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ABSTRACT 
 
 

EVOLUTIONARY STRUCTURAL OPTIMIZATION WITH MULTIPLE 
PERFORMANCE CONSTRAINTS BY LARGE ADMISSIBLE 

PERTURBATIONS 
 

by 
 

Taemin Earmme 
 
 
 
Co-Chairs: Michael M. Bernitsas and Panos Y. Papalambros 

 

 

 A LargE Admissible Perturbation (LEAP) with Evolutionary Structural 

Optimization methodology is developed. The LEAP methodology uses an incremental 

predictor-corrector scheme, which makes it possible to solve the redesign problem using 

data only from the finite element analysis of the baseline structure for changes on the 

order of 100% in performance and redesign variables without trial and error or repetitive 

finite element analyses. A structural topology evolution algorithm is introduced using a 

Cumulative Energy Elimination Rate (CEER) scheme by removing low energy elements 

at each iteration, while using the elastic modulus in each element as redesign variable in 

the LEAP methodology. Benchmark examples are used to demonstrate that static 

displacement, modal dynamic constraints, and simultaneous static and dynamic 

constraints can be achieved. Convergence is achieved in 3 to 7 iterations with two FEA’s 

per iteration inside the ESO/LEAP algorithm. Results of numerical applications satisfy 

engineering intuition and show the effect of multiple objectives on topology evolution. 
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CHAPTER I 

 

INTRODUCTION 
 

 

A designer knows he has achieved perfection not when there is nothing left to add, 

but when there is nothing left to take away. (Antoine de Saint-Exupéry) 

 

 

 For decades, the development of Finite Element Analysis (FEA) has played an 

important role design various and complex structures along with the achievement of 

computational efficiency. The area of structural optimization has expanded with the 

advancement of Finite Element Analysis (FEA) in various industry fields from 

automotive to electronics, mostly designing the mechanical elements and devices. The 

structural optimization techniques played a major role to obtain a best solution satisfying 

any engineering specification required by a designer. 

 Structural optimization can be largely classified into three main areas: size 

optimization, shape optimization and topology optimization. In size optimization, the 

goal is to find the optimal thickness distribution of a linearly elastic plate or the optimal 

member areas in a truss structure. The design domain and the topology of the structure 

are fixed while changing the size to achieve the design objective. In shape optimization, 

the boundary of a given topology varies to obtain optimal shape. In a typical case of 

shape optimization such as the boundary variation method, the objective is to refine the 

initial shape to an optimized shape, which achieves minimal von Mises equivalent stress 

in the body.  

 Topology optimization concentrates on the distribution of material and structural 

connectivity in the design domain. It aims finding an optimal lay-out of the structure, 
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which maximizes (or minimizes) an efficiency measure subjected to specific constraints. 

 The importance of topology optimization is growing to a greater extent recently, 

since it can provide intuitive concepts to a designer at the early stage of the designing 

process. 

 

1.1. Literature Review 

 

 In Section 1.1.1, the development of general Topology Optimization is reviewed 

with two major approaches: Homogenization method and Solid Isotropic Material 

Penalization. Evolutionary Structural Optimization (ESO) related papers are presented in 

Section 1.1.2 and a development history of LargE Admissible Perturbations (LEAP) 

methodology is reviewed in Section 1.1.3. 

 

1.1.1. Topology Optimization 

 

 Topology optimization is first developed from distributed parameter approaches 

to shape optimization. Cheng and Olhoff [1] identified that the zero thickness of a plate 

implies void material in the structure. Their work led to Bendsøe and Kikuchi [2] who 

first introduced the material distribution for topology design as a computational tool. 

 Most of topology structural optimization problem frequently studied is the 

compliance minimization (stiffness maximization) subject to volume constraints. There 

are two approaches to this problem: the one is the homogenization method and the other 

is SIMP (Solid Isotropic with Material Penalization) method. 

 

Homogenization Method 

 

 In the homogenization method, a homogenized elasticity tensor is formulated to 

model a unit cell with a rectangular void. (Bendsøe & Kikuchi [2], Bendsøe [3]) The 

dimensions and orientation angles of the voids are used as the design variables. The 

initial design domain is homogeneous at the macroscopic scale and the size and 

orientation of internal rectangular holes are varied to find optimal porosity of the 
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structure. The method has been successfully applied to solve many types of topology 

optimization problems (Suzuki [4], Ma & Kikuchi [5], Pederson [6]). 

 

SIMP(Solid Isotropic with Material Penalization) Method 

 

 The SIMP (Solid Isotropic with Material Penalization) method is the most widely 

used minimum compliance formulation. It implements the idea of a penalizing density 

variable to converge to zero or one, i.e., void or solid (Yang & Chuang [7]). One of the 

advantages of the SIMP formulation is that it is easy to implement in a Finite Element 

Analysis framework.  

 

1.1.2. Evolutionary Structural Optimization 

 

 Evolutionary Structural Optimization (ESO) was first introduced by Xie and 

Steven [8] by gradually removing the low stress elements to obtain the objective structure. 

It has been applied to many individual optimization criteria such as stress, strain, stiffness, 

natural frequency, buckling, stress minimization, and heat transfer (Chu et al.[9], Zhao, 

Steven & Xie [10], Manickarajah, Xie & Steven [11], Li et al.[12]) . 

 The ESO methodology is expanded to Bi-directional Evolutionary Structural 

Optimization (BESO) (Querin et al.[13], Proos et al.[14], Huang & Xie [15]). The BESO 

approach allows both removing and adding elements which leads to the optimum more 

efficiently. BESO methodology was used to design continuum structures with one or 

multiple materials, or periodic structures utilizing the material interpolation scheme 

(Huang & Xie [16],[17]). 

 

1.1.3. LargE Admissible Perturbation (LEAP) Methodology 

 

 Perturbation based redesign methods have been introduced by Stetson and Palma 

[18]. They used linear perturbation method to calculate small structural changes 

necessary which affect the given change in vibration modes. Sandström and Anderson 
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[19] and Stetson and Harrison [20] developed equations that relate the unknown 

eigenvectors of the desired structure to the known eigenvectors of the initial structure. 

 The LargE Admissible Perturbation (LEAP) methodology was first developed to 

formulate and solve the structural redesign problem. It can solve large scale redesign 

problems subject to static displacement, natural frequency, forced dynamics amplitude, 

and static stress constraints. LEAP can achieve changes on the order of 100%-300% 

without trial and error or repeated finite element analyses. Hoff and Bernitsas [21] 

introduced static and modal dynamic redesign. The two constraints were integrated in the 

redesign process by Kim and Bernitsas [22].  Bernitsas and Tawekal [23] solved the 

model calibration problem by LEAP in a cognate space. Plate and shell elements were 

added by Bernitsas and Rim [24]. Bernitsas and Suryatama [25] improved the static 

deflection redesign algorithm by introducing static mode compensation. Bernitsas and 

Blouin [26] developed a LEAP algorithm to solve the problem of forced response 

amplitude. The static stress redesign problem was solved by Bernitsas and by Kristanto 

[27]. Blouin and Bernitsas [28] developed and compared incremental and direct methods 

for the LEAP algorithm.  

 The LEAP methodology was first implemented in topology optimization by 

Suryatama and Bernitsas [29] optimizing a structure which satisfied several performance 

constraints simultaneously. This was further developed and studied by Miao and 

Bernitsas [30] and Earmme and Bernitsas [31] using the Evolutionary Structural 

Optimization method.  

 

1.2. Dissertation Outline 

 

 In this dissertation, a structural topology evolution algorithm is developed using 

LargE Admissible Perturbations (LEAP). The problem formulation for general topology 

optimization and LargE Admissible Perturbations methodology is described in Chapter II. 

The general topology optimization is formulated in Section 2.1 and LEAP methodology 

is presented in Section 2.2. 

 In Section 2.3, an Evolutionary Structural Optimization scheme is described. The 

ESO/LEAP algorithm consists of two nested loops. The outer loop is the process of 
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removal of inefficient elements while the inner loop uses LEAP to find the optimal 

design which satisfies the performance objectives. The elastic modulus in each element is 

used as redesign variable in the LEAP methodology. A Cumulative Energy Elimination 

Rate (CEER) scheme is introduced by removing low energy elements, which do not 

contribute to total performance of the structure, at each iteration. 

 In Chapter III, the developed methodology is tested by two benchmark examples: 

cantilever beam and bridge. The numerical results for static displacement, modal 

dynamic, and simultaneous static displacement and modal dynamic performance 

constraints are presented from Section 3.1 through Section 3.3. The results for cantilever 

beam example with increased finite element mesh is exhibited in Section 3.4 and the 

converged results for varying the value of performance constraints are shown in Section 

3.5. 

 The detailed evolution pattern is further studied in Chapter IV. The evolving 

topology progress of benchmark example is shown to verify the effectiveness of present 

methodology. The dissertation contributions/conclusions and suggested future work are 

summarized in Chapter V.  
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CHAPTER II 

 

PROBLEM FORMULATION 
 

 

 This Chapter consists of two parts, the first one is the general topology 

optimization formulation and the second recasts that formulation into a Large Admissible 

Perturbation form. Those are presented in Sections 2.1 and 2.2, respectively. 

 

2.1. Topology Optimization Formulation 

 

The consistent mass matrix for an isotropic element is 

 

[ ] [ ] [ ]
e

T
e e e e

V

m N N dVρ= ∫ ,         (2.1) 

where eρ is the element density, eV  is the element volume, and [ ]eN  is the interpolation 

function matrix for each element. Accordingly, the total structural mass matrix can be 

written as 

 

1
[ ] [ ]

en

e
e

m m
=

=∑ .       (2.2) 

 

Equation (1) shows that by changing the element density, we can change the mass of the 

structural element. 

 

The stiffness matrix of each element is 
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[ ] [ ] [ ][ ]
e

T
e e e e e

V

k E B D B dV= ∫ ,       (2.3) 

 

where eE  is the elastic Young’s modulus, [ ]eD  is the constitutive law matrix, and [ ]eB  is 

the nodal displacement matrix. The stiffness of the element can be changed by modifying 

eE . 

 

Let eα  denote the fractional change of eρ  or eE . Then, 

 

 (1 )
ee e ρρ ρ α′ = + ,         (2.4) 

(1 )
ee e EE E α′ = + ,       (2.5) 

 

where 
eρ

α and 
eEα are the fractional changes of the eρ  and eE , respectively. The 

optimization design variables are all the fractional changes eα  and these small amount of 

changes are obtained from Large Admissible Perturbation calculations.  

 

Thus, the topology optimization problem can be set as 

 

Minimize 2
e

e
α∑ ,       (2.6) 

 

subject to un  static displacement constraints 

 

ii uu b′ =       1, 2,..., ui n= ,        (2.7) 

 

nω  natural frequency constraints 

 
2

ii bωω′ =      1, 2,...,i nω= ,         (2.8) 



 8

 

dn  forced-response amplitude constraints 

 

ii dd b′ =       1, 2,..., di n= ,       (2.9) 

 

nσ  static stress constraints 

 

ii bσσ ′ =       1, 2,...,i nσ= ,     (2.10) 

 

where , ,u db b bω , and bσ  are the designer performance specifications. Primed quantities 

refer to the objective structure while unprimed quantities refer to the initial baseline 

structure. Further, an  admissibility constraints are imposed from among the complete set 

 

 

{ } [ ]{ } 0T
j ikφ φ′ ′ ′ = ,                                (2.11) 

 { } [ ]{ } 0T
j imφ φ′ ′ ′ = ,   1, 2,...,i nω= , 1,..., rj i n= + ,               (2.12) 

 

 

and 2p lower and upper bounds on the redesign variables are imposed 

 

1 ,e e eα α α− +− < ≤ ≤  1, 2,...,e p= ,     (2.13) 

 

where eα  is element redesign variable, p is the number of redesign variables, eα
− , eα

+  are 

lower and upper bound, respectively. Material specifications on the redesign variables are 

 

0eE =  or sE .        (2.14) 

 

 The optimization criterion here is the norm of the difference between initial 

structure and objective structure instead of minimization of compliance which is usually 
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used in other topology optimization techniques. This allows the designer to obtain a 

structure that satisfies multiple performance objectives as well as material specifications.  

 

 

2.2. LargE Admissible Perturbation (LEAP) Formulation 

 

 In LEAP methodology, the general perturbation equations are derived by 

expressing the performance of the unknown (objective) State S2 in terms of baseline 

(initial) State S1 and the designer’s specifications. The static and modal dynamic 

equations for finite element analysis are written as 

 

[ ]{ } { }k u f= ,       (2.15) 

 
2([ ] [ ]){ } 0k mω φ− =        (2.16) 

 

The equations for unknown State S2 are 

 

[ ]{ } { }k u f′ ′ ′= ,       (2.17) 

 
2([ ] [ ]){ } 0k mω φ′ ′ ′ ′− = .      (2.18) 

 

Properties of S1 and S2 are related by the perturbation equations (2.19)-(2.22), 

  

stiffness  matrix : [ ] [ ] [ ]k k k′ = + ∆ ,       (2.19) 

 

mass matrix : [ ] [ ] [ ]m m m′ = + ∆ ,    (2.20) 

 

mode shape : { } { } { }φ φ φ′ = + ∆ ,     (2.21) 

 

 displacement : { } { } { }u u u′ = + ∆ ,     (2.22) 
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where ∆  represents the difference between State S1 and State S2.  Substituting (2.19), 

(2.20) and (2.22) into (2.17) and (2.18) yields 

 
1{ } { } ([ ] [ ]) { }u u k k f− ′∆ = − + + ∆ ,       (2.23) 

  2 ' 2{ } ([ ] [ ]){ } { } ([ ] [ ]){ }T Tk m k mφ ω φ φ ω φ′ ′ ′ ′ ′ ′ ′∆ − ∆ = − − .   (2.24) 

 

where [ ]k∆  and [ ]m∆  are functions of redesign variables eα . For rod and beam elements, 

the stiffness and mass matrices depend linearly on eα . However, in the case of plate 

elements, the stiffness matrix for bending is a cubic form [24].  We use eight node solid 

elements, CHEXA elements in MSC/NASTRAN for all the numerical analysis in this 

work. 

 

1 1
[ ] [ ] [ ]

p p

e e e
e e

k k k α
= =

∆ = ∆ =∑ ∑ ,       (2.25) 

1 1
[ ] [ ] [ ]

p p

e e e
e e

m m m α
= =

∆ = ∆ =∑ ∑ .                (2.26) 

 

Substituting (2.25) into (2.23), we derive the static general perturbation. (See Appendix 

A) Additionally, substituting (2.19)-(2.22) and (2.25)-(2.26) into (2.24), we get the 

general perturbation equation for modal dynamics.  

 

The static general perturbation equation can be written as 

 

1
,

1

1

{ } [ ]{ }

{ } [ ]{ } ({ } [ ]{ } )

r

p
T

n m e e
e

i i i m p
T Tm
m m m e m e

e

k u
u u

k k

φ α
φ

φ φ φ φ α

=

=

=

′
′ ′= −

′ ′ ′ ′+

∑
∑

∑
,  for , 1, 2,...,i j n=   (2.27) 

 

Also the general perturbation equation for modal dynamics can be shown as 
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2 2

1
({ } [ ]{ } { } [ ]{ } ) { } [ ]{ } { } [ ]{ }

p
T T T T T
j e i i j e i e i j i j e i

e
k m m kφ φ ω φ φ α ω φ φ φ φ

=

′ ′ ′ ′ ′ ′ ′ ′ ′ ′− = −∑   

 for , 1, 2,...,i j n=            (2.28) 

 

Detailed derivation for (2.28) is shown in Appendix B. 

 

 For the general perturbation equation for forced response amplitudes and static 

stresses, refer to Bernitsas and Blouin [26] and Bernitsas and Kristanto [27], respectively. 

The general perturbation equations (2.27) and (2.28) are implicit nonlinear equations with 

respect to eα  which cannot be solved directly. Thus, we have developed an incremental 

predictor and a corrector scheme to optimize these equations. This concept is outlined in 

Figure 2.1.  

 

 
Figure 2.1 Schematic representation of solution process 
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 To illustrate the incremental predictor and corrector scheme, we use the static 

redesign problem below. The desired change in static response is divided into N  small 

increments. Subscript l  denotes the number of each increment.  

 

 Considering the optimization problem defined in (2.6)-(2.13), the incremental 

redesign problem can be written as  

 

Minimize 
1

2

1 1

[(1 ) (1 ) 1]
p l

l q
e e

e q

α α
−

= =

+ + −∑ ∏ ,                            (2.29) 

 

subject to 

 

 

 
i

l l
i uu b′ =       1, 2,..., ui n= ,     (2.30) 

2l

i

l
i bωω′ =     1, 2,...,i nω= ,      (2.31) 

i

l l
i dd b′ =       1, 2,..., di n= ,     (2.32) 

i

l l
i bσσ ′ =       1, 2,...,i nσ= ,     (2.33) 

{ } [ ]{ } 0
lT l l

j ikφ φ′ ′ ′ =        (2.34) 

 { } [ ]{ } 0
lT l l

j imφ φ′ ′ ′ = ,         (2.35) 

   for  1, 2,...,i nω= , 1,..., rj i n= + ,      

 

and the lower and upper bounds are 

 

1 1

1 1

1 10 1
(1 ) (1 )

le e
el l

q q
e e

q q

α αα
α α

− +

− −

= =

+ +
< ≤ + ≤

+ +∏ ∏
,     (2.36) 
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where 
1

1

(1 )
l

q
e

q

α
−

=

+∏  is known from all previous increments. For the first iteration, l is equal 

to 1 by definition.  

 

 While selecting the optimal criterion as to equal the end of incremental change to 

completion of the solution process, criterion (2.6) is satisfied since  

 

1

1 (1 )
N

q
e e

q

α α
=

+ = +∏      (2.37) 

 

At the same time, the performance constraints satisfy the general perturbation equation 

such as (2.27) and (2.28).  

 At each increment, equations (2.29)-(2.35) need to be solved to obtain the 

unknown fractional changes , 1,...l
e e pα = , The eigenvectors { } , 1,...,l

m rm nφ′ =  in general 

perturbation equation (2.27) are approximated by the known eigenvectors { }mφ  of the 

initial structure in the first increment. For subsequent increments in the prediction phase,  

the eigenvectors are approximated by the ones which are computed in the previous 

increments. The optimization problem is solved to obtain the incremental fractional 

changes which predict the solution. From this, the eigenvectors are updated (see 

Appendix C). With new updated eigenvectors, corrector scheme is conducted to obtain 

the fractional changes , 1,...l
e e pα = . A schematic representation of this algorithm is 

depicted in Figure 2.2.  

 The LEAP methodology is currently implemented by FORTRAN 77 language. It 

is named as RESTRUCT (REdesign of STRUCTures) and uses MSC/NASTRAN 

database and user defined files as input files. For the nonlinear optimization, Feasible 

Sequential Quadratic Programming (FSQP) algorithm is used which was developed by 

the Institute for Systems Research (ISR), University of Maryland. The key features of 

FSQP related to the present work are described in Appendix D. 
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Figure 2.2 Algorithmic Representation of Incremental Method 
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2.3. Evolutionary Structural Optimization (ESO) Algorithm 

 

 The ESO algorithm developed in this work consists of two nested loops. The 

inner loop, which uses LEAP to calculate the performance equations into a form that can 

be handled without trial and error or repeated FEA’s, finds incrementally the optimal 

design which satisfies the objectives. The outer loop implements the search for the 

optimal topology. The major characteristics of the ESO/LEAP algorithm developed in 

this work are the following: 

 

(1) The optimal topology is achieved in 3-7 iterations. In each iteration, the starting 

(baseline) topology has been generated in the previous iteration. The initial topology is a 

uniform, homogeneous, solid block. 

(2) In the inner loop of each iteration, the LEAP algorithm is used to optimize the 

structure generated by the outer loop to achieve the redesign objectives and calculate the 

optimization variables eα . 

(3) Following the LEAP optimization within each iteration, two heuristic criteria are used 

to modify the topology in a rational way. Both address the extremes of the stiffness of the 

generated elements. The first criterion eliminates elements at the lower end of the 

stiffness values. The second criterion replaces high stiffness elements by the upper limit 

of stiffness, which is equal to the stiffness of the available material. 

 

In Sections 2.3.1 through 2.3.3, the heuristic criteria implemented in the topology 

evolution process are presented, while in Section 2.4, the major steps of the ESO/LEAP 

algorithm are described. 

 

2.3.1. Element Elimination Criterion 

 

 To eliminate the inefficient elements, which do not contribute to the total 

performance of the structure, a rejection criterion is employed. For static topology design, 

the material efficiency can be measured by Static Strain Energy (SSE). Gradual removal 
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of the lower static strain energy elements leads to a more uniform distribution of material 

efficiency in the evolving optimal topology compared to the initial structure.  For 

dynamic modal redesign, the material efficiency is measured by both the Dynamic Strain 

Energy (DSE) and the Kinetic Energy (KE). Accordingly, the rejection criterion places a 

lower limit on a predefined expression of the material efficiency that includes both DSE 

and KE. Theoretically, the total DSE of the structure is equal to the total KE in free 

vibration. The distribution of DSE, however, is different from that of KE, that is, DSE 

and KE are not the same for individual elements. Thus, we need to consider both DSE 

and KE in the material efficiency measure.  

 Consequently, an equivalent energy level eU  can be defined as a material 

efficiency measure as follows. For static displacement constraints, 

 

eU SSE= ,        (2.38) 

for modal dynamic constraints, 

 

1 2eU w DSE w KE= × + × ,     (2.39) 

 

for simultaneous static and dynamic constraints, 

 

1 2 3eU w DSE w KE w SSE= × + × + × ,    (2.40) 

 

where 1 2,w w  and 3w  are the weight factors for DSE, KE and SSE respectively. For 

modal dynamics topology design, 1w and 2w  are both set equal to 0.5. For simultaneous 

static and modal dynamics topology design, 1 2,w w  and 3w  are set equal to 0.25, 0.25 and 

0.5, respectively. It should be noted that all three energies – DSE, KE, and SSE – are 

normalized individually to 1. To normalize these energies, each element’s energy is 

simply divided by the total amount of element energy. 

 To eliminate the low energy level elements, first the equivalent energy level eU  

for each element is calculated. At the same time, the energy level totalU  for the total 
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elements in the structure is computed. All elements that satisfy the following criterion are 

rejected. 

e

total

U CEER
U

< .      (2.41) 

 

If the element is removed, its Young’s modulus is set to a very low value close to zero 

(weak material) to represent the element elimination. The elements removed virtually do 

not carry any load and their energy levels are negligible. The advantage of this method is 

that it does not need to regenerate a new finite element mesh at each iteration even if the 

developed structure largely differs from initial structure. 

 Determining the value of the Cumulative Element Elimination Rate (CEER) is 

explained in the next section.  

 

2.3.2. Cumulative Energy Elimination Rate (CEER) 

 

 The Cumulative Energy Elimination Rate (CEER) is defined as the sum of energy 

of the low energy elements, which are removed at each iteration, over the sum of energy 

in all elements. 

 

1max
max max1

max

min

( )

( )

i
i i

initial i

UCEER if U U
CEER U

CEER otherwise

−
−

⎧
× ≤⎪= ⎨

⎪
⎩

   (2.42) 

   

where initialCEER is a predefined parameter and 1
max
iU − and max

iU are the maximum element 

energy in ( 1i − )th and i th iteration, respectively. minCEER  is a predefined minimum 

elimination rate. The energy elimination rate is recalculated by multiplying the ratio of 

current maximum energy to previous maximum energy of an element. As topology 

evolves, CEER needs to be decreased to eliminate fewer elements otherwise it may 

remove useful (contributing) elements. If a fixed rate elimination scheme is applied, 

convergence is not always achieved because there is a possibility that it might remove the 

useful elements making the structure disconnected. In case the maximum energy of 
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current iteration exceeds the previous iteration, we assign the CEER a minimum 

elimination rate, which is a very small value between 0.001 and 0.015. At this stage, 

minimum elimination rate should be applied since every remaining element carries 

concentrated energy. Under this condition, the total energy distribution is approaching 

convergence level and therefore minCEER  should be used. 

 

2.3.3. Element Freezing Criterion 

 

 Following elimination of the low efficiency elements based on the CEER criterion, 

the element freezing criterion is used to manage the other extreme of Young’s modulus. 

Specifically, elements with values of Young’s modulus greater than sE  are assigned a 

value of Young’s modulus equal to sE , which is defined by the designer. This process, 

on one hand, makes the material more uniform and on the other hand, places an upper 

limit on the extreme values of Young’s modulus generated in the redesign process. 

Accordingly, the optimal material distribution produced by RESTRUCT is adjusted 

based on the following criterion 

 

1 ,
,

si
e i

e

E
E

E
+ ⎧
= ⎨
⎩

  
i
e s
i
e s

E E
E E

≥
<

     (2.43) 

 

where 1i
eE + is the Young’s modulus of element e  for the next iteration. i

eE  is the current 

element material property in RESTRUCT. When the material property of an element 

reaches sE , it is frozen at the material value of sE  In the rest of the optimization process, 

only the elements that have not been eliminated or have not been frozen are used. 

 

2.4. Optimization Process Steps 

 

 There are two loops in the optimization process. The outer loop sets the updated 

topology based on the two heuristic criteria defined above. The inner loop optimizes the 
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redesign variables to achieve the performance objectives. The major steps of the 

ESO/LEAP algorithm are shown schematically in Figure 2.3.   
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Figure 2.3 Algorithmic Representation of ESO/LEAP 
(Evolutionary Structural Optimization / LargE Admissible Perturbation) methodology 
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 For the inner loop, RESTRUCT process is used to find the structural changes, eα  

by incremental predictor-corrector scheme which is explained in Section 2.2. If the 

calculated results satisfy the performance goals, it continues to the next step. The element 

elimination is applied with Cumulative Energy Elimination Rate (CEER) and freezing 

criteria. Then Young’s modulus values of all elements which are not eliminated and  

Young’s modulus value is below sE , are set to sE  temporarily. This process is to check 

whether the structure with Young’s modulus properties of the elements are all equal to 

sE  satisfies the performance criteria or not. If it satisfies the criteria, stop the 

optimization process and converged result is obtained. 

 The optimization criteria for the outer loop are the norm between desired 

performance objective and calculated performance values. It can be written as 

 

s s ε′ − <       (2.44) 

 

where s′  is designer specified performance objectives and s  is calculated performance 

values. If the absolute value of difference is less than ε , optimization process is 

terminated and we get a new objective structure. 5% is used as the criteria value for this 

work. If the criterion is not satisfied, it returns to the beginning of the RESTRUCT 

process as depicted in Figure 2.3.  
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CHAPTER III 
 
 

PARAMETRIC EVOLUTION RESULTS 
 
 
 

In this Chapter, two numerical applications are presented in static, dynamic, and 

simultaneous (static and dynamic) redesign. The first application is a cantilever beam 

with a concentrated force applied at the free-end as shown in Figure 3.1. The design 

domain has length 16 mm, height 10 mm and thickness 3 mm. Initial Young’s modulus 

is 5
0 2.07 10E MPa= × , Poisson’s ratio 0.3ν = , and mass density 

9 2 47.833 10 /Ns mmρ −= ×  . A 300N force is applied downward at the center of the free- 

end. A finite element mesh of 32×20 is used. 

 
 

 
 

Figure 3.1. Cantilever beam with one point load at the center of the free-end 

 
The second example is a simply supported bridge with three point forces [5]. Loads 

are applied to the bottom of the initial structure. It has a 60 mm×20 mm domain with 1 

mm thickness. Initial Young’s modulus 5
0 2.07 10E MPa= × , Poisson’s ratio 0.3ν = , and 
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mass density 9 2 47.833 10 /Ns mmρ −= × . The design domain is discretized using a 36×12 

grid; that is, a total of 432 finite elements.  

 

 
Figure 3.2. Bridge with three point loads 

 
 
The structural performance specifications of the cantilever beam and bridge for 

static displacement, modal dynamic, and simultaneous static displacement and modal 

dynamic constraints are shown in Table 3.1 and 3.2, respectively. For example, 

/ 0.5u u′ =  means decreasing static displacement by half of the initial displacement. 
22ω ω′  denotes the ratio between the initial and target eigenvalues. Note that for modal 

dynamic performance constraints, the first in-plane mode is considered. iCEER  represents 

the varying values of Cumulative Energy Elimination Rate (CEER) at i-th iteration. 

The initial Young’s modulus 0E  is set equal to 1.0 while the designer specified 

target Young’s modulus sE  is varied from 2.0 to 3.5 depending on the specific examples. 

It is noteworthy to mention that previous ESO methods use material density ρ  to 0 or 1 

as design variable [15,16]. This means that the Young modulus is not varied and its initial 

value is used as a fixed value. The ESO using the LEAP methodology developed in this 

work allows to change Young’s modulus to achieve better structural performance 

simultaneously eliminating mass as needed. 
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Table 3.1. Structural performance specifications for cantilever beam application 
 

Objective Stiffness 

 3.0sE =  3.5sE =  

Static :           0.5u
u
′
=  

0.05,0.015,
0.015,0.015,0.015

iCEER∗ =  0.05,0.015,
0.015

iCEER =  

Dynamic :        
2

2 1.44ω
ω
′
=  

0.05,0.020,
0.010,0.010,0.010

iCEER =
 

0.05,0.031,
0.038,0.015,0.015,
0,015

iCEER =

 

Static & Dynamic : 
2

2

0.65

1.44

u
u
ω
ω

′
=

′
=

 
0.05,0.032,

0.045,0.0025,0.0025,
0.0025

iCEER =
 

0.045,0.038,
0.044,0.015,0.015,
0.015

iCEER =
 

* iCEER values evolving from the algorithm during the topology evolution process at 
each iteration ( 1, 2,i = … ) 
 

Table 3.2. Structural performance specifications for bridge application 

Objective Stiffness 

 3.0sE =  3.5sE =  

Static :           0.5u
u
′
=  

0.05,0.029,
0.041,0.015

iCEER∗ =  
0.05,0.033,

0.042,0.015,0.015
iCEER =

 

Dynamic :        
2

2 2.0ω
ω
′
=  

0.03,0.026,
0.022,0.009

iCEER =
 

0.04,0.036,
0.012,0.012

iCEER =
 

 2.0sE =  2.5sE =  

Static & Dynamic : 
2

2

0.6

1.8

u
u
ω
ω

′
=

′
=

 
0.04,0.019,

0.012,0.012
iCEER =

 
0.04,0.023,

0.038,0.012,0.012,
0.012,0.012

iCEER =

 

* 
iCEER  values evolving from the algorithm during the topology evolution process at 

each iteration ( 1, 2,i = … ) 
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3.1. Static Displacement Problem 

 

 As shown in Table 3.1 and Table 3.2, the static displacement objective is to 

decrease the displacement at the loading point by a factor of 2. It is tested using two 

target values for sE , 3.0 and 3.5. That is, the element Young’s modulus starts from initial 

value 0E =1.0 and increased up to the target sE  value of 3.0 or 3.5.  The initial CEER 

value is set at 0.05. 

 

3.1.1. Cantilever Beam 

 

For the cantilever beam problem, the results of target Young’s modulus 3.0 and 3.5 

are summarized in Figure 3.3 and Figure 3.4, respectively. We can make the following 

observations based on these results: 

 

(a) The resulting topology exhibits a Gothic arch-like form. 

(b) There is a clear pattern in mass voids with hinges appearing along the horizontal axis 

of symmetry of the structure.  

(c) As expected, the mass of the structure decreases with increasing stiffness; that is, 

higher sE . Obviously, less material is required to satisfy the static displacement objective 

when we use stiffer material. 

 

The number of iterations required for convergence and the volume reduction percentage 

for the static cantilever beam problem are shown in Table 3.3. 
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Figure 3.3. Evolved cantilever beam for static displacement objective and sE  = 3.0 

 

  
Figure 3.4. Evolved cantilever beam for static displacement objective and sE  = 3.5 

 

 
Table 3.3. Number of iterations and volume reduction percentage for static cantilever 
beam evolution 
 

Stiffness Number of iterations Volume reduction 
percentage 

3.0sE =  5 41.9% 

3.5sE =  3 46.9% 
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Comparing present work to the recently developed Bi-directional Evolutionary 

Structural Optimization (BESO) method, the ESO/LEAP achieves very similar topology 

only in three iterations while the BESO methodology requires at least 70 iterations [15]. 

Further, the BESO method, when the volume reaches its objective value, which is 50% of 

the total design domain, the mean compliance converges to a constant value of 1.87 Nmm. 

The present method achieves volume reduction of 46.9% and mean compliance of 1.60 

Nmm with significantly decreased number of iterations. 

 

3.1.2. Bridge 

 

The objective of the bridge example is to reduce static displacement by half at mid-

span of the bridge bottom, where the largest force is applied. The converged results are 

shown in Figure 3.5 and Figure 3.6 using two different sE  values of 3.0 and 3.5, 

respectively. The number of iterations and volume reduction percentages are listed in 

Table 3.4. The resulting topology exhibits the following features:  

 

(a) Curved and straight elements evolved from the initial solid structure to form a bridge-

like structure to support the three point loads while observing the two fixed boundary 

points. 

(b) Using higher sE , i.e., stiffer material, requires less material to achieve the specified 

performance. 

(c) There is similarity in voids and joints between the two cases. In the less stiff material 

case, more material is required to support the applied loads. As expected, the higher 

Young’s modulus structure develops thinner members than the less stiff material case. 

(d) The lack of bridge bottom can be justified intuitively. Loads are not applied along the 

entire bottom of the bridge. Accordingly, the three vertical structural members evolve 

which transfer the bottom loads to the arch above which is a most efficient way of 

supporting loads between two boundaries. 
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Figure 3.5. Evolved bridge for static displacement objective and sE  = 3.0 

 

  
Figure 3.6. Evolved bridge for static displacement objective and sE  = 3.5 

 
 
 
Table 3.4. Number of iterations and volume reduction percentage for static bridge 
evolution 

Stiffness Number of iterations 
Volume reduction 

percentage 

3.0sE =  4 45.4% 

3.5sE =  5 54.6% 
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3.2. Modal Dynamic Problem 

 

The modal dynamic problem is to increase the first eigenvalue corresponding to the 

in-plane bending mode. For the cantilever beam, the objective is to increase the first 

eigenvalue by a factor of 1.44. For the bridge, the objective is to increase the first 

eigenvalue by a factor of 2.0. 

3.2.1. Cantilever Beam 

Figure 3.7 and Figure 3.8 show the evolved structure for the modal dynamic 

requirement for target Young’s modulus of sE =3.0 and 3.5, respectively. The number of 

iterations and volume reduction percentages are tabulated in Table 3.5. Similar 

topological characteristics evolve in both cases while intuitively reasonable differences 

appear. 

 

(a) Material is lumped near the free-end providing the mass needed to achieve the new 

higher frequency while voids appear close to the clamped end.  This can be intuitively 

justified since when mass is shifted towards to clamped end of the beam, effectively 

extending the clamped end leaving a shorter free-end for oscillation. 

(b) Using higher sE  value, results in less material needed to satisfy the performance 

constraints. Similar topological features evolve with additional voids in the higher sE  

case. 
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Figure 3.7. Evolved cantilever beam for modal dynamic objective and sE  = 3.0 

 

  
Figure 3.8. Evolved cantilever beam for modal dynamic objective and sE  = 3.5 

 

 
Table 3.5. Number of iterations and volume reduction percentage for modal dynamic 
cantilever beam evolution 

Stiffness Number of iterations 
Volume reduction 

percentage 

3.0sE =  5 31.3% 

3.5sE =  6 38.1% 
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3.2.2. Bridge 

 

For the bridge topology evolution examples, the modal dynamic performance 

objective is to increase the first eigenvalue of the in-plane bending mode by a factor of 

2.0. The results are shown in Figure 3.9 and Figure 3.10. using sE =3.0 and 3.5, 

respectively. The following observations can be made: 

 

(a) For both cases, the mass is preserved in the middle of the structure where the 

amplitude of oscillation is higher.  

(b) Higher target Young’s modulus sE  results in voids near the end supports – away from 

the high oscillations at the center of the bridge. This decreases the total volume. The 

modal dynamic requirement is still satisfied in spite of the reduced stiffness. The higher 

sE  compensates for loss of stiffness. 
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Figure 3.9 Evolved bridge for modal dynamic objective and sE  = 3.0 

 

  
Figure 3.10 Evolved bridge for modal dynamic objective and sE  = 3.5 

 
 
 
Table 3.6. Number of iterations and volume reduction percentage for modal dynamic 
bridge evolution 

Stiffness Number of iterations Volume reduction 
percentage 

3.0sE =  4 25.4% 

3.5sE =  4 31.5% 
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3.3. Simultaneous Static and Modal Dynamic Problem 

In this section, static displacement and modal dynamic performance objectives are 

considered at the same time. As shown in Table 3.1, the objectives for the cantilever 

beam topology evolution are to reduce the displacement of a specific point by a factor of 

0.65 for the cantilever beam and to increase the first eigenvalue of the in-plane bending 

mode by a factor of 1.44. For the bridge example, the objective for static displacement is 

to reduce the amplitude by a factor of 0.6 and simultaneously to increase the first 

eigenvalue by a factor of 1.8. The initial Cumulative Energy Elimination Rate (CEER) is 

0.045 for cantilever beam and 0.04 for the bridge example.  

 

3.3.1. Cantilever Beam 

 

Two different target values for Young’s modulus are tested, sE =3.0 and 3.5. The 

results are presented in Figure 3.11 and Figure 3.12, respectively. In these results, we can 

easily find coexisting features which appeared in the single objective examples. For the 

sE =3.0 case, the mass is shifted from the middle to the free-end part while the clamped 

end still maintains the topological features from the static displacement results. In the 

case of sE =3.5, the structure more looks like combined topology of static and modal 

dynamic examples. It still retains the Gothic-arch form in the middle of the structure 

while the mass is distributed more to the free-end to achieve the dynamic performance 

objective. Note that these results are obtained in only 6 or 7 iterations as shown in Table 

3.7. 
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Figure 3.11. Evolved cantilever beam for static displacement/modal 

dynamic objective and sE  = 3.0 
 

  
Figure 3.12. Evolved cantilever beam for static displacement/modal  

dynamic objective and sE  = 3.5 
 
 
 
Table 3.7. Number of iterations and volume reduction percentage for static displacement 
and modal dynamic of cantilever beam evolution 

Stiffness Number of iterations Volume reduction 
percentage 

3.0sE =  6 42.5% 

3.5sE =  7 44.4% 
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3.3.2. Bridge 

In this example, target Young’s modulus values of sE =2.0 and 2.5 are used. The 

converged results are shown in Figure 3.13 and Figure 3.14. These results show 

simultaneous characteristics observed in the static displacement and modal dynamic cases 

independently. The following observations are made: 

 

(a) The overall arch shape which evolved in the static displacement case is still 

predominant. 

(b) Mass is lumped near the center where maximum oscillation occurs. 

(c) The three voids observed in the static displacement evolution are still present in the 

middle. The size of the voids, however, is decreased. 
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Figure 3.13. Evolved bridge for static displacement/modal  

dynamic objective and sE  = 2.0 
 

  
Figure 3.14. Evolved bridge for static displacement/modal 

dynamic objective and sE  = 2.5 
 
 
Table 3.8. Number of iterations and volume reduction percentage for static displacement 
and modal dynamic bridge evolution 

Stiffness Number of iterations 
Volume reduction 

percentage 

2.0sE =  4 25.9% 

2.5sE =  6 38.4% 
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 The advantage of applying the Cumulative Energy Elimination Rate (CEER) 

scheme instead of fixed rate elimination method [30], the converged result is obtained 

much faster. For example, it requires 6 or 10 iterations to get the similar converging 

results in static problem 3.5sE =  while it takes only 3 iterations. All the other examples 

in the present work show less or same number of iterations.  

 Additionally, since fixed elimination rate method removes constant number of 

elements at each iteration, it sometimes eliminates useful elements which are critical to 

structural stability. The CEER scheme can overcome this problem by removing very 

small portion of the elements when the optimization process is close to convergence.  
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3.4. Topology Evolution with Increased Resolution 

 

 In this section, the cantilever example with increased resolution of the finite 

element mesh is tested. A finite element mesh of 48 × 30 is used. The performance 

constraints applied are same as shown in Table 3.1. Only the static displacement and 

modal dynamic constraints are applied separately. The designer specified target Young’s 

modulus sE  is set equal to 3.0. 

 Evolved cantilever beam for static displacement and modal dynamic objective are 

exhibited in Figure 3.15 and Figure 3.16, respectively. Comparing these results to the 

32 × 20 mesh results, which are shown in Figure 3.3 and Figure 3.7, very similar 

characteristics can be observed. The topological features are similar in both applications 

with nearly the same volume reduction achieved. As shown in Table 3.9, it only takes 6 

iterations in both cases to obtain the converged results in spite of the increased resolution 

of the finite element mesh used. 
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Figure 3.15. Evolved cantilever beam for static displacement objective  

with high resolution 
 

 
Figure 3.16. Evolved cantilever beam for modal dynamic objective 

with high resolution 
 

Table 3.9. Number of iterations and volume reduction for the high resolution cantilever 
beam evolution 

Objective Number of iterations 
Volume reduction 

percentage 

Static:  0.5u
u
′
=  6 39.9% 

Modal dynamic : 
2

2 1.44ω
ω
′
= 6 33.7% 
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3.5. Topology Evolution with Performance Constraints Varied 

 

 Most of the topology optimization methods in the literature impose a volume 

constraint [3,7,15,16] while achieving maximum stiffness (i.e., compliance minimization).  

The ESO/LEAP algorithm developed in this work has no volume constraint since there is 

no limit or stopping criterion for volume reduction. 

 In this section, the topology evolution results using the ESO/LEAP methodology 

with applying different values of structural performance constraints are presented. The 

results show that the volume resulting in the final structure can be adjusted by applying 

different performance constraint values. 

 

3.5.1. Static Displacement Constraints 

 

 The cantilever beam with a concentrated force applied at the free-end lower 

corner is tested for the static displacement problem. The dimension of the cantilever 

beam is the same as in Section 3.1, only the position of the applied force differs. Initial 

Young’s modulus is 5
0 2.07 10E MPa= × , Poisson’s ratio 0.3ν = , and mass density 

9 2 47.833 10 /Ns mmρ −= ×  . A 300N force is applied downward at the corner of the free- 

end. A finite element mesh of 32×20 is used. 

 

 
Figure 3.17. Cantilever beam with one point load at the lower corner of the free-end 
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 The static displacement objective is to change the displacement at the loading 

point by a factor of 0.5, 0.65 and 0.8. The results are shown in Figure 3.18, Figure 3.19, 

and Figure 3.20, respectively. 
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Figure 3.18. Evolved cantilever beam with lower corner force for static displacement 

objective / 0.5u u′ =  
 

 
Figure 3.19. Evolved cantilever beam with lower corner force for static displacement 

objective / 0.65u u′ =  
 

 
Figure 3.20. Evolved cantilever beam with lower corner force for static displacement 

objective / 0.8u u′ =  
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Table 3.10. Number of iterations and volume reduction for static displacement objective 
of cantilever beam evolution with lower corner force 

Objective Number of iterations 
Volume reduction 

percentage 

Static: 0.5u
u
′
=  4 44.8% 

Static: 0.65u
u
′
=  4 51.9% 

Static: 0.8u
u
′
=  5 68.0% 

 

We can make the following observations: 

 

(a) By increasing the ratio of static deflection, the volume reduction rate of the objective 

structure increases. As expected, less material is required to design a more flexible 

structure.  

(b) The topological branches evolve to a simple and thinner form when the static 

displacement constraint is more flexible. 

(c) Obviously, the volume result can be adjusted by changing the value of the static 

displacement constraint. 

 

3.5.2. Modal Dynamic Constraints 

 

 For the modal dynamic objective problem, same cantilever beam example is used. 

The objective is to increase the first eigenvalue (in-plane bending mode) by a factor of 

1.44, 1.6 and 1.8. The converged results are shown in Figure 3.21, Figure 3.22 and Figure 

3.23, respectively. 
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Figure 3.21. Evolved cantilever beam for modal dynamic objective 2 2/ 1.44ω ω′ =  
 

 

Figure 3.22. Evolved cantilever beam for modal dynamic objective 2 2/ 1.6ω ω′ =  
 

 

Figure 3.23. Evolved cantilever beam for modal dynamic objective 2 2/ 1.8ω ω′ =  
 

 

 

 

 



 45

Table 3.11. Number of iterations and volume reduction for modal dynamic objective of 
cantilever beam evolution 

Objective Number of iterations 
Volume reduction 

percentage 

Modal dynamic : 
2

2 1.44ω
ω
′
= 5 31.3% 

Modal dynamic : 
2

2 1.6ω
ω
′
=  3 25.9% 

Modal dynamic : 
2

2 1.8ω
ω
′
=  2 14.0% 

 
 As shown in Table 3.11, more mass remains with increasing factor of modal 

dynamic constraints. Intuitively, the mass should be reduced more to increase the in-

plane bending mode since the eigenvalue is proportional to square root of stiffness over 

mass. However, the results indicate that the stiffness of the structure increases faster then 

the mass in the optimization process, less material is needed with increased value of the 

modal dynamic constraint. 
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CHAPTER IV 

 

TOPOLOGY EVOLUTION PATTERNS 
 

 

 In this Chapter, topology evolution patterns for the examples are presented in 

Chapter III. Results clearly show that topological patterns develop at each iteration until 

convergence, while element energy is concentrated to remaining elements.  

 

4.1. Static Displacement Topology Evolution Patterns 

 

 The static displacement topology evolution patterns are shown in this section.  

The objective is to decrease the displacement at the loading point by a factor of 2. It is 

tested using two values for sE , 3.0 and 3.5.  

 

4.1.1. Cantilever Beam  

 

 For the cantilever beam, the results of topology evolution are shown in Figure 4.1 

and Figure 4.2 using target Young’s modulus 3.0 and 3.5, respectively. Based on these 

results, we can make the following observations: 

 

(a) First, the edges including the corners at which the fixed boundary condition is applied, 

reach the target Young’s modulus (i.e., therefore freeze first). Then, element freezing 

propagates into the middle of the structure as the structure develops. 

(b) The Gothic arch-like form appears first and then detailed shapes such as holes and 

branches are developed. 

(c) The number of holes increases as the structure evolves toward the optimal topology. 
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(a) Iteration 1 

 

  
(b) Iteration 2 

 

  
(c) Iteration 3 
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(d) Iteration 4 

 

  
(e) Iteration 5 

 

Figure 4.1. Topology evolution pattern for cantilever beam - static displacement objective 
and sE =3.0 
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(a) Iteration 1 

 

  
(b) Iteration 2 

 

  
(c) Iteration 3 

 

Figure 4.2. Topology evolution pattern for cantilever beam - static displacement objective 
and sE =3.5 
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4.1.2. Bridge 

 

 The objective of the bridge example is to reduce the static displacement by half at 

mid-span of the bridge bottom, where the largest force is applied and the largest 

displacement occurs. The results of the topology evolution are shown in Figure 4.3 and 

Figure 4.4 using sE  values of 3.0 and 3.5, respectively.  

 

(a) The simply supported ends and the top part of the bridge reach the target Young’s 

modulus first.  

(b) Three vertical structural members appear clearly as the topology evolution proceeds 

in both cases. These two cases show development of similar topological features, but in 

the stiffer material case, less material is required to support the given loads thus making 

the size of the voids and holes larger. 

(c) The hole in the middle of the bridge emerges in the later stage of the evolving process. 
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(a) Iteration 1 

 

  
(b) Iteration 2 

 

  
(c) Iteration 3 

 

  
(d) Iteration 4 

Figure 4.3. Topology evolution pattern for bridge - static displacement  
objective and sE =3.0 
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(a) Iteration 1 

 

  
(b) Iteration 2 

 

  
(c) Iteration 3 
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(d) Iteration 4 

 

  
(e) Iteration 5 

 

Figure 4.4. Topology evolution pattern for bridge - static displacement  
objective and sE =3.5 
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4.2. Modal Dynamic Topology Evolution Patterns 

 

 The objective of modal dynamic example is to increase the first eigenvalue which 

corresponds to the in-plane bending. For the cantilever beam, the objective is to increase 

by the factor of 1.44 and for the bridge the objective is to increase by a factor of 2.0. 

 

4.2.1. Cantilever Beam 

 

 Figure 4.5 and Figure 4.6 show the topology evolution for the modal dynamic 

constraints using different target Young’s modulus sE  of 3.0 and 3.5, respectively. The 

resulting topology exhibits the following features: 

 

(a) At first, the clamped corners of the left side of the structure reach the target Young’s 

modulus. Then, the remaining elements are frozen in the middle of the structure as the 

structure evolves to the objective design. 

(b) The material near the free-end almost remains intact during the evolution process. 

This provides the mass needed to achieve modal dynamic goals while voids appear close 

to the clamped end. 

(c) Both cases sE  of 3.0 and 3.5 exhibits very similar topological development process, 

while using higher sE  value results in two small holes in the center of the structure in the 

later stage of the evolution. 
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(a) Iteration 1 

  
(b) Iteration 2 

 

  
(c) Iteration 3 
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(d) Iteration 4 

 

  
(e) Iteration 5 

 

Figure 4.5. Topology evolution pattern for cantilever beam – modal dynamic 
objective and sE =3.0 
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(a) Iteration 1 

 

   
(b) Iteration 2 

 

   
(c) Iteration 3 
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(d) Iteration 4 

 

   
(e) Iteration 5 

 

   
(f) Iteration 6 

 

Figure 4.6. Topology evolution pattern for cantilever beam – modal dynamic  
objective and sE =3.5 
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4.2.2. Bridge 

 

 For the bridge example, the modal dynamic objective is to increase the first 

eigenvalue by a factor of 2.0. The results of topology evolution are depicted in Figure 4.7 

and Figure 4.8. The resulting topology exhibits the following features. 

 

(a) For both cases, the mass is preserved in the middle of the structure throughout the 

evolution process. 

(b) The topological evolution is similar for both cases. However, the holes near the end 

supports appear in the last iteration for the higher target Young’s modulus sE  case. 
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(a) Iteration 1 

 

  
(b) Iteration 2 

 

  
(c) Iteration 3 

 

  
(d) Iteration 4 

 
Figure 4.7. Topology evolution pattern for bridge – modal dynamic objective and sE =3.0 
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(a) Iteration 1 

 

  
(b) Iteration 2 

 

  
(c) Iteration 3 

 

  
(d) Iteration 4 

 

Figure 4.8. Topology evolution pattern for bridge – modal dynamic  
objective and sE =3.5 
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4.3. Static and Modal Dynamic Topology Evolution Patterns 

 

 In this section, static displacement and modal dynamic objectives are achieved at 

the same time. As in Table 3.1, the objectives for the cantilever beam are to reduce the 

displacement of a loading point at the center of the free-end by a factor of 0.65 and to 

increase the in-plane bending mode by a factor of 1.44 simultaneously. For the bridge 

example, the objective is to decrease the mid-span of the bridge bottom by a factor of 0.6 

and to increase the first eigenvalue by a factor 1.8. 

 

4.3.1. Cantilever Beam 

 

 Figure 4.9 and Figure 4.10 show the results of cantilever beam example with 

static displacement and modal dynamic constraints using sE  as 3.0 and 3.5, respectively. 

Based on these results, we can make the following observations: 

 

(a) For both cases, the structural topology develops from the edge of the fixed boundary 

and propagates to the free-end similar to the static displacement topology evolution 

patterns. 

(b) The mass near the free-end mostly remains throughout the evolving process. 

(c) Gothic-arch form develops gradually while the mass shifts to the free-end to maintain 

the modal dynamic characteristics. 

(d) For sE =3.5 case, a large void appears half-way through evolution process which 

makes the objective structure look like combined topology of the static and the modal 

dynamic examples. 
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(a) Iteration 1 

 

  
(b) Iteration 2 

 

   
(c) Iteration 3 
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(d) Iteration 4 

 

  
(e) Iteration 5 

  
(f) Iteration 6 

 

Figure 4.9. Topology evolution pattern for cantilever beam – static displacement/modal 
dynamic objectives and sE =3.0 
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(a) Iteration 1 

 

  
(b) Iteration 2 

 

  
(c) Iteration 3 
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(d) Iteration 4 

 

   
(e) Iteration 5 

 

  
(f) Iteration 6 
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(g) Iteration 7 

 

Figure 4.10. Topology evolution pattern for cantilever beam – static displacement/modal 
dynamic objectives and sE =3.5 
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4.3.2. Bridge 

 

 For the bridge example, the evolved topology using target Young’s modulus 2.0 

and 2.5 is shown in Figure 4.11 and Figure 4.12. For both cases, the results show similar 

topology evolution patterns. 

 

(a) The top part of the bridge and the end supports develop first, and then to the center of 

the bridge. This occurs also in the static displacement example. 

(b) The arch shape appears clearly from the early stage of evolutionary process and 

remains to the end while detailed holes emerge in the later stage of the evolution process. 

(c) For the stiffer material case, the holes become larger and larger as the iteration step 

proceeds.  
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(a) Iteration 1 

 

  
(b) Iteration 2 

 

  
(c) Iteration 3 

 

  
(d) Iteration 4 

 
Figure 4.11. Topology evolution pattern for bridge – static displacement/modal 

dynamic objectives and sE =2.0 
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(a) Iteration 1 

 

  
(b) Iteration 2 

 

  
(c) Iteration 3 

 

 

 

 

 

 

 

 

 



 71

 

  
(d) Iteration 4 

 

  
(e) Iteration 5 

 

  
(f) Iteration 6 

 
Figure 4.12. Topology evolution pattern for bridge – static displacement/modal 

dynamic objectives and sE =2.5 
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CHAPTER V 

CONCLUSIONS 

 

 In this dissertation, a topology evolution algorithm for Evolutionary Structural 

Optimization (ESO) using LargE Admissible Perturbations (LEAP) was developed, 

implemented and tested. In Section 5.1, the dissertation contributions are summarized. A 

series of concluding remarks is given in Section 5.2. Finally, in Section 5.3, suggested 

future research is recommended. 

 

5.1. Dissertation Contributions 

 

 The main contributions of the present work can be summarized as follows: 

  

 (1) The ESO methodology as described in the literature cannot handle 

multicriterion constraints efficiently. There was only a single attempt to solve 

minimization of mean compliance (maximization of stiffness) and maximizing first 

natural frequency simultaneously using Evolutionary Structural Optimization (ESO) with 

the weighting method [14]. However, the results are limited to presenting different 

topological structures by varying weighting criteria, not achieving a specific value of 

performance constraints. The LargE Admissible Perturbation (LEAP) methodology 

handles multiple performance constraints and therefore the ESO developed in this thesis 

is not subject to the above limitation. 

 

 (2) Previous ESO methods use material density ρ  set equal to 0 or 1 as design 

variable. They cannot vary Young’s modulus and can only use initial Young’s modulus 

of a fixed value. But ESO using LEAP methodology allows to change Young’s modulus 
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to achieve better structural performance with various Young’s modulus values while at 

the same time eliminating mass as needed. 

 

 (3) Most methodologies for topology optimization in the literature require 40 to 

100 numerical iterations. Current topology optimization methods using ESO still require 

at least 60~70 iterations to converge [15], while ESO using the LEAP methodology only 

takes 3 to 7 iterations to obtain converged results, thus, showing advanced computational 

efficiency.  

 

 (4) Stabilized the optimization algorithm and improved computational efficiency 

by developing the Cumulative Energy Elimination Rate (CEER) scheme. Compared to 

the results of using fixed rate elimination method, less number of iterations is achieved 

by developing the CEER scheme. If the fixed rate elimination scheme is applied, 

convergence is not always guaranteed because there is a possibility that it might remove 

some useful elements causing the structure to disappear in the later stage of the evolution 

process. 

 

(5) Most of the topology optimization methods in the literature impose volume 

constraints while setting minimizing compliance as objective function. Since the 

ESO/LEAP methodology does not have volume constraints, it was difficult to compare 

the results of the current methodology to other topology optimization results. In this work, 

numerical examples are used to show that the volume can be adjusted by controlling 

performance constraint values. The results of ESO/LEAP methodology can be related to 

results of other methods by changing the values of performance constraints. 

 

(6) Similar topological results can be obtained with increased number of elements 

in finite element analysis still achieving advanced computational efficiency. Benchmark 

examples were tested to show that the result using higher resolution finite element mesh 

exhibit very similar characteristics compared to coarse mesh examples still with few 

iterations of finite element analysis required for convergence. 
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5.2. Concluding Remarks 

 
An Evolutionary Structural Optimization algorithm using the Large Admissible 

Perturbation method was developed. The cumulative energy elimination scheme was 

proposed to remove the ineffective finite elements at each iteration. The advantages of 

the current method can be summarized as: (1) ESO using the LEAP methodology 

presented in this work can achieve an optimal topology that satisfies single/multiple 

objectives with very few iterations and only two finite element analyses per iteration. It 

only takes as few as 3 to 7 iterations to obtain converged results showing advanced 

computational efficiency. (2) The ESO/LEAP methodology can handle multiple 

performance design objectives such as static displacement and modal dynamic. Unlike 

the other ESO/BESO methods reported in the literature, the current method can deal with 

multiple objectives effectively since the LEAP methodology handles multiple 

performance constraints. (3) ESO/LEAP can vary the target material stiffness, which 

allows a designer to obtain various evolved structures satisfying multiple design 

constraints.  (4) Implementing the Cumulative Energy Elimination Rate (CEER) scheme 

stabilized the optimization algorithm and improved computational efficiency. Compared 

to the results of using fixed rate elimination method, smaller number of iterations is 

achieved by developing the CEER scheme.  (5) Showed that volume can be adjusted by 

controlling performance constraints values in ESO/LEAP methodology. The results of 

the current methodology can be related to other topology optimization results in the 

literature which usually impose volume constraints.  (6) Similar results are obtained with 

increased number of mesh in finite element analysis still achieving advanced 

computational efficiency.  

Two benchmark applications, cantilever beam and bridge, are presented with 

multiple numerical applications to show the effectiveness of the developed methodology. 

The topological features of the results can be justified intuitively depending on the 

performance objectives. 

The ESO methodology as described in the literature cannot handle multicriterion 

constraints efficiently. There has been only a single attempt to solve minimization of 
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mean compliance (maximization of stiffness) and maximizing first natural frequency 

simultaneously using Evolutionary Structural Optimization (ESO) with the weighting and 

global criterion method (Proos K.A., et al.[14]). However, the results are limited to 

presenting different topological structures by varying weighting criteria, not achieving 

specific values of performance constraints. The LargE Admissible Perturbation (LEAP) 

methodology handles multiple performance constraints and therefore the ESO developed 

in this work is not subject to the above limitation. 

 

5.3. Suggested Future Work 

 

 The following future research is recommended: 

 

 (1) Improve ESO/LEAP methodology with Bi-directional Evolutionary Structural 

Optimization. The present algorithm developed is based on only elimination of low 

energy elements starting from a solid block structure. It cannot impose volume 

constraints as target objectives like other ESO algorithms. By applying Bi-directional 

Evolutionary Structural Optimization to the ESO/LEAP method, robustness can be 

further enhanced. 

 

 (2) Extend the ESO/LEAP methodology with additional structural constraints. In 

the present cases, the performance constraints applied were static displacement and 

modal dynamic only. New and richer structural topologies can be created imposing other 

constraints such as static stress and forced response amplitudes applied independently or 

in combinations. 

 

 (3) Improve the nonlinear optimization process in order to deal with much larger 

number of variables and constraints. The current FSQP (Feasible Sequential Quadratic 

Programming) algorithm does not provide sufficient options to adjust the optimization 

process in case of failure to search for converging solutions. 
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APPENDIX A 

 

General Perturbation Equation for Static Deflection with  
Static Mode Compensation 

 

 

The following derivation is based on the work of Bernitsas and Suryatama [25]. 

 

(a) Static Mode Compensation 

 

 Assuming that { } { }f f′ =  which implies that f  does not depend on allowed 

geometric changes ( eα ’s), the static equilibrium equation of the unknown State S2 can be 

written as 

 

[ ]{ } { }k u f′ ′ = ,      (A.1) 

 

 

 Define { }Q′ as transformed displacement vector, then the predicted static 

deflection { }u′  can be approximated by including the static deflection mode of the 

baseline structure { }u . 

 

{ } { } [ ]{ }u u Q′ ′ ′= + Φ ,      (A.2) 

 

where [ ]′Φ  is the matrix of the mode shape vectors of the unknown State S2 which are 

1 2[ ] [{ } ,{ } , ,{ } ]
rnφ φ φ′ ′ ′ ′Φ = . 
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Substituting (A.2) into (A.1) gives 

 

[ ]{ } [ ][ ][ ] { }k u k Q f′ ′ ′ ′+ Φ =      (A.3) 

 

Premultiply (A.3) by [ ]T′Φ  yields 

 

[ ] [ ]{ } [ ] [ ][ ]{ } [ ] { }T T Tk u k Q f′ ′ ′ ′ ′ ′ ′Φ + Φ Φ = Φ     (A.4) 

 

Since the generalized stiffness matrix is defined as  

 

  [ ] [ ] [ ][ ]TK k′ ′ ′ ′= Φ Φ ,       (A.5) 

 

And equation (A.4) can be written as 

 

[ ]{ } [ ] { } [ ] [ ]{ }T TK Q f k u′ ′ ′ ′ ′= Φ − Φ      (A.6) 

 

Using equation (2.19), equation (A.6) can be rewritten as 

 

[ ]{ } [ ] [ ]{ }TK Q k u′ ′ ′= − Φ ∆        (A.7) 

 

Premultiplying each side by 1[ ]K −′  which is equal to [1/ ]K ′ , gives the following equation 

for the transformed displacement vector { }Q′ , 

 

{ } [1/ ][ ] [ ]{ }TQ K k u′ ′ ′= − Φ ∆       (A.8) 

 

Substituting equation (A.8) into (A.2) yields the predicted static deflection in a form that 

includes no matrix inversion 

 

{ } { } [ ][1/ ][ ] [ ]{ }Tu u K k u′ ′ ′ ′= − Φ Φ ∆      (A.9) 
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(b) General Perturbation Equation for Static Deflection Redesign 

 

 From equation (2.25) and (A.8), the components of the displacement vector { }u′  

can be obtained as 

 

,

1 1
( ({ } [ ]{ } )

rn p
i m T

i i m e e
m em

u u k u
K
φ

φ α
= =

′⎧ ⎫
′ ′= − ⎨ ⎬′⎩ ⎭

∑ ∑     (A.10) 

 

where { }mφ′  and ,i mφ′  are a dynamic mode and its component in the i th degree of freedom, 

rn  is the number of extracted modes, and p is the total number of redesign variables. 

 

Using the equation (2.19), (A.5) can be rewritten as 

 

[ ] [ ] [ ][ ] [ ] [ ][ ]T TK k k′ ′ ′ ′ ′= Φ Φ + Φ ∆ Φ       (A.11) 

 

Then for each eigenvector m , equation (A.11) becomes 

 

1

{ } [ ]{ } ({ } [ ]{ } )
p

T T
m m m m e m e

e

K k kφ φ φ φ α
=

′ ′ ′ ′ ′= +∑     (A.12) 

 

Substituting (A.12) into (A.10) gives 

 

1
,

1

1

{ } [ ]{ }

{ } [ ]{ } ({ } [ ]{ } )

r

p
T

n m e e
e

i i i m p
T Tm
m m m e m e

e

k u
u u

k k

φ α
φ

φ φ φ φ α

=

=

=

′
′ ′= −

′ ′ ′ ′+

∑
∑

∑
 ,  for , 1, 2,...,i j n=   (A.13) 

 

which is the general perturbation equation for static deflection with static mode 

compensation. 

 



 79

Let  { } [ ]{ }T
me m eA k uφ′= ,  { } [ ]{ }T

m m mB kφ φ′ ′=  and { } [ ]{ }T
me m e mC kφ φ′ ′= ,  

 

Then equation (A.13) can be written as more compact form as 

 

1
,

1

1

r

p

n me e
e

i i i m p
m

m me e
e

A
u u

B C

α
φ

α

=

=

=

′ ′= −
+

∑
∑

∑
       (A.14) 
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APPENDIX B 

 

General Perturbation Equation for Modal Dynamics 
 

 

 Define generalized mass matrix of the objective structure as 

 

[ ] [ ] [ ][ ]TM m′ ′ ′ ′= Φ Φ      (B.1) 

 

where [ ]′Φ  is the matrix of the mode shape vectors of the unknown State S2.  

 

Also define the structural perturbations for eigenvalues as 

 
2 2 2[ ] [ ] [ ]ω ω ω′ = + ∆       (B.2) 

 

Premultiplying [ ]T′Φ  to equation (2.18) gives the modal equation for the unknown State 

S2. 

 
2[ ] [ ][ ]K M ω′ ′ ′=       (B.3) 

 

Substituting the equations (2.19)-(2.21), (B.2) and (2.25)-(2.26) which are the linear 

relationships of  eα  between stiffness and mass matrix into (B.3), we get 

 

2 2

1
({ } [ ]{ } { } [ ]{ } ) { } [ ]{ } { } [ ]{ }

p
T T T T T
j e i i j e i e i j i j e i

e
k m m kφ φ ω φ φ α ω φ φ φ φ

=

′ ′ ′ ′ ′ ′ ′ ′ ′ ′− = −∑ ,  

for , 1, 2,...,i j n=     (B.4) 
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which is the general perturbation equation for modal dynamics. n  is the number of 

degrees of freedom of the finite element modal in the initial state S1.  

 

 The equation (B.4) can be separated into two groups, Diagonal, that is i j=  terms, 

which represent the Rayleigh quotient for mode i , and the off-diagonal terms, that is 

i j≠  terms. These represent the orthogonality conditions in equation (B.4) which are 

referred as the linearized admissibility conditions. 

 

These can be written as 

 

{ } { } { } { }
1

[ ] [ ]
p

T T
e ej i j i

e

k kφ φ α φ φ
=

′ ′ ′ ′= −∑ ,  { } { } { } { }
1

[ ] [ ]
p

T T
e ej i j i

e

m mφ φ α φ φ
=

′ ′ ′ ′= −∑ ,  

 for 1,...,i n=  and  1,...,j i n= +       (B.5) 
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APPENDIX C 

 

Linear Prediction for Eigenvectors 
 

 

 In matrix form, the i th mode free vibration equation for the initial and objective 

structures can be written as 

 
2[ ]{ } [ ]{ }i i ik mφ φ ω=       (C.1) 

2[ ]{ } [ ]{ }i i ik mφ φ ω′ ′ ′ ′ ′=      (C.2) 

 

where 2
iω  is the i th eigenvalue corresponding to the i th eigenvector { }iφ .  

 

 Premultiplying equation (C.2) by { }T
iφ′  and using the perturbation relations 

(2.19)-(2.21) and (B.2), we derive an equation that can be developed into 24 terms among 

which 15 are nonlinear terms in 2[ ( )]∆…  and  3[ ( )]∆… . 

 

 From this point, we assume small perturbations in order to linearize this equation 

by keeping the nine linear terms as follows 

 

{ } [ ]{ } { } [ ]{ } { } [ ]{ } { } [ ]{ }T T T T
j i j i j i j ik k k kφ φ φ φ φ φ φ φ+ ∆ + ∆ + ∆  

2 2 2{ } [ ]{ } { } [ ]{ } { } [ ]{ }T T T
j i i j i i j i im m mφ φ ω φ φ ω φ φ ω= + ∆ + ∆  

2 2{ } [ ]{ } { } [ ]{ }T T
j i i j i im mφ φ ω φ φ ω+ ∆ + ∆      (C.3) 

 

For i j= , using equation (C.1) and its transpose, we get 
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2 2{ } [ ]{ } { } [ ]{ }T T

i i i i i i ik m Mφ φ φ φ ω ω∆ − ∆ = ∆     (C.4) 

 

where iM  is the i th diagonal term of the generalized mass matrix defined in (B.1). For 

i j≠ , { } [ ]{ } 0T
j imφ φ =  and using the transpose of (C.1) for j th mode, equation (C.3) 

becomes  

 
2 2 2{ } [ ]{ } { } [ ]{ } { } [ ]{ } ( )T T T

j i j i i j i i jk m mφ φ φ φ ω φ φ ω ω∆ − ∆ = ∆ −      (C.5) 

 

 Assuming that the changes in eigenvectors can be written as 

 

[ ] [ ][ ]TG∆Φ = Φ      (C.6) 

 

where [G] is the matrix of admixture coefficients with 0iiG =  and ijG  small for i j≠ . 

The matrix calculation in (C.6) can be written as 

 

, ,
1

rn

i m i k mk
k

Gφ φ
=

∆ =∑        (C.7) 

 

where i  corresponds to the degree of freedom and m  to the mode vector, can be referred 

as a reduced basis method. mkG corresponds to the contribution factor of mode k  to a 

change in mode m . Physical meaning of equation (C.7) can be described as follows. For 

a three dimensional structure, three major mode shapes exists such as stretching, bending 

and torsional modes. However, one type of mode has little effect on the other modes, 

which leads to small values of admixture coefficient, ijG . 

 

Substituting equation (C.6) into (C.5), gives 
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2
2 2

1 ({ } [ ]{ } { } [ ]{ } )
( )

T T
ij j i j i i

j i j

G k m
M

φ φ φ φ ω
ω ω

= ∆ − ∆
−

    (C.8) 

 

 Equations (2.21), (C.7) and (C.8) explain the relation between the modes of the 

initial structure and those of the objective structure. 
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APPENDIX D 

 

Feasible Sequential Quadratic Programming (FSQP) 
 

 

 This appendix is from the FSQP reference manual [32] by Institute for System 

Research (ISR), University of Maryland. FSQP is an open source code for minimization 

of the maximum of a set of smooth objective functions subject to general smooth 

constraints. 

 

 The FSQP algorithm is a superlinearly convergent algorithm for directly tackling 

optimization problems with multiple linear/nonlinear objective functions (minimax), 

linear/nonlinear inequality constraints, linear/nonlinear equality constraints.  

 

 The general optimization problem can be formulated as follows: 

 

min max{ ( )}
f ix X i I

f x
∈ ∈

      (D.1) 

 

where {1, , }f
fI n= …  and X  is the set of points nx R∈  satisfying 

 

bl x bu≤ ≤   (boundary constraints)   (D.2) 

( ) 0, 1,j iG x j N≤ = …   (nonlinear inequality constraints)  (D.3) 

( ) 0, 1, ,j ig x j n≤ = …   (linear inequality constraints)   (D.4) 

( ) 0, 1, ,j eH x j N= = … (nonlinear equality constraints)  (D.5)  

( ) 0, 1, ,j eh x j n= = …   (linear equality constraints)   (D.6) 



 86

 

with ; ; : , 1, ,n n n
i fbl R bu R f R R i n∈ ∈ → = … smooth; : , 1, ,n

i iG R R j N→ = …  nonlinear 

and smooth; : , 1, ,n
i ig R R j n→ = … linear; : , 1, ,n

i eH R R j N→ = …  nonlinear and 

smooth; : , 1, ,n
i eh R R j n→ = …  linear. It is allowed to have 0fn = , in which case 

problem (D.1) is one of finding a point that satisfies a given set of constraints. 

 

Key features related to the present research are as follows: 

 

(1)  All nonlinear equality constraints are turned into inequality constraints. Nonlinear 

equality constraints are changed to inequality constraints and the maximum of the 

objective function is replaced by an exact penalty function that penalizes nonlinear 

equality constraint violations only. 

 

(2) Ability to search for an initial feasible point satisfying all linear constraints and 

nonlinear inequality constraints. That is, it is capable of generating iterations satisfying 

all linear constraints and nonlinear inequality constraints (mandatory for many 

applications) starting from a feasible point. If the initial guess provided by the user is 

infeasible for some inequality constraint or some linear equality constraint, FSQP first 

generates a feasible point for these constraints; subsequently the successive iterates 

generated by FSQP all satisfy these constraints. 

 

(3) Ability to improve objective function after each iteration or after at most four 

iterations (user’s option) if there is no nonlinear equality constraints. The user has the 

option of either requiring that the objective function (penalty function if nonlinear 

equality constraints are present) decrease at each iteration after feasibility for nonlinear 

inequality and linear constraints has been reached (monotone line search), or requiring a 

decrease within at most four iterations (non-monotone line search). The user must 

provide functions that define the objective functions and constraint functions and may 

either provide functions to compute the respective gradients or require that FSQP 

estimate them by forward finite differences. 
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 FSQP is an implementation of two algorithms based on Sequential Quadratic 

Programming (SQP), modified so as to generate feasible iterates. In the first one 

(monotone line search), a certain Armijo type arc search is used with property that the 

step of one is eventually accepted, a requirement for superlinear convergence. In the 

second one, the same effect is achieved by means of a non-monotone search along a 

straight line. The merit function used in both searches is the maximum of the objective 

functions if there is no nonlinear equality constraint, or an exact penalty function if 

nonlinear equality constraints are present. 
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