,∆ω − 2ω′)

− ∆G<
CC(ω̄ + ω′,∆ω − 2ω′)vCC(2ω′)]ij

+Gij(∆ω)
∑

k,l

Γijkl(∆ω)∆G<
cc,kl(∆ω, ω̄)

(6.17)

where,

(6.18) Γijkl(∆ω) ≡
∫

dtei∆ωtΓijkl(t) = ΣR
ik(ǫj + ∆ω)δlj − ΣA

lj(ǫi − ∆ω)δik

Note that

(6.19) Gij(∆ω) ≡ −i
∫ ∞

−∞

dtei∆ωtΘ(t)e−i∆ǫijt =
1 − ei(∆ω−∆ǫij)(t→∞)

∆ω − ∆ǫij

The exponential term ei(∆ω−ǫij)(t→∞) is formally significant because it accounts for

the non-equilibrium nature of the system. Namely, it preserves the fact that the
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final state is not necessarily the same as the initial state, as discussed in section 3.2.

This term does, however introduce oscillations of infinite frequency in this spectral

picture, making it potentially difficult to analyze spectra. Thus, here we take the

typical approach prescribed to Green functions expressed in the frequency domain.

We introduce a small positive broadening η that allows ei(∆ω−ǫij)(t→∞) → 0. In this

case, the retarded propagator above becomes

(6.20) Gij(∆ω) =
1

∆ω + iη − ∆ǫij

However, this broadening has the effect of ensuring that eventually (t → ∞) the

state will return to its initial equilibrium configuration. Ironically, it imposes the

equilibrium assumption described in section 3.2. In practice, any finite grid method

in the frequency domain requires an artificial broadening to resolve infinitesimally

narrow peaks (discrete states) and an artificial equilibrium constraint is inadvertently

imposed. On the other hand, the broadening can be considered realistic if it approx-

imates thermal effects within the system (e.g. vibrational collisions) that replenish

the discrete state in a thermal lifetime. The present formalism uses the approach

of including a broadening and assumes that the temporal range of the calculation is

large enough to include the system’s approach to equilibrium.

Finally, this gives

∑

k,l

Hijkl(∆ω)∆G<
CC,kl(∆ω, ω̄) =

[

vCC(∆ω)G0,<
CC(ω̄ − ∆ω/2) − G0,<

CC(ω̄ + ∆ω/2)vCC(∆ω)
]

ij

+
1

π

∫

dω′[vCC(2ω′)∆G<
CC(ω̄ − ω′,∆ω − 2ω′)

− ∆G<
CC(ω̄ + ω′,∆ω − 2ω′)vCC(2ω′)]ij

(6.21)

where

(6.22) Hijkl(∆ω) ≡ (∆ω + iη − ∆ǫij)δikδjl − Γijkl(∆ω)
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These equations can be expanded by substitution to n-th order in the perturbing

potential as was done before.

6.2.2 A Practical Note: Tetradic Notation

We note that eqn. 6.21 involves a tensor of rank four that operates on a matrix

(tensor of rank 2). We now introduce the use of tetradic notation, which allows us to

write such equations in a simple form and provides a means by which to solve such

equations. In short, tetradic notation re-expresses matrices as vectors and rank four

tensors as matrices. Thus, an n× n matrix A with elements Aij can be rewritten as

a vector |A〉〉 with elements |A〉〉ni+j. Likewise, a tensor H with element Hijkl (where

i, j, k, l each spans over n elements), can be rewritten as an n2 × n2 matrix H, with

elements Hni+j,nk+l. Note, from eqn. 6.21 that matrix multiplication is correctly

preserved within this notation. Thus, we can rewrite eqn. 6.21 concisely in tetradic

notation,

H(∆ω)|∆G<
CC(∆ω, ω̄)〉〉 =

|B(1)
CC(∆ω, ω̄)〉〉

+
1

π

∫

dω′|BCC(ω′,∆ω, ω̄)〉〉

(6.23)

where,

(6.24) Hni+j,nk+l(∆ω) ≡ Hijkl(∆ω)

(6.25) |∆G<
CC(∆ω, ω̄)〉〉ni+j ≡ ∆G<

CC,ij(∆ω, ω̄)

(6.26)

|B(1)
CC(∆ω, ω̄)〉〉ni+j ≡

[

vCC(∆ω)G0,<
CC(ω̄ − ∆ω/2) − G0,<

CC(ω̄ + ∆ω/2)vCC(∆ω)
]

ij
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|BCC(ω′,∆ω, ω̄)〉〉ni+j ≡

[vCC(2ω′)∆G<
CC(ω̄ − ω′,∆ω − 2ω′) − ∆G<

CC(ω̄ + ω′,∆ω − 2ω′)vCC(2ω′)]ij

(6.27)

Inverting H(∆ω) gives,

|∆G<
CC(∆ω, ω̄)〉〉 =

G(∆ω)|B(1)
CC(∆ω, ω̄)〉〉

+
1

π
G(∆ω)

∫

dω′|BCC(ω′,∆ω, ω̄)〉〉

(6.28)

where

(6.29) G(∆ω) ≡ H−1(∆ω)

Thus, tetradic notation allows for a notationally simple expression for the equation of

motion. In addition, though, it also generates an equation that can easily be inverted

and solved as a perturbation expansion both formally and computationally. A ten-

sor equation becomes a matrix equation and all matrix operations (multiplication,

inversion, diagonalization, etc.) can be applied to this equation of motion.

6.2.3 Special Case: Constant Potential Theory

We now discuss a way in which we can derive the steady state result for a time

independent perturbation, such as a bias that has been turned on for a long time.

We note that a time independent perturbation v(t) = v◦ can be Fourier transformed

as in eqn. 6.14. Its counterpart in the frequency domain is

(6.30) v(∆ω) = 2πδ(∆ω)v◦

We will use the two-frequency representation of the time-dependent equations of

motion to derive a time-independent correction to G0,<.
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Example: First order time-independent perturbation expansion

Truncating eqn. 6.28 to first order in v(∆ω) and substituting eqn. 6.30 gives

|∆G<
CC(∆ω, ω̄)〉〉 = 2πδ(∆ω)G(0)|B(1)

CC(ω̄)〉〉(6.31)

where

(6.32) |B(1)
CC(ω̄)〉〉ni+j ≡

[

v◦G
0,<
CC(ω̄) − G0,<

CC(ω̄)v◦

]

ij

one can thus use the expression

|G0,<
CC(ω̄)〉〉 → |G0,<

CC(ω̄)〉〉 + G(0)|B(1)
CC(ω̄)〉〉(6.33)

as an initial guess steady state lesser Green function that introduces the effects of

weak bias v◦.

Exact solution

One can treat time independent fields (such as a source-drain bias that has been

turned on for a long time) exactly by reformulating eqn. 6.23 to include the effects

of such a field without the need to impose any restrictions on the field strength (see

appendix C for a detailed derivation). An interesting point, here, is that one cannot

simply include the constant perturbation within the initial lesser Green function

G0,<(ω̄). One must solve the time dependent equation of motion and then impose the

limit of a time independent perturbation. Without loss of generality, the perturbing

potential v(t) can be rewritten as the sum of a time-independent field (of arbitrary

strength) v◦ and a time dependent perturbing field vTD(t). Fourier transforming to

the frequency domain gives,

(6.34) v(∆ω) = 2πδ(∆ω)v◦ + vTD(∆ω)
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The resulting two-frequency equation of motion becomes

Hv◦(∆ω)|∆G<
TD,CC(∆ω, ω̄)〉〉 =

|B(1)
TD,CC(∆ω, ω̄)〉〉

+
1

π

∫

dω′|BTD,CC(ω′,∆ω, ω̄)〉〉

(6.35)

where the propagating super operator,

(6.36) Hv◦,ni+j,nk+l(∆ω) ≡ Hijkl(∆ω) − (v◦,ikδlj − v◦,ljδik)

now includes the perturbation within the Hamiltonian. The total lesser Green func-

tion is now defined in terms of a new time independent initial guess G0,<
v◦ that includes

the effects of the time-independent field exactly. In the absence of additional time-

dependent perturbations, G0,<
v◦ is the total lesser Green function for the system. The

remainder, ∆G<
TD, is due solely to these remaining time dependent perturbations,

(6.37) |∆G<
TD,CC(∆ω, ω̄)〉〉 ≡ |G<

CC(∆ω, ω̄)〉〉 − 2πδ(∆ω)|G0,<
v◦,CC(ω̄)〉〉

where,

(6.38) |G0,<
v◦,CC(ω̄)〉〉 = |G0,<

CC(ω̄)〉〉 + Gv◦(0)|B(1)
v◦,CC(ω̄)〉〉.

Here, Gv◦(∆ω) = H−1
v◦ (∆ω) and

(6.39) |B(1)
v◦,CC(ω̄)〉〉ni+j ≡

[

v◦,CCG0,<
CC(ω̄) − G0,<

CC(ω̄)v◦,CC

]

ij
.

The time dependent ”B”-terms are written as before, only they now depend on

the modified initial guess G0,<
v◦ and the remaining time-dependent perturbations

vTD(∆ω).

|B(1)
TD,CC(∆ω, ω̄)〉〉ni+j ≡

[

vTD,CC(∆ω)G0,<
v◦,CC(ω̄ − ∆ω/2) − G0,<

v◦,CC(ω̄ + ∆ω/2)vTD,CC(∆ω)
]

ij

(6.40)
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|BTD,CC(ω′,∆ω, ω̄)〉〉ni+j ≡

[vTD,CC(2ω′)∆G<
TD,CC(∆ω − 2ω′, ω̄ − ω′)

− ∆G<
TD,CC(∆ω − 2ω′, ω̄ + ω′)vTD,CC(2ω′)]ij

(6.41)

Equations 6.23 and 6.35 are identical in form. Thus, the code used for calculating

eqn. 6.23 can be used for computing eqn 6.35 with very few modifications. The effect

of v◦ enters explicitly only into the Hamiltonian super operator H(∆ω) → Hv◦(∆ω)

and the initial lesser GF G0,< → G0,<
v◦ . However, as pointed out above, the form for

G0,<
v◦ (eqn. 6.38) is less trivial than simply using G0,< with the perturbation inserted

into the Hamiltonian. The effect of a source-drain bias on an initially incoherent

electronic charge density cannot be modeled by a simple field asymmetry embedded

within the Hamiltonian.



CHAPTER VII

Model calculations

7.1 Linear Response and Wide Band Limit

Models

We concentrate in this study on the TD conductance effect through a one dimen-

sional wire composed of hopping sites. We assume a tight-binding scenario where

interactions are included only between neighbor sites. The device region is defined

after dividing the system to three regions, where the central region is the device

bonded to two semi-infinite bulk-wires. In the results reported below we include two

sites to define the device region. An illustration of this system along with the rele-

vant electronic parameters is provided in Figure 7.1. We note that β and s are the

electronic and overlap coupling terms. The diagonal terms of the model Hamiltonian

are set to the initial Fermi energy of the system. Accordingly, we express the current

operator (see next section for further detailed discussion) with the numerical values

assigned to the electronic integrals in the Hamiltonian

(7.1) O = i







0 βd

−βd 0






.

In all calculations reported below in the results section we set the FE to zero

(µ0 = 0). This also defines the on site energies as described in the figure. We have also

used, for the electronic coupling terms, unless differently specified: βd = 0.25eV, βl =

93
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Figure 7.1: One dimensional wire composed of an array of hopping sites. The central region corre-
sponds to the device, which can be set to different site to model doping. The coupling
terms within the device are denote as βd, coupling of the device-bulk βl and β for the
bulk region. Corresponding s terms for the overlap are defined as well.

βr = 0.25eV . We use a sufficiently small value (ηd = 0.005eV ) for the fundamental

broadening factor added to the imaginary component of the Hamiltonian used to

calculate the GR
0 (ηd = η in eq. 5.10). This describes the unperturbed equilibrated

system. The bulk GF is associated with another fundamental broadening factor

(ηb) of effectively 0.025eV when the mixing parameter is 0.25eV (see eq. 5.34). For

selectively tuning the broadening of only the open channels and leaving the bound

states unaffected, ηb is modified while ηd is kept constant. Finally, we note that in

all calculations the target bias potential is set to 0.2eV.

Models

The steady state defines the unperturbed system and therefore serves as the initial

point of the time propagation treatment. The proper thermalization of the full system

has to be treated well in the G0,<(ω̄) as explained above using the SEs (eqns. 5.11

and 5.12). We comment also that the projected Fermi matrix to the device region

needs to include correction terms due to the coupling to the bulk:

(7.2) f̄ → f̄cc − (ω̄Scl − h̄cl)ḡ
R
ll f̄lc − (ω̄Scr − h̄cr)ḡ

R
rrf̄rc

These terms are found to involve a negligible effect with the models used below.

The electronic density propagation is specialized to the mixed representation. In
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this representation an analytical expression as derived next is obtained within a wide-

band-limit treatment. This WBL is appropriate for analyzing the dependence of the

transient transport on the key parameters of the electronic channels.

Current evaluation

We now describe the evaluation of the current from the time propagated G<

function. In the second quantized representation, most dynamical variables (e.g.

dipole, spin and current operators) can be expressed in terms of one pair of field

operators (see also eq. 3.7 and 3.8)

(7.3) Ô =

∫ ∞

−∞

d~xψ̂†(~x)O(~x)ψ̂(~x)

where the function O(~x) is the one-particle case for a many body operator. For

example, given the number density operator for a system of N particles at position ~r,

where
∑N

n=1 δ(~xn−~r), Ô becomes O(~x) = δ(~x−~r). The grand canonical expectation

value of any dynamical variable (see eq. 3.7) is given by

(7.4) 〈Ô(t1)〉 = −i
∫ ∞

−∞

d~x1 lim
x2→x1

[O(~x1)G
<(x1, x2)]

Given the basis set representation, eq (4.65), this expectation value can be expressed

as a product of two matrices

〈O(t1)〉 = −iT r
[

lim
t2→t1

[OG<(t1, t2)]

]

= −iT r
[

lim
∆t→0,t̄→t1

[OG<(t̄,∆t)]

]

=

Tr

[

lim
t̄→t1

[−i
2π

∫ ∞

−∞

dω̄OG<(t̄, ω̄)

]]

,

(7.5)

where Oij =
∫∞

−∞
dx̃φi(x̃)O(x̃)φj(x̃). Let us now consider the specific case of the

current density operator. One can show that, for this operator,

(7.6) O(~x) = −i
[

~∇xδ(~x− ~r) + δ(~x− ~r)~∇x

]
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The current density operator is position dependent. It can be expressed in an LCAO

basis

(7.7) Oji(~r) = i
[

φi(~r)~∇φj(~r) − φj(~r)~∇φi(~r)
]

and, in matrix form, is Hermitian under permutation of the indices i and j. The

electron current through a given plane is calculated by tracing [−iOG<]. This trace,

which is the vector current density defined in an AO basis, is then expressed on a

spatial grid. The current is finally obtained by integrating over the plane, which is

perpendicular to the flux direction.

The conductance due to electronic transmittance through a single quantum chan-

nel is analyzed for transient effects. We use the parameters as listed in the “Models”

section, where only ηb is effectively increased by a factor of 3. We start by demon-

strating the dramatic effect of the applied time-shaped potential pulse. In Figure

7.2, conductance due to four potential pulses are provided. In all cases, for conve-

nience, a sufficiently slow turn-on events (elapsing 15 fs) are followed by differing

time-durations at the target bias and/or differing turn-off rates. (The 15 fs corre-

sponds to about 3 periods of a system characterized by 1eV transition energy. We

analyze below in detail its relative adiabatic nature as determined in reference to

other system parameters.) The responding current evolves to steady state upon a

long enough constant bias. We study the effect of turning off the pulse adiabatically

versus applying an abrupt perturbation on the achieved steady state current under

the target potential bias. All potential switching slopes are defined by one quarter

of a sinus function stretched over different time periods and, therefore, are described

by continuous and analytical functions. The actual potential ramping profiles are

illustrated in the left of the figure. An additional curve which includes also bound

states is provided for comparison.
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Figure 7.2: TD conductance (I(t)) due to three different pulses is studied. All pulses correspond to
an analytical TD potential bias function, where the same rate is used for the turn-on
(elapsing 15 fs). They differ in the rate of the turn-off and the length of the pulse at
the target bias. An I(t) for a case with bound states is also provided: (i) Black line:
slow rate of turn off (15fs) (ii) Red line with plus symbols: shorter pulse at target. (iii)
Green line with circles: fast turn off pulse (elapsing 1fs). (iv) like (i) with two additional
bound states. (Left) The potential ramping profiles are illustrated.
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First we draw attention to the current under constant potential bias. All I(t)

curves achieve the same steady state current, as expected, since all ramping poten-

tials are set to the same bias target. The related steady state currents are evaluated

by I(V ) = V
2
g0(

βdΣ
(β2

d
+Σ2)

), where g0 = e2/h (a factor of two would be added to ac-

count for the spin degree of freedom), V is the voltage drop and βd and Σ are the

electronic coupling and bulk self energies respectively as defined above. These cor-

responding steady state currents are confirmed to agree with the long time limit of

the propagation when the applied TD bias is constant for a sufficiently long time.

The AC response component is shown to decay due to the bulk dephasing effects. In

all cases involving (sufficiently) adiabatic switching, the amplitude of the transient

AC response is much smaller than the developed DC. The added bound states are

shown to result with persisting oscillations as the bulk is not effective in dissipating

their effect on the conductance. We focus, next, on the effect of pulse duration on
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the conductance.

In Figure 7.3 we provide the TD conductance for three pulses that differ only

in the length of the pulse. The conductance of the three pulses are shown (right

panel) to correspond to the same developing steady state. We are also providing the

corresponding (t̄, ω̄) Wigner distributions of the current in a form of a projection on

a color scheme (left three panels). The current distributions are the integrand in

equation 7.5 evaluating the TD expectation value of the current (see equation 7.4).

In the figure, two rows with varying color-plot scales are provided. In the upper row

we use a scale to provide an overall view of the distribution. The switching events’

signature is clearly visible. In the lower row we use a smaller scale, highlighting

the steady pulse region while including the switching events. The contributions of

both the AC and DC components to the steady state current can now easily be

distinguished.

We also note that the Wigner current distributions exhibit quantum broadening

(smearing), where, for example, the response to the voltage pulse seems to begin

before pulse initiation. This is a direct consequence of time-energy uncertainty prin-

ciple. A real (quantum) probe cannot provide the behavior of the current energy-

density at a specific time. This is also evident by observing the current which is

obtained by integrating the Wigner current distribution over ω̄ (fig. 7.3). The cur-

rent is shown to begin at the correct time as expected for a physical observable.

The current distributions provide insight at the quantum mechanical level on the

identified DC and the ringing components of the TD current response.

We focus now on the DC component of the conductance response and analyze it

using the current distributions. In Figure 7.3 the conductance of the two site model is

shown to be dominated by one open channel. The transient conductance, as observed
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Figure 7.3: Time span at the target bias study: (i) short pulse (50fs) (ii) medium pulse (100fs) (iii)
long pulse (200fs) Left panel: I(t) curves. 3 Right Panel: Current distribution with
differing color maps between the lower and upper panels.
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upon switching on, is shown to emerge from the related band, where the positive sign

is associated with the upper portion (in energy) of the band. The lower part of the

band is shown to dissipate at long enough time following the switching event leading

eventually to the steady state. At the steady state only positive current contributions

are noted. The switching off event is essentially characterized by mirroring the band

structure of the switch-on event, where the upper part of the band becomes the

negative conduction contributions. The AC component as analyzed next emerges

due to interferences between the existing channels.

We consider again Figure 7.2 focusing on the turn-off event. It is interesting to

note that an AC response component may persist over several cycles after the turn off

event depending on the switching rate. For the slower switching rates the number of

the ringing oscillations and their amplitudes become smaller. The Green curve with

circles corresponds to the current under a fast rate for the potential turn off (elapsing

1fs). This relatively abrupt change leads to a strong ringing mode with amplitudes

which exceed the prior DC current by an order of magnitude. This is a very strong

oscillating response and its dissipation may extend over several periods depending

on the details of the electronic parameters and the TD details of the perturbation.
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Figure 7.4: Switch off rate study: (i) slow switching rate (30fs) (ii) medium (15 fs) (iii) quick rate
(1 fs). Left panel: I(t) curves. 3 Right Panel: Current distributions with differing
color maps between the lower and upper panels.
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In addition, the presence of bound states as shown in the figure results with the

persistence of the AC oscillations. This aspects are further analyzed below.

A strong perturbation applied on a developed steady state leads to a TD cur-

rent dominated by the AC component. This clearly has an important effect on the

functionality of molecular and nano scale devices. In Figure 7.4 we provide several

I(t) curves, which demonstrate the dramatic dependence of the decay time on the

bias-switching rate. We emphasize that even with the slowest switching case a strong

transient negative current upon turnoff is observed. The first negative amplitude in

absolute value exceeds the prior steady state current for the relatively slow switch-

ing event over 15fs. The slowest case involving switching over 30fs reaches about

the same value as the steady state current for the same responding amplitude, and

shows, as expected, the smallest number of oscillations prior to settling on the zero

current. Next, we consider the corresponding Wigner current distributions under

differing rates of the turn off event.

In Figure 7.4 we compare the Wigner forms of the current for cases differing signif-

icantly in the bias turn off rate. The Wigner current distribution of the most abrupt

case is shown on the rightmost color map panel. The resulting strong oscillations
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following the switching event are an order of magnitude larger than the calculated

preceding DC values. We, therefore, include (in the lower panel) the current dis-

tribution at times where the DC component is still dominant. We use a color-map

scale that highlights the AC oscillations in this temporal domain (lower row). The

ringing and steady-state AC responses are both concentrated about the same value

of ω̄. This value corresponds to an energy shift relative to the electronic level of

the propagated state underlying the DC response. An important observation, there-

fore, is the association of the AC response at steady conditions to the strong AC

ringing response due to the relatively abrupt switching event. The shift originates

from quantum interference effects as described below. Hence, we focus now on the

electronic structure features affecting the DC and AC components.

In order to analyze the origin of this energy shift we consider the electronic struc-

ture of conducting channels models involving two sites as used in the TD current

calculations. In Figure 7.5 (Left side) the electronic-energy density-of-states (DOS)

with three different base values for the broadening (imaginary smear factor parame-

ter) of the bulk GF (see eq. 5.34). Changing the bulk broadening factor (ηb) allows

us to selectively broaden only the open channels. Bound states, which will be ex-

plored following the two conducting channels analysis, remain properly unbroadened

by this factor. The corresponding TD conductance plots are provided at the right

side of the figure. As expected, increasing the broadening results with a larger con-

ductivity at steady state. The I(t) curves also demonstrate the dissipation effects due

to the broadening on the conductance oscillatory features. The TD oscillations are

shown to dissipate quicker with increasing the broadening. Clearly, upon sufficient

broadening of the participating bands in the interference, where, for example, the

two channels become one effective band, the oscillatory component of the conduction
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Figure 7.5: The two site system with three different broadening (base) factors. (Left) The electronic
DOS. (Right) The associated I(t) curves.
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is almost completely dissipated. We focus next on the energy shift related to the

value at which the oscillatory response is observed in the Wigner plots.

The current distributions associate the oscillatory response of the current to in-

terference fringes. The interferences are observed at energy shifts from the open

channel energies determined by the superposition of the two interfering states. This

can be understood by simplifying the general propagation expression provided in

equation 6.8 assuming that the lesser GF has a peak at bulk affected states ǫo

(G<(ω̄) ∼ G<
ǫo
δ(ω̄ − ǫo)). We also use eqn. 6.3 to grossly approximate G<(t̄, ω̄)

by

(7.8) ie−i(ǫi−ǫj)t̄

∫ t̄

t0

dt̄′ei(ǫi−ǫj+2ǫo−2ω̄)t̄′ṽ (2(ω̄ − ǫo))G
<
ǫo
.

In the last expression, ǫi, ǫj and ǫo represent bulk affected states (open channels).

Interference fringes are, therefore, shifted by (ǫi − ǫj)/2 from ǫo on the ω̄ axis. Fur-

thermore, they will oscillate in time t̄ with frequency (ǫi − ǫj). The interferences

that will actually affect the current depend on the unperturbed device’s electronic

structure and the details of the applied perturbation.

We now turn to focus on systems with bound states added to the open channels.

These states do not mix with the bulk electronic structure bands. The bound states

do not contribute conducting (open) channels coupling the two bulks as they do not
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mix with the bulk band structure. It is interesting to note recent reports, where

bound states are shown to enhance the transient ringing response due to an applied

potential pulse.[39, 109] We show that bound states can lead to an oscillating response

only under certain conditions. These conditions introduce a symmetry breaking

effect where the coherence driven contribution due to the two interfering bound

states involves a relative phase shift between the two states. A simple example for

introducing such a shift is provided next.

We consider two systems, where one system includes a symmetric population of the

two bound states and the second has only one of the two located below the designated

Fermi energy, namely their population is very different. The bound states are clearly

apparent in the electronic DOS, which are plotted in Figure 7.6 (a). The resulting

I(t) plots responding to the (relatively) adiabatic potential pulse are provided in

Figure 7.6 (b). It is shown that persisting oscillations of the current are obtained

only for the case with the asymmetry introduced in the population. The current

(I(t)) for the other case with both bound states populated is, however, not different

from the case which has no bound states added. We next analyze the band structure

of the current operator for these systems with the added bound states.

In parts (c) and (d) we provide the Wigner plots of the cases with the symmetric

population and the antisymmetric case, respectively. For both the DC band at about

-0.25eV due to the lower state open channel is observed. The dissipative interference

between the two open channels is observed at 0eV. We then note the contribution

due to the populated bound states that is overall vanishing at the switching times.

In part (c) their interference at -1.0eV also results in a complete cancellation of the

integrated result leading to the current due to the symmetry of the two bound states.

Only a symmetry breaking gating field will lead to a non vanishing contribution to
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Figure 7.6: The two site system including 2 additional bound states. The interference involving the
bound state results with a persistent current oscillation: (a) The electronic density of
states. (b) The I(t) curve. Wigner plot of the current distribution: (c) with two stable
bound states, (d) with one stable bound state and one unoccupied.
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the current for this interference. This is shown in part (d) where the interference of

the two bound states occurs at about -0.1eV and leads to the persisting oscillation

of the current. We describe further in detail the conditions for the bound state

presences to lead to oscillation elsewhere.

We now consider the effect of the relative scales of the electronic parameters

within the model Hamiltonian on the transient effects of the conductance. The elec-

tronic coupling values are related to distances between neighboring sites or relative

electronic charge capacities between these sites. All cases considered here involve

the relatively adiabatic bias switching rate (over 15 fs) and a non-adiabatic turn

off event (1 fs). Figure 7.7 provides the density of states for the different cases of

the electronic mixing parameter. We note the bigger splitting around the FE and

broadening upon the increase of the mixing parameter. The Figure also provides TD

conductance curves (left) and their corresponding Wigner distributions for the three
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cases with different electron coupling (βd) values as specified. The developing DC

(steady state) is shown to increase with increasing absolute values of the electronic

mixing parameter. This is also associated with a decrease in AC amplitude, where

the strongest transient response for the system is observed with the weakest mixing

parameter.

We also note that varying the electronic coupling parameters leads to either de-

localization or localization of t̄ and ω̄ variables in the Wigner current distributions.

The Wigner plots show that for the same perturbation the rate of the switch-on be-

comes essentially adiabatic for a large enough electronic coupling value. In addition,

a decrease in the electronic coupling parameters leads to localization of the relevant

energy range involved in the current-distribution response. Therefore, increasing |β|

leads to t̄-localization and ω̄-delocalization of the current response to the switching.

This is the expected dependence on the parameters that control the energy coupling

strength between neighboring sites.

As a final aspect of TD conductance, we consider now a two states system with

a driving TD perturbation. The DOS and the related conductance response to a

driving AC potential with its frequency tuned exactly to the energy levels difference

is illustrated in Figure 7.8. We now compare to the current upon applying a sym-

metry breaking DC potential bias and treat this as the unperturbed system. The

corresponding DOS is shown to result with a slight energy splitting of the two bands.

This also leads to reduce the current, where, however, the broadening ensures that

most of the current is not eliminated. More interestingly, a beating frequency is also

noted. These two effects are a consequence of the bands being further split which

effectively detunes the focused laser field.

The coherence mediated conductance is also analyzed by the current distributions.
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Figure 7.7: The effect of the strength of electronic coupling (βd)on TD conductance: (a) The
electronic density of states. (b) The I(t) curve. (c) Wigner plots of the current distri-
bution for the system including the two additional bound states with different scaling
color scheme.
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Two cases are considered. In the upper panel of Figure 7.8 the current distributions

of the case with only one open channel being occupied are provided. We note that

the major contribution to conductance is from the direct interference of the two

states as expected. This is what the applied laser is tuned to. An additional current

distribution band is located at the opposite shift from the electronic device state.

The shift is defined by the energy average of the two open channels. We note that the

opposite shifts (each away from the other state) are shown to contribute substantially

to the current. A contribution below the ground state is observed only for the system

involving a single site occupation. In the lower panel, the case with both open

channels being populated is considered. For this system an additional band located

at the same shift above the higher energy open channel band is introduced. We also

note that applying the same AC on the DC-biased system results with a different

shift on the two types of the bands. In this case, the structure of the major shift due
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Figure 7.8: Coherence driven current of a two state system with and without a steady DC bias.
(Left) The DOS and the I-t of the two state system. Current distribution of: (Up)
tuned system (Low) DC detuned and (Center) One state occupied and the (Right) Two
states occupied
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to the ω̄ dependence is distorted. This energy dependent shift is responsible to the

beating that is observed in the calculated I-t curves.

7.2 Flux Induced Spectroscopy in explicit tight-binding models

Introduction

In this section we study the effects of non-equilibrium conditions on the electronic

spectra of a model open channel system. We use the formalism derived above in the

full frequency domain and solve it at the linear response level. The full frequency

expressions of the e.o.m.s are used to eliminate the WBL approximation in treating

the electronic structure of the bulk.[99] Instead the electrodes are treated exactly at

the applied modeling level. Therefore, an energy dependent DOS of the electrode

evaluated by the relevant tight binding treatment is used. This is a powerful scheme

to calculate the electronic spectra of an open system at non-equilibrium conditions.

We use our methodology to demonstrate that the effect of flux due to bias conditions

is to allow electronic transitions that are otherwise forbidden in the equilibrated
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system.

A large body of related experimental studies have been performed. The combined

measurement of both conductance and spectra of molecular junctions has been re-

ported using Raman scattering [91, 90, 17, 127]. Conductance enhancement in the

junction has been correlated with changes of the in situ measured Raman spectra

of the molecular junction. This is an exciting development that contributes to the

characterization of molecular junctions under bias. The ability to obtain spectral

information of the junction system under bias provides the needed probe to confirm

that single molecules are indeed confined between the electrodes and carry the trans-

port in the junction. It is, therefore, important to proceed and consider the effects

of electronic flux due to the bias on the electronic spectra of the molecular junction

that is mediating the electron transport.

In order to understand the dynamical effect of electron flux on the spectra or

of any other photo driven ET process proper treatment of the electronic structure

of the open systems has to be achieved. For achieving analysis of the flux-affected

electronic spectra, a TD approach that probes the response of the electronic density

to a temporal delta function potential pulse can be used to generate the system’s

spectra as is performed in traditional widely-used linear response implementations

of TD-DFT. This is extended below to the analysis of electron flow effects on the

optical excitations of a biased model system.

7.2.1 Models

The model system considered in this study is composed of a pair of sites aligned

perpendicular to the direction of flow coupling two one-dimensional wires. The graph-

ical representation of this model system is provided in Figure 7.10, where only the

surface atom of the wire is depicted. The two central sites and the surface sites define
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Figure 7.9: Scheme of the electronic levels of a device model system coupled to the electron reservoir
at (left) equilibrium (right) non-equilibrium conditions.

Figure 7.10: Illustration of the model composed of two sites bridging two one-dimensional semi-
infinite wires. Only the surface atom of each wire is depicted.
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the core region of the system. We use a simple tight binding model for the electronic

structure, where each site is represented by a single s type basis function. Relative to

the center of a given atom A, this basis function is expressed in spherical coordinates

as Φ(rA, θA, φA) ∼ e−αr2
A . The ”tightness” parameter, α, is determined by setting

〈rA〉 to the electronic radius of the given atom. The sites of the electrode have been

parametrized to represent gold atoms and the device sites are each representing a

single carbon atom. The corresponding region is designated below as AuC2Au

The atomic orbital Hamiltonian matrix is parametrized based on the ionization

potential and evaluated using the following Huckel-type expressions:

(7.9) HA,A = −IA

(7.10) HA,B = −1

2
K(IA + IB)SA,B

where SA,B is the atomic orbital overlap between the s-electron basis functions cen-

tered on atoms A and B, IA is the ionization potential for atom A, and K is a con-

stant set to 1.75. The numerical values for these parameters are provided in Table

7.2.1. The Hamiltonian is then orthogonalized (H → S−1/2HS−1/2) followed by the

imposition of a tight-binding condition within the electrode regions, where only site

and nearest-neighbor hopping elements are non-zero. All site and hopping elements

are kept in the four-site region of the orthogonalized Hamiltonian that corresponds

to the AuC2Au region of the pre-orthogonalized Hamiltonian. This Hamiltonian is

padded with electrode wires of nine Au atoms on each side of the perpendicular C2

system to ensure that edge effects are minimized in the orthogonalization procedure.

We now calculate the electronic density and spectrum of this system, where we

include the surface atoms in the confined device region. This defines the core device

region as a four state space. The electrodes’ effects on the electronic DOS of the
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Atom radius Å IA (eV) α (Å−2)
C 0.77 11.26 1.074
Au 1.44 9.22 0.307

Table 7.1: Radii, ionization potentials, IA, and Gaussian basis set coefficients, α, for C and Au

junction are represented as usual by adding to the Hamiltonian the projection of the

surface GF onto the central region using the TB coupling terms. Next, we consider

the system prior to probing its spectroscopy. In all cases, we note that for simplicity

the Fermi energy is shifted to be zero and is located in the middle of the HOMO-

LUMO gap. This is schematically illustrated in Figure 7.9(left). The steady state

description is derived from a time independent perturbation perspective, where any

bias has been turned on for a sufficiently long time to dissipate any transient or

TD aspects. Eqn. 6.33 is used as an initial guess for the steady state lesser Green

function that introduces the effects of weak bias v◦.

If v◦ is energetically on the order of the transition energies in the Hamiltonian, a

first order expansion will not suffice. In this case we turn on the bias adiabatically

(compared to the time evolution of the Hamiltonian) in n small increments. This

amounts to applying eqn. 6.33 iteratively n times as described in a previous section.

7.2.2 Results

The electronic spectrum is obtained by tracing the dipole moment operator ori-

ented along the device (C2) axis (designated as z). This is aligned perpendicular to

the gold wires axis:

(7.11) Im [〈µz(∆ω)〉] =

∫

dω̄Tr [G<(ω̄,∆ω) · µ̂z] ,

where the dipole operator matrix representation ({Φ} are the basis functions) is:

(7.12) µz,ij =

∫

d3~rΦi(~r)ẑΦj(~r).
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Figure 7.11: (a) The electronic density of states of the device region at equilibrium conditions
with models including 1,2 and 3 wire sites in the central region. (b) The corresponding
electronic spectra with the different inclusion of gold atoms in the central region (The
spectra are given in atomic units as Bohr radius/Hartree).
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The projected electronic DOS of the device region is calculated for several related

models. These models differ in the number of the wire gold atoms included in the

device region. Following the tight-binding picture the most distant atom included in

the device region from the core pair of atoms is assumed to well represent the surface

site of the wire. The electronic DOS and the corresponding spectra are provided in

Figure 7.11.

We note that the DOS of the device region, which is shown on the right panel,

converges with respect to the number of gold atoms included in the central region.

Namely, adding gold atoms to the device region does not greatly affect the four

major peaks in the distribution. These additional wire atoms mainly affect the DOS

by further broadening the electronic density within the HOMO-LUMO gap. This

is a reflection of the strongly delocalized nature of the electrode model used in our

calculations. The effects of these broadening aspects on the modeled spectra are

considered next.

Orbitals related to the main four bands of the core region are illustrated in Figure
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Figure 7.12: Orbitals are plotted organized according to their energy levels from left to right in an
increasing order. Left most panel illustrates the molecular model of the core system
used in the calculations.

7.12. The core region includes the two carbon atoms and a gold atom from each

wire which is most adjacent to the carbons. We have shifted the energies to be

centered about the Fermi energy which has been chosen to be zero for simplicity.

In the chosen geometry, we assign the lowest state (occ1) to a bonding interaction

between the carbon atoms. The second state, which is also occupied (occ2 or HOMO)

corresponds to an antibonding interaction between the carbon atoms. The next

state, is unoccupied (virt1 or LUMO), which at the considered equilibrium conditions

involves antibonding interactions between the two carbon atoms and with additional

bonding interaction between the two gold surface atoms across the device region.

Finally the highest state (virt2) is dominated by electron density localized on the

gold atoms with an anti-bonding node separating the two sites.

The corresponding electronic spectra show a strong dependence on the model

used. The models differ by the number of gold atoms included in the device region.

First, we assign the dominant peak in all non biased spectra to the HOMO-LUMO

transition. However, an unconverged response (peak) is generated for the limited

model, where only a single gold atom is included in the junction’s space. For this

smaller model, a peak corresponding to the energy difference between states occ1 and

occ2 is generated. These electronic states, however, which lie energetically below the

Fermi energy, are both populated upon coupling to the two wires.
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Clearly electronic transitions that couple two occupied states are forbidden at

equilibrium conditions. This indicated forbidden transition is (almost completely)

removed upon including additional wire sites in the device at equilibrium. It is shown

that this peak in the spectra is gradually eliminated at the equilibrium conditions

by expanding the central region to include one or two additional gold atoms from

each wire. We also note that the differences in the broad bands between the different

models result from the projection of the infinite electrodes onto the device region.

This also leads to the broadening observed on the electronic spectra (see figure 7.11).

The appearance of the additional and unphysical transition at an equilibrium state

is a reflection of using a too restrictive model in the response theory. This difficulty

in converging the calculated spectra is due to the delocalized nature of the electronic

states that participate in the considered transition. These states have a large gold

atom component in their electronic DOS. The delocalized nature of the metal related

electronic density is represented by self energies and is associated with the broadening

effects. For example, the strong delocalization of the HOMO results with an artifact

as noted above due to the self energy used in the spectra calculation. We, therefore,

use the model that includes three gold atom sites in analyzing the spectra under bias

conditions to allow for proper treatment of the electrodes’ effects on the electronic

density of the confined system. Next, we analyze the spectra at non zero bias-voltage

conditions.

In Figure 7.9(right) the effect of the potential bias is schematically represented.

The bias is shifting the effective Fermi energies of the two electrodes. In the illus-

tration the resulting energy window of non-equilibrium occupations between the two

electrodes is large enough to include both bands of the HOMO and LUMO electronic

states. In Figure 7.13 the voltage dependent spectra are provided. It is shown that
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Figure 7.13: The dependence of the electronic spectra on the voltage. (The spectra are given in
atomic units as Bohr radius/Hartree).

for strong enough bias voltages the otherwise forbidden transition becomes allowed.

This is a flux induced transition. This is shown in the figure, where the peak corre-

sponding to the transition between the two lowest states only starts to develop for

strong enough applied voltages. It becomes a dominant peak in the spectra, when

the non-equilibrium conditions are further enhanced by even higher applied potential

biases.

We observe the opposite trend on the higher peak in the spectra. This peak cor-

responds to the transition of states occ2 to virt1 (HOMO-LUMO in the equilibrium

state). It becomes weaker as the two states experience stronger non-equilibrium

conditions, where both bands are populated by the dynamic electron flux flowing

through them. This is another important consequence of the spectra due to the non-

equilibrium conditions that is nicely demonstrated by the implemented calculations.

7.3 Population Inversion and Absolute Negative Conductance

In a classical system, such as a metallic wire, the application of a source drain bias

or field forces electronic charge to move in the direction of applied force producing

a forward current. In a two conducting channel quantum system the same result is

achieved by moving charge through the lower conducting channel (section 7.1). In

essence, the states within this conducting channel that carry a forward momentum
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will have acquire a higher coefficient than those with momentum in the reverse direc-

tion. However, as is demonstrated through analytical derivation and simulation, the

virtual conducting channel can have the opposite effect. When populated, this chan-

nel will produce a current in the direction opposite to that of the applied field. Thus,

at infinite temperature, when both conducting channels are equally populated, the

total current will be zero, as expected. However, if population inversion is achieved,

the virtual conducting channel will have more population than the occupied channel

and the net current produced will be in the direction reverse to the applied field.

To demonstrate this, eqn. 6.33, which represents the steady state linear response

of the system to a weak bias is integrated with respect to ω̄, making use of the

relation for total density.

(7.13) ρ = −i
∫

dω̄G<(ω̄)

This gives a steady state linear response equation for the total (ω̄-integrated) density.

|ρv◦,CC〉〉 →

|ρ◦,CC〉〉 + G(0)|B(1)
ρ,CC〉〉

(7.14)

where,

(7.15) |B(1)
ρ,CC〉〉ni+j ≡ [v◦ρ◦,CC − ρ◦,CCv◦]ij

and ρv◦ is the total density including the response to the source-drain bias while ρ◦ is

the statistically equilibrated total density in the absence of any bias perturbations.

Equation 7.14 is applied to a two-site system in the atomic orbital representation

(where the overlap is diagonal), with Hamiltonian h and perturbation operator v,

(7.16) h =







−iΣ β

β −iΣ






.
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(7.17) v =
1

2







v 0

0 −v






.

where −iΣ represents the wide-band-limit self-energy that models the electrodes and

effectively turns the two states into conducting channels. The current operator has

the form,

(7.18) j = i







0 β

−β 0






.

In the representation where h is diagonalized, these operators take the following

forms,

(7.19) h =







β − iΣ 0

0 −β − iΣ






.

(7.20) v =
1

2







0 v

v 0






.

(7.21) j = i







0 −β

β 0






.

where β is the ground state energy and −β is the excited state energy (β > 0).

Note that rotation of the current operator into the diagonalized basis only changes

its sign. The initial density matrix ρ◦ has the form,

(7.22) ρ◦ =







1 0

0 0






.

when the electron population is completely in the ground conducting channel and

(7.23) ρ◦ =







0 0

0 1






.
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when the population is entirely in the excited conducting channel (population in-

version). The total current I is calculated by tracing ρv◦ with j. Substituting eqns.

7.19-7.20 into eqn. 7.14 for the ground state populated case (eqn. 7.22) gives a total

density of

(7.24) ρv◦ =







1 − v
4(β+iΣ)

− v
4(β−iΣ)

0






.

and a positive total current.

(7.25) I(v) =
1

2

βΣ

β2 + Σ2
v

On the other hand, performing this substitution for a population inverted initial

density matrix eqn. 7.23 produces a total density matrix of the form

(7.26) ρv◦ =







0 v
4(β+iΣ)

v
4(β−iΣ)

1






.

and a total current

(7.27) I(v) = −1

2

βΣ

β2 + Σ2
v

that is opposite to direction of flow. Interestingly, the source of this reverse current is

population inversion – the cause of light amplification in lasers and optical amplifiers.

Note that a negative sign in the transition elements in eqn. 7.22 corresponds to an

excitation, while the positive sign in eqn. 7.26 carries a relaxation back to the ground

state.

Absolute Negative Conductance in a Three State System

Population inversion is not an easy phenomenon to achieve. In a two state system,

one can, at best, achieve a steady state balance in which both states have an equal

occupation number. Transient population inversion is achieved in such systems via



119

Figure 7.14: Schematic diagram of 3-state system in the localized site representation (left) and
the diagonalized representation (right). The strong coupling of the conducting
sites/channels are represented by their ”smearing” and emersion in the electrodes.
The ground state ǫ is weakly coupled to the conducting channels (represented by dot-
ted lines). The left (right) electrode is biased at +(−)v/2 around the unbiased fermi
energy ǫf .

Rabi flopping which typically requires very intense ac fields. However, a steady

state population inversion can be achieved in a three level system – the basis for

light amplification in a laser. We now demonstrate that a three level structure can

lead to absolute negative conductance. Similar to a laser, our system consists of a

weakly conducting populated ground state and two unoccupied strongly conducting

excited states (conducting channels). The system is biased by a dc ramping field.

Population is subsequently excited from the ground state to the second excited state

(fig. 7.14, right panel), creating a population inversion between the first and secnd

excited states. Under bias, this configuration will transfer net charge in the direction

opposing the bias field (absolute negative conductance).

We consider a three level system (fig. 7.14) that can be constructed by strongly

coupling two ”sites” (e.g. quantum dots) to electrodes and to each other. The

ground state can then be introduced by a third site that is weakly coupled to the

two conducting sites (denoted by dotted lines in fig. 7.14) but has a comparably low

on-site energy ǫ. This low lying site is below the fermi energy of the electrodes, ǫf , and

is therefore occupied. The two upper levels are both unoccupied and strongly coupled

to each other by hopping energy β and to the electrodes via a self energy Σ. The
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Figure 7.15: (Left) Density of states (ǫf = 0). (Right) Current vs. time for an applied bias of 0.01
meV and a 240 ps applied AC field at ν = 0.246 meV.

ground state is thus spatialy summetric (bonding) while the first and second excited

conducting channels are, by construction, bonding and anti-bonding, respectively. A

wide band approximation is applied to the electrodes giving them a uniform density

of states and, thus, making Σ independent of state energy. These couplings produce

two broadened conducting channels (smeared in fig. 7.14) whose energy centers are

seperated by 2β and whose bandwidths are given by 2Σ. The ground state coupling to

the conducing sites is 100 times smaller than β. Hence, it is also subjected to a small

broadening. In addition, a device broadening of 0.004 meV is uniformly applied to all

three states. This has the effect of broadening the ground state to allow more rapid

simulation convergence. However, this broadening factor is an order of magnitude

smaller than Σ ensuring that it will contribute negligible conductance. This density

of states for this system is given by the left panel in fig. 7.15. Note that, by design,

the ground state is weakly conducting due to its much smaller broadening when

compared with the two conducting channels. Most of the current must be carried

by the unoccupied conducting channels or absolute negative conductance will be

difficult to achieve. The resulting mid-band energies and bandwidths are listed in

table 7.3.

A constant ramping potential (v in fig. 7.15) is applied to the system to facilitate

the transfer of charge (current) from one electrode to the other when the ac field is



121

state energy (meV) FWHM (meV)
g -0.0637 0.01
1x 0.0183 0.07
2x 0.182 0.07

Table 7.2: Mid band energies and bandwidths for the ground, first and second excited states, labeled
”g”, ”1x” and ”2x” respectively.

transition µ (arb. u.)
g-1x 0.0
g-2x 1.4
1x-2x 50.

Table 7.3: Transition dipole strengths for excitations between the ground (g), first excited (1x) and
second excited (2x) states.

applied. The simulations were run for v = 0.01meV and v = 0.04meV . These biases

are weak compared with the transition energies of the states so spectroscopic Stark

shifts are negligible. Consequently, an ac field tuned to the excitation frequency be-

tween the ground and second excited states (ν = ω0/(2π) = 0.246meV ) is applied to

systems under both biases. Table 7.3 gives the transition dipole strengths between

the three states. Note that the ground to first excited state transition is forbidden

because the states possess the same symmetry. The ground to second excited state

transition, which is of interest to us, is very weak when compared with the first to

second excited state transition. This is a consequence of the weak coupling between

the ground state and the two unoccupied conducting channels. Most of the ground

state’s charge density is localized to the central site in fig. 7.14. The conducting

channels, on the other hand, have most of their charge divided between the left and

right sites. Hence, the overlap between the ground state and the conducting channels

is very small. This weak coupling is necessary to ensure that the conducting channels

do not strongly broaden the ground state, making it strongly conducting as well. The

strength of the applied ac field must be carefully chosen because the method used for
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these simulations as described in chapter VI employs a time dependent perturbation

expansion. Like time independent perturbation theory, the strength of the perturba-

tion must be much smaller than the transition energies in the system. However, time

dependent perturbation theory has an additional constraint for resonant excitations.

Namely, even for weak perturbations that fit this energy criterion, the perturbative

result will diverge from the exact result if the perturbation endures for long enough

times. To demonstrate this, one can examine the simple case of Rabi flopping be-

tween two discrete states since such a system is analytically understood and readily

provides a measure of the deviation of perturbation theory from the exact result.

An oscillatory perturbation applied at t = 0 to a two state system with excitation

energy ν has the form,

(7.28) v(t) =







0 v0 sin(ω0t)

v0 sin(ω0t) 0






.

This oscillatory field will create a coherence between the ground and excited states

and cause their respective occupation numbers to oscillate at the Rabi frequency, v0.

If one considers, for example the ground state population in time, P0(t),

(7.29) P0(t) = cos2

(

v0t

2

)

one can expand this solution to second order in v0,

(7.30) P0(t) = 1 − 1

4
(v0t)

2 + ...

The perturbative result will diverge and produce negative populations for t > 2/v0.

Consequently, there is a time limit, inversely proportional to the Rabi frequency, by

which the the perturbation must be shut off. Extending the driving field beyond this

limit can lead to inaccurate and unphysical results in perturbation theory.
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Figure 7.16: Energy resolved total occupation distribution (left) and integral of distribution over
the ground conducting channel - −0.15 meV to 0.00 meV (right).

The Rabi flopping argument clearly demonstrates this limitation of time depen-

dent perturbation theory and thus, care must be taken to ensure that perturbatively

calculated population changes between conducting channels do not exceed a given

threshold. Consequently, we employ the rule of thumb is that one should not let

the perturbation theory calculated population loss exceed approximately one third

of the total population in the donating band. From the discrete state model, we note

that the perturbative result and the actual result differ by about 11 percent for a

population loss of 1/3 from the ground state. We apply an ac perturbation that is

smoothly turned up to 0.014 meV over 40 ps, subsequently maintained at this energy

for 160 ps and, finally, turned of smoothly over another 40 ps. The total duration of

the pulse is thus 240 ps. These conditions ensure that the maximum population loss

is slightly in excess of a quarter (fig. 7.16 right).

The resulting current as a function of time is shown on the right side of figure 7.15

for the case of an applied bias v = 0.01 meV. The current is highly oscillatory because

it includes the resonant oscillations in charge induced by the ac field. Furthermore,

it looks symmetric about zero. A running average of the current over several cycles

(fig. 7.17, left), however, shows an overall negative current and, thus, demonstrates

absolute negative conductance. A low pass filter applied to the current, in which all

components with absolute frequency above 0.13 meV are zeroed, agrees well with the
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Figure 7.17: Time dependent (left) and spectral (right) first and second order contributions to the
current at an applied bias of 0.01 meV and a 240 ps applied AC field at ν = 0.246
meV.

running average. Figure 7.17 shows that the absolute negative conductance comes

from the contribution to the current that is second order in the perturbing field.

The right panel is the Fourier transform of the data in the left panel and shows

oscillatory responses at first order at ±ν and at second order at ±2ν as expected.

The second order contribution shows a negative component around zero frequency,

a clear signature of the negative DC current. This also indicates that the current

comes from population transfer because a second order response to the ac field is

required to induce a population transfer between states.

Finally, we show evidence that population inversion between the first and second

excited states is achieved, and, that the population in the second excited (anti-

bonding) conducting channel is responsible for the reversed current flow. The left

panel in figure 7.16 indicates that population is transfered to the second excited state

by the ac pulse. This, together with the right panel in fig. 7.16, which indicates

the population loss from the ground state suggests that the ac pulse has transfered

this population, as expected. The right panel in figure 7.18, which is the second

order contribution to the energy resolved time dependent occupation number, also

shows a population transfer from the ground state, at energy -0.0637 meV to the

second excited state at 0.182 meV. Both of these graphs indicate no increase in
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Figure 7.18: Energy resolved current distribution (left) and energy resolved second order contribu-
tion to the occupation distribution (right) for an applied bias of 0.01 meV and a 240
ps applied AC field at ν = 0.246 meV.

population at the first excited state (0.0183 meV). Thus a population inversion is

achieved. The left panel in figure 7.18 is the energy resolved current distribution

for this system. It indicates two major features. The more intense feature is the

positive-negative oscillating interference fringe located exactly in between the ground

and second excited states with oscillation frequency equal to the transition energy

between these two states. This is the resonant first order response of the current

to the ac field. The second feature, located at the second excited state energy, is

completely negative, with superposed oscillations at twice the resonant frequency.

This is indicative of the second order contribution to the current (fig. 7.17). This is

a clear indicator that the population transfered from the ground state to the second

excited state responds to the applied bias by moving in the direction opposite to the

applied bias. Figure 7.19 compares the low pass filtered data for the same applied

ac field at different applied biases. The negative current increases with increased

applied bias. The energy needed to work against the applied bias is provided by the

ac field. For comparison, we also perform runs where the fermi energy is raised to be

between the first and second excited states. The first excited state is thus occupied

while the second excited state is vacant. Biases equivalent to those of figure 7.19 are

applied, but, no ac field is applied. The currents are listed in table 7.3. The currents
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Figure 7.19: Low pass filtered current as a function of time for applied biases of 0.01 meV and 0.04
meV and a 240 ps applied AC field at ν = 0.246 meV.

bias (meV) current (µH)
0.0100 0.0595
0.0400 0.227

Table 7.4: Currents at given bias voltages for an un-pumped system with initial fermi energy located
between first and second excited states.

respond positively to the these biases and are much larger than the negative currents

achieved above.



CHAPTER VIII

Future Work: Disagreements in DC Current Methodologies

Constant potential theory, as developed in section 6.2.3 is an approach that can

be applied to the calculation of steady state transport properties. As such, its predic-

tions of transport properties should agree well, in the ballistic limit, with Landauer

theory, which will be summarized in section 8.1.1. However, we find that this is not

the case. One drawback of CPT is that, thus far, it has not included the applied

bias in the electrodes. In this chapter, an approximate CPT that includes these

effects for electrodes approximated by the wide band limit is derived. Preliminary

results on a two conducting channel system indicate that such an approach produces

conductances that are identical to those given by Landauer theory in the ballistic

limit. Preliminary Landauer calculations are also performed on a six carbon chain

connected to gold wire electrodes in preparation for benchmarking this extended

CPT with Landauer on a more realistic system. The Hamiltonian for the system is

calculated by density functional theory (DFT). This approach therefore provides a

path for resolving the Landauer-CPT discrepancy in future work.

127
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8.1 Summary of Formalisms

8.1.1 Landauer Theory

Most molecular conductivity calculations are based on the Landauer descrip-

tion where molecular conductance is associated with noninteracting scattering elec-

trons. [53] In this approach conductivity is evaluated by integration over quantum

mechanical transmission-

(8.1) I(V ) = e/h

∫

T (E)[fl(E, µl) − fr(E, µr)]dE,

where T is the (molecular) transmittance function and fl and fr are the Fermi dis-

tributions of the leads. The transmission function peaks at different molecular elec-

tronic levels due to scattering events through the conductor.

The quantum transmission is then evaluated from the device Green’s (Gc) and

broadening functions (Γl,r):[106]

(8.2) T (E) = tr[GR
c ΓlG

A
c Γr].

The broadening functions describe the effect of the random scattering events in the

metal contacts on the molecular states. These functions are related to the coupling

of the conductor to the contacts (the self-energies) by:

(8.3) Γ = i[Σ − Σ†].

8.1.2 Constant Potential Theory

A Dynamically-Driven view of the Steady-State transport

The Keldysh approach, which considers the full correlation effects of the electronic

density at non-equilibrium conditions,[13, 57, 14, 70, 18] provides an important al-

ternative to the widely used scattering models, which use a static (equilibrium)

foundation for the description. Recently, we have implemented several solutions of
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the electronic equations of motion (K-B equations) of a model open system under

non-equilibrium conditions. [99] In this report we use the full dynamical treatment

to derive a simplified expression for describing the system under steady state condi-

tions. This is in contrast to most treatments limited to steady state, which are based

on tractable one-variable expressions. We use our methodology to demonstrate that

a dynamical perspective is necessary to model reliably the resulting steady state.

Our starting point is the electronic equation of motion (e.o.m.) of the coupled

system, where the electronic structure of the bulk is projected on the device region

using the electrode’s self-energy (eqn. 6.9):

i
∂

∂t̄
∆G<(t̄, ω̄) = [h,∆G<(t̄, ω̄)] +

∫

dω′[v(t̄, ω′)G<(t̄, ω̄ − ω′) − G<(t̄, ω̄ + ω′)v(t̄, ω′)]

+

∫ ∞

−∞

dt′[ΣR(t̄− t′)∆G<(t′, ω̄)e−ih(t̄−t′) − eih(t̄−t′)∆G(t′, ω̄)ΣA(t′ − t̄)].

(8.4)

HereG<(t̄, ω̄) = G0,<(ω̄)+∆G<(t̄, ω̄), whereG0,< is the lesser GF at fully equilibrated

conditions and is used as the initial guess for the propagation. Recently, we have

used a solution to the e.o.m. expressed in the full frequency domain (eqn. 6.14),

(8.5) G<(∆ω, ω̄) ≡
∫ ∞

−∞

dt̄ei∆ωt̄G<(t̄, ω̄),

to study electronic spectra under non-equilibrium conditions. Here we use the full-

frequency domain expressions to analyze the steady state limit of the equations.

We now use the two-frequency representation of the time-dependent equations

of motion to derive a time-independent correction to G0,<. We note that a time

independent perturbation v(t) = v can be Fourier transformed as in eqn. 8.5. Its

counterpart in the frequency domain is given by eqn. 6.30,

(8.6) v(∆ω) = 2πδ(∆ω)v.
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This simplifies the expression by eliminating a convolution integral term ( ∆ω → 0)

and can be written as:

(8.7) −[h0 + v,∆G<(ω̄) = [v,G<(ω̄)].

This will allow to compare the treatments for the transport at steady state conditions,

where all transient aspects and other time-dependent effects are fully dissipated. We

will refer below to our approach for modeling the steady-state as the dynamically

driven description of steady state (DDSS) approach.

As usual, we designate subspaces for the device (C) and electrodes (generic I),

solving for ∆G<
CC by two equations:

(8.8) −hCI∆G
<
IC − hCC∆G<

CC + ∆G<
CIhIC + ∆G<

CChCC = [vCC , G
<
CC ],

and

(8.9) −hII∆G
<
IC − hIC∆G<

CC + ∆G<
IIhIC + ∆G<

IChCC = vIIG
<
IC −G<

ICvCC .

We also omit from the expression the dependence of the G on ω̄. We will continue

to use this shorter notation in the next equations for G and ∆G.

We proceed in the representation spanned by the eigenvectors (with {ǫi} as values)

of the voltage affected device region (hv = h0 + v). In this representation eq. 8.9

becomes:

(8.10)

∆G<
IC,ij = [gR

II(ǫj)hIC ]ik∆G
<
CC,kj − [gR

II(ǫj)∆G
<
II ]ikhIC,kj +gR

II(ǫj)[vIIG
<
IC −G<

ICvCC ]ij,

For clarity we noted the indices in the last expression. We further clarify that we

are expanding this using voltage affected device vectors, where ǫj are the values.

Namely, in this representation:

(8.11) −hv,II∆GIC+∆GIChv,CC → (ǫjδik−hv,II,ik)∆GIC,kj ≡ (gR
II,ik)

−1(ǫj)∆GIC,kj.
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Similarly

(8.12) −hCC∆GCC + ∆GCChCC → −(ǫiδik∆GCC,kj − ∆GCC,ikδkjǫj).

Also ∆G<
CI,ij = −∆G∗<

IC,ji. We also define as usual the SEs:

(8.13) ΣR(ǫ) = hCIgII(ǫ)hIC .

These relations are next inserted into 8.8 for the same bias shifted diagonalized device

space and for clarity with expanded indices becomes

(−ΣR(ǫj)ik − ǫiδik)∆GCC,kj + (ΣA(ǫi)kj + ǫjδkj)∆GCC,ik =

[vCC , G
<
CC ]ij − [hCIg

R
II(ǫi)∆G

<
IIhIC ]ij + [hCI∆G

<
IIg

A
II(ǫi)hIC ]ij

+[hCIg
R
II(ǫj)vIIG

<
IC − hCIg

R
II(ǫj)G

<
ICvCC −G<

CIvIIg
A
II(ǫi)hIC + vCCG

<
CIg

A
II(ǫi)hIC ]ij.

(8.14)

We also define, for convenience, the device-space voltage affected propagator as:

(8.15)

Hv∆GCC,ij(ω̄) ≡ Σk(−ΣR(ǫj)ik − ǫiδik)∆GCC,kj(ω̄) + (ΣA(ǫi)kj + ǫjδkj)∆GCC,ik(ω̄).

For the final simplification we use the equilibration relation for the electrodes’ quan-

tities, where the Fermi function is used to occupy the lowest levels up to the Fermi

energy. We emphasize that the equilibration relations are not used to impose the

overall electronic properties of the junction space but rather use the proper bulk

domain properties. This amounts to

(8.16) G<
II(ω̄) = f(ω̄ + vI)(g

A
II(ω̄) − gR

II(ω̄)),

where by assuming fIC = 0 one can show that

(8.17) G<
IC = gR

IIhICG
R
CCfCC − fIIg

A
IIhICg

A
CC ,
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and G<
IC = −G<†

CI . We also note the we denote g
R/A
CC as the retarded/advanced GFs

of the device region w/o the self-energies.

The final equation is then generated where in the chosen (bias affected) represen-

tation:

Hv|∆G<
CC〉 = vCCG

<
CC

+f(ω̄ + vI/2)[hCI [g
A
II(ω̄) − gR

II(ω̄)]gA
II(ǫi)hIC ]

+hCIg
R
II(ǫj)g

R
II(ω̄)h̄ICG

R
CC(ω̄)fCC [vIICC − vCC ]

+hCIg
R
II(ǫj)g

A
II(ω̄)hICg

A
CC(ω̄)f(ω̄)[vIICC − vCC ]

+conj. transpose

(8.18)

(AP-check last equation) This is done in a diagonal representation for the bulk states,

where fIC = 0. To further clarify, we assume that vCC includes at least one of the

potential shifted site of each bulk in the device region and vIICC amounts to project

the bias of one electrode on all the device region (vl + vr ≡= 0 and I is the identity

) We also define the bulk-coupling dependent terms on the RHS (excluding the first

term and its conjugate transpose) as G(ω̄).

The total density under bias effects can now be generated by integrating the

responded G< as calculated by eq. 8.7 with respect to ω̄:

(8.19) ρ = −i
∫

dω̄G<(ω̄).

This can also be expressed in a form for the total density as (eqn. 7.14),

(8.20) |ρv〉 = |ρ◦〉 + H−1
v

∫

dω̄|[v,G0,<(ω̄)]〉.+ H−1
v

∫

dω̄G(ω̄)

Electron Transport through model two-state systems

We next solve for the transport properties of a model system by both the simple

Landauer scheme and the DDSS approach. For illustrating the effects of the dy-
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namical approach we consider a 2 state model as the device region embedded within

two wires through tight-binding type of interactions as routinely implemented in

transport calculations. This is illustrated in Figure 7.1. In the considered model

two-state systems, the device region is defined by bands of the ground state and of

the excited-state. The two-state system The Hamiltonian h and the perturbation

operator v in the atomic-orbital representation expressed in the device region are

(eqns. 7.16, 7.17):

(8.21) h =







−iΣ β

β −iΣ






,

and

(8.22) vCC =







v/2 0

0 −v/2






.

where −iΣ represents the effect of the electrodes and effectively turns the two states

into conducting channels by contributing the broadening effects. The surface GF is

designated as g.

We now apply a wide band limit approximation to the bulk and for further sim-

plicity express the TB site of the bulk by a single basis function. We denote the

coupling parameter within the two states by βw. Here Σ ≡ β2
wg and g ≡ 1/βw, a

choice that optimizes the resonant tunneling across the interface.

Equation 8.18 simplifies to:

Hv|∆G<
CC〉 = (1 − (Σ/β)2)[vCC , G

<
CC ] + f(ω̄ + vI/2)(ΣA

I (ǫj) − ΣR
I (ǫj))2iΣ/β

2.

(8.23)

The current operator for tracing the current between the two junctions’ sites has
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the form (eqn. 7.18),

(8.24) j = i







0 −β

β 0






.

The ground-state density matrix ρ has the form

(8.25) ρ = i

∫

dω̄f(ω̄)







1/(ω̄ − β)2 + Σ2 0

0 1/(ω̄ + β)2 + Σ2






,

when the electron population is in the ground conducting channel.

8.2 Results

Steady state conductivity comparison

Linear response. Next, for comparing the Landauer result for the transport of

the two state system to the DDSS expression we apply a first order expansion in

term of the applied voltage. The first order assumes that the source drain bias is

weak enough (compared to the bandwidth of or energy spacing between conducting

channels). This is applicable for the low bias limit we are considering and has been

used in implementing the TD perturbation treatment as detailed above. The current

expression can be expanded by a Taylor series in the source-drain bias. The first

order is

(8.26) I(1)(v) =

(

dI

dv

∣

∣

∣

∣

v=0

)

v,

where I(0) = 0. The derivative in eqn. 8.26 is the conductance evaluated at zero

bias.

In the Landauer formulation, only the Fermi functions depend on v (eqn. 8.1).

At T = 0K, the Fermi functions can be written in terms of Heaviside step functions

(8.27) f(ǫ) = 1 − Θ(ǫ− µ).
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Thus at low temperatures the derivative of a Fermi function is proportional to a

delta function, and the current, in the limit of linear response, is expressed simply

by the transmission function evaluated at the Fermi energy (µ0)

(8.28) I(1)(v) = T (µ0)v.

For the considered two conducting channel system, the transmission gives the fol-

lowing expression for current,

(8.29) I
(1)
Landauer(v) =

4β2
dΣ

2

2π(β2
d + Σ2)2

v.

Extracting the first order CPT term in the bias for this example leads to a different

expression for the conductance:

(8.30) I
(1)
DDSS(v) =

{

(Σ2 − β2
c )(π + 2tan−1(

Σ

2βd

− βd

2Σ
)) + 4Σβd

}

βdΣ

4πβ2
c (β

2
d + Σ2)

v.

The first order expansion of the DDSS scheme essentially assumes no voltage depen-

dence of the propagator Gv◦(∆ω̄).

We now compare the steady state conductance of the two state systems as obtained

from the Landauer (eq. 8.29) formalism and by the DDSS treatment (eq. 8.30). The

dependence of the conductance on the electronic interaction parameters according to

these two expressions is plotted in Figure 8.1. In the plot, the electronic interactions

are parametrized by the ratio α ≡ βd/βw, which is defined above within the model

(fig. 7.1).

We now remark on the physical relevance of the α parameter at different regimes

of its numerical value. Physically, the low value limit of α corresponds to a molecular

system that is only weakly coupled to the electrodes and therefore it acts as an insu-

lator. Its conductance increases as the coupling to the electrodes is increased up to
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Figure 8.1: The conductance of a two state model system as a function of the electronic interaction
integrals represented by β/Σ (see text), evaluated by the first order expression of the
Landauer-based and the dynamic-based expansions. The left curve provide closer look
at the low α region of the scale.

the limit where it becomes fully coherent, where α = 1. Namely, the orbitals are ex-

actly delocalized through the system, which corresponds to a perfect one dimensional

wire of tight-binding sites.

I-V analytical results.

We now consider conductivities as evaluated by the two theories for channels with

different α values. This is described by eqn. 8.29 and by eqn. 8.30 for the DDSS

and Landauer approaches respectively. In Figure 8.2 we provide the analytically

evaluated I-V relations for three α values: 1, 0.5 and 0.1. For 1 as discussed above

we have a fully coherent system. The smaller values correspond to molecular systems.

The divergence of the Landauer-based estimate from the current as evaluated by the

DDSS approach is the smallest for channels identified by α values that are closer to

1. It is, however, the lower α value which is more relevant for molecular systems

and which are associated with stronger resistance properties. In this regime the

divergence of the current as expected from the conductance observation is increased.

It is, therefore, interesting to note that the divergence is much more apparent

at the low α limit. As the system becomes more coherent, on the other hand, the
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Figure 8.2: The current (I(V)) of the two state model system with different values of the α param-
eter
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divergence of the Landauer description becomes smaller. The results demonstrate

that as the system becomes more coherent and/or at the low voltage limit the Lan-

dauer scheme will agree better with the dynamic description. Here the coherence is

measured and compared by the ratio between the strength of the internal electronic

interaction to the coupling to the electrode. This agreement is especially improved

for the higher α values regime.

8.3 First steps toward molecular systems: Landauer calculation on C6
wire

In this section, the Landauer method is benchmarked on a density functional

theory Hamiltonian for a more realistic six carbon molecular junction connected to

gold wires using an LANL2DZ basis set and effective core potential for the metallic

atoms. This is the first step in benchmarking our CPT approach against Landauer

on a real system. In order to achieve this, we must first benchmark Landauer theory

on such a system to ensure that we have defined our device and electrode regions to

give converged results.



138

Models The benchmarking is performed on a set of 1-dimensional model systems.

The molecular device is based on a linear chain of carbon atoms (cumulene) and is

depicted in figure 8.3. A chemically more complex system, where a pair of electron

withdrawing and donating groups are added is also considered. This is achieved by

bonding a NO2 to one edge carbon and a NH2 group on the other edge carbon.

This allows us to generalize the considered electronic structure features which are

important for electron transport properties. These cumulenes are then bonded to

1-dim electrodes, as depicted in fig. 7.1.

Conductance studies employing atomistic gold have been applied, for example,

to study magnetoresistance of molecular devices.[49, 50, 52] One-dimensional atomic

bulk models have been shown to reproduce dominant trends observed with larger

surface models employing the Landauer description as well.[51] In addition, this is

an important model system simulating a single atom link between the thiol and

the gold surface which exists in several experimental setups as indicated by Tao et

al[131, 130]. In their experiments, a STM tip is used to pull a string of gold atoms

off the surface[137, 92] leading eventually to the ability to bind a single di-thiolated

molecule between two fragments of a gold atom wire. In addition we also consider

variants of these systems where the bulk consists of Al atoms and/or the molecular

geometry is allowed to bend out of the line defined by the electrodes. Transmission

calculations implement the Green function formalism as described above on these

different systems, where the transport is considered to occur through the molecular

device immersed between the two semi-infinite bulk materials. Below we focus on

results obtained with gold model. The other considered systems feature similar

trends.

Within the GF formalism the effect of the infinite bulk on the molecular system is
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achieved by projection on pre defined subspaces. This involves calculating the bulk’s

self energy models. Therefore, the implementation of the Green function formalism

requires several choices. These define the size of the immersed device, namely, the

number of metal atoms included in the device region. Next, a decision on the size of

the electronic structure matrix, which is used to represent the bulk must be made.

This is equivalent to studying the extent that delocalization effects in the metal are

important to describe correctly the bulk-conductor interaction. In the TB scheme,

a smaller repeating unit implies more truncation of such long range effects. The TB

calculation is implemented with the α and β parameters (see eq. 5.39) obtained at

the DFT level described below.

The choices that define the partition of the system are illustrated in fig. 7.1. In

the figure, M is the number of metal atoms included with the device and L is the

total number of gold atoms included in the electronic structure calculation. N is the

number of bulk atoms included in the repeating TB unit. The size of the TB period

defines the extent of truncation of long range electronic integrals included in the α

and β TB parameters. In this scenario, for example, all basis functions on atoms

which are more than N+M layers away from the edge (but still within L) are not

included through the TB expansion. It is useful to note that this scheme does not

vary the nature of the repeating unit but merely is a tool to determine the extent

of electronic integral truncation within the coupling terms. A set of these three

numbers defines the self energy model used in the transmission evaluation and will

be referred to below by L(M)-N. Clearly for sufficiently large L, M and N values

the model choice becomes converged as it does not introduce arbitrariness into the

resulting calculated transmission. In the discussion below we study the radius of

convergence of these choices for transmission calculations.
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Electronic structure information is obtained for cluster models including the molecule

and finite metal wires as described above. Twenty-four metal atoms are included on

each side of the considered molecule, unless otherwise noted, at a density functional

level of theory. The DFT calculation employs the B3LYP functional[15, 16] with

a LANL2DZ ECP basis set[125] for the transition metal atoms and 6-31G for all

other atoms. In all electronic structure calculations, the overall spin and charge of

these systems, unless otherwise stated, is a neutral singlet. The electronic structure

calculations were implemented using a prerelease version of Qchem 3.0[107] and the

transmission calculations were performed with a code developed in our group.

Device (M) convergence. We begin our benchmarking discussion by inspect-

ing the convergence of the SE models with respect to M. This corresponds to the

part of the electrode where screening effects and relaxation due to the adsorption

are dominant. Therefore, M corresponds to the number of gold atoms included in

the contact region. Namely, we are considering the depth to which the surface ad-

sorption causes a significant perturbation on the electronic structure of the electrode

layers. First, we consider the plain non-polar cumulene bonded between two gold

atom chains. The calculated transmission functions are described by projection on

a color contour, where the bright color region corresponds to T=1 and darker re-

gions represent smaller transmission amplitudes. This allows to follow clearly the

convergence of a calculated series of transmission functions.

Figure 8.5 provides the projected calculated transmission functions for different

M values with the L and N values kept constant (L=24 and N=2 (left part) or N=3

(right)). All transmission plots involve a single peak near the Fermi-energy (FE) of

the bulk electrode. At the WBL level of bulk representation there is no influence

on increasing the bulk period size (N value). This is confirmed by comparing the
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two parts of the figure. However, the plots highlight a parity divergence, where the

height of the peak converges differently depending on whether M is odd or even.

Therefore, the use of SE models calculated with the WBL description for the bulk

must ensue in arbitrary performance which depends on the M value.

Next we consider the same sequence of transmission plots with, however, a full TB

treatment of the bulk. Figure 8.6 describes the corresponding plots. With the TB

bulk treatment, it is apparent that the odd-even parity can be lifted. However, while

most of the disparity is eliminated already with N=2 plots (left side of the figure),

almost complete elimination of the remaining divergence is demonstrated with an N

odd value (N=3 in the right side). This small M parity with even N is removed only

for large enough N value. Namely, with odd N values a much faster convergence of

the transmission plots is generated. This trend is demonstrated in Figure 8.7, where

the functionalized cumulene is considered. In the figure we follow the differences

between devices defined with odd and even M values (4 and 5) when coupled with

an even or odd bulk N value. In part (a) the transmission curves with even N values

are shown to reduce the parity only at N=6 or 8, where the two curves with N=2

are shown to differ substantially. In part (b) the use of an odd N parameter leads to

a faster convergence at N=3 or 5. In (c) the convergence of the odd and even with

sufficiently large N cases is demonstrated. Next, we further consider the generality

of the observations by calculating the M sequence of the transmission plots with the

more complex cumulene which involves the polarizing groups.

The M dependence plots of the functionalized cumulene using the WBL and TB

approximations for modeling the bulk are provided in figures 8.8 (WBL) and 8.9

(TB). The transmission plots in the figures are calculated with a small imaginary

shift value (smear factor) added to the Hamiltonian of the device region when solv-
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ing for the device GF as in eq. 5.5. For the curves in part b (right side) a larger

device shift factor is employed. This larger value allows to further “smear” the elec-

tronic structure features of the MW and therefore highlights the main features of the

molecular transmission pattern, where the dominant broadening effects due to the

bulk are emphasized.

Indeed, the polarized cumulene transmission plots feature more structure as ex-

pected when compared to the plain cumulene results. However, the main observed

transmission features confirm our discussion comparing the TB and WBL based ap-

proaches. Namely, the use of the TB model in calculating the bulk’s GF results with

a converging model. Evidently the performance of the crude WBL approximation

for describing the bulk (fig. 8.8) in the calculation of transmission through the po-

larized cumulene is even worse than for the non functionalized cumulene. The WBL

plots clearly demonstrate a divergence that cannot be reduced by increasing the N

bulk parameter. This observation is confirmed also as outlined above after using a

a larger shift factor. This factor is added to the device Hamiltonian in obtaining its

GF. The same observations on the WBL divergence of the transmission function are

maintained with the larger factor (see fig. 8.8(a) and (b)). The TB curves illustrated

in fig. 8.9, on the other hand, provide a convergent series.

Next we comment on the origin of the difference in the M performance for the WBL

and TB based models. In WBL, the device’ transmission pattern is determined by the

parity of the last atom included in the device space. The coupling to the simplified

bulk models in the WBL is unable to compensate for the device electronic structure

differences between including an even or odd number of bulk atoms in the device

subspace. This situation is rectified by using a more complex bulk GF generated by

the explicit TB treatment of the bulk. Namely, the TB is capable by appropriately
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coupling to the variety of the electronic states of the device region to produce a

consistent description as evident from the M series transmission plot. These trends

have been verified to persist in both singlet and triplet spin coupling schemes. We

note, however, that TB still involves small divergence with respect to the M factor.

The effect of this small divergence on calculated conductance or I-V plots is, however,

negligible. In addition, this can be further reduced by increasing the N parameter.

However, the M convergence is slower for even values of N, while the performance of

M series with odd values of N is shown to provide a faster converging set of plots.

Most of the remaining M-value related divergence observed at the TB level is in

a form of minor changes in the transmission function at around -7.6eV, which are

emphasized by the smaller shift factor (fig. 8.9(a)). The smaller shift factor allows

expression of these features in the transmission plots. These originate from the elec-

tronic DOS of the gold atoms included with the device. The number of these localized

peaks increases with the number of gold atoms included within the device. However,

their overall contribution to conductance is minute since these are not broadened

significantly and are well distant from the FE. Overall, it is important to note that

both sets are shown to converge to similar transmission patterns. Therefore consis-

tent conductivity plots correspond to these converged M values series. To summarize

this discussion, the crude description employing the WBL approximation for the bulk

fails to provide consistent transmission with regard to the device parameter. This

highlights the need for the more accurate TB description of the bulk. These observa-

tions are noted also for the calculated transmission of the other systems considered

in this work. Next, we study the convergence of the bulk size parameter included in

the TB model.

Bulk (N) convergence. We now turn to study the convergence of the SE models
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with respect to the size of the space used to define the repeating unit in the bulk’s TB

calculation. A larger N factor allows a more complete description of bulk electronic

delocalization effects through the TB parameters, where electronic integrals over

atomic orbital indices with larger inter-bulk-atom distances are included. This is the

size of the subspace that is considered to be the repeating unit in the bulk periodic

material. The transmission curves calculated with varying N values and setting M=3

and L=24 are plotted in figure 8.10. The provided plots demonstrate an overall fast

convergence with respect to this bulk unit size parameter. The two parts of the figures

correspond to different shift factors which are used with the bulk’s GF calculation.

We first focus on the plots provided on the left side of the figure, which employ

the smaller bulk shift factor. Several features related to the bulk model are shown

to converge slowly with the N value. These are manifested as strongly localized deep

wells and peaks of the overall transmission plot, which are eliminated when a large

enough bulk is included. This demonstrates the effect of using a truncated bulk

model for describing a metallic system. Only large enough models, which include

enough of the bulk long range interactions can better describe the delocalized nature

of the metallic bulk. We note, however, that these discretization effects also have only

a marginal effect on the integrated transmission (of course only when a sufficiently

large bulk space is used).

These cluster effects in the bulk model can also be treated within the bulk GF

calculation. With the larger smear factor the convergence of the curves is even faster

with N = 3 or 4 as provided in the right part of the figure. These observations also

are consistent for all the considered systems, including the Al bulk calculations, the

various molecular orientations and the polarized and plain cumulene systems. We

next turn to study the effect of the cluster model size used in the electronic structure
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calculation on the evaluated transmission.

Electronic structure cluster model (L) convergence. Next, we consider the

effect of using a truncated cluster model for describing the interaction of the bulk

with the transporting molecule. This is implemented by repeating the transmission

calculation with varying the number of bulk atoms included in the electronic structure

calculation. This amounts to repeating the evaluation of the supermolecule electronic

structure with a modified L value. The transmission plots where N and M are each

set to three and with the changing L values are provided in figure 8.11.

In figure 8.11 different limits for the odd and even cases of the L value are demon-

strated. It is also apparent that fast convergence is exhibited for the even and odd

cases separately. Not more than 3 atoms over the size defined by N+M are needed to

converge each of the odd or even series. The few atoms added beyond N+M atoms

reduce small edge effects. These edge effects are shown to only shift or increase

moderately the transmission peaks. As noted above, however, the results indicate a

disparity of the transmission between the odd and even L values. This divergence

originates from the open shell character of the gold atoms. This is indicated also by

simply noting that the HOMO-LUMO gap and energies depend on the parity of the

number of gold atoms included in the electronic structure calculation. Therefore, an

essentially different transporting material is modeled by merely choosing the num-

ber of gold atoms in the cluster model calculation. This stems from the different

inter-atomic spin coupling schemes involved with varying the parity of the number

of open shell metal atoms included in the model.
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Figure 8.3:
The molecular systems considered include a cumulene bonded between gold or aluminum
wires. In addition we have considered a functionalized cumulene as indicated by the
NO2 and NH2 polarizing groups added to the edge carbons. We have also considered
bent structures where the cumulene is not on the same line defined by the two electrodes.
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Figure 8.4:
The self energy models are defined by three integer values as indicated in the figure. L
denotes the total number of metal atoms included in the cluster calculation for repre-
senting each electrode. M are the number of metal layers included with the device after
partitioning the system and N defines the length of inter-atom interactions included in
defining the bulk. The subspace defined by N is the repeating unit assumed for the
periodic bulk material.
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Figure 8.5:
Color-coded transmission plots of the non-polar cumulene calculated with varying the
space of included gold atoms with the device (M). The bulk is represented by the WBL
approximation. The size of the repeating period of the bulk is (a) two (N=2) (b) three
(N=3).
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Figure 8.6:
Color-coded transmission plots of the non-polar cumulene calculated with varying the
space of included gold atoms with the device (M). The bulk is represented by an explicit
TB calculation. The size of the repeating period of the bulk is (a) two (N=2) (b) three
(N=3).

-7.5 -7 -6.5 -6 -5.5
0

2

4

6

8

10

12

14

Energy (eV)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-7.5 -7 -6.5 -6 -5.5

Energy (eV)

M (a) N=2 (b) N=3



150

Figure 8.7:
Transmission plots of the polar cumulene. The disparity between using 4 or 5 gold atoms
in the device is compared for different choices of the bulk parameter (N). Tranmsission
(a) for even N values converges at N=8. (b) for odd N values convergence at N=5. (c)
Converged transmission for odd and even N at N=5 and N=8.
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Figure 8.8:
Color-coded transmission plots of the polarized cumulene calculated with varying the
space of included gold atoms with the device (M). The bulk is represented by a WBL
approximation with (N=3). The shift factor used in calculating the device GF is (a)
0.001eV (b) 0.01eV.
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Figure 8.9:
Color-coded transmission plots of the polarized cumulene calculated with varying the
space of included gold atoms with the device (M). The bulk is represented by an explicit
TB calculation with (N=3). The shift factor used in calculating the device GF is (a)
0.001eV (b) 0.01eV.
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Figure 8.10:
Color-coded transmission plots of the polarized cumulene calculated with varying the
size of the repeating unit for describing the bulk. The device space is set constant
(M=3). The shift factor used in calculating the bulk GF is (a) 0.001eV (b) 0.026eV.
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Figure 8.11:
Color-coded transmission plots of the polarized cumulene calculated with varying the
number of gold atoms included in the model used in the electronic structure calculation
(L).
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CHAPTER IX

Summary

A formalism based on propagating the K-B electronic e.o.ms is implemented to

study transient and TD effects of current through model electronic-channels. This is

achieved by solving the equations of motion in a mixed time-frequency representation.

In this formalism, SE expressions in the energy domain represent the bulk effects on

the electronic densities. Namely, bulk induced broadening effects on the device’s

electronic structure are directly included in the propagation. We also note that our

approach is based on the more physical appropriate non-partitioned scheme[30] as

recently pursued in real time treatments.[110, 65, 112]

Our approach by using the SE expressed in the frequency domain avoids the dif-

ficulties in propagating open systems in real time representation. This provides an

efficient and reliable framework for including the contacts effects on electronic con-

ductance. This provides the opportunity to benefit from highly efficient low order

TD perturbation treatments and to avoid difficulties related to real-time propaga-

tions. The effectiveness of the linear response implemented here has been confirmed

by its ability to reproduce the related steady state description upon a long enough

constant perturbing DC bias. The low order perturbation treatment is highly useful

in addressing weak perturbations where the ’bending’ of the perturbed electronic
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states can still be neglected. This approach as implemented, therefore, is useful for

studying spectroscopy of open systems and transport under low bias perturbations.

Furthermore, as opposed to approaches based on real time propagation of density

matrices, our approach treats directly the coupling of the device to the bulk system

in the propagation. Namely, induced device-based mini bands are being propagated.

This also allows to resolve the features within the bulk-induced mini-band that de-

termine the transient conductance of the electronic channels. We relate the transient

features to quantum interference effects between the device channels or present bound

states.

We analyze in detail the interplay between the fundamental electronic parame-

ters and the TD conductance through electronic channels. The parameters include

the rate of potential switching event, electronic coupling strength between neighbor-

ing sites mediating the electron transfer and the overall electronic broadening factor

representing a host of mechanisms leading to broaden the electronic state. Several

time-dependent currents and their Wigner current distributions under different ap-

plied potential pulses, are compared. The system’s ability to decay to its equilibrium

state after bias turn off, or to achieve a pure DC current at constant bias, is stud-

ied. We show that optimization of the DC over AC response (or vice versa) can be

attained by controlling the electronic coupling terms and/or shaping the applied TD

potential pulse. The tuning of the broadening term was also shown to vary the quan-

tum dephasing effects due to the electrodes and therefore to different decay rates of

the AC/ringing response.

The effect of the presence of bound states on the conductance is also studied. The

presence of device-bound states may result with long time persisting oscillations,

which can dissipate only through other mechanisms. We find that the oscillatory
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response due to bound state is dependent on a symmetry breaking scenario between

the interfering bound states. Finally we have also studied the coherence driven AC

and the effect of a present DC bias at the unperturbed state. The effect of the

DC-induced band shift on the coherence driven AC response are analyzed using the

Wigner form of the current distribution.

Furthermore, a recently developed approach for the propagation of the electronic

density of a system coupled to electron reservoirs under dynamic non-equilibrium

conditions is used to study electrode biasing effects on the electronic spectra. The

projected equations of motion represent the effect of the electrodes on the dynamics

expressed on the Keldysh contour, where the full time correlation is represented by

two time variable propagators, the Green functions. The projection is achieved by

using self-energy expressions to represent the effect of electrode coupling. In this

report, the general equation of motion is reexpressed in the full frequency domain

and is solved at the linear response level to obtain the electronic response to electronic

perturbations represented in the dipole approximation.

This method is implemented on a model system involving two carbon atoms sand-

wiched by and aligned perpendicular to two gold atom wires. Exposing the system

to steady non-equilibrium conditions, where the potentials of the two electrodes are

shifted, leads to electron flux that dynamically affects the electronic spectra. Elec-

tronic transitions between conducting electronic channels, which are fully populated

at equilibrium, become allowed upon applying voltage bias. It is shown that a

transition involving two occupied states (at equilibrium) becomes stronger with the

increase of the voltage bias, whereas the electronic flux can lead to some reduction

of the transition for a transition coupling an occupied level to a virtual level.

This two-frequency approach was also used to study the phenomenon of absolute
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negative conductance (ANC). It is found that ANC can be caused by population

inversion where more population is transfered to an anti-bonding channel than to a

bonding channel.

Finally, we addressed the need to extend our approach to including the effect

of the source drain bias in the electrodes in order to get agreement with well estab-

lished transport theories for non-interacting electrons at the ballistic limit. Transport

through open quantum systems follows phase coherence of the charge carriers with

the leads. For non interacting electron resistance arises through dissipation and

backscattering at the source interface, where electrons are injected into the device.

In the coherent regime this injection does not violate the exclusion principle.

We compare the steady state conductance through model electronic channels de-

scribed by the widely used Landauer-based scheme to an approach derived from a

fully dynamical perspective as provided by the Keldysh formalism. The full TD

approach is reduced to treat the steady state of the model channels provide a rig-

orous scheme for consistent consideration of the equilibration effects. The Landauer

approach, on the other hand, is based on imposing a simultaneous equilibration of

the junction with two electrodes at different chemical potentials. These imposed

equilibration assumptions lead to associate transmission spectra to the current. The

two approaches, therefore, address fundamentally differently the injection process at

the source electrode.

The Keldysh formalism based description (addressed here as the DDSS) avoids

any of the equilibration model-approximation that are inherent to the Landauer

scheme and therefore allows to quantify the impact of these approximations. The

two theories are implemented on exactly the same electronic structure model. We

scan the space spanned by the electronic parameters within models of 2 state channels
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carrying the transport. The simplicity of the system is then used to derive analytical

expressions for the I-V relations and conductances using the two approaches.

The results demonstrate that the Landauer scheme is bound to overestimate the

conductance properties of the electronic channels. The divergence from the related

exact result increases as the channel becomes less coherent. The divergence remains

substantial for a wide range of the electronic parameters characterizing the channel.

It is noted, that for parameters, which correspond to molecular-based systems, the

results obtained by the Landauer scheme-based expressions overestimate the trans-

port properties. It is, therefore, shown that a dynamical perspective, which treats

consistently the broadening effects, is required to enhance the ability to model con-

ductance even at well established steady state conditions for non-interacting electrons.

This provides a fundamental explanation for the widely noted overestimation of con-

ductances of molecular systems by state-of-the-art modeling and also suggests the

requirements that need to be considered when devising approaches aimed to improve

the description of the transport at steady state.
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APPENDIX A

Derivation of the Contour Ordered Expression for Dynamic
Expectation Values

In this appendix, the expression for the expectation value of an operator, O(t) in

terms of KC ordering operators and propagators (eqns. 3.14-3.16) is derived by

demonstration from the expression for O(t) in terms of real time propagators (eqns.

3.8, 3.12),

(A.1) O(t) =
Tr{Û(t0 − iβ, t0)Û(t0, t)ÔtÛ(t, t0)}

Tr{Û(t0 − iβ, t0)}
.

A.1 Multiple Propagator Form

First, the relation,

(A.2) O(t) =
Tr{T̂C

[

ÛC(t0 − iβ, t0)ÛC(t0, t)ÔtÛC(t, t0)}
]

Tr{ÛC(t0 − iβ, t0)}
.

where the real-time operators Û(t, t′) have been replaced by complex contour prop-

agators ÛC(t, t′). This is verified for the following two cases: first, when t is on the

purely real branches of the KC, and second, when t is on the complex branch of the

KC.

A.1.1 Real Branch

First, we assume that t is on the real branch of the KC. That is, t is a real time.

It is apparent that, for t real and greater than or equal to t0, Û(t, t0) = ÛC(t, t0)
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in eqn. A.2 because the KC branch from t0 to t traverses the real time axis in the

forward direction.

To show that Û(t0, t) = ÛC(t0, t) is a little more complex. Noting that

Û(t0, t) =Û †(t, t0)

=1̂ +
∞
∑

n=1

(i)n

n!

∫ t

t0

dt1 · · ·
∫ t

t0

dtn×

[

T̂
[

Ĥ(t1) · · · Ĥ(tn)
]]†

=1̂ +
∞
∑

n=1

(i)n

n!
(−1)

∫ t0

t

dt1 · · · (−1)

∫ t0

t

dtn×

∑

P

Θ(tP (1) − tP (2))Θ(tP (2) − tP (3)) · · ·Θ(tP (n−1) − tP (n))×

[

ĤP (1)(tP (1)) · · · ĤP (n)(tP (n))
]†

=1̂ +
∞
∑

n=1

(−i)n

n!

∫ t0

t

dt1 · · ·
∫ t0

t

dtn×

∑

P

Θ(tP (1) − tP (2))Θ(tP (2) − tP (3)) · · ·Θ(tP (n−1) − tP (n))×

ĤP (n)(tP (n)) · · · ĤP (1)(tP (1))

=1̂ +
∞
∑

n=1

(−i)n

n!

∫ t0

t

dt1 · · ·
∫ t0

t

dtnT̂r

[

Ĥ(t1) · · · Ĥ(tn)
]

(A.3)

Note that the effect of the conjugate transpose reversed both the limits of integration

as well as the order of the Hamiltonians, creating an effective reverse time ordering

operator, T̂r. Unlike T̂ , T̂r orders the operators in chronological order from left to

right. Thus, the integration limits and T̂r is coincident with the the t → t0 branch

of the KC and its direction. As a result, Û(t0, t) can be replaced by ÛC(t0, t) here as

well.
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A.1.2 Complex Branch

Now, we assume that t is on the complex branch of the KC. That is, t = t0 − iτ

where 0 ≤ τ ≤ β. Note that, when the complex time is t0− iτ , the real time is t0 and

the real propagators become Û(t0, t0) = 1̂, converting eqn. A.1 into the stationary

ensemble average of the operator Ô, as expected.

(A.4) O(t) =
Tr{ρ̂◦Ô}

Tr{ÛC(t0 − iβ, t0)}
.

This relation is preserved, when Û is replaced by ÛC , as shown below.

O(t) =
Tr{T̂C

[

ÛC(t0 − iβ, t0)ÛC(t0, t0 − iτ)Ôt0−iτ ÛC(t0 − iτ, t0)
]

}

Tr{ÛC(t0 − iβ, t0)}

=
Tr{T̂C

[

ÛC(t0 − iβ, t0)Ôt0−iτ ÛC(t0, t0 − iτ)ÛC(t0 − iτ, t0)
]

}

Tr{ÛC(t0 − iβ, t0)}

=
Tr{T̂C

[

ÛC(t0 − iβ, t0 − iτ)ÛC(t0 − iτ, t0)Ôt0−iτ

]

}

Tr{ÛC(t0 − iβ, t0)}

=
Tr{ÛC(t0 − iβ, t0 − iτ)Ôt0−iτ ÛC(t0 − iτ, t0)}

Tr{ÛC(t0 − iβ, t0)}

=
Tr{ÛC(t0 − iτ, t0)ÛC(t0 − iβ, t0 − iτ)Ôt0−iτ}

Tr{ÛC(t0 − iβ, t0)}

=
Tr{ÛC(t0 − iβ, t0 − iτ)ÛC(t0 − iτ, t0)Ôt0−iτ}

Tr{ÛC(t0 − iβ, t0)}

=
Tr{ÛC(t0 − iβ, t0)Ôt0−iτ}

Tr{ÛC(t0 − iβ, t0)}

=
Tr{ρ̂◦Ô}
Tr{ρ̂◦}

(A.5)

A.2 Single Propagator Form

In this section, the relation (eqn. 3.15),

(A.6) O(t) =
Tr{T̂C

[

e−i
R

C
dt1(Ĥ(t1)−µN̂)Ôt

]

}

Tr{Û(t0 − iβ, t0)}
.

is verified.
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A.2.1 Simple Demonstration

For visual ease, this is demonstrated with the first two terms of the expansion

eqn. 3.8,

(A.7) Û(t, t′) = 1̂ − i

∫ t

t′
dt1Ĥ(t1) + ...

for the Heisenberg operator Û(t0, t)ÔtÛ(t, t0).

Û(t0, t)ÔtÛ(t, t0) =
(

1̂ − i

∫ t0

t

dt1Ĥ(t1) + ...

)

Ôt

(

1̂ − i

∫ t

t0

dt2Ĥ(t2) + ...

)

=Ôt − i

∫ t0

t

dt1Ĥ(t1)Ôt − i

∫ t

t0

dt2ÔtĤ(t2)

−
∫ t0

t

dt1

∫ t

t0

dt2Ĥ(t1)ÔtĤ(t2) + ...

(A.8)

The integral
∫ t

t0
dt2 comes before the application of Ôt while the integral

∫ t0
t
dt1 is per-

formed afterward. For this reason, the forward (t2) and reverse (t1) integrals will not,

in general, cancel each other. Thus, each of these real-time integrals can be replaced

by a KC integral where only the branch corresponding to the appropriate real-time

region is counted. That is,
∫ t0

t
dt1 →

∫

C
dt1ΘC(t1, t) and

∫ t

t0
dt2 →

∫

C
dt1ΘC(t, t2).

This gives,

Ôt − i

∫ t0

t

dt1Ĥ(t1)Ôt − i

∫ t

t0

dt2ÔtĤ(t2)

−
∫ t0

t

dt1

∫ t

t0

dt2Ĥ(t1)ÔtĤ(t2) + ...

= Ôt − i

∫

C

dt1

[

ΘC(t1, t)Ĥ(t1)Ôt + ΘC(t, t1)ÔtĤ(t1)
]

−
∫

C

dt1

∫

C

dt1ΘC(t1, t)ΘC(t, t2)Ĥ(t1)ÔtĤ(t2) + ...

= Ôt − i

∫

C

dt1T̂C

[

Ĥ(t1)Ôt

]

−
∫

C

dt1

∫

C

dt2ΘC(t1, t)ΘC(t, t2)Ĥ(t1)ÔtĤ(t2) + ...

(A.9)
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In order to deal with the last term on the right hand side of eqn. A.9, two additional

terms from the remainder of the expansion are used,

Ôt−i
∫

C

dt1T̂C

[

Ĥ(t1)Ôt

]

−
∫

C

dt1

∫

C

dt2ΘC(t1, t)ΘC(t, t2)Ĥ(t1)ÔtĤ(t2)

− 1

2

∫ t0

t

dt1

∫ t0

t

dt2T̂r

[

Ĥ(t1)Ĥ(t2)
]

Ôt

− 1

2

∫ t

t0

dt1

∫ t

t0

dt2T̂ Ôt

[

Ĥ(t1)Ĥ(t2)
]

+ ...

= Ôt − i

∫

C

dt1T̂C

[

Ĥ(t1)Ôt

]

− 1

2

∫

C

dt1

∫

C

dt2

[

ΘC(t1, t)ΘC(t, t2)Ĥ(t1)ÔtĤ(t2) − ΘC(t2, t)ΘC(t, t1)Ĥ(t2)ÔtĤ(t1)
]

− 1

2

∫ t0

t

dt1

∫ t0

t

dt2

[

Θ(t1 − t2)Ĥ(t2)Ĥ(t1) − Θ(t2 − t1)Ĥ(t1)Ĥ(t2)
]

Ôt

− 1

2

∫ t

t0

dt1

∫ t

t0

dt2Ôt

[

Θ(t1 − t2)Ĥ(t1)Ĥ(t2) − Θ(t2 − t1)Ĥ(t2)Ĥ(t1)
]

+ ...

= Ôt − i

∫

C

dt1T̂C

[

Ĥ(t1)Ôt

]

− 1

2

∫

C

dt1

∫

C

dt2×

[ΘC(t1, t)ΘC(t, t2)Ĥ(t1)ÔtĤ(t2) − ΘC(t2, t)ΘC(t, t1)Ĥ(t2)ÔtĤ(t1)

ΘC(t1, t2)ΘC(t2, t)Ĥ(t1)Ĥ(t2)Ôt − ΘC(t2, t1)ΘC(t1, t)Ĥ(t2)Ĥ(t1)Ôt

ΘC(t, t1)ΘC(t1, t2)ÔtĤ(t1)Ĥ(t2) − ΘC(t, t2)ΘC(t2, t1)ÔtĤ(t2)Ĥ(t1)] + ...

= Ôt − i

∫

C

dt1T̂C

[

Ĥ(t1)Ôt

]

− 1

2

∫

C

dt1

∫

C

dt2T̂C

[

Ĥ(t1)Ĥ(t2)Ôt

]

+ ...

(A.10)

This demonstrates eqn. A.6 when t is on the real branches of the KC. To include

the possibility of complex t, Û(t0 − iβ, t0) is combined with this expression in the

manner described above to give eqn. A.6.
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A.2.2 General Derivation

A more general derivation of eqn. A.6, analogous to the one in the previous sec-

tion, is presented here. As before, the Heisenberg representation of Ô is investigated,

Û(t0, t)ÔtÛ(t, t0) =

(

T̂r

[

e−i
R t0

t dt1(Ĥ(t1)−µN̂)
])

Ôt

(

T̂
[

e
−i

R t

t0
dt′1(Ĥ(t′1)−µN̂)

])

=

(

1̂ +
∞
∑

m=1

(−i)m

m!

∫ t0

t

dt1 · · ·
∫ t0

t

dtmT̂r

[

Ĥ(t1) · · · Ĥ(tm)
]

)

Ôt×
(

1̂ +
∞
∑

n=1

(−i)n

n!

∫ t

t0

dt′1 · · ·
∫ t

t0

dt′nT̂
[

Ĥ(t′1) · · · Ĥ(t′n)
]

)

(A.11)

The sums in the last part of eqn. A.11 can be reordered so that each term in the

sequence has the same total number of Hamiltonians,

Û(t0, t)ÔtÛ(t, t0) =

∞
∑

j=0

∑

m,n≥0;m+n=j

(−i)m+n

m!n!

∫ t0

t

dt1 · · ·
∫ t0

t

dtm

∫ t

t0

dt′1 · · ·
∫ t

t0

dt′n×

T̂r

[

Ĥ(t1) · · · Ĥ(tm)
]

ÔtT̂
[

Ĥ(t′1) · · · Ĥ(t′n)
]

=
∞
∑

j=0

∑

m,n≥0;m+n=j

(−i)m+n

m!n!

∫ t0

t

dt1 · · ·
∫ t0

t

dtm

∫ t

t0

dt′1 · · ·
∫ t

t0

dt′n×

∑

P

Θ(tP (1) − tP (2))Θ(tP (2) − tP (3)) · · ·Θ(tP (n−1) − tP (n))×

ĤP (m)(tP (m)) · · · ĤP (1)(tP (1)) × Ôt×
′
∑

P

Θ(tP ′(1) − tP ′(2))Θ(tP ′(2) − tP ′(3)) · · ·Θ(tP ′(n−1) − tP ′(n))×

ĤP ′(1)(tP ′(1)) · · · ĤP ′(n)(tP ′(n))

(A.12)

where m = 0 implies that there are no Hamiltonians on the left side of Ôt and,

likewise, n = 0 implies that there are no Hamiltonians to the right of Ôt. The

ordering of the operators indicates that the real time ordering operators, T̂r and

T̂ can be replaced by a contour ordering operator T̂C . However, the combinatoric
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coefficient must be calculated correctly. The explicit expressions for T̂r and T̂ in eqn.

A.12 both sum over all permutations of the operators being ordered. This implies

that every possible rearrangement of Hamiltonians to the left (and likewise, to the

right) of Ôt has been accounted for. To allow for a global application of T̂C , all

possible permutations must be allowed. Since the order of the m Hamiltonians on

the left (or n Hamiltonians on the right) of Ôt is already accounted for, the missing

factor must only account for the number of ways that one can choose m Hamiltonians

on the left (or conversely n Hamiltonians on the right) from the total number number

of Hamiltonians, m+n. From combinatorics, this number is given by (m+n)!/(m!n!)

and the sum constrained by (m+ n = j) eqn. (A.12) can be rewritten, giving

Û(t0, t)ÔtÛ(t, t0) =

∞
∑

j=0

∑

m,n≥0;m+n=j

(−i)m+n

m!n!

m!n!

(m+ n)!

∫

C′

dt1 · · ·
∫

C′

dtm+n×

∑

P

ΘC(tP (1), tP (2))Θ(tP (2), tP (3)) · · ·Θ(tP (m+n−1), tP (m+n))×

ĤP (1)(tP (1)) · · · Ôt · · · ĤP (m+n)(tP (m+n))

=
∞
∑

j=0

(−i)j

j!

∫

C′

dt1 · · ·
∫

C′

dtjT̂C

[

ĤP (1)(tP (1)) · · · ĤP (j)(tP (j))Ôt

]

(A.13)

where C ′ includes the branches of the KC where t is real. As in the previous section,

Û(t0 − iβ, t0) is combined with this expression in a similar manner to give eqn. A.6.
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APPENDIX B

Derivation of the Quantum Master Equation for Open
Systems

We begin with the mixed representation equation of motion of the full system (eq.

6.2):

∂

∂t̄
G<(t̄, ω̄) = i [G<(t̄, ω̄),h0](B.1)

+ i

∫

dω′[G<(t̄, ω̄ + ω′)v̄(t̄, ω′) − v̄(t̄, ω′)G<(t̄, ω̄ − ω′)].

where h0 = S−1/2h̃0S
−1/2, v̄(t̄, ω′) = S−1/2˜̄v(t̄, ω′)S−1/2 and G<(t̄, ω̄) = S1/2G̃<(t̄, ω̄)S1/2.

Here h̃0, ˜̄v(t̄, ω′) and G̃<(t̄, ω̄) are in the AO representation and S is the AO overlap

matrix. We note that eqn. B.1 applies to a system that is infinite in extent. Our

goal is to derive an appropriate mixed-representation equation of motion for a finite

system under the influence of infinite baths. We will do this by partitioning our

system into a device region and two bulk regions.

(B.2) h̃0 =















h̃0LL h̃0LC 0

h̃0CL h̃0CC h̃0CR

0 h̃0RC h̃0RR















(B.3) S̃ =















S̃LL 0 0

0 S̃CC 0

0 0 S̃RR














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(B.4) ˜̄v(t, ω) =















0 0 0

0 ˜̄vCC(t, ω) 0

0 0 0















(B.5) G̃<(t̄, ω̄) =















G̃<
LL(t̄, ω̄) G̃<

LC(t̄, ω̄) 0

G̃<
CL(t̄, ω̄) G̃<

CC(t̄, ω̄) G̃<
CR(t̄, ω̄)

0 G̃<
RC(t̄, ω̄) G̃<

RR(t̄, ω̄)















Note that we make the following two important assumptions: first the system-bulk

coupling overlap submatrices (SLC , SRC , etc.) are zero; second, the TD perturbation

is nonzero only in the device (CC) region. This derivation will lead to a generalized

quantum master equation (GQME) with memory terms that resemble the weak

system bath coupling memory kernel for the density matrix GQME. Partitioning

yields the following equations of motion:

i
∂

∂t̄
G<

CC(t̄, ω̄) = [h0CC ,G
<
CC(t̄, ω̄)](B.6)

+
∑

I∈L,R

[hCIG
<
IC(t̄, ω̄) − G<

CI(t̄, ω̄)hIC ]

+

∫

dω′[v̄CC(t̄, ω′)G<
CC(t̄, ω̄ − ω′) − G<

CC(t̄, ω̄ + ω′)v̄CC(t̄, ω′)].

i
∂

∂t̄
G<

IC(t̄, ω̄) = h0IIG
<
IC(t̄, ω̄) + h0ICG<

CC(t̄, ω̄)(B.7)

− G<
II(t̄, ω̄)h0IC − G<

IC(t̄, ω̄)h0CC

−
∫

dω′[G<
IC(t̄, ω̄ + ω′)v̄CC(t̄, ω′)].

where I ∈ L,R. Furthermore, given the assumptions made on the overlap matrix,

we have v̄CC(t̄, ω′) = S
−1/2
CC

˜̄vCC(t̄, ω′)S
−1/2
CC , h0IJ = S

−1/2
II h̃0IJS

−1/2
JJ and G<

IJ(t̄, ω̄) =

S
1/2
II G̃<

IJ(t̄, ω̄)S
1/2
JJ for I, J ∈ L,C,R. In addition, we will assume that the last term in

eqn. B.7 is negligible. In studying large chemical systems in the AO representation,
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this can easily be achieved by extending the dimension of the device beyond the

spatial extent of the perturbation (assuming that the perturbation is finite in spatial

extent). We now divide the lesser GF into a sum of two parts, as follows,

(B.8) G<(t̄, ω̄) ≡ G0,<(ω̄) + ∆G<(t̄, ω̄)

where G0,<(ω̄) is the lesser GF in the absence of a TD perturbation (i.e. Hamiltonian

is constant in time) and ∆G<(t̄, ω̄) is the remainder (i.e. the part that carries all

perturbation effects). Note that we do not claim that G0,<(ω̄) is the lesser GF at

t̄ = t0 → −∞. It is merely the contribution to the GF in the absence of a time

dependent perturbation. Note furthermore, that G0,<(ω̄) does not depend on t̄ by

definition of the Green function. This implies that

(B.9)
∂

∂t̄
G0,<(ω̄) = 0

and therefore,

(B.10)
∂

∂t̄
G<(t̄, ω̄) =

∂

∂t̄
∆G<(t̄, ω̄)

Using these properties and the approximations above, we can rewrite eqns. B.6 and

B.7 in terms of ∆G<(t̄, ω̄).

i
∂

∂t̄
∆G<

CC(t̄, ω̄) = [h0CC ,∆G<
CC(t̄, ω̄)](B.11)

+
∑

I∈L,R

[hCI∆G<
IC(t̄, ω̄) − ∆G<

CI(t̄, ω̄)hIC ]

+

∫

dω′[v̄CC(t̄, ω′)G0,<
CC(ω̄ − ω′) − G0,<

CC(ω̄ + ω′)v̄CC(t̄, ω′)]

. +

∫

dω′[v̄CC(t̄, ω′)∆G<
CC(t̄, ω̄ − ω′) − ∆G<

CC(t̄, ω̄ + ω′)v̄CC(t̄, ω′)]

(B.12) i
∂

∂t̄
∆G<

IC(t̄, ω̄) = h0II∆G<
IC(t̄, ω̄) − ∆G<

IC(t̄, ω̄)h0CC + h0IC∆G<
CC(t̄, ω̄)
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We can integrate these equations as suggested in the formalism by redefining ∆G<
IC(t̄, ω̄)

as follows:

(B.13) ∆G<
IC(t̄, ω̄) ≡ e−ih0II(t̄−t0)∆G<

IC(t̄, ω̄)eih0CC(t̄−t0).

Upon substitution of definition eqn. B.13 into eqn. B.12 we get,
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APPENDIX C

Derivation of Two-Frequency Equation of Motion with
Exact Treatment of Steady State Bias

A derivation of eqn. 6.35 is presented here. We start with the general two-frequency

equation of motion (eqn. 6.23),

H(∆ω)|∆G<
CC(∆ω, ω̄)〉〉 =

|B(1)
CC(∆ω, ω̄)〉〉

+
1

π

∫

dω′|BCC(ω′,∆ω, ω̄)〉〉

(C.1)

and the frequency representation of a classical driving field, expressed, without loss

of generality, as a sum of the time independent field of arbitrary strength v◦ and a

time dependent perturbation vTD (eqn. 6.34),

(C.2) v(∆ω) = 2πδ(∆ω)v◦ + vTD(∆ω).

Substituting eqn. C.2 into eqn. C.1 gives,

H(∆ω)|∆G<
CC(∆ω, ω̄)〉〉 =

2πδ(∆ω)|B(1)
v◦,CC(ω̄)〉〉

+V◦|∆G<
CC(∆ω, ω̄)〉〉

+|B(1)
TD,CC(∆ω, ω̄)〉〉

+
1

π

∫

dω′|BTD,CC(ω′,∆ω, ω̄)〉〉

(C.3)
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where V◦ is the time-independent driving field in tetradic notation,

(C.4) V◦,ni+j,nk+l ≡ v◦,ikδlj − v◦,ljδik

and |B(1)
v◦,CC(ω̄)〉〉, |B(1)

TD,CC(∆ω, ω̄)〉〉, and |BTD,CC(ω′,∆ω, ω̄)〉〉 are defined as follows,

(C.5) |B(1)
v◦,CC(ω̄)〉〉ni+j ≡

[

v◦,CCG0,<
CC(ω̄) − G0,<

CC(ω̄)v◦,CC

]

ij
.

(C.6)

|B(1)
TD,CC(∆ω, ω̄)〉〉ni+j ≡

[

vTD,CC(∆ω)G0,<
CC(ω̄ − ∆ω/2) − G0,<

CC(ω̄ + ∆ω/2)vTD,CC(∆ω)
]

ij

|BTD,CC(ω′,∆ω, ω̄)〉〉ni+j ≡

[vTD,CC(2ω′)∆G<
CC(∆ω − 2ω′, ω̄ − ω′) − ∆G<

CC(∆ω − 2ω′, ω̄ + ω′)vTD,CC(2ω′)]ij

(C.7)

The second term on the right side of eq. C.3 is the contribution of 2πδ(∆ω)v◦ to the

second term on the right hand side of eqn. C.1. This term can be moved to the left

hand side of eqn. C.3 giving,

Hv◦(∆ω)|∆G<
CC(∆ω, ω̄)〉〉 =

2πδ(∆ω)|B(1)
v◦,CC(ω̄)〉〉

+|B(1)
TD,CC(∆ω, ω̄)〉〉

+
1

π

∫

dω′|BTD,CC(ω′,∆ω, ω̄)〉〉

(C.8)

where Hv◦(∆ω) ≡ H(∆ω)−V◦(∆ω) simply adds the time-independent driving field

to the original Hamiltonian,

(C.9) Hv◦,ni+j,nk+l(∆ω) ≡ ∆ω − [(ǫiδik + vik) δlj − (ǫjδlj + vlj) δik] − Γijkl(∆ω).
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Now, we multiply both sides of eqn. C.8 by Gv◦(∆ω) = H−1
v◦ (∆ω) giving,

|∆G<
CC(∆ω, ω̄)〉〉 =

2πδ(∆ω)Gv◦(0)|B(1)
v◦,CC(ω̄)〉〉

+Gv◦(∆ω)|B(1)
TD,CC(∆ω, ω̄)〉〉

+
1

π
Gv◦(∆ω)

∫

dω′|BTD,CC(ω′,∆ω, ω̄)〉〉

(C.10)

The first term on the right side of eqn. C.10 can be absorbed into the left side with

the following definition,

(C.11) |∆G<
TD,CC(∆ω, ω̄)〉〉 ≡ |∆G<

CC(∆ω, ω̄)〉〉 − 2πδ(∆ω)Gv◦(0)|B(1)
v◦,CC(ω̄)〉〉

yielding,

|∆G<
TD,CC(∆ω, ω̄)〉〉 =

Gv◦(∆ω)|B(1)
TD,CC(∆ω, ω̄)〉〉

+
1

π
Gv◦(∆ω)

∫

dω′|BTD,CC(ω′,∆ω, ω̄)〉〉.

(C.12)

Substituting eqn. C.11 into the right side of eqn. C.12 gives

|∆G<
TD,CC(∆ω, ω̄)〉〉 =

Gv◦(∆ω)|B(1)
TD,CC [Gv◦ ] (∆ω, ω̄)〉〉

+
1

π
Gv◦(∆ω)

∫

dω′|BTD,CC [∆Gv◦ ] (ω
′,∆ω, ω̄)〉〉.

(C.13)

where,

(C.14)

|B(1)
TD,CC [Gv◦ ] (∆ω, ω̄)〉〉ni+j ≡

[

vTD,CC(∆ω)G0,<
v◦,CC(ω̄ − ∆ω/2) − G0,<

v◦,CC(ω̄ + ∆ω/2)vTD,CC(∆ω)
]

ij

|BTD,CC [∆Gv◦ ] (ω
′,∆ω, ω̄)〉〉ni+j ≡

[

vTD,CC(2ω′)∆G<
v◦,CC(∆ω − 2ω′, ω̄ − ω′) − ∆G<

v◦,CC(∆ω − 2ω′, ω̄ + ω′)vTD,CC(2ω′)
]

ij

(C.15)
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and

(C.16) |G0,<
v◦,CC(ω̄)〉〉 ≡ |G0,<

CC(ω̄)〉〉 + Gv◦(0)|B(1)
v◦,CC(ω̄)〉〉.

Note that eqn. 6.35 has now been derived and is analogous to eqn. 6.23, but with a

different propagator tensor (G → Gv◦) and a different initial guess (G0,< → G0,<
v◦ ).

To verify that this is indeed the case, the equation for the total lesser GF must be

expressible in terms of the new initial guess (eqn. C.16) and the new time dependent

remainder, eqn. C.11 ideally, in a manner analogous to

(C.17) G<
CC(∆ω, ω̄) ≡ ∆G<(∆ω, ω̄) + 2πδ(∆ω)G0,<

CC(ω̄)

This can easily be verified by substituting eqn. C.11 into the above definition of the

total lesser GF eqn. C.17. This substitution gives,

(C.18) G<
CC(∆ω, ω̄) = ∆G<

TD,CC(∆ω, ω̄) + 2πδ(∆ω)G0,<
v◦,CC(ω̄)

verifying this point.
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