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ABSTRACT

In this thesis we present a mechanism design approach to decentralized resource

allocation in wireless and large-scale networks. First, for wireless networks we study

the problem of power allocation where each user’s transmissions create interference to

all network users, and each user has only partial information about the network. We

investigate the problem under two scenarios; the realization theory scenario and the

implementation theory scenario. Under the realization theory scenario, we formu-

late the power allocation problem as an allocation problem with externalities, and

develop a decentralized optimal power allocation algorithm that (i) preserves the

private information of the users; and (ii) converges to the optimal centralized power

allocation. Under the implementation theory scenario, we formulate the power al-

location problem as a public good allocation problem, and develop a game form

that (i) implements in Nash equilibria the optimal allocations of the corresponding

centralized power allocation problem; (ii) is individually rational; and (iii) results

in budget balance at all Nash equilibria and off equilibria. Then, we generalize the

wireless network model to study resource allocation in large-scale networks where

the actions of each user affect the utilities of an arbitrary subset of network users.

This generalization is motivated by several applications including power allocation in

large-scale wireless networks where the transmissions of each user create interference

to only a subset of network users. We develop a formal model to study resource

allocation problems in large-scale networks with above characteristics. We formu-

xi



late two resource allocation problems for the large-scale network model; one for the

realization theory scenario, and the other for the implementation theory scenario.

For the realization theory scenario we develop a decentralized resource allocation

algorithm (using the principles of mechanism design) that (i) preserves the private

information of the users; and (ii) converges to the optimal centralized resource al-

location. For the implementation theory scenario we develop a game form that (i)

implements in Nash equilibria the optimal allocations of corresponding centralized

resource allocation problem; (ii) is individually rational; and (iii) results in budget

balance at all Nash equilibria and off equilibria.
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CHAPTER 1

Introduction

1.1 Motivation

Networks exist in a vast variety of real world systems. They have played an im-

portant role in the social and technological growth of our society. Some prominent

examples of networked systems are urban & transportation systems, military sys-

tems, political/social networks, production and consumer markets, supply-chains,

energy markets, internet, web data centers, electronic commerce systems, sensor

networks and telecommunication systems. Because of the diversity of network appli-

cations, networks are studied in a wide range of professional and academic domains

including engineering, business management and social science.

In electrical and systems engineering wireless communication networks have re-

ceived a significant research focus as they form part of many systems that are of

interest to these disciplines. For example, wireless networks form the basis of blue-

tooth and Wi-Fi networks, mobile cellular networks, satellite communication, sensor

networks, surveillance networks, and military communication networks.

Irrespective of the diversity of applications, a fundamental similarity in all of the

above networks is that, (i) the network consists of multiple agents that interact with

and influence each other; (ii) each agent has different characteristics and a different

1
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individual role in the network; and (iii) the actions of individual agents together with

their interactions determine the function/performance of the network. An alternative

term for networks that captures the above characteristics is multi-agent systems.

In many applications such as electronic commerce, artificial intelligence and social

networks, the use of the term multi-agent system is more common. In this thesis

we will use the term network or multi-agent system interchangeably to describe a

network.

Apart from the fundamental similarities in the structure and function of networks

described by the above mentioned features, an identical objective in the design of

all networks is their efficient operation. This requires optimization of network per-

formance measures. As mentioned above, a network’s performance is determined by

the collective actions of network agents. Actions that are critical in determining a

network performance are – consumption/generation of resources by network agents

and their decisions regarding network tasks. Therefore, for a network to achieve its

performance objective, proper allocation of the network’s resources and coordination

of the network agents’ decisions are extremely important. With the technological

and social advancement, many networks such as the internet, energy markets and e-

commerce systems are expanding at a very fast pace. The resources that are required

for the operation of these networks, e.g. bandwidth, fossil fuels, and web server re-

sources often do not increase at the same rate. Therefore, in these cases resource

allocation and utilization become even more crucial for efficient network operation.

In the context of wireless communication networks some of the important re-

sources are bandwidth, energy, coding schemes, relay routes, and the physical space

available for the network. The important performance measures are data commu-

nication rate, probability of error, communication delay, battery life, interference,
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mobility of agents, ability to dynamically adjust to varying channel conditions, etc.

The requirement to efficiently utilize the above resources to achieve desirable per-

formance gives rise to several challenging resource allocation problems in wireless

networks. Examples of such problems are spectrum/rate/code allocation that gov-

ern throughput and delay, power and code allocation that govern interference and

battery life, admission control that governs the number of agents in the network,

topology control that governs the placement and interconnections of network agents,

and dynamic resource allocation that looks at the above aspects under dynamic sit-

uations. The numerous applications and the technical challenge of these resource

allocation problems make them an important and exciting area of wireless networks

research. This motivated us to investigate some of these problems in this thesis.

1.2 Key issues and challenges in resource allocation

An inherent characteristic of many real world networks that makes resource alloca-

tion challenging is the decentralization of information. Information decentralization

arises due to the following reasons: One, the large-scale nature of the networks. To

have a centralized control in such networks requires the communication of enormous

amounts of data to a central controller and this is practically infeasible. For exam-

ple, in a sensor network with thousands of sensors, it is difficult to keep a centralized

record of the data collected at all sensors. Two, the presence of selfish/competitive

network agents who do not want to reveal their private information and thus make

centralized control infeasible. For example, cell phone manufacturers may not want

to reveal their chip technologies for competitive reasons; thus, the service provider

in a cellular network cannot have complete information on the signal processing

technologies of the cell phones in the network.
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Even in networks where centralized resource allocation is feasible, it is often un-

desirable from an implementation point of view, because, (i) centralized allocation

is computationally intensive; (ii) it is not scalable; and (iii) a single failure in the

central control may disrupt the entire network operation.

For all the reasons described above, it is highly desirable to have decentralized

resource allocation in networks. Allocating resources in a decentralized way requires

a completely different philosophical framework from that of centralized allocation

methods. Some prominent features of decentralized resource allocation problems

that make them substantially different from centralized ones are the following. In

decentralized resource allocation there are multiple decision makers unlike central-

ized allocation where the allocation decisions are taken by a single central agent. In

a decentralized system each decision maker makes its decision based on some partial

information about the network, whereas the decision maker in a centralized sys-

tem has complete network information. Because the decisions are based on partial

network information, a decentralized resource allocation may not achieve network

performance similar to a centralized allocation. In order to achieve a performance

which is equivalent to a centralized one, the agents in the decentralized system must

communicate and exchange information with one another. They must then make

decisions based on their private information and the information exchanged. Thus,

communication among the agents is an essential component of any decentralized

allocation method that aims to achieve centralized performance without complete

revelation of the agents’ private information. This is contrary to centralized meth-

ods where, either communication is not required at all, or, the central agent is able

to gather all network information before it determines the allocations.

The individual agents’ behavior is critical in determining the performance of a
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decentralized resource allocation process. Therefore, decentralized resource alloca-

tion problems can be classified into two classes based on the characteristics of the

network agents. The first class represents scenarios in which the network agents co-

operate to achieve the network objective. Because the agents are cooperative, they

obediently follow the rules of any decentralized resource allocation mechanism that

is designed to achieve the network objective. Therefore, for this class of problems,

the challenge in achieving a desirable performance lies in designing an appropriate

set of rules that tell the network agents “what” to communicate and “what” action

to take based on their information. The second class represents scenarios in which

the network agents are selfish or competitive and whose individual objectives differ

from the network objective. Under such a scenario, the network agents may not be

willing to follow the rules of a decentralized resource allocation mechanism if the

mechanism requires the agents to take actions that are not aligned with their indi-

vidual objectives. Therefore, for this class of problems, the challenge lies not only

in decentralizing the resource allocation process but also in providing appropriate

incentives to the agents that induce them to take actions that lead to achieving the

network objective. In this thesis we study problems from both classes of decentralized

resource allocation scenarios.

As is evident from the above discussion, addressing decentralized resource alloca-

tion problems requires a framework that can provide a systematic methodology for

the design of decentralized resource allocation mechanisms by harnessing the decen-

tralized information characteristics of the networks and the behavioral characteristics

of the agents. One such framework for the systematic study of decentralized resource

allocation problems is provided by the theory of mechanism design which is a branch

of mathematical economics [36].
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In this thesis we follow the philosophy of mechanism design to address decentral-

ized resource allocation problems in wireless and large-scale networks. Therefore, in

the next section we present a brief discussion on the mechanism design approach to

resource allocation.

1.3 Mechanism design

Mathematical economists have studied decentralized resource allocation problems

for a long time. These studies have been motivated by the characteristics of economic

systems which are in general multi-agent systems with decentralized information. An

example of a typical economic system is a consumer good market that consists of

multiple decision makers – the consumers and the manufacturers of the good. In

this market the information is decentralized as the manufacturer of a good does not

know a consumer’s personal preference for various goods, and a consumer does not

know the cost of production of various goods for a manufacturer.

The theory of mechanism design was developed by mathematical economists to

provide a formal treatment of decentralized resource allocation problems [20, 21,

24]. In particular the theory was developed to provide guidelines for the design of

decentralized mechanisms that can obtain centralized allocations. To appreciate the

approach provided by mechanism design, we briefly present the conceptual ideas

behind this theory.

In mechanism design a resource allocation problem is described by the triple

(E ,D, γ): the environment space E , the action space D and the goal correspondence

γ.

The environment space E is defined to be the space of all possible environments

e of the resource allocation problem, where an environment refers to a set that
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specifies for each network agent the infrastructure and the information available to

it as well as its preference for the allocations/outcomes in the network. The action

space D is defined to be the set of all actions/resource allocations that are feasible

in the network. Thus, the environment space and the action space together specify

a network model. The specification of a network in this form provides a formal way

to describe (through the agents’ environments) the information decentralization of

the network.

A centralized performance objective for the network described by (E ,D) is spec-

ified by the goal correspondence γ. Specifically, γ assigns for every environment

e ∈ E , the set of allocations γ(e) ⊂ D that meet some pre-specified network wide

performance objective. The specification of allocations γ(e) in terms of complete

network information e allows the description of any centralized objective with this

formulation.

In an informationally decentralized network each agent knows only a part of the

network environment e; hence, no network agent can directly compute the centralized

allocations γ(e). As discussed in Section 1.2, any allocation mechanism for these

networks that aims to achieve the performance of a centralized allocation scheme

(E ,D, γ) must consist of (i) an information exchange process among the network

agents; and (ii) an allocation process based on the outcome of information exchange.

Mechanism design focusses on developing rules for such information exchange and

allocations so as to achieve the centralized performance specified by γ.

The theory of mechanism design is divided into two components: realization theory

and implementation theory/theory of incentives. These components address the two

classes of decentralized resource allocation problems described in Section 1.2.

Realization theory addresses the first class of problems in which the network
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agents cooperate to achieve the network objective. In realization theory, a decen-

tralized mechanism is specified in terms of the following components: (i) A message

space for each agent that specifies the set of messages the agent can use to commu-

nicate with other agents. (ii) A message communication rule for each agent that

specifies how the agent should generate a message in its message space based on

its information about the network. To obtain an optimal centralized allocation the

message exchange process usually needs to be iterative. In such a case, the message

communication rule also specifies how to take into account the messages received

from the other agents in past iterations when generating one’s new message. An

equilibrium message correspondence specifies the set of equilibrium messages result-

ing from the message exchange process. (iii) An outcome function that specifies the

rules to determine allocations based on equilibrium messages. The designer of a

mechanism must simultaneously choose the above three components so as to achieve

the network objective.

Implementation theory addresses the second class of decentralized resource allo-

cation problems in which the network agents are selfish/competitive [25, 41, 38] and

their individual objectives differ from the network objective. Under this scenario,

any mechanism that aims to optimize the network performance criterion and relies on

prescribed communication rules to achieve it may fail to obtain its targeted outcome.

This is because the agents can attempt to divert the outcome of the mechanism in

their own favor by communicating messages that do not correspond to their true

environment. Because each agent’s environment is usually its private information,

the other agents or the mechanism designer cannot check if an agent follows the

prescribed communication rule to generate its message. To overcome this problem,

a decentralized mechanism in implementation theory is specified only in terms of
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the message space and the outcome function. A mechanism with this structure is

called a game form. Since the message space and the outcome function are externally

specified, they can be made common knowledge. Therefore, it can easily be verified

if the agents generate their messages in the specified message space, and, given the

equilibrium messages, if they compute the allocations as specified by the outcome

function. The specification of a decentralized mechanism as a game form allows

the selfish users to strategically choose messages from their message space; thus, it

induces a game among the users. Depending on the agents’ information about the

network environment, there are appropriate equilibrium concepts for the induced

game. For example, for games of complete information the equilibrium concepts are

Nash equilibrium, subgame perfect equilibrium, dominant strategy equilibrium, ra-

tionalizability, etc. For games of incomplete information the equilibrium concepts are

Bayesian Nash equilibrium, Perfect Bayesian equilibrium, etc. Given an equilibrium

concept, the specific equilibria that an induced game can attain are governed by the

design of the game form. Thus, in implementation theory, a game form along with

an equilibrium concept indirectly specifies the (equilibrium) message communication

rule. In order to (indirectly) drive the induced game to attain equilibria that result

in the optimization of the network performance criterion, the outcome function must

provide appropriate incentives to the agents to align their individual objectives with

the network objective. Because the agents’ behavior is mainly controlled through

the outcome function, the complexity of the design of an implementation mechanism

lies in its outcome function. This is different from a realization mechanism where

the complexity of the design usually lies in the communication rule as the agents’

behavior is directly controlled by the communication rule.

As can be seen from the discussion so far, mechanism design utilizes the funda-
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mental nature of networks to build a logical structure for the design of decentralized

resource allocation mechanisms. Such an approach can provide insights into the ba-

sic characteristics of any decentralized allocation problem to be solved and therefore,

has a potential to provide a fundamental framework for the study of decentralized

resource allocation problems. For these reasons in this thesis we chose to the philos-

ophy and approach of mechanism design to address decentralized resource allocation

problems.

In the next section we state the contributions of this thesis.

1.4 Contribution of the thesis

The main contribution of this thesis is the formulation and solution of decentral-

ized resource allocation problems arising in wireless communication networks and

other large-scale networks within the context of mechanism design.

Initially, in the context of wireless networks we address the problem of decentral-

ized power allocation for systems where the transmissions of every agent create inter-

ference to every other agent. The mechanism design approach helped us to classify

this problem as a problem of public good allocation (alternatively, as an allocation

problem in the presence of externalities). Based on this classification, we developed

decentralized mechanisms for two power allocation problems: one that addresses the

realization theory scenario, and the other that addresses the implementation theory

scenario.

The exercise of formulating the power allocation problems as public good alloca-

tion problems (alternatively, allocation problems with externalities) not only helped

us to obtain solutions to these specific power allocation problems but also provided us

with insights on the considerations that are required to address decentralized resource
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allocation problems in general. In particular, the approach of mechanism design

helped us to characterize the features of network (centralized) objective achieving

decentralized mechanisms based on the network structure and the behavior of the

network agents. In the second half of the thesis we discuss these features for both

realization theory and implementation theory scenarios, and use them as guidelines

for the design of decentralized resource allocation mechanisms for generic large-scale

networks.

Specifically, by large-scale networks we refer to networks where the actions of

each agent affect the utility of an arbitrary subset of network agents, and each agent

knows only that part of the network that either affects it or is affected by it. This

network model resembles network of local public goods, and is motivated by sev-

eral applications including large-scale wireless networks where the transmissions of

each user create interference to a subset of network users. For this network model

we formulate decentralized resource allocation problems from both the realization

theory and implementation theory perspectives, and develop decentralized resource

allocation mechanisms that obtain optimal centralized allocations. To the best of our

knowledge the formulation of these resource allocation problems and their solutions

is the first attempt to analyze the large-scale network model in the framework of

realization theory or implementation theory. Therefore, we believe that the formu-

lation and solution of these problems are not only contributions to the engineering

literature but also contributions to the state of the art in mechanism design.

Below we discuss the specific contributions of the thesis in each of the problems

we investigate for wireless networks and large-scale networks.

• Power allocation in wireless networks: A realization perspective

– A novel formulation of a power allocation problem for wireless networks
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with interference as an allocation problem with externalities.

– The specification of an iterative decentralized power allocation algorithm

for the above problem that has the following properties:

(i) It preserves the private information of each agent.

(ii) It guarantees convergence to the network optimal power allocation (op-

timal centralized allocation).

• Power allocation in wireless networks: An implementation perspective

– A novel formulation of a power allocation problem for single cell uplink

network with interference and strategic users as a public good allocation

problem.

– The specification of a decentralized power allocation mechanism (game

form) for the above problem that possesses the following properties:

(i) All Nash equilibria (NE) of the game induced by the mechanism result

in allocations that are optimal solutions of the corresponding centralized

uplink problem (Nash implementation, cf Section 3.2.1).

(ii) All users voluntarily participate in the allocation process specified by

the mechanism (individual rationality, cf Section 3.2.1).

(iii) Budget balance at all NE and off equilibrium.

• Resource allocation in large-scale networks: A realization perspective

– The formulation of a decentralized resource allocation problem for large-

scale networks (where the actions of each agent affect a subset of network

agents) in the framework of realization theory.

– The specification of an iterative decentralized resource allocation algorithm

for the above problem that has the following properties:
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(i) Each agent in the network needs to communicate only with those agents

that either affect it or are affected by it.

(ii) It preserves the private information of each agent.

(iii) It guarantees convergence to the network optimal resource allocation

(optimal centralized allocation).

• Resource allocation in large-scale networks: An implementation perspective

– The formulation of a decentralized resource allocation problem for large-

scale networks (where the actions of each agent affect a subset of network

agents) in the framework of implementation theory.

– The specification of a decentralized resource allocation mechanism (game

form) for the above problem that possesses the following properties:

(i) All Nash equilibria (NE) of the game induced by the mechanism result

in allocations that are optimal solutions of the corresponding centralized

resource allocation problem (Nash implementation).

(ii) All users voluntarily participate in the allocation process specified by

the mechanism (individual rationality).

(iii) The mechanism results in budget balance at all NE and off equilibrium.

1.5 Organization of the thesis

This thesis is organized as follows: In Chapter 2 we present the problem of power

allocation in wireless networks from the realization perspective. In Chapter 3 we

present the problem of power allocation in wireless networks from the implementation

perspective. In Chapter 4 we present the problem of resource allocation in large-scale

networks from the realization perspective. In Chapter 5 we present the problem of
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resource allocation in large-scale networks from the implementation perspective. We

conclude in Chapter 6.



CHAPTER 2

Power allocation in wireless networks:

A realization perspective

Wireless communication applications have seen a tremendous growth in demand

over past several years. This has made efficient utilization of resources extremely

important for these networks. A characteristic of wireless networks that makes it

different from wired networks is that all users share the same communication channel.

Therefore, the signal transmitted by a source is not only received by its intended

destination but also other unintended destinations; as a result these unintended

destinations experience interference to the reception of their desired signals. Hence,

interference control is an important issue in wireless networks. In this chapter we

study transmission power allocation to control interference and optimize the network

performance.

We consider a wireless network where the transmission of a user creates interfer-

ence to all other users and directly affects their utilities. The network has multiple

interference temperature constraints to control interference. We consider a decen-

tralized information scenario, in which each user knows only its own utility and

the channel gains from the transmitters of other users to its own receiver. For the

above network we address the power allocation problem from the realization theory

15
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perspective, and propose a decentralized power allocation algorithm that has the

following properties: (i) It preserves the private information of each agent. (ii) It

guarantees convergence to the network optimal power allocation.

The chapter is organized as follows: In Section 2.1.1 we present the network model.

In Section 2.1.2 we present the power allocation problem. We present a literature

survey in Section 2.1.3 and discuss our motivation to investigate the problem pre-

sented in this chapter in Section 2.1.4. We state our contributions in Section 2.1.5.

In Section 2.2.1 we formulate the power allocation problem of Section 2.1.2 as an

allocation problem with externalities. In Section 2.2.2 we present a decentralized

power allocation algorithm based on the externalities formulation and we discuss

the properties of the algorithm. We prove these properties in Appendix 2.A. In Sec-

tion 2.2.3 we show how the decentralized resource allocation problem and its solution

presented in this chapter fit within the framework of realization theory. We conclude

in Section 2.3 with numerical results for two practical examples.

2.1 The power allocation problem

We begin this section with a description of the wireless network model and the

assumptions we make for its analysis. We also discuss scenarios that motivate the

model. We then formulate a power allocation problem for the above model.

2.1.1 The model (M.2)

We consider a wireless network consisting of N transmitter-receiver pairs (con-

nected by solid arrows in Fig. 2.1). We call each transmitter-receiver pair a user 2.1,

and we denote the set of all users in the network by N := {1, 2, . . . , N}. The users,

2.1In the rest of the chapter, any action by a user associated with the transmission of the signal means that it is
done by the corresponding transmitter, and any action/computation associated with the reception of a signal means
that it is done by the corresponding receiver.
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in other words the transmitters and the receivers, can be arbitrarily located in the

network. This model captures a wide variety of scenarios, e.g. when the transmit-

ters and receivers are located anywhere in the network, the model can represent a

wireless ad hoc network or a segment of a wireless mesh network; if the transmitters

are co-located it can represent a cellular downlink network; and if the receivers are

co-located it can represent a cellular uplink network. User i, i ∈ N , transmits with

T1

R2

T2

T3

R3

R1

h21
h11

h31

Figure 2.1: An example of a wireless mesh network with three users (pairs of nodes); Ti and Ri

denote the transmitter and the receiver of user i respectively, and hij are the channel
gains from Ti to Rj .

power pi. We assume that

Assumption 2.1. Every user’s transmission creates interference (shown by the

dashed arrows in Fig. 2.1) to all other users in the network i.e. the graph in Fig. 2.1

is fully connected.

Assumption 2.1 implies that the interference to user i, i ∈ N , depends on the

transmission power pj, j ∈ N , j �= i, of all other users.

To control interference the system has Interference Temperature Constraints (ITCs)

at K different Measurement Centers (MCs), MC1, MC2, . . . , MCK . Interference

Temperature (IT) is defined in [1] as the net Radio Frequency (RF) power measured

at a receiving antenna per unit bandwidth; ITC is a constraint that puts an up-
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per limit on the IT. To keep the RF noise floor in a wireless network below a safe

threshold it is desirable that the network satisfies an ITC. In our model we consider

multiple ITCs because multiple ITCs can ensure a balanced interference threshold

throughout the network. Each ITC is governed by one of the MCs. The MCs can be

installed either at the receivers of the users or there can be separate stations acting as

MCs. To simplify the notation, we refer to MCk as user 0k, k ∈ K := {1, 2, . . . , K},

and we denote the set of MCs by 0K := {01, 02, . . . , 0K}. The ITCs are given by

(2.1)
N∑

i=1

pihi0k
≤ Pk, k ∈ K

where hi0k
is the channel gain from user i’s transmitter to the kth measurement

center. We assume that

Assumption 2.2. Each measurement center MCk, k ∈ K, can measure the channel

gains hi0k
, i ∈ N , hence it knows these channel gains 2.2. However, MCk need not

know the channel gains hi0z , i ∈ N , z �= k, to other MCs.

Because of the presence of interference, the quality of service of a user in such a

network depends not only on the power received from its own transmitter but also,

on the total interference, which depends on the transmission powers of all other users.

Hence to quantify the users’ performance, we associate with each user i, i ∈ N , a

utility function ui(p1, p2, . . . , pN) which is a function of the transmission power of all

the users. We assume that

Assumption 2.3. The transmission power pi of user i, i ∈ N , lies in Pi = [0, Pmax
i ],

and the set Pi is user i’s private information i.e. it is known only to user i and nobody

else in the system. Furthermore, a set P = [0, Pmax] ⊃ ∪i∈NPi is common knowledge

to all the users (including the MCs).
2.2We assume that the users in the network are cooperative (Assumption 2.9). Therefore, the transmitters can

periodically transmit pilot signals with known amplitudes; the receivers at the MCs can then measure the received
amplitudes from which they can compute the channel gains.
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Unlike active users i ∈ N the MCs do not receive any personal benefits from the

power allocation, therefore, we assume that the MCs have zero utilities,

Assumption 2.4. u0k
(p) = 0, ∀ k ∈ K,

where p := (p1, p2, . . . , pN).

For users i ∈ N we assume that,

Assumption 2.5. ui(p), i ∈ N , from R
N into R is a strictly concave, continuous

function of p.

In Appendix 2.B we present an example of a utility function that satisfies As-

sumption 2.5.

We also assume that,

Assumption 2.6. Each user’s utility function is its own private information.

The above assumption captures a variety of scenarios. One such scenario is a

multimedia wireless communication network where different users run different ap-

plications, each application, with a different utility associated with it which is known

only to the user that runs the application. Another possible scenario is where the re-

ceived data is processed/decoded by different users using different technologies which

are not public information. In either scenario, we assume that it is not feasible for

the users on informational grounds to communicate their exact utility functions to

other users in the network. 2.3

Because of Assumption 2.1 every user can hear every other user in the network,

therefore we assume that,

2.3Since each user’s utility function is concave, it is generally parameterized by an infinite number of parameters.
Furthermore, since certain regularity conditions must be satisfied by the communication rules employed by the users
(see [23]), the dimension (see [23]) of the message space (the space used for message exchange) must be infinite.

Thus, communication of the users’ utility functions is infeasible on informational grounds.
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Assumption 2.7. The number of participating users (including the MCs) N + K

is common knowledge. We also assume that the set of active users N remains fixed

during a power allocation period.

If the time scale in which a power allocation is determined is sufficiently small, the

system can be assumed to be static for an allocation period. Therefore, we assume

that

Assumption 2.8. The channel gains hi0k
, i ∈ N , k ∈ K, and the utilities of the

users remain constant during a power allocation period.

Finally, we make the following assumption about the users’ behavior.

Assumption 2.9. All users in the network obediently follow the rules that any mech-

anism specifies to determine their power allocations.

Examples of situations where Assumption 2.9 holds are the following: (i) Networks

which are owned/managed by a single network operator. For example, a sensor

network installed by an operator, or a satellite communication network owned by

a communication service provider. (ii) Networks in which all users have a common

objective which is also the network objective. For example, a military communication

network.

In the next section we formulate the resource allocation problem for the network

model (M.2).

2.1.2 The power allocation problem

For the wireless network model (M.2), the objective is to determine the users’

transmission powers under the constraints imposed by the model so as to maximize

the sum of users’ utilities. We formally write this optimization problem, that we call
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Problem (P.2), as follows:

Problem (P.2)

max
p

∑
i∈N∪0K

ui(p)(2.2)

s.t. Assumptions 2.1–2.8,(2.3)

p ∈ D := {p |
N∑

i=1

pihi0k
≤ Pk, k ∈ K, pi ∈ Pi, ∀ i ∈ N}.(2.4)

Because of Assumptions 2.2,2.3, 2.6 and 2.7, Problem (P.2) is a decentralized

optimization problem i.e. none of the users in the network has complete information

of all the parameters that describe Problem (P.2). Our objective is to develop

an algorithm which satisfies the above informational constraints of Problem (P.2)

and obtains optimal solutions of the corresponding centralized problem where one

of the users/a center has complete information of all the parameters that describe

Problem (P.2). The centralized counterpart of Problem (P.2) is,

max
p

∑
i∈N∪0K

ui(p)(2.5)

s.t. p ∈ D, and Assumptions 2.1, 2.4, 2.5, 2.7 and 2.8.(2.6)

It should be noted that the centralized counterpart of Problem (P.2) is a strictly

concave optimization problem and hence it has a unique optimum solution. The so-

lution of this centralized problem is the ideal power allocation that we would like to

obtain. If there exists an entity that has centralized information about the network,

i.e. it knows all the utility functions ui, i ∈ N , all feasible power sets Pi, i ∈ N ,

and all ITCs
∑N

i=1 pihi0k
≤ Pk, k ∈ K, then, that entity can compute the ideal

power allocation by solving the above centralized p-problem. Therefore, we call the

solution of the centralized counterpart of Problem (PC .2) the optimal centralized

power allocation. In the network described by Model (M.2), there is no entity that
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knows perfectly all the parameters that describe the centralized counterpart of Prob-

lem (PC .2). Therefore, we need to develop a decentralized mechanism that allows

the network users to communicate with one another and that leads to the optimal

solution of the centralized counterpart of Problem (PC .2). Because we assume that

the users obediently follow the rules specified by a mechanism (2.9), the outcome of

any mechanism we design will be the same as that predicted by the mechanism.

In the next section we present a literature survey on previous works on decen-

tralized power allocation in wireless networks, and we discuss our motivation to

investigate the power allocation problem presented in this section.

2.1.3 Literature survey

Decentralized mechanisms for power allocation/control in wireless networks have

received considerable attention in the literature. These mechanisms can be classified

according to their application and the structure of the underlying network. Wire-

less networks can be broadly classified into two types; networks with hierarchical

structure and networks without hierarchical structure. In networks with hierarchical

structure, users communicate with each other via one or more central entities (called

base stations in wireless cellular networks) and these central entities often play an

important role in determining the power allocation. The hierarchical structure in

cellular networks can further be classified as uplink or downlink based on whether

the communication is from the users to a base station or vice versa. In networks

without hierarchy, users communicate with one another directly without any central

entity. Examples of such networks are ad hoc or mesh networks. Below we present a

brief summary of the existing work on decentralized power allocation for voice and

data networks. Within each category we present existing results for hierarchical and
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non-hierarchical network structures.

One of the most well-known decentralized algorithms for power control in fixed

data rate cellular voice network was proposed by Foschini and Miljanic in [13]. The

algorithm proposed in [13] requires only local measurements, and achieves the desired

minimum Signal to Interference Ratio (SIR) for each user with exponentially fast

convergence if there exist power levels that meet these requirements for the SIRs.

Later in [58] the power control problem similar to that of [13] was formulated as

a utility maximization problem by replacing the hard SIR constraints of [13] with

sigmoid utilities. With this modification, the algorithm proposed in [58] overcomes

the difficulty of divergence which occurs in the algorithm of [13] when there are no

feasible power levels that can attain the desired SIRs. The algorithm of [58] also

has the flexibility to be tuned for both voice and data services. Lately, in [18] the

Foschini-Miljanic algorithm of [13] was generalized for time varying channels and

ad-hoc networks.

For wireless data networks, results on decentralized mechanisms for uplink power

control can be found in [46, 12, 28, 47, 2]. In [12] the problem of uplink power

control in a single cell Code Division Multiple Access (CDMA) data network was

formulated as a utility maximization problem. An uplink problem similar to that of

[12] with SIR based utilities was also investigated in [28]; in this paper the existence

of an equilibrium was shown and an algorithm for solving the decentralized power

control problem was suggested. The problem formulated in [12] was reinvestigated

in [47] using pricing; it was shown that pricing results in multiple equilibria which

are Pareto superior to the equilibria obtained in [12] and [28]. Pricing-based anal-

ysis of the uplink power control problem was also done in [2], by introducing user

specific parametric utility functions. The authors of [2] proposed two decentralized
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algorithms, the parallel update and the random update algorithms, that converge to

the unique equilibrium of the problem. Work on pricing for downlink CDMA data

networks can be found in [32, 59, 30]. In [32] and [59], optimal resource allocation

strategies were determined for a single class CDMA system for the case when the

utility functions of the users are common knowledge (see [4, 57] for the definition of

common knowledge). In [30], the downlink power allocation problem for multi-class

CDMA networks was studied by a decentralized mechanism based on dynamic pric-

ing and partial cooperation between mobiles and the base station. This mechanism

achieves a partial-cooperative optimal power allocation which was shown to be close

to a globally-optimal power allocation. In [19] pricing ideas were used for power

allocation in wireless CDMA data networks having a mesh structure. The authors

studied power allocation under an ITC, and proposed two auction-based power al-

location mechanisms. Under certain conditions the SIR auction of [19] achieves a

power allocation arbitrarily close to a Pareto optimal one, and the power auction

achieves an allocation arbitrarily close to the socially optimal one. These conditions

however require in essence, that the manager should know the users’ utility functions.

Having provided an overview of the existing works in the literature, we now present

our motivation for studying the power allocation problem presented in Section 2.1.2.

2.1.4 Motivation

A wireless network is said to have externalities when: (i) each user’s transmission

creates interference to other users; and (ii) each user’s utility is directly affected by

the interference. Thus, the power allocation problem presented in Section 2.1.2 is an

allocation problem with externalities.

As described in Section 2.1.3 power allocation problems in wireless networks where
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externalities are present were previously considered in [30, 12, 2, 47, 28] and [19]. In

[12, 2, 47, 28] power allocation problem is formulated as a non-cooperative game and

in [19, 30] power allocation problem is formulated as a social welfare maximization

problem. The solution approach in all of the above references is based on different

variations of pricing mechanisms. The pricing mechanisms employed in [19, 12,

47, 28] do not achieve globally optimal allocations; the pricing mechanism in [2]

does not achieve optimal allocations unless the users vary their utilities according to

their target signal to interference ratios; and the pricing mechanism proposed in [30]

obtains close to globally optimal allocations.

The reason why pricing mechanism proposed in [30] results in a globally optimal

allocation is the following. The authors of [30] introduce a constraint on the total

power transmitted by the base station. Due to this constraint the original problem,

where each user’s utility depends on everyone’s transmission power, reduces to one

where each user’s utility depends only on the power allocated to it. Thus, the

externalities due to interference, that are present in the original problem formulated

in [30], disappear, and the pricing mechanism proposed in [30] results in efficient

allocations. For the cases where the system has either no maximum power constraint

or has multiple power constraints, the above-stated reduction is not possible.

In general, in decentralized resource allocation problems with externalities (i.e.

in problems where the resources allocated to each user directly affect the utility of

every other user) pricing mechanisms fail to obtain globally optimal allocations. This

fact is well known in the Economics literature (see [36, Chapter 10]) and has also

been identified by the authors of [47] in the context of power allocation in wireless

networks. Decentralized resource allocation problem for an economy with externali-

ties was studied by Reichelstein in [44]. Under the assumption that the users of the
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system cooperate and obey the rules of the mechanism, Reichelstein determined a

lower bound on the dimensionality of the message space 2.4 required by any mech-

anism so as to achieve globally optimal allocations. For a system with N users,

this lower bound is of the order O(N2). In game-theoretic formulations of problems

with externalities, the message space required by any mechanism to obtain globally

optimal allocations is of even higher dimension (see discussion in [41, 37, 52]). On

the other hand, the dimensionality of the message space of pricing mechanisms (in-

cluding those in the aforementioned communication networks literature) is of the

order O(N). Thus, the information exchanged among the users in the mechanisms

proposed in the aforementioned literature is not sufficient (rich enough) to lead to

globally optimal allocations. The failure of pricing mechanisms to produce globally

optimal solutions of power allocation problems where the users’ utilities are directly

affected by the interference provides the key motivation for the formulation and solu-

tion methodology presented in this chapter for power allocation in wireless networks.

In the next section we state the contributions of this chapter.

2.1.5 Contribution of the chapter

The key contributions of this chapter are:

• The formulation of power allocation problem for wireless networks with inter-

ference as an allocation problem with externalities;

• The specification of an iterative decentralized power allocation algorithm for

the above problem that has the following properties:

(i) It preserves the private information of each agent.

(ii) It guarantees convergence to the network optimal power allocation.

2.4i.e. the space of communication language used by the users to communicate with one another.
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Our formulation properly captures and directly addresses the effect of transmission

power externalities on the system performance. Our problem formulation and the

proposed power allocation algorithm are distinctly different from all previous stud-

ies of utility based power allocation problems, because the previous studies employ

pricing mechanisms. The message space of the proposed algorithm has dimension

N2 and thus, has the same order as Reichelstein’s lower bound (O(N2)). This means

that the information exchanged among the users in the proposed algorithm is very

close to the minimum information exchange required by any mechanism that achieves

globally optimal power allocations.

In the following section, we formulate Problem (P.2) as an externality problem

and present a decentralized algorithm (which we call the externality algorithm) that

obtains optimal solutions of the centralized counterpart of Problem (P.2).

2.2 Solution of the power allocation problem

2.2.1 Formulation as an externality problem

From each user’s perspective, we divide the allocation variables into two classes.

One consisting of allocations for which the user is responsible, and the other consist-

ing of the rest of the allocation variables for which the user is not directly responsible.

Specifically, we associate with user i a variable pi which is the power allocated

to/transmitted by user i. We also associate with user i an external environment

p−i which consists of the powers allocated to/transmitted by all other users j �= i.

Mathematically, the external environment of user i is defined to be the vector

(2.7) p−i := (p1, p2, . . . , pi−1, pi+1, . . . , pN).

As is clear, pi is under user i’s control whereas the variables in p−i are controlled

by other users. We define a power profile for the network of N users to be the full
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N -dimensional vector

(2.8) p := (p1, p2, . . . , pN).

By Assumption 2.3, pi is constrained to lie in the set Pi. In the absence of an exact

knowledge of the constraint sets Pj, j �= i, of other users, the set of possible external

environments of user i as perceived by i will be

(2.9) PN−1 = {p−i | pj ∈ P, j ∈ N\{i} }.

It should be noted that some of the elements of PN−1 may never actually exist

as an external environment of user i because PN−1 also contains elements outside∏
j∈N\{i}Pj, which cannot be used by other users. However, since P is common

knowledge, user i knows that its external environment must lie within PN−1. Since

PN−1 is a product set of N − 1 convex and compact sets, it is also convex and

compact.

To see the effect of a user’s external environment on the choices of pi it can

transmit, we first note that the presence of other users does not prohibit user i to

use any power in its possible range Pi. We call pi to be technically possible for user

i if, given the technical constraints of its device and the externalities, it is possible

for it to use power pi. Thus, for a given external environment p−i, any pi ∈ Pi is

technically possible for user i. By combining the possible external environments of

user i with the corresponding technically possible choices of pi we define the set of

power profiles that are technically feasible for user i, i ∈ N , as

(2.10) Di := {p | pi ∈ Pi, p−i ∈ PN−1}.

As can be seen, Di is a product set of two convex and compact sets, hence Di is also

convex and compact. The elements in the intersection
⋂

i∈N Di are the only power
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profiles which are technically feasible for all the users in the system. Hence a feasible

solution of Problem (P.2) must lie in this intersection. However, it should be noted

that the technically feasible power profiles in (2.10) do not ensure that the ITCs in

(2.1) are satisfied.

The responsibility of making sure that the power profiles satisfy the ITCs is given

to the MCs (users 0k, k ∈ K). Since by Assumption 2.2 user 0k knows the channel

gains hi0k
, i ∈ N , exactly, it can check whether or not a given power profile satisfies

the corresponding ITC in (2.1). We call a power profile that satisfies the kth ITC

as k – constraint-feasible. We associate the set D0k
of k – constraint-feasible power

profiles with user 0k, k ∈ K as follows:

(2.11) D0k
:= {p |

N∑
i=1

pihi0k
≤ Pk, pi ∈ P ∀ i}.

Since the sets D0k
, k ∈ K, are intersections of halfspaces and are bounded, they

are convex and compact. We call a power profile to be constraint-feasible if it is

k – constraint-feasible for all k ∈ K. It can be seen from (2.11) that a constraint-

feasible profile is acceptable for the system in terms of satisfying the ITCs but it may

not be technically feasible for all users i ∈ N because it does not necessarily satisfy

the technical feasibility condition pi ∈ Pi, ∀ i. For a constraint to be fully feasible

for the system, it must be both constraint-feasible as well as technically feasible for

all users i ∈ N . Mathematically, the set of feasible power profiles can be defined

as D :=
⋂

i∈N∪0K Di. It should be noted that D is a non-empty set since p = 0 is

an element of Di ∀ i ∈ N ∪ 0K. Furthermore, D is also convex and compact since

it is an intersection of convex and compact sets. Going back to the optimization

problem in Section 2.1.2 it can be seen that the set D we have just defined is the

same as the set defined in (2.4) over which the objective function in Problem (P.2)

has to be optimized. But now, by separating the external environment and private
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information of each user from those of other users, we have decomposed D into a

number of sets, Di, i ∈ N ∪ 0K, each of which can be associated with an individual

user. Furthermore, each setDi is such that user i, i ∈ N∪0K, has complete knowledge

of the parameters required to completely describe Di. With this decomposition we

are now ready to present an algorithm for solving the power allocation problem

presented in Section 2.1.2.

2.2.2 A decentralized optimal power allocation algorithm

We present a synchronous 2.5 iterative process, which we call the externality algo-

rithm, that satisfies the informational constraints of Problem (P.2) and leads to an

optimal solution of the centralized counterpart of Problem (P.2).

The externality algorithm (EA):

0) Before the start of the iterative process all users (including 01, 02, . . . , 0K) agree

upon a common power profile. This profile can be any arbitrary p(0) ∈ {p | pi ∈

P ∀i} that need not necessarily be a constraint-feasible or technically feasible

one.

Before the start of the iterative process the users also agree upon 2.6 a sequence

{τ (n)}∞n=1 of modification parameters that will be used in the algorithm. The

2.5In each iteration the message update is done synchronously by all the users.
2.6Since the users have a common objective, they can communicate with one another before the iterative pro-

cess/algorithm begins, and determine {τ (n)}∞n=1 and p(0) that will be used in the algorithm. Alternatively, {τ (n)}∞n=1

as well as p(0) can be given to the users by the system designer.
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sequence τ (n) is chosen to satisfy the following three properties:

0 < τ (n+1) ≤ τ (n) ≤ 1, ∀ n ≥ 1,(2.12)

lim
n→∞

τ (n) = 0,(2.13)

lim
n→∞

σ(n) = ∞,(2.14)

where, σ(n) :=
n∑

t=1

τ (t).(2.15)

For instance, τ (n) = 1
n
, n = 1, 2, 3, . . . , can be chosen as the sequence.

The counting variable n is set to 0.

1) At the nth iteration each user i ∈ N (respectively MCk, k ∈ K) maximizes

its nth stage payoff on its technically feasible set Di (respectively the kth –

constraint-feasible set D0k
). Specifically, user i, i ∈ N , solves

(2.16) p̂
(n+1)
i = arg max

p∈Di

{
ui(p)− 1

τ (n+1)
‖p− p(n)‖2

}
.

and MCk, k ∈ K, solves

(2.17) p̂
(n+1)
0k

= arg max
p∈D0k

− 1

τ (n+1)
‖p− p(n)‖2.

The optimal answers 2.7 p̂
(n+1)
i , ∀ i ∈ N ∪ 0K, are broadcast to all the users in

the system.

2) Upon receiving p̂
(n+1)
i , i ∈ N ∪ 0K, the users compute the average of all these

power profiles,

p(n+1) =
1

N + K

∑
i∈N∪0K

p̂
(n+1)
i .(2.18)

2.7Since Di is a compact set and ui(·) is strictly concave, a unique maximum exists for every i.
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Each user i, i ∈ N ∪ 0K, also computes the following weighted average:

ŵ
(n+1)
i =

1

σ(n+1)

n+1∑
t=1

τ (t)p̂
(t)
i ,(2.19)

where, σ(n+1) =
n+1∑
t=1

τ (t) = σ(n) + τ (n+1).(2.20)

The counter n is increased to n + 1 and the process repeats from Step 1).

At the (n + 1)th iteration the average calculated in (2.18) is used as a reference

power profile for maximization in (2.16) and (2.17). The new modification

parameter, τ (n+2), for the (n + 1)th iteration is selected from the predefined

sequence chosen in Step 0).

As stated in Section 2.1.1 the network model considered in this chapter can repre-

sent both hierarchical as well as non-hierarchical networks. For networks that have

hierarchy such as a single cell cellular uplink or downlink network in which all the

users and the MCs communicate with one base station that is responsible for power

allocation, the externality algorithm is modified as follows. After computing p̂
(n+1)
i in

Step 1), all users and measurement centers send their respective p̂
(n+1)
i , i ∈ N ∪ 0K,

to the base station. In Step 2) of the algorithm, the base station computes p(n+1) and

ŵ
(n+1)
i for some given i, i ∈ N ∪0K; this i remains fixed throughout the algorithm. 2.8

Then, the base station announces p(n+1) back to the users; p(n+1) is used by the users

as a reference power profile for optimization in Step 1) of the next iteration. With

this modification a big part of computations are done at the base station and each

user or measurement center needs to compute only p̂
(n+1)
i at each iteration of the

algorithm.

The externality algorithm has the following feature:

2.8It is sufficient for the base station to compute ŵ
(n+1)
i only for one i since all the sequences ŵ

(n+1)
i , i ∈

N ∪ 0K, converge to the same limit (see Theorem 2.1) which is the optimal solution of the centralized counterpart
of Problem (P.2).
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Theorem 2.1. The sequences {ŵ(n)
i }∞n=1, i ∈ N ∪0K, obtained by the externality

algorithm converge to the unique global optimum of the centralized counterpart of

Problem (P.2).

�

It should be noted that the dimensionality of the message space required by the

externality algorithm for both hierarchical as well as non-hierarchical networks is N2

which is same as the order O(N2) of the lower bound ([44]) on the dimensionality

of the message space required by any mechanism so as to achieve globally optimal

power allocations.

The proof of Theorem 2.1 is given in Appendix 2.A. Below we present a discussion

that explains the intuition behind the externality algorithm.

As stated in Section 2.1.2 our objective in developing the externality algorithm is

to come up with a decentralized iterative process that satisfies the constraints (posed

by the network model (M.2)) on the information available to different users and, ob-

tains an optimal solution of the centralized counterpart of Problem (P.2) in which

one of the users (or a center) has complete system information. To accomplish the

above objective the design of the iterative process requires that at each step, every

user must solve an individual optimization problem based only on the information

available to it at that step. 2.9 Based on the outcome of individual optimization, every

user should then send a message which can be used by other users as additional infor-

mation in the following iterations. Thus designing an appropriate iterative process

breaks down to designing appropriate “individual optimization problems” and “mes-

sage exchange rules” that lead to the maximization of the system objective function.

Below we discuss how the externality algorithm accomplishes these goals.

2.9This consists of information available to the user at the beginning of the iterative process and the information
gathered by it during the course of the iterative process till that particular iteration.



34

Because individual utility functions of the users are conflicting due to interference,

letting users maximize their respective utilities will not lead to the maximization of

the system objective function (the sum of all users’ utilities). Therefore, the objective

function for individual optimization problems must be some modification of the users’

utility functions that can capture the effect of externalities. The norm square terms

in (2.16) and (2.17) serve this purpose. The norm square term puts a penalty on

user i in proportion to its deviation from the average of everybody’s proposal for

the optimal power profile; thus, it “pulls” user i’s decision towards the other users’

evaluations of i; the evaluations of these users incorporate the externalities that i

generates to them. Furthermore, since the norm square term contains only those

variables that are known 2.10 to user i, and the set Di over which the optimization is

performed is also known to i, the optimization problem described by (2.16) is well

defined for each user i ∈ N . Similarly, since the set D0k
is known to MCk (user 0k),

the optimization problem described by (2.17) is well defined for each user 0k ∈ 0K.

The results p̂
(n)
i , i ∈ N ∪ 0K, of the individual optimization problems described by

(2.16)-(2.17), which are announced at the end of each iteration convey how each user

valued everybody’s transmissions. The average p(n) of everybody’s optima conveys

the average system valuation of users’ transmissions and hence is used as a reference

for the next iteration.

A desirable property for any iterative process to be useful is its convergence. This

is achieved in the externality algorithm by reducing the value of the modification pa-

rameter τ (n) in each iteration so as to increase the penalty of individual user deviation

from the average, given by (2.18), of the optima of previous iteration. Thus, as the

algorithm progresses, the power profile p̂
(n)
i proposed by user i, i ∈ N ∪0K, gets closer

2.10Note: After the announcement of users’ optimal power profile proposals at the nth iteration, every user knows
p(n) at the (n+1)th iteration.
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and closer to those proposed by other users and eventually everybody agrees upon a

“common” power profile. It should be noted however that the objective is not only

the convergence of the iterative process but also, the maximization of the system ob-

jective function at the point of convergence. As can be noted from (2.16) and (2.17),

the power profile which the users optima p̂
(n)
i , i ∈ N ∪ 0K, converge to, need not be

a maximizer of the system objective function. The reason is the following. Towards

the end of the algorithm the norm square terms in (2.16) dominate (since τ (n) → 0)

the utility terms in the individual optimization problems. Thus, for very large n

the outcome of each individual optimization problem is very close to the average

proposal of the previous iteration. However, these outcomes are not representative

of the users’ utilities that form the system objective function; thus, even though in

the limit the outcomes are equal, the limit point is not optimal. The contribution of

the users’ utilities is accounted for by the weighted time average ŵ
(n)
i , i ∈ N ∪ 0K.

By taking a weighted average of the individual optima over the entire run of the

algorithm, the two contributing components to the system objective are taken into

account simultaneously: the individual utilities, which are more prominent in the

individual optimization towards the beginning of the iterative process (when τ (n) is

comparatively large); and, the externalities, whose effect becomes more prominent in

the individual optimization towards the end of the algorithm (when τ (n) approaches

0). The decreasing weights τ (n) facilitate convergence of each sequence ŵ
(n)
i and pro-

vide appropriate balance between the contributions of the above two parameters in

the point of convergence; thus, making the common point of convergence the global

optimum of the system objective function.

Recall that algorithm (EA) has been designed to address decentralized power allo-

cation under the scenario where the users obediently follow the rules of the algorithm
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(Assumption 2.9). As mentioned in the introduction of this thesis (cf. (Section 1.3)),

our approach to the solution of decentralized resource allocation problems under the

above scenario is based on the principles of realization theory which is a component

of mechanism design. In the next section we show how algorithm (EA) can be viewed

as a solution approach of realization theory.

2.2.3 Relating algorithm (EA) with the solution approach
of realization theory

To see the relation of algorithm (EA) with the solution approach of realization

theory we first present a brief introduction to the realization theory approach to

decentralized resource allocation. We then show how algorithm (EA) can be related

with this framework.

Realization theory is a branch of the theory of mechanism design developed by

mathematical economists. It provides a systematic methodology for the design of de-

centralized resource allocation mechanisms for systems that consist of agents whose

objectives are aligned with the network objective. It focuses on the design of decen-

tralized mechanisms that can achieve some pre specified objective, e.g. maximizing

some network-wide/social welfare function.

In the mechanism design framework a centralized resource allocation problem is

described by the triple (E ,D, γ): the environment space E , the action/allocation

space A and the goal correspondence γ. This is shown in Fig. 2.2.

E Dγ

Figure 2.2: A centralized resource allocation problem.

The environment e of a resource allocation problem, centralized or decentralized,

is defined to be the set of resources and technologies available to all the users, their
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utilities, and any other information available to them, taken together. These are

circumstances that cannot be changed either by the users in the network or by

the designer of the resource allocation mechanism. For the network described by

Model (M.2), the environment ei of user i, i ∈ N , consists of the set Pi of its

feasible transmission powers, its utility function ui, and the common knowledge about

the set of users N as well as the fact that the set of users, their utilities and the

channel gains remain fixed throughout a power allocation period. For user 0k, k ∈ K,

the environment e0k
consists of its utility function u0k

, the channel gains hi0k
, i ∈

N , and the aforementioned common knowledge. The environments of all the users

collectively define the system environment e := (e1, e2, . . . ,eN, e01 , e02 , . . . ,e0K
).

The set of all possible environments ei of a user defines its environment space Ei.

The environment spaces of all the users collectively define the environment space

E := (E1, E2, . . . , EN , E01 , E02 , . . . , E0K
) of the system/problem.

The action / allocation space D of a resource allocation problem, centralized or

decentralized, is defined to be the set of all possible resource allocation / exchange

actions that can be taken by the users. For the network described by Model (M.2),

the action space is the set D of all feasible power profiles p.

The goal correspondence γ of a centralized resource allocation problem is a map

from E to D which assigns for every environment e ∈ E , the set of allocations in D

that are solutions to the centralized resource allocation problem according to some

pre-specified system goal. For the centralized counterpart of the power allocation

problem (P.2), the system goal is the maximization of the sum
∑

i∈N∪0K ui(p) of

users’ utilities, and γ is a mapping that maps every environment e ∈ E , defined

in the previous paragraph, to the set of solutions of the centralized counterpart

of Problem (P.2). Since in a centralized scenario one of the users has complete
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system information, i.e. it knows e, it can determine optimal allocations γ(e) in

D corresponding to any given e using centralized optimization methods (such as

mathematical programming or dynamic programming).

In an informationally decentralized system as the one described by Model (M.2),

no one completely knows e, therefore optimal centralized allocations γ(e) can not

be determined by methods similar to those for the centralized problems. Therefore,

for resource allocation in a decentralized system, it is desirable to devise a commu-

nication/message exchange process among the users that does not require them to

reveal their private information, yet leads to sufficient information exchange that

eventually enables them to determine optimal centralized allocations. In the context

of mechanism design, a formal treatment of the design of such communication and

allocation rules is provided by realization theory.

In realization theory, a decentralized allocation mechanism is described by the

triple (M, μ, f) as shown in Fig. 2.3.

E D

M
μ f

Figure 2.3: A decentralized resource allocation mechanism in realization theory.

In the decentralized mechanism, M :=
∏N

i=1Mi is the message space which spec-

ifies for each i ∈ N the set of messages Mi that user i can communicate to other

users. Each user i ∈ N generates messages from its message space Mi based on the

communication rules specified by the mechanism. The message exchange process is

normally iterative, therefore it is desirable that this process reaches an equilibrium,

where any further update of messages by the users results in the same set of mes-
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sages. μ is the equilibrium message correspondence that determines, for every prob-

lem instance (specified by the system environment), the set of equilibrium messages

resulting from the specified communication rule. Once an equilibrium is attained,

the resource allocations corresponding to the equilibrium message are determined by

the outcome function f .

The following property characterizes the decentralized resource allocation mech-

anisms that can obtain optimal centralized allocations.

Definition 2.1 (Realization of goal correspondence). A decentralized mechanism

(M, μ, f) is said to “realize” the goal correspondence γ if,

f(μ(e)) ⊂ γ(e) ∀ e ∈ E ,

i.e., for any given environment, the set of allocations resulting from the equilibrium

messages specified by (M, μ, f) is a subset of the set of allocations γ(e) that are

optimal solutions of the corresponding centralized problem (e,D, γ).

The decentralized resource allocation model we discussed so far emphasizes on the

equilibrium property of the mechanism. It does not provide details of communication

rules or iterative message exchange process. In realization theory, these details are

left to be designed according to the system under consideration. In the externality

algorithm (EA) we explicitly describe the communication rules and the iterative

message exchange process for the power allocation problem. Because these rules

cannot be directly described in terms of the realization theory model, therefore,

for clarity of presentation we presented the externality algorithm in Section 2.2.2

without referring to the realization model. However, at this point we can show

how the equilibrium property of Algorithm (EA) can be described in terms of the

realization theory model presented in this section.
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In the discussion above we have already defined the environment, the action space,

and the goal correspondence for the power allocation problem of Section 2.1.2. The

decentralized mechanism (M, μ, f) corresponding to Algorithm (EA) can be con-

structed as follows. Define the message space for each user i ∈ N ∪ 0K to be

Mi = Di × Di. Define the communication rule for the users as follows. In each

iteration n = 1, 2, 3, . . . , let each user i ∈ N ∪ 0K generate from its message space

Mi (defined above) the vector (p̂
(n)
i , ŵ

(n)
i ) that it obtains from (2.16), (2.17) and

(2.19) 2.11.

The communication rule defined above implies that the equilibrium message corre-

spondence μ is a function that maps the system environment to the equilibrium mes-

sage vector ((p̂∗1, ŵ
∗
1), (p̂

∗
2, ŵ

(n)
2 ), . . . , (p̂∗N , ŵ∗N), (p̂∗01

, ŵ∗01
), (p̂∗02

, ŵ∗02
), . . . , (p̂∗0K

, ŵ∗0K
)) ∈∏

i∈N∪0KMi. This vector is obtained at the point of convergence of Algorithm (EA). 2.12

Finally, define the outcome function f :
∏

i∈N∪0KMi → D to be the function that

maps the above equilibrium message vector to the vector w∗ := 1
(N+K)

∑
i∈N∪0K ŵ∗i ∈

D. As stated in Theorem 2.1 and proved in Appendix 2.A, for each i ∈ N ∪ 0K

the point of convergence ŵ∗i of the sequence {ŵ(n)
i }∞n=1 is the unique optimum of the

centralized counterpart of Problem (P.2). Hence, the average w∗ of ŵ∗i , i ∈ N ∪0K, is

also the unique optimum of the centralized counterpart of Problem (P.2). Thus, the

mechanism (M, μ, f) (equivalently, Algorithm (EA)) realizes the goal correspondence

defined by the solution of the centralized counterpart of Problem (P.2).

In the next section we present numerical results that demonstrate the performance

of the externality algorithm.

2.11Note that since for each t = 1, 2, . . . , p̂
(t)
i ∈ Di, the convex combination ŵ

(n)
i = 1

σ(n)

∑n
t=1 p̂

(t)
i ∈ Di

2.12Theorem 2.1 establishes that for each i ∈ N ∪ 0K, the sequence {ŵ(n)
i }∞n=1 is a converging sequence.
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2.3 Numerical Results

In this section we study the impact of various parameters on the performance

of the externality algorithm. We study the performance of the algorithm for two

types of cellular CDMA systems. We first consider an uplink CDMA system where

the Base Station (BS) employs Minimum Mean Squared Error (MMSE) Multi-User

Detection (MUD) to decode the signal of each mobile user. We take the utility of

a user to be the negative of the Mean Squared Error (MSE) corresponding to the

user less the power loss incurred due to signal transmission. Thus, the utility of user

i, i ∈ N , is given by (see [55]),

ui(p) = − min
zT

i ∈R1×N
E[ ‖bi − zT

i y‖2]− 0.1 pi

= −[(I +
2

N0

SXS)−1
]
ii
− 0.1 pi

(2.21)

where, bi is the transmitted data symbol of user i, y is the output of the matched

filter employed by the BS, I is the identity matrix of size N × N , N0/2 is the

two sided power spectral density of thermal noise, S := diag(S1, S2, . . . , SN) is the

diagonal matrix consisting of the received amplitudes of users 1 through N , and X

is the cross-correlation matrix of the users’ signature waveforms. The second term in

the utility expression represents the input power loss incurred when user i transmits

its signal at power pi. For small cross correlation of user’s waveforms, the utility

functions given by (2.21) are close to concave (see Appendix 2.B) and therefore,

the externality algorithm is expected to converge to the optimum centralized power

allocation for the above system.

To test the performance of the algorithm, we ran simulations as explained below.

For each test case, we distributed the users uniformly in a circular area of radius 5

around the BS. We placed three Measurement Centers (MCs) in the system; the first
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coinciding with the BS and the other two symmetrically placed along a diameter

of the circle so that each MC is two-thirds radius away from the BS. We assumed

that the maximum transmission power limit of each user is anywhere between 2W

and 5W and the power loss due to propagation is determined by the inverse squared

distance between the transmitter and the receiver. We assumed that each user uses

a normalized bipolar signature waveform of dimension 6, and arbitrarily picks a

waveform from all possible signature waveforms for its data transmission. Thus the

users create interference to each other when their chosen waveforms have the same

polarity in one or more signal dimensions. In the simulation results that follow, each

point in the plots is obtained by averaging 50 identical independent simulation runs.

In Fig. 2.4, we compare the performance of the externality algorithm for different

modification parameter sequences {τ (n)}. We choose the sequence {τ (n)} to be of

the form τ (n) = (1/n)δ for varying δ. We plot the sum of users’ utilities for a

three user network against the number of iterations. As can be seen from Fig. 2.4,

for δ = 0.001 the algorithm shows best convergence. For values of δ smaller than

0.001, the modification term remains small compared to the users’ utilities in the

individual optimization; therefore, it takes longer time for the users to agree with

other users’ proposals and reach the global optimum. On the other hand, for values

of δ greater than 0.001, the modification term dominates the users’ utilities in the

individual optimization; therefore, it takes the users longer to move away from the

initial point p(0) and reach the global optimum. Thus for any system, there exists

an optimum sequence {τ (n)} that provides best convergence. The optimum sequence

would however depend on the numerical value range of the user’s utility functions

under consideration. Therefore, to obtain best convergence, a sequence suitable for

the given system must be used.
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Figure 2.4: Sum of users’ utilities vs. number of iterations for different modification parameter
sequences {τ (n)}. Uplink cellular network with three users employing MMSE-MUD;
τ (n) = (1/n)δ, 2Pmax/N0 = 15dB.
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Figure 2.5: Sum of users’ utilities vs. number of iterations for different values of 2Pmax/N0. Uplink
cellular network with three users employing MMSE-MUD; τ (n) = (1/n)0.001.

In Fig. 2.5, we compare the performance of the externality algorithm for different

SNRs (2Pmax/N0). For a three user network we plot the sum of users’ utilities against

the number of iterations for various SNRs. As can be seen, the algorithm converges

to the centralized optimum for all SNR values. However, since different SNRs result

in different numerical values of users’ utility functions, the convergence time to the

centralized optimum varies in each case and depends on the distance of the initial

point from the optimum.



44

0 200 400 600 800 1000
Number of iterations �n�0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 200 400 600 800 1000
Number of iterations �n�0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000
Number of iterations �n�0.0

0.2

0.4

0.6

0.8

1.0

p1 (centralized optimum) 

                         wi1
(n)

                                   

                                                                (a) 

p2 (centralized optimum) 

                           wi2
(n) 

 (b) 

              p3 (centralized optimum) 

                            wi3
(n)

         
                                                                   (c) 

Figure 2.6: Sequence {ŵ(n)
i } vs. number of iterations n for users i ∈ {1, 2, 3} and MCs

j ∈ {01, 02, 03}. Uplink cellular network with three users employing MMSE-MUD;
τ (n) = (1/n)0.001, 2Pmax/N0 = 15dB.

For τ (n) = (1/n)0.001 and 2Pmax/N0 = 15dB that result in best convergence

in Fig. 2.4 and Fig. 2.5, we plot the sequences {ŵ(n)
i } corresponding to each user

i ∈ {1, 2, 3} and each MC j ∈ {01, 02, 03} in Fig. 2.6. The three components of
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vectors ŵ
(n)
i , n = 1, 2, . . . corresponding to users 1, 2 and 3 are plotted on three

separate plots. On the same plots, we also plot the optimum centralized power

allocation (p1, p2, p3). It is clear from the plots that the sequences {ŵ(n)
i } converge

to the centralized optimum which illustrates the statement of Theorem 1.

To compare the performance of the externality algorithm with increasing inter-

ference, we plot in Fig. 2.7 the average utility per user resulting from the externality

algorithm against the number of iterations for different number of users. On the

same plot we also show the optimum centralized value of the average utility per user

for each case. As can be seen, the algorithm converges to the centralized optimum

for 3 and 4 user case, whereas for 6 and 8 users, it does not converge to the optimum

value in given number of iterations. The reason for this is as follows. When the

number of users is small compared to the signal dimensions, the cross-correlation

between the users’ waveforms is small; hence the users’ utility functions are close to

concave as mentioned in the beginning of Section 2.3. As the number of users starts

overshooting the available signal dimensions which is 6 in our simulations, the cross-

correlation between the users’ waveforms increases and the utility functions are not

guaranteed to be close to concave. Therefore, even though the externality algorithm

improves the value of the objective function, it does not converge completely to the

global optimum.

Next we consider an uplink CDMA system where the Base Station (BS) employs

simple matched filtering to decode the signal of each mobile user. In this case, we

take the utility of a user to be its SINR at the BS receiver, i.e.,

(2.22) ui(p) =
pihi0

N0

2
+ 1

N

∑
j∈N ,j �=i pjhj0

,

where, hj0 is the channel gain from user j, j ∈ N , to the BS, and N is the number of
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Figure 2.7: Sequence 1/N
∑

i∈N∪0K ui(w(n)) vs. number of iterations n for 3, 4, 6 and 8 users.
Legend: Blue→N=3, Red→N=4, Green→N=6, Pink→N=8. Uplink cellular network
employing MMSE-MUD; τ (n) = (1/n)0.001, 2Pmax/N0 = 15dB.

dimensions of the users’ waveforms. For this system, we set up a simulation scenario

in the same way as done for the MMSE-MUD system. We use the same transmission

power limits for the users and use the same parameters for the circle radius and

propagation loss.

For the SINR utility, The impact of different sequences {τ (n)} on the convergence

of the externality algorithm is similar to that discussed for MMSE-MUD utility.

However, the optimum sequence of the form τ (n) = (1/n)δ in this case has δ =

0.5. Using this modification sequence, we compare the impact of varying SNR on

convergence in Fig. 2.8. In this figure we plot two curves representing the average

utility per user for an 8 user network. The upper curve shows the optimum centralized

value of per-user utility corresponding to each SNR, and the lower curve shows the

per-user utility for that SNR at the point of convergence of the externality algorithm.

As can be seen, the externality algorithm converges close to the centralized optimum

for negative SNR values. For positive SNRs, as the SNR increases, the gap between

the centralized optimum and the solution of the externality algorithm increases. The
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reason for this deviation is that for negative SNRs, the SINR utility is close to concave

but as SNR increases in positive direction, the SINR utility becomes more and more

non-concave, hence the externality algorithm does not guarantee convergence to the

centralized optimum.

�4 �2 2 4 6

10

15

20
Average utility per user

         Centralized optimum 

                                                    

Externality algorithm 

              2Pmax/N0 (in dB) 

Figure 2.8: Average utility per user vs. 2Pmax/N0. Uplink cellular network of 8 users with SINR
utility; τ (n) = (1/n)0.5.

The two examples from cellular CDMA communication presented in this section

show that the externality algorithm results in optimum centralized power allocation

when the networks operate under conditions where users’ utilities are close to con-

cave. The modification parameter sequence plays a critical role in determining the

convergence speed of the algorithm. Other factors such as SNR and signal dimen-

sion impact convergence if they are critical in determining the shape of the utility

functions.

2.A Proof of Theorem 2.1

Key ideas of the proof of Theorem 2.1

There are two key steps in the proof of Theorem 2.1. We first note that each

sequence of allocations {ŵ(n)
i }∞n=1, i ∈ N ∪ 0K, generated by the externality algo-



48

rithm is in a compact set and therefore, each sequence {ŵ(n)
i }∞n=1 has a convergent

subsequence. In the first step (Claim 2.1 and Claim 2.2) we consider such a con-

verging subsequence {ŵ(n′)
i } of a given user i, and the corresponding subsequences

{ŵ(n′)
j }, j ∈ (N ∪ 0K)\{i}, of all other users. We show that the subsequences

{ŵ(n′)
j }, j ∈ (N ∪ 0K)\{i}, are also converging subsequences and that all of them

converge to the same limit ŵ∗i as the subsequence {ŵ(n′)
i }. Furthermore, we show

that this common limit is a feasible solution of Problem (P.2). In the second step

(Claim 2.2 and Claim 2.3) we show that the aforementioned common limit is an

optimal solution of the centralized counterpart of Problem (P.2). Since the central-

ized counterpart of Problem (P.2) has a unique optimal solution (as it is a concave

optimization problem), and any arbitrarily chosen converging subsequence {ŵ(n′)
i }

of an arbitrarily chosen user i is shown to converge to the optimal solution, for ev-

ery i ∈ N ∪ 0K, all converging subsequences of {ŵ(n)
i }∞n=1 converge to the optimal

solution. This in turn implies that for every i ∈ N ∪ 0K, the sequences {ŵ(n)
i }∞n=1

themselves converge to the optimal solution.

Proof of Theorem 2.1

Let i ∈ N ∪ 0K be a given user. Since the set Di is convex and p̂
(t)
i ∈ Di, ∀ t,

it follows that the convex combination of p̂
(t)
i , ŵ

(n)
i = 1

σ(n)

∑n
t=1 τ (t)p̂

(t)
i ∈ Di, ∀ n ∈

{1, 2, 3, . . . }. Since Di is compact, there exists a subsequence {ŵ(n′)
i } of {ŵ(n)

i }∞n=1

that converges to a limit ŵ∗i in Di.

Define,

(2.23) w(n) :=
1

σ(n)

n−1∑
t=0

τ (t+1)p(t)

In the following claim we show that the subsequence {w(n′)} of {w(n)}∞n=1 that is

defined by the same set of indices as those of {ŵ(n′)
i }, converges to ŵ∗i . Using this
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result we show that the subsequences {ŵ(n′)
j }, j ∈ (N ∪ 0K)\{i}, corresponding to

users other than i that are specified by the same set of indices as those of {ŵ(n′)
i }

also converge to the same limit, i.e., ŵ
(n′)
j → ŵ∗j = ŵ∗i , ∀ j ∈ (N ∪ 0K)\{i}.

Claim 2.1. Let for some i ∈ N ∪ 0K, limn′→∞ ŵ
(n′)
i = ŵ∗i . Then,

(i) limn′→∞ ‖ŵ(n′)
i − w(n′)‖2 = 0, i.e., limn′→∞w(n′) = ŵ∗i .

(ii) limn′→∞ ‖ŵ(n′)
j − w(n′)‖2 = 0, i.e., limn′→∞ ŵ

(n′)
j = ŵ∗i , ∀ j ∈ (N ∪ 0K)\{i}.

(iii) The common limit ŵ∗i of the subsequences {ŵ(n′)
j }, j ∈ N ∪ 0K, is a feasible

solution of Problem (P.2).

Proof:

(i) We must show that

∀ ε > 0, ∃n
′
0 : ∀ n′ ≥ n

′
0, ‖ŵ(n′)

i − w(n′)‖2 ≤ ε.(2.24)

Since ‖ · ‖2 is a convex function, for any n′,

(2.25) ‖ŵ(n′)
i − w(n′)‖2 ≤ 1

σ(n′)

n′−1∑
t=0

τ (t+1)‖p̂(t+1)
i − p(t)‖2.

By (2.12) we have for any n0 < n′,

1

σ(n′)

n′−1∑
t=0

τ (t+1)‖p̂(t+1)
i − p(t)‖2

≤ 1

σ(n′) τ
(1)

n0−1∑
t=0

‖p̂(t+1)
i − p(t)‖2 + τ (n0) 1

σ(n′)

n′−1∑
t=n0

‖p̂(t+1)
i − p(t)‖2.

(2.26)

In Claim 2.2 we show that there exists a constant Cp ∈ (0,∞) independent of n′

such that

(2.27)
1

σ(n′)

n′−1∑
t=n0

‖p̂(t+1)
i − p(t)‖2 ≤ Cp .
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Assuming (2.27) to be true, and given any ε > 0, we can choose n0 (by (2.13) and

[45, Definition 3.1, p.41]) such that

(2.28) τ (n0) ≤ ε

2Cp

.

Since Di, i ∈ N ∪ 0K, is compact and p̂
(t+1)
i ∈ Di, there exist constants CDi

indepen-

dent of t ([45, Theorem 2.41, p.35]) such that

(2.29) ‖p̂(t+1)
i ‖ ≤ CDi

, i ∈ N ∪ 0K.

Therefore the sum A0i
defined below is finite for any n0 <∞ and in particular, for

n0 chosen in (2.28),

A0i
:=

n0−1∑
t=0

‖p̂(t+1)
i − p(t)‖2 <∞.(2.30)

By (2.14) σ(n′) →∞ as n′ →∞, therefore we can choose an n′0i
large enough such

that

(2.31) σ(n′
0i

) ≥ 2τ (1)A0i

ε
.

Then,

(2.32) ∀ n′ ≥ n′0 := max
i∈N∪ 0K

n′0i
, σ(n′) ≥ σ(n′

0) ≥ σ(n′
0i

), ∀ i ∈ N ∪ 0K.

Substituting (2.27) and (2.30) in (2.26) and using (2.32) implies that

(2.33) ‖ŵ(n′)
i − w(n′)‖2 ≤ 1

σ(n′
0)

τ (1)A0i
+ τ (n0)Cp ≤ ε

2
+

ε

2
= ε, ∀ n′ ≥ n′0.

The second inequality in (2.33) follows from (2.28) and (2.31). Since {ŵ(n′)
i } is a

converging subsequence with limit ŵ∗i , (2.33) implies that the subsequence {w(n′)}

also converges, and has the limit ŵ∗i .

(ii) Replacing i by j in (2.25)–(2.33) we obtain for each j ∈ (N ∪ 0K)\{i} that,

(2.34) ‖ŵ(n′)
j − w(n′)‖2 ≤ 1

σ(n
′
0)

τ (1)A0j
+ τ (n0)Cp ≤ ε.
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Since by part (i) {w(n′)} is a converging subsequence with limit ŵ∗i , it follows from

(2.34) that for each j ∈ (N ∪ 0K)\{i}, {ŵ(n′)
j } is also a converging subsequence with

the limit ŵ∗i .

(iii) Since each set Dj, j ∈ N ∪ 0K, is compact, the limit of each subsequence

{ŵ(n′)
j }, j ∈ N ∪ 0K, lies in the respective set Dj, j ∈ N ∪ 0K. By part (i) and

part (ii) we know that ∀ j ∈ N ∪ 0K, the subsequences {ŵ(n′)
j } converge to the same

limit ŵ∗i . Therefore, by above argument ŵ∗i ∈ Dj, ∀ j ∈ N ∪ 0K. It follows that

ŵ∗i ∈ D =
⋂

j∈N∪0K Dj and hence ŵ∗i is a feasible solution of Problem (P.2).

To complete the proof of Claim 2.1 we need to prove (2.27). This is done in

Claim 2.2.

Claim 2.2. There exists a constant 0 < Cp <∞ such that

1

σ(n)

n−1∑
t=0

‖p̂(t+1)
i − p(t)‖2 ≤ Cp , ∀ n.

Proof:

Since p̂
(t+1)
i is the optimal solution of Step (1) of the algorithm, it follows from

[31, Theorem 1.6] that 2.13

τ (t+1)ui(p̂
(t+1)
i )− ‖p̂(t+1)

i − p‖2 + ‖p(t) − p‖2 − ‖p̂(t+1)
i − p(t)‖2

≥ τ (t+1)ui(p), ∀ p ∈ Di, i ∈ N∪0K.

(2.35)

Adding inequality (2.35) over all i implies

τ (t+1)
∑

i∈N∪0K

ui(p̂
(t+1)
i )−

∑
i∈N∪0K

‖p̂(t+1)
i − p‖2 + (N + K)‖p(t) − p‖2

−
∑

i∈N∪0K

‖p̂(t+1)
i − p(t)‖2 ≥ τ (t+1)

∑
i∈N∪0K

ui(p), ∀ p ∈ D :=
⋂

i∈N∪0K

Di.

(2.36)

By convexity of ‖ · ‖2,

(2.37) ‖p(t+1) − p‖2 ≤ 1

N + K

∑
i∈N∪0K

‖p̂(t+1)
i − p‖2.

2.13by taking ‖ · ‖2 as function J1(·) and ui(·) as function J2(·) in Theorem 1.6 of [31].
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Replacing the second term in (2.36) using (2.37), adding (2.36) over t = 0, 1, . . . , n−1,

and dividing by N + K we get,

1

N + K

n−1∑
t=0

τ (t+1)
∑

i∈N∪0K

ui(p̂
(t+1)
i )− ‖p(n) − p‖2 − 1

N + K

∑
i∈N∪0K

n−1∑
t=0

‖p̂(t+1)
i − p(t)‖2

≥ σ(n)

N + K

∑
i∈N∪0K

ui(p)− ‖p(0) − p‖2, ∀ p ∈ D.

(2.38)

By concavity of ui(p) in p,

(2.39)
1

N + K

∑
i∈N∪0K

n−1∑
t=0

τ (t+1)ui(p̂
(t+1)
i ) ≤ σ(n)

N + K

∑
i∈N∪0K

ui(ŵ
(n)
i ).

Substituting (2.39) in (2.38) and multiplying by (N + K)/σ(n) we obtain∑
i∈N∪0K

ui(ŵ
(n)
i )− N + K

σ(n)
‖p(n) − p‖2 −

∑
i∈N∪0K

1

σ(n)

n−1∑
t=0

‖p̂(t+1)
i − p(t)‖2

≥
∑

i∈N∪0K

ui(p)− N + K

σ(n)
‖p(0) − p‖2, ∀ p ∈ D.

(2.40)

Since Di, i ∈ N ∪ 0K, and D are compact, the numerators of the second terms on

both the LHS and the RHS of (2.40) are bounded. From (2.14), σ(n) →∞ as n →∞.

Therefore,

lim
n→∞

1

σ(n)
‖p(n) − p‖2 = 0,

and lim
n→∞

1

σ(n)
‖p(0) − p‖2 = 0.

(2.41)

Furthermore, since Di, i ∈ N ∪ 0K, and D are compact, ŵ
(n)
i ∈ Di, p ∈ D, and

ui(·), i ∈ N ∪ 0K, are continuous functions on R
N , there exist constants 0 < CUSi

<

∞, i ∈ N ∪ 0K, independent of n such that

(2.42) ui(p) ≤ CUSi
, and ui(ŵ

(n)
i ) ≤ CUSi

, i ∈ N ∪ 0K.

Then (2.40) together with (2.41)–(2.42) imply that for an appropriate constant 0 <

Cp <∞,

1

σ(n)

n−1∑
t=0

‖p̂(t+1)
i − p(t)‖2 ≤ Cp , ∀ n.(2.43)
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This completes the proof 2.14 of Claim 2.2 and, therefore, the proof of Claim 2.1.

The arguments used in the proof of Claim 2.2, specifically those leading to in-

equality (2.40) together with Claim 2.1 allow us to prove that the limit ŵ∗i is an

optimal power allocation.

Claim 2.3. The limit point ŵ∗i of the subsequences {ŵ(n′)
j }, j ∈ N ∪0K, is an optimal

solution of the centralized counterpart of Problem (P.2).

Proof:

From Claim 2.1 we have that the subsequence ŵ
(n′)
j → ŵ∗i , ∀ j ∈ N∪0K. Therefore

as n′ → ∞, the first term on the LHS of (2.40) converges 2.15 to the value of the

objective function (in (2.5)) at ŵ∗i ; this can be compared with the value of the

objective function at any point p ∈ D if the limits of the other three terms in (2.40)

are known. From (2.41), the second terms on both the LHS and the RHS of (2.40)

converge to 0. Since ‖ · ‖2 is convex, ∀ i ∈ N∪0K,

‖ŵ(n′)
i − w(n′)‖2 ≤ 1

σ(n′)

n′−1∑
t=0

τ (t+1)‖p̂(t+1)
i − p(t)‖2

≤ 1

σ(n′)

n′−1∑
t=0

‖p̂(t+1)
i − p(t)‖2, ∵ τ (t+1) ≤ 1, ∀ t ≥ 0.

(2.44)

Substituting (2.44) in (2.40) implies that∑
i∈N∪0K

ui(ŵ
(n′)
i )− N + K

σ(n′) ‖p(n′) − p‖2 −
∑

i∈N∪0K

‖ŵ(n′)
i − w(n′)‖2

≥
∑

i∈N∪0K

ui(p)− N + K

σ(n′) ‖p(0) − p‖2, ∀ p ∈ D.

(2.45)

Taking the limit n′ →∞ in (2.45) and using (2.33), (2.34) and (2.41) we obtain

(2.46)
∑

i∈N∪0K

ui(ŵ
∗
i ) ≥

∑
i∈N∪0K

ui(p), ∀ p ∈ D.

2.14It should be noted that the result of Claim 2.1 has not been used in the proof of Claim 2.2. The two claims are
presented in the given order only to facilitate the flow of the proof of Theorem 2.1
2.15We only consider the subsequence {n′} of {n} here for which {ŵ(n′)

i } converges.
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Claim 2.4. The sequences {ŵ(n)
i }∞n=1, i ∈ N ∪ 0K, generated by the externality algo-

rithm converge to the optimal solution of the centralized counterpart of Problem (P.2).

Proof:

In Claims 2.1–2.3 we have shown that if we consider any arbitrary converging

subsequence {ŵ(n′)
i } of an arbitrary user i, this subsequence converges to an optimal

solution ŵ∗i of the centralized counterpart of Problem (P.2). Since the centralized

counterpart of Problem (P.2) is a concave maximization problem, it has a unique

optimal solution w∗ which must be equal to ŵ∗i . Since the user and the corresponding

subsequence are arbitrarily chosen in Claims 2.1–2.3, the results of Claims 2.1–2.3

hold for all the users and all converging subsequences of each user. This means that

for every i ∈ N ∪ 0K, all converging subsequences of {ŵ(n)
i }∞n=1 must converge to the

unique optimal solution w∗. Since each sequence {ŵ(n)
i }∞n=1, i ∈ N ∪ 0K, lies in a

compact set Di ⊂ R
N , and since for each i ∈ N ∪ 0K, all converging subsequences of

{ŵ(n)
i }∞n=1 converge to the same limit w∗ (in other words, each sequence {ŵ(n)

i }∞n=1, i ∈

N ∪ 0K, has exactly one point of accumulation 2.16), by [17, Corollary, p.53] each

sequence {ŵ(n)
i }∞n=1 for i ∈ N ∪ 0K, itself converges to the optimal solution w∗. This

completes the proof of Claim 2.4 and establishes the assertion of Theorem 2.1.

2.B Concavity of the MMSE-MUD utility function

One crucial assumption in Section 2.1.1 that is required to prove the convergence

of the externality algorithm is that the users’ utilities are concave functions of power

profiles. In this section we show the conditions under which the MMSE-MUD utility

function studied in Section 2.3 is close to concave.
2.16See [17, Lemma, p.52]
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Suppose there are N users in a network, and all the users use MMSE-MUD

receivers to decode the received data. The minimum mean square error at the output

of user i’s (i ∈ N ) receiver is then given by (see [55, Chapter 6])

(2.47) min
zT

i ∈R1×N
E[ ‖bi − zT

i yi‖2] =
[
(I +

2

N0

SXS)−1
]
ii
,

where, bi is the transmitted data symbol of user i, yi is the output of user i’s

matched filter corresponding to its input received data, I is the identity matrix

of size N × N , N0/2 is the two sided power spectral density of the thermal noise,

S := diag(S1, S2, . . . , SN) is the diagonal matrix consisting of the received amplitudes

of users 1 through N , and X is the cross-correlation matrix of the users’ signature

waveforms. For simplicity of analysis and for analytical tractability we consider the

case of two users below.

For the two-user (N = 2) case, the expression for the MMSE in (2.47) becomes

(2.48) MMSEi =
N0

2

N0

2
+ pihii

(
1− ρ2(pjhji)

(N0/2+pjhji)

) , i, j ∈ {1, 2}, j �= i.

where, pihii = S2
i and pjhji = S2

j , i, j ∈ {1, 2}, j �= i; hii and hji are the channel

gains from transmitters Ti and Tj respectively to the receiver Ri; and ρ is the cross

correlation between the signature waveforms of users 1 and 2.

We take the users’ utility functions to be

ui(p) = −MMSEi(p), i ∈ {1, 2}.(2.49)

Below we investigate the properties of function ui defined in (2.49). From (2.48)

and (2.49) we see that for a given PSD N0/2 of the thermal noise, the channel gains

h11, h21, the cross correlation ρ, and the transmission power p2 of user 2, the function

u1 is of the form −1
c1+c2p1

for some constants c1 and c2. Thus u1 is concave in p1. On

the other hand, for a given p1, if ρ is very small which is usually the case in practical
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wireless systems, the coefficient ρ2 in the denominator of (2.48) makes the variation

of u1 with p2 very small. Thus p1 dominantly determines the curvature of function

u1. To illustrate this we plot u1(p) vs. (p1, p2) in Fig. 2.9. It can clearly be seen

from Fig. 2.9 that u1 is a nice concave function of p1 and varies very little with p2.

Therefore, it is close to concave in p = (p1, p2). To check the utility of user 2, we use
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Figure 2.9: u1(p1, p2) vs. (p1, p2) for N0/2 = 10−1.2, h11 = 0.5, h21 = 0.6, and ρ = 0.01.

similar arguments as above by interchanging the indices 1 and 2 and we get that u2

is also close to concave in p.

For larger networks with N > 2, it is difficult to give a general expression for ui

similar to (2.48). However, when the cross correlation among the users’ waveforms

is small, the curvature of function ui is dominantly determined by pi. Similar to the

case for N = 2, the function ui is concave in pi, and varies very little with other

components of p, thus, suggesting that it is close to concave in p.



CHAPTER 3

Power allocation in wireless networks:

An implementation perspective

In this chapter we consider an implementation theory perspective on power allo-

cation in wireless networks. Specifically, we study power allocation for a single cell

wireless Code Division Multiple Access (CDMA) network with interference in the

presence of selfish and non-cooperative users. We consider the scenario of decentral-

ized information, where each user knows only its own utility and the channel gain

from the base station to itself. For the above network we formulate the uplink power

allocation problem as a public good allocation problem, and present a decentralized

mechanism (game form) that has the following properties: (i) All Nash equilibria

(NE) of the game induced by the game form result in allocations that are optimal

solutions of the corresponding centralized uplink problem (Nash implementation, cf

Section 3.2.1). (ii) All users voluntarily participate in the allocation process specified

by the game form (individual rationality, cf Section 3.2.1). (iii) Budget balance at

all NE and off equilibrium.

The chapter is organized as follows: In Section 3.1.1 we present the network model.

In Section 3.1.2 we present the power allocation problem. We present a literature

survey in Section 3.1.3 and discuss our motivation to investigate the problem pre-
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sented in this chapter in Section 3.1.4. We state our contributions in Section 3.1.5.

In Section 3.2.1 we formulate the power allocation problem of Section 3.1.2 in the

framework of implementation theory. In Section 3.2.2 we present a game form for the

above problem and we discuss the properties of the game form in Section 3.2.3. We

present a discussion on the intuition behind the structure of the proposed game form

in Section 3.2.4 and we prove the properties of the game form in Appendices 3.A and

3.B.

Before we present the model, we describe the notation that we will use throughout

the chapter.

Notation:

We represent vectors by bold letters and scalars by normal letters. The elements

of a vector are represented by subscripting the vector symbol. A bold subscripted-

symbol means that the vector-element is also a vector e.g. in x = (x1, x2, . . . ,xN),

each xi, i = 1, 2, . . . , N, is a vector; in x = (x1, x2, . . . , xN), each xi, i = 1, 2, . . . , N,

is a scalar. Unless otherwise stated, all vectors are treated as column vectors. Bold

0 is treated as a zero vector of appropriate size determined by the context. The

notation (xi, x
∗/i) (or (xi, x

∗/i)) is used to represent the following: (xi, x
∗/i) (or

(xi, x
∗/i)) is a vector of dimension same as that of x∗; the ith element of (xi, x

∗/i)

(or (xi, x
∗/i)) is xi (or xi), all other elements of it are the same as the corresponding

elements of x∗. We represent a diagonal matrix of size N×N whose diagonal entries

are elements of the vector x ∈ R
N by diag(x).

3.1 The power allocation problem

In this section we present the wireless network model and the assumptions we

make for its analysis. We also discuss scenarios that motivate the model. We then
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formulate a power allocation problem for the above model.

3.1.1 The model (M.3)

We consider a single cell CDMA wireless data network consisting of a Base Station

(BS) and multiple mobile users. In this chapter we focus on the uplink transmission

from the mobiles to the BS as shown in Fig. 3.1. Later we briefly discuss how the

BS

1

2

N

pN

p1

p2

h10
h20

hN0

pr
1 = p1h10

pr
2 = p2h20

pr
N = pNhN0

Figure 3.1: An uplink network with N mobile users and one base station

results for the downlink network can be obtained in a similar way. 3.1 We assume

that there are N mobile users3.2, N ≥ 3, in the network; we denote the set of users

by N := {1, 2, . . . , N}. We consider the transmissions of the users in a given carrier

frequency; we assume that the signature codes used by the users are not completely

orthogonal,3.3 hence the reception of signals from each user experiences interference

at the BS due to other users’ transmissions to the BS. Each user i ∈ N receives

a Quality of Service (QoS) from the data decoded by the BS for user i. Due to

interference, the QoS of user i, i ∈ N , depends not only on the transmission power

pt
i of user i but also, on the power pt

j, j ∈ N\{i} of other users’ transmissions to the

BS. User i, i ∈ N , is capable of transmitting in the power range P t
i := [0, P t

i
max

]. We

3.1In [51, 49] we treat the problem of downlink transmission from the BS to the mobiles in detail. For this problem
we derive results similar to the ones for the uplink problem presented in this chapter.

3.2Here onwards we will use the terms “mobiles” and “users” interchangeably to mean mobile users.
3.3This helps increase the capacity of the network.



60

assume that,

Assumption 3.1. The transmission power range P t
i is user i’s private informa-

tion. 3.4

Due to the path loss from the mobiles to the BS, the QoS of user i actually depends

on the power pj := pt
jhj0, j ∈ N , received at the BS from all the users, where hj0 is

the channel gain from user j to the BS.

The QoS of a user that results from the power transmitted by all the users is

quantified by a utility function. We denote the utility that user i ∈ N obtains when

the power profile received by the BS is p := (p1, p2, . . . , pN) by ui(p). The functional

form of ui : R
N → R depends on the technology used by the BS to decode user i’s

data as well as on the personal preference of (human) user i for the decoded data.

We assume that the BS uses a Multi User Detector (MUD) decoder for each user.

The BS informs each user a-priori as to which code to use for its data transmission

so that the BS can employ an MUD upon receiving the signals from all the users.

We note that it is in interest of each user to stick to the code assigned by the BS

because otherwise, the BS will not be able to decode their respective data correctly.

In Appendix 2.B we present explicitly the utility function of a user when the BS uses

an MUD for each user. We show that such a utility function is almost concave in p.

Hence, we make the following approximation. Let

Di := {p | pi ∈ Pi; pj ∈ R+, j ∈ N\{i}},

where, Pi := [0, P t
i
max

hi0] =: [0, Pmax
i ].

(3.1)

Assumption 3.2. For each i ∈ N , ui : R
N → R is concave in p for p ∈ Di and

ui(p) = 0 for p /∈ Di. Also, the function ui is private information of user i.

3.4Private information of a user is defined as the information that is known only to that user and nobody else in
the network.
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The assumption that ui(p) = 0 for p /∈ Di is made for the following reason. A

power profile p /∈ Di implies that either pi /∈ Pi, or pj /∈ R+ for some j ∈ N\{i}.

According to user i’s knowledge, 3.5 it is not possible for the BS to receive such

a power profile because it corresponds to transmission powers that are outside the

feasible range (as known to user i) of users’ transmission powers. Therefore, a power

profile p /∈ Di cannot provide any QoS to user i and results in zero utility.

We assume that,

Assumption 3.3. The network users are non-cooperative and selfish. The BS on the

other hand does not have any utility associated with the power allocations / transmis-

sions. It acts like an accountant that redistributes taxes (discussed below) according

to the specifications of the allocation mechanism.

Assumption 3.3 implies that the users have an incentive to misrepresent their

private information, e.g. a user i ∈ N may not want to report to other users or to

the BS its true preference for the users’ transmissions, if by doing so user i obtains

a power allocation in its favor.

We note that each user i ∈ N needs to know the channel gain hi0 in order to know

how the power transmitted by it affects its QoS at the BS. The BS can measure the

channel gains hi0, i ∈ N , and announce them to the respective users if the users send

some “pre-specified” pilot signals to the BS. However, because the users are selfish,

the BS cannot rely upon the pilot signal transmission from the users. Therefore,

we assume that the BS periodically transmits pilot signals to the users so that each

user i ∈ N can measure the channel gain h0i from the BS to itself. Furthermore, we

assume that,

3.5Assumption 3.4 that we state later implies that, each user i ∈ N knows the channel gain hi0 from itself to the
BS. As a result it knows the range Pi as well as the set Di exactly. On the other hand, the set Dj , j ∈ N\{i} is
private information of user j and user i does not know this set. Therefore, user i perceives Di to be the set of powers
that are feasible for the BS to receive.
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Assumption 3.4. The channel between the BS and the users is symmetric, i.e.

h0i = hi0 ∀ i ∈ N .

Because of Assumption 3.4, each user i ∈ N can compute the channel gain hi0

from its measurement of h0i. We note that it is in the interest of each user to measure

its respective channel gain h0i correctly because this will tell the user correctly the

influence of its transmission power on its QoS. We assume that,

Assumption 3.5. For each i ∈ N , the channel gain hi0 is user i’s private informa-

tion.

We would like to mention here that Assumption 3.4 is made only for convenience

and that it is not necessary for the power allocation mechanism we present in this

chapter to work. We explain the consequence of relaxing this assumption in Sec-

tion 3.2.3 after we present the power allocation mechanism.

Each user i ∈ N pays a tax ti ∈ R to the BS. This tax is imposed for the following

reasons: (i) For the use of the network by the users. (ii) To provide incentives to

the users to transmit powers that result in a network-wide performance objective.

The tax for a user can be either positive or negative and is determined by the

rules of the power allocation mechanism. With the flexibility of either charging a

user (positive tax) or paying compensation/subsidy (negative tax) to a user, it is

possible to induce users to behave in such a way that a network wide performance

objective is achieved. For example, given the power transmission and interference

constraints in the network, we can satisfy all the users by setting “positive tax”

for the users that receive power allocations close to those requested by them and

paying “compensation” to the users that receive allocations that are not close to

their desirable ones. According to Assumption 3.3 the BS does not derive any profit



63

from the above tax and the purpose of the above tax collection is to just redistribute

the money among network users. This implies that the tax profile t := (t1, t2, . . . , tN)

is determined in a way such that,

(3.2)
N∑

i=1

ti = 0

To describe the “overall satisfaction” of a user from the QoS it receives from the

power profile received by the BS and the tax it pays for this QoS, we define an

aggregate utility function uA
i : R

1+N → R ∪ {−∞} for each user i ∈ N as follows:

uA
i (ti, p) := −ti + ui(p)−

[
1− IDi

(p)

IDi
(p)

]
,

where, IDi
(p) =

⎧⎪⎨⎪⎩ 1, if p ∈ Di

0, otherwise.

(3.3)

The last term in (3.3) signifies that an allocation (ti, p) is of no use to user i if p /∈ Di.

This is because, based on its knowledge, user i knows that it is not possible for the BS

to receive a power profile p /∈ Di. Because of Assumption 3.5 and Assumption 3.1,

the set Di is user i’s private information. This along with Assumption 3.2 implies

that for each i ∈ N , the aggregate utility uA
i is user i’s private information. As

stated in Assumption 3.3 users are non-cooperative and selfish. Therefore, the users

are self aggregate utility maximizers.

In this chapter we restrict attention to static problems. Specifically we make the

following assumption:

Assumption 3.6. The set of users N , their utilities and the channel gains between

the BS and the users are fixed in advance and they do not change with time.

We also assume that before any power allocation period, the BS announces the

set of users in the network, therefore,
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Assumption 3.7. The set of users N is common knowledge. 3.6

In the following section we formulate the power allocation problem for the network

model (M.3).

3.1.2 The uplink power allocation problem

For the network model (M.3) we want to develop a power and tax determination

mechanism that works under the constraints imposed by the model and obtains a

solution to the following centralized problem corresponding to it.

Problem (P.3)

max
(t,p)

∑
i∈N

uA
i (ti, p)

s.t.
∑
i∈N

ti = 0.

(3.4)

≡ max
(t,p)∈ D

∑
i∈N

ui(p)

where, D := {(t,p) |
∑
i∈N

ti =0, t∈R
N ; pi∈Pi, i∈N}.

(3.5)

The optimization problem (3.4) is equivalent to (3.5) because for (t, p) /∈ D, the

objective function in (3.4) is negative infinity by (3.3). Thus D is the set of feasible

solutions of Problem (P.3). Because of Assumption 3.2, the objective function in (3.5)

is concave in p. Moreover, the sets Pi, i ∈ N , are convex and compact. Therefore,

there exists an optimal power profile p∗ of Problem (P.3). Furthermore, since the

objective function in (3.5) does not explicitly depend on t, an optimal solution of

Problem (P.3) must be of the form (t, p∗), where p∗ is an optimal power profile and

t is any feasible tax profile for Problem (P.3), i.e. a tax profile that satisfies (3.2).

Assumptions 3.1, 3.2 and 3.5 imply that there is no entity in the network that

knows perfectly all the parameters that describe Problem (P.3). Therefore, we need
3.6See [4, 57] for the definition of common knowledge.
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to develop a mechanism that allows the users and the BS to communicate with

one another and that leads to optimal allocations for Problem (P.3). Since a key

assumption in Model (M.3) is that the users are non-cooperative and selfish, the

mechanism we develop must take into account the possible strategic behavior of the

users in their communication with the BS.

In the next section we present a literature survey on previous works on decentral-

ized power allocation in wireless networks in the presence of strategic users. After

presenting the literature survey we discuss our motivation to investigate the power

allocation problem presented in this section.

3.1.3 Literature survey

Decentralized mechanisms for power allocation in cellular networks that study

game-theoretic/strategic behavior issues have received considerable attention in the

literature. One of the earliest works which introduced an individual utility maxi-

mization formulation for uplink power control in a single cell CDMA data network

can be found in [12]. An uplink problem similar to that of [12] in which users’ utilities

are taken to be functions of their respective Signal to Interference Ratio (SIR) was

investigated in [28]; in this paper the existence of an equilibrium was shown and a

decentralized algorithm for solving the power control problem was suggested. The

problem formulated in [12] was re investigated in [47] using pricing; it was shown

that pricing results in multiple equilibria which are Pareto superior to the equilibria

obtained in [12] and [28]. Pricing-based analysis of the uplink power control problem

was also done in [2]; in [2] the authors introduced user specific parametric utility

functions and proposed two decentralized algorithms, the parallel update and the

random update algorithms, that converge to the unique equilibrium of the problem.
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In [46] pricing-based ideas for uplink power control were extended to multi-cell data

networks. The authors of [19] studied uplink power allocation under an Interference

Temperature Constraint (ITC); they proposed a power auction run by a manager

that achieves a power allocation arbitrarily close to the globally optimal one. The

conditions under which the power auction achieves an optimal solution however re-

quire in essence, that the manager should know the users’ utility functions.

Game theoretic study of downlink CDMA data networks can be found in [32, 59,

30]. In [32] and [59], optimal power allocation strategies were determined for a single

class CDMA system under the assumption that the utility functions of the users are

common knowledge (see [4, 57] for the definition of common knowledge). The authors

of [30] studied a downlink power allocation problem for multi-class CDMA networks;

they proposed a decentralized mechanism based on dynamic pricing and partial coop-

eration between the mobiles and the base station that achieves a partial-cooperative

optimal power allocation which was shown to be close to a globally-optimal power

allocation. In [50, 48] the authors presented a decentralized mechanism for power

allocation that works for both uplink and downlink networks, and also takes into

account multiple ITCs; the mechanism obtains an optimal power allocation under

the assumption that the users are cooperative.

Having provided an overview of the existing works in the literature, we now present

our motivation for studying the power allocation problem presented in Section 2.1.2.

3.1.4 Motivation

A network resource is said to be a public good if the presence of the resource

simultaneously affects the utilities of all network users without getting divided among

them. Thus, the power allocation problem presented in Section 3.1.2 is a problem of
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public good allocation where the public good is the power vector received by the BS

from all the users.

Power allocation problems in cellular wireless networks with interference have been

previously considered in the literature cited in Section 3.1.3. The solution approach

in all the references [59, 32, 30, 28, 12, 47, 46, 19, 2] is based on different variations

of pricing mechanisms where each user pays some money for the power allocated to

it.

In general, in decentralized resource allocation problems involving a public good,

pricing mechanisms that fix a common price for the public good for all the users, fail

to obtain globally optimal allocations. The reason is that in a public good economy

the same good is simultaneously consumed by users having different valuations of the

good; thus, individual valuations of the public good are different from the system’s

valuation and this results in inefficiency. This explains why the pricing mechanisms

employed in [19, 12, 47, 28] do not achieve globally optimal allocations and why the

mechanism proposed in [2] does not achieve optimal allocations unless the users vary

their utilities according to their target SIRs.

The pricing mechanism proposed in [30] is different from the above references in

that it obtains close to globally optimal allocations. The reason for this is the follow-

ing. The authors of [30] introduce a constraint on the total power transmitted by the

BS. Due to this constraint, the original problem, where each user’s utility depends

on the entire power vector transmitted by the BS, reduces to one where each user’s

utility depends only on the power transmitted to it. Thus, the problem changes from

a public good allocation problem (when explicit interference is present) to a private

good allocation problem. This is why the pricing mechanism proposed in [30] results

in efficient allocations. In systems where there is no constraint on the maximum sum
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power, the above-stated reduction is not possible and therefore, pricing mechanisms

do not yield optimal allocations. The failure of pricing mechanisms to produce glob-

ally optimal power allocations for wireless networks affected by interference, provides

the key motivation for the formulation and solution methodology presented in this

chapter.

The decentralized power allocation mechanism presented in Chapter 2 appropri-

ately takes into account the externalities (public good effect) due to the interference

from other users. The mechanism overcomes the inefficiency of the pricing mecha-

nisms and obtains optimal power allocations. However, the above mechanism is de-

signed for the realization theory scenario where the users obediently follow the rules

of the mechanism. The results of Chapter 2 motivated us to explore the design of de-

centralized optimal power allocation mechanisms for networks in a non-cooperative

users setup that we address in this chapter.

In the next section we state the contributions of this chapter.

3.1.5 Contribution of the chapter

The key contributions of this chapter are:

• The formulation of single cell uplink power allocation problem with interference

and strategic users as a public good allocation problem;

• The specification of a decentralized power allocation mechanism (game form)

for the above problem that possesses the following properties:

(i) All Nash equilibria (NE) of the game induced by the mechanism result

in allocations that are optimal solutions of the corresponding centralized

uplink problem (Nash implementation, cf Section 3.2.1).
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(ii) All users voluntarily participate in the allocation process specified by the

mechanism (individual rationality, cf Section 3.2.1).

(iii) Budget balance at all NE and off equilibrium.

Our proposed mechanism is distinctly different from the pricing mechanisms studied

in the aforementioned literature. Our formulation properly captures the valuation of

interference by each individual user as well as the system and hence, the proposed

mechanism leads to globally optimal power allocations. Because the valuation of

interference has to be properly captured, the complexity of the strategy space (also

called message space) of our mechanism is significantly larger than that of pricing

mechanisms.

In the next section we present an implementation theory-based solution for the

power allocation problem of Section 3.1.2.

3.2 Solution of the uplink power allocation problem

A systematic approach to the development of resource allocation mechanisms for

informationally decentralized networks (as the one described by Model (M.3)) where

users behave strategically, is provided by implementation theory, a branch of Math-

ematical Economics. In the context of our problem, implementation theory deals

with the design of mechanisms that provide rules/guidelines on; (i) how the BS and

the mobiles should “communicate” with one another; and (ii) how power allocations

and tax allocations should be determined, based on the outcome of communication,

so as to induce the desired user/mobile strategic behavior.

In this chapter we use an implementation theory-based approach for the solu-

tion of the power allocation problem presented in Section 3.1.2. Therefore, in the

next section we provide a brief introduction to implementation theory and set the
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preliminaries for our solution to the power allocation problem.

3.2.1 Embedding the power allocation problem for Model
(M.3) in the framework of implementation theory

Implementation theory is a branch of the theory of mechanism design developed by

mathematical economists. It provides a systematic methodology for the design of de-

centralized resource allocation mechanisms for informationally decentralized systems

that consist of selfish/non-cooperative agents. It focuses on the design of decentral-

ized mechanisms that can achieve some pre specified objective, e.g. maximizing some

network-wide/social welfare function.

As described in Section 2.2.3, in the mechanism design framework a centralized

resource allocation problem is described by the triple (E ,D, γ): the environment

space E , the action/allocation space D and the goal correspondence γ.

To recap, the environment e of a resource allocation problem, centralized or de-

centralized, is defined to be the set of resources and technologies available to all the

users, their utilities, and any other information available to them, taken together.

These are circumstances that cannot be changed either by the users in the network

or by the designer of the resource allocation mechanism. For the network described

by Model (M.3), the environment ei of user i, i ∈ N , consists of the channel gains

h0i and hi0, its utility function uA
i , and the common knowledge about the set of users

N as well as the fact that the set of users, their utilities and the channel gains remain

fixed throughout a power allocation period. The environments of all the users col-

lectively define the system environment e := (e1, e2, . . . ,eN). The set of all possible

environments ei of a user defines its environment space Ei. The environment spaces

of all the users collectively define the environment space E := (E1, E2, . . . , EN) of the

system/problem.
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The action / allocation space D of a resource allocation problem, centralized or

decentralized, is defined to be the set of all possible resource allocation / exchange

actions that can be taken by the users. For the network described by Model (M.3),

the action space is the set D of all tax and received power profiles (t, p) that the BS

can possibly allocate to the users.

The goal correspondence γ of a centralized resource allocation problem is a map

from E to D which assigns for every environment e ∈ E , the set of allocations in D

that are solutions to the centralized resource allocation problem according to some

pre-specified system goal. For the centralized power allocation problem (P.3), the

system goal is the maximization of the sum
∑

i∈N uA
i (ti, p) of users’ utilities, and γ

is a mapping that maps every environment e ∈ E , defined in the previous paragraph,

to the set of solutions of (P.3). Since in a centralized scenario one of the users (or

a controller such as the BS) has complete system information, i.e. it knows e, it

can determine optimal allocations γ(e) in D corresponding to any given e using

centralized optimization methods (such as mathematical programming or dynamic

programming).

In an informationally decentralized system as the one described by Model (M.3),

the controller (BS in Model (M.3)) does not completely know e, therefore it can not

determine optimal centralized allocations γ(e) by methods similar to those for the

centralized problems. Therefore, for resource allocation in a decentralized system, it

is desirable to devise a communication/message exchange process among the users

and the controller that eventually enables the controller to determine optimal cen-

tralized allocations. However, when the users in a system are selfish, they have an

incentive to misrepresent their private information while communicating with the

controller so as to shift the allocation determined by the controller in their own fa-
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vor. The users may also choose not to participate in the communication process

if they know that the resulting allocation will not be in their favor (or if by not

participating they are better off). This may defeat the objective of maximizing the

system objective function (
∑

i∈N uA
i (ti, p) for the power allocation problem). There-

fore, for the success of a communication process in leading to desirable outcomes it

is required that the allocation rule employed by the controller induces the users to

behave in a desirable manner (i.e. it ensures voluntary participation of the users in

the communication process and furthermore, it induces the users to communicate

information that results in system objective maximizing allocations). In the context

of mechanism design, a formal treatment of the design of such communication and

allocation rules is provided by implementation theory.

In implementation theory, a decentralized resource allocation mechanism is spec-

ified by a game form. An N -user game form is defined by the pair (M, f). M :=∏N
i=1Mi is the message space which specifies for each i ∈ N the set of messages

Mi that user i can communicate to other users and the controller. f is the out-

come function which maps M→D; it specifies for each message profile m ∈M,(
m := (m1, m2, . . . ,mN), mi ∈Mi, i ∈ N

)
, the resulting allocation f(m) ∈ D.

Since the participation of the users in a resource allocation mechanism requires

that they be aware of its protocols, it is assumed that the game form is known

to all the users in the system. Given the specification of a game form, the self-

ish users know what allocations their messages would potentially lead to and what

utilities they would obtain as a result. Therefore, the agents strategically commu-

nicate their messages so as to maximize their respective utilities, and this induces

a game. Formally, a game form (M, f) is said to induce a game (M, f, {uA
i }N

i=1) in

an environment e ∈ E where the users’ utilities are uA
i , i ∈ N . In this game the
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players are the users in N , the set of strategies of a user is its respective message

space Mi, i ∈ N , and the payoff of a user corresponding to a given strategy/message

profile m is the utility uA
i (f(m)), i ∈ N , it obtains from the resulting allocation

f(m). The property of a game form is studied by analyzing the properties of the

allocations that result from various equilibria of the induced game. Depending on the

users’ information about the system environment, there are appropriate equilibrium

concepts for an induced game that specify the equilibrium messages corresponding to

the game. For example, for games of complete information the equilibrium concepts

are Nash equilibrium, Subgame Perfect equilibrium, dominant strategy equilibrium,

rationalizability, etc. ([37, 39, 41, 14]). For games of incomplete information the

equilibrium concepts are Bayesian Nash equilibrium, Perfect Bayesian equilibrium,

etc. Given an equilibrium concept, the specific equilibria that an induced game can

attain are governed by the design of the game form. Thus, in implementation theory,

a game form along with an equilibrium concept indirectly specifies the (equilibrium)

message correspondence μ. This is shown in Fig. 3.2.

E D

M
μ f

Figure 3.2: A game form (M, f) inducing the equilibrium message correspondence μ.

In this chapter we consider Nash equilibrium as the equilibrium concept. A Nash

Equilibrium (NE) of a game is defined as a message profile m∗ such that none of the

users finds it profitable to unilaterally deviate to any other message. Mathematically,

m∗ is a NE of the game (M, f, {uA
i }N

i=1) if,

uA
i (f(m∗)) ≥ uA

i (f((mi, m
∗/i))), ∀mi ∈Mi, ∀ i ∈ N .(3.6)
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There are properties that characterize a game form based on whether it can achieve

optimal centralized allocations with respect to the NE equilibrium concept. To define

these properties let NE(M, f, {uA
i }N

i=1) represent the set of all Nash equilibria of the

game (M, f, {uA
i }N

i=1), and let

(3.7)

DNE(M, f, {uA
i }N

i=1) :=
{

a∈D | a=f(m) for some m∈NE(M, f, {uA
i }N

i=1)
}

,

that is, DNE is the set of allocations corresponding to all Nash equilibria of the game.

Now consider a decentralized resource allocation problem. Let E =
∏N

i=0 Ei be

the environment space and D the allocation space associated with the problem, let

γ : E → D be a goal correspondence, and let uA
1 , uA

2 , . . . , uA
N , be the users’ utilities

corresponding to a given environment e ∈ E . Then, we have the following:

Definition 3.1 (Implementation in Nash equilibria). A game form (M, f) is said

to “implement in Nash equilibria” the goal correspondence γ if,

DNE(M, f, {uA
i }N

i=1) ⊂ γ(e) ∀ e ∈ E ,

i.e., for any given environment, the set of allocations resulting (through the outcome

function f) from the Nash equilibria of the game (M, f, {uA
i }N

i=1) is a subset of the set

of allocations γ(e) that are optimal solutions of the corresponding centralized problem

(e,D, γ).

Definition 3.1 implies that a game form that implements in NE a goal corre-

spondence, takes into account the users’ strategic behavior and obtains centralized

solutions, given that the users participate in the message exchange process spec-

ified by the game form. However, in order that the users voluntarily participate

in a mechanism specified by a game form, the game form must satisfy an addi-

tional property defined as follows. Let the initial endowment of a user be defined
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as the amount of resources the user has before participating in a game form; e.g.

for the network model (M.3), the initial endowment f0
i of user i, i ∈ N , is the tax

and transmission power profile before the power allocation mechanism is run, i.e.

f0
i = (t0i , p

0) = (0,0), ∀ i ∈ N . We then have the following,

Definition 3.2 (Individual rationality). A game form (M, f) is said to be individ-

ually rational if ∀ i ∈ N , uA
i (f(m)) ≥ uA

i (f0
i ) for all m ∈ NE(M, f, {uA

i }N
i=1), i.e.

at any NE allocation the utility of each user is at least as much as its utility before

participating in the game/allocation process.

Definitions 3.1 and 3.2 imply that a game form that is individually rational and

implements in NE a goal correspondence, obtains optimal allocations of the cor-

responding centralized system by having the users voluntarily participate in the

allocation process. These are exactly the properties that we want in a tax and

power allocation mechanism for the network model (M.3). Thus the theory of im-

plementation introduced above provides us with a framework to develop the desired

decentralized power allocation mechanism for the network model (M.3).

In light of the discussion provided in this section, we now state our objective for

the power allocation problem presented in Section 3.1.2.

The objective:

Let E and D be respectively the environment space and the allocation space

corresponding to the uplink network model (M.3) as defined in Section 3.2.1. Let

γ : E → D be the goal correspondence for Problem (P.3) as defined in Section 3.2.1.

Our objective is to design an individually rational game form (M, f) that implements

in NE the goal correspondence γ.

In the next section, we present a game form that achieves the above objective.

However, before we proceed, we present a brief clarification on the interpretation of
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NE in the mechanism that we present in the following section. Nash equilibria in

general describe strategic behavior of users in games of complete information. This

can be seen from (3.6) where, to define the NE, it requires complete information

of all users’ aggregate utility functions. However, the users in Model (M.3) do not

know each other’s utilities. Therefore, for any profile of the users’ utilities, the game

(M, f, {uA
i }i∈N ) induced by the game form we present in the next section is not

one of complete information. We can create a game of complete information by

increasing the message/strategy space following Maskin’s approach [37]. However,

such an approach would result in an infinite dimensional message/strategy space for

the corresponding game. We do not follow Maskin’s approach; instead, we adopt

the philosophy of [43]. Specifically, by quoting [43], “we interpret our analysis as

applying to an unspecified (message exchange) process in which users grope their

way to a stationary message and in which the Nash property is a necessary condition

for stationarity.”

3.2.2 The game form

In this section we present a game form that provides a decentralized mechanism

for solving the uplink power allocation problem presented in Section 3.1.2. To obtain

an appropriate game form for the power allocation problem it is useful to observe

that in the uplink network, the power profile p = (p1, p2, . . . , pN) received by the BS

can be treated as a public good [36]. This is because, analogous to a public good

in an economy, the same vector p affects the utility of all the users in the network.

Furthermore, like a public good, the exact amount of the utility a user obtains from

p differs from user to user and depends on its individual function ui, i ∈ N that

determines its QoS. Game forms that implement in NE efficient allocation of public
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goods have been proposed by Groves and Ledyard [16], Hurwicz [22] and Walker [56].

In this section we present a game form for the uplink power allocation problem that

is inspired from Hurwicz’ mechanism [22]. Below we specify each of the elements of

the proposed game form, the message space and the outcome function.

The message space:

Since for the network model (M.3) we are interested in determining the power

profile that should be received at the BS and tax that the users should pay, the

communication between the users and the BS should contain information that is

helpful in determining the optimal amounts of each of commodities. We let each

user i ∈ N send to the BS a message mi ∈ Mi := R
N
+ × R

N that has the following

form:

mi := (πi, pi); πi ∈ R
N
+ , pi ∈ R

N(3.8)

The message mi consists of two elements: pi = (pi1, pi2, . . . , piN) which can be

interpreted as the received power profile that user i (i ∈ N ) suggests to be allocated

to all the users j ∈ N ; and πi = (πi1, πi2, . . . , πiN) which can be interpreted as the

price that user i (i ∈ N ) suggests to be charged to the users j ∈ N for using the

network.

The outcome function:

Based on the message profile m = (m1, m2, . . . ,mN), the BS sets the taxes

t̂i(m), i ∈ N , and determines powers p̂(m) = (p̂1(m), p̂2(m), . . . , p̂N(m)) to be
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received from the users as follows:

p̂(m) =
1

N

N∑
i=1

pi,(3.9)

t̂i(m) = lTi (m)p̂(m) + (pi − pi+1)
T diag(πi)(pi − pi+1)

− (pi+1−pi+2)
T diag(πi+1)(pi+1 − pi+2), i ∈ N ,(3.10)

where, li(m) = πi+1 − πi+2.(3.11)

In (3.10) and (3.11), i + 2 ≡ 1 for i = N − 1, and for i = N, i + 1 ≡ 1 and i + 2 ≡ 2.

The game form defined by (3.8)–(3.11) together with the users’ utility functions

in (3.3) specify a game. The strategy of user i, i ∈ N , in this game is its message mi.

We note that the message mi of user i, i ∈ N , is allowed to take any value (which

can be unboundedly large) in the space R
N
+ × R

N ; in particular pi is not restricted

to lie in Di. Thus, a Nash equilibrium 3.7 of the above game is a message profile

m∗ from which no user wants to unilaterally deviate (see (3.6)) even when arbitrary

deviations are possible by unbounded magnitude of messages.

As discussed in Section 3.2.1, our objective is to develop a game form for which

the set of tax and received power allocations obtained at all its NE is the same as the

set of optimal tax and received power allocations for the centralized problem (P.3).

Below we present theorems that assert that the proposed game form achieves this

goal.

3.2.3 Properties of the game form

The main results of this chapter are summarized by Theorems 3.1 and 3.2 below.

Theorem 3.1. Let m∗ be a NE of the game induced by the game form presented in

Section 3.2.2 and the users’ utility functions (3.3). Let (t̂(m∗), p̂(m∗)) =: (t̂∗, p̂∗)

be the tax and received power allocation at m∗ determined by the game form. Then,
3.7See Section 3.2.1 for a discussion on the interpretation of Nash equilibria.
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(a) (t̂∗, p̂∗) is individually rational, i.e. all users weakly prefer (t̂∗, p̂∗) to the initial

allocation (0,0). Mathematically,

uA
i (t̂∗i , p̂

∗) ≥ uA
i (0,0), ∀ i ∈ N .

(b) (t̂∗, p̂∗) is an optimal solution of the centralized problem (P.3).

�

Theorem 3.2. Let p̂∗ be an optimum received power profile corresponding to Prob-

lem (P.3). Then,

(a) There exist a set of personalized prices l∗i , i ∈ N , such that

arg max
p∈Di

{−l∗i
T p + ui(p)

}
= p̂∗, ∀ i ∈ N .

(b) There exists at least one NE m∗ of the game induced by the game form presented

in Section 3.2.2 and the users’ utility functions (3.3) such that, p̂(m∗) = p̂∗.

Furthermore, if t̂∗i := l∗i
T p̂∗, i ∈ N , the set of all NE m∗ = (m∗

1, m
∗
2, . . . ,m

∗
N)

(where m∗
i = (π∗i , p

∗
i), i ∈ N ) that result in (t̂∗, p̂∗) is characterized by the

solution of the following set of conditions:

1

N

∑
i∈N

p∗i = p̂∗,

π∗i+1 − π∗i+2 = l∗i , i ∈ N ,

(p∗i − p∗i+1)
Tdiag(π∗i )(p

∗
i − p∗i+1) = 0, i ∈ N ,

π∗i ≥ 0, i ∈ N .

�

Because Theorem 3.1 is stated for an arbitrary NE m∗ of the game induced by

the game form presented in Section 3.2.2 and the users’ utility functions (3.3), the
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assertion of the theorem holds for all NE of this game. Thus, part (a) of Theorem 3.1

establishes that the game form presented in Section 3.2.2 is individually rational.

Part (b) of Theorem 3.1 asserts that all NE of the game induced by the game

form presented in Section 3.2.2 and the users’ utility functions (3.3) result in optimal

centralized allocations (solutions of Problem (P.3)). Thus, the set of NE allocations

is a subset of the set of centralized allocations. This establishes that the game form

presented in Section 3.2.2 implements in NE the goal correspondence γ defined by

Problem (P.3) (see Section 3.2.1). Because of this property, the game form guarantees

to provide a centralized allocation irrespective of which NE is achieved in the game

induced by the game form.

The assertion of Theorem 3.1 that establishes the above two properties of the

game form is based on the assumption that there exists a NE of the game induced

by the game form of Section 3.2.2 and the users’ utility functions (3.3). However,

Theorem 3.1 does not say anything about the existence of a NE. Theorem 3.2 estab-

lishes that NE exist in the above game and also characterizes the set of all NE that

result in optimal centralized allocations (t̂∗, p̂∗) = (l∗i
T p̂∗, i = 1, 2, . . . , N, p̂∗) where

l∗i , i = 1, 2, . . . , N, are defined in Theorem 3.2 (a).

The proofs of Theorem 3.1 and Theorem 3.2 are given in Appendices 3.A and

3.B. In the next section we provide a brief discussion on the intuition behind the

structure of the proposed game form.

Before we proceed to the next section, we note that the game form that presented

in Section 3.2.2 determines for the uplink network an optimum power profile that

should be “received” at the BS. Once the game form determines an optimum received

power profile, each user can determine its respective transmission power that would

result in the optimum received power profile since each user knows its respective
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channel gain hi0, i ∈ N . Since the optimum received power profile is obtained at the

NE of users’ messages, no user can gain by unilaterally changing the power received

from it at the BS; in other words the user cannot gain by transmitting a power that

does not result in the received power determined by the game form. Thus, the game

form of Section 3.2.2 not only determines the optimum received powers, but also

induces the users to “transmit” with optimum powers.

As we mentioned earlier, Assumption 3.4 is not necessary for the game form

proposed in Section 3.2.2 to result in optimal power allocations. Consider the case

when the symmetric channel assumption is relaxed. We note that the game form of

Section 3.2.2 requires the users to communicate messages in terms of the power vector

received at the BS, not the power vector transmitted by the users. Therefore, once

the mechanism determines the power vector that should be received at the BS, the

BS can announce it to the users. In the absence of the knowledge of uplink channel

gains, the users will have to transmit power based on some estimate of the uplink

channel gain; if the power received by the BS is not the same as that determined by

the mechanism, the BS can send feedback to the users to adjust their transmission

powers. As explained in the previous paragraph, it will be in the interest of the users

to make the transmission power adjustment so as to match the received power to the

optimal one. Thus, the mechanism would result in the same outcome as in the case

with the symmetric channel assumption.

3.2.4 Key features of and intuition behind the game form

The key feature of our problem is that the action / transmission power of a user

directly affects the utility of every other user. Thus, every user’s action creates an

externality for every other user. Consequently, we have to view the power allocation
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problem with strategic users as the decentralized resource allocation of a public

good, where the public good is the power profile p := (p1, p2, . . . , pN) received at

the BS. Since the users are strategic, the dimensionality of the message space of

any “efficient” 3.8 mechanism must be at least as large as the dimensionality of any

“efficient” mechanism for non-strategic users [41]. Under the condition that users are

non-strategic, the minimum dimensionality of any “efficient” public good mechanism

is of the order O(N2) (See [44]). Therefore, any “efficient” mechanism for our problem

must have a message space whose dimensionality is at least of the order O(N2).

In our mechanism each of the N users announces a 2N dimensional message con-

sisting of an N dimensional power profile proposal and an N dimensional price profile

proposal. Thus, the dimensionality of the message space of our mechanism/game

form is 2N2. From the above discussion it is clear that the use of high dimensional

mechanism is inevitable if one wants to have full implementation in Nash equilibria.

To understand how the proposed structure of the game form achieves the desired

goal, let us now look at the properties the game form induces in its NE. A NE of

the game corresponding to the proposed game form can be interpreted as follows:

Since the allocated received power profile, given the users’ messages mj, j ∈ N , is

1/N
∑N

i=1 pi, user i’s proposal pi can be interpreted as the increment user i desires

in the power received from each user over the sum of other users’ proposals so as

to bring the allocated received power profile p̂(m) to i’s desired value. Thus, if

the average of the received power profiles proposed by users other than user i does

not lie in Di, user i can propose an appropriate received power profile and bring

the allocated profile within Di. It should be noted that the flexibility of proposing

any received power profile in R
N gives each user i ∈ N the capability to make the

3.8We define a mechanism to be “efficient” if it implements in Nash equilibria the solution of the corresponding
centralized power allocation problem.
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constraint p ∈ Di be satisfied by unilateral deviation. It follows that any NE received

power profile must lie in ∩i∈NDi. Furthermore, it can be seen from (3.10) that the

game form formulation ensures that the allocated tax profile satisfies (3.2) (even at

off-NE messages). The above two features imply that all NE allocations (t, p) lie in

D and hence are feasible solutions of Problem (P.3).

To see why NE allocations are optimal, let us look at the form of the tax (3.10).

The tax for user i consists of three types of terms. Type-1 is lTi (m)p̂(m) that

depends on the power proposals of all the users, and the price proposals of users

other than user i. Type-2 term is the one that depends on pi as well as πi, and

type-3 term is the one that depends only on the messages of users other than user

i. Since πi does not affect the received power allocation and affects only the type-2

term in ti, the NE strategy of user i, i ∈ N , that minimizes its tax is to propose

for each j ∈ N , πij = 0 unless at the NE, pij = pi+1j. Since all the users i ∈ N

choose the aforementioned strategy at the NE, the type-2 and type-3 terms vanish

from every user’s tax ti, i ∈ N , at the NE. Thus, the tax that users pay at a NE

m∗ is of the form li
T (m∗)p̂(m∗), i∈N . The NE price term li

T (m∗) =: l∗i
T , i∈N ,

can therefore be interpreted as the “personalized price” 3.9 of the NE received power

profile p̂(m∗) =: p̂∗ (treated as a public good) for user i; at the NE this price for

user i is not controlled by i’s message. The above reduction of tax terms in terms

of the allocated received power profile implies that, at the NE, the utilities of the

users i ∈ N effectively depend only on the allocated received power profile. Since

each user has the capability (by choosing appropriate pi ∈ R
N) to shift the allocated

received power profile to its desired value given that the proposals of all other users

are fixed, the NE strategy of each user is to propose a power profile that results in

3.9In Economics literature, these personalized prices for the public goods are called “Lindahl” prices.
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an allocation that maximizes its corresponding utility. Thus, each user maximizes

its net utility at the NE, and this results in the maximization of the system objective

function at the NE.

It is worth mentioning at this point the significance of type-2 and type-3 terms

in the users’ tax. As explained above, these terms vanish at NE. However, if these

terms are not present in ti, user i, i ∈ N , can propose arbitrarily high price for other

users in πi as πi would not affect user i’s utility at all. 3.10 It is also important that

the NE price li is not affected by πi, otherwise user i may influence its own price in

an unfair manner. However, since πi would affect other users’ price, it is necessary to

prevent user i from proposing unfair prices for other users. Type-2 and type-3 terms

in ti do the above job by imposing a penalty on user i at off-equilibrium messages if

user i proposes a high value of πi or if it deviates too much from other users in its

power profile proposal.

We divide the proofs of Theorems 3.1 and 3.2 into several claims to organize the

presentation.

3.A Proof of Theorem 3.1

Claim 3.1. If m∗ is a NE of the game specified by the game form presented in Sec-

tion 3.2.2 and the users’ utility functions (3.3), then the allocation (t̂(m∗), p̂(m∗)) =:

(t̂∗, p̂∗) is a feasible solution of Problem (P.3), i.e. (t̂∗, p̂∗) ∈ D.

Proof:

By construction of the game form, the allocated tax (3.10) satisfies (3.2) which

implies that the NE tax profile t̂∗ also satisfies (3.2). Therefore to prove the claim,

we need to show that the NE power profile p̂∗ ∈ ∩i∈NDi (where Di, i ∈ N , is defined

3.10Note that li depends on πi+1 and πi+2 and not πi .
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by (3.1)). We will prove this by showing that, if p̂∗ /∈ Di for some i ∈ N , then there

exists a profitable unilateral deviation for user i.

Suppose p̂∗ /∈ Di for some i ∈ N . Then, from (3.3), uA
i (t̂∗i , p̂

∗) = −∞. Consider

m̃i = (π∗i , p̃i) where π∗i is the NE price profile and p̃i (p̃i ∈ R
N) is such that,

p̂(m̃i, m
∗/i) =

1

N

(∑
j∈N
j �=i

p∗j+p̃i

)
= 0 ∈ Di.

Then,

uA
i

(
t̂i(m̃i, m

∗/i), p̂(m̃i, m
∗/i)

)
= −t̂i(m̃i, m

∗/i)+ui(0)

> −∞ = uA
i (t̂∗i , p̂

∗)
(3.12)

Thus user i will find it profitable to deviate to m̃i.

Inequality (3.12) implies that m∗ cannot be a NE, which is a contradiction. There-

fore we must have that, p̂∗ ∈ ∩i∈NDi and hence, (t̂∗, p̂∗) ∈ D.

Claim 3.2. If m∗ is a NE of the game specified by the game form presented in

Section 3.2.2 and the users’ utility functions (3.3), then, the tax t̂i(m
∗) =: t̂∗i paid

by user i, i ∈ N , at NE m∗ is of the form, t̂∗i = l∗i
T p̂∗, where l∗i := li(m

∗).

Proof:

Let m∗ be a NE described in Claim 3.2. Then, for each i ∈ N ,

uA
i

(
t̂i(mi, m

∗/i), p̂(mi, m
∗/i)

) ≤ uA
i

(
t̂∗i , p̂

∗), ∀mi ∈Mi.(3.13)

Substituting mi = (πi, p
∗
i), πi ∈ R

N
+ , in (3.13) and using (3.9) implies that

uA
i

(
t̂i((πi, p

∗
i), m

∗/i), p̂∗
) ≤ uA

i

(
t̂∗i , p̂

∗), ∀ πi ∈ R
N
+ .(3.14)

Since uA
i decreases in ti (see (3.3)), (3.14) implies that

t̂i((πi, p
∗
i), m

∗/i) ≥ t̂∗i , ∀ πi ∈ R
N
+ .(3.15)
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Substituting (3.10) in (3.15) implies that

l∗i
T p̂∗ + (p∗i − p∗i+1)

T diag(πi)(p
∗
i − p∗i+1)− (p∗i+1 − p∗i+2)

T diag(π∗i+1)(p
∗
i+1 − p∗i+2)

≥

l∗i
T p̂∗ + (p∗i − p∗i+1)

T diag(π∗i )(p
∗
i − p∗i+1)− (p∗i+1 − p∗i+2)

T diag(π∗i+1)(p
∗
i+1 − p∗i+2),

∀ πi ∈ R
N
+ .

(3.16)

Canceling the common terms in (3.16) implies

(3.17) (p∗i − p∗i+1)
T diag(πi − π∗i )(p

∗
i − p∗i+1) ≥ 0, ∀ πi ∈ R

N
+ .

Since (3.17) must hold for all πi ≥ 0, it implies that for each j ∈ N ,

(3.18) either p∗i j = p∗i+1j
, or π∗i j = 0.

From (3.18) it follows that at any NE m∗,

(p∗i − p∗i+1)
T diag(π∗i )(p

∗
i − p∗i+1) = 0, ∀ i ∈ N .(3.19)

Using (3.19) in (3.10) we obtain that any NE tax profile must be of the form

t̂∗i = l∗i
T p̂∗, ∀ i ∈ N .(3.20)

Claim 3.3. The game form given in Section 3.2.2 is individually rational, i.e. for

every NE m∗ corresponding to it, the allocation (t̂∗,p̂∗) is weakly preferred by all the

users to the initial allocation (0,0), i.e.,

uA
i (0,0) ≤ uA

i (t̂∗i , p̂
∗), ∀ i ∈ N .
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Proof:

Suppose m∗ is a NE of the game specified by the game form presented in Sec-

tion 3.2.2 and the users’ utility functions (3.3). From Claim 3.2 we know the form

of the tax at m∗. Substituting that from (3.20) into (3.13) we obtain that, for each

i ∈ N ,

uA
i (t̂i((πi, pi), m

∗/i), p̂((πi, pi), m
∗/i)) ≤ uA

i (l∗i
T p̂∗, p̂∗),

∀mi = (πi, pi) ∈Mi.

(3.21)

Substituting for t̂i in (3.21) from (3.10) and using equality (3.19) we obtain

uA
i

(
l∗i

T p̂((πi, pi), m
∗/i) + (pi − p∗i+1)

T diag(πi)(pi − p∗i+1), p̂((πi, pi), m
∗/i)

)
≤ uA

i (l∗i
T p̂∗, p̂∗), ∀ πi ∈ R

N
+ , ∀ pi ∈ R

N .

(3.22)

In particular, πi = 0 in (3.22) implies that

uA
i

(
l∗i

T p̂((0, pi), m
∗/i), p̂((0, pi), m

∗/i)
) ≤ uA

i (l∗i
T p̂∗, p̂∗), ∀ pi ∈ R

N .(3.23)

Substituting 1/N
(
pi +

∑
j∈N\{i} p∗j

)
= p in (3.23) and using the fact that (3.23)

holds for all pi ∈ R
N gives

uA
i

(
l∗i

T p, p
) ≤ uA

i (l∗i
T p̂∗, p̂∗), ∀ p ∈ R

N .(3.24)

For p = 0, (3.24) implies that

uA
i (0,0) ≤ uA

i (l∗i
T p̂∗, p̂∗), ∀ i ∈ N .(3.25)

Claim 3.4. A NE allocation (t̂∗, p̂∗) is an optimal solution of the centralized prob-

lem (P.3).
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Proof:

For each i∈N , (3.24) can be equivalently written as

p̂∗ = arg max
p∈RN

uA
i

(
l∗i

T p, p
)

= arg max
p∈RN

(
−l∗i

T p + ui(p)−
[
1− IDi

(p)

IDi
(p)

])
= arg max

p ∈Di

(−l∗i
T p + ui(p)

)
.

(3.26)

Since for each i ∈ N , ui(p) is assumed to be concave in p over Di and the set Di

is convex, Karush Kuhn Tucker (KKT) conditions [7, Chapter 11] are necessary and

sufficient for p̂∗ to be the maximizer in (3.26). Thus, for each i ∈ N , ∃ λi
1 ∈ R

N
+

and λi
2 ∈ R

N
+ such that, p̂∗, λi

1 and λi
2 satisfy the KKT conditions given below:

l∗i −∇ui(p̂
∗)− λi

1 + λi
2 = 0(3.27)

λi
1

T
p̂∗ = 0(3.28)

λi
2

T
(p̂∗ − Pmax

0 1) = 0(3.29)

where, 1 = (1, 1, . . . , 1︸ ︷︷ ︸
N times

) ∈ R
N×1.

Combining the KKT conditions of all the users, i.e. summing (3.27) for all i ∈ N ,

and using the fact that
∑

i∈N l∗i = 0 (see (3.11)), we obtain

(3.30)
∑
i∈N

(
−∇ui(p̂

∗)− λi
1 + λi

2

)
= 0

Eq. (3.30) along with (3.28) and (3.29) for all i, and the non-negativity of λi
1, λ

i
2, i ∈

N , specify the KKT conditions (for variable p) for (3.5). Since (3.5) is a concave op-

timization problem, the KKT conditions are necessary and sufficient for its optimum.

Since p̂∗ satisfies these KKT conditions, it is a maximizer of the objective function in

(3.5). Therefore, as described in Section 3.1.2, an optimal solution of Problem (P.3)

is of the form (t, p̂∗), where t ∈ R
N is any tax profile that satisfies (3.2). Since by
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construction of the tax the NE allocation t̂∗ satisfies (3.2), we conclude that (t̂∗, p̂∗)

is an optimal solution of (P.3).

Theorem 3.1 shows that if there exists a NE corresponding to the game of Sec-

tion 3.2.2, then the allocation at the NE is an optimal solution of the centralized

problem (P.3). However, Theorem 3.1 does not guarantee the existence of a NE;

in other words, it does not guarantee that a centralized optimum power profile is

attainable through NE. This is guaranteed by Theorem 3.2 which is proved next.

3.B Proof of Theorem 3.2

We prove Theorem 3.2 in two steps. In the first step we show that if p̂∗ is an opti-

mal power profile for the centralized problem (P.3), there exist a set of personalized

prices, one for each user i ∈ N , such that when every user individually maximizes

its own utility taking the above prices as given, then each of them obtains p̂∗ as its

optimal power profile. In the second step we show that p̂∗ and the corresponding

set of personalized prices can be used to construct message profiles that are NE of

the game induced by the game form of Section 3.2.2 and the users’ utility functions

(3.3).

Claim 3.5. If p̂∗ is an optimum power profile corresponding to Problem (P.3), there

exist a set of personalized prices l∗i , i ∈ N , such that

arg max
p∈Di

−l∗i
T p + ui(p) = p̂∗, ∀ i ∈ N .(3.31)

Proof:

Suppose p̂∗ is an optimal power profile corresponding to Problem (P.3). Prob-

lem (P.3) does have a solution since it involves maximization of a concave function
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in p over a convex and compact set in p (The solution in t trivially exists). Writing

the optimization problem (P.3) for p we have,

p̂∗ = arg max
p

∑
i∈N

ui(p)

s.t. p ∈ Di, ∀ i ∈ N

An optimal solution of the above problem must satisfy the KKT conditions. There-

fore there exist λi
1 ∈ R

N
+ and λi

2 ∈ R
N
+ , i ∈ N , such that p̂∗, λi

1 and λi
2, i ∈ N ,

satisfy

∑
i∈N

(−∇ui(p̂
∗)− λi

1 + λi
2

)
= 0,(3.32)

λi
1

T
p̂∗ = 0, ∀ i ∈ N ,(3.33)

and λi
2

T
(p̂∗ − Pmax

0 1) = 0, ∀ i ∈ N .(3.34)

We define for each i ∈ N ,

l∗i := ∇ui(p̂
∗) + λi

1 − λi
2.(3.35)

Then,

l∗i −∇ui(p̂
∗)− λi

1 + λi
2 = 0, ∀ i ∈ N .(3.36)

Equations (3.36), (3.33) and (3.34) together imply that for each i ∈ N , p̂∗, λi
1 ∈ R

N
+

and λi
2 ∈ R

N
+ satisfy the KKT conditions for the following maximization problem:

max
p∈Di

−l∗i
T p + ui(p)(3.37)

Since (3.37) is a concave optimization problem, KKT conditions are necessary and

sufficient for its optimum. Therefore, from (3.33), (3.34) and (3.36) we conclude that

p̂∗ = arg max
p∈Di

−l∗i
T p + ui(p).(3.38)
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Claim 3.6. Let p̂∗ be an optimal power profile corresponding to Problem (P.3), let

l∗i , i ∈ N , be the personalized prices defined in Claim 3.5, and let t̂∗i := l∗i
T p̂∗, i ∈ N .

Let m∗
i := (π∗i , p

∗
i), i ∈ N , be a solution to the following set of relations:

1

N

∑
i∈N

p∗i = p̂∗,(3.39)

π∗i+1 − π∗i+2 = l∗i , i ∈ N ,(3.40)

(p∗i − p∗i+1)
Tdiag(π∗i )(p

∗
i − p∗i+1) = 0, i ∈ N ,(3.41)

π∗i ≥ 0, i ∈ N .(3.42)

Then, m∗ := (m∗
1, m

∗
2, . . . ,m

∗
N) is a NE of the game induced by the game form of

Section 3.2.2 and the users’ utility functions (3.3). Furthermore, p̂(m∗) = p̂∗, and

for each i ∈ N , li(m
∗) = l∗i and t̂i(m

∗) = t̂∗i .

Proof:

Note that, (3.39)–(3.42) are necessary conditions for any NE m∗ corresponding

to the game of Section 3.2.2 to result in the allocation (t̂∗, p̂∗) (This follows from

(3.9),(3.11) and (3.19)). Therefore, the set of solutions of (3.39)–(3.42), if one exists,

is a superset of the set of all NE that result in (t̂∗, p̂∗). Below we show that the

solution set of (3.39)–(3.42) is in fact exactly the set of NE that result in (t̂∗, p̂∗).

To prove this we first show that the set of relations (3.39)–(3.42) do have a solution.

Notice that by setting p∗i = p̂∗ ∀ i ∈ N , equations (3.39) and (3.41) are satisfied.

Notice also that the right hand side of (3.40) sums to 0 by taking the sum over

i ∈ N . Therefore, (3.40) has a solution in π∗i , i ∈ N . Furthermore, for any solution

π∗i , i ∈ N , of (3.40), π∗i + c, i ∈ N , where c is some constant, is also a solution of

(3.40). Therefore by appropriately choosing c, we can select a solution of (3.40) such

that (3.42) is satisfied.

It is clear from above that (3.39)–(3.42) have multiple solutions. We now show
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that the set of solutions m∗ of (3.39)–(3.42) is the set of NE that result in the given

centralized solution. From Claim 3.5, (3.31) can be equivalently written as

p̂∗ = arg max
p∈RN

−l∗i
T p + ui(p)−

[
1− IDi

(p)

IDi
(p)

]
= arg max

p∈RN

uA
i (l∗i

T p, p), ∀ i ∈ N .(3.43)

A change of variable Np−∑j∈N
j �=i

p∗j = pi in (3.43) gives

(3.44) p∗i = arg max
pi∈RN

uA
i

(
l∗i

T 1

N

(
pi +

∑
j∈N
j �=i

p∗j
)
,

1

N

(
pi +

∑
j∈N
j �=i

p∗j
))

Because of (3.41) Eq. (3.44) also implies the following:

(π∗i ,p
∗
i) = arg max

(πi , pi)∈R
N
+×RN

uA
i

(
l∗i

T p̂((πi, pi), m
∗/i)− (p∗i+1 − p∗i+2)

T

diag(π∗i+1)(p
∗
i+1 − p∗i+2), p̂((πi, pi), m

∗/i)
)(3.45)

Furthermore, since uA
i is strictly decreasing in the tax (see (3.3)), Eq. (3.45) also

implies the following:

(π∗i, p
∗
i) =

arg max
(πi,pi)∈R

N
+×RN

uA
i

(
l∗i

T p̂((πi, pi), m
∗/i) + (pi − p∗i+1)

T diag(πi)(pi − p∗i+1)

− (p∗i+1 − p∗i+2)
T diag(π∗i+1)(p

∗
i+1 − p∗i+2), p̂((πi, pi), m

∗/i)
)

, i ∈ N .

(3.46)

Eq. (3.46) implies that, if the message exchange and allocation is done according to

the game form defined in Section 3.2.2, then user i, i∈N , maximizes its utility at

m∗
i given that all other users j ∈N\{i} use their respective messages m∗

j, j ∈N\{i}.

This implies that a message profile m∗ that is a solution to (3.39)–(3.42) is a NE

corresponding to the aforementioned game. Furthermore, it follows from (3.39)–



93

(3.42) that the allocation at m∗ is

p̂(m∗) =
1

N

∑
i∈N

p∗i = p̂∗,(3.47)

li(m
∗) = π∗i+1 − π∗i+2 = l∗i , ∀ i ∈ N ,(3.48)

t̂i(m
∗) = li

T (m∗)p̂(m∗) + (p∗i − p∗i+1)
T diag(π∗i )(p

∗
i − p∗i+1)(3.49)

− (p∗i+1 − p∗i+2)
T diag(π∗i+1)(p

∗
i+1 − p∗i+2)

= l∗i
T p̂∗ = t̂∗i .

It follows from (3.47)–(3.49) that the set of solutions m∗ of (3.39)–(3.42) is exactly

the set of NE corresponding to the game of Section 3.2.2 that result in the allocation

(t̂∗, p̂∗). This completes the proof of Claim 3.6 and hence the proof of Theorem 3.2.



CHAPTER 4

Resource allocation in large-scale networks:

A realization perspective

In this chapter we consider a generalization of the problem presented in Chapter 2.

Specifically, we consider a situation where each agent’s actions affect only a subset of

the network agents. Such a situation arises in various applications including large-

scale wireless networks where each user creates interference to only a subset of the

network users. We develop a generic model (so it can be used to study resource

allocation problems arising in a number of network applications) to capture the

above situation and formulate a resource allocation problem from the realization

theory perspective. For this problem we propose a decentralized resource allocation

mechanism that has the following properties: (i) Each agent in the network needs

to communicate only with those agents that either affect it or are affected by it.

(ii) The mechanism preserves the private information of each agent. (iii) It guarantees

convergence to the network optimal resource allocation.

The chapter is organized as follows: In Section 4.1.1 we present the network model

and discuss motivating applications in Section 4.1.2. In Section 4.1.3 we formulate

the resource allocation problem. We state our contributions in the formulation and

solution of the above problem in Section 4.1.5. In Section 4.2.1 we develop ideas

94
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for the construction of decentralized resource allocation mechanism for the problem

formulated in Section 4.1.3, and follow that with the specification of a decentralized

mechanism in Section 4.2.2. We discuss the properties of the proposed mechanism

in Section 4.2.3 and we prove these properties in Appendix 4.A. In Section 4.2.4

we conclude with a discussion on how the decentralized resource allocation problem

and its solution presented in this chapter fit within the framework of the realization

theory component of mechanism design.

Before we present the model, we describe the notation that we will use throughout

the chapter.

Notation:

We use bold font to represent vectors and regular font for scalars. We represent

the element of a vector by a subscript on the vector symbol, and the element of

a matrix by double subscript on the matrix symbol. To denote the vector whose

elements are all xi such that i ∈ S for some set S, we use the notation (xi)i∈S and

we abbreviate it as xS . We treat bold 0 as a zero vector of appropriate size which

is determined by the context. We represent a diagonal matrix of size N ×N whose

diagonal entries are elements of the vector x ∈ R
N by diag(x).

4.1 The network resource allocation problem

In this section we present a network model and consider a resource allocation

problem for it. We first present the network model as an abstract generic model. We

describe the components of the model and the assumptions we make on the proper-

ties of the network. We then discuss applications that motivate such a model. At

the end of the section we present a resource allocation problem and formulate it as

an optimization problem.
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4.1.1 The model (M.4)

We consider a network consisting of N users. We denote the set of users by

N := {1, 2, . . . , N}. Each user i ∈ N has to take an action ai ∈ Ai where Ai is the

space that specifies the set of user i’s feasible actions. In a real network, the actions

of a user can be consumption/generation of resources or decisions regarding various

tasks. We assume that

Assumption 4.1. For each i ∈ N , Ai is a convex and compact set in R, 4.1 and Ai

is user i’s private information (i.e. Ai is known only to user i and nobody else in the

network). Furthermore, for each i ∈ N , a set Ai ⊃ Ai is common knowledge among

the users whose performance (discussed below) is affected by the actions of user i.

Because of the users’ interactions in the network, the actions taken by a user

directly affect the performance of other users in the network. Thus, the performance

of the network is determined by the collective actions of all users. In this chapter we

assume that the network is large-scale, thus, every user’s actions directly affect only

a subset of network users in N . This is depicted in the directed graph in Fig. 4.1.

In the graph, an arrow from j to i indicates that user j affects user i; we represent

the same in the text as j → i. We assume that i → i for all i ∈ N .

Mathematically, we denote the set of users that affect user i by Ri := {k ∈

N | k → i}. Similarly, we denote the set of users that are affected by user j

by Cj := {k ∈ N | j → k}. We call sets Ri and Ci the neighbor sets of user

i. We represent the interactions of all network users together by a graph matrix

4.1In this chapter we assume the sets Ai, i ∈ N , to be in R for simplicity. The decentralized mechanism and the
results we present in this chapter can be easily generalized to the scenario where for each i ∈ N , Ai ⊂ R

ni is a
convex and compact set in a higher dimensional space R

ni . Furthermore, for each i ∈ N , the space R
ni can be of a

different dimension ni.
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Set Ri

Set Cj

i
j

Figure 4.1: A large scale network depicting the neighbor sets Ri and Cj of users i and j respectively.

G := [gij]N×N . The matrix G consists of 0’s and 1’s where gij = 1 represents that

user i is affected by user j, i.e. j ∈ Ri, and gij = 0 represents no influence of user j

on user i, i.e. j /∈ Ri. Note that G is not necessarily a symmetric matrix. However,

gii = 1 for all i ∈ N because i → i. We assume that

Assumption 4.2. The sets Ri, Ci, i ∈ N , are independent of users’ action profile

aN := (ak)k∈N ∈
∏

k∈N Ak.

Assumption 4.2 implies that the graph matrix G does not depend on users’ ac-

tions. There are applications (for example see [27, Chapter 6]) where this assumption

does not hold. However, we do not consider such scenarios in this chapter. Applica-

tions where Assumption 4.2 is valid are discussed in Section 4.1.2.

We quantify the performance that a user i ∈ N achieves as a result of the actions

of users in its neighbor set Ri by a utility function. Let

(4.1) Di := {aRi
∈ R

|Ri| | ai ∈ Ai; aj ∈ Aj, j ∈ Ri\{i}}.

We denote the utility of user i that results from the action profile aRi
:= (ak)k∈Ri

∈

Di by ui(aRi
). We assume that

Assumption 4.3. For all i ∈ N , the utility function ui : Di → R is strictly concave

in aRi
. The function ui is private information of user i.
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The assumptions that ui is concave and is private information of user i are rea-

sonable as evidenced by the applications described in Section 4.1.2. We define the

domain of ui as Di because user i knows from its information about the network (see

Assumption 4.1) that any feasible action profile aRi
must lie within Di. Further-

more, as user i does not know the exact sets Aj, j ∈ Ri\{i}, of other users, it cannot

distinguish between feasible and infeasible action profiles within Di.

In this chapter we restrict attention to static problems. Specifically, we make the

following assumption:

Assumption 4.4. The set N of users, the graph G, the users’ action spaces Ai, i ∈

N , and their utility functions ui, i ∈ N , are fixed in advance and they do not change

during the time period of interest.

Assumption 4.4 is restrictive. Ideally, we would like to address dynamic problems

where N , G, Ai, i ∈ N , and ui, i ∈ N , change over time. At this point we are

unable to handle dynamic problems, and for this reason we restrict attention to

static problems.

We also assume that,

Assumption 4.5. Every user i ∈ N knows the set Ri of users that affect it as well

as the set Ci of users that are affected by it.

In networks where the sets Ri and Ci are not known to the users beforehand,

Assumption 4.5 is still reasonable for the following reason. As the graph G does not

change during the time period of interest (Assumption 4.4), the information about

the neighbor sets Ri and Ci, i ∈ N , can be passed to the respective users once before

the users determine their actions. 4.2 Thus, Assumption 4.5 can hold true for the rest

4.2In a real network, the exact method by which the information about the neighbor sets is passed to the users
depends on network characteristics. We discuss these methods for the networks described in Section 4.1.2.
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of the action determination process.

Finally, we make the following assumption about the users’ behavior.

Assumption 4.6. All network users cooperate to achieve the network performance

objective, i.e., they obediently follow the rules of any mechanism that is designed to

achieve the network performance objective.

Examples of situations where Assumption 4.6 holds are the following: (i) Networks

which are owned/managed by a single network operator that has complete control

over the agents (devices) in the network. For example, a sensor network installed

by an operator, or a satellite communication network owned by a communication

service provider. In these networks the network operator can install the programs in

the devices that dictate their actions according to the network performance criterion.

(ii) Networks in which all users have a common objective which is also the network

objective. For example, a military communication network.

In the next section we present an example from real world applications that mo-

tivate Model (M.5).

4.1.2 Application: Allocation of Central Processing Unit
(CPU) computation power on web servers

Consider a web-service management system that allows service providers to offer

and manage Service Level Agreements (SLAs) for multiple web services. According

to the SLA, each type of web service may be offered in different grades that specify

different targets for the average response time of the service. For example, an SLA

may say that the customers will pay $10 per month for a service if they want an

average service time of 2 s, and they will pay $5 per month if they want an average

service time of 5 s.
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The system classifies incoming service requests into clusters that specify the type

of the service as shown in Fig. 4.2. The system consists of C clusters and the set

Classifier

Clients

Servers

Clusters

1

2

C

1

S

1,1�

2,S�

1,S�

,1C�

2,1�

Figure 4.2: System architecture of the web-service management system

of clusters is denoted by C := {1, 2, . . . , C}. The requests belonging to each cluster

are further classified into flows based on the grade of the service. We assume that

cluster c ∈ C has Fc flows; the set of these flows is denoted by Fc := {c1, c2, . . . , cFc}.

There are S servers (physical machines) that run the service applications for the

clusters. The set of all servers is denoted by S := {1, 2, . . . , S}. Because of the

hardware requirements of applications (in particular memory requirements) and the

hardware constraints on physical machines, each server can run only some specific

service applications at any given time. Thus, each cluster is served by a subset of

servers in S. We assume that the system under consideration has a given application

placement, i.e., the service applications that each server will run has already been

determined.
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The application placement can be represented by a graph with N = C + S nodes

similar to one shown in Fig. 4.1. In the graph each node would represent either

a cluster or a server. An arrow from node c to s would represent that server s is

running the service application for cluster c. Note that in this graph, no arrows

would emerge out of the server nodes. On the other hand multiple arrows may

emerge from a cluster node that point towards different server nodes that serve the

cluster. The latter characteristic is a generalization of the case considered in Fig 4.1.

This generalization is mentioned in Footnote 4.1. Specifically, in the context of the

above model, we can treat the arrows emerging from a cluster as multi-dimensional

action taken by the cluster each element of which affects a different server. We

discuss the interpretation of these actions in the following paragraphs. Because

the application placement has been predetermined, each server would know which

clusters it is serving. Similarly, each cluster c ∈ C can know beforehand which

servers run its service application. Thus, the system under consideration satisfies

Assumption 4.5 of Model (M.4).

Given an application placement, the average service time that can be delivered to

a cluster depends on the total CPU computation power of the servers available to the

cluster. Each server s ∈ S has a CPU computation power 4.3 capacity Ωs which is

its private information. This capacity must be divided among the applications that

run on the server. If ωc,s denotes the CPU power available to cluster c on server s,

then, the CPU capacity constraints of the servers can be written as

∑
c∈C

ωc,s ≤ Ωs.(4.2)

Note that for each c ∈ C, ωc,s can be non zero only if c → s. The CPU power vector

(ωc,s)s∈Cc can be interpreted as the multi-dimensional action taken by cluster c. The

4.3Henceforth we will use the term CPU power to mean CPU computation power.
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feature that the application placement does not change with CPU power allocation

is modeled by Assumption 4.2 in Model (M.4).

Each cluster c ∈ C has a utility uc(
∑

s∈Cc
ωc,s) which represents the satisfaction

of cluster c from the average service response time it obtains when the total CPU

power available to it is
∑

s∈Cc
ωc,s. Below we show how the utility function uc relates

the CPU power
∑

s∈Cc
ωc,s to the average service time delivered to cluster c.

For each flow cf ∈ Fc of each cluster c ∈ C, let Tcf
be the target service response

time specified by the SLA. The utility of flow cf ∈ Fc is defined in terms of its target

response time Tcf
and the actual response time tcf

delivered to the flow;

uc,f (tcf
) :=

Tcf
− tcf

Tcf

, cf ∈ Fc, c ∈ C.(4.3)

The actual response time tcf
of each flow is calculated from a closed queueing model

corresponding to each flow as shown in Fig. 4.3. The number of clients Mcf
and the

Clients System

Service
time

Throughput

Think time

,c fz ,c ft

,c f�

,c fM

Response time

Figure 4.3: Queueing model for deriving the response time of requests for flow cf ∈ Fc, c ∈ C.

average think time zcf
of each client in the queueing model are estimated based on
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the performance measurements on this model [54]. The queueing model with the

estimated Mcf
and zcf

is then used to calculate the CPU power required by each

cluster so as to achieve some given utility for each of its flows. For the utility function

given by (4.3), the response time tcf
required to guarantee utility uc,f for flow cf ∈ Fc

is

tcf
= (1− uc,f )Tcf

.(4.4)

For the queueing model of Fig. 4.3, the throughput achieved by flow cf ∈ Fc when

the response time for this flow is tcf
is

λcf
=

Mcf

(zcf
+ tcf

)
.(4.5)

For each flow, a work profiler estimates the work factor 4.4 of the flow as proposed

in [40]. If αcf
is the estimated work factor, the CPU power required to sustain

throughput λcf
for flow cf ∈ Fc is

ωcf
= αcf

λcf
(4.6)

The total CPU power required by cluster c ∈ C to guarantee utility uc for each flow

cf ∈ Fc in cluster c is obtained by taking the sum of (4.6) over cf ∈ Fc, i.e.,

ωc(uc) =
∑

cf∈Fc

αcf

Mcf

(zcf
+ (1− uc)Tcf

)
(4.7)

The utility function of each cluster c ∈ C is obtained by inverting the function ωc(u)

in (4.7). The utility function uc(ωc) thus obtained is concave in its argument ωc.

Hence, the cluster utility uc(
∑

s∈Cc
ωc,s) as a function of the CPU power allocated to

the cluster on the servers is a concave function of the vector (ωc,s)s∈Cc .

4.4Work factor of a flow is defined to be the average number of CPU cycles required to complete the service of one
request belonging to that flow.
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Note that in Model (M.4) each node obtains a utility from the actions associated

with the arrows pointing towards the node. This is not true in the CPU power

allocation model described above, because the servers do not obtain any utility from

the CPU power allocated to the clusters served by the servers. However, the web

server system of this section can be modeled by Model (M.4) as follows. Since the

CPU power capacity Ωs (given in (4.2)) of each server s is its private information,

we define a utility function for each server as

us((ωc,s)c∈Rs) = IOs((ωc,s)c∈Rs),

where, Os := {(ωc,s)c∈Rs |
∑
c∈C

ωc,s ≤ Ωs}

IOs(x) =

⎧⎪⎨⎪⎩ 1, if x ∈ Os

0, otherwise.

(4.8)

The utility of server s ∈ S constructed above depends exactly on the actions asso-

ciated with the applications that are served by the server and therefore, it can be

modeled by Model (M.4). Note that the utility given by (4.8) is concave in its argu-

ment. It has been shown earlier that the cluster utilities are also concave functions.

Furthermore, these utility functions do not change if the application placement re-

mains fixed. These features are modeled by Assumptions 4.3 and 4.4 in Model (M.4).

Finally, a web server system such as one described in this section may be operated

by a single service provider. Thus, it can control the behavior of all the machines

in the system by pre installing the algorithm for decentralized resource allocation.

Such a scenario gives rise to Assumption 4.6 in Model (M.4), and generates resource

allocation problems under the realization scenario.

In the next section we formulate the resource allocation problem for the network

model (M.4).
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4.1.3 The resource allocation problem (PD.4)

For the network model (M.4) we want to develop a mechanism to determine the

users’ action profile aN := (a1, a2, . . . , aN). We want the mechanism to work under

the decentralized information constraints imposed by the model and to lead to a

solution to the following centralized problem.

Problem (PC.4)

max
aN∈D

∑
i∈N

ui(aRi
)

where, D := {aN ∈ R
N | ai ∈ Ai ∀ i ∈ N}.

(4.9)

D is the set of feasible solutions of Problem (PC .4). Because of Assumption 4.3, the

objective function in (4.9) is strictly concave in aN . Moreover, the sets Ai, i ∈ N ,

are convex and compact. Therefore, there exists a unique optimal action profile a∗N

for Problem (PC .4).

The solution of Problem (PC .4) is the ideal action profile that we would like to

obtain. If there exists an entity that has centralized information about the network,

i.e. it knows all the utility functions ui, i ∈ N , and all action spaces Ai, i ∈ N ,

then that entity can compute the above ideal profile by solving Problem (PC .4).

Therefore, we call the solution of Problem (PC .4) the optimal centralized action

profile. In the network described by Model (M.4), there is no entity that knows

perfectly all the parameters that describe Problem (PC .4). This is indicated by

Assumptions 4.1 and 4.3. Therefore, we need to develop a mechanism that allows

the network users to communicate with one another and that leads to the optimal

solution of Problem (PC .4).
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4.1.4 Literature survey

The problem formulated in Section 4.1.3 has the nature of local public goods

allocation problem. A resource is said to be a local public good is it is accessible to

and influences the utilities of users in a particular locality within a big network. Thus,

the action of each user in the network model (M.4) can be treated as a local public

good. There is a large literature on local public goods within the context of local

public good provision by various municipalities that follows the seminal work of [53].

These works mainly consider network formation problems in which individuals choose

where to locate based on their knowledge of the revenue and expenditure patterns

(on local public goods) of various municipalities. For Model (M.4) we consider the

problem of determining the levels of local public goods (actions of network agents) for

a fixed network; thus, the problem formulation of Section 4.1.3 is distinctly different

from those in the above literature. Recently, in [8] a public good network model

similar to Model (M.4) was investigated. In the model considered in [8] any pair of

users that are linked in the network affect each other’s utilities; thus, it is a special

case of Model (M.4) where the influence of users’ actions on their neighbors’ utilities

can be either unidirectional or bidirectional. In [11] the model of [8] is generalized

to consider directed links between the users; thus, the network structure considered

in [11] is similar to Model (M.4). Both [8] and [11] study the problem of local public

good provision for a given network structure. However, the problems addressed

in [8, 11] are game theoretic and analyze the incentives of users to provide local

public goods in such a network. The resource allocation problem (PD.4) formulated

in Section 4.1.3 is non-game theoretic, and hence is different from the problems in

[8, 11]. To the best of our knowledge Problem (PD.4) and its solution that we present

in Section 4.2.2 is the first attempt to analyze Model (M.4) in the framework of the
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realization theory component of mechanism design. In the next section we state our

contributions in the problem formulation and solution presented in this chapter.

4.1.5 Contribution of the chapter

The key contributions of this chapter are:

• The formulation of a decentralized resource allocation problem for Model (M.4)

in the framework of the realization theory component of mechanism design.

• The specification of an iterative decentralized resource allocation mechanism for

the above problem that has the following properties:

(i) Each agent in the network needs to communicate only with those agents

that either affect it or are affected by it.

(ii) The mechanism preserves the private information of each agent.

(iii) It guarantees convergence to the network optimal resource allocation (the

optimal centralized action profile).

In the next section we develop ideas for the design of decentralized resource al-

location mechanisms for Problem (PD.4), and present a decentralized mechanism

that follows these ideas and achieves the problem objectives (the optimal centralized

action profile).

4.2 A decentralized resource allocation mechanism

In this section we present a decentralized resource allocation mechanism for Model

(M.4). We first develop some ideas/guidelines for the design of decentralized alloca-

tion mechanisms for systems having the structure of Model (M.4). We then specify

a decentralized mechanism based on these ideas. We conclude the section with a
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discussion on the properties of the decentralized mechanism. These properties are

summarized in Theorem 4.1 the proof of which appears in Appendix 4.A.

4.2.1 Design of decentralized mechanism for Problem (PD.4)

As stated in Section 4.1.3 our objective is to develop a decentralized mechanism

that works under the informational constraints of Model (M.4), and obtains a solution

to the centralized Problem (PC .4). To directly obtain the solution of Problem (PC .4)

one needs complete system information, i.e., one must know the utilities of all the

users and the sets Ai, i ∈ N , of their feasible actions. One way to obtain complete

system information is to let each user communicate all its private information (its

utility and set of feasible actions) to some common entity in the network. However, it

may not be feasible for the users on informational grounds to communicate all their

private information. Furthermore, there may be privacy issues due to which the users

may not want to share their private information even if sharing this information is

feasible on informational grounds. For the above reasons, we want to develop a

mechanism that is capable of achieving the optimal solution without requiring the

users to directly share their private information.

A decentralized mechanism that preserves the users’ private information must

have the following features: (i) It must allow each user to communicate with other

users using a message space that is smaller and simpler than the space of its private

information. Since the users do not communicate all of their private information,

the information conveyed by the users in a single message exchange is not sufficient

to determine the centralized allocation. Therefore, the mechanism must consist of

an iterative communication process. (ii) It must determine the users’ actions based

on their private information and their communication with one another.
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In the network model (M.4) the information available to a user i ∈ N is its utility

function ui, the set of its feasible actions Ai, the set of its neighbors Ri and Ci, and

an estimate Aj, j ∈ Ri, of the set of feasible actions of its neighbors. Therefore,

one way to construct an iterative message update process for Model (M.4) is to

let each user solve an individual optimization problem constructed with the above

information, and let the user communicate the outcome of this optimization to other

users. Thus, designing a decentralized mechanism for Problem (PD.4) reduces to

defining appropriate individual optimization problems for each user that eventually

lead to the optimal centralized allocation. Since an allocation consists of all users’

actions, the individual optimizations must provide information about each user’s

perspective on optimal actions. One possible way to accomplish this is to let each

user i ∈ N propose for each of its neighbors in Ri, a set of actions iaj, j ∈ Ri, that

maximize its own utility ui(aRi
). Since each user’s optimization must be based only

on its own information, the proposal/message of user i must be generated from the

set Di := {aRi
∈ R

|Ri| | ai ∈ Ai; aj ∈ Aj, j ∈ Ri\{i}} which represents user i’s

information about the set of feasible actions of its neighbors in Ri. However, the

above construction of individual optimization problems may lead to the following

difficulty. Since each user i ∈ Cj makes a proposal for user j’s action, and each of

these users has a different utility, the above message communication process may not

lead to an agreement among the users’ proposals. This difficulty can be addressed

by modifying each user’s individual optimization problem as follows.

We add a penalty term to each user’s utility function. This penalty term must

lower the net value of a user’s objective function if its proposal deviates from other

users’ proposals, and the amount of this penalty must increase with the increase in

deviation. With each iteration the penalty term of each user should be updated to
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reflect the new information gathered from the message exchange among the users.

The updates in penalty terms should be done in a way so as to eventually bring all

the users to an agreement with respect to their action proposals. Furthermore, the

series of updated optimizations should allow the users to eventually determine the

optimal centralized allocation.

In the next section we present a decentralized resource allocation mechanism that

possesses all the desirable features discussed above.

4.2.2 The decentralized resource allocation mechanism

In this section we present a decentralized mechanism for the resource allocation

problem formulated in Section 4.1.3. The proposed mechanism consists of an iter-

ative process. Each iteration of this mechanism consists of the following steps: (i)

each user solves an optimization problem based on its own information about the

network; and (ii) based on the individual optimization, each user synchronously up-

dates its message to its neighbors. For the convergence of the iterative process it is

important that the message updates are synchronized. We assume that it is possi-

ble to synchronize these message updates using synchronization methods. Below we

provide the details of the mechanism.

The decentralized mechanism (DM.4):

0) Before the start of the iterative process all users agree upon a common initial

action profile. This can be any arbitrary action profile a
(0)
N ∈∏i∈N Ai and does

not need to be a feasible one.

Before the start of the iterative process the users also agree upon a sequence

{τ (n)}∞n=1 of modification parameters that will be used in the mechanism. 4.5

4.5Since the users have a common objective, they can communicate with one another before the iterative process

begins, and determine {τ (n)}∞n=1 and a
(0)
N that will be used in the mechanism. Alternatively, {τ (n)}∞n=1 as well as

a
(0)
N can be given to the users by the system designer.
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The sequence {τ (n)}∞n=1 is chosen to satisfy the following three properties:

0 < τ (n+1) ≤ τ (n) ≤ 1 ∀ n ≥ 1,(4.10)

lim
n→∞

τ (n) = 0,(4.11)

lim
n→∞

σ(n) = ∞,(4.12)

where, σ(n) :=
n∑

t=1

τ (t), n ≥ 1.(4.13)

For instance, τ (n) = 1
n
, n = 1, 2, 3, . . . , can be chosen as the sequence. The

counting variable n is set to 1.

1) At the nth iteration, each user i ∈ N maximizes its nth stage modified utility

function over the set of i-feasible action profiles, and obtains its individual

optimum as follows:

ia
(n)
Ri

:= (ia
(n)
j )j∈Ri

= arg max
aRi

∈Di

{
ui(aRi

)− 1

τ (n)
‖aRi

− a
(n−1)
Ri

‖2
}

, i ∈ N ,

(4.14)

We call ia
(n)
j the nth stage action proposal of user i, i ∈ N , for user j, j ∈ Ri.

After the optimization, each user i ∈ N sends its action proposal 4.6 ia
(n)
j to its

respective neighbor j ∈ Ri.

Each user i ∈ N also computes a weighted average of its action proposals over

all iterations up to the nth one:

(4.15) iw
(n)
Ri

=
1

σ(n)

n∑
t=1

τ (t) ia
(t)
Ri

, i ∈ N .

2) Each user j ∈ N receives the action proposals from all its neighbors k ∈ Cj, and

computes the average of all these proposals:

(4.16) a
(n)
j =

1

|Cj|
∑
k∈Cj

ka
(n)
j , j ∈ N .

4.6Since ui is strictly concave in aRi
and Di is compact, a unique maximum ia

(n)
j exists for every i ∈ N and

j ∈ Ri.
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After computing the average proposal a
(n)
j , user j announces this proposal to

all its neighbors k ∈ Cj.

3) Each user i ∈ N hears the average proposal a
(n)
j from all its neighbors j ∈ Ri,

and forms a reference action profile a
(n)
Ri

= (a
(n)
j )j∈Ri

for the (n + 1)th iteration.

The counter n is increased to n + 1 and the process repeats from Step 1). The

modification parameter τ (n+1) for the (n + 1)th iteration is selected from the

predefined sequence chosen in Step 0).

In the next section we discuss the properties of the above mechanism.

4.2.3 Properties of the decentralized mechanism (DM.4)

We begin this section with an intuitive discussion on how the decentralized mech-

anism (DM.4) presented in Section 4.2.2 achieves optimal centralized allocations. We

then formalize the results in Theorem 4.1.

As discussed in Section 4.2.1, in order for a decentralized mechanism to achieve

the objective in Problem (PD.4), it should have the following features: (i) It should

be iterative in nature; (ii) In each iteration, each user should perform an individual

optimization based only on its own information; and (iii) the iterative process should

converge to the optimal centralized allocation.

From the description of the decentralized mechanism (DM.4) in Section 4.2.2, it

is clear that it has Feature (i).

To see Feature (ii) observe from (4.14) that for each i ∈ N , the individual opti-

mization problem for user i is constructed only with the information available to i.

Specifically, in the objective function in (4.14), user i knows its own utility function

ui, it knows the sequence {τ (n)}∞n=1, and at the beginning of each iteration it also

gets information about the reference point a
(n−1)
Ri

that completely defines the norm
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square function for that iteration. Furthermore, user i performs its optimization over

the set of actions Di which is also completely known to it. Thus, the decentralized

mechanism (DM.4) possesses Feature (ii).

As discussed in Section 4.2.1, Feature (iii) requires that in the decentralized mech-

anism the individual objective function of each user should consist of the user’s utility

and an updating penalty term that drives the sequence of optimizations to the op-

timal centralized allocation. In mechanism (DM.4), the norm square term in the

objective function of each user serves as the aforementioned penalty term. For each

i ∈ N , the norm square term puts a penalty on user i in proportion to its deviation

from the average proposal for the action profile aRi
. Thus, it pulls user i’s deci-

sion towards the other users’ evaluations of the actions aRi
. The individual optima

ia
(n)
Ri

, i ∈ N , which are announced at the end of each iteration convey how each user

values the actions of users that affect its utility. For each user j ∈ N , the average

a
(n)
j of its neighbors’ optima conveys the average system valuation of user j’s actions.

Hence for the next iteration, a
(n)
j is used as a reference in the individual optimizations

of each of user j’s neighbors. As stated before, we want the sequence of optima to

converge to the optimal allocation. This is achieved in mechanism (DM.4) by reduc-

ing the value of the modification parameter τ (n) in each iteration. The reduction in

τ (n) increases the penalty of deviation for each user. Thus, as the iterative process

proceeds, the action profile ia
(n)
Ri

proposed by user i, i ∈ N , gets closer and closer to

the average profile a
(n−1)
Ri

, and eventually for each j ∈ N , all the users k ∈ Cj agree

upon a common action a∗j . For all n each user’s optimum ia
(n)
Ri

lies in its correspond-

ing set Di, therefore, if for each j ∈ N , the optima of all the users k ∈ Cj converge

to a common action a∗j , the action a∗j must lie in the set
( ∩k∈Cj\{j} Aj

) ∩ Aj = Aj.

Consequently, the action profile a∗N must lie in the set ∩i∈NDi = D which is the
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set of feasible actions for Problem (PC .4). Thus, the point of convergence a∗N of

the users’ optima is a feasible solution of Problem (PC .4). However, for the reasons

explained below, a∗N need not be a maximizer of the system objective function in

Problem (PC .4). Note that for large n as τ (n) → 0, the outcomes of individual op-

timizations are dominantly determined by the norm square terms which force each

individual optima to be very close to the average proposal for the respective actions.

Since the users’ utilities are suppressed in these optimizations, the resulting optima

are not representative of the utility functions that form the system objective func-

tion. Thus, even though in the limit the users’ proposals for the action profile aN

are in agreement, the limit point may not be optimal. The contribution of the users’

utilities is accounted for by the weighted average iw
(n)
Ri

, i ∈ N . By taking a weighted

average of the individual optima over the entire run of the mechanism, the two con-

tributing components to the system objective are taken into account simultaneously:

the individual utilities, which are more prominent in the individual optimizations to-

wards the beginning of the iterative process (when τ (n) is comparatively large); and,

the conflicts in the users’ evaluations of one another’s actions, whose effect becomes

more prominent in the individual optimizations towards the end of the mechanism

(when τ (n) approaches 0). The decreasing weights τ (n) facilitate convergence of each

sequence iw
(n)
Ri

and provide appropriate balance between the contributions of the

above two factors at the point of convergence. As a result, the common point of

convergence is the optimal solution of the centralized problem (PC .4).

Below we summarize the property of mechanism (DM.4) in the form of Theo-

rem 4.1.
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Theorem 4.1. Let {W (n)}∞n=1 be a sequence of N ×N matrices defined as follows:

W (n) := [W
(n)
ij ]N×N ,

where, W
(n)
ij =

⎧⎪⎨⎪⎩
iw

(n)
j , if j ∈ Ri, i ∈ N ,

0, otherwise.

(4.17)

Then,

(i) The sequence {W (n)}∞n=1 converges and has the limit limn→∞W (n) = W ∗,

where W ∗ := [W ∗
ij]N×N has the following property:

W ∗
ij =

⎧⎪⎨⎪⎩ w∗j for some w∗j ∈ Aj, if i ∈ Cj, j ∈ N ,

0, otherwise.

(4.18)

(ii) The vector w∗ := (w∗j )j∈N is the optimal centralized action profile corresponding

to Problem (PC .4).

�

As stated at the beginning of this chapter and in the introduction of the thesis

(Section 1.3)), our solution approach for the decentralized resource allocation prob-

lem presented in this chapter is based on the principles of the realization theory

component of mechanism design. In the next section we show how the decentralized

mechanism (DM.4) can be related with the solution approach of realization theory.

4.2.4 Relating mechanism (DM.4) with the solution approach
of realization theory

In Section 2.2.3 we presented a detailed description of the components that de-

scribe a resource allocation problem and a decentralized resource allocation mech-

anism in the framework of realization theory. In this section we illustrate how the

resource allocation problem (PD.4) and the decentralized mechanism (DM.4) can be

represented in terms of the components of the realization theory framework.
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First we define the resource allocation problem (E ,D, γ) corresponding to Problem

(PD.4). For the network model (M.4) the environment ei of user i, i ∈ N , consists

of the set Ai of its feasible actions, its utility function ui, its information about its

neighbor sets Ri and Ci, and its (common) knowledge about the facts described by

Assumptions 4.2, 4.4, 4.5 and 4.6. The environment space Ei of user i is the space of

all possible environments ei, i.e., it consists of the following: the space of all convex

and compact sets Ai ⊂ R, the space of all concave functions ui : Di → R, the space of

all finite subsets Ri and Ci of the set of natural numbers, and the common knowledge

mentioned above.

The action space D for Problem (PD.4) is the space of all feasible action profiles

aN as defined in (4.9).

The goal correspondence γ for Problem (PD.4) is a correspondence that maps

each environment e ∈ E to the optimal action profile aN ∈ D of Problem (PC .4).

The components (M, μ, f) corresponding to the decentralized mechanism (DM.4)

are defined as follows. The message space for each user i ∈ N is Mi = Di×Di. The

communication rule for the users is the following. In each iteration n = 1, 2, 3, . . . ,

each user i ∈ N generates the vector (ia
(n)
Ri

, iw
(n)
Ri

) ∈Mi which it obtains from (4.14)

and (4.15). 4.7

The communication rule defined above implies that the equilibrium message cor-

respondence μ for the mechanism (DM.4) is a function that maps the system en-

vironment to the equilibrium message vector ((ia∗Ri
, iw∗

Ri
)i∈N ) ∈ ∏i∈NMi. This

vector is obtained at the point of convergence of mechanism (DM.4) given by (4.17)

and (4.18).

4.7Note that since for each t = 1, 2, . . . , ia
(t)
Ri
∈ Di, the convex combination iw

(n)
Ri

= 1
σ(n)

∑n
t=1

ia
(t)
Ri
∈ Di.
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Finally, the outcome function f :
∏

i∈NMi → D is the following:

fj((
ia∗Ri

, iw∗
Ri

)i∈N ) =
1

|Cj|
∑
i∈Cj

iw∗
j = w∗j ∈ Aj, j ∈ N .(4.19)

The second equality in (4.19) follows from Theorem 4.1 part (i) which states that

the point of convergence of mechanism (DM.4) satisfies iw∗
j = w∗j , ∀ i ∈ Cj, j ∈ N .

Since by Theorem 4.1 part (ii) the vector w∗ := (w∗j )j∈N is the optimal solution of

Problem (PC .4), it follows that the outcome function defined in (4.19) results in the

optimal centralized allocation at the equilibrium message vector. Thus, the decen-

tralized mechanism (M, μ, f) which represents mechanism (DM.4) in the framework

of the realization theory component of mechanism design “realizes” the goal corre-

spondence γ defined by the solution of Problem (PC .4).

4.A Proof of Theorem 4.1

Claim 4.1. There exist constants 0 ≤ KQij ≤ ∞, j ∈ N , i ∈ Cj, such that

(4.20)
1

σ(n)

n−1∑
t=0

‖ia
(t+1)
j − a

(t)
j ‖2 ≤ KQij, ∀ n ∈ {1, 2, . . . }.

Proof:

Since ia
(t+1)
Ri

is the optimal solution in (4.14), it follows from [31, Theorem 1.6]

that 4.8

τ (t+1)ui(
ia

(t+1)
Ri

)− ‖ia
(t+1)
Ri

− aRi
‖2 + ‖a(t)

Ri
− aRi

‖2 − ‖ia
(t+1)
Ri

− a
(t)
Ri
‖2

≥ τ (t+1)ui(aRi
), ∀ aRi

∈ Di.

(4.21)

By writing the squared vector norms in (4.21) as the sum of squared scalar norms

we get

τ (t+1)ui(
ia

(t+1)
Ri

)−
∑
j∈Ri

‖ia
(t+1)
j − aj‖2 +

∑
j∈Ri

‖a(t)
j − aj‖2

−
∑
j∈Ri

‖ia
(t+1)
j − a

(t)
j ‖2 ≥ τ (t+1)ui(aRi

), ∀ aRi
∈ Di.

(4.22)

4.8by taking ‖ · ‖2 as function J1(·) and ui(·) as function J2(·) in Theorem 1.6 of [31, Theorem 1.6].
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Adding (4.22) over all i ∈ N we obtain

τ (t+1)
∑
i∈N

ui(
ia

(t+1)
Ri

)−
∑
i∈N

∑
j∈Ri

‖ia
(t+1)
j − aj‖2 +

∑
i∈N

∑
j∈Ri

‖a(t)
j − aj‖2

−
∑
i∈N

∑
j∈Ri

‖ia
(t+1)
j − a

(t)
j ‖2 ≥ τ (t+1)

∑
i∈N

ui(aRi
), ∀ aN ∈ D.

(4.23)

From the construction of the graph matrix G and the sets Ri and Cj, i, j ∈ N , the

sum
∑

i∈N
∑

j∈Ri
(·) is equal to the sum

∑
j∈N

∑
i∈Cj

(·). Therefore, we can rewrite

(4.23) as

τ (t+1)
∑
i∈N

ui(
ia

(t+1)
Ri

)−
∑
j∈N

∑
i∈Cj

‖ia
(t+1)
j − aj‖2 +

∑
j∈N

∑
i∈Cj

‖a(t)
j − aj‖2

−
∑
j∈N

∑
i∈Cj

‖ia
(t+1)
j − a

(t)
j ‖2 ≥ τ (t+1)

∑
i∈N

ui(aRi
), ∀ aN ∈ D.

(4.24)

By convexity of ‖ · ‖2,

‖a(t+1)
j − aj‖2 ≤ 1

|Cj|
∑
i∈Cj

‖ia
(t+1)
j − aj‖2.(4.25)

Using (4.25) to replace the second term on the Left Hand Side (LHS) of (4.24) gives

τ (t+1)
∑
i∈N

ui(
ia

(t+1)
Ri

)−
∑
j∈N

|Cj| ‖a(t+1)
j − aj‖2 +

∑
j∈N

|Cj| ‖a(t)
j − aj‖2

−
∑
j∈N

∑
i∈Cj

‖ia
(t+1)
j − a

(t)
j ‖2 ≥ τ (t+1)

∑
i∈N

ui(aRi
), ∀ aN ∈ D.

(4.26)

Adding (4.26) over t = 0, 1, 2, . . . , n− 1, gives

n−1∑
t=0

τ (t+1)
∑
i∈N

ui(
ia

(t+1)
Ri

) +
∑
j∈N

|Cj|
(
‖a(0)

j − aj‖2 − ‖a(n)
j − aj‖2

)
−
∑
j∈N

∑
i∈Cj

n−1∑
t=0

‖ia
(t+1)
j − a

(t)
j ‖2 ≥

n−1∑
t=0

τ (t+1)
∑
i∈N

ui(aRi
), ∀ aN ∈ D.

(4.27)

By concavity of ui, i ∈ N ,

∑
i∈N

1

σ(n)

n−1∑
t=0

τ (t+1)ui(
ia

(t+1)
Ri

) ≤
∑
i∈N

ui(
iw

(n)
Ri

).(4.28)
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Substituting (4.28) in (4.27), and dividing by σ(n), we obtain

∑
i∈N

ui(
iw

(n)
Ri

) +
1

σ(n)

∑
j∈N

|Cj|
(
‖a(0)

j − aj‖2 − ‖a(n)
j − aj‖2

)
− 1

σ(n)

∑
j∈N

∑
i∈Cj

n−1∑
t=0

‖ia
(t+1)
j − a

(t)
j ‖2 ≥

∑
i∈N

ui(aRi
), ∀ aN ∈ D.

(4.29)

Because D and Aj, j ∈ N , are compact, and aN ∈ D, a
(0)
N ∈ ∏j∈N Aj, and a

(n)
j =

1
|Cj |
∑

k∈N
ka

(n)
j ∈ Aj, j ∈ N , the numerators of the second and third terms on

the LHS of (4.29) are bounded. Furthermore, from (4.12), σ(n) → ∞ as n → ∞.

Therefore,

lim
n→∞

1

σ(n)

∑
j∈N

|Cj|
(
‖a(0)

j − aj‖2 − ‖a(n)
j − aj‖2

)
= 0(4.30)

Since Di, i ∈ N , and D are compact, iw
(n)
Ri
∈ Di, i ∈ N , aN ∈ D, and ui, i ∈ N , are

continuous functions on R
|Ri|, there exist constants KUi, i ∈ N , independent of n

such that

|ui(
iw

(n)
Ri

)| ≤ KUi, and |ui(aRi
)| ≤ KUi, i ∈ N .(4.31)

Inequality (4.29) together with (4.30) and (4.31) imply that for appropriate constants

0 ≤ KQij ≤ ∞, j ∈ N , i ∈ Cj,

(4.32)
1

σ(n)

n−1∑
t=0

‖ia
(t+1)
j − a

(t)
j ‖2 ≤ KQij, ∀ n ∈ {1, 2, . . . }.

Claim 4.2. Let {W (n)}∞n=1 be a sequence of N ×N matrices defined as follows:

W (n) := [W
(n)
ij ]N×N ,

where, W
(n)
ij =

⎧⎪⎨⎪⎩
iw

(n)
j , if j ∈ Ri, i ∈ N ,

0, otherwise.

(4.33)
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Define for each n = 1, 2, 3, . . . ,

w
(n)
j :=

1

σ(n)

n∑
t=1

τ (t)a
(t−1)
j , j ∈ N ,(4.34)

and let {W (n)}∞n=1 be a sequence of N ×N matrices defined as follows:

W
(n)

:= [W
(n)

ij ]N×N ,

where, W
(n)

ij =

⎧⎪⎨⎪⎩ w
(n)
j , if j ∈ Ri, i ∈ N ,

0, otherwise.

(4.35)

Then,

(i) limn→∞ ‖W (n) −W
(n)‖2 = 0, where ‖ · ‖2 is the Euclidean matrix norm.

(ii) There exists a converging subsequence {W (n′)} of {W (n)}∞n=1 such that

limn′→∞W (n′) = W ∗ ∈ R
N×N .

(iii) The point of convergence W ∗ = [W ∗
ij]N×N has the following property:

W ∗
ij =

⎧⎪⎨⎪⎩ w∗j for some w∗j ∈ Aj, if i ∈ Cj, j ∈ N ,

0, otherwise.

(4.36)

Furthermore, the vector w∗ := (w∗j )j∈N is the optimal centralized action profile,

i.e., the solution of Problem (PC .4).

Proof:

(i) We must show that

(4.37) ∀ ε > 0, ∃ n0 : ∀ n ≥ n0, ‖W (n) −W
(n)‖2 ≤ ε.

From the definition of W (n) and W
(n)

we have

‖W (n) −W
(n)‖2 =

∑
i∈N

∑
j∈N

‖W (n)
ij −W

(n)

ij ‖2

=
∑
i∈N

∑
j∈Ri

‖iw
(n)
j − w

(n)
j ‖2

=
∑
j∈N

∑
i∈Cj

‖iw
(n)
j − w

(n)
j ‖2.

(4.38)
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The first equality in (4.38) follows from the definition of the Euclidean matrix norm,

and the last equality follows because
∑

i∈N
∑

j∈Ri
(·) =

∑
j∈N

∑
i∈Cj

(·). Since ‖ · ‖2

is a convex function, it follows from (4.15) and (4.34) that for each n = 1, 2, 3, . . . ,

∑
j∈N

∑
i∈Cj

‖iw
(n)
j − w

(n)
j ‖2 ≤

∑
j∈N

∑
i∈Cj

1

σ(n)

n−1∑
t=0

τ (t+1)‖ia
(t+1)
j − a

(t)
j ‖2.(4.39)

By (4.10) we have for any n1 < n,

1

σ(n)

∑
j∈N

∑
i∈Cj

n−1∑
t=0

τ (t+1)‖ia
(t+1)
j − a

(t)
j ‖2 ≤

1

σ(n)

∑
j∈N

∑
i∈Cj

τ (1)

n1−1∑
t=0

‖ia
(t+1)
j − a

(t)
j ‖2 +

1

σ(n)

∑
j∈N

∑
i∈Cj

τ (n1)

n−1∑
t=n1

‖ia
(t+1)
j − a

(t)
j ‖2.

(4.40)

Note that for all j ∈ N , Aj and Aj are compact. Furthermore, for each j ∈ N ,

ia
(t+1)
j ∈ Aj ∀ t if i = j, and ia

(t+1)
j ∈ Aj ∀ t if i ∈ Cj. Therefore, there exist

constants 0 < Kaij <∞ such that

(4.41) ∀ t, ‖ia
(t+1)
j ‖ ≤ Kaij, i ∈ Cj, j ∈ N .

Since for each j ∈ N , a
(t)
j is an average of ia

(t)
j , i ∈ Cj, (see (4.16)), it follows from

(4.41) that there exist constants 0 < Kaj <∞ such that

(4.42) ∀ t, ‖a(t)
j ‖ ≤ Kaj, j ∈ N .

From (4.41) and (4.42) we have that,

(4.43) K1 :=
∑
j∈N

∑
i∈Cj

τ (1)

n1−1∑
t=0

‖ia
(t+1)
j − a

(t)
j ‖2 <∞.

From Claim 4.1 we also have,

(4.44)
1

σ(n)

∑
j∈N

∑
i∈Cj

n−1∑
t=n1

‖ia
(t+1)
j − a

(t)
j ‖2 ≤ KQ, ∀ n.
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Substituting (4.43) and (4.44) in (4.40) gives for each n > n1,

1

σ(n)

∑
j∈N

∑
i∈Cj

n−1∑
t=0

τ (t+1)‖ia
(t+1)
j − a

(t)
j ‖2 ≤ 1

σ(n)
K1 + τ (n1)KQ.(4.45)

Because of (4.11), for any given ε > 0 we can choose an n1 large enough (by (4.11)

and [45, Definition 3.1, p.41]) such that

τ (n1) ≤ ε

2
KQ.(4.46)

Furthermore, because of (4.12), for any given ε > 0 and for the n1 chosen in (4.46),

we can choose an n2 large enough (see [45]) such that

σ(n2) ≥ 2

ε
K1.(4.47)

Define n0 := max(n1, n2). Then, for all n ≥ n0,

1

σ(n)
K1 + τ (n1)KQ ≤ 1

σ(n2)
K1 + τ (n1)KQ ≤ ε

2
+

ε

2
= ε.(4.48)

From (4.38), (4.39), (4.45) and (4.48) we conclude that ∀ n ≥ n0,

‖W (n) −W
(n)‖2 ≤ ε.(4.49)

(ii) From (4.14) we know that for all t, ia
(t)
j ∈ Aj if i = j, j ∈ N , and ia

(t)
j ∈ Aj

if i ∈ Cj\{j}, j ∈ N . From Assumption 4.1 we also know that for each j ∈ N ,

Aj and Aj are convex. Therefore, for each n = 1, 2, 3, . . . , the convex combination

iw
(n)
j = 1

σ(n)

∑n
t=1

ia
(t)
j ∈ Aj if i = j, j ∈ N , and iw

(n)
j ∈ Aj if i ∈ Cj\{j}, j ∈ N . This

implies that for each n = 1, 2, 3, . . . , the matrix W (n) lies in the following product

space:

W (n) ∈
⊗
i∈N

⊗
j∈N

Dij, where, Dij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Aj, if i = j, j ∈ N ,

Aj, if i ∈ Cj, j ∈ N ,

0, otherwise.

(4.50)
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Since for each j ∈ N , Aj andAj are compact (cf. Assumption 4.1), the product space⊗
i∈N

⊗
j∈N Dij is also compact. Thus, because of (4.50), the sequence of matrices

{W (n)}∞n=1 lies in the compact space
⊗

i∈N
⊗

j∈N Dij. Therefore, by [33, p.40] there

exists a subsequence {W (n′)} of the sequence {W (n)}∞n=1 such that limn′→∞W (n′) =

W ∗ ∈⊗i∈N
⊗

j∈N Dij ⊂ R
N×N .

(iii) From Claim 4.2 part (i), we know that the sequence {‖W (n) −W
(n)‖2}∞n=1

converges to 0. Therefore, any subsequence of this sequence also converges to 0 (cf.

[17]). In particular, the subsequence of the above sequence that is generated by

the same set of indices as those of the converging subsequence {W (n′)} (defined in

Claim 4.2 part (ii)), also converges to 0, i.e.,

(4.51) lim
n′→∞

‖W (n′) −W
(n′)‖2 = 0.

Since {W (n′)} is a converging subsequence with the limit limn′→∞W (n′) = W ∗,

(4.51) implies that {W (n′)} is also a converging subsequence and has the limit

(4.52) lim
n′→∞

W
(n′)

= W ∗.

Consequently, because of (4.52), for each j ∈ N and i ∈ Cj, limn′→∞W
(n′)
ij = W ∗

ij.

Since for each n′ and each j ∈ N , W
(n′)
ij = w

(n′)
j , ∀ i ∈ Cj,

(4.53) W ∗
ij = lim

n′→∞
W

(n′)
ij = lim

n′→∞
W

(n′)
jj = W ∗

jj, ∀ i ∈ Cj, j ∈ N .

Moreover, since for each j ∈ N we also have W ∗
jj = limn′→∞W

(n′)
jj , and the sequence

{W (n′)
jj } lies in the compact set Aj (see (4.50)), the limit W ∗

jj must lie in Ai. Define

(4.54) w∗j := W ∗
jj, j ∈ N .

Then, (4.53) gives

(4.55) W ∗
ij = w∗j ∈ Aj, ∀ i ∈ Cj, j ∈ N .
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Furthermore, from the definition of W (n) in (4.33) we know that for all n′, W
(n′)
ij = 0

if i /∈ Cj, j ∈ N . Therefore,

(4.56) lim
n′→∞

W
(n′)
ij = W ∗

ij = 0, ∀ i /∈ Cj, j ∈ N .

Rewriting (4.29) for the indices {n′} corresponding to the converging subsequence

{W (n′)} we get∑
i∈N

ui(
iw

(n′)
Ri

) +
1

σ(n′)

∑
j∈N

|Cj|
(
‖a(0)

j − aj‖2 − ‖a(n′)
j − aj‖2

)

− 1

σ(n′)

∑
j∈N

∑
i∈Cj

n′−1∑
t=0

‖ia
(t+1)
j − a

(t)
j ‖2 ≥

∑
i∈N

ui(aRi
), ∀ aN ∈ D.

(4.57)

Since ‖ · ‖2 is convex and (4.10) holds,

∑
j∈N

∑
i∈Cj

‖iw
(n′)
j − w

(n′)
j ‖2 ≤

∑
j∈N

∑
i∈Cj

1

σ(n′)

n′−1∑
t=0

τ (t+1)‖ia
(t+1)
j − a

(t)
j ‖2

≤
∑
j∈N

∑
i∈Cj

1

σ(n′)

n′−1∑
t=0

‖ia
(t+1)
j − a

(t)
j ‖2.

(4.58)

Substituting (4.58) in (4.57) we get∑
i∈N

ui(
iw

(n′)
Ri

) +
1

σ(n′)

∑
j∈N

|Cj|
(
‖a(0)

j − aj‖2 − ‖a(n′)
j − aj‖2

)
−
∑
j∈N

∑
i∈Cj

‖iw
(n′)
j − w

(n′)
j ‖2 ≥

∑
i∈N

ui(aRi
), ∀ aN ∈ D.

(4.59)

Taking the limit n′ →∞ in (4.59) and using (4.30), (4.51) and (4.55) we get

∑
i∈N

ui(w
∗
Ri

) ≥
∑
i∈N

ui(aRi
), ∀ aN ∈ D.(4.60)

From (4.55) we know that the vector w∗ := (w∗j )j∈N ∈ D. Therefore, (4.60) implies

that w∗ is an optimal solution of Problem (PC .4).

Claim 4.3. The sequence {W (n)}∞n=1 converges, and limn→∞W (n) = W ∗, where

W ∗ is the limit defined in Claim 4.2.
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Proof:

By its formulation, Problem (PC .4) is a strictly concave optimization problem.

Therefore, it has a unique optimal solution. Because of Claim 4.2, part (iii), this

optimal solution is the vector w∗ = (w∗i )i∈N := (W ∗
ii)i∈N where W ∗

ii, i ∈ N , are the

diagonal elements of the matrix W ∗ which is the limit of the converging subsequence

{W (n′)} of {W (n)}∞n=1.

Since the subsequence {W (n′)} considered in Claim 4.2 is arbitrary, from Claim 4.2

and the uniqueness of the solution of Problem (PC .4) it follows that all converging

subsequences {W (n′)} of {W (n)}∞n=1 have limit equal to W ∗. Since all converging

subsequences of {W (n)}∞n=1 have the same limit, by [17, Corollary, p.53] the sequence

{W (n)}∞n=1 converges to W ∗. Consequently, mechanism (DM.4) results in an optimal

solution/allocation of Problem (PC .4).



CHAPTER 5

Resource allocation in large-scale networks:

An implementation perspective

In this chapter we consider an implementation theory perspective on resource

allocation for the large-scale network model developed in Chapter 4. Specifically,

for the above model we formulate a decentralized resource allocation problem with

strategic agents, and develop a game form that possesses the following properties:

(i) It implements in Nash equilibria (NE) the optimal solutions of a centralized

resource allocation problem. (ii) It is individual rational. (iii) It is budget-balanced

at all NE and off equilibrium.

The chapter is organized as follows: In Section 5.1.1 we present the network model

and discuss motivating applications in Section 5.1.2. In Section 5.1.3 we formulate

the resource allocation problem. We state our contributions in the formulation and

solution of the above problem in Section 5.1.5. In Section 5.2.1 we discuss how the

problem formulated in Section 5.1.3 can be addressed with an implementation theory

approach. We develop ideas for the construction of game form for this problem in

Section 5.2.2 and follow that with the specification of a game form in Section 5.2.3.

We discuss the properties of the proposed game form in Section 5.2.4 and we present

their proofs in Appendices 5.A and 5.B. We conclude with a discussion on imple-
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mentation aspects of the proposed mechanism in Section 5.2.5.

Before we present the model, we describe the notation that we will use throughout

the chapter.

Notation:

We use bold font to represent vectors and normal font for scalars. We use bold

uppercase letters to represent matrices. We represent the element of a vector by a

subscript on the vector symbol, and the element of a matrix by double subscript on

the matrix symbol. To denote the vector whose elements are all xi such that i ∈ S

for some set S, we use the notation (xi)i∈S and we abbreviate it as xS . We treat

bold 0 as a zero vector of appropriate size which is determined by the context. We

use the notation (xi, x
∗/i) to represent a vector of dimension same as that of x∗,

whose ith element is xi and all other elements are the same as the corresponding

elements of x∗. We represent a diagonal matrix of size N×N whose diagonal entries

are elements of the vector x ∈ R
N by diag(x).

5.1 The network resource allocation problem

In this section we present a network model and consider a resource allocation

problem for it. We first present the network model as an abstract generic model. We

describe the components of the model and the assumptions we make on the proper-

ties of the network. We then discuss applications that motivate such a model. At

the end of the section we present a resource allocation problem and formulate it as

an optimization problem.
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5.1.1 The model (M.5)

We consider a network consisting of N users and one network operator. We

denote the set of users by N := {1, 2, . . . , N}. Each user i ∈ N has to take an

action ai ∈ Ai where Ai is the space that specifies the set of user i’s feasible actions.

In a real network, a user’s actions can be consumption/generation of resources or

decisions regarding various tasks. We assume that,

Assumption 5.1. For all i ∈ N , Ai is a convex and compact set in R that includes

0. 5.1 Furthermore, for each user i ∈ N , the set Ai is its private information, i.e. Ai

is known only to user i and nobody else in the network.

Because of the users’ interactions in the network, the actions taken by a user

directly affect the performance of other users in the network. Thus, the performance

of the network is determined by the collective actions of all users. In this chapter we

assume that the network is large-scale, thus, every user’s actions directly affect only

a subset of network users in N . This is depicted in the directed graph in Fig. 5.1.

In the graph, an arrow from j to i indicates that user j affects user i; we represent

the same in the text as j → i. We assume that i → i for all i ∈ N .

Mathematically, we denote the set of users that affect user i by Ri := {k ∈

N | k → i}. Similarly, we denote the set of users that are affected by user j by

Cj := {k ∈ N | j → k}. We represent the interactions of all network users together

by a graph matrix G := [Gij]N×N . The matrix G consists of 0’s and 1’s, where

Gij = 1 represents that user i is affected by user j, i.e. j ∈ Ri and Gij = 0

represents no influence of user j on user i, i.e. j /∈ Ri. Note that G is not necessarily

a symmetric matrix. However, Gii = 1 for all i ∈ N because i → i. We assume that,
5.1In this chapter we assume the sets Ai, i ∈ N , to be in R for simplicity. However, the decentralized mechanism

and the results we present in this chapter can be easily generalized to the scenario where for each i ∈ N , Ai ⊂ R
ni

is a convex and compact set in higher dimensional space R
ni . Furthermore, each space R

ni can be of a different
dimension ni for different i ∈ N .
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Set Ri

Set Cj

i
j

Figure 5.1: A large scale network depicting the neighbor sets Ri and Cj of users i and j respectively.

Assumption 5.2. The sets Ri, Ci, i ∈ N , are independent of the users’ action profile

aN := (ak)k∈N ∈
∏

k∈N Ak.

Assumption 5.2 implies that the graph matrix G does not depend on users’ ac-

tions. There are applications (for example see [27, Chapter 6]) where this assumption

does not hold; we do not consider such scenarios in this chapter. Applications where

Assumption 5.2 is valid are discussed in Section 5.1.2.

The performance of a user that results from actions taken by the users affecting

it is quantified by a utility function. We denote the utility of user i ∈ N resulting

from the action profile aRi
:= (ak)k∈Ri

by ui(aRi
). We assume that,

Assumption 5.3. For all i ∈ N , the utility function ui : R
|Ri| → R is concave in

aRi
and ui(aRi

) = 0 for ai /∈ Ai.
5.2 The function ui is user i’s private information.

The assumptions that ui is concave and is user i’s private information are reason-

able as evidenced by the applications described in Section 5.1.2. The assumption,

ui(aRi
) = 0 for ai /∈ Ai, is made for the following reason. Because Ai is the set of

user i’s feasible actions and user i knows this set (Assumption 5.1), it also knows

that any action profile aRi
in which ai /∈ Ai, is not possible to occur. Therefore,

5.2Note that ai is always an element of aRi
because i → i and hence i ∈ Ri.
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such an action profile aRi
does not provide any utility to user i.

We assume that,

Assumption 5.4. Each network user i ∈ N is strategic and non-cooperative/selfish.

Assumption 5.4 implies that the users have an incentive to misrepresent their

private information, e.g. a user i ∈ N may not want to report to other users or to

the network operator its true preference for the users’ actions, if this results in an

action profile in its own favor.

Each user i ∈ N pays a tax ti ∈ R to the network operator. This tax can

be imposed for the following reasons: (i) For the use of the network by the users.

(ii) To provide incentives to the users to take actions that achieve a network-wide

performance objective. The tax is set according to the rules specified by a mechanism

and it can be either positive or negative for a user. With the flexibility of either

charging a user (positive tax) or paying compensation/subsidy (negative tax) to a

user, it is possible to induce the users to behave in a way such that a network-wide

performance objective is achieved. For example, in a network with limited resources,

we can set “positive tax” for the users that receive resources close to the amounts

requested by them and we can pay “compensation” to the users that receive resources

that are not close to their desirable ones. Thus, with the available resources, we can

satisfy all the users and induce them to behave in a way that leads to a resource

allocation that is optimal according to a network-wide performance criterion. We

assume that,

Assumption 5.5. The network operator does not have any utility associated with

the users’ actions or taxes. It does not derive any profit from the users’ taxes and

acts like an accountant that redistributes the tax among the users according to the
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specifications of the allocation mechanism.

Assumption 5.5 implies that the tax is charged in a way such that

(5.1)
∑
i∈N

ti = 0.

To describe the “overall satisfaction” of a user from the performance it receives

from all users’ actions and the tax it pays for it, we define an “aggregate utility

function” uA
i (aRi

, ti) : R
|Ri|+1 → R ∪ {−∞} for each user i ∈ N as follows:

uA
i (aRi

, ti) := −ti + ui(aRi
)−

[
1− IAi

(ai)

IAi
(ai)

]

where, IAi
(ai) :=

⎧⎪⎨⎪⎩ 1, if ai ∈ Ai

0, otherwise

.

(5.2)

The third term in the definition of uA
i in (5.2) indicates that an allocation (aRi

, ti)

is of no significance to user i if ai /∈ Ai. This is because, as mentioned earlier, user

i knows that an allocation (aRi
, ti) in which ai /∈ Ai is not possible to occur as i

cannot take an action outside Ai. Because ui and Ai are user i’s private information

(Assumptions 5.1 and 5.3), the aggregate utility uA
i is also user i’s private informa-

tion. As stated in Assumption 5.4, users are non-cooperative and selfish. Therefore,

the users are self aggregate utility maximizers.

In this chapter we restrict attention to static problems. Specifically, we make the

following assumption:

Assumption 5.6. The set N of users, the graph G, users’ action spaces Ai, i ∈ N ,

and their utility functions ui, i ∈ N , are fixed in advance and they do not change

during the time period of interest.

Assumption 5.6 is restrictive. Ideally, we would like to address dynamic problems

where N , G, Ai, i ∈ N , and ui, i ∈ N , change over time. At this point we are
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unable to handle dynamic problems, and for this reason we restrict attention to

static problems.

We also assume that,

Assumption 5.7. Every user i ∈ N knows the set Ri of users that affect it as well

as the set Ci of users that are affected by it. The network operator knows Ri and Ci

for all i ∈ N .

In networks where the sets Ri and Ci are not known to the users beforehand,

Assumption 5.7 is still reasonable because of the following reason. As the graph G

does not change during the time period of interest (Assumption 5.6), the information

about the neighbor sets Ri and Ci, i ∈ N , can be passed to the respective users

by the network operator before the users determine their actions. Alternatively,

the users can themselves determine the set of their neighbors before determining

their actions. 5.3 Thus, Assumption 5.7 can hold true for the rest of the action

determination process.

In the next section we present some applications that motivate Model (M.5).

5.1.2 Applications

5.1.2.1 Application A: Power allocation in cellular networks

Consider a single cell downlink wireless data network consisting of a Base Station

(BS) and N mobile users as shown in Fig. 5.2. The BS uses Code Division Multiple

Access (CDMA) technology to transmit data to the users and each mobile user uses

Minimum Mean Square Error Multi-User Detector (MMSE-MUD) receiver to decode

its data. The signature codes used by the BS are not completely orthogonal as this

helps increase the capacity of the network. Because of non-orthogonal codes, each

5.3The exact method by which the users get information about their neighbor sets in a real network depends on
the network characteristics. We discuss these methods for the networks described in Section 5.1.2.
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Figure 5.2: A downlink network with N mobile users and one base station

user experiences interference due to the BS transmissions intended for other users.

However, as the users in the cell are at different distances from the BS, and the

power transmitted by the BS undergoes propagation loss, not all transmissions by

the BS create interference to every user. For example, let us look at arcs 1 and N

shown in Fig. 5.2 that are centered at the BS. Suppose the radius of arc 1 is much

smaller than that of arc N . Then, the signal transmitted by the BS for users inside

circle 1 (that corresponds to arc 1) will become negligible when it reaches outside

users such as user N or user 2. On the other hand, the BS signals transmitted for

user N and user 2 will be received with significant power by the users inside circle 1.

This asymmetric interference relation between the mobile users can be depicted in

a graph similar to one shown in Fig. 5.1. In the graph an arrow from j to i would

represent that the signal transmitted for user j also affects user i. Note that since the

signal transmitted for user i must reach i, the assumption i → i made in Section 5.1.1

holds in this case. If the users do not move very fast in the network, the network

topology can be assumed to be fixed for small time periods. Therefore, if the BS
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transmits some pilot signals to all network users, the users can figure out which

signals are creating interference to their signal reception. Thus, each user would

know its (interfering) neighbor set as assumed in Assumption 5.7. Note that if the

power transmitted by the BS to the users change, it may result in a change in the

set of interfering neighbors of each user. This is different from Assumption 5.2 in

Model (M.5). However, if the transmission power fluctuations resulting from a power

allocation mechanism are not large, the set of interfering neighbors can be treated

to be fixed, and this can be approximated by Assumption 5.2.

The Quality of Service (QoS) that a user receives from decoding its data is quan-

tified by a utility function. Due to interference, the utility ui(·) of user i, i ∈ N , is a

function of the vector aRi
, where aj, j ∈ Ri, is the transmission power used by the BS

to transmit signals (to the users j ∈ Ri) that reach user i. Note that in this case all

transmissions, in other words the actions ai, i ∈ N , are carried out by the BS unlike

Model (M.5) where each user i ∈ N takes its own action ai. However, as we discuss

below, the BS is only an agent that executes the outcome of the mechanism that

determines these transmission powers. Thus, we can embed the downlink network

scenario into Model (M.5) by treating each ai as a decision “corresponding” to user

i, i ∈ N , which is executed by the BS for i. Since each user uses an MMSE-MUD

receiver, a measure of user i’s (i ∈ N ) utility can be the negative of the MMSE at

the output of its receiver, 5.4 i.e.,

ui(aRi
) = −MMSEi

= − min
zT

i ∈R1×N
E[‖bi − zT

i yi‖2]

= −[(I +
2

N0i

SiXRi
Si)

−1
]
ii
, i ∈ N .

(5.3)

In (5.3) bi is the transmitted data symbol for user i, yi is the output of user i’s

5.4See [55] for the derivation of (5.3).



135

matched filter generated from its received data, I is the identity matrix of size N×N ,

N0i/2 is the two sided power spectral density (PSD) of thermal noise, XRi
is the

cross-correlation matrix of signature waveforms corresponding to the users j ∈ Ri,

and Si := diag((Sij)j∈Ri
) is the diagonal matrix consisting of the signal amplitudes

Sij, j ∈ Ri, received by user i. Sij is related to aj as S2
ij = ajh0i, j ∈ Ri, where h0i

is the channel gain from the BS to user i which represents the power loss along this

path. As shown in [50, 51], the utility function given by (5.3) is close to concave in

aRi
. Thus, Assumption 5.3 in Model (M.5) can be thought of as an approximation

to the downlink network scenario.

Note that to compute user i’s utility given in (5.3), knowledge of N0i, XRi
, and h0i

is required. The BS knows XRi
for each i ∈ N as it selects the signature waveform

for each user. On the other hand, user i, i ∈ N , knows the PSD N0i of thermal noise

and the channel gain h0i as these can be measured only at the respective receiver.

Consider a network where the mobile users are selfish and non cooperative. Then,

these users may not want to reveal their measured values N0i and h0i. On the other

hand if the network operator that owns the BS does not have a utility and is not

selfish, then, the BS can announce the signature waveforms it uses for each user.

Thus, each user i ∈ N would know its corresponding cross correlation matrix XRi

and consequently, its utility function ui. However, since N0i and h0i are user i’s

private information, the utility function ui is private information of i which is similar

to Assumption 5.3 in Model (M.5). If the wireless channel conditions vary slowly

compared to the time period of interest, the channel gains and hence the users’ utility

functions can be assumed to be fixed. As mentioned earlier, for slowly moving users

the network topology and hence the set of interfering neighbors can also be assumed

to be fixed. These features are captured by Assumption 5.6 in Model (M.5).
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In the presence of limited resources, the provision of desired QoS to all network

users may not be possible. To manage the provision of QoS under such a situation

the network operator (BS) can charge tax to the users and offer them the following

tradeoff. It charges positive tax to the users that obtain a QoS close to their desirable

one, and compensates the loss in the QoS of other users by providing a subsidy to

them. Such a redistribution of money among users through the BS is possible under

Assumption 5.5 in Model (M.5).

5.1.2.2 Application B: Building departmental libraries

Consider a university that has several academic departments. The university

wants each department to build its own library. Each departmental library should

exclusively have the collection of books related to the department discipline. Since in

each department, the training of students as well as research collaboration requires

library resources from many other disciplines, building a departmental library would

not only benefit the affiliated department, but also several other departments. How-

ever, focussing on only one discipline to set up its own library reduces the required

effort and organization for each department. A network of departmental libraries

thus established is similar to the network of Model (M.5).

To represent the library network with the notation used to describe the network

Model (M.5), let us assume that there are N different departments. Let us denote

each department and its affiliated library by an index i ∈ N . Then, each department

i benefits from a subset Ri of libraries in the network of N libraries, and each

departmental library j benefits a subset Cj of N departments. Each department

knows from its academic programs the setsRi and Ci of its collaborating departments,

and does not need any information about the rest of the departments in the university.

Suppose each department i ∈ N has to make a decision about the number of
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volumes ai it should have in its library. Each department may have some constraint

on the size of its library that can be represented as ai ≤ Amax
i . This constraint

may arise due to the budget constraint of the department or the space limitation

to store the books, and may be private information of the department. However,

for each department i ∈ N , an estimate A
max

i ⊃ Amax
i of its capacity may be com-

mon knowledge. Such an estimate may be based on external knowledge; e.g. the

knowledge of the department building layout. Note that in this case, the actions

ai, i ∈ N , of the departments can take only natural number values. Therefore, As-

sumption 5.1 of Model (M.5) can be thought of as an approximation to this case.

With such approximation and we can define the action space for each department to

be Ai := [0, Amax
i ].

Suppose each department incurs a cost ci(ai) for building a library of size ai,

and obtains a benefit bi(aRi
) if the departments it collaborates with have libraries

of sizes aj, j ∈ Ri. Suppose further that for each i ∈ N , ci is convex in ai and bi

is concave in aRi
and that these costs and benefits are the respective departments’

private information. This scenario can be modeled by Model (M.5) if we define a

utility function for each department as ui(aRi
) := bi(aRi

)− ci(ai).

Since each department benefits from multiple libraries, each department con-

tributes to building these libraries by donating money to a pool of library fund.

According to the requirements of each department, the money is reallocated to the

departments from this fund and reallocation is done in such a way that no money is

left unused in the fund. This is modeled by (5.1) in Model (M.5). In this case the

university authorities act as a network operator; they collect and redistribute the

money among the departments.

Suppose each department is strategic and contributes to the library network to
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maximize its own net payoff. With the strategic departments and the university

authorities that help coordinate their decisions on building the libraries, this set up

gives rise to Model (M.5).

In the next section we formulate the resource allocation problem for the network

model (M.5).

5.1.3 The resource allocation problem (PD.5)

For the network model (M.5) we wish to develop a mechanism to determine the

users’ action profile aN := (a1, a2, . . . , aN) and tax profile tN := (t1, t2, . . . , tN).

We want the mechanism to work under the decentralized information constraints

imposed by the model and to lead to a solution to the following centralized problem.

Problem (PC.5)

max
(aN ,tN )

∑
i∈N

uA
i (aRi

, ti)

s.t.
∑
i∈N

ti = 0

(5.4)

≡ max
(aN ,tN )∈D

∑
i∈N

ui(aRi
)

where, D := {(aN , tN ) ∈ R
2N | ai ∈ Ai ∀ i ∈ N ;

∑
i∈N

ti = 0}
(5.5)

The optimization problem (5.4) is equivalent to (5.5) because for (aN , tN ) /∈ D,

the objective function in (5.4) is negative infinity by (5.2). Thus D is the set of

feasible solutions of Problem (PC .5). Since by Assumption 5.3, the objective function

in (5.5) is concave in aN and the sets Ai, i ∈ N , are convex and compact, there exists

an optimal action profile a∗N for Problem (PC .5). Furthermore, since the objective

function in (5.5) does not explicitly depend on tN , an optimal solution of Problem

(PC .5) must be of the form (a∗N , tN ), where tN is any feasible tax profile for Problem

(PC .5), i.e. a tax profile that satisfies (5.1).
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The solutions of Problem (PC .5) are ideal action and tax profiles that we would

like to obtain. If there exists an entity that has centralized information about the

network, i.e. it knows all the utility functions ui, i ∈ N , and all action spaces Ai, i ∈

N , then that entity can compute the above ideal profiles by solving Problem (PC .5).

Therefore, we call the solutions of Problem (PC .5) optimal centralized allocations.

In the network described by Model (M.5), there is no entity that knows perfectly all

the parameters that describe Problem (PC .5) (Assumptions 5.1 and 5.3). Therefore,

we need to develop a mechanism that allows the network users to communicate with

one another and that leads to optimal solutions of Problem (PC .5). Since a key

assumption in Model (M.5) is that the users are strategic and non-cooperative, the

mechanism we develop must take into account the users’ strategic behavior in their

communication with one another. To address all of these issues we take the approach

of implementation theory 5.5 for the solution of Problem (PD.5).

In the next section we present a literature survey on related work.

5.1.4 Literature survey

It was discussed in Chapter 4 that the large-scale network model (M.4) resembles

a local public good network. Because Model (M.5) is similar to Model (M.4) in terms

of the users’ influence on each other’s utilities, Model (M.5) also has the nature of a

local public good network. As mentioned in Section 4.1.4, local public good network

models that have network structures similar to Model (M.4) and hence Model (M.5)

were investigated in [8, 11]. Both of these works analyze the influence of selfish users’

behavior on the provision of local public goods in a network with fixed links among

the users. In particular, the authors of [8] show that the selfish behavior of users

can lead to specialization in local public good provision at Nash equilibria (NE).

5.5Refer to Section 3.2.1 for an introduction to implementation theory.
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Specialization means that only a subset of individuals contribute to the public goods

and others free ride. The authors also show that specialization can benefit the society

as a whole because among all Nash equilibria, the ones that are “specialized” result in

the highest social welfare. However, it is shown in [8] that none of the NE can result

in a local public goods provision that achieves the maximum possible social welfare.

In [11] the work of [8] is extended to directed networks where the externality effects

of users’ actions on each other’s utilities can be unidirectional or bidirectional. Thus,

the network model in [11] is same as Model (M.5). The authors of [11] investigate

the relation between the structure of directed networks and the existence and nature

of Nash equilibria in those networks. For that matter they introduce a notion of

ergodic stability to study the influence of perturbation of users’ equilibrium efforts

on the stability of NE. However, none of the NE of the game analyzed in [11] result in

a public goods provision that achieves optimum social welfare. The problem (PD.5)

formulated in Section 5.1.3 is different from those in [8, 11] because our objective

is to develop a decentralized resource allocation mechanism for Model (M.5) that

can achieve the optimum solutions of Problem (PC .5) (i.e. achieve optimum social

welfare). To the best of our knowledge Problem (PD.5) and its solution that we

present in Section 5.2 is the first attempt to analyze Model (M.5) in the framework

of the implementation theory component of mechanism design. In the next section

we state our contributions in the problem formulation and solution presented in this

chapter.

5.1.5 Contribution of the chapter

The key contributions of this chapter are:

• The formulation of a decentralized resource allocation problem for Model (M.5)
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in the framework of the implementation theory component of mechanism design.

• The specification of a game form for the above problem that possesses the

following properties:

(i) It implements in Nash equilibria 5.6 the optimal solution of Problem (PC .5).

(ii) It is individually rational. 5.7

(iii) It results in budget balance at all NE and off equilibrium.

In the next section we formulate the resource allocation problem (PD.5) in the

framework of implementation theory, and present a game form that achieves the

above properties.

5.2 A decentralized resource allocation mechanism

Because we use the approach of implementation theory to address Problem (PD.5),

we begin this section by stating Problem (PD.5) in the language of implementation

theory. We then discuss an approach on how to construct a game form (decentralized

allocation mechanism) for this problem and follow that discussion with the specifi-

cation of the proposed game form. We conclude the section by stating the properties

of the proposed game form. These properties are summarized in Theorems 5.1 and

5.2 the proofs of which appear in the appendices.

5.2.1 Embedding Problem (PD.5) of Section 5.1.3 in imple-
mentation theory framework

As discussed in Section 3.2.1, in the implementation theory framework a resource

allocation problem is described by specifying a triple (E ,D, γ). The environment

5.6Refer to Section 3.2.1 for the definition of “implementation in Nash equilibria.”
5.7Refer to Section 3.2.1 for the definition of “individual rationality.”
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space E and the action space D characterize the problem model, and the goal cor-

respondence γ : E → D characterizes the desirable centralized allocations for the

problem.

There are N users in the network model (M.5); therefore the environment space

of Problem (PD.5) is a product space of N environment spaces, one corresponding to

each user. The environment ei of user i, i ∈ N , consists of the setAi×R of its feasible

actions and taxes, its utility function ui, its information about its neighbor sets Ri

and Ci, and its (common) knowledge about the facts described by Assumptions 5.2,

5.4, 5.5, 5.6 and 5.7. The environment space Ei of user i is the space of all possible

environments ei, i.e., it consists of the following: the space of all setsAi×R ⊂ R
2 such

that Ai ⊂ R is convex and compact and 0 ∈ Ai, the space of all concave functions

ui : R
|Ri| → R such that ui(aRi

) = 0 for ai /∈ Ai, the space of all finite subsets Ri

and Ci of the set of natural numbers, and the common knowledge mentioned above.

The action space D of Problem (PD.5) is the space of all feasible action and tax

profiles (aN , tN ) as defined in (5.5).

The goal correspondence γ for Problem (PD.5) maps each environment e ∈ E to

the set of action and tax profiles (aN , tN ) ∈ D that are solutions to Problem (PC .5).

Having described Problem (PD.5) in the framework of implementation theory, we

now look at the specification of a decentralized mechanism from the implementa-

tion theory perspective. Recall from Section 3.2.1 that in implementation theory

a decentralized resource allocation mechanism is specified in terms of a game form

(M, f), where M :=
∏

i∈NMi is the message/strategy space and f : M → D is

the outcome function. Therefore, our objective of designing a decentralized alloca-

tion mechanism for model (M.5) transforms into designing a game form. For our

problem, we want to develop a game form (M, f) that is individually rational, bud-
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get balanced, and that implements in Nash equilibria 5.8 the goal correspondence γ.

Implementation in NE guarantees that the allocations corresponding to each NE of

the game (M, f, {uA
i }i∈N ) are a subset of the optimal centralized allocations (solu-

tions of Problem (PC .5)). Individual rationality guarantees voluntary participation

of the users in the allocation process specified by the game form, and budget bal-

ance guarantees that there is no money left unclaimed/not allocated at the end of

the allocation process (i.e. it ensures (5.1)). We present the definition of NE and its

interpretation for our current problem at the end of Section 5.2.3. Discussion on how

the game form we propose achieves the properties of individual rationality, budget

balance, and Nash implementation appears in Section 5.2.4.

In the next section we construct a game form for the resource allocation problem

(PD.5).

5.2.2 Construction of a game form for Problem (PD.5)

For the network model (M.5) we are interested in determining a game form that

has the following properties: (i) It implements in NE the optimal solution of Prob-

lem (PC .5); (ii) It is individually rational; and (iii) It is budget balanced. In this

section we first develop a conceptual framework that must guide the construction of

game forms which possess the above properties. We then present a game form that

is designed within the developed framework.

We begin with a discussion on the construction of the message space. Since an

allocation for Problem (PD.5) consists of the action profile and the tax profile of

the users, the message exchange among the users should contain information that

is helpful in determining the optimal values of these profiles. Since each user’s util-

ity is affected by the actions of a subset of network users, each user should have

5.8See Section 3.2.1 for the definition of individual rationality and implementation in Nash equilibria.
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a contribution in determining the actions of all its neighbors that affect its utility.

Furthermore, a user should make a payment for the actions of all these neighbors

because they all contribute to its utility. Since each neighbor’s action makes a dif-

ferent contribution to the user’s utility, the user may make different payments for

each neighbor’s actions. One way to take into account the above two factors is to

let each user communicate as its message/strategy a proposal that consists of two

components: one that indicates what actions the user wants its neighbors to take;

and the other that indicates the price the user wants to pay for the actions of each

of its neighbors.

We next discuss the construction of the outcome function. The specification of

the outcome function is arguably the most important and challenging task in the

construction of a game form/decentralized resource allocation mechanism. Since the

designer of the mechanism cannot alter the users’ utility functions ui, i ∈ N , the only

way it can achieve the objectives of Nash implementation, individual rationality, and

budget balance is through the provision of appropriate tax functions/incentives that

induce strategic users to follow the mechanism’s operational rules. Below we develop

the guidelines for the construction of outcome functions that achieve each of the

above objectives.

To achieve implementation in NE, the outcome function must make sure that

all NE of the message exchange (that is done according to the discussion presented

above) lead to optimal centralized allocations. This suggests that the outcome func-

tion must induce price taking behavior for all users at all NE. If price taking behav-

ior is achieved, then, through NE price control, the mechanism can induce users to

take actions that are optimal for their own objective and for the centralized prob-

lem (PC .5). As discussed in the previous paragraph, a user should make a payment
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for the actions of each of its neighbors that affect its utility. In order for the mech-

anism to induce price taking behavior, the NE price that a user i ∈ N pays for its

neighbors’ actions must depend only on the messages/proposals of users other than

i. Thus, the NE tax of user i, i ∈ N , must be of the form
∑

j∈Ri
l∗ij â

∗
j where â∗j is the

NE action of user j and l∗ij is the NE price of this action for user i that is independent

of user i’s message. With the NE tax form
∑

j∈Ri
l∗ij â

∗
j , each user i ∈ N can influence

its NE aggregate utility only through the actions â∗j , j ∈ Ri. Since each user’s utility

is its private information, the utility maximizing actions of a user are known only to

that user. Therefore, to allow each user to obtain its utility maximizing actions at

given NE prices, the outcome function must provide each user i ∈ N an independent

control, through its action proposal, over each of the actions â∗j , j ∈ Ri. In other

words, each action â∗j , j ∈ N , must be independently controlled by each of the users

i ∈ Cj and this fact should be reflected in the form of the outcome function.

To achieve budget balance, the NE prices l∗ij, j ∈ Ri, i ∈ N , must satisfy

∑
i∈N

∑
j∈Ri

l∗ij â
∗
j = 0,

or, equivalently, 5.9

∑
j∈N

∑
i∈Cj

l∗ij â
∗
j = 0.(5.6)

One way to satisfy the requirement in (5.6) is to set for each j ∈ N ,
∑

i∈Cj
l∗ij = 0.

The features of the outcome function discussed so far could lead to price taking

behavior and budget balance. However, the construction of an outcome function with

the above features only may lead to the following difficulty. Since each user knows

that its price proposal does not affect its own tax and hence, its aggregate utility,

5.9From the construction of the graph matrix G and the sets Ri and Cj , i, j ∈ N , the sum
∑

i∈N
∑

j∈Ri
(·) is

equivalent to the sum
∑

j∈N
∑

i∈Cj
(·).
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it may propose arbitrary prices for its neighbors in its price proposal. One way to

overcome this difficulty without altering price taking behavior and budget balance is

to add a penalty to the tax form of each user. To preserve the price taking behavior

of the users at NE, this penalty should be imposed only at off NE messages. The

penalty should depend on each user’s own price proposal and it should increase with

the user’s price proposal. However, to avoid unnecessary penalties, the penalty of a

user should be reduced if its action proposal for its neighbors is in agreement with

other users’ action proposals. Adding to the tax form a penalty term with the above

characteristics may result in an unbalanced budget. To preserve budget balance a

third term should be added to the tax of each user. This term must balance the

net flow of the money due to the penalty term. Since the penalty is imposed on

the users only at off NE messages, this balancing term should be included in the

users’ tax only at off NE messages. To prevent the balancing term from altering a

user’s strategic behavior that is governed by the first two terms in the user’s tax, the

balancing term should be independent of the user’s own message.

To achieve individual rationality the outcome function must make sure that at all

NE, the utility of each user is at least as much as its initial utility. This property is

achieved if the outcome function has the following features discussed earlier in this

section: (i) It induces price taking behavior; and (ii) It gives each user an independent

control over the actions that affect its utility. Since each user can control the actions

that affect its NE utility, for any set of NE prices l∗ij, j ∈ Ri, a user i ∈ N can force all

the actions â∗j , j ∈ Ri, to be 0, thereby also making its NE payment
∑

j∈Ri
l∗ij â

∗
j = 0.

Thus, with the above features of the outcome function, each user can independently

guarantee a minimum of zero utility for itself which is its initial utility.

With the guidelines developed above, we proceed with the construction of a game
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form in the next section.

5.2.3 The game form

In this section we present a game form for the resource allocation problem pre-

sented in Section 5.1.3. We provide explicit expressions of each of the components

of the game form, the message space and the outcome function. We assume that the

game form is common knowledge among the users and the network operator. The

construction of the components of the game form is motivated by the arguments

presented in the previous section.

The message space:

We let each user i ∈ N send to the network operator a message mi ∈ Mi :=

R
|Ri| × R

|Ri|
+ that has the following form:

mi := ( ai Ri
, πi Ri

); ai Ri
∈ R

|Ri|, πi Ri
∈ R

|Ri|
+ ,(5.7)

where,

(5.8) ai Ri
:= ( ai k)k∈Ri

and πi Ri
:= ( πi k)k∈Ri

, i ∈ N .

User i also sends the component ( ai k, πi k), k ∈ Ri, of its message to its neighbor

k ∈ Ri. In this message, ai k is the action proposal for user k, k ∈ Ri, by user

i, i ∈ N . Similarly, πi k is the price that user i, i ∈ N , proposes to pay for the action

of user k, k ∈ Ri. A detailed interpretation of these message elements is given in

Section 5.2.4.

The outcome function

After the users communicate their messages to the network operator, their actions

and taxes are determined as follows. For each user i ∈ N , the network operator

determines the action âi of user i from the messages communicated by its neighbors
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that are affected by it (set Ci), i.e. from the message profile mCi
:= (mk)k∈Ci

:

(5.9) âi(mCi
) =

1

|Ci|
∑
k∈Ci

ak
i, i ∈ N .

To determine the users’ taxes, the network operator assigns indices 1, 2, . . . , |Cj|

in a cyclic order to the users in each set Cj, j ∈ N . We denote the index of user

i ∈ N associated with set Cj, j ∈ N , by Iij. Iij ∈ {1, 2, . . . , |Cj|} if i ∈ Cj, and

Iij = 0 if i /∈ Cj. The cyclic order indexing means that, if Iij = |Cj|, then Iij +1 = 1,

Iij + 2 = 2, and so on. Note that for any user i ∈ N , and any j, k ∈ Ri, the indices

Iij and Iik are different and are independent of each other. Once the indices are

assigned to the users in each set Cj, j ∈ N , they remain fixed throughout the time

period of interest. We denote the user with index k ∈ {1, 2, . . . , |Cj|} in set Cj by

Cj(k). Thus, Cj(Iij) = i for i ∈ Cj, j ∈ N . In Fig. 5.3 we illustrate the above indexing

rule for the set Cj shown in Fig. 5.1.

Set Cj

i
j

h

k

l

p

1

2

3

4

5

0

Ilj = 3
Cj(3) = l

Ijj = 4
Cj(4) = j

Iij = 5
Cj(5) = i

Ikj = 2
Cj(2) = k

Ihj = 1 = Iij + 1
Cj(1) = h

Ipj = 0

Figure 5.3: Illustration of indexing rule for set Cj shown in Fig. 5.1. The index Irj of each user
r ∈ Cj is indicated on the arrow directed from user r to user j. The notation to denote
these indices and to denote the user with a particular index is shown outside the dashed
boundary demarcating the set Cj .

Based on the indexing described above, the users’ taxes are determined as follows.
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For each i ∈ N , the tax t̂i is determined from the message profile (mCj
)j∈Ri

as,

t̂i((mCj
)j∈Ri

) =
∑
j∈Ri

lij(mCj
) âj(mCj

) +
∑
j∈Ri

πi j

(
ai j − a

Cj(Iij+1)

j

)2

−
∑
j∈Ri

π
Cj(Iij+1)

j

(
a

Cj(Iij+1)

j − a
Cj(Iij+2)

j

)2

, i ∈ N
(5.10)

where,

(5.11) lij(mCj
) = π

Cj(Iij+1)

j − π
Cj(Iij+2)

j, j ∈ Ri, i ∈ N .

The game form given by (5.7)–(5.11) and the users’ aggregate utility functions

in (5.2) induce a game (M, f, {uA
i }i∈N ). We define a NE of this game as a message

profile m∗
N that has the following property:

uA
i

((
âj(m

∗
Cj

)
)

j∈Ri
, t̂i
(
(m∗

Cj
)j∈Ri

)) ≥ uA
i

((
âj(mi, m

∗
Cj

/i)
)

j∈Ri
, t̂i
(
(mi, m

∗
Cj

/i)j∈Ri

))
,

∀mi ∈Mi, ∀ i ∈ N .

(5.12)

We interpret the NE defined in (5.12) in the way of [43, 37] as described in Sec-

tion 3.2.1.

In the next section we show that the allocations obtained by the game form

presented in (5.7)–(5.11) at all NE message profiles (satisfying (5.12)), are optimal

centralized allocations.

5.2.4 Properties of the game form

We begin this section with an intuitive discussion on how the game form presented

in Section 5.2.3 achieves optimal centralized allocations. We then formalize the

results in Theorems 5.1 and 5.2.

To understand how the proposed game form achieves optimal centralized allo-

cations, let us look at the properties of NE allocations corresponding to this game
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form. A NE of the game induced by the game form (5.7)–(5.11) and the users’ utility

functions (5.2) can be interpreted as follows: Given the users’ messages mk, k ∈ Ci,

the outcome function computes user i’s action as 1/|Ci|
(∑

k∈Ci
ak

i

)
. Therefore, user

i’s action proposal ai i can be interpreted as the increment over the sum of other

users’ action proposals for i that i desires so as to bring its allocated action âi to

its own desired value. Thus, if the computed action for i based on the neighbors’

proposals does not lie in Ai, user i can propose an appropriate action ai i and bring

its allocated action within Ai. The flexibility of proposing any action ai i ∈ R gives

each user i ∈ N the capability to bring its allocation âi within its feasible set Ai by

unilateral deviation. Therefore, at any NE, âi ∈ Ai, ∀ i ∈ N . By taking the sum

of taxes in (5.10) it can further be seen, after some computations, that the allocated

tax profile (t̂i)i∈N satisfies (5.1) (even at off-NE messages). 5.10 Thus, all NE alloca-

tions
(
(âi(m

∗
Ci

))i∈N , (t̂i((m
∗
Cj

)j∈Ri
))i∈N

)
lie in D and hence are feasible solutions of

Problem (PC .5).

To see further properties of NE allocations, let us look at the tax function in

(5.10). The tax of user i consists of three types of terms. The type-1 term is∑
j∈Ri

lij(mCj
) âj(mCj

); it depends on all action proposals for each of user i’s neigh-

bors j ∈ Ri, and the price proposals for each of these neighbors by users other than

user i. The type-2 term is
∑

j∈Ri
πi j

(
ai j − a

Cj(Iij+1)

j

)2

; this term depends on ai Ri
as

well as πi Ri
. Finally, the type-3 term is −∑j∈Ri

π
Cj(Iij+1)

j

(
a

Cj(Iij+1)

j − a
Cj(Iij+2)

j

)2

;

this term depends only on the messages of users other than i. Since πi Ri
does not

affect the determination of user i’s action, and affects only the type-2 term in t̂i, the

NE strategy of user i, i ∈ N , that minimizes its tax is – to propose for each j ∈ Ri,

πi j = 0 unless at the NE, ai j = a
Cj(Iij+1)

j. Since the type-2 and type-3 terms in the

5.10For details refer to Appendix 5.A.
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users’ tax are similar across users, for each i ∈ N and j ∈ Ri, all the users k ∈ Cj

choose the above strategy at NE. Therefore, the type-2 and type-3 terms vanish from

every users’ tax t̂i, i ∈ N , at all NE. Thus, the tax that each user i ∈ N pays at a NE

m∗
N is of the form

∑
j∈Ri

lij(m
∗
Cj

) âj(m
∗
Cj

). The NE term lij(m
∗
Cj

), i ∈ N , j ∈ Ri,

can therefore be interpreted as the “personalized price” for user i for the NE action

âj(m
∗
Cj

) of its neighbor j. Note that at a NE, the personalized price for user i is not

controlled by i’s own message. The reduction of the users’ NE taxes into the form∑
j∈Ri

lij(m
∗
Cj

) âj(m
∗
Cj

) implies that at a NE, each user i ∈ N has a control over

its aggregate utility only through its action proposal. 5.11 If all other users’ messages

are fixed, each user has the capability of shifting the allocated action profile âRi
to

its desired value by proposing an appropriate ai Ri
∈ R

|Ri| (See the discussion in the

previous paragraph). Therefore, the NE strategy of each user i ∈ N is to propose

an action profile ai Ri
that results in an allocation âRi

that maximizes its aggregate

utility. Thus, at a NE, each user maximizes its aggregate utility for its given person-

alized prices. By the construction of the tax function, the sum of the users’ tax is

zero at all NE and off equilibria. Thus, the individual aggregate utility maximization

of the users also result in the maximization of the sum of users’ aggregate utilities

subject to the budget balance constraint which is the objective of Problem (PC .5).

It is worth mentioning at this point the significance of type-2 and type-3 terms

in the users’ tax. As explained above, these two terms vanish at NE. However, if for

some user i ∈ N these terms are not present in its tax t̂i, then, the price proposal

πi Ri
of user i will not affect its tax and hence, its aggregate utility. In such a case,

user i can propose arbitrary prices πi Ri
because they would affect only other users’

NE prices. The presence of type-2 and type-3 terms in user i’s tax prevent such a

5.11Note that user i’s action proposal determines the actions of all the users j ∈ Ri; thus, it affects user i’s utility

ui

((
âj(m

∗
Cj

)
)
j∈Ri

)
as well as its tax

∑
j∈Ri

lij(m
∗
Cj

) âj(m
∗
Cj

).
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behavior as they impose a penalty on user i if it proposes a high value of πi Ri
or

if its action proposal for its neighbors deviates too much from those of other users.

Even though the presence of type-2 and type-3 terms in user i’s tax is necessary as

explained above, it is important that the NE price lij(m
∗
Cj

), j ∈ Ri of user i ∈ N is

not affected by i’s own proposal πi Ri
. This is because, in such a case, user i may

influence its own NE price in an unfair manner and may not behave as a price taker.

To avoid such a situation, the type-2 and type-3 terms are designed in a way so that

they vanish at NE. Thus, this construction induces price taking behavior in the users

at NE and leads to optimal allocations.

From all of above discussion it can be seen that the proposed message space,

the action function, and the tax function (with three types of terms) satisfy the

features, discussed in Section 5.2.2, that are required to achieve the properties of

Nash implementation, individual rationality, and budget balance.

The results that formally establish the above properties of the game form are

summarized in Theorems 5.1 and 5.2 below.

Theorem 5.1. Let m∗
N be a NE of the game specified by the game form pre-

sented in Section 5.2.3 and the users’ utility functions (5.2). Let (â∗N , t̂∗N ) :=

(âN (m∗
N ), t̂N (m∗

N )) :=
(
(âi(m

∗
Ci

))i∈N , (t̂i((m
∗
Cj

)j∈Ri
))i∈N

)
be the action and tax

profiles at m∗
N determined by the game form. Then,

(a) Each user i ∈ N weakly prefers its allocation (â∗Ri
, t̂∗i ) to the initial allocation

(0, 0). Mathematically,

uA
i

(
â∗Ri

, t̂∗i
)
≥ uA

i

(
0, 0

)
, ∀ i ∈ N .

(b) (â∗N , t̂∗N ) is an optimal solution of Problem (PC .5).

�
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Theorem 5.2. Let â∗N be the optimum action profile corresponding to Problem (PC .5).

Then,

(a) There exist a set of personalized prices l∗ij, j ∈ Ri, i ∈ N , such that

â∗Ri
= arg max

âi∈Ai
âj∈R, j∈Ri\{i}

−
∑
j∈Ri

l∗ij âj + ui(âRi
), ∀ i ∈ N .

(b) There exists at least one NE m∗
N of the game induced by the game form presented

in Section 5.2.3 and the users’ utility functions (5.2) such that, âN (m∗
N ) = â∗N .

Furthermore, if t̂∗i :=
∑

j∈Ri
l∗ij â

∗
j , i ∈ N , the set of all NE m∗

N = (m∗
i )i∈N =

( ai ∗
Ri

, πi ∗
Ri

) that result in (â∗N , t̂∗N ) is characterized by the solution of the fol-

lowing set of conditions:

1

|Ci|
∑
k∈Ci

ak ∗
i = â∗i , i ∈ N ,

Cj(Iij+1)π∗j − Cj(Iij+2)π∗j = l∗ij, j ∈ Ri, i ∈ N ,

πi ∗
j

(
ai ∗

j − Cj(Iij+1)a∗j
)2

= 0, j ∈ Ri, i ∈ N ,

πi ∗
j ≥ 0, j ∈ Ri, i ∈ N .

�

Because Theorem 5.1 is stated for an arbitrary NE m∗
N of the game induced by

the game form presented in Section 5.2.3 and the users’ utility functions (5.2), the

assertion of the theorem holds for all NE of this game. Thus, part (a) of Theorem 5.1

establishes that the game form presented in Section 5.2.3 is individually rational,

i.e., at any NE allocation, the aggregate utility of each user is at least as much as

its aggregate utility before participating in the game/allocation process. Because of

this property of the game form, each user voluntarily participates in the allocation

process.
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Part (b) of Theorem 5.1 asserts that all NE of the game induced by the game form

presented in Section 5.2.3 and the users’ utility functions (5.2) result in optimal

centralized allocations (solutions of Problem (PC .5)). The set of NE allocations

is a subset of the set of centralized allocations. This establishes that the game

form presented in Section 5.2.3 implements in NE the goal correspondence γ defined

by Problem (PC .5) (see Section 5.2.1). Because of this property, the game form

guarantees to provide a centralized allocation irrespective of which NE is achieved

in the game induced by the game form.

The assertion of Theorem 5.1 that establishes the above two properties of the

game form is based on the assumption that there exists a NE of the game induced

by the game form of Section 5.2.3 and the users’ utility functions (5.2). However,

Theorem 5.1 does not say anything about the existence of NE. Theorem 5.2 asserts

that NE exist in the above game, and provides conditions that characterize the

set of all NE that result in optimal centralized allocations of the form (â∗N , t̂∗N ) =

(â∗N , (
∑

j∈Ri
l∗ij â

∗
j)i∈N ), where â∗N is any optimal centralized action profile.

In addition to the above, Theorem 5.2 also establishes the following property of

the game form. Since the optimal action profile â∗N in the statement of Theorem 5.2

is arbitrary, the theorem implies that the game form of Section 5.2.3 can obtain each

of the optimum action profiles of Problem (PC .5) through at least one of the NE of

the induced game. This establishes that the above game form is not biased towards

any particular optimal centralized action profile.

We present the proofs of Theorem 5.1 and Theorem 5.2 in Appendices 5.A and

5.B respectively.

In the next section we present a discussion on how the game form of Section 5.2.3

can be implemented in a real network and we also discuss the limitations associated
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with it.

5.2.5 Implementation of the decentralized mechanism

In this section we discuss two aspects of implementation of the decentralized

mechanism specified by the game form of Section 5.2.3. First we discuss how the

game form itself can be implemented, i.e., how the message communication and the

determination of allocations specified by the game form can be carried out in a real

system. We then discuss how NE can be achieved in the game induced by the above

game form.

We will show below that the presence of a network operator is important for the

implementation of the game form. To see this let us first suppose that the network

operator is not present in the network. As discussed in Section 5.2.3 the outcome

function specifies the allocation (âi, t̂i) for a user i ∈ N based on its neighbors’

messages. Since the game form is common knowledge among the users, if each user

announces its messages to all its neighbors, every user can have the required set of

messages to compute its own allocations. However, with this kind of local commu-

nication, the messages required to compute user i’s allocation are not necessarily

known to users other than i. Therefore, even though the other users know the out-

come function for user i, no other user can check if the allocation determined by user

i corresponds to its neighbors’ messages. Since each user i ∈ N is selfish, it cannot

be relied upon for the determination of its allocation. Therefore, in large-scale net-

works such as one represented by Model (M.5), where each user does not hear all

other users’ messages, the presence of a network operator is extremely important.

The network operator’s role is twofold. First, according to the specification of the

game form (of Section 5.2.3) each user announces its messages to its neighbors as
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well as to the network operator. The network operator knows the network structure

(Assumption 5.7) and the outcome function for each user. Thus, it can compute all

the allocations based on the messages it receives, and then it can tell each user its

corresponding allocation (or it can check whether the allocation (a∗i , t
∗
i ) implemented

by user i, i ∈ N , is the same as that specified by the mechanism). The other role of

the network operator that facilitates implementation of the game form is the follow-

ing. Note that the game form specifies redistribution of money among the users by

charging each user an appropriate positive or negative tax (see (5.1)). This means

that the tax money must go from one subset of the users to the other subset of

users. Since the users do not have complete network information, nor do they know

the allocations of other users in the network, they cannot determine the appropriate

flow of money in the network. The network operator implements this redistribution

of money by acting as an accountant that collects money from the users that have

to pay positive tax according to the game form and gives the money back to the

users that have to pay negative tax. In the cellular network example (Application A,

Section 5.1.2.1), the role of the network operator is performed by the BS whereas, in

the library network example (Application B, Section 5.1.2.2) the role of the network

operator is performed by the university authorities.

The discussion presented above shows how the game form of Section 5.2.3 can

be implemented in the presence of a network operator. However, to achieve the

properties of the game form described by Theorems 5.1 and 5.2, we need a method

to obtain NE of the game induced by this game form. Even though the above game

form achieves full implementation in NE, at present we do not have an algorithm for

the computation of these equilibria. Therefore, in this chapter, we restrict our focus

to equilibrium analysis, and defer the study of equilibrium computation for future
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work. We comment further on the computation of equilibria in Chapter 6.

In the appendices that follow, we present the proof of Theorems 5.1 and 5.2. We

divide the proof into several claims to organize the presentation.

5.A Proof of Theorem 5.1

We prove Theorem 5.1 in four claims. In Claims 5.2 and 5.3 we show that all

users weakly prefer a NE allocation (corresponding to the game form presented in

Section 5.2.3) to their initial allocations; these claims prove part (a) of Theorem 5.1.

In Claim 5.1 we show that a NE allocation is a feasible solution of Problem (PC .5).

In Claim 5.4 we show that a NE action profile is an optimal action profile for Prob-

lem (PC .5). Thus, Claim 5.1 and Claim 5.4 establish that a NE allocation is an

optimal solution of Problem (PC .5) and prove part (b) of Theorem 5.1.

Claim 5.1. If m∗
N is a NE of the game induced by the game form presented in

Section 5.2.3 and the users’ utility functions (5.2), then the action and tax pro-

file (â∗N , t̂∗N ) := (âN (m∗
N ), t̂N (m∗

N )) is a feasible solution of Problem (PC .5), i.e.

(â∗N , t̂∗N ) ∈ D.

Proof:

We prove the feasibility of the NE action and tax profiles in two steps. First we

prove the feasibility of the NE tax profile, then we prove the feasibility of the NE

action profile.

To prove the feasibility of NE tax profile, we need to show that it satisfies (5.1).

For this, we first take the sum of second and third terms on the Right Hand Side

(RHS) of (5.10) over all i ∈ N , i.e.

∑
i∈N

∑
j∈Ri

[
πi j

(
ai j − a

Cj(Iij+1)

j

)2

− π
Cj(Iij+1)

j

(
a

Cj(Iij+1)

j − a
Cj(Iij+2)

j

)2
]
.(5.13)
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From the construction of the graph matrix G and the sets Ri and Cj, i, j ∈ N , the

sum
∑

i∈N
∑

j∈Ri
(·) is equal to the sum

∑
j∈N

∑
i∈Cj

(·). Therefore, we can rewrite

(5.13) as∑
j∈N

[∑
i∈Cj

πi j

(
ai j − a

Cj(Iij+1)

j

)2

−
∑
i∈Cj

π
Cj(Iij+1)

j

(
a

Cj(Iij+1)

j − a
Cj(Iij+2)

j

)2
]
.(5.14)

Note that both the sums inside the square brackets in (5.14) are over all i ∈ Cj.

Because of the cyclic indexing of the users in each set Cj, j ∈ N , these two sums are

equal. Therefore the overall sum in (5.14) evaluates to zero. Thus, the sum of taxes

in (5.10) reduces to∑
i∈N

t̂i((mCj
)j∈Ri

) =
∑
i∈N

∑
j∈Ri

lij(mCj
) âj(mCj

).(5.15)

Combining (5.11) and (5.15) we obtain∑
i∈N

t̂i((mCj
)j∈Ri

) =
∑
j∈N

[∑
i∈Cj

π
Cj(Iij+1)

j −
∑
i∈Cj

π
Cj(Iij+2)

j

]
âj(mCj

) = 0.(5.16)

The second equality in (5.16) follows because of the cyclic indexing of the users in

each set Cj, j ∈ N , which makes the two sums inside the square brackets in (5.16)

equal. Because (5.16) holds for any arbitrary message profile mN , it follows that at

NE m∗
N ,

(5.17)
∑
i∈N

t̂i((m
∗
Cj

)j∈Ri
) = 0.

To complete the proof of Claim 5.1, we have to prove that for all i ∈ N , âi(m
∗
Ci

) ∈

Ai. We prove this by contradiction. Suppose â∗i /∈ Ai for some i ∈ N . Then, from

(5.2), uA
i (â∗Ri

, t̂∗i ) = −∞. Consider m̃i = (( ãi i, ai ∗
Ri

/i), πi ∗
Ri

) where ai ∗
k, k ∈ Ri\{i},

and πi ∗
Ri

are respectively the NE action and price proposals of user i and ãi i is such

that

(5.18) âi(m̃i, m
∗
Ci

/i) =
1

|Ci|
(

ãi i +
∑
k∈Ci
k �=i

ak ∗
i

)
∈ Ai.
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Note that the flexibility of user i in choosing any message ai Ri
∈ R

|Ri| (see (5.7))

allows it to choose an appropriate ãi i that satisfies the condition in (5.18). For the

message m̃i constructed above,

uA
i

((
âk(m̃i, m

∗
Ck

/i)
)

k∈Ri
, t̂i

(
(m̃i, m∗

Cj
/i)j∈Ri

))
= −t̂i

(
(m̃i, m∗

Cj
/i)j∈Ri

)
+ ui

((
âk(m̃i, m

∗
Ck

/i)
)

k∈Ri

)
> −∞ = uA

i (â∗Ri
, t̂∗i )

(5.19)

Thus if âi(m
∗
Ci

) /∈ Ai user i finds it profitable to deviate to m̃i. Inequality (5.19)

implies that m∗
N cannot be a NE, which is a contradiction. Therefore, at any NE

m∗
N , we must have âi(m

∗
Ci

) ∈ Ai ∀ i ∈ N . This along with (5.17) implies that,

(â∗N , t̂∗N ) ∈ D.

Claim 5.2. If m∗
N is a NE of the game induced by the game form presented in

Section 5.2.3 and the users’ utility functions (5.2), then, the tax t̂i((m
∗
Cj

)j∈Ri
) =: t̂∗i

paid by user i, i ∈ N , at the NE m∗
N is of the form t̂∗i =

∑
j∈Ri

l∗ij â∗j , where l∗ij =

lij(m
∗
Cj

) and â∗j = âj(m
∗
Cj

).

Proof:

Let m∗
N be the NE specified in the statement of Claim 5.2. Then, for each i ∈ N ,

uA
i

((
âk(mi, m

∗
Ck

/i)
)

k∈Ri
, t̂i

(
(mi, m∗

Cj
/i)j∈Ri

)) ≤ uA
i

(
â∗Ri

, t̂∗i
)
, ∀mi ∈Mi.

(5.20)

Substituting mi = ( ai ∗
Ri

, πi Ri
), πi Ri

∈ R
|Ri|
+ , in (5.20) and using (5.9) implies that

uA
i

(
â∗Ri

, t̂i
(
(( ai ∗

Ri
, πi Ri

), m∗
Cj

/i)j∈Ri

)) ≤ uA
i

(
â∗Ri

, t̂∗i
)
, ∀ πi Ri

∈ R
|Ri|
+ .(5.21)

Since uA
i decreases in ti (see (5.2)), (5.21) implies that

t̂i

((
( ai ∗

Ri
, πi Ri

), m∗
Cj

/i
)

j∈Ri

)
≥ t̂∗i , ∀ πi Ri

∈ R
|Ri|
+ .(5.22)
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Substituting (5.10) in (5.22) results in

∑
j∈Ri

[
l∗ij â

∗
j + πi j

(
ai ∗

j − Cj(Iij+1)a∗j
)2

− Cj(Iij+1)π∗j
(
Cj(Iij+1)a∗j − Cj(Iij+2)a∗j

)2
]

≥
∑
j∈Ri

[
l∗ij â

∗
j + πi ∗

j

(
ai ∗

j − Cj(Iij+1)a∗j
)2

− Cj(Iij+1)π∗j
(
Cj(Iij+1)a∗j − Cj(Iij+2)a∗j

)2
]
,

∀ πi Ri
∈ R

|Ri|
+ .

(5.23)

Canceling the common terms in (5.23) gives

∑
j∈Ri

( πi j − πi ∗
j )
(

ai ∗
j − Cj(Iij+1)a∗j

)2

≥ 0, ∀ πi Ri
∈ R

|Ri|
+ .(5.24)

Since (5.24) must hold for all πi Ri
∈ R

|Ri|
+ , we must have that

for each j ∈ Ri, either πi ∗
j = 0 or ai ∗

j =
Cj(Iij+1)a∗j .(5.25)

From (5.25) it follows that at any NE m∗
N ,

πi ∗
j

(
ai ∗

j − Cj(Iij+1)a∗j
)2

= 0, ∀ j ∈ Ri, ∀ i ∈ N .(5.26)

Note that (5.26) also implies that ∀ i ∈ N and ∀ j ∈ Ri,

Cj(Iij+1)π∗j
(
Cj(Iij+1)a∗j − Cj(Iij+2)a∗j

)2

= 0.(5.27)

(5.27) follows from (5.26) because for each i ∈ N , j ∈ Ri also implies that j ∈

RCj(Iij+1)
. Using (5.26) and (5.27) in (5.10) we obtain that any NE tax profile must

be of the form

(5.28) t̂∗i =
∑
j∈Ri

l∗ij â∗j , ∀ i ∈ N .
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Claim 5.3. The game form given in Section 5.2.3 is individually rational, i.e. at

every NE m∗
N of the game induced by this game form and the users’ utilities in (5.2),

each user i ∈ N weakly prefers the allocation (â∗Ri
, t̂∗i ) to the initial allocation (0, 0).

Mathematically,

(5.29) uA
i

(
0, 0

)
≤ uA

i

(
â∗Ri

, t̂∗i
)
, ∀ i ∈ N .

Proof:

Suppose m∗
N is a NE of the game induced by the game form presented in Sec-

tion 5.2.3 and the users’ utility functions (5.2). From Claim 5.2 we know the form of

users’ tax at m∗
N . Substituting that from (5.28) into (5.20) we obtain that for each

i ∈ N ,

uA
i

((
âk(mi, m

∗
Ck

/i)
)

k∈Ri
, t̂i

(
(mi, m∗

Cj
/i)j∈Ri

)) ≤ uA
i

(
â∗Ri

,
∑
j∈Ri

l∗ij â∗j
)
,

∀mi = ( ai Ri
, πi Ri

) ∈Mi.

(5.30)

Substituting for t̂i in (5.30) from (5.10) and using (5.27) we obtain,

uA
i

((
âk

(
( ai Ri

, πi Ri
), m∗

Ck
/i
))

k∈Ri

,

∑
j∈Ri

(
l∗ij âj

(
( ai Ri

, πi Ri
), m∗

Cj
/i
)

+ πi j

(
ai j − a

Cj(Iij+1)

j

)2))

≤ uA
i

(
â∗Ri

,
∑
j∈Ri

l∗ij â∗j
)
, ∀ ai Ri

∈ R
|Ri|, ∀ πi Ri

∈ R
|Ri|
+ .

(5.31)

In particular, πi Ri
= 0 in (5.31) implies that

uA
i

((
âk

(
( ai Ri

,0), m∗
Ck

/i
))

k∈Ri

,
∑
j∈Ri

(
l∗ij âj

(
( ai Ri

,0), m∗
Cj

/i
)))

≤ uA
i

(
â∗Ri

,
∑
j∈Ri

l∗ij â∗j
)
, ∀ ai Ri

∈ R
|Ri|.

(5.32)

Since (5.32) holds for all ai Ri
∈ R

|Ri|, substituting 1
|Cj |( ai j +

∑
k∈Cj\{i} ak

j) = aj for
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all j ∈ Ri in (5.32) gives

uA
i

((
aj

)
j∈Ri

,
∑
j∈Ri

(
l∗ij aj

)) ≤ uA
i

(
â∗Ri

,
∑
j∈Ri

l∗ij â∗j
)
, ∀ aRi

:= (aj)j∈Ri
∈ R

|Ri|.

(5.33)

For aRi
= 0, (5.33) implies further that

uA
i

(
0, 0

)
≤ uA

i

(
â∗Ri

,
∑
j∈Ri

l∗ij â∗j
)
, ∀ i ∈ N .(5.34)

Claim 5.4. A NE allocation (â∗N , t̂∗N ) is an optimal solution of the centralized prob-

lem (PC).

Proof:

For each i ∈ N , (5.33) can be equivalently written as

â∗Ri
= arg max

aRi
∈R

|Ri|
uA

i

(
aRi

,
∑
j∈Ri

l∗ij aj

)
= arg max

aRi
∈R

|Ri|

{
−
∑
j∈Ri

l∗ij aj + ui(aRi
)−

[
1− IAi

(ai)

IAi
(ai)

]}

= arg max
ai∈Ai

aj∈R, j∈Ri\{i}

{
−
∑
j∈Ri

l∗ij aj + ui(aRi
)

}(5.35)

Let for each i ∈ N , fAi
(ai) be a convex function that characterizes the set Ai as,

ai ∈ Ai ⇔ fAi
(ai) ≤ 0. 5.12

Since for each i ∈ N , ui(aRi
) is assumed to be concave in aRi

and the set Ai

is convex, the Karush Kuhn Tucker (KKT) conditions [7, Chapter 11] are necessary

and sufficient for â∗Ri
to be a maximizer in (5.35). Thus, for each i ∈ N ∃ λi ∈ R+

5.12By [7] we can always find a convex function that characterizes a convex set.
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such that, â∗Ri
and λi satisfy the KKT conditions given below:

∀ j ∈ Ri\{i}, l∗ij −∇aj
ui(aRi

) |aRi
=â∗

Ri
= 0,

l∗ii −∇ai
ui(aRi

) |aRi
=â∗

Ri
+λi∇ai

fAi
(ai) |ai=â∗

i
= 0,

λifAi
(â∗i ) = 0.

(5.36)

For each i ∈ N , adding the KKT condition equations in (5.36) over k ∈ Ci results in∑
k∈Ci

l∗ki −∇ai

∑
k∈Ci

uk(aRk
) |aRk

=â∗
Rk

+λi∇ai
fAi

(ai) |ai=â∗
i

= 0.(5.37)

From (5.11) we have,∑
k∈Ci

l∗ki =
∑
k∈Ci

(Ci(Iki+1)π∗i − Ci(Iki+2)π∗i
)

= 0.(5.38)

Substituting (5.38) in (5.37) we obtain 5.13 ∀ i ∈ N ,

−∇ai

∑
k∈Ci

uk(aRk
) |aRk

=â∗
Rk

+λi∇ai
fAi

(ai) |ai=â∗
i

= 0,

λifAi
(â∗i ) = 0.

(5.39)

The conditions in (5.39) along with the non-negativity of λi, i ∈ N , specify the KKT

conditions (for variable âN ) for Problem (PC .5). Since (PC .5) is a concave optimiza-

tion problem, KKT conditions are necessary and sufficient for optimality. As shown

in (5.39), the action profile â∗N satisfies these optimality conditions. Furthermore,

the tax profile t̂∗N satisfies, by its definition,
∑

i∈N t̂∗i = 0. Therefore, the NE alloca-

tion (â∗N , t̂∗N ) is an optimal solution of Problem (PC .5). This completes the proof of

Claim 5.4 and hence, the proof of Theorem 5.1.

Claims 5.1–5.4 (Theorem 5.1) establish the properties of NE allocations based

on the assumption that there exists a NE of the game induced by the game form

of Section 5.2.3 and users’ utility functions (5.2). However, these claims do not

guarantee the existence of a NE. This is guaranteed by Theorem 5.2 which is proved

next in Claims 5.5 and 5.6.
5.13The second equality in (5.39) is one of the KKT conditions from (5.36).
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5.B Proof of Theorem 5.2

We prove Theorem 5.2 in two steps. In the first step we show that if the centralized

problem (PC .5) has an optimal action profile â∗N , there exist a set of personalized

prices, one for each user i ∈ N , such that when each i ∈ N individually maximizes

its own utility taking these prices as given, it obtains â∗Ri
as an optimal action profile.

In the second step we show that the optimal action profile â∗N and the corresponding

personalized prices can be used to construct message profiles that are NE of the game

induced by the game form of Section 5.2.3 and users’ utility functions in (5.2).

Claim 5.5. If Problem (PC .5) has an optimal action profile â∗N , there exist a set of

personalized prices l∗ij, j ∈ Ri, i ∈ N , such that

(5.40) â∗Ri
= arg max

âi∈Ai
âj∈R, j∈Ri\{i}

−
∑
j∈Ri

l∗ij âj + ui(âRi
), ∀ i ∈ N .

Proof:

Suppose â∗N is an optimal action profile corresponding to Problem (PC .5). Writing

the optimization problem (PC .5) only in terms of variable âN gives

â∗N = arg max
âN

∑
i∈N

ui(âRi
)

s.t. âi ∈ Ai, ∀ i ∈ N .

(5.41)

As stated earlier, an optimal solution of Problem (PC .5) is of the form (â∗N , t̂N ),

where â∗N is a solution of (5.41) and t̂N ∈ R
N is any tax profile that satisfies (5.1).

Because KKT conditions are necessary for optimality, the optimal solution in (5.41)

must satisfy the KKT conditions. This implies that there exist λi ∈ R+, i ∈ N , such

that for each i ∈ N , λi and â∗N satisfy

−∇âi

∑
k∈Ci

uk(âRk
) |âRk

=â∗
Rk

+λi∇âi
fAi

(âi) |âi=â∗
i

= 0,

λifAi
(â∗i ) = 0,

(5.42)
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where fAi
(·) is the convex function defined in Claim 5.4. Defining for each i ∈ N ,

l∗ij := ∇âj
ui(âRi

) |âRi
=â∗

Ri
, j ∈ Ri\{i},

l∗ii := ∇âi
ui(âRi

) |âRi
=â∗

Ri
−λi∇âi

fAi
(âi) |âi=â∗

i
,

(5.43)

we get ∀ i ∈ N ,

∑
k∈Ci

l∗ki = ∇âi

∑
k∈Ci

uk(âRk
) |âRk

=â∗
Rk
−λi∇âi

fAi
(âi) |âi=â∗

i
= 0.(5.44)

The second equality in (5.44) follows from (5.42). Furthermore, (5.43) implies that

∀ i ∈ N ,

∀ j ∈ Ri\{i}, l∗ij −∇âj
ui(âRi

) |âRi
=â∗

Ri
= 0,

l∗ii −∇âi
ui(âRi

) |âRi
=â∗

Ri
+λi∇âi

fAi
(âi) |âi=â∗

i
= 0.

(5.45)

The equations in (5.45) along with the second equality in (5.42) imply that for

each i ∈ N , â∗Ri
and λi satisfy the KKT conditions for the following maximization

problem:

(5.46) max
âi∈Ai

âj∈R, j∈Ri\{i}
−
∑
j∈Ri

l∗ij âj + ui(âRi
)

Because the objective function in (5.46) is concave (Assumption 5.3), KKT conditions

are necessary and sufficient for optimality. Therefore, we conclude from (5.45) and

(5.42) that,

â∗Ri
= arg max

âi∈Ai
âj∈R, j∈Ri\{i}

−
∑
j∈Ri

l∗ij âj + ui(âRi
), ∀ i ∈ N .

Claim 5.6. Let â∗N be an optimal action profile for Problem (PC .5), let l∗ij, j ∈

Ri, i ∈ N , be the personalized prices corresponding to â∗N as defined in Claim 5.5,

and let t̂∗i :=
∑

j∈Ri
l∗ij â

∗
j , i ∈ N . Let m∗

i := ( ai ∗
Ri

, πi ∗
Ri

), i ∈ N , be a solution to the
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following set of relations:

1

|Ci|
∑
k∈Ci

ak ∗
i = â∗i , i ∈ N ,(5.47)

Cj(Iij+1)π∗j − Cj(Iij+2)π∗j = l∗ij, j ∈ Ri, i ∈ N ,(5.48)

πi ∗
j

(
ai ∗

j − Cj(Iij+1)a∗j
)2

= 0, j ∈ Ri, i ∈ N ,(5.49)

πi ∗
j ≥ 0, j ∈ Ri, i ∈ N .(5.50)

Then, m∗
N := (m∗

1, m
∗
2, . . . ,m

∗
N) is a NE of the game induced by the game form of

Section 5.2.3 and the users’ utility functions (5.2). Furthermore, for each i ∈ N ,

âi(m
∗
Ci

) = â∗i , lij(m
∗
Cj

) = l∗ij, j ∈ Ri, and t̂i((m
∗
Cj

)j∈Ri
) = t̂∗i .

Proof:

Note that, the conditions in (5.47)–(5.50) are necessary for any NE m∗
N of the

game induced by the game form of Section 5.2.3 and users’ utilities (5.2), to result in

the allocation (â∗N , t̂∗N ) (see (5.9), (5.11) and (5.26)). Therefore, the set of solutions

of (5.47)–(5.50), if such a set exists, is a superset of the set of all NE corresponding

to the above game that result in (â∗N , t̂∗N ). Below we show that the solution set of

(5.47)–(5.50) is in fact exactly the set of all NE that result in (â∗N , t̂∗N ).

To prove this, we first show that the set of relations in (5.47)–(5.50) do have

a solution. Notice that (5.47) and (5.49) are satisfied by setting for each i ∈ N ,

ak ∗
i = â∗i ∀ k ∈ Ci. Notice also that for each j ∈ N , the sum over i ∈ Cj of the right

hand side of (5.48) is 0. Therefore, for each j ∈ N , (5.48) has a solution in iπ∗j , i ∈ Cj.

Furthermore, for any solution iπ∗j , i ∈ Cj, j ∈ N , of (5.48), iπ∗j + c, i ∈ Cj, j ∈ N ,

where c is some constant, is also a solution of (5.48). Consequently, by appropriately

choosing c, we can select a solution of (5.48) such that (5.50) is satisfied.

It is clear from the above discussion that (5.47)–(5.50) have multiple solutions.

We now show that the set of solutions m∗
N of (5.47)–(5.50) is the set of NE that
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result in (â∗N , t̂∗N ). From Claim 5.5, (5.40) can be equivalently written as

â∗Ri
= arg max

âRi
∈R

|Ri|
−
∑
j∈Ri

l∗ij âj + ui(âRi
)−

[
1− IAi

(ai)

IAi
(ai)

]

= arg max
âRi

∈R
|Ri|

uA
i

(
âRi

,
∑
j∈Ri

l∗ij âj

)
, i ∈ N .

(5.51)

Substituting âj|Cj| −
∑

k∈Cj\{i}
ka∗j = iaj for each j ∈ Ri, i ∈ N , in (5.51) we obtain

ai ∗
Ri

= arg max
ai Ri

∈R
|Ri|

uA
i

(( 1

|Cj|
(

iaj +
∑

k∈Cj\{i}

ka∗j
))

j∈Ri

,
∑
j∈Ri

l∗ij
1

|Cj|
(

iaj +
∑

k∈Cj\{i}

ka∗j
))

,

i ∈ N .

(5.52)

Because of (5.49), (5.52) also implies that

( ai ∗
Ri

, πi ∗
Ri

) =

arg max(
ai Ri

, πi Ri

)
∈R

|Ri|×R
|Ri|
+

uA
i

((
âj

(
(iaRi

, iπRi
), m∗

Cj
/i
))

j∈Ri

,

∑
j∈Ri

l∗ij âj

(
(iaRi

, iπRi
), m∗

Cj
/i
)−∑

j∈Ri

Cj(Iij+1)π∗j
(
Cj(Iij+1)a∗j − Cj(Iij+2)a∗j

)2
)

, i ∈ N .

(5.53)

Furthermore, since uA
i is strictly decreasing in the tax (see (5.2)), (5.53) also implies

the following:

( ai ∗
Ri

, πi ∗
Ri

) =

arg max(
ai Ri

, πi Ri

)
∈R

|Ri|×R
|Ri|
+

uA
i

((
âj

(
(iaRi

, iπRi
), m∗

Cj
/i
))

j∈Ri

,
∑
j∈Ri

l∗ij âj

(
(iaRi

, iπRi
), m∗

Cj
/i
)

+
∑
j∈Ri

iπj

(
iaj − Cj(Iij+1)a∗j

)2

−
∑
j∈Ri

Cj(Iij+1)π∗j
(
Cj(Iij+1)a∗j − Cj(Iij+2)a∗j

)2
)

, i ∈ N .

(5.54)

Eq. (5.54) implies that, if the message exchange and allocation is done according to

the game form presented in Section 5.2.3, then user i, i ∈ N , maximizes its utility at
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m∗
i when all other users j ∈ N\{i} choose their respective messages m∗

j , j ∈ N\{i}.

This, in turn, implies that a message profile m∗
N that is a solution to (5.47)–(5.50) is

a NE of the game induced by the aforementioned game form and the users’ utilities

(5.2). Furthermore, it follows from (5.47)–(5.50) that the allocation at m∗
N is

âi(m
∗
Ci

) =
1

|Ci|
∑
k∈Ci

ak ∗
i = â∗i , i ∈ N ,

lij(m
∗
Cj

) =
Cj(Iij+1)π∗j − Cj(Iij+2)π∗j = l∗ij, j ∈ Ri, i ∈ N ,

t̂i
(
(m∗

Cj
)j∈Ri

)
=
∑
j∈Ri

lij(m
∗
Cj

)âj(m
∗
Cj

) + πi ∗
j

(
ai ∗

j − Cj(Iij+1)a∗j
)2

− Cj(Iij+1)π∗j
(
Cj(Iij+1)a∗j − Cj(Iij+2)a∗j

)2

=
∑
j∈Ri

l∗ij â
∗
i = t̂∗i , i ∈ N .

(5.55)

From (5.55) it follows that the set of solutions m∗
N of (5.47)–(5.50) is exactly the set

of NE that result in (â∗N , t̂∗N ). This completes the proof of Claim 5.6 and hence the

proof of Theorem 5.2.



CHAPTER 6

Conclusion

6.1 Summary

In this thesis we investigated decentralized resource allocation in wireless and

large-scale networks. Initially we studied the problem of power allocation for wire-

less networks where each user’s transmissions create interference to all network users,

and each user has only partial information about the network. We investigated the

problem under two scenarios; the realization theory scenario and the implementation

theory scenario. Under the realization theory scenario, we formulated the power al-

location problem as an allocation problem with externalities, and developed a decen-

tralized optimal power allocation algorithm that (i) preserves the private information

of the users; and (ii) converges to the optimal centralized power allocation. Under

the implementation theory scenario, we formulated the power allocation problem as a

public good allocation problem, and we developed a game form that (i) implements in

Nash equilibria (NE) the optimal allocations of the corresponding centralized power

allocation problem; (ii) is individually rational; and (iii) results in budget balance

at all NE and off equilibria. Later we generalized the model investigated in the

aforementioned power allocation problems to study resource allocation in large-scale

networks where the actions of each user affect the utilities of an arbitrary subset of

169
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network users. This generalization was motivated by several applications including

power allocation in large-scale wireless networks where the transmissions of each user

create interference to only a subset of network users. We developed a formal model

to study resource allocation problems in large-scale networks with above character-

istics that resemble neither public good allocation nor private good allocation. We

formulated two resource allocation problems for the large-scale network model; one

for the realization theory scenario, and the other for the implementation theory sce-

nario. For the realization problem we developed a decentralized resource allocation

algorithm using the principles of mechanism design. The algorithm has the following

properties: (i) it preserves the private information of the users; and (ii) it converges

to the optimal centralized resource allocation. For the implementation problem we

developed a game form that (i) implements in NE the optimal allocations of the

corresponding centralized resource allocation problem; (ii) is individually rational;

and (iii) results in budget balance at all NE and off equilibria.

In the following sections we conclude with some reflections on the solution ap-

proach and the solution of the resource allocation problems presented in this thesis,

and a discussion on possible future directions.

6.2 Reflections

6.2.1 Integrating the literature on decentralized resource al-
location

Decentralized decision making (control, resource allocation, etc.) problems have

been studied for decades by researchers in various fields; economics, political science,

management science, transportation engineering, etc. In electrical and computer

engineering, decentralized control received major interest initially in the 70’s and
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then in the 90’s with the proliferation of the internet, mobile communication, sensor

networks, and electronic commerce. Because of the diversity of applications and the

different requirements of different applications, research on decentralized decision

making developed quite independently in engineering, social science and management

science. With their diverse literature and research developments these fields can gain

tremendously from one another. For example, the mechanism design literature from

economics can provide methodologies for the design of network objective (social

welfare) maximizing decentralized mechanisms; on the other hand the distributed

computing and algorithmic game theory literature from computer science can provide

fast algorithms to compute equilibria and allocations specified by mechanism design.

Such an integration of research efforts from various fields is being done in applications

such as electronic commerce. However, an effort to correlate the literatures and

learn from the developments in other fields requires a broader understanding of all

these fields beyond the specific knowledge of a particular field. In this thesis we

provided a step towards relating the ideas from mechanism design with resource

allocation problems in wireless communication networks. Specifically, in chapter 2 we

illustrated how the power allocation problem in wireless networks with interference

can be formulated as an allocation problem with externalities, and in chapter 3

we illustrated how a similar power allocation problem can be formulated as a public

good allocation problem. Based on the above formulations we designed decentralized

optimal power allocation mechanisms using the principles of mechanism design.

6.2.2 Insights from mechanism design

The approach of mechanism design provided us with insights into the fundamen-

tal nature of the resource allocation problems investigated in this thesis. With these



172

insights we harnessed the fundamental characteristics of these problems and devel-

oped optimal resource allocation mechanisms for them. Specifically, by identifying

the similarities between power allocation in wireless networks with interference and

allocation in the presence of externalities or public good allocation, we recognized

that any decentralized mechanism in which every user pays the same price for a given

power allocation (as in the mechanisms previously proposed in the wireless networks

literature) cannot obtain optimal power allocations in the presence of interference.

The properties of decentralized mechanisms for public good allocation (or allocation

in the presence of externalities) in the mechanism design literature gave us inspiration

for the design of decentralized mechanisms for optimal power allocation in wireless

networks where each user’s transmission affects the utility of all network users. The

insights obtained from these mechanisms also helped us to characterize the proper-

ties of decentralized resource allocation mechanisms for large-scale networks that we

investigated in the second half of the thesis. The basic difference between the power

allocation problems we studied in chapters 2 and 3 and the problems of resource

allocation in large-scale networks we studied in chapters 4 and 5 is the following. In

the large-scale networks each user’s utility is directly affected by the actions of only

a subset of network users, whereas in the power allocation problems of chapters 2

and 3, each user’s utility is affected by the actions of all network users. To develop

the decentralized resource allocation mechanisms presented in chapters 4 and 5, we

borrowed from public good allocation mechanisms the design principles that capture

the interactions among the users. We then applied these principles to appropriately

reflect the interactions of the users in the generalized large-scale model.
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6.2.3 Contribution to mechanism design

As we discussed in Section 6.2.1 research on decentralized resource allocation in

different fields can potentially contribute to the corresponding literature in all of these

fields. In this thesis we initially used the principles of mechanism design to address

resource allocation problems in engineering networks. In chapters 2 and 3 we de-

rived ideas for the design of decentralized mechanisms from the existing mechanism

design literature. Then, in chapters 4 and 5 we extended the ideas of chapters 2

and 3 to develop decentralized resource allocation mechanisms for large-scale net-

works. To the best of our knowledge, the problem formulations and the solutions

presented in chapters 4 and 5 is the first attempt in the engineering literature as well

as the mechanism design literature to investigate resource allocation problems for the

proposed large-scale network model in the framework of the realization theory and

implementation theory components of mechanism design. The large-scale network

models studied in these chapters are different from the traditional models studied

in mechanism design because in these models, the number of users and the network

structure are not common knowledge among all users. Furthermore, the decentral-

ized mechanisms presented in chapters 4 and 5 have features that are different from

those of standard mechanism design. Specifically, in the mechanisms presented in

chapters 4 and 5, each user communicates its message only to its neighbors (and to

the network operator) in the network, whereas in the mechanism design literature

a general assumption is that the users broadcast their messages to all the users in

the network. 6.1 Therefore, we believe that the formulation of resource allocation

problems for the large-scale network models in the framework of realization and im-

plementation theory, and the decentralized resource allocation mechanisms presented

6.1One exception is the work of Marshak and Reichelstein [34, 35] but their model, objective and approach to
resource allocation is different from ours.
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in chapters 4 and 5 are not only new results in the engineering literature but are also

a contribution to the mechanism design literature.

6.3 Future directions

In this section we discuss some future directions for research.

• Computationally efficient algorithms for message exchange: Message

exchange is an important component of decentralized resource allocation mech-

anisms that aim to achieve optimal centralized allocations. In many systems,

specially engineering systems, resource allocations must be determined at very

small time scales. Therefore, in order to implement decentralized mechanisms,

there should be fast algorithms to generate and communicate messages. Devel-

opment of such algorithms is an important aspect of research on decentralized

resource allocation.

• Computing Nash equilibria: In our solution to the resource allocation prob-

lems in chapters 3 and 5, we have implementation in NE and we have obtained

characterization of the NE. However, at present we do not have an algorithm

for the computation of these equilibria. For these problems, best response dy-

namics do not guarantee convergence to NE because the games induced by the

proposed game forms are not, in general, supermodular. For development of effi-

cient mechanisms that can compute NE, there can be two different approaches.

(i) The development of algorithms that guarantee convergence to NE of the

games constructed in chapters 3 and 5. (ii) The development of alternative

mechanisms/game forms that lead to supermodular games. Both of the above

problems are open research problems of paramount importance. A relevant work

that investigates the latter approach for public good allocation is [10].
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• Dynamic mechanism design: In this thesis we focused on static resource allo-

cation problems where the system characteristics do not change with time. The

development of realization and implementation mechanisms for wireless/large-

scale networks under dynamic situations, where the system characteristics change

during the determination of resource allocation, are open research problems.

Resource allocation mechanisms for these systems must take into account the

dynamics of the system and can be addressed using dynamic game theory and

dynamic mechanism design. Some important results in this direction can be

found in [26, 3, 42, 6, 5, 9].

• Admission and topology control: The network models we studied in this

thesis assume a given set of network users and a given network topology. In

systems such as cognitive radio networks, the set of network users and the net-

work topology must be determined as part of network objective maximization.

This generates admission and topology control problems or network formation

problems. Many of these problems are open research problems. An exposition

to this class of problems and important results are in [27, 15].

• Networks with multiple network operators: In this thesis we investi-

gated networks with single network operator. Decentralized resource allocation

problems with multiple network operators, e.g. those in wireless networks with

multiple cells, are open research problems. With multiple network operators the

budget balance conditions of chapters 3 and 5 will change. Furthermore, there

may be competition among the network operators; hence, incentive provision

for network operators may be required in these systems.
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• Problems with non-convex objectives: In this thesis we addressed resource

allocation problems where the users’ utilities and the network objectives are

convex (or concave). In many real systems the network objective or the users’

utilities are not convex. Problems with non-convex objectives are harder to solve

as they do not have a general structure or methodology for the solution. Hence,

these problems have not received much attention in the mechanism design liter-

ature. Categorizing non-convex problems that can be realized or implemented

in various solution concepts is a very important fundamental problem of mech-

anism design. Developing decentralized mechanisms that realize or implement

non-convex network objectives is another problem of fundamental importance.

A step in this direction are the results reported in [29].
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