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ABSTRACT 

 

Integration of Heterogeneous Simulation Models for Network-Distributed 
Simulation  

 

by 

 

Geun Soo Ryu 

 

Co-Chair: Gregory M. Hulbert and Zheng-Dong Ma 

 

Distributed simulation is close to reaching its potential to fulfill the demands of 

industrial CAE by harnessing nearly unlimited computing power across network 

environments and by efficiently reusing and integrating already constructed simulation 

models. A distributed simulation platform, denoted as D-Sim, has been under 

development in our research group since 2001. The present work focuses on the 

integration of heterogeneous subsystem models, including multibody dynamics (MBD) 

and finite element (FEM) subsystem models, and conducting seamlessly integrated 

simulation for design tasks in a distributed computing environment.  

Under the guise of a gluing algorithm, the Partitioned Iteration Method (PIM) was 

developed, which can be used to integrate distributed deformable bodies while allowing 

large rigid body motions among the bodies or subsystems. The PIM is based upon a 



 xiv

floating frame of reference, in which the global motion of the flexible body can be 

expressed with linearized elastic deformations by assumption of infinitesimal strains and 

reference frame as large overall motion. When embedded in D-Sim, it also enables using 

independent simulation servers, in which each server can run commercially available or 

research-based MBD and/or FEM codes to minimize the information exchange across the 

different platforms yet still obtain results within engineering accuracy. Examples are 

provided which integrate FEM and MBD models and which demonstrate the performance 

of the PIM. The examples also highlight how to decouple and integrate rigid body motion 

and elastic deformation using the enhanced gluing algorithm. 

A gluing algorithm plays a critical role in integrating the distributed subsystems 

and components. It is one of the research objectives to apply the gluing algorithm to 

general simulation models, which may be assembled by diverse connecting methods, 

including spot welds, bolts, bushings, and other physical connections. The gluing 

algorithm concept has been extended by creating flexible gluing joints, which can deal 

with various connections between subsystems, and can account for linear and non-linear 

flexibility at these connections. This not only improves the accuracy of the simulation to 

represent the real physical system, but also can improve the convergence of multibody 

dynamics simulation. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 BACKGROUND AND MOTIVATION 

The major concern of past and present industry is to find how to make and supply 

the products for fulfilling customer needs with minimal cost and time. The answer to the 

above question becomes motivation in the most human activities in industry. Engineers 

and researchers are now using Computer Aided Design, Manufacturing and Engineering 

(CAD/CAM/CAE) in everyday tasks with the dramatic changes in computing power and 

wider availability of software tools for design and production. International competition, 

increased emphasis on quality, and efficiency of developing product, are also forcing 

manufacturers to use CAD/CAM/CAE systems to automate their design and product 

processes.  

Presently, CAE is a useful design and evaluation tool for reducing product 

development cost with the development of various simulation software and powerful 

computer resources. Engineers and researchers can build high-performance simulation 

models of complex systems and can perform simulations with multi-processing 

technologies to reduce the number of physical prototyping and testing. The demands 

placed on present CAE tools are the support of variant design and an efficient usability, 

so that engineers can more easily and fast access to existing design projects in the early 

stage of product development like product life management (PLM) solutions [1]. These 

PLM solutions successfully provide services in business operation, information 
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management and exchange during the production development. In the computational 

mechanics field, however, simulation process has become a bottleneck and has not 

delivered the efficiency and productivity gains envisaged. 

 Distributed simulation techniques can have great potential to fulfill the present 

demand of CAE tools with unlimited computing power in network environment and an 

efficient reusability of integrating already constructed simulation models. Therefore, the 

focus of this dissertation is developing a new integration methodology, not only to 

provide an alternative to the uniprocessor simulation, but also to integrate diverse 

simulation models and simulation schemes. 

 

1.1.1 Present and Future Trend of Computer Aided Engineering(CAE) 

Shortening of product life cycle, increasing cost pressure in the global 

competition and the heterogeneity of computer-aided development systems are 

determining the trends of today's manufacturing industry. Computer Aided Engineering 

(CAE) is a concept that was first proposed by J. Lemon in 1980[2], the founder of SDRC, 

as a way to provide analytical information in a timely manner in the product development 

process, and through doing this, products and production processes with great 

improvement are made possible. The broad concept of CAE includes CAD, FE modeling, 

Finite Element Analysis(FEA) and Design with significant reliance on graphic display 

systems [3]. CAE is a useful design and evaluation tool with the development of various 

simulation software and powerful computer resources.  

However, CAE has been developed stand alone and independent with CAD/CAM 

because of analysis oriented simulation with standard FE codes for high accuracy. CAE 
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only support occasional different lines in the development process. But present CAE is 

more toward design analysis and evaluation by numerical analysis. With growing the 

demand for virtual prototype, which can reduce the need for costly physical prototyping 

and testing in product development, CAE should not be just for computer aided 

engineering analysis, but have large extent of design analysis, evaluation, optimization 

and process simulation as the connector of CAD and CAM as shown Figure 1.1 [4]. 

 

Figure 1.1 Interactions of CAD/CAM and CAE in product manufacturing process 

The role of CAE has changed from technical computation which was more or less 

a service for the different development departments into a virtual product development 

process. The present demand of CAE should be embedded in CAD for design oriented 

simulation [5]. For the cost and time reduction in product development processes, CAD 

has shown quite the success to make change of engineering, but CAE is still regarded to 

be expensive because the process of modeling is high time consuming work, analysis 
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results are difficult to be reflected to design change [6]. For the CAD embedded CAE, FE 

modeling methods such as automatic mesh generation should be simplified and improved. 

The model generation process time on a systems or subsystems level may be as high as 

80% of the total engineering simulation effort (person power), with such tasks as linking 

with CAD data, de-featuring CAD data for adequate mesh quality, input load/support 

condition [7]. This yields a painful and time consuming work for FEA and becomes 

barrier for CAE to be full integrated with CAD. Automatic model generation has the 

potential to significantly increase simulation productivity and allow sparse engineering 

resources to concentrate on their vital tasks. 

 

To have the most impact on the product design process, future CAE should have 

the following trends  

 

Standard CAE program 

Integration simulation tools for multi-disciplinary simulation 

Parallel/Distributed Computing with Intra/Internet (Grid Computing) 

Web based modeling and model management  
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1.1.2 Standard CAE Program for Being Imbedded in CAD  

Shortening of product life cycle, increasing cost pressure in the global 

competition and the heterogeneity of computer-aided development systems are 

determining the trends of today's automotive development. In the automotive industry, 

the average number of CAE-tools is more than 40. Furthermore there are at least 14 

different CAE-simulation models in use by an automotive OEM [7]. This fact is a big 

bottleneck for CAE to be imbedded in CAD, since only simulation specialists can solve 

the complex system and can access to their models.   

For CAD integrated CAE in the early design stage, standardization of processes 

will be one of the most important factors and responsibilities to support the integration of 

CAE-simulation in the future. Most users become designers rather than analysts, 

consequently simulation tools should be user oriented / user friendly. 

 

1.1.3 Integration Simulation Tools for Multi-disciplinary Simulation 

For complex systems or subsystems in industry, design is a very complex 

optimization task often involving multi-disciplines, multi-objectives, and computationally 

intensive processes for product simulation. As manufacturers in industry as well as 

military customers try to incorporate multidisciplinary design methods in the conceptual 

design phase, a systematic approach needs to be introduced. Modeling and computer 

simulation have become tools in all engineering disciplines. Krueger et. al [8] presented 

two modeling philosophies for multidisciplinary simulation. One approach is that all 

model components are implemented in a single modeling or simulation tool, using 

common libraries or a common modeling language, and creating a single model 
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comprising elements of all involved disciplines. Second, the coupling of specialized tools 

by the means of interfaces is performed. This is especially suited for systems where sub-

models already exist in specialized tools and where those models are too large and 

complex to be transferred into a single simulation tool. Presently many researches in [9-

11] deal only with the second approach, i.e. with the coupling of tools via interfaces.  

While the simulation tools have become very sophisticated in their own domains, the 

simulation of complex systems calls for multidisciplinary simulation. This can be 

achieved by the coupling of the existing codes. For this purpose, interfaces between the 

codes have to be developed. These interfaces have to take into consideration the nature of 

the description of the physical model, numerical properties of the respective simulation 

methods, and software and hardware implementation issues. The analysis of complex 

product is generally concerned with multi-disciplinary modules exchanging physical 

parameters. 

 

1.1.4 Parallel/ Distributed Computing with Intranet/Internet (Grid Computing) 

Despite continuous advances in computing power, increasing complexity of 

analysis tools and simulation model size seem to keep pace with computing performance 

enhancements. With high performance computing (HPC), the power of simulation 

software tools can be greatly increased in their application, accuracy and computational 

cost. However, this development of computer resources can be a barrier for CAE to be 

embedded in CAD in the early product design stage. Grid computing (or the use of a 

computational grid) technology present in [12] is applying the resources of many 

computers in a network to a single problem at the same time - usually to a scientific or 
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technical problem that requires a great number of computer processing cycles or access to 

large amounts of data. Grid computing can be thought of as distributed and large-scale 

computing and as a form of network-distributed parallel processing. It can be confined to 

the network of computer workstations within a corporation or it can be a public 

collaboration (in which case it is also sometimes known as a form of peer-to-peer 

computing). 

 

1.1.5 Web Based Modeling and Model Data Management 

One of the most effective approaches to force the integration of simulation into 

the design process will be a powerful simulation data management tool. CAD/CAM/CAE 

system vendors are all moving forward integrating their systems with the Internet. Thus 

Internet capabilities from inside geometric modeling systems are either already in place 

or about to become available. By using the Internet as an extension to a geometric 

modeling system through the use of browsers and browser plug-ins, an entire project 

team and its clients can view and manipulate models and drawings in various web 

formats early in the design process. Similar simulation data are stored at different 

organizational units connected by network and able to be easily accessed by users. With 

the proportion of virtual development methods, the communication between used systems 

for the virtual vehicle development will become increasingly more complicated.  
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1.2 DISTRIBUTED SIMULATION PLATFORM (D-SIM) 

In a virtual prototyping environment to support product development, the 

component models usually are functionally and geographically distributed due to the 

adoption of multi-layer supply chains as well as the increased collaborations among 

different engineering and business units. It is difficult to bring all the component models 

together and to analyze such a monolithic model using a uniprocessor simulation; e.g., 

simulation of an automotive vehicle that includes all subsystem models. Thus, it is 

important to have a capability to simulate the system-based distributed models. A 

Distributed Simulation Platform (D-Sim)[13-15] was developed to support the design 

tasks in multi-layered, distributed supply chains in modern manufacturing systems. In a 

distributed simulation platform, an engineer just needs to choose right subsystem and 

send the information of interface and model information to the coordinator of distributed 

simulation platform and then the coordinator executes the simulations simultaneously and 

checks whether the results are converged.  

There are two different perspectives on the decomposition and coupling of 

complex systems, as laid out by Tseng[16], which are, “divide-and-conquer” and 

“integrate-and-collaborate,” or, in other words, decomposition and gluing. The former 

focuses on how to actively partition a large problem in order to take advantage of parallel 

computing. In contrast, the gluing perspective starts from the fact that many systems are 

already partitioned and distributed and does not involve active decomposition. Rather 

than attempting to partition an existing model, the goal is to glue together an already 

partitioned model that may contain, for example, many different finite element and 

multibody dynamics models. Figure 1.2 depicts an example of assembling distributed 
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subsystem models into an Army ground vehicle. Each component was already 

constructed and simulated for its own function by supplier. 

 

Figure 1.2 Example of the distributed model of Army Ground Vehicle 

Distributed simulation, as a research area in computer science primarily focuses 

on issues of communication, synchronization and time warping of the different 

components or entities in the simulation. Wang [17] address the need for, and develop, a 

simulation platform that can incorporate distributed mechanical systems models and 

couple them together to perform dynamics simulations within the framework of a general 

virtual prototyping process. The distributed subsystems models might be developed 

independently, use different software packages, run on different computers, and/or reside 

at different geographical locations. And also in order to protect proprietary information, 

the simulation platform may not be willing to share their models directly but to share 

only minimal information during the coupled simulation. 
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In scientific computing and military area, many efforts have been made to develop 

distributed computing technologies and its application. Distributed computing application 

started to flourish due to the previously limited availability of computers and suitable 

hardware platforms. NS-2[18], INSANE [19] and NetSim [20] provide rich APIs tools 

and also provides an extensible simulation environment and a rich graphical user-

interface written in Java which can run regardless of computer architecture. These codes 

represent successful efforts in distributed simulation and offer valuable guidance.  

HLA (High Level Architecture), defined in IEEE 1516 [21], is a general-purpose 

architecture for simulation interoperability and reuse, which was originally developed by 

US Department of Defense[22, 23]. Gan, B.P. [24] and Rajjev, S. [25] use HLA 

simulation for distributed supply chain simulation in manufacturing and transportation 

area. HLA also supports language-independent and platform-independent composition of 

a simulation. HLA is a generic framework and is a good candidate for implement the 

development methodology. 

Many distributed simulation efforts have been built on top of CORBA (Common 

Object Request Broker Architecture) [26] in commercialized distributed technologies. 

CORBA is produced by the OMG to allow applications to communicate with one another 

independent of location, platform, or vendor. DCOM [27] is the competing standard 

delivered by Microsoft. RMI [28] is developed by SUN Microsystems. It enables garbage 

collection of distributed objects by extending the built-in garbage collection functionality 

of Java Virtual Machine to network. This functionality is helpful for objects life 

management in a distributed environment. However, RMI is limited only to the Java 

language. These technologies all achieved limited success before they were adapted for 

the Web [29]. While the interoperability among these technologies is hard to come by, 
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SOAP-based web services [29, 30] are drawing more and more attentions. SOAP is a 

protocol specification that defines a uniform way of passing the Extensible Markup 

Language (XML) encoded data. XML provides a meta-language to express complex 

interactions between clients and services or between components of a composite service. 

Due to the platform independence of XML and HTTP, web services provide an ideal 

platform to interoperate the legacy applications and serve as a new promising distributed 

technology which has gained support from competitors. Dieckman, D. et al. [31] 

proposed the idea of protect intellectual property by wrapping the model with some 

simulation interface. However, the work presented did not provide any general couple 

simulation algorithm, which is necessary to solve practical engineering problems. 

Distributed simulation platforms or frameworks as represented in [32, 33] expose some 

standard APIs for the users to put their simulations in the platforms. 

The widely spread availability of parallel computers and their potential for the 

numerical solution of difficult to solve partial differential equations have led to a large 

amount of research in sub-structuring [34] or domain decomposition methods [35, 36]. 

Adeli, H. [37] presents a primitive version of a distributed finite element simulation, in 

which stiffness matrices and load vectors are generated concurrently on clients and sent 

to a central server to be assembled. Other researchers adopted the decomposition of large 

mechanical systems with a primary focus on the decomposition strategy. Farhat, C. , 

Wilson E.[38] and Farhat, C., F.X. Roux [39] have studied the parallelization of both 

direct solution methods and iterative methods. A sub-structuring method called FETI 

(Finite Element Tearing and Interconnecting) [40] introduces extra traction variables and 

exhibiting more flexibility for model reduction and coupling, compared to competing 

schemes. In the multibody dynamics arena, researchers also have studied how to partition 
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and parallelize systems[14, 41-50].  Kim S. [41] proposed a subsystem synthesis method 

for dynamic analysis of vehicle multibody systems, in which each subsystem is 

independently analyzed with a virtual reference body and the overall vehicle system 

analysis is formed by synthesizing the effective inertia matrix and force vector from the 

virtual reference body of each subsystem. Featherstone, R. [42, 43] proposed “a divide-

and-conquer” algorithm for rigid body dynamics, which reduces the system to an 

“articulated-body” by recursively applying a formula Another approach was given by 

Anderson, K. et. al. [44-46], in which the equations of the subsystem models are 

evaluated in parallel, and the results are loaded into a single system wide equation to 

explicitly calculate the constraint forces. 

The most general distributed simulation reported in the literature is multi-

disciplinary integration [51-54]. Usually, each discipline is wrapped as an object and the 

simulation only involves single-direction information flow between different domains. 

This strategy is widely used in multidisciplinary optimization application. There are 

several simulation multi-disciplinary optimization tools in the market that have some 

limited distributed simulation capability. iSIGHT / FIPER [55] provide platforms that can 

automate most optimization problems and can extensively save time on pre- and post-

processing; thus, it is gaining popularity within the industrial design community. DOME 

(Distributed Object-based Modeling Environment) is a prototype implementation of the 

“simulation service marketplace” concept proposed in [56], which enables distributed 

collaborative design through parallel heterogeneous simulations. The above tools mainly 

focus on the simple parallel execution of simulation tasks of a design problem rather than 

the difficulty of coupled simulation in a distributed simulation system. ModelCenter of 

Phoenix Integration [57] provides a Simulink-like environment to assemble component 
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models based on the data flow among them. It requires the simulation models to be 

modeled as control blocks and has several limitations for application to the real 

distributed simulation problems in the automotive industry. The critical problem is to 

couple already decomposed and distributed mechanical system models rather than the 

control box-based simulation. 

 

 

Figure 1.3 Vision of the distributed simulation for army ground vehicle 

 

The vision of D-Sim for producing a digital vehicle based on distributed 

subsystems models is presented in the Figure 1.3. In this concept, we envision a library of 

component models, which are built and executed at different locations using different 

software systems in a multi-layered simulation platform. For example, a detailed vehicle 

model that includes tires, leaf springs, suspension and steering components and joints, 
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chassis frame, etc., can be developed. Large deformation nonlinear finite element 

algorithms can be used to model the tires and leaf springs as well as the chassis in the 

case of crash simulation, while multibody system algorithms are used to model the 

suspension and steering components and mechanical joints as well as other rigid bodies 

or bodies that experience small deformations. Each component can be solved in D-Sim 

using distributed independent solver that wrap commercial software in D-Sim. A detailed 

tire model may be run in ABAQUS, a flexible chassis frame model may be run in 

MSC/NASTRAN, an engine combustion model may be run in MATLAB/SIMULINK, 

and a multibody dynamics model of the rest of the components may be run in ADAMS. 

D-Sim provides valuable tools to support distributed collaborative design. Engineers in 

different locations can create different component models for the vehicle, and models of 

the different vehicle designs can be easily assembled and simulated in the simulation 

platform. 

A commercialized version of the distributed simulation system can be of great 

benefit to the industry. It could be embedded in the existing PLM systems to integrate 

simulation capacity in the system. When building such a simulation system, attention 

should be paid to the enrichment of the Extensible Markup Language (XML) model 

description, inclusion of other potential gluing algorithms, the storage and processing 

technique of model data, and introduction of multi-disciplinary simulation capability. 
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1.3 INTEGRATION OF MULTIBODY DYNAMIC SIMULATION AND 
LINEAR ELASTIC FINITE ELEMENT ANALYSIS IN D-SIM 

The distributed simulation platform (D-Sim) was developed to cater to the 

distributed nature of collaborative design inside the supply chain of modern product 

development, and to significantly accelerate the product development process. It provides 

great potential in laying out innovative and new products in a cost-effective and timely 

manner. However, one of the remaining challenges in developing such distributed 

simulation systems, is to integrate heterogeneous subsystem models, such as multibody 

dynamics subsystems models and finite element subsystems models for practical 

engineering problems, e.g., detailed durability or NVH simulation, and to conduct 

seamlessly integrated simulation and design tasks in a distributed computing environment.  

Ideally, a practical distributed simulation environment should allow using existing 

commercial packages, including a combination of multibody dynamics codes, such as 

MSC/ADAMS, and finite element codes, such as MSC/NASTRAN and ABAQUS, 

without modifying their solvers and user interfaces. Rigid body motion of the overall 

system (or a subsystem) should be solved with the numerical integrators in a multibody 

dynamics code, while deformation of each individual component should be solved with 

the solvers in an existing finite element code. 

Integration of multibody dynamic analysis and Finite Element analysis is one of 

challenges of multi-disciplinary simulation in the Distributed Simulation. For instance, as 

shown in the Figure 1.5, the multibody dynamics model of frame and tire assembly on 

the experimental equipments and Finite element body model are assembled with a gluing 

algorithm for durability and NVH analysis. 
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Figure 1.4 Coupling MBD and FE analysis in D-Sim 

The multibody dynamics model is built using a commercial preprocessor and 

solved in a nonlinear dynamics solver, and the flexible body model is constructed for 

durability analysis and/or NVH analysis and solved in a linear FE solver. It is impossible 

or very difficult to simulate stand-alone model with nonlinear dynamics solver or 

nonlinear FE solver unless engineer/researcher would make a new assembled simulation 

model. Thus, it becomes necessary to successfully integrate large/small deformation 

finite element formulations and multibody systems to be able to develop a new 

generation of computer algorithms and codes that can be used to solve the new 

challenging problems being encountered. In particular, it is important to develop methods 

to integrate these two models in distributed simulation without building a new simulation 

model. 
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The effect of structural flexibility has become an important issue for more 

accurate kinematics and dynamic analysis in industrial practice. Many investigations for a 

flexible multi-body system which consists of elastic and rigid components have focused 

on how the flexible components can be formulated and combined with other component 

equations. Particular effort has focused on the development of simulation method for 

coupling the large displacement problem in FEM in which it is assumed that the 

deformation is small and rotations may be large.  

Formulations of the dynamics of mechanical systems that include large 

deformations (geometrically nonlinear FE) usually lead to a constant mass matrix and 

nonlinear stiffness matrix, Zienkiewicz and Taylor[58]. Standard FE codes for large 

deformation dynamic analysis primarily are based on this formulation. Typically, the 

nonlinear stiffness matrix has to be updated frequently (when using a standard Newton 

iteration method); consequently, the computational cost can be high.  

During the past several decades, flexible multi-body dynamics has emerged as an 

important research field emanating from the need to simulate many industrial and 

technological systems. Flexible multi-body dynamics is the subject concerned with the 

computer modeling and analysis of constrained deformable bodies that undergo large 

displacements, including large rotations. The large displacements can include rigid body 

motion as well as elastic deformations. This research has lead to numerous different 

formulation approaches. Shabana [59-61] introduced the floating frame concept, and 

coupled this with linearized elasticity theory. Earlier, Huston [62, 63] suggested the Finite 

Segment Method in which the deformable body is assumed to consist of a set of rigid 

bodies which are connected by springs and/or dampers. The system elasticity, represented 

by spring coefficients can be determined using the finite element method. Belytschko 
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[64] employed a convected coordinate technique and a direct nodal force computational 

scheme for the transient analysis of large-displacement, small-strain problems with 

material non-linearity. Simo and Vu-Quoc [65] derived an approach based on the large 

rotation vector instead of formulating conventional beam elements with respect to a 

moving frame. The limitations, that conventional finite element formulations employ 

infinitesimal rotations as nodal coordinates and can not be used to describe correctly a 

finite rigid body rotation, can be overcome with co-rotational nodal coordinates in [64, 

65]. More recently, Shabana [66, 67] proposed using absolute displacements and global 

slopes as element coordinates for flexible bodies, known as the Absolute Nodal 

Coordinate formulation. Simeon [68] used stabilization techniques in order to solve a 

solid 2D flexible multibody system with contact. For the 2D and 3D flexible body, 

Gerstmyr and Schőberl [69] derived an absolute coordinate formulation principally based 

on the geometrical nonlinear FE having a constant mass matrix and a nonlinear stiffness 

matrix in a flexible body formulation. The new feature of their approach is that the 

stiffness matrix is decomposed into the rotation term resulting from spatial integration 

over whole body and a constant stiffness matrix derived from the assumption of small 

deformation of the flexible body. Pedersen [70] described a flexible body using only the 

position of the nodes in the inertial frame; the mass matrix can be formulated as constant 

matrix with this description instead of nonlinear mass matrix. Other methods for flexible 

body modeling –Incremental finite element approach, Augmented methods, Recursive 

and projection methods- are reviewed in Shabana [59] 

It becomes necessary to successfully integrate large/small deformation finite 

element formulations and multibody system to be able to develop a new generation of 

computer algorithms and codes that can be used to solve the new challenging problems 
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being encountered. Most existing general-purpose multi-body system computer codes are 

designed to solve systematically and efficiently rigid body systems including small 

deformation problems. Shabana [71] reviews current integration methods for FEM and 

MBD with three approaches. These are mainly the gluing algorithms as co-simulation 

method, the finite element based direct integration method, and the multi-body system 

based direct integration method. Industry and commercial needs led to a further 

development of the well known component mode synthesis based on Craig-Bampton 

modes [34]. Carlbom [72] combined multibody models and finite element models of a 

rail vehicle which is reduced by eigenmode representation using the modal participation 

factor or modal contribution factor to determine the most important modes to keep. The 

introduction of ADAMS/Flex [73] among the commercial simulation codes has overcome 

many of the problems associated with analysis of flexible multibody dynamics by 

employing flexible elements whose component modes-based data are based on finite 

element codes. It is possible to combine MBD model with discrete finite element models 

of flexible body without modally-based reduced order models. The resultant equations 

can be difficult to solve with general DAEs solvers. Oghbaei and Anderson [74] proposed 

a time finite element implicit scheme for stable solution of a large set of equations and 

constraints. The philosophy adopted in this dissertation is to utilize a distributed 

simulation environment which should permit using existing commercial or research based 

software without modifying their solvers and simulation models. In this research, a new 

integration methodology of distributed general purpose MBD and FEM simulation 

models with a gluing algorithm [17, 50] is proposed, so that independent commercial or 

research based solvers for integration of each simulation can be employed. 
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The small deformation assumption of a flexible body for structural dynamic 

analysis is important to avoid high computational cost. The separation of reference 

motion and deformed body motion was proposed by Winfrey [75], Popp [76], Offner [77]. 

In this approach, the coupling force terms of flexible body motion and rigid body motion 

equations are neglected due to the assumption of relatively small coupling terms. This 

assumption is efficient for eliminate coupling terms in the formulation; however, accurate 

simulation results cannot be guaranteed in high speed or highly flexible problems. Park et. 

al. [78] separated rigid and flexible body motion using d’Alembert-Lagrange principal 

equations for partitioning a coupled mechanical system. The principal solution of the 

rigid body motion is infinitesimal and not assumed to include large motion. Therefore, 

the rigid body principal solution may be different if the flexible system has large 

rotational movement. A Partitioned Iteration Method (PIM) is proposed in [79], which 

decouples the rigid body motion from elastic deformation of the simulated system using 

an iteration scheme. The PIM employs mean axis reference condition [80], and also a 

center of gravity (CG) following reference frame for each deformable body in the 

distributed simulation of flexible multibody systems. The PIM can be considered within 

the distributed simulation system [15, 17], and accounts for the full coupling of rigid 

body motion and elastic deformation, The PIM allows, in general, linear, nonlinear, and 

plastic deformations in each deformable body.  Due to mass redistribution, the CG 

position of a deformed body changes with time. Employing a floating frame that follows 

the CG position of each deformable body allows decoupling of the rigid body motion 

from the overall deformation. 
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1.4 ENHANCED GLUING ALGORITHM 

A gluing algorithm should only rely on the information at the interfaces of the 

models that are to be coupled. An interface can be represented by a set of interface nodes 

in a FEM or by a set of connecting joints in a multibody dynamics model. The typical 

information available at the interface can be classified as kinematic information and force 

information. The kinematic information may contain displacements, velocities, and/or 

accelerations of the interface. Force information refers to action-reaction forces at the 

interface. Mechanics principles require that at any interface the force quantities, namely, 

action-reaction forces, satisfy the equilibrium equations and the kinematic quantities 

satisfy the compatibility conditions, where it is assumed that the equilibrium and 

compatibility conditions in the internal domain of each subsystem are satisfied a priori. 

The gluing algorithm employs an iterative process, starting with an initial guess of some 

of the interface quantities. These interface quantities are then updated using a prescribed 

iteration process to satisfy the equilibrium and/or compatibility conditions at the interface. 

In general, if a proper set of interface force variables is defined such that the equilibrium 

conditions are satisfied, then only the compatibility conditions need to be considered 

during the iteration process. In this case, the interface force variables can be considered 

as functions of the interface kinematic quantities, and these interface force variables can 

be updated using the kinematic information and compatibility conditions. Similarly, if a 

proper set of the interface kinematic variables is defined such that the compatibility 

conditions are satisfied, then only the equilibrium conditions need to be considered 

during the iteration process. In this latter case, the interface kinematic variables are 

functions of the force quantities at the interface, and they can be updated by satisfying the 

equilibrium conditions.  
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The gluing algorithm plays a critical role in coupling the distributed subsystems 

and components in the distributed simulation. However, it is a challenge to apply the 

gluing algorithm to general models, which may be assembled by diverse connecting 

methods, including spot welding, bolting, bushing, and other physical connections. In this 

research, an improved gluing algorithm is proposed for assembling the subsystems 

models with general rigid or flexible connections. Figure 1.4 depicts the vehicle under 

body parts connected with flexible components like rubber bushes. Flexible gluing joints 

can deal with various connections between subsystems, and can account for linear and 

non-linear flexibility at these connections. This not only improves the accuracy of the 

simulation to represent the real physical system, but also can improve the convergence of 

multibody dynamics simulation. 

 

Figure 1.5 Flexible joints at the interface – rubber mounts 
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The objective of a Gluing Algorithm is to find the interface forces that satisfy 

compatibility conditions or the interface kinetic variables that satisfies equilibrium 

condition. In the case of coupling MBD and FEM, it is difficult to satisfy kinematic 

variables simultaneously at the interface, since each simulation results at the interface is 

computed with different simulation schemes: multibody dynamic system to solve the 

nonlinear differential and algebraic equations (DAEs) and classical finite element 

formulations, connected with modeling the inertial and stiffness of structural systems, 

employ infinitesimal rotations and displacements as nodal coordinates. In the previous 

Gluing Algorithm, only one kind of variable such as acceleration can be used for the 

checking compatibility condition because other variables are calculated with the same 

time integrator. In the case of gluing different simulation subsystem such as MBD and 

FEM models, satisfying compatibility conditions in other kinematic variables can not be 

guaranteed with one variable, and the instability problem with interface error 

accumulation can make a distributed simulation diverge. Therefore, it can be another 

issue to finding method how to satisfying compatibility conditions in other kinematic 

variables such as penalized method in gluing algorithm. 

A gluing algorithm was developed and applied to both finite element and 

multibody dynamics models. The developed algorithm relies only on the interface 

information of the component models and helps protect the proprietary information of the 

models [17]. Treating the subsystem models as control blocks and taking advantage of 

many sophisticated control-based simulation software packages is another common 

modeling approach. In [47], a modular formulation for multibody systems is proposed, 

based on the block representation of a multibody system with corresponding input and 

output quantities. This “block diagram” representation of the system can then be 
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embedded into appropriate simulation packages, e.g., SIMULINK. In [48], “Co-

simulation,” is presented, which employs a new discrete time sliding mode controller 

(DTSM) to satisfy the algebraic constraints among the subsystem models and to solve the 

causal conflicts associated with the algebraic constraints. The methods reviewed above 

either involve the active decomposition of the full system and require more information 

than just that associated with the subsystem interfaces or mandate specific requirements 

or structure on the formulation of the subsystems. In the context of coupling already 

distributed subsystems, the gluing perspective is preferred. A study is presented in [16], in 

which the terminology “gluing algorithm” is first suggested to describe a class of 

algorithms that can be used to glue distributed component models for use in dynamics 

simulations.  Several gluing algorithms are studied in [16, 49, 50], including MEPI 

(Maggi’s Equations with Perturbed Iteration) and MOP (Manifold Orthogonal Projection 

Method).  The word “glue” will be used hereafter instead of “couple” in places where the 

gluing perspective is implied. In [14], a case study of distributed design and simulation of 

an Army tank road arm is presented. The case study established a distributed framework 

based on CORBA and involved several simulation and analysis tools. 
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1.5 RESEARCH OBJECTIVES 

The primary objective of this research is to develop the integration methodology 

of heterogeneous simulation models, which are models for a general multibody dynamic 

simulation, linear/nonlinear FE simulation for a Distributed Simulation Platform, so that 

the distributed simulation toolkit for design can be improved in order to solve more 

general problem in engineering area.  

Preliminary steps in achieving these goals are building a model data base of 

subsystems of Army ground vehicle (High Mobility and Multipurpose Wheeled Vehicle -

HMMWV) and a demonstration of distributed simulation. 

One of the main difficulties encountered in integration process of MBD and FEM 

in D-Sim is attributed to the fact that the solution procedures used in finite element codes 

differ significantly from those used in general-purpose multibody system codes. Finite 

element methods employ the corotational formulations that are often used with 

incremental solution procedures. Multibody computer codes, on the other hand, do not, in 

general, use incremental solution procedures. Especially, the deformed body solution of 

FE simulation model should have an accurate rotational solution to integrate with MBD 

solution with a gluing algorithm in a distributed simulation environment which should 

permit using existing commercial or research based software without modifying their 

solvers and simulation models.  

A Gluing algorithm plays role in integrating the distributed subsystems and 

components. It is one of challenges to apply the gluing algorithm to general simulation 

models, which may be assembled by diverse connecting methods, including spot welding, 

bolting, bushing, and other physical connections having compliance between subsystem 

parts. Flexibility of interfaces between subsystems can account for linear and non-linear 
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characteristics of the connections, and can be important issue to improve the accuracy of 

the simulation to represent the real physical system and the convergence of distributed 

simulation. 
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1.6 CONTRIBUTIONS 

This dissertation presents an integration methodology of heterogeneous 

simulation models, which are models for a general multibody dynamic simulation, 

linear/nonlinear FE simulation in a distributed simulation platform that is essential to 

support the product development in the multi-layered supply chains and the modularized 

design in the automotive industry. The main contributions of this research include: 

1. Model data base of army ground vehicle is built in a distributed simulation 

platform 

A. the component models are identified with XML model descriptions in the 

Web Based User Interface 

B. Component subsystem models are built with layered structure in Model 

Server 

C. Distributed Simulations are demonstrated in D-Sim platform 

2. Partitioned Iteration Method is proposed for coupling FE and MBD in D-Sim 

A. Formulation of general equation of motion of FE flexible body including 

mean axis reference condition 

B. The separation of flexible body formulation in the floating frame of 

reference into rigid motion and flexible body motion 

C. Flexible body is solved with simulation model already built for the linear 

elastic simulation 

D. The quadratic velocity correctors in rigid and flexible motion are updated 

with iteration scheme 

3. The integration of MBD and FE simulation model within D-Sim  

A. Demonstration using three dimensional elements- beam, shell 
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B. Demonstration of coupling MBD and FE with vehicle simulation model  

4. Linear/Nonlinear Flexible Gluing Connector are added to previous Gluing 

Algorithm 

A. Formulation of flexible gluing matrix with linear stiffness and/or damping  

properties 

B. Validation of Flexible gluing connector with simple plate models and upper 

body and main frame of HMMWV 

5. Penalized Method For Using Baumgarte Stabilization 
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1.7 DISSERTATION ORGANIZATION 

Following this introductory chapter, Chapter 2 briefly introduces the Distributed 

Simulation Platform and presents the application of the distributed methodology to army 

ground vehicle, layered simulation model data base, and case study with Gluing 

algorithm in distributed architecture. Chapter 3 proposes Partitioned Iteration Method for 

deformed body having large displacement and rotational problem. Chapter 4 presents 

several application examples that demonstrate the developed methodologies and Chapter 

5 follows to provide Enhanced Gluing Algorithm including Flexible Gluing Connector. 

Chapter 6 finally concludes the dissertation. 
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CHAPTER 2  

DISTRIBUTED SIMULATION PLATFORM AND CASE STUDIES FOR ITS 
APPLICATION 

 

The overall objective of this research is to develop a methodology for distributed 

simulation of mechanical system models. This chapter provides an overview for 

distributed simulation platform and its three key ingredients with case studies for 

distributed simulation application. The Distributed Simulation Platform(D-Sim) is 

introduced using army ground vehicles - HMWWV family model. Simulation results 

using these assembled models provide a concrete introduction of distributed simulation. 

Figure 2.1 shows a HMMWV family of vehicles, which shares a common chassis 

subsystem. By adding different modules onto the common chassis, varieties of vehicles 

are obtained for different military usages ranging from troop carrier to battle field 

ambulance. Figure 2.2 depicts component reuse becoming more prevalent in the military 

and commercial sector. There is a great driving force for the industry to reuse existing 

parts in the design a new vehicle system. The design and testing of a new part created 

from scratch is much more expensive in terms of time and money than reusing or 

modifying a design from a validated existing part. In the platform-based design, the 

design is classified based on vehicle size and configuration. A simulation capacity that 

can easily couple component modules to assess the behavior of the whole system will be 

essential to the success of modern product development processes. 
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Figure 2.1 HMMWV family 

 

 

 

Figure 2.2 Component reuses in HMMWV distributed simulation 
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2.1 DISTRIBUTED SIMULATION FRAMEWORK 

A distributed simulation platform, called D-Sim, was proposed in previous 

research, and comprises three essential attributes: a general XML description for models 

suitable for both leaf and integrated models, a gluing algorithm with the T-T method, 

which only relies on the interface information to integrate subsystem models, and a 

logical distributed simulation architecture that can be realized using distributed 

technology.  The D-Sim paradigm fits the distributed nature of collaborative design 

inside the supply chain of modern product development, and can be used to significantly 

accelerate the product development process. It also provides great potential in laying out 

innovative and new products in a cost-effective and timely manner. Figure 2.3 depicts the 

concept of distributed simulation of assembled vehicle upper-body and under-body 

models. One way to run the simulation of a full vehicle is to bring all the component 

models together and form a monolithic, stand-alone simulation model and analyze it on a 

single simulation server, which is a very difficult task. Using a distributed simulation 

platform, an engineer just needs to choose right subsystem and send the information of 

interface and model information to the distributed simulation platform simulation 

corrdinator. Then the coordinator executes the simulations simultaneously and checks 

whether the results are converged. Subsequently, the engineer can check simulation 

results in a web based user interface after (or during) the simulation solution process. 
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Figure 2.3 Concept of distributed simulation platform 

The distributed architecture design provides a solution for realizing the gluing 

algorithm over the distributed simulation platform and for optimally utilizing distributed 

computing resources. Figure 2.4 is an illustration of the logical architecture of a 

distributed simulation platform. Each ellipse represents a model simulation server, which 

is either a wrapped simulation code that can be accessed through the network or an 

implementation of the gluing algorithm. Basically, a user accesses the system through a 

web browser and sends the XML description of a model to the simulation management 

server to conduct a simulation based upon the model description. The simulation 

management server first creates an integrated model object based on the XML file. Then 

the integrated model object parses the XML file and connects the proper subsystem 

model objects according to the description. 
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Figure 2.4 Distributed simulation architecture 

 

2.1.1 XML Model Description 

The Extensible Markup Language (XML) is currently the standard in web 

applications and many other applications that require data exchange. XML provides a 

basic syntax that can be used to share information between different kinds of computers, 

different applications, and different organizations. In D-Sim, XML is used to describe the 

mechanical simulation models. The model description needs to be general enough to 

represent the possible simulation models encountered in the simulation. It should also be 

flexible so that it can be expanded to describe new models as the simulation platform is 

extended. 
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Figure 2.5 Structure of the XML model description 

Figure 2.5 shows an example of a standardized model description using XML for 

describing subsystem models in the gluing simulation. The root element has three child 

elements, which correspond to the three categories of information for a gluing simulation, 

namely, General Information, Assembly Information, and Simulation Information. More 

details of the model description are given in [13] 

 

2.1.2 Gluing Algorithm 

The key component to realize the proposed methodology is the gluing algorithm. 

A gluing methodology not only must be efficient but also must maintain the “privacy” of 

the individual component models among potentially competing supply chain units. Figure 

2.6 illustrates the gluing of a two component system to simulate a chassis frame. In the 

simulation, both equilibrium conditions and compatibility conditions should be satisfied 
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at the interface. Here, f and u refer to the interface force information and the kinematic 

information (displacement, velocity or acceleration) at the interface. Compatibility 

conditions refer to the spatial continuity of the displacement, velocity or acceleration 

fields at the interfaces or joints. A gluing algorithm named the T-T method, was 

developed and applied to both finite element and multibody dynamics models. The 

developed algorithm relies only on the interface information of the component models 

and helps protect the proprietary information of the models. 

The developed T-T gluing algorithm has been applied to different simulation 

models, including finite element and multibody dynamics models and has achieved 

satisfactory results. However, to apply the gluing algorithm to general simulation 

problems, e.g., using commercial software packages, further study regarding its 

convergence, accuracy and efficiency is needed to exploit the full potentials of the gluing 

algorithm. In Chapter 5, an enhanced gluing algorithm is presented that improves upon 

the previous T-T gluing algorithm in terms of stability, accuracy and efficiency. 

 

Figure 2.6 Gluing algorithm illustration 
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2.1.3 Model Database in Web Based User Interface 

In a virtual prototyping environment to support product development, the 

component models usually are functionally and geographically distributed due to the 

adoption of multi-layer supply chains as well as the increased collaborations among 

different engineering and business units. Computer aided system engineering vendors are 

all moving forward integrating their systems with the Internet. Thus Internet capabilities 

from inside geometric modeling systems are either already in place or about to become 

available. By using the Internet as an extension to a geometric modeling system through 

the use of browsers and browser plug-ins, an entire project team and its clients can view 

and manipulate models and drawings in various web formats early in the design process. 

Fig. 2.7 is an illustration of multi-layer supply chains in the automotive industry 

and the Army procurement process. The modern automobile industry is formed as a 

distributed supply chain to save manufacturing cost and to be proficient in individual 

manufacturing units. The modularization of vehicle design has continuously progressed 

according to this model of multi-layered manufacturing supply chains. Thus, many digital 

tools and computing platforms for design and manufacturing have been developed to 

support these trends. Also the model database in distributed simulation platforms has 

been multi-layered. As the supply chains are naturally distributed, the CAE models of the 

components or subsystems of a vehicle are also distributed among different suppliers.   
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Figure 2.7 Commercial and army vehicle supply chain in modern manufacturing 

 

 

 

Figure 2.8 Layered system/component model structure in the model server of distributed 
simulation platform 
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Figure 2.8 depicts a modularized simulation model that could be parsed across a 

distributed model server. Each component model and XML model description is stored in 

the model server on the network, which is accessible through a web server. Each model is 

uniquely identified by the model ID, simulation server location, interface information, 

simulation type and so on. Figure 2.9 is a snapshot of the demonstration system, in which 

a user can browse the model database, assemble and simulate new integrated models as 

well as view the results. It can be further extended to form a new simulation tool for 

supporting multilayered simulation and modularized vehicle design. 

 

 

 

 

 

Figure 2.9 Web Based User Interface in D-Sim 
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2.2 CASE STUDIES OF HMMWV DISTRIBUTED SUBSYSTEM MODES 

Case studies of the application of distributed simulation of an Army ground 

vehicle are shown in this session. Three examples of distributed simulation are provided 

in order to demonstrate the original gluing algorithm and distributed simulation. First, the 

mainframe model of HMMWV is demonstrated for verification of original T-T gluing 

algorithm. Second, the 1st layered distributed simulation model result and 2nd layered 

distributed model of HMMWV 1097A2 composed body and frame model are compared. 

Finally, the case of non-matched interface is presented. 

 

2.2.1 Main Frame Model of HMMWV for Verifying Gluing Algorithm 

The first case study is a distributed simulation of a frame assembly model, which 

is a one-layer gluing simulation, assembling six leaf models: Frame rail, front bumper, 

front cross member, mid cross member, rear cross member and rear bumper model. The 

integrated main frame model is assembled in the simulation platform by selecting the six 

component models and matching the interfaces of these components. Figure 2.10 shows 

the details of the integrated HMMWV main frame model including the mentioned 

component models and the matching information of the interfaces. Each model server 

resides on independent computer and is a wrapped FEAP (A Finite Element Analysis 

Program [81]) code as simulation solver, and the model server is published using HTTP 

protocol. The total element number of the integrated model is 24989, and nodes number 

25156. A sinusoidal loading excites the center of front cross member and the response is 

reported at same position as the excitation point. 
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Assembled model (all-at once)  

 

(b) Distribued models 

Figure 2.10 Distributed simulation model of main frame 

 

Table 2.1 The number of interface nodes between subsystem parts in frame model  
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The interface and the number of joints of each interface are presented in Table 2.1. 

The total number of interfaces is ten and the total number of interface nodes in the 

simulation model is 82. Figure 2.11 shows a comparison of the results obtained using the 

gluing simulations with the results obtained using an “all-in-one” finite element analysis. 

It is seen that the gluing process induces no additional error (beyond the round-off errors) 

compared to the standard all-at-once simulation result. 

 

Figure 2.11 Comparison of the simulation results 

 

2.2.2 Multi-Layered Simulation Model 

In this example, the layered distributed models composed of main frame and 

upper body are compared with two gluing layers.  The 1st layered distributed model 

consists of the leaf models of main frame and M1098-A2 upper body.  In the second 
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layered simulation model, the integrated main frame is formed with six leaf models, 

which is the same as the previous example. An integrated upper body is formed by the 

hood and main body assembly The total number of nodes and elements number is 59920 

and 60482, respectively, in the upper body model. Also, the loading condition is same as 

in the previous example. The simulation system couples the second layer components 

first to form a higher-level subsystem model, and then integrates the first layer 

subsystems’ models to form the body and frame assembly. 

Figure 2.13 shows a comparison of the results obtained using the gluing 

simulations with 1st and 2nd  layered finite element analyses. Here, dynamic loads 

of 100sin(50 )=f t Nπ  are applied at the middle point of front cross member The result 

shown here is the displacement at a selected node at the middle of body floor(node 

12093) along the vertical direction.  It is seen that the gluing process induces no 

additional error (beyond the round-off errors) in 1st and 2nd layered distributed simulation 

results. 

 

Figure 2.12 2nd layered component model of frame and upper body 
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Figure 2.13 Time response of vertical direction at the body floor 

 

2.2.3 Non-matched Interface Treatment 

It is very common that the interfaces among the distributed finite element models 

may not match each other due to the model creation usually being done by different 

engineers at different organizations. This is an important problem that should be 

addressed in order to apply a gluing algorithm to practical engineering design problems.  

In previous research [17], the treatment of unmatched interfaces was addressed 

using the Moving Least Square Method. In Finite Element Methods and Meshfree 

Methods, the continuous field data are represented by interpolating the values on a finite 

number of discrete points using selected shape functions. More specifically, the 

interpolation is a linear combination of the shape functions weighted by the values on the 

discrete points. The Moving Least Square (MLS) method is an approximation method 
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originally proposed for data fitting and has been studied widely recently because it can be 

used to generate shape functions for the Meshfree method.  

To validate the MLS-based non-matched gluing problem, the main frame model 

in the first example is set up as shown in Fig. 2.14. To compare the gluing results with the 

solution obtained the matched interfaces of the two finite element models, the interface 

nodal coordinates of two finite element models are intentionally constructed to be un-

matched with each other. Figure 2.15 illustrates a comparison of the vertical-

displacement at the middle of front cross member, the same position of loading position. 

It can be seen that the result of MLS virtual interfaces introduce negligible error in the 

simulation results. 

 

Figure 2.14 Matched and Non-matching type interface of main frame model 
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Figure 2.15 Comparison of the responses at the front cross member with matched and 
non-matched type distributed simulations 
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CHAPTER 3  

PARTITIONED ITERATION METHOD FOR SOLVING FLEXIBLE BODIES 
HAVING LARGE ROTATIONS AND DISPLACEMENTS 

 

The effect of structural flexibility has become an important issue for more 

accurate kinematic and dynamic analysis in industrial practice. Many investigations for a 

flexible multibody system which consists of elastic and rigid components have focused 

on how the flexible components can be formulated and combined with other component 

equations.  

In this chapter, a Partitioned Iteration Method (PIM) is proposed, which decouples 

the rigid body motion from elastic deformation of the simulated system using an iteration 

scheme. This method leads to a floating frame of reference, in which the global motion of 

body can be expressed by linearized elastic deformations and large overall motion of a 

reference frame. To decouple the reference motion and relative deformable body motion, 

the PIM employs mean axis reference conditions, a set of reference conditions defining 

the body axis and a unique displacement of deformable body. Consequently, one can 

more easily separate the equations of motion into reference motion and deformable body 

motion. The PIM has an advantage in that rigid body motion is solved with general DAE 

solvers, while the deformable body motion is solved with linear FE solvers which are 

useful in solving an elastic body model having a large number of degrees of freedom. 

Examples are provided to demonstrate the performance of the method and also how to 

decouple and integrate rigid body motion and elastic deformation. 
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3.1 FLOATING FRAME OF REFERENCE 

The floating frame of reference method in [61] currently is the most widely used 

method in the computer simulation of flexible multibody systems. It is implemented in 

several commercial as well as research general purpose multibody computer programs. In 

the floating frame of reference, the configuration of a deformable body is identified by 

using two sets of coordinates: reference and elastic coordinates. Reference coordinates 

define the location and orientation of a selected body reference. Elastic coordinates, on 

the other hand, describe the body deformation with respect to the body reference.  

The motion of the body is then defined as the motion of its reference plus the 

motion of the material points on the body with respect to its reference, as depicted in 

Figure 3.1. 

 

 

Figure 3.1 Deformable body coordinates 
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Define a body reference 1 2 3e ,e ,e′ ′ ′   whose location and orientation with respect to the 

global coordinates are given by qR , where qR  can be written in a partitioned form as  

⎡ ⎤= ⎣ ⎦q R θ
TT T

R      (3.1) 

The vector, R is a set of Cartesian coordinates that define the location of the origin of the 

body reference. The vector, θ  is a set of rotational coordinates that describe the 

orientation of the selected body reference. The body coordinate system 1 2 3e ,e ,e′ ′ ′  is the 

floating frame of reference. The global position vector r of arbitrary point in the 

deformable body can be written as 

r R Au= +      (3.2) 

where u is the position vector with respect to the body coordinate, which can be written 

as 

= +0u u uδ      (3.3) 

in which 0u is the undeformed position vector and uδ is the elastic deformation vector 

of the point. A is a transformation matrix, where the orientation of the body reference can 

be identified using, e.g., three independent Euler angles, Rodriquez parameters or the 

four dependent Euler parameters which are provide in Appendix A. 

In the finite element method, the motions of arbitrary points are related to the 

position of element nodes, with which we can calculate the displacement field and stress 

field in the finite elements using the associated element shape functions. Consequently, 

for an arbitrary point within the i-th element, we can write the position vector as 

( )0 0i i i i i fiδ= + = +u u u N q q      (3.4) 
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where 0qi is the undeformed nodal vector, N i  is element shape function of i-th lement, 

which transformed in the body coordinates system, and q fi is nodal displacement vector. 

Consequently, global location vector ri  can be written as 

( )0i i i fi= + +r R AN q q      (3.5) 

or as 

( )0i ii f f= + + = +r R AN q q R AN u    (3.6) 

where N i is the connectivity matrix concatenation of N i for generalized coordinates q f , 

and q f  is nodal vector including all degrees of freedom of the deformed body. The 

velocity vector of an arbitrary point in i-th element is given by 

r R AN u AN qi ii f f= + +&&& &     (3.7) 

where the superposed dot denotes differentiation with respect to time. The middle term, 

i fAN u& , can be written as  

( )AN u A u ,θ θi f i fθ=& &      (3.8) 

in order to isolate velocity terms. The matrix ( ),A u θi fθ  is a function of the reference 

rotational coordinates and the elastic coordinate of the body. If the transformation matrix 

A is described by Euler parameters, then 

2 2
2 3 1 2 0 3 1 3 0 2

2 2
1 2 0 3 1 3 2 3 0 1

2 2
1 3 0 2 2 3 0 1 1 2

1 2( ) 2( ) 2( ) 2( )
2( ) 1 2( ) 2( ) 2( )
2( ) 2( ) 1 2( ) 2( )

A
⎡ ⎤− − − +
⎢ ⎥= + − − −⎢ ⎥
⎢ ⎥− + − −⎣ ⎦

θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ

 (3.9) 
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where  

[ ]0 1 2 3

0 1 1 2 2 3 3cos , sin , sin , sin
2 2 2 2

θ =

= = = =

T

v v v

θ θ θ θ
θ θ θ θθ θ θ θ

  (3.10) 

The vector [ ]1 2 3
Tv v v is the axis vector of rotation and then, the matrix ( ),A u θi fθ  

can be written as  

  ( ),A u θ Au G= − %
i f iθ      (3.11) 

where 

1 0 3 2

2 3 0 1

3 2 1 0

2G
− −⎡ ⎤

⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

θ θ θ θ
θ θ θ θ
θ θ θ θ

, 
1 3 2

2 3 1

3 2 1

0
, 0

0
u u

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

%

u u u
u u u
u u u

  

Thus, the velocity vector of Equation (3.7) can be written in partitioned form as  

R
r I Au G AN θ

q

⎡ ⎤
⎢ ⎥⎡ ⎤= − ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

&

&%&

&
ii i

f

    (3.12)  

Once the velocity vector of an arbitrary point on i-th element is defined, one can write the 

kinetic energy of body as 

1

1
2

e

e

N
T

i i e
i

T dρ
= Ω

= ⋅ Ω∑ ∫ r r& &      (3.13) 

 where eN  is total number of elements and ρ  is material density. By substituting 

Equation (3.12) into Equation (3.13), we obtain 
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1

1
2

e

e

iiN
T T T T T T T T T T

if i i i i e
i T T TT

fi i i ii

T dρ
= Ω

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥⎡ ⎤= − − Ω⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

∑∫
I AuG AN R

R θ q G u A G u uG G u N θ
qN A N uG N N

&%

& && % % % %&

&%

  (3.14)  

The kinetic energy, given by Equation (3.14), can be written in a partitioned form with 

the body reference generalized coordinates and the elastic coordinates as 

1

1
2

e

e

N
RR Rf RT T

R f e
i fR ff f

T dρ
= Ω

⎡ ⎤ ⎡ ⎤
⎡ ⎤= Ω⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦
∑ ∫

M M q
q q

M M q
&

& &
&

  (3.15) 

Matrices MRf  and M fR  ( M M= T
Rf fR ), are the coupling mass matrices between the 

reference and elastic coordinates, which are dependent on the generalized coordinates and 

body reference conditions. A decoupling between reference and elastic coordinates can be 

achieved either by neglecting the off-diagonal matrices ( MRf  and M fR ), or by choosing 

a proper set of reference conditions. Using energy and virtual work expressions, one can 

write the variational form of the system equation of motion for the flexible body which is 

provided in Appendix B. 

1 int

2

2 2 2

2

e

e

iiN
T T T T T T T

ii i i i e
i T T TT

fi i i ii

i ir
T T T T T T

f

d

θ

ρ

ρ

= Ω

⎡ ⎤ ⎡ ⎤− ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − Ω +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦⎣ ⎦

+⎡ ⎤
⎢ ⎥= + − − +⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∫

ext

ext

ext

I Au G AN R 0
G u A G u u G G u N θ 0

q FN A N u G N N

Au Gθ Aωu GθF
F G u uGθ G u uGθ G u u
F

&&%

&&% % % %

&&%

& & &%% %

& & && &% % % % % &
e

e

T

N

e
i T T T

i ii i

d
Ω

⎡ ⎤
⎢ ⎥
⎢ ⎥ Ω
⎢ ⎥
⎢ ⎥+⎣ ⎦

∑∫
N u Gθ N ω ωu& & % %%

(3.16) 

where ext ext extF F F⎡ ⎤⎣ ⎦
TT T T

r fθ
is generalized external force vector. The virtual work of all 

external forces acting on flexible body in compact form as 
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ext ext ext ext ext ext

R
F F F r F F F θ

q

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤= = ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥⎣ ⎦

T T T T T T
r f r f

f

W θ θ

δ
δ δ δ

δ

  (3.17) 

In the Figure 3.1, the force F acts at point P  of the deformable body, and has 

three components, which can be defined in the global coordinate system. Then, one can 

write as 

extF F=r ,  extF G u A F= %T T T
pθ    and,    extF N A F= T T

pf  (3.18) 

A partitioned form of the equations of motion, using the body reference generalized 

coordinates and the elastic coordinates, is given by  

int

0 ext

ext

M M q QF
M M q QFF

⎧ ⎫⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎪ ⎪+ = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪⎩ ⎭⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎩ ⎭

&&

&&
RR Rf R RR

fR ff f ff

   (3.19) 

where QR  and Q f  are, respectively, the quadratic velocity vector of the rigid 

(reference) and the flexible body. These terms include the effect of the Coriolis and 

centrifugal forces. The quadratic velocity terms are coupled with Rq& ,  fq&  and 

fq resulting in a nonlinear function of the generalized coordinates and velocity 

coordinates.  

One cannot directly solve Equation (3.19), because the number of equations is 

larger than the number of degree of freedom of flexible body, which is the same as the 

size ofq f , as q f already includes rigid body modes. Thus, a reference condition is 

necessary in order to eliminate the rigid body modes in the assumed displacement field. 

In the rigid-body analysis, a fixed body axis that is rigidly attached to a point on the body 



 54

or an extension thereof is commonly employed, whereas a moving reference body is 

suggested in the analysis of flexible bodies as shown in Figure 3.2.  

 

Figure 3.2 Moving frame of reference 

The choice of the deformable-body reference and the associated reference 

conditions, which are required to define a unique displacement field, are of major 

concern when modeling a constrained component in multibody systems. The mean-axis 

conditions[80], which are the result of minimizing the kinetic energy of the elastic motion 

with respect to an observer stationed on the deformable body, imply that the linear and 

angular momentum due to elastic deformation are zero. The relative kinetic energy of the 

i-th element with respect to body coordinate is defined by 

1
2

e

rel T
i i i i eT dρ

Ω

= ⋅ Ω∫ u u& &     (3.20) 
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The total relative kinetic energy of all elements of a body with respect to its body fixed 

coordinate system can be written as 

( ) ( )
1

1
2

e

e

N Trel
i ii i f i f e

i
T dρ

= Ω

= − − ⋅ − − Ω∑ ∫ r R AN u r R AN u& && && &   (3.21) 

For minimum relative kinetic energy, the partial derivatives with respect to R&  and θ&  

should be zero, i.e.,  

,rel relT T∂ ∂
= =

∂ ∂
0 0

R θ&&
    (3.22) 

These result in 

 
1 1

e e

e e

N N

ii e f i i e
i i

d dρ ρ
= =Ω Ω

⎛ ⎞ ⎛ ⎞
Ω = Ω =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑∫ ∫N q u 0&&   (3.23) 

1 1

e e

e e

N N
T

ii i e f i i i e
i i

d dθρ ρ
= =Ω Ω

⎛ ⎞ ⎛ ⎞
Ω = × Ω =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑∫ ∫A AN q u u 0&&  (3.24) 

Equation (3.23) is the positional condition of reference such that the body 

reference frame always moves with the mass center, which is not fixed in the body during 

analysis as shown in the Figure 3.2. Equation (3.24) is the rotational condition of 

reference such that the axis of body reference is always collinear with the axis which 

makes no rigid rotation of flexible body with respect to reference coordinates during 

analysis. These equations result in a set of constraint equations that are sufficient to 

uniquely define the displacement field. 

ext

ext

int ext

M M M R 0 F Q
M M M θ 0 F Q
M M M q F F Q

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎧ ⎫⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪+ = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭⎣ ⎦ ⎩ ⎭⎩ ⎭⎩ ⎭

&&

&&

&&

rr r rf r r

r f

fR f ff f f f

θ

θ θθ θ θ θ

θ

  (3.25) 
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In Equation (3.25), the mass matrix and the quadratic velocity force terms Q are 

functions of the nodal displacement and velocity vectors. Applying the mean axis 

reference conditions of Equations (3.23) and (3.24) to Equation (3.25), provided the 

initial position of reference is attached to mass center of body, results in  

ext

ext

int ext

M 0 0 R 0 F 0
0 M 0 θ 0 F Q

M M M q F F Q

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎧ ⎫⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪+ = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭⎣ ⎦ ⎩ ⎭⎩ ⎭⎩ ⎭

&&

&&

&&

rr r

fR f ff f f f

θθ θ θ

θ

  (3.26) 

The equation of motion includes the reference condition which implies the body 

coordinates lie on the point at which the average deformation across deformable body is 

be zero. In Equation (3.26), the coupling terms in the mass and quadratic velocity terms 

can be removed using the mean axis reference condition. The mass matrix in this 

equation is non-singular. Therefore, if all the forces are known, this equation can be 

solved. But there is no guarantee that the solution of Equation (3.26) satisfies the mean 

axis reference condition, because numerical error in mean axis condition can accumulate 

and have adverse effects on the relative deformed body equation part during integration. 

In other words, Equation (3.26) is a necessary but not sufficient condition to satisfy 

mean axis reference conditions. Nikravesh P. E. [82] noted the reason is that the mean-

axis conditions at the acceleration level are not explicitly present. Although the amount of 

violation could be small, it is possible that during forward integration of the equations of 

motion, the error could cause numerical instability. To understand the physical meaning 

of this instability, one can extract deformed body equation of motion from Equation 

(3.26) as follows: 

 int extM q F F Q M R M θ+ = + − − &&&&&&ff f f f fr f θ   (3.27) 
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The right hand side of Equation (3.27) implies that from the external forces are 

subtracted the inertial forces calculated with the motion of reference frame. To satisfy the 

mean axis reference conditions, there should be no rigid body motion in the solution of 

the deformable body of Equation (3.27). Consequently, the force terms should be in 

static and/or dynamic equilibrium in six directions in the three dimensional problem. 

Since the geometric stiffening terms generated by geometric non-linearity [83] are not 

considered in equation (3.26), there might be slight errors and consequent non-zero 

forces generating rigid body displacement during forward integration of the equations of 

motion.   

In order to eliminate this particular error, Equations (3.23) and (3.24) can be 

incorporated into Equation (3.26) or Equation (3.25) with the aid of Lagrange 

multipliers to obtain 

 

ext

ext

int ext

M 0 0 C 0 0R F
0 M 0 C 0 Qθ F

M M M C F Qq F
C C C 0 0 0λ 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

&&

&&

&&

T
rr qr r

T
q

T
fr f ff qf ff f

qr q qf

θθ θ θθ

θ

θ

 (3.28) 

where, 

[ ] [ ]

6

6 3 6 4

, ,

e

e

e

N
N

rfi
qr qt qf N

f

i

d

d

Ω

θ

Ω

Ω

Ω

×

× ×
⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥= = = = ⎢ ⎥⎢ ⎥ ⎣ ⎦×⎢ ⎥
⎣ ⎦

∑∫

∑∫

N M
C 0 C 0 C

M
u N

   

In Equation (3.28), the mean axis reference condition is expressed through 

constraint equation form. Lagrange multipliers only affect the deformed body equation of 

motion with respect to reference frame in equation. The summation of external forces and 
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generalized force ( extF Q M R M θ+ − − &&&&
f f fr f θ  in Equation 3.27) implies that the external 

forces on the elastic body are extracted with the inertial forces calculated from the 

response of reference frame. Also, constraint force terms including Lagrange multipliers 

make sure that the right side of Equation (3.27) induces no rigid body motion in the 

elastic deformed body. When we derived the formulation, basically we assumed linear 

elastic deformation of flexible body. However, the equation of motion in Equation (3.25) 

or (3.26) is coupled with the non-linear multibody dynamic equation. Therefore, the 

solution of Equation (3.26) slightly violates the mean axis reference condition. 

Consequently, the error in the deformable body equation of motion may be numerically 

instable. Equation (3.28), in which coupling terms of relative deformed body and 

reference variables can be removed, is able to be easily separated into a rigid body 

motion and a relative deformable body motion with respect to rigid motion.  
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3.2 PARTITIONED ITERATION METHOD (PIM) 

The Partitioned Iteration Method (PIM) is proposed for a solution strategy that 

can decouple the solutions of the rigid body and elastic body equations of motion, by 

decoupling the rigid body motion from the elastic deformation using an iteration scheme. 

As depicted in Figure 3.3, it employs a CG-following reference frame for each 

deformable body in the system. The axis and position of this CG are not fixed at the 

initial CG point, but are updated with respect to the body deformation. This approach was 

proposed as the Linear elasto-dynamic method(Winfrey [31] and Popp [76]), but in this 

Linear elasto-dynamics approach, the coupling force terms Q f  in Equation (3.28) of 

flexible body motion and rigid body motion equations are neglected due to the 

assumption of relatively small coupling terms. PIM has the advantage that rigid body 

motion is solved with general DAE solvesr, while the deformable body motion is solved 

with linear ODE solvers. The fact that the deformable body is solved with a linear FE 

solver is of direct benefit for distributed simulation of flexible multibody systems because 

the deformable body model already is contained on the linear elastic deformation model 

server. 

 

Figure 3.3 Partition of reference motion and body deformation analysis 
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3.2.1 Approximated Multipliers with Mean Axis Reference 

To develop a Partitioned Iteration Method, we use the floating frame of reference 

approach, 

ext

ext

int ext

M 0 0 C 0 0R F
0 M 0 C 0 Qθ F

M M M C F Qq F
C C C 0 0 0λ 0
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
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T
fr f ff qf ff f

qr q qf

θθ θ θθ

θ

θ

  (3.28) 

Then, Equation (3.28) can be partitioned to separate the reference body and deformable 

body equations:  

ext

ext

M 0 0FR
0 M QFθ
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= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
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&&

&&
rr r

θθ θθ

    (3.29) 

T
ff f General qf

ext
General f f fr f θ

+ = −

= + − −

intM q F F C λ

F F Q M R M θ

&&

&&&&
   (3.30) 

In Equations (3.29) and (3.30), the vectors Qθ and Q f  are assumed, for the 

initial iteration, to be independent of the elastic deformations of the body. Equation 

(3.29) can be solved for the reference coordinates, velocities, and accelerations in the 

MBD program. The results obtained from the rigid body analysis can then be substituted 

into Equation (3.30) and the linear structural problem can be solved, including the 

influence of the rigid body response on the elastic deformation. The Lagrange multiplier 

is still unknown because the constraint equation was not included in Equation (3.30). In 

the previous section, multipliers contribute to the solution of deformable body to satisfy 

the mean axis reference condition, which means that the elastic body with respect to the 

reference frame deforms without rigid translational motion or rotational motion, i.e., the 
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applied force FGeneral  has to be force equilibrated during integration. For force 

equilibrium, rigid body forces, which are defined in Equation (3.31), should be zero.  
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_F F⎡ ⎤= ⎢ ⎥⎣ ⎦
∑

N
T i

Rigid t general
i

  _ ( )F F u F⎡ ⎤= + ×⎢ ⎥⎣ ⎦
∑

N
R i T i

Rigid r general i general
i

 (3.32) 

Therefore, in Equation (3.31), FGeneral  should be corrected with constraint forces 

such that the deformable body can deform without rigid body motion. As shown in 

Equation (3.31), using the rigid body force defined in Equation (3.32), approximated 

multipliers can be calculated by multiplying the summation forces in each direction of 

FGeneral  by the inverse of the mass matrix in Equation (3.30) without additional 

constraint equations. 
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   (3.33) 

With the approximated multipliers of Equation (3.33), partitioned deformable 

body equation of motion can be rewritten as follows: 

( ) ( )intM q F F Q M R λ M θ λ+ = + − + − +&&&&&& ext
t rff f f f fr f θ   (3.34) 
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Figure 3.4 Procedure of Partitioned Iteration Method  

As shown in Figure 3.4, the quadratic velocity terms are considered in rigid body 

analysis employing updated quadratic velocity terms from the flexible body analysis 

nodal variables. If the deformable body stiffness is sufficiently high, the quadratic 

velocity terms may be neglected. Note that due to mass redistribution, the CG position of 

the deformed body changes with time. Employing a floating frame that follows the CG 

position of each deformable body allows decoupling of the rigid body motion from the 

overall deformation, which is of immediate benefit for incorporation into the D-Sim.  
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3.2.2 Small Deformation Assumption in the Rigid Body Rotational Equation (CG 
Following Reference Condition) 

In the previous section, it is mentioned that numerical instability comes from 

geometric nonlinearity which generate errors in the relative flexible body equation of 

motion. Consequently, when one solves Equation (3.26), the solution slightly violates the 

mean axis reference condition so that it may cause numerical instability. To remove this 

instability, the approximated multipliers method of inertial forces is suggested to remove 

rigid body motion in the relative deformable body equation. However, in this method, 

approximated multipliers should be calculated by the summation forces of each direction 

of Fgeneral .  In this section, an alternative method is provided such that the relative 

deformable body solution satisfies the mean axis reference condition, in which the 

average relative deformation should be zero with respect to the body coordinate system.  

In the case of Euler parameters for the definition of rotational position, one has 

ω Gθ= & , 0Gθ =& &  and α Gθ= &&    (3.35) 

where ω ,α  are the angular velocity vector and the angular acceleration vector defined 

in the body coordinate system, and G is the matrix that relates the angular velocity to the 

time derivatives of orientation coordinates. For Euler parameters, 4, 2GG GG ω= =& %T T , 

one can rewrite rotational equations of motion and relative deformed body motion in 

Equation (3.26) including the mean axis reference conditions as follows, 
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In the relative deformable body motion in Equation (3.36), the nodal force acts 

on the deformable body with discrete form. This nodal force acts at the initial nodal 

position without considering body deformation. But, in the rotational equation for 

reference motion, the generalized forceu A F× T
p is the cross product of the deformed 

position vector and the external force described in the body coordinate system. Also, the 

solution of reference rotational motion, ,α ω  are computed with including body 

deformation. In the relative deformed body part in Equation (3.36), the nodal force 

vector subtracted inertial force vector from reference equation of motion should have no 

rigid body force. One can know that force equilibrium can be satisfied in relative 

deformed body equation if the position vector of generalized force acting on the reference 

body is the same with initial position vector with small deformation assumption in the 

rotational reference equation of motion as follows 

0 0u u u u= + ≈i i i iδ     (3.37) 

( )0 0
1

2
e

e

N

i i i i e p
i

dρ
= Ω

× × + × + × × Ω = ×∑ ∫ u α u ω u ω ω u u F&   (3.38) 

Employing this small deformation assumption in the rotational body reference equation, 

we can get a stable solution without additional calculation of approximated multipliers in 

Equation (3.33).  
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The constraint force in the mean axis reference condition redistributes the mass 

center and body coordinates axis to the point satisfying the reference conditions so that 

deformable body solutions should be shifted to the same magnitude of difference of 

reference coordinates and redistributed axis and center of mass, while the reference 

coordinates in the CG following reference conditions are updated to the point of 

redistributed axis and mass center as shown in Figure 3.5. 

 

Figure 3.5 The difference of mean axis and CG following reference conditions 
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3.3 EXAMPLES 

 

3.3.1 Evaluation of Partitioned Iteration Method: 2D Beam Problem 

 

Figure 3.6 2-Dimensional beam element 

For validation of PIM, a simple planar frame model is considered, as depicted in 

Figure 3.6  The axial deformation of each frame element is described by linear 

polynomial as,  

2

2
⎛ ⎞+ =⎜ ⎟
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x xd w dwdA EA f
dt dx dx

ρ     (3.39) 

while the transverse deformation is described using Euler-Bernoulli beam theory and 

Hermite cubic polynomial interpolations.  
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For this study the axial and transverse equations are uncoupled. The displacement field 

within the element is given by the following polynomials 
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= + + +
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ξ ξ ξ
    (4.27) 
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The number of coordinates for this element is 6, and the nodal displacement 

vector for the ith element can be written as  

[ ]1 2 3 4 5 6q = T
fi i i i i i iq q q q q q    (4.28)   

The exact location of an arbitrary point on the i-th element can be obtained using the 

element shape function and the vector of nodal coordinate as  

( )0u N u q= +i i fi      (4.29) 

where, 0ui  is undeformed body nodal coordinate of i-th element and N  is the element 

shape function matrix given by  
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 (4.30) 

For this example, the loading condition applied is a sinusoidal torque at the end of bar, 

with time history as shown in Figure 3.7. The simulation results provided are the 

solutions from the partitioned iteration method and floating frame of reference method 

using the mean axis reference condition. The linear elastic FE model is solved using the 

well-known trapezoidal integration rule, while the rigid body equations are solved using a 

general ODE solver suite (ode45, ode15s in MATLAB). 
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Figure 3.7 Flexible body model with finite beam elements and loading condition 

In the floating frame of reference formulation, Lagrange multipliers contribute to 

the solution of deformable body so also satisfy mean axis reference condition, i.e., the 

errors generated by the assumption of small deformation or linear elastic behavior in 

deformable body are corrected by these constraint forces. Therefore, if body deformation 

is small enough to be considered as linear elastic behavior, the constraint forces should be 

close to zero. As shown Figure 3.8-(a), the Lagrange multipliers decrease as the body 

stiffness increases. Also, the relationship of maximum peak values of Lagrange 

multipliers and the lowest frequency of deformable body can be seen in Figure 3.8-(b). 
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(a) 

 

(b) 

Figure 3.8 Rotational Lagrange Multiplier according to changing dynamic stiffness 
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The multiplier for satisfaction of the mean axis reference condition (MARC) in 

the floating frame of reference is compared with the approximated multiplier of PIM in 

Figure 3.9. The partitioned deformable body equation of motion in equation (3.36) can 

be solved using a linear elastic simulation solver without instability arising from the 

accumulation of numerical error during forward integration. Figure 3.10 show the 

difference of angular velocities of reference coordinates of mean axis reference condition 

and CG following reference condition. The reference of PIM with Approximated 

multipliers is in excellent agreement with the MARC reference coordinates. As seen in 

Figure 3.5, the difference between the CG following and Mean axis reference condition 

results in a different reference motion. Figure 3.10 shows the difference of the angular 

velocity of these reference conditions. 

The angular speeds and vertical displacement of the beam end point are compared 

in Figure 3.11 and 3.12. It can be seen that the results are in agreement with the floating 

frame of reference results. 
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Figure 3.9 Results of rotational Lagrange Multiplier 

 

 

Figure 3.10 Angular velocities of reference frame 
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Figure 3.11 Relative motion comparison: vertical displacement of beam end node 

 

 

Figure 3.12 Relative motion comparison: angular velocities of end node 
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Of prime importance is specifying an appropriate error tolerance for iteration 

convergence. The simulation result is deemed satisfactory to that of floating reference 

frame if the error tolerance is sufficiently small. However, the number of iterations 

increases with smaller error tolerances, which is directly related to the simulation cost. 

Figures 3.13 and 3.14 show respectively the average iteration count and Converged Value 

Error as a function of error tolerance. The Converged Value Error is defined as 

Converged Value Error: 
1

n n
e

n

u u
CVE

u=

−
= ⋅∑

sN

n

tΔ    (3.41) 

where,  n is time step, sN total time step number, n
eu  is deformation vector with error 

tolerance e and  nu  is converged deformation vector with error tolerance 2010− . Figure 

3.14 shows that for the range of error tolerance values from 810−  to 1810− , the average 

iteration number changes little. Also, converged value error is closed to zero for the range 

of error tolerance, which is smaller than 810− . The adequate error tolerance can be 

between 810−  and 1010−  for the simulation accuracy and cost as shown in Figure 3.13 

and 3.14. 

Figure 3.15 shows the average iteration number in accordance with the changing 

of a maximum norm of body deformation defined as 
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ddd
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⎛ ⎞
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⎝ ⎠ ⎝ ⎠= =

∑∫∫∫ f fq N N qu uu
 (3.42) 

where L  is total length of beam model. Note that the average iteration number reduces 

to one when the norm of body deformation reaches 810− , because the coupling forces is 

function of the magnitude of body deformation. Above this value, the problem is 
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effectively that of linear elasto-dynamics in which the body deformation has no effect on 

the reference motion. Figure 3.16 shows the iteration number comparison of ABAQUS 

non-linear and PIM results during 1000 simulation steps. As shown Figure 3.15, PIM 

needs 2350 iterations which is a smaller number of iterations than the 3008 iterations 

used by ABAQUS. Especially, in ABAQUS non-linear simulation, the stiffness matrix 

needs to be updated for the expressing with geometric nonlinearities with respect to the 

changing of body position at every time step, 

 

Figure 3.13 Average iteration number with respect to error tolerance 
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Figure 3.14 Converged value error with respect to error tolerance 

 

Figure 3.15 Average iteration number with respect to the norm of deformation 
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Figure 3.16  Iteration number comparison of ABAQUS Non-linear and PIM 

 

3.3.2 Plate Model with 3D Shell Elements   

A three dimensional shell element model having a center slot, depicted in Figure 

3.17, is solved using a partitioned iteration method and compared with that from the 

commercial multibody dynamics code ADAMS/FLEX. The plate uses the elastic shell 

element of FEAP. The model comprises 1196 nodes and 1116 elements. The coupling 

force is applied at the corner as depicted in Figure 3.16, which engenders a complex 

motion having three directional rotations in space. ADAMS/FLEX employs modes-based 

reduced order modeling for flexible components. These reduced order models are 

embedded in DAEs and solved with other rigid body components. This plate example 

shows the difference of flexible body results and the result of reduced order finite 

element model in ADAMS. The tolerance for the compatibility condition is 1010−  and 

time increment is selected as 0.001 second. Figure 3.18 shows the global body motion of 
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reference frame which is attached to center of mass of plate elements. It is seen to be in a 

good agreement with the ADAMS/FLEX results. 

 

Figure 3.17 Plate model with 3D shell elements and loading condition 

 

Figure 3.18 Angular velocities of reference frame in global coordinates 
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Figure 3.19 Von-Mises stress at the slot end position element (including 15 modes) 

 

Figure 3.20 Von-Mises stress at the slot end position element (including 100 modes) 
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Figure 3.21 Von-Mises stress comparison at the slot end position element  

The flexible body in ADAMS/FLEX can be constructed with modal based data 

imported using a special formatted file having file extension MNF (modal neutral file). 

This type of modal data has mode shapes, nodal point stress and natural frequencies 

including constraint modes and can be exported by commercial finite element analysis 

software such as NASTRAN, and/or ABAQUS. The modal data of the plate model was 

exported from NASTRAN normal mode analysis (solver 103). Figures 3.19 and 3.20 

illustrate and zoom in the Von-Mises stress time histories around a corner of slot area 

predicted using PIM and ADAM/FLEX between 0.3 and 0.4 seconds, in which the 

flexible body is solved with reduced order model including respectively 15 normal modes 

and 100 normal modes. It is seen that the ADAMS/FLEX stress result including 100 

modal data is closer to PIM result, which is obtained by FEAP with linear elastic finite 

element solver. Note that the results obtained using the partitioned iteration method is 
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different from the ADAMS results. The difference of shell element formulation in 

NASTRAN and FEAP can make a difference of time responses and stress magnitude 

between two simulation codes. Also, the difference of time histories of Von-Mises stress 

can be seen in Figure 3.21, the comparison of ABAQUS and PIM simulation results 

which include full nodal degree of freedom to solve dynamic response. As the results in 

Figure 3.20 and 3.21, one can know that the differences of element formulation make 

different simulation results in stress time histories.  

Figure 3.22 depicts the modified plate model reinforced with plate and bolt 

components. The result depicted in Figure 3.23 of this example also shows the difference 

of stress fields in PIM and ADAMS results. In order to express more exact stress 

concentration results at the area of bolt and reinforce plate, ADAMS/FLEX has to import 

modal data having high frequency mode, it means that additional normal modes analysis 

and reloading flexible body model for updating modal data. The PIM can be a useful 

analysis method and allow more accurate solutions for complex model having large 

rotational movement. 
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Figure 3.22 Reinforced plate model with throughout bolts 

 

Figure 3.23 Stress concentration differences of ADAMS/FLEX result and PIM at bolt and 
attached reinforced plate area 
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CHAPTER 4  

INTEGRATION FEM AND MBD CODES USING GLUING ALGORITHM 

 

The distributed simulation platform (D-Sim) was developed to cater to the 

distributed nature of collaborative design inside the supply chain of modern product 

development, and to significantly accelerate the product development process. It provides 

great potential in laying out innovative and new products in a cost-effective and timely 

manner. One of the challenges in developing such distributed simulation systems, is to 

integrate heterogeneous subsystem models, such as multibody dynamics subsystems 

models and finite element subsystems models for practical engineering problems. In this 

chapter, a practical distributed simulation environment enables using existing commercial 

packages, including a combination of multibody dynamics codes, such as MSC/ADAMS, 

and finite element codes without modifying their solvers and user interfaces. Rigid body 

motion of the overall system (or a subsystem) should be solved with the numerical 

integrators in a multibody dynamics code, while deformation of each individual 

component should be solved with the solvers in an existing finite element code. The 

flexible part of FEM is simulated using PIM and then coupled with a simple MBD model, 

which is simulated with a different computation processor in distributed simulation. The 

simulation results are combined using gluing algorithm. 
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4.1 GLUING ALGORITHM 

In the case of coupling MBD and FEM, it is difficult to satisfy all kinematic 

variables simultaneously at the interface, since each set of simulation results at the 

interface may be computed with different simulation schemes; for example, multibody 

dynamic system to solve the nonlinear differential and algebraic equations (DAEs) and 

classical finite element formulations, connected with modeling the inertial and stiffness 

of structural systems, employ infinitesimal rotations and displacements as nodal 

coordinates. 

One approach to code integration is to undertake cosimulation, in which the finite 

element program and the multibody dynamics program run concurrently, but separately. 

The need exists to exchange appropriate information, for example, kinematic and force 

data, between the two codes. In addition, the execution of the codes must be coordinated 

so that their combined solutions are identical or comparable to solutions that would be 

obtained from “all-at-once” approaches. The foundation of the gluing approach arises 

from the already disparate simulation models and programs in use within the industry. 

Rather than attempting to partition an existing model, the goal is to glue together an 

already partitioned model that may contain many different finite element and multibody 

dynamics models. For example, a detailed vehicle model that includes tires, leaf springs, 

suspension and steering components and joints, chassis frame, etc., can be developed.  

Different Gluing Algorithms ensue, depending on which group of interface 

quantities is considered as the defined input. Detailed descriptions of different Gluing 

Algorithms are given in Wang 2005 [13] . In general, Gluing Algorithms can be 

classified into three groups: T-T, X-T, and X-X, where X denotes kinematic quantities and 

T denotes force quantities. In the T-T algorithm, each system provides kinematic 
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quantities to the gluing coordination module. The coordinator then returns updated force 

quantities to the distributed systems; the systems update their dynamic states using these 

new force estimates. This process is iterated until convergence is reached. This algorithm 

provides the least intrusive change to existing finite element and multibody dynamics 

codes as the T-T algorithm has the structure of a general force element for most codes. 

The X-X Gluing Algorithm is the inverse of the T-T approach, whereby force quantities 

are provided to the gluing coordination module from each system. The coordinator then 

provides updated kinematic states to the systems. This approach may be viewed as a 

time-dependent prescribed kinematic boundary condition to be specified for each system. 

 

4.1.1 Formulation of Gluing Algorithm (T-T Method) 

In general, for the T-T Gluing Algorithm, if a proper set of interface force 

variables is defined such that the equilibrium conditions are satisfied, then only the 

compatibility conditions need to be considered during the iteration process. In this case, 

the interface force variables can be considered as functions of the interface kinematic 

quantities, and these interface force variables can be updated using the kinematic 

information and compatibility conditions. In this session, T-T gluing strategies are 

summarized. 

In the general case of a distributed system, let us consider that the equations of 

motion of each distributed subsystem in a dynamic finite element method can be written 

each as: 

, ( 1,2, , )M u C u K u = f+ + =&& & Li i i i i i i i n    (4.1) 
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in which iM , iC and iK  are the respective mass, damping, and stiffness matrices, 

if denotes the external forces, and iu , iv  and ia are the nodal displacement, velocity 

and acceleration vectors, respectively. In multibody dynamics, equation of motion can be 

written as a Differential Algebraic Equations (DAEs)  

 
i i i T i i
R q

i

⎧ + =
⎨

=⎩

M a Φ λ Q
Φ 0

    (4.2) 

where, i
RM denotes the inertia matrix, ia denotes the acceleration vector, iQ  denotes 

the generalized force vector, iλ is the vector of Lagrange multipliers, iΦ  represents the 

internal constraints, which are assumed to be holonomic. 

A Gluing Algorithm, named the T-T method, depends on only the interface 

information of subsystem models. Consequently, it can enable plug-and-play of the 

simulation models in a distributed simulation environment. In the general case, the i-th 

subsystem equation of motion Equation (4.1) and (4.2) can be written by interface 

forces and kinetic information as 

( , , ) ( 1,2, , )Ψ u u u f= =&& & Li i i i i
c c c c i n   (4.3) 

where, u&&i
c , u& i

c , ui
c   denote accelerations, velocities and displacements of the interface 

nodes or points, f i
c  denotes action-reaction forces at the interface, and n is the total 

number of subsystems to be integrated.  The problem here is to couple the subsystems’ 

equations in Equation (4.3) so that the equilibrium and compatibility conditions at the 

subsystem interfaces can be satisfied while individual equation (4.3) are solved 

independently. Figure 4.1 illustrates a general connection of subsystems, which can have 
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serial type connections and multiple type connections. In these two types of connections, 

compatibility and equilibrium conditions can be different with each other. 

In the general case, the subsystem interface force vector f i
c  in Equation (4.3) 

can be represented by a subset of the variables in F , and therefore i
cf  can be written as 

 ( ), ( 1,2, , )i i
c c i n= =f f F L     (4.4) 

 

(a) Serial-connected components  

 

(b) Multiple-connected components 

Figure 4.1 Gluing types of components 
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Assume U  is an assembly of the interface displacements of all subsystems, 

namely, 

 { }
1
c

Ti
c

n
c

⎧ ⎫
⎪ ⎪= = ⎨ ⎬
⎪ ⎪
⎩ ⎭

u
U u

u
M     (4.5) 

Then, an error measure e can be written as the function of interface kinetic quantity U  

 ( )=e e U        (4.6) 

In the general case, if the number of subsystems is n, the number of interfaces is n-1. 

Then, we can define the interface force vector  

 ( ) ( ) ( ){ }2 3, , ,F f f f= L
TT T Tn

A A A    (4.7) 

where i
Af  is the subset of independent force variables selected from i

cf , and thus 

 
i

i A
c i

R

⎧ ⎫
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⎩ ⎭

f
f

f
     (4.8) 

where i
Rf  contains the remaining force components in i

cf .  For convenience, we call 

i
Af  “active” or “action” forces and i

Rf  “passive” or “reaction” forces.  Passive forces are 

in general determined by the active forces of the adjacent subsystems. F  can represent 

the force space at the interfaces considered and F is self-balanced, i.e., the equilibrium 

conditions at the interfaces are automatically satisfied For example, for a system with the 

serial type connections shown in Figure 3.1, we have  

 ( )1, 1, 2, , 1i i
R A i n+= − = −f f L            (4.9) 

and the equilibrium conditions of multiple type connections can be 
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( )

1 2

m : multiple connected subsystem number with the i-th subsystem
f f f f+ + += − − −Li i i i m

R A A A (4.10) 

Let e  be an error measure vector that represents the violation of the 

compatibility conditions at the interfaces, where =e 0  indicates that the compatibility 

conditions are fully satisfied. In the general case, e  can be considered as  
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In multiple type connections, e  can be 
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In T-T Gluing Method, if a proper set of interface force variables is defined such 

that the equilibrium conditions are satisfied, then only the compatibility conditions need 

to be considered during the simulation process.  In this case, the interface force variables 

can be considered as functions of the interface kinematic quantities, and these interface 

force variables can be updated using the kinematic information and compatibility 

conditions. The target of the T-T Gluing Method is to finding interface forces, which 

satisfy compatibility conditions. Therefore, for the sake of finding interface forces 

satisfying the compatibility conditions, the Gluing Algorithm employs a  Newton-
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Raphson iteration method [58]. For the general solution of distributed simulation using 

Newton-Raphson method, the compatibility condition can be set as residue Re, where  

( ) ( ) 0Re F e F= =     (4.13) 

or 

( ) ( ) 0Re U e U= =     (4.14) 

The general problem is therefore formulated in terms of the discretized parameter 

as solution at the n+1 step of 

( )1 1 1( ) 0Re Re F e F+ + +≡ = =n n n    (4.15) 

Equation (4.15) defines a set of linear or nonlinear equations, which can be solved by a 

properly chosen algorithm of equation solvers. Then in the general case, the solution of 

Equation (4.15) arises due to the changing of interface forces 

1 1
1 1 1F F F+ +

+ + += + Δk k k
n n n     (4.16) 

Here, k is the iteration counter starting from n step solution. In the Newton-Raphson 

method, we note that, to the first order, Equation (4.15) can be approximated as 

( ) ( )
1

1 1
1 1 1 0

F F

ReRe F Re F F
F

+

+ +
+ + +

=

∂⎛ ⎞≈ + Δ =⎜ ⎟∂⎝ ⎠ i
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Equation (4.17) gives immediately the iterative corrector as 
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A series of successive approximation gives 
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Then in the general case, the interface force of the T-T Gluing algorithm can be updated 

as 

 1F F Λ e+ = − ⋅k k k    (4.20) 

where Λ  is called the gluing matrix or lambda matrix, which will be a constant matrix 

if Equation (4.15) is linear, or a function of F if Equation (4.15) is nonlinear. A gluing 

matrix can be obtained as 

 
1 1

1 1

F F F F
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F Fk k
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− −

= =

∂ ∂⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
   (4.21) 

Equation (4.20) simply implies that the interface forces can be updated (to satisfy the 

compatibility conditions) using only the kinematic information at the interface with an 

update rule such as that shown in Equation (4.20) provided the gluing matrix is obtained. 

Therefore, the key issue becomes how to obtain the Λ  matrix in Equation (4.21) in a 

systematic and efficient way. Equation (4.21) can be rewritten as 

11 u fe e
F u f F
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i in
c c

i i
i c c

   (4.22) 

and 

 
i

i c
i
c

∂
=

∂
uG
f

    (4.23) 

where iG is called interface flexibility matrix of subsystem i, which can be calculated by 

solving Equation (4.3) independently for each subsystem, where 1,2, ,i n= L .  It is 

important to note that Λ is essentially the inverse matrix of an assembly of the 
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subsystem interface flexibility matrices defined in Equation(4.23).  Therefore, e
u
∂

∂ i
c

 

and f
F

∂
∂

i
c  are called assembly matrices of subsystem i, and we will discuss them further 

below. 

With Equation (4.5) and (4.11) assembly matrices for serial type connections 

can be written as 
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Then from Equation (4.7), (4.9), we have 
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  (4.25) 

In the case of multiple type connections, assembly matrices of subsystem i 

(multiple connection at reactive interface of i-th subsystem) from Equation (4.12) can be 

written as 
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In the same manner of serial type gluing, we have   

fC B
F

i
i iTc

                                                 
∂

= =
∂

   (4.27) 

Usually, the number of interface degrees of freedom is much smaller than the 

number of total degrees of freedom of the subsystem model.  Therefore, Λ  can be 

easily calculated when ,( 1,2, , )i i n=G L are obtained.  The proposed approach treats 

each subsystem as a black box without accessing its internal information.  Subsystem 

interface matrices, iG , can be calculated by calling the independent solvers associated 

with the subsystem models, and the subsystems can be glued together using only the 

interface information.  

The gluing algorithm described above can be extended for solving finite element 

and multibody dynamics problems. For integration of finite element method based 

dynamics and multibody dynamics problem, the error measure can include accelerations, 

velocities and displacements at the interfaces or any combination of them. A similar 

process can be conducted to calculate the gluing matrix and thus couple the subsystem 

models. Examples show the integration of multibody dynamics and finite element 

simulations by a gluing algorithm in the next section. 
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4.2 EXAMPLES 

 

4.2.1 Coupling Rigid Body Link and Flexible Link of 2-D Beam FE Models 

 

Figure 4.2 Coupling rigid link of MBD and flexible link of finite beam elements 

This example demonstrates coupling a general multibody simulation and FE 

simulation, using the partitioned iteration method.  This example also demonstrates how 

to decouple and integrate the rigid multibody motion and elastic deformation in the D-

Sim using the developed gluing algorithm. As shown in Figure 4.2, the flexible body is 

the same model as two dimensional beam element model used in Chapter 3. The rigid 

links are solved using distributed ODE solvers. Each part is solved on its own 

independent processor and then glued together. The prescribed input is a sinusoidal speed 

of the first link. 
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The equation of motion of a multibody dynamics model for subsystems 1 and 3 

can be written as: 

 
i i i T i i

q
i

⎧ + =
⎨

=⎩

M a Φ λ Q
Φ 0

  (4.28) 

where, iM denotes the inertia matrix, ia denotes the acceleration vector, iQ  denotes the 

generalized force vector, iλ is the vector of Lagrange multipliers, iΦ  represents the 

internal constraints, which are assumed to be holonomic. In Fig. 4.2, the revolute joint 

connecting rigid link 1, flexible link 2 and rigid mass 3 are cut to form three subsystems. 

Then, the T-T gluing algorithm is applied as follows. 

The equations of motion for first subsystems is 
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where { }1
1 1 1, , Tx y θ=q , 2

1 1 1
1

12
=I m l , and 1 50=m and 1 3=l are the mass and length of 

link 1. For generalized force and constraint equations of the first linkage, we have 
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For the third system, rigid mass, we have  
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For the flexible body of second link, two-dimensional beam elements are solved using the 

partitioned iteration method in the previous Chapter 3. 
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( ) ( )intM q F F Q M R λ M θ λ+ = + − + − +&&&&&& ext
t rff f f f fr f θ   (4.34) 
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The compatibility condition for the system is the continuity of displacements at 

joint A and joint B which can be written as 
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    (4.36) 

Here we could also employ acceleration or velocity in the compatibility condition. The 

equilibrium condition at the joint becomes 
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As before, we define an interface force vector, 
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Applying the T-T method, theΛmatrix can be calculated as  
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In Equation (4.40), interface displacements u i
c  and interface forces f i

c of i-th 

subsystem can be defined as: 
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The interface flexibility matrix of subsystem i, which can be calculated by solving 

Equation (4.3) independently for each subsystem: 
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Then, assembly matrices of subsystem from Eqaution (4.24) and (4.25) can be written 

as: 
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For a nonlinear subsystem we approximate  

 m m

n n

x x
f f

∂ Δ
≈

∂ Δ
    (4.45) 

where m

n

x
f

∂
∂

 represents a component flexible matrix. Obviously, the amplitude of the 

nfΔ  will affect the outcome of theΛmatrix, and in general, the Λmatrix will be a 
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function of the interface forces calculated at the previous step.  In this paper, nfΔ is 

determined by a percentage of the corresponding interface force component, namely    

 n nf fεΔ =      (4.46) 

where, ε is a small ratio, which can be typically selected as 01.0=ε .  

The reaction force time histories between the first link and the coupler are shown 

in Figure 4.3 for both a flexible and rigid coupler model. Figure 4.3 shows the magnitude 

of converged interface force and the link position versus simulation time is depicted in 

the Figure 4.4. The time of peaks when 1st and 2nd link are collinear with each other(1st 

link position is 0° or 180°) are different, as expected. 

Figure 4.6 and 4.7 show comparisons of a distributed simulation results with 

ADAMS/Flex[73] simulation. The interface force and angular velocity of the flexible 

links are in a good agreement in global response. However, the flexible body responses 

differ slightly. ADAMS/Flex employs flexible elements whose component modes-based 

data are based on finite element codes such as NASTRAN. Table 4.1 shows the natural 

frequencies of two FE code beam models which result in the slight differences in 

simulation results. 
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Figure 4.3 Interface Force Magnitude between 1st and 2nd Link 

 

 

 

 

 

Figure 4.4 Link Position at each time 
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Figure 4.5 X directional Interface Force of 1st and 2nd Link 

 

 

 

Figure 4.6 Angular velocity of Reference frame of Flexible Link 
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Table 4.1 Natural Frequency of Beam Model (Hz) 

 NASTRAN  Flexible body  NASTRAN Flexible body 

1st 1.52E+01 1.54E+01 6th 1.32E+02 1.39E+02 

2nd 2.96E+01 3.02E+01 7th 1.69E+02 1.78E+02 

3rd 4.87E+01 4.99E+01 8th 2.09E+02 2.23E+02 

4th 7.22E+01 7.46E+01 9th 2.53E+02 2.72E+02 

5th 1.00E+02 1.04E+02 10th 2.71E+02 2.73E+02 

 

4.2.2 Distributed Simulation of Coupling MBD Model in ADAMS and FEM model 
in FEAP 

In this example, an upper body model and 4-Post excitation test model are solved 

using the gluing algorithm to demonstrate the coupled simulation of a multibody 

dynamics and a finite element model. The models are shown in Figure 4.7. A 4-Post is  a 

MBD model built in ADAMS/View and each post is modeled with a rigid body and a 

spring-damper assembly.  The body model uses the elastic shell element in FEAP, which 

has been wrapped in the demonstration simulation platform developed for D-Sim. The 

model comprises 6546 nodes and 6586 elements. Each post is glued at the body mount 

position and excited in the vertical direction using the time history shown in Figure 4.8 
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Figure 4.7 Simulation Model 

 

 

Figure 4.8 Input profiles of displacement at the front and rear post simulation model 
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The simulation is conducted with a global gluing time step of 0.001 s for a 5.2 s 

total simulation time. The average iteration number in each time step is 2.96 for the 5200-

step simulation, which is quite small for such a non-linear problem. Figure 4.9 shows the 

normal interface force at the front body mount. Figure 4.10 shows the snapshot of body 

stress contour and Figure 4.11 plots the stress time history at the area of side armor for 

the comparing the results using ADAMS/FLEX simulation code. As shown Figures 4.9 

and 4.11, the results of interface force and stress magnitude are in good agreement with 

each simulation results. 

 

 

Figure 4.9 Vertical directional interface forces at front body mount 
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Figure 4.10 Upper body Stress Contour (Von Misses) 

 

 

 

Figure 4.11 Von-Mises stress time history of gluing and ADAM/Flex results 
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CHAPTER 5  

ENHANCED GLUING ALGORITHM FOR DISTRIBUTED SIMULATION 

 

A Distributed Simulation Platform was developed to support the design tasks in 

multi-layered, distributed supply chains in modern manufacturing systems. Functionally 

and geographically distributed subsystems can be integrated only with the information at 

the interfaces of each subsystem without converting or sharing full subsystem models and 

without putting them together into one monolithic, assembled model. A Gluing Algorithm 

is a key component to realize distributed simulation to integrate different subsystem parts. 

In order to apply the gluing algorithm to general simulation problem, further study 

regarding its convergence, accuracy and efficiency is needed to exploit the full potentials 

of the gluing algorithm. 

One issue is an application of the gluing algorithm to integrate general models, 

which may be assembled with diverse connecting methods, including spot welds, bolts, 

bushings, and other physical connections. A proper modeling of flexible joint forces plays 

an important role in predicting the dynamic behavior of assembled system. Another issue 

is a stable gluing algorithm in the case of integrating models solved with different 

simulation schemes such as general multibody dynamic codes and linear elastic finite 

element codes.  

In this chapter, improved gluing algorithms are proposed for assembling the 

subsystem models to apply to general problems in distributed simulation. A flexible 

gluing algorithm which subsystem parts can improve the accuracy of the simulation to 
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represent the real physical system and also can improve the convergence of distributed 

simulation.  

 

5.1 FLEXIBLE GLUING ALGORITHM 

 

Figure 5.1 Vehicle underbody assembly connected with diverse joint elements 

 

Current research in multibody dynamic and finite element analysis, especially in 

the automotive industry evolves around the formulation of the governing equations that 

would include joint and link flexibility effects during motion, and specified motions to 

certain links and end-effecters. Figure 5.1 depicts a chassis frame of a passenger vehicle 

including suspensions, axle assembly and brake system. It is also possible to model 

flexible connectors such as the rubber bushes so commonly used to isolate vibration in 

vehicle suspensions. Proper modeling of flexible joint forces plays an important role in 

predicting the dynamic behavior of the assembled system. System elements such as 
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springs and dampers with non-linear force characteristics are also important to model 

properly.  

The primary role of the bushes in a suspension system of a passenger vehicle is to 

isolate the vehicle and driver from small amplitude, high frequency road inputs, so as to 

improve the ride quality of the vehicle. Blundell [84] and Amirouche [85] described the 

influence of rubber bush compliance on changes in suspension geometry during vertical 

movement relative to the vehicle body. The effects of the bushes on vehicle handling 

depend on whether the bushes have any influence on geometric changes in the suspension 

and road wheel as the wheel moves vertically relative to the vehicle body. To make good 

prediction regarding the characteristics of a flexible joint for vibration isolation in the 

design process, numerical models can be used. However, for a reliable prediction of the 

dynamic behavior of the isolator, the rubber material parameters need to be known. 

Mackerle [86] reviews the finite-element methods applied to the analysis and simulation 

of rubber and rubber-like materials. Beijers et. al. [87] proposed a method based on an 

optimization procedure in which the material parameters of a numerical model are 

updated in such a way that a fit is accomplished with experimentally determined 

measurement data with static force-displacement material properties and the dynamic 

material parameters. Ledesma et. al. [88] presented a formulation of nonlinear 

viscoelastic bushing forces as massless force elements between two bodies in a multibody 

system.  

The flexible gluing algorithm can deal with various connections between 

subsystems, and can account for flexibility at these connections as shown in the Fig. 5.2.  

These flexible joints embedded in a gluing algorithm can improve the accuracy of the 

simulation to represent the real physical system and can ensure convergence at singular 
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points in the multibody dynamic simulation. In the distributed simulation, it is important 

to accurately predict the dynamic loads that act on the subsystem components at the 

gluing interface because these loads feed directly into the fatigue life prediction of the 

components, in the durability analyses. 

 

 

 
Figure 5.2 Flexible joints at the interface – rubber mounts 
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5.1.1 Expression of Flexible Joints in D-Sim 

The key component to realize distributed simulation is the gluing algorithm. A 

gluing algorithm aims at performing successful simulations by establishing an interface 

between existing codes and must efficiently maintain the “privacy” of the individual 

component models. Expressing sthe flexible effect of an interface is another challenge of 

distributed simulation. For the numerical expression of interface or joint flexibilities 

between subsystem components using gluing algorithm, it is necessary to consider the 

gluing formulations and the characteristics of a gluing methodology. In chapter 4, we 

reviewed a general gluing methodology and its formulations for application to distributed 

simulation.  

For expressing flexible effects of interfaces or joints in distributed simulation, 

there are two types of approaches. First, the flexible joint is modeled the same as other 

component parts and simulated with an independent solver in D-Sim, as shown in the 

Figure 5.3-(a). This method can be useful in the case of considering the dynamic response 

of the flexible component itself. Thus, joint models can be solved in D-Sim without 

changing of original gluing algorithm. Second, flexible joints are embedded in the gluing 

algorithm using the simplified model in the Figure 5.3-(b). This method is more efficient 

in the case when considering the global motion of assembled system. Since the first case 

can be sufficiently simulated in the proposed D-Sim platform, only the,second case using 

a flexible gluing algorithm will be discussed in this dissertation. 
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(a) Integration of flexible joint model 

 

(b) Flexible gluing algorithm 

Figure 5.3 Gluing methods of integrating components with a flexible joint in D-Sim 
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5.1.2 Flexible Gluing Formulation 

The objective of the T-T gluing algorithm during iteration is to find interface 

forces while satisfying the compatibility condition. It is obvious that the simulation 

results at the interface are the same as the result of the assembled model using a fixed 

joint at the interface. Figure 5.4 illustrates an integration of subsystems with flexible 

joints which can be modeled with spring and damper systems to represent the dynamic 

characteristics of a flexible joint. A flexible joint such as the rubber bushing element in 

the commercial multibody dynamic programs e.g., ADAMS [89] and DADS [90], can be 

expressed with a Kelvin-Voight model. This Kelvin-Voight model is superposed with 

force components of translational and rotational springs and dampers. In this dissertation, 

in order to express the forces of flexible joints, a Kelvin-Voight model is considered. As 

shown in the Figure 5.4, a flexible joint can be represented by a spring in parallel with a 

viscous damper. 

 

Figure 5.4 Flexible gluing connectors 
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Figure 5.5 Force equilibrium at the interface between two subsystems 

Figure 5.5 depicts the force equilibrium condition at the i-th interface between  i-

th and (i+1)-th subsystem as 

( )1, 1, 2, , 1f f fi i i
R fl A i n+= = − = −L    (5.1) 

To represent the flexible joint, it is necessary that the compatibility condition should be 

change into constraint condition defining between the relation of interface forces and 

displacements. The number of flexible joint is the same with the number of interfaces. 

One can define the displacement of the i-th flexible joint as: 

   _ 2 _1q u ui i i
fl fl fl= −     (5.2) 

where _1ui
fl  and _ 2ui

fl  are virtual interface nodes for the expressing a relation between 

forces and displacements of flexible joint:  

   c q k q fi i i i i
d fl st fl fl+ =&     (5.3) 
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where qi
fl , qi

fl&  are respectively displacements and velocities of the flexible joint at the 

i-th interface, and where ci
d  and k i

st  are respective viscous damping and stiffness 

matrices to describe the dynamic characteristics of joint elements. These stiffness and 

damping parameters can be fit to experimental data. These stiffness and damping 

properties can be linear and/or nonlinear according to the displacements and velocities 

characteristics. Non-linearity of flexible joints can be important for accurately predicting 

the dynamic behaviors of an assembled system. Then, the displacement vector of flexible 

joint can be defined as 

1 1q q q qT T i T n T
fl fl fl

−⎡ ⎤= ⎣ ⎦K L    (5.4) 

For satisfaction of the compatibility condition at the interface, the interface error 

measured between subsystems and the displacement of flexible joint must satisfy 

e q 0− =      (5.5) 

The goal of T-T Gluing Method is to finding interface forces, which satisfy 

compatibility conditions. Therefore, when using Newton-Raphson iteration method, 

above compatibility condition can be set as residue as a function of interface forces 

( ) ( )Re e q e F q F= − = −     (5.6) 

The problems is therefore formulated as a solution in terms of the discretized parameter 

at the n+1 step 

( )1 1 1( ) ( )n n n+ + += − ≈Re F e F q F 0   (5.7) 

In Chapter 4, the interface errors e  in Equation (5.7) are defined as a set of 

linear or nonlinear equations, which can be solved by a properly chosen equation solver. 
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The displacement vector q  of the flexible joint can be solved with an independent 

solver embedded in the gluing algorithm because the equation of motion of the flexible 

components is simpler and has fewer degrees of freedoms than other subsystems. In the 

general case, the solution of Equation (5.7) arises due to the changing of interface forces 

1 1
1 1 1F F Fk k k

n n n
+ +
+ + += + Δ     (5.8) 

Here, k is the iteration counter starting from n step solution (for 0k = ). In the Newton-

Raphson method, we note that, to the first order, Equation (5.7) can be approximated as 

( ) ( )
1

1 1
1 1 1 0

F F

ReRe F Re F F
F i

n

k k k
n n n

+

+ +
+ + +

=

∂⎛ ⎞≈ + Δ =⎜ ⎟∂⎝ ⎠
  (5.9) 

Equation (4.17) gives immediately the iterative corrector as 

( )
1

1
1
1 1

F F

ReF Re F
F k

n

k k
n n

+

−
+
+ +

=

∂⎛ ⎞Δ = − ⋅⎜ ⎟∂⎝ ⎠
    (5.10) 

A series of successive approximation gives 

( )
1

1
1
1 1 1

F F

ReF F Re F
F k

n

k k k
n n n

+

−
+
+ + +

=

∂⎛ ⎞= − ⋅⎜ ⎟∂⎝ ⎠
   (5.11) 

Then in the general case, the interface force of the T-T Gluing algorithm can be updated 

as 

 1F F Λ ek k k
fl

+ = − ⋅    (5.12) 

where Λ fl  is called the flexible gluing matrix or lambda matrix, which is a function of F.  

A flexible gluing matrix can be obtained as 
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1 1

1 1

F F F F

Re e qΛ
F F Fk k

n n

fl
+ +

− −

= =

∂ ∂ ∂⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
   (5.13) 

In Equation (4.21), e
F

∂
∂

 is already defined in original gluing algorithm as 

1

u fe e
F u f F

B G C

i i
c c

i i
c c

n
i i i

i

   (i=1 n)
=

⎛ ⎞∂ ∂∂ ∂⎛ ⎞ = ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

= ∑ L

    (5.14) 

where u
f

i
c
i

c

∂
∂

 in the Equation (5.14) is interface flexibility matrix of subsystem i, which 

is same as the flexibility matrix in original gluing algorithm( 1,2, ,i n= L ). Then, 

flexibility matrix of flexible joints is given by 

q fq q
F q f F

i i
fl fl

i i
fl fl

∂ ∂∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
    (5.15) 

with Equation (5.4), and assembly matrices can be written as 

0

q B I
q

0

i
fli

fl

⎡ ⎤
⎢ ⎥
⎢ ⎥∂ ⎢ ⎥= =

∂ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

M

    (5.16) 

Using the force equilibrium condition of Equation (5.1), we have 

[ ]
f

C B 0 I 0
F

i
fl i i T

fl fl

⎛ ⎞∂
= = − = −⎜ ⎟⎜ ⎟∂⎝ ⎠

L L   (5.17) 

Then, the flexible matrix of flexible joints for the gluing matrix can be written as 
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1

1

1

1

1

q
0 0

f

0
qq G B G C
fF

0
q

0 0
f

fl

fl

iN
fli i i

fl fl fl fl i
i fl

n
fl

n
fl

−

−

−

⎡ ⎤∂
⎢ ⎥

∂⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∂∂⎛ ⎞ = = = − ⎢ ⎥⎜ ⎟ ∂∂⎝ ⎠ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∂
⎢ ⎥

∂⎢ ⎥⎣ ⎦

∑

L

O M

M

O

L

  (5.18) 

In the case of multiple type connections, force equilibrium condition of Equation 

(5.1) should be changed to 

( )

1 2f f f f fi i i i i m
R fl A A A

m : multiple connected subsystem number with the i-th subsystem

+ + += = − − −L
(5.19) 

and the compatibility condition can be written as  

q
q

q

q

i
fl
i
fl

i
fl

i th interface

⎧ ⎫
⎪ ⎪ ⎫⎪ ⎪ ⎪⎪ ⎪ ⎪= −⎨ ⎬ ⎬
⎪ ⎪ ⎪
⎪ ⎪ ⎪⎭⎪ ⎪
⎩ ⎭

M

M

M

    (5.20) 

Then, the assembly matrices of subsystem i from Equation (5.19), (5.21) can be written 

as 



 117

i
fli

fl

m connetions
i th subsystem

of subsystems

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎫
⎢ ⎥ ⎪⎫∂ ⎪⎢ ⎥= = −⎪ ⎬⎢ ⎥∂ ⎬ ⎪⎢ ⎥ ⎪ ⎪⎭⎢ ⎥ ⎭
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

0
Iq B

q
I

0

M

M

M

  (5.22) 

From same manner of serial type gluing, we have   

f
C B

F

i
fli iT∂

= = −
∂

   (5.23) 

Then, the flexible matrix of flexible joints for the gluing matrix can be written as 

1

1

1

1

1

q
0 0

f

0
q
f

q B G C
F

q
f

0
q

0 0
f

fl

fl

i
fl
i
fln m

i i i
fl fl fl

i i
fl
i
fl

n
fl

n
fl

i th interface
− −

−

−

⎡ ⎤∂
⎢ ⎥

∂⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ⎫
⎢ ⎥ ⎪∂⎢ ⎥ ⎪∂ ⎪⎛ ⎞ ⎢ ⎥= = − −⎬⎜ ⎟ ⎢ ⎥∂⎝ ⎠ ⎪⎢ ⎥∂ ⎪⎢ ⎥ ⎪∂ ⎭⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∂
⎢ ⎥

∂⎢ ⎥⎣ ⎦

∑

L L

O

M

M O M

M

O

L L

(5.24) 
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5.2 PENALIZED METHOD FOR GLUING ALGORITHM 

To integrate subsystem parts with gluing algorithms in D-Sim requires finding the 

interface forces that satisfy compatibility conditions, when using the T-T gluing method. 

In this section, the T-T gluing algorithm is improved using a stabilized constraint 

approach. Consequently, the new algorithm can be applied to dynamics simulation of 

both finite element models and multibody dynamics system models. 

 

5.2.1 Strategies of Gluing Algorithm 

A gluing algorithm is the fundamental and essential part of a distributed 

simulation. Thus it is necessary to the understand gluing algorithm to improve its 

application to the integration of general purpose simulation models. In [16], the author 

investigated five different gluing algorithms namely, BCG (Baumgarte’s Stabilization 

with CG solver), RAL (Relaxed Augmented Lagrange Method), PSS (Park’s Staggered 

Stabliliation Scheme) and MOP (Manifold Orthogonal Projection Method) MEPI 

(Maggi’s Equations with Perturbed Iteration), which are suitable for systems that can be 

modeled by semi-discrete DAEs of the form 

T
qMq +Φ λ = Q

Φ = 0
⎧
⎨
⎩

&&
    (5.25) 

where q represents the generalized position coordinates of the system, M  the 

generalized inertia matrix, λ  the Lagrange multiplier vector, Φ  the holonomic 

constraints in the system, in which q
ΦΦ q

∂= ∂  and which is assumed to have full row 

rank. Equation (5.25) is essentially the equation of motion for a general multibody 

dynamics system. When the system is decomposed into several sub-domains, the inertia 
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matrix M  and the generalized force vector Q can be decoupled easily into sub-domains. 

However, the constraint force, T
qΦ λ , usually cannot be easily decoupled. 

 In the case of coupling MBD and FEM models using the T-T gluing algorithm, it 

is difficult to satisfy kinematic variables (accelerations, velocities and displacements) 

simultaneously at the interface, since each set of simulation results at the interface is 

computed, in general, with different simulation schemes. For example, if the 

accelerations of each subsystem part are matched at the interface using a gluing algorithm, 

velocity or displacement errors can be generated during the distributed simulation. In the 

case of gluing different simulation subsystems such as MBD and FEM, satisfying 

compatibility conditions in other kinematic variables cannot be guaranteed with single 

variable gluing, and instability problems induced by interface error accumulation can 

cause distributed simulations to diverge. 

 

5.2.2 Stabilized Constraint Approach 

One can reduce the index of DAEs by repeatedly differentiating the constraint 

equations in Equation (5.25) to take advantage of their better numerical properties for 

general time integration schemes. Differentiation of the constraint will transform the 

original DAEs to lower index system with invariants. Some stabilization measures must 

be taken if longer time simulation is required. Baumgarte’s stabilization [91] is probably 

the most widely used scheme for practical engineering applications. It replaces the 

holonomic constraint in Equation (5.25) by linear combination of the constraint and its 

time derivatives in such a way that the differential equations for the constraints are stable. 
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The acceleration constraint, 0Φ =&& , is obtained by differentiating Equation (5.25), 

and the resultant index-1 DAEs are 

( )
q

qq

M Φ q
Φ q ΦΦ 0 λ

T

t

Q⎡ ⎤⎡ ⎤ ⎧ ⎫
= ⎢ ⎥⎢ ⎥ ⎨ ⎬ − +⎢ ⎥ ⎩ ⎭ ⎢ ⎥⎣ ⎦ ⎣ ⎦

&&

& &&
  (5.26) 

An analysis of 0Φ =&&  leads to two repeated poles at the origin. This is a 

marginally stable system. A small perturbation, such as round-off errors from numerical 

time integration, will accumulate violations in the position invariant Φ , which grow at a 

quadratic rate with respect to time step size. To damp out these violations, Baumgrate 

proposed using  

22 0Φ Φ Φα β+ + =&& &     (5.27) 

By carefully choosing the α  and β , we can obtain a stable solution of DAEs. However, 

these parameters can only be tuned on a case-by-case basis in such a way that the 

dynamics of the system matches the decay time constant. 
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5.2.3 Penalized Method Using Baumgarte’s Stabilization 

 

Figure 5.6 Compatibility conditions at the interface 

As shown in the Figure 5.6, the compatibility condition should be satisfied with 

all kinetic variables at the interface. Since each subsystem simulation result is computed 

with a different simulation scheme, a penalized compatibility condition can provide more 

stable results at every time step using a Baumgarte stabilization. 

22 0e e e ea v dξω ω= + + ≈     (5.28) 

where ω and ξ are the respective natural frequency and damping ratio of penalized 

compatibility condition. Consequently, the Gluing Matrix should be calculated as same 

manner with the definition of interface error. 

1
22e e eΛ

F F F
a v dξω ω

−∂ ∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂ ∂⎝ ⎠
   (5.29) 
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5.3 EXAMPLES 

In this section, four examples are presented to demonstrate the developed 

simulation methodology with an emphasis on the flexible gluing algorithm. First, a one 

dimensional spring mass system connected with linear and nonlinear flexible gluing 

models is used for verification of proposed flexible gluing algorithm. Second, a four bar 

link model of a rigid multibody dynamics simulation is simulated to demonstrate that the 

flexible gluing algorithm can improve the convergence of the fixed type gluing algorithm 

for multibody dynamics simulation that may have singularity problems. Third, the four-

bar link model with deformable body solved with PIM in Chapter 4 is used to illustrate a 

penalized method for gluing algorithm application. Finally an integration application of a 

FE upper body model and a multibody dynamics model of a frame and suspension on a 4 

post shaker test system is used to demonstrate the flexible gluing algorithm to incorporate 

the effects of body mounts. 

 

5.3.1 One Dimensional Spring Mass System Connected with Linear and Non-
Linear Flexible Gluing Joints 

To demonstrate the proposed flexible gluing algorithm, simple distributed 

subsystem models are set as shown in the Figure 5.7. A one dimensional spring-mass 

assembled model is solved using the proposed flexible gluing algorithm and compared 

with the result of an all-at-once model including linear and non-linear spring dampers. 

The parameters for the spring-mass subsystem are  

1 2 3 10
100 /
10

m m m kg
k N m
F N (constant)

= = =

=
=
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Figure 5.7 One dimensional spring mass model connected with flexible joints 

A constant force extF  excites 3m  of the second subsystem. The first subsystem 

is a one degree of freedom mass and spring system described as 

1 1 1 im u ku f+ = −&&      (5.30) 

The second subsystem is two degree of freedom mass and spring system written as 

2 2 2

3 3 3

0
0

im u uk k f
m u uk k F

−⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤
+ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎩ ⎭ ⎩ ⎭

&&

&&
   (5.31) 

The number of subsystems is two, and the number of interface is one. The flexible joint is 

embedded in the gluing algorithm, where the interface force/displacement relation can be 

written as 

 1d fl st flc q k q f+ = −&     (5.32) 

in which,  

1 1
_ 2 _1fl fl flq u u= −     (5.33) 
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Because there is only one interface, the assembly matrix to obtain the gluing matrix is 

simple using Equation (4.24) and (5.16) as 

 1 1 2 2 1 1[ 1] [1] [1]B C B C B Cfl fl= = − = = = − =    (5.34) 

The flexible gluing joint properties are given as 

Linear Flexible Gluing Case: 

( )
( )

0 0

0 0

100

2 0.707 10
st

d

k k k

c c c

= =

= = × ×
    (5.35) 

Non-Linear Flexible Gluing Case: 

( )
( )

1
0 1 0 1

1 4
0 0 1

100, 1000

2 0.707 10, 2 0.707 10
st fl

d c fl

k k k q k k

c c c q c c

= + = =

= + = × × = × ×&
 (5.36) 

For the guidelines for selecting Flexible Gluing parameters in the general case 

Zeid [92] proposed setting the parasitic spring stiffnesses by the largest imaginary part of 

the eigenvalues of the system with coupling springs was computed as a function of the 

parasitic stiffnesses, which were then set so that the eigenvalues were ten times the 

highest natural frequency of the original system.  

The equations of motion for all-at-once model are written as 

1 1 1 1

2 2 2 2

3 3 3 3

0 0 0 0 0
0 0 0 0
0 0 0 0 0 0

d d st st

d d st st

m u c c u k k k u
m u c c u k k k k u

m u u k k u F

− + −⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ − − + − =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭

&& & &

&& & &

&& & &

(5.37) 

Each subsystem, flexible gluing joint and all-at-once model are solved using the same 

time integration method, namely the well-known trapezoidal integration rule and a 

Newton-Raphson iteration method is employed for non-linear case. The tolerance for 
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convergence is 1e-10 and a time step size of 1e-2 was selected. Figures 5.8 and 5.9 show 

comparisons of the results obtained using flexible gluing simulations with the results of 

all-at-once simulation for the linear flexible gluing case. Figures 5.10 and 5.11 show 

comparisons of the results obtained for the non-linear flexible gluing case. The gluing 

simulations are in good agreement with the all-at-once simulation results. 

 

Figure 5.8 Displacement of 3m  ( linear flexible gluing) 
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Figure 5.9 Acceleration of 3m  ( linear flexible gluing) 

 

Figure 5.10 Displacement of 3m  ( Non-linear flexible gluing) 
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Figure 5.11 Acceleration of 3m  ( Non-linear flexible gluing) 

 

5.3.2 Planar Four-Bar Link Mechanism with A Flexible Gluing Joint  

 

Figure 5.12 Planar Four-Bar Link Mechanism 
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In this example, a planar four-bar link mechanism is considered for verification of 

the flexible gluing algorithm for simulating a multibody dynamics problem. Figure 5.12 

depicts the four-bar link model separated into three subsystems. The original T-T gluing 

algorithm dealing with fixed type gluing may fail to pass the singular point of a 

mechanism, as encountered in previous research [17], when all the bars lie on the same 

line. In these singular points in multibody dynamics problems, the interface forces 

(constraint forces at joints) are ideally of infinite value to satisfy the compatibility 

condition (constraint equations) because all subsystems are considered as perfectly rigid 

body and none of the joints has compliance. Commercial multibody dynamics program 

such as ADAMS can deal with these kind of singular points during solving multibody 

dynamics models by intentionally changing the simulation time increment in order to 

quickly pass over the singular points within a specified convergence error [89]. Because 

the real subsystem components are not perfectly rigid bodies and real joint elements have 

compliance, it is necessary to consider component and joint flexibility for good accuracy 

and good convergence of simulation results. Instead, using the proposed flexible gluing 

algorithm, one can deal with singular points in multibody dynamic problem and more 

accurately predict joint element dynamic behaviors.  

As shown Figure 5.12, the separated subsystem parts are modeled as rigid bodies 

and two interfaces are defined as gluing points, where each part is simulated using the 

Matlab solver(ode45, ode15s). The simulation results of each part are glued together at 

0.01 time increments. The parameter values of both flexible joints are 610 ( / )stk N m=  

and 32 0.707 10 ( sec/ )dc N m= ⋅ ⋅ ⋅ . Table 5.1 presents a comparison of the total number of 

iterations and the number of times the gluing matrix was updated, where gluing matrix 
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was updated if the iteration number exceeded 10, with different interface error tolerances. 

As shown in Table 5.1, the flexible gluing algorithm provides better convergence than the 

fixed type gluing algorithm. Figures 5.13 and 5.14 plot the comparisons of interface 

forces and angular velocities of first link. As shown in Figure 5.13, the peaks generated at 

the singular point and interface force oscillation remain and effect the simulation results 

after the singular point for the fixed type gluing, but the flexible gluing result show the 

oscillation is dissipated after the singular points are passed. 

 

 

 

Figure 5.13 Comparison of interface forces at the 1st joint of fixed and flexible type 
results 
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Figure 5.14 Comparison of angular velocity of the 1st link of fixed and flexible type 
results 

Table 5.1 Comparison of fixed type gluing and flexible type gluing algorithm results 

Interface Error 

Tolerance 

Gluing Matrix Updating Number Total Iteration Number 

Fixed Glue Flexible Glue Fixed Glue Flexible Glue 

1e-7 - 0 - 2616 

1e-8 16 0 4935 3016 

1e-9 18 0 5217 3457 

1e-10 - 0 - 3943 

( - : failure to pass singular points)

 

5.3.3 Four-Bar Crank Slider Glued with Penalized Method. 

This example employs the same model used for integration of multibody dynamic 

and finite element simulation codes from Chapter 4. In the case of coupling MBD and 

FEM, it is difficult to satisfy all kinematic variables simultaneously at the interface, since 
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each set of simulation results at the interface may be computed with different simulation 

schemes. 

 

Figure 5.15 Four-bar crank slider distributed simulation model 

 

In the subsystem parts depicted in Figure 5.15, the rigid link is solved using 

Matlab (ode45) and the flexible link is solved using the PIM method of the previous 

chapter. If one integrates distributed subsystems with original T-T gluing algorithm using 

acceleration information to check the compatibility condition at the interface, other 

variables such as velocity and displacement may be not satisfied the compatibility 

condition. Figure 5.15 shows the interface error of acceleration and Figure 5.15 shows 

displacement error for different gluing parameters. In the previous gluing algorithm, only 

one class of variable such as acceleration or displacement could be used for the checking 

compatibility condition. As shown Figure 5.16 and 5.17, the errors of compatibility 

conditions are more stable when using the penalized compatibility condition. 
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Figure 5.16 Comparison of acceleration error at the interface between 1st & 2nd Link 

 

Figure 5.17 Comparison of displacement error at the interface between 1st & 2nd Link 
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5.3.4 Integration of Compliant Connectors with Flexible Gluing Algorithm 

The flexible gluing connector was formulated for considering both linear and non-

linear springs and dampers. Assumption of linear response of connectors such as rubber 

bushings, mounst and other joints or connectors can be sufficient for many noise and 

vibration simulations since the whole simulation model is assumed linear. However, for 

specially focused simulations like durability and vibration in low frequency range, it is 

necessary that the rubber mounts be modeled with their non-linear properties. In this case, 

the assembled model should be solved with non-linear dynamics and/or nonlinear 

transient FE analysis. Using the non-linear flexible gluing connector within the 

distributed simulation platform, the component models can be computed simply with 

linear elastic solver. Thus, a nonlinear simulation can be computed efficiently in 

distributed simulation platform. 

 

Figure 5.18 Gluing under body of MBD model and upper body of FE model with 
Flexible gluing algorithm 
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Figure 5.18 depicts a distributed simulation for the case of a multibody dynamics 

subsystem model for frame and suspension system on a four post shaker system and a 

Finite Element model of a HMMWV upper body, which is same model used in 

integrating rigid body and linear elastic deformed body in the previous chapter. The four-

post excitation inputs are also same with the previous verification example 4.3.2. The 

interfaces of gluing algorithm are set at the body mounts positions between the upper 

body and frame. A flexible gluing algorithm is used to model the rubber bushing 

components at the body mount, where the parameters of Equation (5.36) are chosen as 

0 1

0 1

3.0 5 1.0 4
1.5 3 1.0 2

k e k e
c e c e

= =
= =

       

These,parameters were arbitrarily selected to show the effect of body mountswithin the 

flexible joint. Figure 5.19 plots the interface forces at the front body mount compared 

with fixed type gluing results. We see the effect of flexible gluing algorithm in the 

interface force, which can make different dynamic response in the flexible subsystem 

components. 
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Figure 5.19 Comparison of vertical directional interface forces at front body mount  
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CHAPTER 6  

CONCLUSIONS AND FUTURE WORK 

 

6.1 CONCLUSIONS 

The need for a distributed simulation methodology to integrate heterogeneous 

simulation models, which are models for a general multibody dynamic (MBD) simulation, 

linear/nonlinear Finite Element (FE) simulation, is addressed in this dissertation. 

Integration of multibody dynamic analysis and Finite Element analysis using a 

Partitioned Iteration Method (PIM) is demonstrated in the Distributed Simulation 

Platform, so that the distributed simulation can be improved in order to solve more 

general problems in engineering.  

First, The Partitioned Iteration Method addresses the motion of flexible bodies 

represented by coupling FE and MBD models and codes. The PIM is an efficient method 

to embed in a distributed simulation environment because the deformation of body can be 

solved using a linear elastic FE solver. This method is formulated employing the mean 

axis reference condition and also a C.G. following reference frame with an iteration 

scheme. The reference motion and the flexible body are solved using separate solvers. 

This approach overcomes the weakness of linear elastodynamics, which is based on the 

assumption that the effect of flexible body deformation on the reference motion can be 

neglected. Examples were given that demonstrate good correlation between the PIM and 

the floating frame of reference approach.   
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Second, integration of subsystem models, such as multibody dynamics 

subsystems models and finite element subsystems models for practical engineering 

problems, e.g., detailed durability or NVH simulation, was demonstrated with seamlessly 

integrated simulation and design tasks in a distributed computing environment.  Ideally, 

a practical distributed simulation environment should allow using existing commercial 

packages, including a combination of multibody dynamics codes, such as MSC/ADAMS, 

and finite element codes, such as FEAP, which has been wrapped in the demonstration 

simulation platform without modifying their solvers and user interfaces. Rigid body 

motion of the overall system (or a subsystem) should be solved with the numerical 

integrators in a multibody dynamics code, while deformation of each individual 

component should be solved with the solvers in an existing finite element code. This 

coupling method of FEM and MBD can be easily extended to consider nonlinear and 

large deformation of the flexible body and other nonlinearities in the flexible multibody 

systems and has great promise for practical engineering use. 

Third, the key component to realize the distributed simulation is the gluing 

algorithm. Improved gluing algorithms were proposed for assembling the subsystems 

models with general rigid or flexible connections. The expressing methods of the flexible 

joint effects in D-Sim are addressed in this study. The flexible joints embedded in gluing 

algorithm can improve the accuracy of the simulation to represent the real physical 

system and the convergence at singular points in the multibody dynamic simulation. A 

distributed simulation can provide an accurate prediction of the dynamic loads that act on 

the subsystem components at the gluing interface because these loads feed directly into 

the fatigue life prediction of the components. 

 



 138

 

Overall, the main contributions of this research include: 

1. Partitioned Iteration Method for coupling FE and MBD in D-Sim 

A. Formulation of general equation of motion of FE flexible body including mean 

axis reference condition. 

B. Separation of flexible body formulation in the floating frame of reference into 

rigid motion and flexible body motion. 

C. Flexible body is solved with simulation model already built for the linear 

elastic simulation. 

D. The quadratic velocity correctors in rigid and flexible motion are updated with 

iteration. 

2. Demonstration of Integration MBD and FE within D-Sim 

A. Application to three dimensional elements- beam, shell 

B. Demonstration of coupling MBD and FE with vehicle simulation model  

3. Linear/Nonlinear Flexible Gluing Connector are added to previous Gluing 

Algorithm 

A. Formulation of flexible gluing matrix with linear stiffness and/or damping  

properties 

B. Validation of Flexible gluing connector with upper body and main frame of 

HMMWV 

4. Penalized Method using Baumgarte Stabilizaton 
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6.2 FUTURE WORK 

To apply the proposed methodology to solve practical engineering problems, 

improvements should be made in both the academic research and the engineering 

implementation. 

 

6.2.1 Improve Gluing Algorithm 

The developed T-T gluing algorithm has been applied to the integration of 

different simulation models, including both finite element and multibody dynamics 

models and has achieved satisfactory results. However, to apply the gluing algorithm to a 

very general simulation problem, convergence, accuracy and efficiency will be needed to 

exploit the full potentials of the gluing algorithm. The integration of individual and high 

fidelity simulation models together in a distributed way to study the behaviors of 

complex systems will greatly benefit both the science and the engineering fields.  

The flexible gluing algorithm and penalized method in Chapter 5, are examples of 

improving gluing algorithm to relax the compatibility condition and to give numerical 

damping effects for convergence at special range during distributed simulation. In the 

view of numerical efficiency, it has no limitation to use distributed computer resources, 

however, their is a disadvantage since iterative scheme is used to obtain the converged 

simulation results. Thus, it can be a good study issue to develop integration method 

without trial simulation for finding interface variables. 

6.2.2 Improve Partitioned Iteration Method 

The methods of large rotation and displacement problem which are floating frame 

of reference, linear elastodynamics and partitioned iteration method are presented in 
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Chapter 3. The Partitioned Iteration Method facilitates the integration of finite element 

models and multibody dynamics models in the D-Sim Platform since the reference 

motion and the deformation of flexible body are separately simulated in the distributed 

independent solver, and also the flexible body models already constructed for the linear 

elastic simulation can be used.  

The partitioned iteration method uses iteration, which might have a relative high 

computing cost in the case of solving a flexible body having a large degree of freedom. 

The improvements of iteration procedure to obtain the coupling forces (the quadratic 

velocity terms or gyro effects) between the relative deformed body motion and the 

reference motion can be another issue to develop an efficient computational method to 

solving flexible body in D-Sim. 

 

6.2.3 Extend for the Integration Other Problems 

Presently the design process in industry is a very complex optimization task often 

involving multi-disciplines, multi-objectives, and computationally intensive processes for 

product simulation. Many researchers deal with the coupling of specialized tools by the 

means of interfaces. Interfaces between the codes have to be developed for considering 

the nature of the description of the physical model, numerical properties of the respective 

simulation methods, and software and hardware implementation issues. The analysis of 

complex product is generally concerned with multi-disciplinary modules exchanging 

physical parameters. The current D-Sim can deal only with the interface parameters of 

forces and kinematic quantities.  For a commercialized version of D-Sim, the platform 

has to provide valuable integration tools to support distributed collaborative design tasks. 
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For example, in the structural dynamic problems induced by friction or contact and heat 

transfer problems, we have to consider the exchanging parameters of interfaces and 

various boundaries of interfaces. 
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ROTATIONAL MATRIX 

 

FINITE ROTATION 

 

(a)    (b) 

Figure A.6.1 Coordinates systems 

In multibody systems, the components may undergo large relative translational 

and rotational displacements. To define the configuration of a body in the multibody 

system space, one must be able to determine the location of every point on the body 

respect to a selected inertial fame of reference. A body reference in which the position 

vectors of the material points can be described. The position vectors of these points can 

then be found in other coordinate systems by defining the relative position and 

orientation of the body coordinate system with respect to other coordinate systems. As 

shown in Figure A.1-(a), three variables define the relative translational motion between 

two coordinate systems. This relative translational motion can be measured by the 
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position vector of the origin O′  of the coordinate system 1 2 3, ,′ ′ ′e e e  with respect to 

coordinate system 1 2 3, ,e e e . 

To develop the transformation that defines the relative orientation between two 

coordinate systems between 1 2 3, ,′ ′ ′e e e  and 1 2 3, ,e e e , we first assume that the origins of 

the two coordinate systems coincide as shown in Figure A.1-(b). We also assume that the 

axes of these two coordinates systems initially parallel. Let the vector r  be the position 

vector of point Q  whose coordinates are assumed to be fixed in the 1 2 3, ,′ ′ ′e e e  

coordinate system. Let the reference 1 2 3, ,′ ′ ′e e e  rotate an angle θ  about axis OC  as 

shown in the Figure A.2-(a).  

 

(a)     (b) 

 

Figure A.6.2 Finite rotations 
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As the result of this rotation, point Q  is translated to point Q . The position 

vector of point Q  in the 1 2 3, ,e e e  coordinate system is denoted by r . The change of 

point Q  due to the rotation θ  is defined by the vector Δr as shown in the Figure A.2-

(b). new vector can be written as 

= + Δr r r     (A.1) 

The vector Δr can be written as the sum of the two vectors 

1 2Δ = +r b b     (A.2) 

where the vector 1b  is drown perpendicular to the plane OCQ  and thus has a direction 

( )×v r , where v  is a unit vector along the axis of OC . The magnitude of vector 1b  is 

given by 

 1 sina θ=b     (A.3) 

From Figure A.2-(b), one can see that 

sina α= = ×r v r    (A.4) 

Therefore 

1 sin ( )sina θ θ×
= = ×

×
v rb v r
v r

   (A.5) 

2 2
2

( )2 sin 2[ ( )]sin
2 2

a
a

θ θ× ×
= ⋅ = × ×

v v rb v v r   (A.6) 

Using Eqaution (A.1), one can write 

2( )sin 2[ ( )]sin
2
θθ= + × + × ×r r v r v v r    (A.7) 

Using skew symmetric matrices of v  define as 
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3 2

3 1

2 1

0
0

0

v v
v v
v v

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

v%      (A.8) 

Equation (A.7) can be rewritten as: 

2 2

2 2

sin 2( ) sin
2

sin 2( ) sin
2

θθ

θθ

= + +

⎡ ⎤= + +⎢ ⎥⎣ ⎦

r r vr v r

I v v r

% %

% %

    (A.9) 

where I  is a 3 3×  identity matrix. Equation (A.9) can be written as 

 =r Ar      (A.10) 

where ( )θ=A A  is the 3 3×  rotation matrix given by 

2 2sin 2( ) sin
2
θθ⎡ ⎤= + +⎢ ⎥⎣ ⎦

A I v v% %     (A.11) 

This rotation matrix, referred to as the Rodriquez-formula, is expressed in terms of the 

angle of rotation and a unit vector along the axis of rotation. 
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EULER PARAMETERS 

Using the trigonometric identity 

sin 2sin cos
2 2
θ θθ = ⋅     (A.12) 

one can rewrite the transformation matrix of Equation (A.11) as 

2 sin cos sin
2 2 2
θ θ θ⎛ ⎞= + +⎜ ⎟

⎝ ⎠
A I v I v% %   (A.13) 

The transformation matrix of Equation (A.13) can be expressed in terms of the 

following four Euler parameters: 

0 1 1

2 2 3 3

cos sin
2 2

sin sin
2 2

v

v v

θ θθ θ

θ θθ θ

⎫= = ⎪⎪
⎬
⎪= =
⎪⎭

    (A.14) 

in which 1v , 2v  and 3v  are the components of the unit vectors v . If one defines with 

Euler parameter as [ ]1 2 3
Tθ θ θ=θ , the transformation matrix A  can be written as  

( )02 θ= + +A I θ I θ% %     (A.15) 

where the four Euler parameters given by (A.14) satisfy the relation 

3
2

0
( ) 1T

k
k

θ
−

= =∑ θ θ     (A.16) 

where θ is the vector as 

[ ]0 1 2 3
Tθ θ θ θ=θ      (A.17) 

The transformation matrix A  can be written explicitly in terns of the four Euler 

parameters of Equation (A.14) as 
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2 2
2 3 1 2 0 3 1 3 0 2

2 2
1 2 0 3 1 3 2 3 0 1

2 2
1 3 0 2 2 3 0 1 1 2

1 2( ) 2( ) 2( ) 2( )
2( ) 1 2( ) 2( ) 2( )
2( ) 2( ) 1 2( ) 2( )

θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ

⎡ ⎤− − − +
⎢ ⎥= + − − −⎢ ⎥
⎢ ⎥− + − −⎣ ⎦

A  (A.18) 

Using the identity of Equation (A.16), an alterantive form of the transformation matrix 

can be obtained as 

2 2
0 1 1 2 0 3 1 3 0 2

2 2
1 2 0 3 0 2 2 3 0 1

2 2
1 3 0 2 2 3 0 1 0 3

2[( ) ( ) ] 1 2( ) 2( )
2( ) 2[( ) ( ) ] 1 2( )
2( ) 2( ) 2[( ) ( ) ] 1

θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ

⎡ ⎤+ − − +
⎢ ⎥= + + − −⎢ ⎥
⎢ ⎥− + + −⎣ ⎦

A  (A.19) 

Note that Euler parameters does not depend on the components of the vector r . It 

depend on only on the components of the unit vector v  along the axis of rotation as well 

as the angle of rotation θ .  
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RODRIGUEZ PARAMETERS 

The transformation matrix (A.11) developed in the preceding section is 

expressed in terms of four parameters, that is, one more than the number of degrees of 

freedom. In this section, an alterantive representation, which uses three parameters called 

Rodriguez parameters, is developed 

For convenience, we reproduced the transformation matrix of Equation (A.11), 

and now denfine the vector γ  of Rodriguez parameters as 

tan
2
θ

=γ v     (A.20) 

that is 

1 1 2 1 3 3tan , tan , tan
2 2 2

v v vθ θ θγ γ γ= = =   (A.21) 

Note that the Rodriguez parameter representation has the disadvantage of becoming 

infinite when the angle of rotation θ  is equal to π . Using the trigonometric identity 

2 2

sin 2sin cos , sin tan cos
2 2 2 2 2

sec 1 tan
2 2

θ θ θ θ θθ

θ θ

= ⋅ = ⋅

= +
  (A.22) 

one can write sinθ  as 

2
2

2 tan( / 2)sin 2sin cos 2 tan cos
2 2 2 2 1 tan ( / 2)
θ θ θ θ θθ

θ
= ⋅ = ⋅ =

+
 (A.23) 

Since v  is unit vector, one has 

2tan
2

T θ
=γ γ      (A.24) 

Therefore, Equation (A.23) leads to 
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2 tan( / 2)sin
1 T

θθ =
+ γ γ

    (A.25) 

Similary, 

2
2 tan ( / 2)sin

2 1 T

θ θ
=

+ γ γ
    (A.26) 

Substituting Eqaution (A.25) and (A.26) into (A.13) yields 

2 22 tan tan
1 2 2T

θ θ⎛ ⎞= + +⎜ ⎟+ ⎝ ⎠
A I v v

γ γ
% %   (A.27) 

which, on using Equation (A.20), yields 

( )22
1 T= + +

+
A I γ γ

γ γ
% %     (A.28) 

In a more explicit form, the transformation matrix A  can be written in terms of the 

three parameters as 

2 2 2
1 2 3 1 2 3 1 3 2

2 2 2
1 2 3 1 2 3 2 3 1

2 2 2
1 3 2 2 3 1 1 2 3

1 2( ) 2( )
1 2( ) 1 2( )

1
2( ) 2( ) 1

T

γ γ γ γ γ γ γ γ γ
γ γ γ γ γ γ γ γ γ
γ γ γ γ γ γ γ γ γ

⎡ ⎤+ − − − +
⎢ ⎥= + − + − −⎢ ⎥+ ⎢ ⎥− + − − +⎣ ⎦

A
γ γ

 (A.29) 

Using the definition of Euler parameter, one can show that Rodriguez parameters 

can be written in terms of Euler parameters as follows 

1
1 1

0

32
2 1

0 0

sin( / 2)
cos( / 2)

,

v θθγ
θ θ

θθγ γ
θ θ

⎫= = ⎪⎪
⎬
⎪= =
⎪⎭

 and 0
1

1 T
θ =

+ γ γ
  (A.30) 
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EULER ANGLES 

The three independent Euler angles is one of the most common and widely used 

parameters in describing reference orientations. Euler angles involve three successive 

rations about three axes that are not orthogonal in general, Euler angles, however, are not 

unique. To this end we carry out the transformation between two coordinate systems by 

means of three successive rotations performed in a given sequence. For instance, the 

coordinates system 1 2 3, ,e e e  and 1 2 3, ,ξ ξ ξ  initially be coincide. The sequence starts by 

rotating the system 1 2 3, ,ξ ξ ξ  and angle φ  about 3e  axis. The result of this rotation is 

shown in the Figure A.3-(a). Since Figure 2.13 shows a comparison of the results 

obtained using the gluing simulations with 1st and 2nd  layered finite element analyses. 

Here, dynamic loads of 100sin(50 )=f t Nπ  are applied at the middle point of front 

cross member The result shown here is the displacement at a selected node at the middle 

of body floor(node 12093) along the vertical direction.  It is seen that the gluing process 

induces no additional error (beyond the round-off errors) in 1st and 2nd layered distributed 

simulation results. is the angle of rotation in the plane 1 2,e e , we have 

1

cos sin 0
sin cos 0
0 0 1

φ φ
φ φ

⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥⎣ ⎦

ξ D e e     (A.31) 
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Figure A.6.3 Euler angle (3-1-3 Sequence) 

Next, we consider coordinate system 1 2 3, ,η η η , which coincides with the system 

1 2 3, ,ξ ξ ξ  and rotate this system an angle θ  is in the plane Figure 2.13 shows a 

comparison of the results obtained using the gluing simulations with 1st and 2nd  layered 

finite element analyses. Here, dynamic loads of 100sin(50 )=f t Nπ  are applied at the 

middle point of front cross member The result shown here is the displacement at a 

selected node at the middle of body floor(node 12093) along the vertical direction.  It is 

seen that the gluing process induces no additional error (beyond the round-off errors) in 

1st and 2nd layered distributed simulation results., we have 

2

1 0 0
0 cos sin
0 sin cos

θ θ
θ θ

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥−⎣ ⎦

η D ξ ξ     (A.32) 
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Finally, we have consider the coordinate system 1 2 3, ,ζ ζ ζ , which coincides with the 

system 1 2 3, ,η η η  and rotate this system an angle ψ  is in the plane 1 2,η η , we have 

3

cos sin 0
sin cos 0
0 0 1

ψ ψ
ψ ψ

⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥⎣ ⎦

ζ D η η     (A.33) 

Using Equation (A.31), (A.32) and (A.33), one can write the transformation between 

the initial coordinate system 1 2 3, ,e e e  and the final system 1 2 3, ,ζ ζ ζ  as follow: 

3 2 1
T= =ζ D D D e A e     (A.34) 

Also, one can write  

=e Aζ       (A.35) 

where A  is the transformation matrix 

cos cos cos sin sin sin cos cos sin cos sin sin
cos sin cos cos sin sin sin cos cos cos sin cos

sin sin sin cos cos

ψ φ θ φ ψ ψ φ θ φ ψ θ φ
ψ φ θ φ ψ ψ φ θ φ ψ θ φ

θ ψ θ ψ θ

− − −⎡ ⎤
⎢ ⎥= + − + −⎢ ⎥
⎢ ⎥⎣ ⎦

A

 (A.36) 

The three angles ,φ θ  and ψ  are called the Euler angles. The matrix A  is the the 

transformation matrix expressed in terms of Euler angles. 
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DYNAMIC EQUATION OF MOTION FOR LINEAR ELASTIC FINITE 
ELEMENTS MODEL FROM KINETIC ENERGY 

 

In Chapter 3, the dynamic equation of motion of the flexible body is set using 

energy and virtual work expressions. The global position of an arbitrary point on thi  

element of the deformable body is defined by using a coupled set of reference and elastic 

coordinates as 

i i i f= + = +r R Au R AN q     (B.1) 

The velocity vector can be written in partitioned form as  

R
r I Au G AN θ

q

⎡ ⎤
⎢ ⎥⎡ ⎤= − ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

&

&%&

&
ii i

f

    (B.2) 

Then, we can write the coordinates of body with portioned form as 

T T T T
f⎡ ⎤= ⎣ ⎦q R θ q     (B.3) 

Once the velocity vector of an arbitrary point on thi  element is defined, one can write 

the kinetic energy of body as 

1

1
2

r r
=

= ⋅∑ ∫ & &
e

e

N
T

i i i e
i

T d
Ω

ρ Ω      (B.4) 

 By substituting Equation (B.2) into Equation (B.4), we obtain 
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e

e

iiN
T T T T T T T T T T

if i i i i i e
i T T TT

fi i i ii

T d
= Ω

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥⎡ ⎤= − − Ω⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

∑∫
1

I AuG AN R
1 R θ q G u A G u uG G u N θ
2

qN A N uG N N

&%

& && % % % %&

&%

ρ    

(B.5) 

For the equation of motion of deformable body, Lagrange’s Equation takes the 

form in terms of partial derivative of variableq  

T T
extd L L

dt
⎛ ⎞ ⎛ ⎞∂ ∂

− =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
F

q q&
    (B.6) 

where, extF is generalized external forces, L  is Lagrangian such that L T V= − . If the 

deformed body can be assumed by a linear elastic deformable body, the potential energy 

V is same with the strain energy of body since the rigid body motion corresponds to the 

case of constant strains. In this dissertation, we consider a linear isotropic material. The 

more general case of nonlinear elastic, orthotropic material can also be formulated by 

changing the form of the body stiffness matrix. Using the virtual work principle, the 

virtual potential energy due to the elastic forces in the body can be written as 

e

e

N
T
i i e

i
V d

Ω
δ = δ Ω∑∫ σ ε     (B.7) 

where iσ and iε  are, respectively, the stress and strain vectors of i-th element. The 

strain displacement relation in terms of nodal displacement vector in the following form 

i i f=ε B q      (B.8) 

where, iB  is a differentiated matrix of the shape function iN . For a linear isotropic 

material, the constitutive equations relating the stress and strain can be written as 
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i i=σ Dε      (B.9) 

where D  is athe symmetric elasticity matrix containing the appropriate material 

properties. Substituting Equation (B.8) into Equation (B.9) yields 

i i f=σ DB q      (B.10) 

in which the stress vector is written in terms of the nodal displacement vector. 

Substituting Equation (B.8) and (B.10) into Equation (B.7) yields 

e

e

N
T T
f i i f e

i
V d

Ω
δ = δ Ω∑∫ q B DB q    (B.11) 

because fq  depends only on time, Equation (B.11) can be written as 

e

e

N
T T
f i i e f

i

T
f ff f

V d
Ω

⎡ ⎤
δ = Ω δ⎢ ⎥

⎣ ⎦
= δ

∑∫q B DB q

q K q
   (B.12) 

where ffK  is the symmetric positive definite stiffness matrix associated with the nodal 

displacement vector. 

In the equation of motion of Lagrange’s Equation (B.6) we take Lagrangian as 

the form in terms of partial derivative of variables , and fR θ q . 

f

f

d L d L d L d L
dt dt dt dt

d T d T d T
dt dt dt

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

q R θ q

R θ q

&&& &

&& &

  (B.13) 
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where d V
dt

⎛ ⎞∂
=⎜ ⎟∂⎝ ⎠

0
q&

 since the potential energy depends only on the nodal displacement 

as shown in Equation (B.12), and  

f

f f

L L L L

T T T V

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

q R θ q

R θ q q

   (B.14) 

the equation of motion of deformable body using Lagrange’s Equation can be rewritten as 

T

r

T

T

f
f f f

d T
dt

d T T
dt

d T T V
dt

θ

⎡ ∂ ⎤⎛ ⎞ =⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦

⎡ ∂ ∂ ⎤⎛ ⎞ ⎛ ⎞− =⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂
− − =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

ext

ext

ext

F
R

F
θ θ

F
q q q

&

&

&

   (B.15) 

where ext ext extF F F⎡ ⎤⎣ ⎦
TT T T

r fθ
is generalized external force vector. The virtual work of all 

external forces acting on flexible body in compact form as 

T T T T T T
r f r f

f

W θ θ

δ
δ δ δ

δ

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤= = ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥⎣ ⎦

ext ext ext ext ext ext

R
F F F r F F F θ

q

   

Then, one can obtain the each component in Equation (B.13). First, in terms of the 

postion R  of body reference frame 

( )

{ }

1
2
1 2 2 2
2

e

e

e

TN
i i

i
N

T T T T T T T
i i e

i

T d

d

ρ

ρ

Ω

Ω

∂ ⋅∂
= Ω

∂ ∂

= − + Ω

∑ ∫

∑ ∫

r r
R R

R θ G u A u A

& &

& &

&& % &

  (B.16) 

The derivative of Equation (B.16) with repect to time can be written as 
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{
}

e

e

N
T T T T T T T T T T T T T

i i i
i

T T T T T T T T
i i i e

d T
dt

d

ρ
Ω

∂⎛ ⎞ = − − −⎜ ⎟∂⎝ ⎠

− + + Ω

∑ ∫ R θ G u A θ G u A θ G u A
R

θ G u A u A u A

& &&& & &&& % % %
&

& & &% && &
 (B.17) 

using the relation of 0=θG && , Equation (B.17) can be simple form as 

{ }2
e

e

N
T T T T T T T T T T T T T T T T

i i i i e
i

d T d
dt

ρ
Ω

∂⎛ ⎞ = − − − + Ω⎜ ⎟∂⎝ ⎠
∑ ∫ R θ G u A θ G u A θ G u ω A u A
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Second, the partial derivative of kinetic energy with repect to variableθ&  can be written 

as 
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The derivative of Equation (B.19) with repect to time can be written as 
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Third, the partial derivative of kinetic energy with repect to variable fq&  can be written 

as 
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The time derivative of Equation (B.21) can be written as 
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Next, one can obtain the each component in Equation (B.14), the partial 

derivative of Lagrangian with repect to , and fR θ q  can be written as 

0=
∂
∂
R
T        (B.23) 

For the derivative of kinetic energy with repect to variableθ , square norm of velocity can 

be expressed with respect to θ  as 
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where, the relation of 0,0 =+= θGθGθG &&  leads to θGθG && −= , Equation (B.24) 

becomes 
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The partial derivative of kinetic energy with repect to θ  can be written as 
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For the partial derivative of kinetic energy with respect to variable fq , square norm of 

velocity can be express with iu  
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and, the partial derivative of kinetic energy with respect to fq  can be written as 
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also the partial derivative of potential energy with respect to fq  using Equation (B.12) 

can be written as 
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The left hand side of Equation (B.15) can be written as 

{ }2
e

e

N
T T T T T T T T T T T T T T T T

i i i i e
i

d T d
dt

ρ
Ω

∂⎛ ⎞ = − − − + Ω⎜ ⎟∂⎝ ⎠
∑ ∫ R θ G u A θ G u A θ G u ω A u A

R
&&& & &&& %% % % &&

&

(B.30) 



 161

{
}

2

2 2

e

e

N
T T T T T T T

i i i i i
i

T T T T T
i i i i i i e

d T T
dt

d

ρ
Ω

∂ ∂⎛ ⎞ − = − + +⎜ ⎟∂ ∂⎝ ⎠

+ − − Ω

∑ ∫ R Au G θ G u u G θ G u u G
θ θ

θ G u u G u u G u u G

&&& &&& % % % % %
&

& && % % && % & %
 (B.31) 

{
}

2
e

e

N
T T T T T T T

i i ii i
if f f

T T T T
ii i e f ff

d T T V
dt

d

ρ
Ω

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
− − = − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

+ − Ω +

∑ ∫ R AN θ G u N θ G u N
q q q

u N u ω ω q K

&&& &&& % %
&

% %&&

 (B.32) 

one can write equation of motion for the flexible body. 
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