
 
 
 
 
 
 
 
 
 

Metal and Semiconductor Nanoparticle Self-Assembly 
 
 
 
 
 

by 
 
 
 
 
 

G. Daniel Lilly 
 
 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
(Chemical Engineering) 

in The University of Michigan 
2009 

 
 
 

 
 
Doctoral Committee: 
 
 Professor Nicholas A. Kotov, Chair 
 Professor Sharon C. Glotzer 
 Professor Xiaoqing Pan 
 Assistant Professor Suljo Linic 
 
  



 
 
 
 
 
 
 
 

 
 
 

© G. Daniel Lilly 
 

2009 



ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

To my wife, Michelle M. Lilly, Ph.D. 
To my mother and father, Nancy N. and G. Bud Lilly 

 
  



iii 
 

 

 

 

ACKNOWLEDGEMENTS 

 

 I would like to thank my loving and lovely wife Michelle for her support through 

the process of obtaining my Ph.D.  If not for her support and advice I most likely would 

not have finished this process.  I value her as a friend and partner and am forever 

appreciative of her actions. 

 I would also like to thank my parents for laying the groundwork in my life to 

accomplish this.  They taught me the value of hard work and persistence when reaching 

toward your goals, and without these lessons I most likely would not have even gone to 

graduate school, much less finished.   

 I am appreciative for all the help and support my fellow lab members have given 

me over the last five years.  Former lab members Jaebeom Lee, Zhiyong Tang, Paul 

Podsiadlo, Bongsup Ship, Jungwoo Lee and Kevin Critchley helped teach me new lab 

techniques, NP synthesis and conjugation techniques, and numerous analysis procedures, 

and allowed me a venue to discuss my hypotheses concerning these approaches.  Current 

lab members Meghan Cuddihy, Edward Jan, Peter Ho, Ashish Agarwal, Christine 

Andres, Jian Zhu, Huanan Zhang, Elizabeth Stewart, Yichun Wang, Inigo Alvarez, 

Shimei Xu, and Anna Fernandez aided with various collaborations, techniques, 

procedures, and experiences for which I am grateful. 



iv 
 

 I would like to thank my friends in Ann Arbor for their support through my 

graduate experience, both those related and unrelated to my studies.  They gave me a 

group with similar experiences on and with whom I could lean on and share my 

experience. 

 I am indebted to my committee members, Suljo Linic, Sharon Glotzer, and 

Xiaoqing Pan for committing their time and effort to ensuring that my thesis is 

technically sound and is a contribution to my field. 

 Finally, I would like to thank my advisor, Nicholas A. Kotov, for supporting my 

research both financially and intellectually.  Without both, I am sure that obtaining a 

Ph.D. would have been impossible.  I have had invaluable experiences with all aspects of 

the research including collaborations, proposals, papers, etc.  He is a smart and gracious 

person to whom I will always be indebted. 

 
  



v 
 

 
 
 
 

 
 
 

TABLE OF CONTENTS 
 
DEDICATION................................................................................................................... ii 
ACKNOWLEDGEMENTS ............................................................................................ iii 
LIST OF FIGURES ........................................................................................................ vii 
LIST OF ABBREVIATIONS ......................................................................................... xi 
ABSTRACT .................................................................................................................... xiii 
CHAPTER 

1.  INTRODUCTION...................................................................................................1 
1.1 SPECIFIC AIMS .................................................................................1 

1.1.1 Specific Aim 1 ........................................................................1 
1.1.2 Specific Aim 2 ........................................................................1 

1.2 SIGNIFICANCE ..................................................................................1 
1.3 BACKGROUND ..................................................................................3 

1.3.1 Semiconductor Synthesis Techniques .....................................3 
1.3.2 NP Assembly for Applications .............................................10 

1.4 EXPERIENTAL .................................................................................21 
1.4.2 Chemicals ..............................................................................21 
1.4.1 Equipment .............................................................................22 

1.5 REFERENCES ...................................................................................23 
2.  MEDIA EFFECT ON CDTE NANOWIRE GROWTH: 

MECHANISM OF SELF ASSEMBLY, OSTWALD RIPENING, AND 
CONTROL OF NW GEOMETRY ......................................................................31 

2.1 ABSTRACT ........................................................................................31 
2.2 INTRODUCTION..............................................................................32 
2.3 SYNTHESIS .......................................................................................34 
2.4 RESULTS AND DISCUSSION ........................................................35 

2.4.1 NW Length and Diameter Control ........................................35 
2.4.2 NP “Pearl Necklace” Formation ...........................................36 
2.4.3 NW Formation by Ostwald Ripening ...................................42 

2.5 CONCLUSIONS ................................................................................50 
2.6 ACKNOWLEDGEMENTS ..............................................................51 
2.7 REFERENCES ...................................................................................52 

3.  EFFECT OF CDSE NANOPARTICLES ON THE GROWTH OF TE 
NANOWIRES: GREATER LENGTH AND TORTUOSITY AND NON-
MONOTONIC CONCENTRATION EFFECT  ................................................57 

3.1 ABSTRACT ........................................................................................57 
3.2 INTRODUCTION..............................................................................58 
3.3 SYNTHESIS .......................................................................................61 



vi 
 

3.4 RESULTS AND DISCUSSION ........................................................62 
3.4.1 Formation of High Aspect Ratio Te NWs ............................62 
3.4.2 Effect of Se2- Addition on NW Morphology ........................66 

3.5 CONCLUSIONS ................................................................................69 
3.6 ACKNOWLEDGEMENTS ..............................................................70 
3.7 REFERENCES ...................................................................................71 

4.  CHIRAL AU COATED CDTE TWISTED NANORIBBONS .........................76 
4.1 ABSTRACT ........................................................................................76 
4.2 INTRODUCTION..............................................................................76 
4.3 SYNTHESIS .......................................................................................78 
4.4 RESULTS AND DISCUSSION ........................................................81 
4.5 CONCLUSIONS ................................................................................84 
4.6 ACKNOWLEDGEMENTS ..............................................................85 
4.7 SUPPLEMENTAL MATERIALS ...................................................85 
4.8 REFERENCES ...................................................................................86 

5.  “CLOUD” NANOASSEMBLIES: QUANTUM DOTS FORM 
ELECTROSTATICLY BOUND DIFFUSE SHELLS AROUND 
GOLD NANOPARTICLES WITH DYNAMIC EXCITON-
PLASMON COUPLING .....................................................................................89 

5.1 ABSTRACT ........................................................................................89 
5.2 INTRODUCTION..............................................................................90 
5.3 SYNTHESIS .......................................................................................93 
5.4 RESULTS AND DISCUSSION ........................................................95 
5.5 CONCLUSIONS ..............................................................................103 
5.6 ACKNOWLEDGEMENTS ............................................................104 
5.7 REFERENCES .................................................................................105 

6.  CONCLUSIONS AND FUTURE WORK ........................................................109 
6.1 CONCLUSIONS ..............................................................................109 
6.2 FUTURE RESEARCH ....................................................................112 

6.2.1 Synthesis of Variable Composition NWs ...........................112 
6.2.2 Application of Variable Bandgap NWs in Wavelength 

Shifting Sensors ..................................................................114 
6.2.3 Application of Gradient NWs in ESCs ...............................118 

6.3 REFERENCES .................................................................................122 
  



vii 
 

 
 
 
 
 

LIST OF FIGURES 
 

Figure 1.1.  EDC/Sulfo-NHS conjugation scheme. ..........................................................19 
 
Figure 2.1 Dependences of  CdTe NW (A) length, and (B) diameter.  Each data point in 
(A) and (B) represents the average of 20 NWs from 5 separate runs using AFM and 
Nanoscope IIIa software.  The error bars represent the standard deviation in the 5 runs. .35 
 
Figure 2.2.  AFM images of CdTe NWs grown in (A) 0% DMSO, (B) 40% DMSO, and 
(C) 60% DMSO. ................................................................................................................36 
 
Figure 2.3.  TEM images of NP assemblies for (A) 0% DMSO in growth solution, (B) 
40% DMSO in growth solution (C) 60% DMSO in growth solution. ...............................37 
 
Figure 2.4.  Calculations of the dipole moments of small CdTe clusters. The numbers in 
the top left and top right corners represent the number of DMSO molecules in the cluster 
and the calculated dipole moment in Debyes, respectively.  Atom notations: H – light 
grey, Cd – green, O – red, S – blue, Te – orange,  C – dark grey. The yellow arrows 
indicate the direction of the dipole moment in each nanoparticle. ....................................38 
 
Figure 2.5.  TEM of CdTe NWs grown in 20% DMSO for 2 hours, A) HRTEM of NW 
middle, B) HRTEM of NW end where NP is being attached to the NW. Insert: diffraction 
pattern of NW. ...................................................................................................................41 
 
Figure 2.6.  TEM images of A) NWs produced from an equimolar solution of two NP 
sizes, and B) NWs produced from uniform constituent NPs. ............................................42 
 
Figure 2.7. A) AFM image of NW formed from an equimolar mixture of two NP sizes, 
B) Topography of NW shown in A, C) AFM image of NW formed from uniform 
constituent NPs, D) Topography of NW shown in B. .......................................................43 
 
Figure 2.8.  NP growth rate as it depends on K and S dimensionless variables. ..............46 
 
 



viii 
 

Figure 2.9.  Average diameter dependence of CdTe NPs in growth solution on DMSO.  
The measurements were made at 80 oC and after 3 hours.  Data were obtained using the 
particle analysis tool on the Nanoscope III AFM software.  The error bars represent the 
standard deviation as determined using the NanoScope ® III software tool Particle 
Analysis..............................................................................................................................47 
 
Figure 2.10.  PL dependence of CdTe NW solution on DMSO concentration in the 
growth solution.  Measurements are after 3 hours growth time in 80 oC oven. .................49 
 
Figure 3.1.  A) SEM image of a large precipitate with Te NWs fused with Cd and Te 
oxides,  B) EDS spectra of the precipitate. ........................................................................62 
 
Figure 3.2.  Optical michrographs and SEM images (inserts) of Te NWs synthesized 
from growth solutions with CdSe NP: CdTe NP ratios of A) 0:1, B)  1:1, and C) 2:1; and 
Se2- concentrations of D) 0, E) 3.5*10-4 M, F) 6.0*10-4. ...................................................63 
 
Figure 3.3.  A) HRTEM and B) EDAX spectra of Te NW grown in 0:1 CdSe NP: CdTe 
NP ratio, C) TEM and D) EDAX of Te depleted CdTe NPs from solutions in 0:1 CdSe 
NP: CdTe NP ratio. ............................................................................................................65 
 
Figure 3.4.  (A) Dark field TEM image of Te NW grown in a 2:1 CdSe NP: CdTe NP 
ratio.  The defects in this wire are circled.  (B) HRTEM of a defect in Te NW grown in a 
2:1 CdSe NP: CdTe NP ratio.  (C) EDAX of Te NW grown in a 2:1 CdSe NP: CdTe NP 
ratio.  The Cu peak is from the copper TEM grid.   ...........................................................68 
 
Figure 4.1.  TEM images and HRTEM inserts of twisted NRs of A) CdTe NRs, B) Au 
NRs formed after 30 second soak of CdTe NR in HAuCl4, and C) Au NRs formed after 
2.5 minute soak of CdTe NR in HAuCl4.  SEM images and STEM inserts of D) CdTe 
NRs, E) Au NRs formed after 30 second soak of CdTe NR in HAuCl4, and F) Au NRs 
formed after 2.5 minute soak of CdTe NR in HAuCl4.   ...................................................80 
 
Figure 4.2.  HRTEM images with electron diffraction pattern inserts of A) CdTe NRs, 
and B) Au NRs formed after 30 second soak of CdTe NR in HAuCl4. .............................81 
 
Figure 4.3.  EDS spectra of A) CdTe NRs and Au NRs formed by soaking CdTe NRs in 
HAuCl4 for 10 seconds and 2.5 minutes, B) Image A) expanded from 0-400 keV, C) an 
Au NP spot and between Au NP spots in a twisted Au NR formed by soaking a CdTe NR 
in HAuCl4 for 30 seconds. .................................................................................................83 
 



ix 
 

Figure 4.4.  A) UV absorption spectra and PL emission spectra of CdTe NRs on a quartz 
slide, Au NRs formed by soaking CdTe NRs on a quartz silde in HAuCl4 for 30 seconds 
and 5 minutes, and a clean quartz slide. .............................................................................84 
 
Figure 4.S.1.  CD spectra of CdTe NRs on a quartz slide, Au NRs formed by soaking 
CdTe NRs on a quartz silde in HAuCl4 for 30 seconds and 5 minutes. ............................85 
 
Figure 5.1.  A) Au NP UV spectrum, CdTe and CdSe/ZnS QD PL spectra; B) PL 
enhancement of CdSe/ZnS QDs after addition of Au NPs; C) HRTEM of  the assemblies 
formed in solution of Au NPs and  CdSe/ZnS QDs; D) Dark field STEM images of Au 
NP core with CdSe/ZnS QD cloud; E) EDAX spectra of the central part of the NP-QD 
electrostatic assembly; F) EDAX spectra of  the peripheral part of the NP-QD 
electrostatic assembly QD cloud.  The shape of the cloud is likely to be somewhat 
distorted by sample processing. .........................................................................................95 
 
Figure 5.2.  A) Calculated thickness of the Debye layer of Au NPs and CdSe/ZnS QDs 
with increasing NaCl concentration.  This is calculated using Eq. 5 and is the same for 
both Au NPs, CdSe/ZnS QDs, and CdTe QDs.  B) Change of the zeta potential of 
CdSe/ZnS QDs and Au NPs with NaCl concentration, both as calculated by Equations 3 
and 4, and as determined by zeta potential measurement. .................................................96 
 
Figure 5.3.  A) Percent PL change of CdSe/ZnS QDs from initial value for various Au 
NP:CdSe/ZnS QD ratios (v/v); B) Percent PL change of CdTe QDs from initial value for 
various Au NP:CdTe QD ratios (v/v).  All measurements are done in pH 9 water. ..........97 
 
Figure 5.4.  UV Absorbance of Au NPs and CdSe/ZnS QDs. ..........................................99 
 
Figure 5.5.  A) PL intensity dependence of Au NP and CdSe/ZnS QD cloud assemblies 
on ionic strength.  Insert is PL dependence between 0 and 1 M NaCl.  B) Theoretical 
calculation of the inter-particle distance of the Au NP and CdSe/ZnS QDs, and change in 
the diameter of the Au NP and CdSe/ZnS QD assemblies with increasing NaCl 
concentration as measured by DLS. .................................................................................100 
 
Figure 5.6.  A) STEM image of large Au NP, CdSe/ZnS QD, and NaCl flocculate.  B) 
EDS spectra of Au NP rich area, as indicated by the solid green circle; and of the 
CdSe/ZnS rich area, as indicated by the dashed red circle. .............................................103 
 
Figure 6.1.  Wavelength based A) Temperature sensor, and B) antigen sensor. ............116 
 



x 
 

Figure 6.2:  “Energy-level diagram for an excitonic solar cell at zero field.  Excitons 
created by light absorption in OSC 1 and 2 do not possess enough energy to dissociate in 
the bulk (except at trap sites).  But the conduction-band valence-vand offsets at the 
interface between OSC 1 and OSC 2 provide an exothermic pathway for dissociation of 
excitons in both phases, producing electrons in OSC 1 and holes in OSC 2.”  ...............118 
 
  



xi 
 

 
 
 
 
 

LIST OF ABBREVIATIONS 
 

Ab Antibody 
AFM Atomic Force Microscopy 
BSA Bovine Serum Albumin 
CD Circular Dichroism 
CNT Carbon Nanotubes 
CTAB Cetyltrimethylammonium bromide 
CVD Chemical Vapor Deposition 
DLS Dynamic Light Scattering 
DMSO Dimethyl Sulfoxide 
DPN Dip-Pen Nanolithography 
EDC 1-ethyl-3(3-dimethylaminopropyl) carbodiimide hydrochloride 
EDS Energy Dispersive Spectroscopy 
EHP Electron Hole Pair 
EMAL Electron Microbeam Analytical Laboratory 
FET Field Effect Transistor 
FRET Förster Resonance Energy Transfer 
HRTEM High Resolution Transmission Electron Microscopy 
LBL Layer by Layer 
LED Light Emitting Diode 
NIM Negative Index Material 
NP Nanoparticle 
NR Nanoribbon 
NW Nanowire 
OSC Organic Semiconductor 
PDDA Poly(diallyldimethylammonium chloride) 
PDMS Polydimethylsilozane 
PEG Polyethylene Glycol 
PL Photoluminescence 
QD Quantum Dot 
SEM Scanning Electron Microscopy 
SERS Surface Enhanced Raman Scattering 
SLS Solution Liquid Solid 
STEM Scanning Transmission Electron Microscopy 
Sulfo-NHS N-hydroxysulfo-succinimide 
TEM Transmission Electron Microscopy 
TGA Thioglycolic Acid 
UV Ultraviolet 
VLS Vapor Liquid Solid 



xii 
 

VS Vapor Solid 
XSC Exciton Solar Cell 
 
  



xiii 
 

 
 
 
 
 

ABSTRACT 
 

 The field of nanotechnology is rapidly growing and faces numerous challenges to 

its further growth and development.  Many new types of nanomaterials and applications 

for these materials have been developed recently; however, most of the processes by 

which nanomaterials and nanodevices are produced are top-down processes that are time 

consuming, expensive, and not practical for scale-up and commercialization.  These top-

down processes work by creating smaller assemblies and structures from larger ones, or 

physically manipulating nanomaterials using external forces.  On the other hand, bottom-

up synthesis and assembly techniques rely on smaller interactions between nanomaterials 

to guide their self-assembly.  These bottom-up techniques, once properly mastered, allow 

for the economic scale-up of nanomaterial synthesis and nanodevice production. 

 The present thesis focuses on two areas of nanoparticle self-assembly, the first is 

the spontaneous self-assembly and subsequent recrystallization of semiconductor 

nanoparticles into nanowires.  The self-assembly and recrystallization of CdTe 

nanoparticles into CdTe nanowires, as well as the effect of the solution properties on the 

mechanism governing this process, is investigated.  Specifically, the effect of dimethyl 

sulfoxide on the CdTe nanoparticle reorganization into pearl necklace agglomerates, and 

its effect on Ostwald ripening, which triggers the recrystallization of the pearl necklace 

agglomerates into nanowires, is studied.  The decomposition of CdTe and CdSe 

nanoparticles into Te and Te/Se nanowires is also studied with particular emphasis on the 



xiv 
 

effect of Se on the aspect ratio and tortuosity on the Te nanowire formation.  Finally, the 

placement of Au nanoparticles and coatings on twisted CdTe nanoribbons by soaking the 

nanoribbons in HAuCl4 is studied with the objective of creating metallic chiral structures 

for use in negative index materials.  There is a particular emphasis on the effect of 

crystallinity of the CdTe nanoribbons and the soak time on the type of Au deposition.  

The second area of this thesis is the spontaneous self-assembly of various types of 

nanomaterials for applications; namely, the electrostatically driven self-assembly of 

large, positively charged Au nanoparticles and small, negatively charged CdSe/ZnS 

quantum dots into higher ordered core/shell assemblies whose structure and 

photoluminescent properties are responsive to the environment.   
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 SPECIFIC AIMS 

1.11 SPECIFIC AIM 1 

 The specific aim of the present series of studies is to use NP self-assembly to 

create novel NW synthesis techniques.  Specifically, the focus is on recrystallization of 

CdTe NPs into NWs and modification of chiral, semiconductor NRs with metals to create 

chiral metal NRs for use in NIMs. 

1.1.2 SPECIFIC AIM 2 

 The secondary aim is to use NP self-assembly to create hybrid nanostructures of 

metallic and semiconductor NPs whose PL intensity shifts upon conjugation, and in 

response to environmental stimuli. 

 

1.2 SIGNIFICANCE 

The use of nanomaterials offers the ability to both improve existing technologies 

and create new, unforeseen applications.  One of the major challenges concerning NP 

synthesis and potential applications containing NPs is the controlled design of such 

systems.  NPs must be synthesized to possess desired surface properties, composition, 



2 
 

geometry, and structure.  NPs must be arranged properly for specific applications 

containing them to work.  Two general methods exist concerning the controlled synthesis 

and arrangement of NPs: top-down and bottom-up methods.  Top-down methods involve 

the creation of nanoscale objects/devices from larger ones, or the physical manipulation 

of nanoscale objects with larger ones; while bottom-up techniques focus on tuning the NP 

surface properties and their environment so that the NP synthesis/organization happens 

automatically.  Top-down techniques are currently more common, however, bottom-up 

methods are desirable because they are more easily scalable, and thus cheaper than top-

down options.  The present research focuses on the use of bottom-up NP self-assembly 

techniques to 1) create novel NW synthesis techniques, and 2) create hybrid structures of 

metal and semiconductor NPs whose PL properties respond to environmental stimuli.   

Many current NW synthesis techniques involve the use of templates or points of 

origin.  These methods can be cumbersome and many result in polycrystalline NWs.  In 

addition, many of the solution based NW synthesis methods use organic solvents.  The 

series of research findings presented here offers a simple, aqueous, reproducible method 

to control the reorganization of semiconductor NPs into NWs.  Furthermore, chiral metal 

nanostructures, which have potential applications as NIMs, have also proven difficult to 

synthesize, and often their chirality originates from chiral molecules used to stabilize the 

NP.  Presented in this thesis is a method to coat chiral, twisted CdTe NRs with Au, 

creating chiral metallic nanostructures.   

Common NP applications involve arrays of NPs/NWs that are arranged on 

substrates in specific patterns via top-down techniques.  These applications are difficult 

to produce and rely on NPs that are tethered to a substrate and are no longer dispersed in 
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a medium.  Other solution based NP assemblies involve cumbersome conjugation 

techniques that further destabilize the NP assembly and prove difficult to scale. Presented 

in this thesis is a solution based NP assembly method whereby metallic and 

semiconductor NPs self assemble into core/shell structures that are held together with 

electrostatic interactions, eliminating the need for complex tethers.  The PL intensity of 

this system is dependent on the environment, allowing the NPs to be used as solution 

based sensors.  Moreover, the semiconductor NPs used are core/shell, providing a much 

more robust QD that is not easily quenched and is stable in many environments. 

 

1.3 BACKGROUND 

1.3.1 NW Synthesis Techniques 

NWs are synthesized using a variety of techniques, each with inherent advantages 

and disadvantages.  Top-down NW synthesis techniques offer the ability to synthesize 

ordered arrays of NWs, typically by using lithographic and template based processes.  

Bottom-up techniques include point-oriented NW techniques and solution based 

techniques.  Several of these NW synthesis techniques involve a combination of both top-

down and bottom-up techniques.  Each general technique involves many variations and 

can be made to produce a variety of NW types. 

Top-down NW Synthesis Techniques.  The most common synthesis of materials on 

a nanoscale is done using lithographic techniques.  Generally speaking, lithography is the 

patterning of a substrate using a mask.  Typically, a substrate (most commonly a silicon 

wafer) is coated with a photoresist (typically by spin coating) over which a mask with the 

desired pattern is placed.  The substrate is then irradiated either with visible light, 
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ultraviolet light, x-rays, or electrons; and the substrate is rinsed in a solvent to develop 

the image.  When a positive photoresist is used, irradiation weakens the photoresist, 

allowing it to be removed by rinsing.  When a negative photoresist is used, irradiation 

strengthens the photoresist, so that washing removes the non-irradiated regions.  The 

patterned substrate can then be exposed to various steps of etching and ion bombardment 

to create nanopatterned substrates1. 

NWs may be made using lithographic processes by patterning lines of photoresist 

onto a semiconductor substrate of the desired NW material.  This substrate is then 

chemically etched.  The photoresist protects the covered substrate, allowing the patterned 

NWs to be removed from substrate2.  The resulting NWs are composed of the same 

material as the substrate, with common materials including Si and GaAs2.  The smallest 

dimensions reported by this technique are 10nm in thickness, depending on the type of 

irradiation used.  Typically irradiation with lower wavelengths produces patterns and/or 

NWs with smaller dimensions2.   

Other types of NWs may be synthesized using more exotic types of lithography or 

by combining lithography with other techniques, such as transfer printing, templating 

techniques discussed later in this section, and point-oriented NW synthesis techniques 

discussed in this section.  Transfer printing can be used to remove patterned NWs from 

substrates with a polymer stamp, typically PDMS.  NWs adhere to the PDMS stamp 

typically by Van der Waals forces3, but the stamp surface may be tuned with plasma so 

that its surface can become hydrophilic and a variety of chemistries can be used to 

transfer the NWs to the stamp2.  The NWs can then be deposited on numerous substrates 

with varied chemistries to produce ordered materials that are further discussed later in 
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this section.  Depending on the properties of the substrate, the resulting NWs can lay in a 

variety of conformations, including wavy NWs2. 

Lithographic processes are the most common source of nanopatterning and 

nanofabrication.  However, the features created by lithography are limited by the 

wavelength of irradiation used1.  Lithography is also a very difficult process that requires 

numerous steps and a very clean environment that make it a time consuming and 

expensive process.   

NW synthesis using templates involves the use of a template to guide the growth 

of a NW.  The most common materials used as templates are porous membranes.  

Alumina template membranes are prepared from aluminum metal that is polished and 

anodized using a procedure that results in a thin porous alumina membrane4.  The pores 

are uniform, non-intersecting, densely packed (1011 pore per square cm)4, and have a 

range of pore diameters from 5-250 nm4.  The thickness of alumina templates, which 

governs the length of the resulting NWs, can be controlled by adjusting the anodization 

time5.  Polymer membranes are also used in the preparation of NWs6.  Here, polymer 

membranes (usually polycarbonate or polyester), are bombarded with ions to create weak 

areas which are then chemically etched to create uniform pores7.  The pores have uniform 

diameters, but unlike alumina membranes, they often intersect, which can make the 

synthesis of uniform NWs difficult6.  Other, less common, porous membranes that are 

used as NW templates include glass, xeolite7, and mesoporous silica8.   

Templates are used to make NWs using a variety of methods.  The most common 

method is electrochemical deposition6,9,10.  In this method, a conductive material is 

coated on one side of the membrane to act as a cathode.  The membrane is then immersed 
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in a solution containing the desired materials like metals (Au, Ag, Sn, Cu, Ni, Co, Pt, Pd, 

Pb, Fe, Zn, Bi), conductive polymers (polypyrrole, polyaniline, poly(3-

methylthiophene)), and semiconductors (ZnO, II-IV semiconductors)6.  When an 

electrical current is applied to the system, the materials are deposited into the membrane 

pores11.  The membrane is subsequently removed (usually by chemical dissolution), 

leaving the NWs in ordered arrays on the substrate6.  The substrate onto which the NWs 

are grown can be patterned using techniques like lithography to create ordered arrays of 

NWs on the substrate12, which can aid in device fabrication as discussed in Section 1.3.2. 

Segmented NWs, which consist of two or more materials, can be synthesized 

using sequential electrochemical deposition with two different materials13.  Templates 

can be used to make nonconducting NWs as well.  Electroless deposition chemically 

plates a material onto a template surface, which causes the NW to grow radially instead 

of axially, as with electrochemical deposition14.  Templated growth of nonconductive 

polymer NWs can occur by the chemical polymerization of monomers into polymers in 

the template membrane7.  CVD may also be used to create NWs from templates15.  Most 

of these techniques result in amorphous or polycrystalline NWs that may be unsuitable 

for most applications8. 

Additional templating techniques for NW synthesis include the use of carbon 

nanotubes to create various types of NWs including silica, vanadium pentoxide, 

molybdenum oxide, zirconia, silicon, boron nitride, and platinium9.  As with previous 

methods, the carbon nanotubes are filled with the desired material and then the carbon 

nanotubes are removed, usually by heating in air.  NWs that are difficult to synthesize 
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directly using the above techniques may be synthesized by the conversion of one type of 

NW into another; for example, Ag2Se NWs are synthesized against trigonal Se NWs16.  

Bottom-Up NW Synthesis Techniques.  Point oriented NW synthesis methods 

involve the use of a seed NP to grow NWs.  The VLS process is the most common, and 

most commonly consists of two steps: 1) a top-down method where the substrate is 

covered in metal NPs and 2) a bottom-up where NWs are grown from the metal NPs.  

This method was pioneered by Wagner et al17 in the 1960s10.  In the top-down first step, 

metal clusters (typically gold) are placed on a clean substrate (typically semiconductor 

wafers), and the substrate is heated until the metal clusters liquefy.  The metal clusters 

may be patterned on the substrate by various lithographic techniques, to prepare ordered 

arrays of NWs. 

In the bottom-up second step, a gas containing the desired NW material is then 

passed over the metal droplets.  The gas then diffuses into the metal droplet on the 

substrate.  When the metal droplet is supersaturated, the NW material precipitates onto 

the substrate, forming a NW.  As this process continues, a NW is formed that is attached 

at the substrate and grows at the tip containing the metal droplet.  The process produces 

single crystalline NWs that have the same diameter as the metal droplet.  The length of 

the NW is determined by the time and rate of the dissolution of the gas phase into the 

metal droplet, and subsequent precipitation of the NW material onto the substrate8,10,18,19.  

Many types of NWs can be produced using this method including Si20, III-V 

semiconductors such as GaAs, InGaAs, GaP, InP, and InAs 8,21, II-IV semiconductors 

such as ZnS, ZnSe, CdS, and CdSe8, and oxides such as ZnO, MgO, and SiO2
8,22.   
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A similar NW synthesis method is the VS process.  In this technique, a gas 

containing the desired NW material is produced, creating a supersaturated atmosphere.  

The gas is then passed over a substrate, where it precipitates at any defects in the 

substrate surface.  The length and morphology of the NWs are determined by the level of 

supersaturation in the atmosphere8,10.  This method is usually used to produce oxide NWs 

such as MgO, Al2O3, ZnO, and SnO2
23. 

Another gas phase point oriented process is oxide assisted laser ablation8.  In this 

relatively new method, a laser is focused on a target of Si and SiO2 powder.  The laser 

evaporates the powder, creating a silicon oxide gas.  The silicon oxide then decomposes 

into elemental silicon, which precipitates to form Si NPs.  The NPs then grow into Si 

NWs coated with a SiO2 shell24-26. 

There are also solution based point oriented NW synthesis procedures such as 

SLS and supercritical fluid procedures.  The SLS method is similar to the VLS method, 

except the NW growth material is suspended in an organic solution instead of a vapor8.  

This procedure has been used to produce InP, InAs, and GaAs NWs27.  In the 

supercritical fluid procedure, Si NWs have been grown with Au NP seeds in supercritical 

hexane and diphenylsilane, a silicone precursor molecule28.  The process is similar to 

VLS and SLS processes in that silicon dissolves into the Au NP seeds until they are 

supersaturated.  The silicon then precipitates into a NW with the same diameter as the Au 

NP8.  

Solution based NW synthesis techniques offer the ability to form NWs without 

the use of a template or point of origin, and most are truly bottom-up techniques.  Since 

solution based techniques are truly bottom-up, they are usually simpler than template and 
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point oriented procedures29. However, the NWs produced using solution methods are 

often less homogenous and have lower aspect ratios10.  The governing principle in 

solution based processes is that most NPs have a crystal face with a higher surface energy 

than the other faces.  When exposed to the proper conditions, the higher energy face of 

the NP grows, reducing the overall energy of the structure and creating a NW10.  Various 

methods involve using surfactants and capping agents to help direct the growth of NWs; 

and controlling the growth environment to help dictate the composition of the NW.  The 

capping agents, such as biomolecular, organic amines, polymers, organic 

macromolecules, , organic salts, and alkane thiols, help manipulate the surface energies 

of the NP, which allows NWs to grow10. 

The growth of lanthanide hydroxide nanowires of the form La(OH)3 occurred in 

this fashion by exposing La(OH)3 NPs to elevated temperatures30.  Variations of this 

method have allowed NWs with a variety of compositions to be synthesized.  Te and Se 

NWs have been synthesized by the decomposition of CdTe and CdSe NPs into NWs and 

nanochecks31,32.  In this procedure, a cadmium complexing agent is added to the NPs, 

causing Te2- ions to be released into the solution.  The Te2- ions are then oxidized into 

elemental Te seeds, which subsequently grow into Te NWs and nanochecks.  A similar 

process occurs with CdSe NP decomposition into NWs. 

Another form of solution based NW synthesis is the spontaneous self-assembly of 

II-IV NPs into NWs and nanosheets.  In NW self-assembly, presented by Tang et al33, the 

stabilizers of II-IV NPs are partially removed, allowing the NPs to orient themselves into 

a pearl necklace arrangement which is driven by the large dipole moment of the NPs.  

The pearl necklace agglomerates then recrystallize into CdTe NWs.  This method allows 



10 
 

the spontaneous, aqueous assembly of NPs into NWs.  However, the resulting NWs have 

inconsistent growth times, short aspect ratios, and highly variable lengths.  In nanosheets 

self-assembly, also presented by Tang et al34, positively charged CdTe NPs arrange into 

fluorescent free-floating sheets.  In both cases, the solution and NP properties interact to 

guide the NP self-assembly into NWs and nanosheets. 

 

1.3.2 NP Assembly for Applications 

NPs may be assembled using a variety of techniques.  As with NW synthesis, the 

most common techniques for NP assembly are top-down, including previously discussed 

procedures such as lithography, templating, and transfer printing; as well as other 

procedures such as dip-pen nanolithography, fluid-assisted assembly, and LBL thin-film 

assembly.  Bottom-up NP assembly techniques involve NP self-assembly that is guided 

by various methods including bioconjugation, electrostatic interactions, stearic 

interactions.  These techniques allow the synthesis of various photonic devices, electronic 

devices, and sensing devices. 

Top-down NP Assembly for Applications.  Many top-down NP assembly 

techniques are two-fold.  The first step involves patterning the substrate using techniques 

such as lithography and dip-pen; the second step involves the overlay of nanomaterials 

onto these patterned substrates using various methods including atomic force microscopy 

(AFM), fluidics, and electrical field induced alignment8 to make useful devices. As 

discussed previously, the most common technique to produce ordered nanoscale 

structures is lithography.  While still a time consuming and expensive process that is 

somewhat limited in the size with which nanostructures may be produced (owing to the 
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resolution limits in the wavelength of irradiation used to create the nanostructures), it is 

commonly used to prepare the backbone of many nanoscale devices.   

DPN is another technique used to pattern substrates that was developed by the C. 

Mirkin group at Northwestern University.  This technique uses an AFM tip to deliver a 

material directly onto a substrate, much as a fountain-tip pen delivers ink to a page35,36.  

This method allows for any molecule that will adhere to the substrate (thiols on gold 

surfaces for example) to be patterned onto a substrate using an AFM tip.  This application 

tool is very small and can be controlled with resolution down to 5 nm.  This technique 

may also be applied in parallel using multiple AFM tips simultaneously to scale up the 

process.   

In addition to patterning substrates with molecules, as with DPN36, AFM is also 

used to physically manipulate and move nanomaterials around on substrates37.  One such 

method grows CNTs on an AFM tip, then using AFM, breaks the CNT off at the desired 

location to deposit the CNT38.  Obviously, this is a very tedious, time consuming method 

that is difficult to scale up. 

One of the more common and useful techniques to order nanomaterials onto 

patterned substrates is using fluids to carry the nanomaterials into position.  This method 

was pioneered by the C. Lieber group at Harvard University.  In this technique, a shear 

force generated by a laminar flowing liquid in a microfluidic device aligns NWs in a 

parallel orientation.  The NW containing fluid is passed over a patterned substrate, where 

the NW adheres39,40.  This process typically is used to suspend NWs over previously 

patterned electrodes in the substrate, and can be manipulated to create crossed NWs to 
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give various nano-circuits.  This process offers quicker and more efficient NW 

organization than AFM assisted assembly techniques37. 

Another technique to arrange nanomaterials onto substrates is by the application 

of an external force, such as that generated by an electronic41 or magnetic field42.  In the 

case of magnetic fields, magnetic NWs are immobilized on substrates patterned with 

magnetic trapping sites.  NWs can be segmented with various materials to help determine 

which part of the NW is immobilized on the substrate42.  External electronic fields 

generated between electrodes can also allow NWs to align on a substrate43.  Parallel NWs 

align between parallel electrodes44, and by rotating the field, the NWs may be crossed. 

LBL films can also be used to create layers of nanomaterials on a substrate45.  In 

this technique, hybrid organic/inorganic layers of oppositely charged materials are 

layered onto a substrate.  This is typically done by dipping the substrate into one material, 

rinsing, and then dipping it into the next material, rinsing, and repeating the process until 

the desired number of bilayers has been reached.  This can be done with nanomaterials to 

create sandwiches of nanomaterials in other materials such as PDDA. 

Finally, NW arrays may be grown onto patterned substrates to give ordered 

vertical arrays of NWs46.  Such arrays are typically grown by point oriented process such 

as VLS.   

Many types of devices can be used with one, or a combination of several, of the 

above techniques.  For example, NWs have found uses in many electronic devices 

including resistors, switches, inverters, field emitters, and transistors.  Many types of 

metal and polymer NWs are used as resistors6 including Pt-Ni-Pt NWs47, Ni-Au-Ni 

NWs48, Au-Sn-Au NWs49, and Au-polypyrrole NWs6.  Au Ppy Cd-Au NWs50 and metal 
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NW/carbon nanotubes/polymer/semiconductor NWs51 have successfully been made into 

diodes, which work by having a junction between p-type and n-type semiconductors.  Si 

coated Ga-ZnS NWs52 are sensitive to electron beam irradiation, allowing them to be 

used as switches in electron microscopy.  NWs can be applied both as bipolar junction 

transistors and FET.  N-type Si NWs have been configured over a p-type Si NW base to 

give bipolar junction transistors with good current gain53.  FET transistors have been 

created using p-type Si NWs and n-type GaN NWs54, and ZnO NWs on an SiC 

substrate55.  N-type and p-type Si NWs have also been arranged into inverters53, which 

convert direct current into alternating current.  NWs can be used as switches in the form 

of diodes, which allow current to flow in only one direction, and using photoconductivity, 

where the NW increases conductivity under electromagnetic stimulation6.  Au-CdSe-Au 

NWs56 are used as light sensitive switches because their conductivity increases when 

exposed to light.  The Kotov group has synthesized LBL thin films containing Te NWs 

and PDDA57.  These films are sensitive to light exposure and provide another method of 

producing light sensitive switches.  One application of SiC and Si NWs has been as field 

emitters58,59. 

Many of these electronic devices use the unique properties of semiconductor NWs 

that allows them to be used in various sensing devices.  Often, these devices are produced 

using FETs, where a semiconductor NW is suspended between two electrodes, called the 

source and the drain.  The length over which the NW passes is called the gate.  A current 

is then passed through the NW, allowing the conductivity of the NW to be measured.  

Many NWs exhibit a conductivity change when the electric field or potential at the 

surface of the NW is varied.  For p-type semiconductor NWs, increasing the gate voltage 
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reduces the carriers in the NW, which decreases the conductance.  Conversely, 

decreasing the gate voltage increases the carriers in the NW, which increases the 

conductance.  When conductivity passing through a NWs changes, the current passing 

through the FET also changes.  By measuring the current changes in the FET, whatever 

caused the changes to the electric field or surface potential of the NW, can be sensed60.  

The concentration of hydrogen ions was the first application of FETs61.  Here, 3-

aminopropyltriethoxysilane is attached to p-type Si NWs, providing amino groups which 

may be protonated and deprotonated depending on pH.  As pH is increased, the surface 

charge of the Si NW decreases causing its conductance to increase.  By using the strategy 

of modifying the surface of the NW to allow various molecules to bind to the NW and 

change its surface charge, many new substances may be detected with NW FETs 

including ethanol62; ATP63; DNA64; proteins such as streptavidin61, telomerase65, 

prostate-specific antigen66; and viruses67. 

Many types of semiconductor NWs have been used in lasing applications8,10,68.  

The most common type of NW lasers is composed of ZnO.  ZnO is suitable for lasing 

applications because of its large band gap (3.37 eV) and high exciton binding energy (60 

meV)8.  When stimulated by high excitation intensity, ZnO NWs have been reported to 

generate sharp peaks (0.3 nm width) in the excitation spectra.  This lasing action occurs 

without the use of mirrors and it has been proposed that the ZnO NWs act as natural 

resonance cavities8,69. GaN NW lasers70 and ZnS NW lasers71 have also been reported, 

which work in a similar fashion as the ZnO lasers.  It has been suggested that NWs with 

modulated compositions may have superior lasing action to homogenous NWs10. 
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Semiconducting NWs are also used in light collecting devices such as solar cells.  

ZnO NW arrays are used in dye-sensitized solar cells (DSSCs).  The DSSCs are 

assembled with arrays of ZnO NWs sandwiched between F:SnO substrates.  The NWs 

are exposed to a sensitizing dye (cis-bis(isothiocyanato)bis(2,2”-bipyridyl-4,4’-

dicarboxylato)-ruthenium(II)bistetrabutlyammonium), which aids in light absorbance. 

The structure is then filled with a tetrabutylammonium iodide electrolyte.  These ZnO 

NW DSSCs can have optimum overall efficiency of 0.3%72.  Longer NWs results in an 

increase in efficiency because more light can be harvested as a result of the increased 

surface area on longer NWs.  CdSe NWs have also been used in photovoltaic devices.  As 

with the ZnO DSSCs, CdSe is arranged into arrays that are sandwiched between a 

conducting glass slide and an Au electrode.  This device exhibited a maximum efficiency 

of 0.16%73.   

Semiconductor NWs have also found uses as optical waveguides, which internally 

guide light through a material with a lower permittivity.  Flexible NWs, or nanoribbons, 

comprised of materials such as SnO2 and ZnO are used to direct light68.  In one case, 

SnO2 nanoribbons with diameters between 100 and 300 nm are placed on a silica 

substrate.  When monochromatic light is focused on one end of the nanoribbon, it is 

guided through the structure and exits the opposite end74,75.  These nanoribbon 

waveguides can be coupled with 50% power transfer efficiencies between two 

nanoribbons, arranged to create color filters, and eventually may be integrated and used 

in integrated optical logic devices68. 

Another optical device for which semiconducting NWs may be used is light 

emitting diodes (LEDs).  Here, a NW is connected between electrodes and a current is 
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passed across the NW.  If an n-type NW crosses a p-type NW, or the NW has a core/shell 

geometry of the two types, light is emitted when current is passed through it, creating an 

LED68.  InP NWs76, ZnO NWs77, n-GaN/InGaN/p-GaN core/shell NWs78, and GaAs and 

GaP NWs have all been used in LEDs79. 

Bottom-up NP Assembly for Applications.  Bottom-up NP assembly is the self 

assembly of NPs into superstructures.  This method relies on manipulating the surface 

chemistry, size, charge, and composition of the nanomaterials so that they organize 

themselves into desired structures that are useful for various applications. 

The self-organization of nanomaterials in liquid environments involves the 

interplay of numerous forces between the nanoparticles, including steric, osmotic, van der 

Waals, Coulombic, charge-dipole, dipole-dipole, and charge-induced dipole, as is seen in 

Eq. 1.180. 

 

Assuming this is between two NPs, A and B, the van der Waals interactions are shown in 

Eq. 1.2,  

 

where A is the solvent-retarded Hamaker constant, S is the reduced radius and 

S=2RARB/(RA+RB), D is the distance of closest approach, RA is the radius of NP A, and 

RB is the radius of NP B80.  The Coulombic potential is shown in Eq. 1.3, 

 

(1.1) 

(1.2) 

(1.3) 
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where ZA and ZB are the charges of NP A and B, respectively, R is the center to center 

interparticle distance, and ε is the dielectric constant of the medium80.  The charge-dipole 

potential is listed in Eq. 1.4. 

 

 

The dipole-dipole potential is shown in Eq. 1.5. 

 

The charge-induced dipole is shown in Eq. 1.6, 

 

 

where μA and μB are the dipole moments of NPs A and B, respectively, θ1, θ2, φ1, and φ2 

are orientation angles, and αA and αB are polarizabilities of NPs A and B, respectively80.  

Typically, the Coulombic potential is the largest, followed by the charge-dipole, dipole-

dipole, charge-induced dipole, and finally van der Waals potential80.  These forces can be 

manipulated by varying the stabilizer of the nanomaterial, which typically consists of an 

end that adheres to the NP surface (such as sulfur atoms to gold), a carbon chain, and a 

functional group, all of which can be varied to change the forces between the 

nanomaterials, the shape and composition of the nanomaterial, and the liquid in which the 

nanomaterial is dispersed. 

Lattices of NPs can be ordered on substrates by controlling these forces while 

NPs precipitate from solution.  Two-dimensional NP lattices can be created by 

evaporating solvent from the NP solution and controlling the NP concentration, type of 

(1.4) 

(1.5) 

(1.6) 
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solvent, temperature, and substrate type80.  In these arrays, the distance between the NPs 

is the thickness of the stabilizing layer on the individual NPs.  Three-dimensional lattices 

of NPs can be made by similar evaporation methods, or by destabilizing the NPs in the 

solution by adding a nonsolvent such as alcohol to the solution80,81.  The type of three-

dimensional structure is dependent on the various properties of the NPs and liquid.  

Ordered three-dimensional arrays with multiple types and sizes of NPs are also possible 

using this method.  This method also allows for the creation ordered structures of NWs 

80,82.  Similar ordered lattices produced via drying can be created in template structures 

made from top-down process such as lithography83. 

NP superstructures can also be formed in solution by the manipulation of the 

forces discussed earlier.  By increasing attractive forces such as an attractive Coulombic 

force from oppositely charged nanostructure, superstructures such as NP spotted NTs, 

fullerenes, and NWs can be created84.  Other NP structures such as NP chains may be 

formed by reducing the repulsive force on like charged NPs by partially removing the 

stabilizers and allowing the dipole moments of the NPs to drive formation of pearl 

necklace agglomerates85.  Superstructures can also be created by immersing hydrophobic 

NPs in aqueous media84. 

Finally, NP assemblies can be formed by the chemical conjugation of their 

stabilizers.  The stabilizers of one NP may be directly tethered to those of another NP, a 

substrate, or other molecules such as polymers and biomolecules to produce ordered 

conjugates.  Typically stabilizers with specific functional groups are chosen to make 

further conjugation possible.  A common conjugation technique involves the reaction of a 

amine with a carboxylic acid to produce an amide bond86,87.  A common method used for 
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this conjugation is using sulfo-NHS and EDC reaction shown in Figure 1.188.  This is a 

particularly effective technique given that many biomolecules and polymers contain these 

functional groups, including proteins, DNA, antigens and Abs, and amino acids. 

 

 

 

The Kotov group has developed several semiconductor NW assemblies whose PL 

properties behave differently than individual NWs.  In one case, complimentary 

antigen/Abs are bound to l-cysteine stabilized CdTe NPs/NWs using the EDC/sulfo-NHS 

conjugation procedure shown in Figure 1.1.  When NPs/NWs containing complimentary 

antigens and Abs are mixed, the proteins bind together, linking the NPs/NWs.  When 

CdTe NPs/NWs of different sizes and PLs are closely attached, it is possible to observe 

FRET between the NPs/NWs.  In this case, when NPs/NWs with overlapping PL spectra 

are bound closely, resonance dipole-dipole coupling allows an energy coupling of the 

NPs88.  When green emitting CdTe NPs and red emitting CdTe NPs are linked in such a 

fashion using BSA and anti-BSA, the excitonic state of the green emitting CdTe NP is 

transferred to the red emitting CdTe NP, causing the green PL peak to decrease in 

intensity and the red PL peak to gain intensity88.  Similar FRET effects have been shown 

with structures of CdTe NWs linked with CdTe NPs using biotin and streptavidin89.  

Figure 1.1.  EDC/Sulfo-NHS conjugation scheme. 
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CdTe NW/Au NP structures have been made showing a PL enhancement and slight blue 

shift of the CdTe NW fluorescence90.  Here a CdTe NW is surrounded by a shell of Au 

NPs using streptavidin and biotin linkage.  The changes in the PL spectrum are similar to 

SERS and a result of a stimulation of the photon emission of the CdTe NW, which is a 

result of an electromagnetic field around the Au NPs.  Similar structures have been 

produced using Ag NPs and CdTe NWs91.  Again, a PL intensity enhancement and blue 

shift of the CdTe NW is seen.  However, the PL changes are due to increase in absorption 

of the structure. 

Other semiconductor NW sensors have been created based on changes in the PL 

of the NW.  The Kotov group has created dynamic Au NP/CdTe NP assemblies that can 

vary their PL in response to the environment90,92.  These assemblies consist of a CdTe NP 

surrounded by a shell of Au NPs.  The PL intensity of the assembly is dependent on the 

interparticle distances of the Au NPs and the CdTe NP93.  As the interparticle distance 

decreases, the PL intensity increases and the PL lifetime decreases; as the interparticle 

distance increases, the PL intensity decreases and the PL lifetime increases.  This 

phenomenon is due to plasmon and exciton interactions of the Au NPs and the CdTe NPs 

in a similar fashion as the Au NP/CdTe NW assemblies discussed in section II.A.2.  By 

connecting the Au NPs to the CdTe NPs with materials whose length varies in response 

to stimuli, these assemblies are made into sensors.  A temperature sensor was produced 

which ties the Au NPs to the CdTe NP with PEG92.  The radius of gyration of PEG is 

sensitive to temperature, so as temperatures increase the PEG relaxes and the interparticle 

distance increases, causing the PL intensity to decrease.  As the temperature decreases, 

the PEG contracts, decreasing the interparticle distance, which causes the PL intensity to 
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increase.  The Kotov group has also assembled CdTe NWs into nanocircuits on Si wafers 

using bovine serum albumin and anti-bovine serum albumin, complimentary antigen-Ab 

protein pairs94.   

 

1.4 EXPERIMENTAL 

1.4.1 Chemicals 

Cd(ClO4)2
.H2O (cadmium perchlorate), C2H4O2S (thioglycolic acid, TGA), 

CH3OH (methanol), (CH3)2CHOH (2-propanol), C2H6OS (DMSO), HAuCl4 (gold(III) 

chloride hydrate), CdO (cadmium oxide), H2O2 (hydrogen peroxide), H2SO4 (sulfuric 

acid), (C8H16ClN)n (poly(diallyldimethylammonium chloride), PDDA), Zn(CH3)2 

(dimethyl zinc), (CH3)3SiSSi(CH3)3 (hexamethyldisilathiane, (TMS)2S), [CH3(CH2)7]3PO 

(trioctylphosphine oxide, TOPO), [CH3(CH2)3]3P (tributylphosphine, TBP), Se (selenium 

powder), CHCl3 (chloroform), CH3(CH2)15NH2 (hexadecylamine, HDA), were obtained 

from Sigma-Aldrich and used without further purification; Al2Te (aluminum telluride) 

was obtained from Cerac, Inc and used without further purification; Na2Se was obtained 

from Alfa Aesar and used without further purification; NaOH (sodium hydroxide) was 

obtained from Fluka and used without further purification; CH3COCH3 (acetone) was 

obtained from Fisher and used without further purification; and all water was purified 

using 18 MΩ deionized water (Barnstead E-pure system). 

1.4.2 Equipment 

AFM is performed with a Digital Instruments NanoScope IIIa surface probe 

microscope.  AFM specimens are prepared on a silicon wafer cleaned with acetone and 

subsequently soaked in 0.5% PDDA.  AFM images are analyzed using NanoScope ® III 



22 
 

software tools.  Fluorospectroscopic measurements were made using a Jobin Yvon 

Horiba FluoroMax-3.  TEM and HRTEM are conducted with a JEOL 3011 High 

Resolution Electron Microscope, and a JEOL 2010F High Resolution Electron 

Microscope.  STEM is conducted with the JEOL 2010F High Resolution Electron 

Microscope.  TEM specimens are prepared on an Ultrathin Carbon Film on Holey Carbon 

Support Film, 400 mesh grid supplied by Ted Pella, Inc that is soaked in 0.5% PDDA.  

SEM is conducted with a FEI Nova Nanolab Dualbeam Focused Ion Beam Workstation 

and Scanning Electron Microscope and a Philips XL30FEG.  EDS is conducted with 

EDAX XEDS detectors on both the Philips XL30FEG SEM and the JEOL 2010F TEM.  

Centrifugation is performed with a Fisher Scientific Marathon 26 K M centrifuge with a 

Hermile 220.97.V02 rotor.  Freeze drying is performed with a Labconco Freeze Dry 

System/Freezone 4.5. Optical micrographs are obtained with a Cytoviva dark field optical 

microscope. 
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CHAPTER 2 

 

MEDIA EFFECT ON CDTE NANOWIRE GROWTH: MECHANISM OF SELF 
ASSEMBLY, OSTWALD RIPENING, AND CONTROL OF NW GEOMETRY 

 

2.1 ABSTRACT 

The spontaneous self-assembly of II-IV stabilizer depleted NPs into NWs is a 

complex process that is only partially understood.  This paper examines the mechanism 

governing changes in the growth pattern of CdTe NWs that are induced by the addition of 

DMSO to the NW growth solution.  We propose that after the initial step of formation of 

NP pearl necklace assemblies, the assemblies recrystallize and subsequently grow into 

long NWs by Ostwald ripening.  The addition of DMSO allows for improved control 

over the NW length and diameter.  As the DMSO concentration in the NW growth 

solution is increased, the resulting NW length and diameter increases.  When DMSO 

concentrations are raised above 70%, there is no NW formation, which is attributed to 

inhibition of the formation of pearl necklace assemblies.  DMSO influence on NW 

morphology is attributed to its effect on the electrostatic interactions between the 

nanoparticles and mass exchange between the growing nuclei.   
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2.2 INTRODUCTION 

Semiconductor NWs have many unique optical and electronic properties that 

make them desirable for use in new sensing, electronic, and photonic devices1.  

Semiconductor NW assemblies have been engineered to sense temperature2,3, chemicals4, 

and pH5.  They are used in photonic devices such as those used for light detection6 and 

collection7; as well as used to further decrease the size of electronic devices, helping 

establish nano-electronics8,9. 

Most NWs produced today are made using point growth processes10-12, the most 

common of which is the VLS process.  In this technique, NWs are grown by diffusion of 

the growth material from a gas into metal droplets13.  Additional point growth techniques 

include the SLS process14 and the VS methodologies15.  Less common NW synthesis 

techniques include templating 16,17, microwave assisted reactions18,19, and solution based 

reactions20-24.  The latter manipulate the surface energies of NP crystal faces to guide 

constituent ions to the higher energy face of the NP, which results in a NW25.  One of the 

promising methods of solution based processes is the spontaneous self-assembly of NPs 

into NWs22,24.  The aqueous self-assembly of CdTe NPs into luminescent NWs by the 

partial removal of the organic stabilizer layer24,26 stands out because of the uniqueness 

and complexity of interparticle interactions in water, which allows unique architectures of 

the nanoscale assemblies.  Aqueous methods are also convenient for subsequent 

processing of the NWs into composite structures, for instance by layer-by-layer assembly 

with polyelectrolytes27,28.  Finally, these reactions can also be scalable to large quantities 

of the product. 
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Until now, the groups working with this technique focused mostly on the control 

of NW diameter and/or its morphology that has been linked to the precursor NP diameter.  

There has been no systematic study on the control over NW length that is quite variable 

and is needed for many technological aspects of NW utilization.  Additionally, we want 

to point to an important question about the mechanism of NP-to-NW transformation.  It is 

well-documented that the original CdTe NPs are in a cubic crystal lattice, while the 

resulting NWs are in a hexagonal lattice.  If NWs are growing by oriented attachment, 

then there must be a spontaneous recrystallization of the crystal from a cubic phase into 

the hexagonal phase that is likely to have a quite high activation barrier.  However, if NW 

growth is the result of Ostwald ripening, the change of the crystal lattice might occur via 

ion/monomer exchange.  Several authors also report the formation of NWs in a cubic 

crystal lattice29,30, which indicates that under some conditions the recrystallization does 

not occur.  We need to understand what is happening with NPs during their 

transformation into NWs and the first step is to understand how intense the Ostwald 

ripening process is.  

We propose a modification of the procedure presented by Tang et al24 to 

investigate the use of DMSO in the NW growth solution as a method to establish control 

over NW length and diameter.  We show a direct correlation between DMSO 

concentration in the NW growth solution (stabilizer depleted CdTe NPs in pH 9 water) 

and the resulting CdTe NW length and diameter.  Furthermore, we use this correlation to 

hypothesize that the mechanism governing NW formation involves a stage of NP 

recrystallization into NWs by Ostwald ripening that takes place parallel to particle self-
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assembly.  Altogether, this growth mechanism is consistent with both the media effect 

and other data previously published by our and other groups.   

 

2.3 SYNTHESIS 

TGA stabilized CdTe NPs were prepared according to literature31,32.  The average 

diameter of the CdTe NPs, as measured with AFM, was 2.6 ± 1.1 nm, with a wavelength 

of maximum fluorescence (λmax) of 541 nm.  The average diameter was calculated using 

the NanoScope ® III software tool Particle Analysis.  The error margins represent the 

standard deviation in the sample.  CdTe NWs were prepared according to a modified 

procedure outlined by Tang et al24.  Briefly, 1 mL of CdTe NP solution was mixed with 

0.5 mL methanol and 0.5 mL 2-propanol to partially remove TGA stabilizer from the 

CdTe NP surface.  The resulting turbid solution was shaken and centrifuged until all NPs 

had precipitated and the solution was clear.  The supernatant was decanted.  In order to 

ensure all excess liquid had been removed from the NPs, the moist NPs were freeze dried 

overnight.  The dry, stabilizer depleted CdTe NPs were reconstituted to 1 mL with a 

mixture of pH 9 water and DMSO.  The DMSO concentration was varied from 0 to 100% 

by volume.  The resulting suspension of stabilizer depleted CdTe NPs in DMSO and pH 

9 water was placed in an 80 oC oven from 40 minutes to 3 hours.  The solutions were 

removed and studied.  
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Figure 2.1 Dependences of  CdTe NW (A) length, and (B) diameter.  Each data point in (A) and (B) 
represents the average of 20 NWs from 5 separate runs using AFM and Nanoscope IIIa software.  The 
error bars represent the standard deviation in the 5 runs. 
  

2.4 RESULTS AND DISCUSSION 

2.4.1 NW Length and Diameter Control 

The general format of all experiments is the same as in previous papers except 

that we add various amounts of DMSO to the growth solution and incubate it at elevated 

temperature (80oC) over a certain period of time, after which physical parameters of the 

NWs are evaluated.  As one can see from the AFM images (Figure 2.2) and the 

cumulative graphs plotted on their basis (Figure 2.1 A, B), both diameter and length of 

the NWs are strongly dependent on DMSO concentration in the growth solution, and, of 

course, on the time that the growth solution is held at 80oC. 

 

 

The data obtained from AFM are averaged over several separate NW batches that are 

prepared independently and analyzed in the same manner.   

NW growth initially occurs after 40 minutes and after 3 hours the NWs precipitate 

into large agglomerates that cannot be re-dispersed.  Overall, the growth rate is much 

faster with DMSO than in the previous procedure without it21.  Both the length and the 
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diameter of NWs strongly increase with DMSO concentration for the same time point.  

The distribution of length is quite narrow for most of the conditions, while the 

distribution of diameters becomes wider as the DMSO content increases. Interestingly, as 

soon as DMSO concentration reaches above 70% (v/v), little or no NW growth can be 

observed.  This presents an obvious discontinuity of the trend because we see the increase 

in NW length and diameter (Figure 2.1-2.2) for increasing DMSO contents.  Such an 

unusual step-function behavior requires special attention because it can reveal details of 

the NW growth mechanisms. 

 

 

 

2.4.2 NP “Pearl Necklace” Formations 

Tang et al24 proposes the mechanism of NW formation involves the formation of 

NP pearl-necklace assemblies that subsequently re-crystallize into NWs.  Overall, DMSO 

in the NW growth solution inhibits the formation of pearl necklace assemblies (Figure 

2.3), which explains the cessation of NW formation for solutions with greater than 60% 

DMSO.  While explaining the step function behavior, this observation also presents a 

paradox because we see the increase in NW length and diameter at the same time (Figure 

2.1), which might be associated with the increase in length of particle chains.  

Figure 2.2.  AFM images of CdTe NWs grown in (A) 0% DMSO, (B) 40% DMSO, and (C) 60% DMSO. 
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Figure 2.3.  TEM images of NP assemblies for (A) 0% DMSO in growth solution, (B) 40% DMSO in 
growth solution (C) 60% DMSO in growth solution. 

One explanation of the mechanism governing DMSO’s inhibition of pearl 

necklace formation may be based on the reduction of the intrinsic dipole moments of NPs 

due to the gradual replacement of water molecules that are coordinated to the truncated 

faces of CdTe tetrahedrons.  It is shown by quantum mechanical calculations42 that these 

water molecules greatly enhance the polarity of CdTe particles compared to thiol 

terminals. Consequently, their replacement may result in the reduction of dipole-dipole 

attraction between the NPs below the level at which they can compete with thermal 

motion.  Similar calculations using PM3 algorithm are carried out in this work for a 

variety of potential replacement geometries.  The calculations are done for a model of 

relatively small CdTe cluster to reduce the calculation costs.  It is expected that the 

principal conclusions about dipole moment trend remain the same for bigger clusters 

having larger overall moments.      
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As is seen in Figure 2.4, the replacement of water molecules by DMSO is more 

likely to increase rather than decrease the dipole moment.    Only for the configuration in 

which 3 and 9 DMSO molecules replace water do we see a slight reduction of dipole 

moment from 20.1 to 18.8 and 19.8, respectively.  In all the other tested positions of 

DMSO, the dipole moment increases, sometimes significantly, such as the replacement of 

1 and 4 molecules of DMSO (Figure 2.4).  Also note that the orientation of the moment 

does not significantly change, which is attributed to the similarities of the association of 

DMSO molecules and water molecules with Cd atoms on the CdTe surface. Based on 

these results, the hypothesis that pearl necklace agglomerates stop forming due to water 

substitution is discarded. 

Let us look at the energy required to form an aggregate of NPs.  The formation of 

linear NP pearl-necklace assemblies is defined by the Derjaguin, Landau, Verwey, and 

(1) 

Figure 2.4.  Calculations of the dipole moments of small CdTe clusters. The numbers in the top left and top right 
corners represent the number of DMSO molecules in the cluster and the calculated dipole moment in Debyes, 
respectively.  Atom notations: H – light grey, Cd – green, O – red, S – blue, Te – orange,  C – dark grey. The 
yellow arrows indicate the direction of the dipole moment in each nanoparticle. 
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Overbeek (DLVO) theory as an interaction of electrostatic forces (charge-dipole and 

dipole-dipole) and Van der Waals forces.  The energy required to form an aggregate of a 

specific shape is described by Eq. 2.1, 

)(),,(),(),()(),,( rWrWrWrWrWrW sVanderWaalqqqqtotal ++++= −−−− ϕθθθϕθ µµµµ  

where )(rW qq−  is the charge-charge interaction energy, ),( θµ rWq−  and ),( θµ rW q−  are the 

charge-dipole and dipole charge interaction energies, ),,( ϕθµµ rW −  is the dipole-dipole 

interaction energy, and )(rW sVanderWaal  is the Van der Waals energy33.  The charge-charge 

interaction energy is defined by Eq. 2.233, 
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Generally, the semiconducting NPs possess large, permanent dipole moments from 41 to 

98 D34-36.  Carboxylic groups on the TGA organic stabilizers create a high surface charge 

on the NPs, creating a large repulsive force between the NPs (Eq. 2)31.  The origin and 

magnitude of the permanent charges on the CdTe NPs were described in our previous 

publication37  This charge can be quite high and depending on the size of nanoparticles 

and media conditions is estimated to be 2-10 electrons.  The origin of the dipole is the 

asymmetric truncation/growth of the nanoparticles38.  Both types of charges are 

(2.2) 

(2.3) 

(2.4) 

(2.1) 
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considered to be immobile and intrinsic to the nanoparticles in aqueous media.  For 

simplicity the permanent negative charge may be considered to be located in the middle 

of the NPs, while the dipole charges are located on opposite sides of the NPs similarly to 

the model used previously.33,37 For closely associated particle assemblies, the Van der 

Waals energy was shown to be extremely significant39,40; however, for large separations 

it is much smaller than the other forces and for this case is neglected.   

The attractive force between the NPs can be quite large (Eq. 2.4)41-43.  

Nevertheless, in an excess of stabilizer, the repulsive forces are typically greater than the 

attractive forces. As we discussed previously,24,40 partial removal of TGA stabilizer 

reduces the repulsive force between the NPs, so the attractive dipole forces cause the NPs 

to form linear aggregates.   

DMSO addition to the growth solution inhibits the formation of the pearl necklace 

assemblies (Figure 2.3). We believe this occurs because DMSO has a lower dielectric 

constant than water, εDMSO is 47.2 and εwater is 80.   Generally speaking, decrease of 

dielectric constant may result in an (a) increased dipole-dipole attraction (Equation 4), 

and an (b) increased charge-charge repulsion (Eq. 2.2).  Stronger dipole-dipole attraction 

must stimulate the formation of pearl-necklace agglomerates, but the higher energy of 

repulsion should have an opposite effect and decrease the number of agglomerates.  The 

entire mechanism of DMSO influence on NW formation should be considered as a 

competition of these two effects. At low DMSO concentrations, the dielectric constant of 

the suspension is high enough to minimize the repulsive Coulombic force between NPs 

and their large dipole moments allow the NPs to agglomerate into pearl necklace 

assemblies (Figure 2.3A).  As DMSO concentrations rise (40% (v/v) DMSO) the 
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frequency of the pearl necklace assemblies decreases because the repulsive Coulombic 

force between the NPs increases, which inhibits pearl necklace formation  (Figure 2.3B).  

Since the energy of dipole-dipole attraction is dependent on 1/rij
3 (Eq. 2.4) while the 

energy of the charge repulsion has 1/rij distance dependence (Eq. 2.2) and the 

concentrations of NPs are low (i.e. distances are long), the charge-charge interactions 

exert stronger influence on particle behavior than dipole-dipole interactions in this 

system.   For DMSO concentrations higher than 70% (v/v), the dielectric constant of the 

suspension becomes too low and the electrostatic repulsion increases, leading to 

separation of pearl necklace aggregates (Figure 2.3C).    We believe that this competition 

is the primary explanation of the step function behavior. 

Figure 2.5.  TEM of CdTe NWs grown in 20% DMSO for 2 hours, A) HRTEM of NW middle, B) HRTEM of 
NW end where NP is being attached to the NW. Insert: diffraction pattern of NW. 
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Figure 2.6.  TEM images of A) NWs produced from an equimolar solution of two NP sizes, 
and B) NWs produced from uniform constituent NPs. 

2.4.3 NW Formation by Ostwald Ripening  

After some time, the pearl necklace agglomerates recrystallize into NWs.  First of  

all, we validate previous reports by our group that this fusion is accompanied by the 

recrystallization of the zinc blende TGA stabilized CdTe NP pearl necklace agglomerates 

into hexagonal wurtzite TGA stabilized CdTe NWs24.  We see no evidence of the 

formation of cubic NWs in this particular system as is verified by high-resolution TEM 

(Figure 2.5).   The body of the NW (Figure 2.5A) has a perfect hexagonal lattice that is 

also confirmed by electron diffraction.  Using TEM, we also investigate the tip of the 

NW where the NPs are supposed to attach, and find that the portion of the NW in the 

intermediate stages of assimilation also has hexagonal structure (Figure 2.5B).  We are 

not able to find the presence of cubic lattice domains in the ends of the NWs, which is 

identified with independent NPs. 

Since hexagonal NWs are also made via growth from homogeneous solution and 

not necessarily via particle assembly, we also question this part of the mechanism by 

observing the formation of NWs from two NP solutions with no DMSO.  The first 
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contains NPs with an average diameter of 2.396 ± 1.13 nm.  The second contains an 

equimolar mixture of two NP sizes, those with an average diameter of 2.396 ± 1.13 nm 

and those with an average diameter of 5.790 ± 3.25 nm.  TEM images of the resulting 

NWs are shown in Figure 2.6.  AFM analysis confirms that the NWs from uniform 

constituent NPs have an average diameter variation of 0.72 ± 0.38 nm, while the NWs 

formed from a mixture of NP sizes have an average diameter variation of 4.64 ± 4.31 nm.  

This confirms that there is more variation in the diameter of the NWs made from a 

mixture of two NP sizes.  Again, the average diameter was calculated using the 

NanoScope ® III software tool Particle Analysis and the error margins represent the 

Figure 2.7. A) AFM image of NW formed from an equimolar mixture of two NP sizes, B) Topography of NW 
shown in A, C) AFM image of NW formed from uniform constituent NPs, D) Topography of NW shown in B. 
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standard deviation in the sample.  AFM images and AFM analysis are given in Figure 

2.7.  For the NWs made from uniform constituent NPs, all of the NPs in the pearl 

necklace agglomerate are relatively uniform, so when the chain recrystallizes, the 

resulting NWs are more uniform.  For NWs made from two constituent NP suspensions, 

the pearl necklace agglomerates contain both large and small NPs, so when the chain 

recrystallizes, the resulting NWs are very rough. 

We believe that this recrystallization is driven by Ostwald ripening.  Generally, 

Ostwald ripening is the process by which larger NPs grow while smaller NPs shrink and 

is often used in nanoscale synthesis to control NP diameter.32,44-47  As applied to the 

transition of pearl necklace NP agglomerates into NWs, Cd2+ and Te2- dissociate from 

smaller NPs within and surrounding the agglomerates.  The ions then diffuse to the NP 

chains inside of the agglomerates and attach to them, filling in the voids between the NPs 

in the chain.  The Cd2+ and the Te2- ions preferentially attach to the ends on the NWs 

because the TGA stabilizer helps direct the growth along the wurtzite (001) axis. The 

carbonyl functional group of the TGA electrostatically attract Cd2+ ions and thus guide 

them to Te sites, creating ABAB stacking48.  This makes Ostwald ripening in the case of 

NP chains direction specific that leads to eventual formation of the monocrystalline NWs 

(Figure 2.1). We want to point out that treating mass exchange process as diffusion of 

Cd2+ and Te2- ions is a simplification.  While there is no doubt that Cd2+ ions do exist in 

CdTe NP dispersions, Te2- is easily oxidized in solutions by dissolved oxygen.   It is quite 

possible that the actual species of Te diffusing from one particle to the other are some 

intermediates consisting of the ions of Cd, Te and one or more molecules of stabilizers 

(in this case thiols).    
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According to the general equation of Ostwald ripening in NP suspensions49  
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K is a dimensionless parameter that describes the ratio between diffusion and reaction 

rate constants according to Eq. 2.8, such that K<<1 is a diffusion limited process and 

K>>1 is a reaction limited process49, 
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while S is a dimensionless variable that describes the oversaturation of monomer in 

solution and is described in Eq. 2.9. 

0/][ flatbulk CMS =  

In Eq. 2.5-2.9, 
0
flatC  is the equilibrium for the dissolution of the bulk material,  

0
flatC  = flat

dk  / flat
gk  , Vm is the molar volume of the solid, γ is the surface tension, D is the 

diffusion coefficient of the monomer, flat
gk  is the first-order reaction rate constant for 

addition of monomer to a flat surface, r is the NP radius, t is the time, T is the 

(2.5) 

(2.9) 

(2.6) 

(2.7) 

(2.8) 
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temperature, [M]bulk is the monomer concentration in the bulk solution, and α is the 

transfer coefficient of the activated complex.   

 

 

As is seen in Figure 2.8, low values of K and high values of S result in larger NP 

growth rates; for DMSO to increase the rate of Ostwald ripening, it should either create 

high values of K or lower values of S, or both.  The only variables that DMSO should 

affect in the K parameter are D, γ, and flat
gk  .  Literature shows that DMSO lowers γ and 

D, so to increase K, DMSO must raise flat
gk .  Unfortunately, flat

gk  is unknown for this 

system and has not been calculated. Similarly, to raise S, DMSO must either increase 

[M]bulk or decrease 0
flatC .  [M]bulk can only be measured experimentally, and it is not 

known the extent that DMSO alters it; however to lower 0
flatC , the flat

gk  must be raised in 

relation to flat
dk .  For both K and S, in order for DMSO to increase the rate of Ostwald 

ripening, it must increase flat
gk , which is unknown for this system and would be a useful 

calculation for further studies of DMSO on the rate of Ostwald ripening. 

While the rate of Ostwald ripening increase is not shown directly, there is 

significant empirical evidence to suggest that this system enhances the rate of Ostwald 

ripening.  For example, when we synthesize NWs at 80oC (0% DMSO), their diameter is 

Figure 2.8.  NP growth rate as it depends on K and S dimensionless variables. 
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6.1 nm (Figure 2.5), while the room temperature synthesis results in NWs approximately 

equal to the diameter of the particles, i.e. 2.6 nm.24  Also, at 25oC the growth takes 

several weeks while the NWs grown at 80oC form in only 3 hours.  The high Cd2+ and 

Te2- concentrations in the growth solution cause the short hexagonal wurtzite NWs to 

grow much faster and less discriminately in respect to the crystal face, resulting in a 

greater diameter of the NWs.   

 

 

 

To further show that DMSO enhances Ostwald processes in CdTe nanostructures, 

the average diameter of CdTe NPs is measured after growth in various DMSO 

concentrations.  The larger NPs in the growth solution should grow, while the smaller 

ones shrink, causing a widening of the distribution of the NPs.  NP solutions at various 

DMSO concentrations were analyzed after 3 hours at 80oC (Figure 2.9).   

 

 

Figure 2.9.  Average diameter dependence of CdTe NPs in growth solution on DMSO.  The 
measurements were made at 80 oC and after 3 hours.  Data were obtained using the particle analysis tool 
on the Nanoscope III AFM software.  The error bars represent the standard deviation as determined 
using the NanoScope ® III software tool Particle Analysis. 
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As predicted by the Ostwald ripening processes, a trend is seen that shows larger average 

NP diameters with higher standard deviations as DMSO concentration increases.   Note 

that when DMSO concentrations exceed 70%, the curve in Figure 2.9 does not 

discontinue.  This confirms that although Ostwald ripening has significant effect on NW 

growth, this process alone cannot explain the NP-to-NW transition.  The explanation of 

discontinuity does require the intermediate step of formation of pearl necklace 

agglomerates that is inhibited by DMSO due to the electrostatic reasons described earlier.    

Not all aspects of the growth process can be experimentally explored at the 

moment.  However, the fact that Ostwald ripening does play a significant role can be 

substantiated by several observations, including the DMSO effect.  One of them is the 

unforeseen blue shift of fluorescence spectrum (Figure 2.10) that indicates dispersed 

particles become smaller as NWs grow, which is in agreement with the proposed 

mechanism.  The optical properties of the CdTe NW solutions are directly linked to the 

size and shape of the structures.50 When considering luminescence of long semiconductor 

NWs is primarily determined by the diameter, one would expect the PL to red-shift or at 

least to stay the same for solutions containing longer NWs.  However, Figure 2.10 shows 

the opposite. The explanation is that 
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dispersions here contain both CdTe NPs and NWs.  Since NW growth occurs via Ostwald 

ripening, most of the NPs in the solution shrink while a few NPs and NWs grow.  DMSO 

aids Ostwald ripening, so increased DMSO concentration in the growth solution results in 

longer NWs and smaller NPs.  Since the PL of the solution is a cumulative effect of its 

contents, and since there are many more NPs than NWs and the quantum yield of NWs is 

typically smaller than that of NPs (due to lower probability of radiative excitonic 

recombination in greater volume of the particle), the PL of the solution is more dependent 

on the size of the NPs rather than the NWs.  As a result, Figure 2.10 shows that the 

fluorescence of the solutions decreases with increasing DMSO concentration.  As 

discussed earlier, DMSO concentration inhibits NW formation, with little or no NW 

formation above 70% DMSO.  The sudden increase in PL for suspensions above 70% 

DMSO occurs because little or no NWs are formed in solutions above 70% DMSO.  As 

such, Ostwald ripening results in an increase of the average diameter of the NPs (Figure 

2.9).   

Figure 2.10.  PL dependence of CdTe NW solution on DMSO concentration in the growth solution.  
Measurements are after 3 hours growth time in 80 oC oven. 
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2.5 CONCLUSIONS 

 We present a method to consistently control the length and diameter of TGA 

stabilized CdTe NPs by the addition of DMSO to the NP growth solution.  This method 

sheds new light onto the mechanism of NW formation.  After the formation of pearl 

necklace NP assemblies in the growth solution, Ostwald ripening causes the chains to 

recrystallize and grow.  Experimental data suggest that the addition of DMSO inhibits the 

formation of the NP pearl necklace aggregates, but enhances Ostwald ripening. As such, 

in the concentration range when particle chains do form, the synthesis of NWs is 

accelerated.  However, once electrostatic repulsion between the NPs from DMSO 

becomes too strong, the formation of NWs abruptly stops.   The formation of NP pearl 

necklace assemblies and the direct fusion and growth of NP chains into NWs by Ostwald 

ripening are likely to be competing processes. The balance between these and other 

processes of NW assembly are affected by environmental factors, such as temperature 

and media composition.  Once we understand these processes, we can control the 

morphology of the resulting NWs.  Note that there are other intriguing aspects of NP-to-

NW transformation process that are still difficult to rationalize at the moment, such as the 

nature of Te-containing species and the reasons for absent product of Te2- oxidation, as 

well as the effects of using other solvents to vary the dielectric constant of the solution.  

These aspects will be a subject of ensuing research.   

 One can expect that similar effects may be observed for other water-miscible 

organic solvents that reduce dielectric constant.  At the same time, we need to be careful 

extending these analogies because of other processes that may accompany the addition of 
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the solvent, such as destabilization and colloidal uncontrolled agglomeration.  DMSO in 

that respect is very convenient solvent because it can serve as particle stabilizer by 

itself51.  We expect that similar behavior can be expected for acetonitrile. 
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CHAPTER 3 

 

Effect of CdSe Nanoparticles on The Growth of Te Nanowires: Greater Length and 
Tortuosity and Non-Monotonic Concentration Effect 

 

3.1 ABSTRACT 

Improved control over NW geometry and composition offers multiple benefits for 

design material and devices One example is in complex nanoelectronic circuits, whereby 

facilitating their organization on substrates provides more efficient charge transport over 

large distances, as well as greater mechanical strength. Te NWs have many interesting 

thermoelectric, piezoelectric, conducting, and photo-conducting properties, and these 

NWs are highly reactive with numerous chemicals. This allows Te NWs to be used as 

templates for NWs of other compositions.   Te NWs in this study are made from CdTe 

NPs by slow oxidation.  Te NWs with average lengths of 6.63±1.07 μm and aspect ratios 

of 50 were initially formed.  Unexpectedly, the presence of CdSe NPs results in a drastic 

increase in the length, aspect ratio, and tortuosity of the Te NWs.  We believe that Se2- is 

being incorporated into the Te seeds as elemental Se, fouling them and reducing the 

number of viable Te seeds, which allows longer Te NWs to form.   Excessive amounts of 

CdTe NPs stop the growth of Te NWs completely making the concentration dependence 

strongly non-monotonic. The longest tortuous NWs grown in this fashion have lengths of 

15.56±4.16 μm and aspect ratios 103.  This work reveals a novel process taking place 
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between growing NWs and NPs.  These finding indicate advantages of using NPs for 

reaction control in preparation of NW with high practical relevance.    

 

3.2 INTRODUCTION 

One-dimensional semiconductor NWs offer small size and one dimensional 

quantum confinement which give them many unique optical and electronic properties.  

These unique properties make semiconductor NWs desirable for use in new photonic 

devices such as solid state lasers,1-3 in light collecting devices such as solar cells4, as 

optical waveguides that internally guide light through a material with a lower 

permittivity,3,5,6 and as light emitting diodes3,7,8,9.  NWs also find uses in many electronic 

devices including resistors.10,11 diodes10,12,13, switches14,15, inverters16, transistors16,17,18, 

and more complex circuits19.  The unique properties of semiconductor NWs allow them 

to be used in various sensors including those based on field-effect FETs20,21 and 

photoluminescence22,23.  

The dimensions (length, diameter, aspect ratio) and geometry (shape, tortuosity) 

of the NWs play important roles in NW performance in the above applications.  The 

formation of long, high aspect ratio NWs is desirable because it makes possible 

manufacturing more complex nanoelectronic circuits, for instance using on-nanowire 

lithography24.  Furthermore, NWs with increasingly complex geometries offer the 

formation of more complex nanoelectronic circuits provided that there are simple means 

to control NW morphology.  High aspect ratios also facilitate NW alignment on 

substrates25,26 and provide more efficient charge transport over large distances by 

eliminating tunneling junctions between the individual wires.  Contact resistance in 



59 
 

tunneling junctions representing significant problem for preparation of highly conductive 

macroscale materials from nanoscale building blocks27-29.  Composite materials made of 

longer NWs have intrinsically better mechanical properties than the same materials made 

of shorter ones because of their ability to offer higher percolation values30-32. 

Therefore, it is important to be able to increase the aspect ratio of the NWs 

synthesized following the same pattern as it is being done for carbon nanotubes.  We 

have previously presented a solution-based NW synthesis procedure governed by the 

oriented attachment of NPs into NWs.  In this method, presented by Tang et al33, the 

stabilizers of II-IV NPs are partially removed, allowing the NPs to orient themselves into 

pearl necklace structures which subsequently recrystallize into CdTe NWs.  This method 

allows the spontaneous, aqueous assembly of NPs into NWs.  Various refinements of this 

technique have allowed more precise control over the dimensions of the NWs34, as well 

as the composition35 and geometry of the resulting structures36,37.  Interestingly, this 

project began with a different purpose in mind.  Our desire was to produce gradient NWs 

whose composition and band-gap vary along the length of the NW for use in solar cells 

and autonomous nanosensors38.  The aim was to synthesize NWs with CdTe middle 

sections that transition to CdSe ends by the formation of short CdTe NWs, then 

introducing CdSe NPs into the growth solution as the NW continued to grow.   However, 

a corresponding modification of the earlier procedure39 instead resulted in the 

spontaneous transformation of CdTe NPs into Te NWs. Concomitantly, the effect of 

added CdSe NPs was also quite different than what we expected in the beginning. 

Nevertheless, the results that obtained were both unexpected and quite interesting from a 

structural point of view, and potentially useful in practice. Te NWs have many interesting 
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thermoelectric, piezoelectric, conducting, and photo-conducting properties.35,40-44  

Additionally, Te is highly reactive with numerous chemicals, so Te NWs may also be 

used as templates for NWs of other compositions.35 High aspect ratio Te NWs potentially 

have even greater significance than those made from CdTe.  

There are many reported methods to synthesize nanomaterials.  Most rely on the  

reduction of a tellurium compound (orthotrelluric acid45, (NH4)2TeS4
46, H2TeO2

47, 

Te(OC2H5)4
42, and Na2TeO3

48 to create Te seeds which subsequently grow into Te 

nanomaterials.  The morphology of the resulting nanomaterials can be altered from 

nanotubes (NTs), NWs, and nanoribbons (NRs) by changing the reducing environment 

including the reducing agent (ethylene glycol, hydrazine, biomolecules, surfactants), 

dispersing material (water, ethanol, and ethylene glycol), and temperature.  One is the 

reduction of orthotelluric acid with hydrazine or ethylene glycol to produce Te NWs and 

NTs depending on the conditions45,49 and offers a method to synthesize Te/Se NW alloys 

using a reduction of orthotelluric and selenious acid in the same pot.  The resulting NWs 

have a Te:Se ratio of 1:1 with good crystallinity; however, they have relatively short 

aspect ratios of 545.  

Here we report that single crystalline, straight Te NWs can be grown from CdTe 

without any growth modifiers to give lengths of 6.63±1.07 μm and aspect ratios of 51.  

The addition of CdSe NP or Se2- ions into this growth solution causes the Te NWs to 

become more tortuous and increase in length and aspect ratio to reach maxima of 

15.56±4.16 μm and 103, respectively, which correlates well with other studies on  Te 

NWs preparations35,41,42,49.  In this paper we also elaborate on the growth mechanism and 

relate to effect the incorporation of Se atoms and clusters in Te seeds and growing NWs, 



61 
 

which explains the strongly non-monotonic effect of added CdSe NPs and Se2- on the 

length of Te NWs.  While small amount of growth modifiers results in substantial 

increase in length, their excessive amount completely stops NW growth. Such behavior is 

explained on the basis of incomplete and complete fowling of Te seeds after 

incorporation of Se. Our method provides the Te seeds and subsequent growth material 

by the decomposition of CdTe NPs and subsequent oxidation of Te2- ions, offers the 

ability to control the shape of the Te NWs by adjusting the growth environment, and 

describes a new aspect of chemical interactions between NWs and NPs. 

 

3.3 SYNTHESIS 

TGA stabilized CdTe and CdSe NPs are prepared according to the literature.50,51  

The average diameter of the CdTe NWs, as measured with AFM, is 2.6±1.1 nm with a 

wavelength of maximum fluorescence (λmax) of 541 nm; while the average diameter of 

the CdSe NPs, as measured with AFM, is 2.1±0.8 nm.  Error margins represent the 

standard deviation in the sample.  The CdSe NPs exhibit no fluorescence.  Te NWs are 

prepared according to a modified procedure outlined by Lilly et al34.  Briefly, 1 mL of 

CdTe NP solution is mixed with 0.5 mL methanol and 0.5 mL 2-propanol to partially 

remove TGA stabilizer from the CdTe NP surface.  All solutions are deoxygenated by 

bubbling nitrogen in an inert environment.   The resulting turbid solution is shaken and 

centrifuged until all NPs have precipitated and the solution is clear.  The supernatant is 

decanted.  In order to ensure all excess liquid is removed from the NPs, the moist NPs are 

freeze dried overnight.  The dry, stabilizer depleted CdTe NPs are reconstituted to 1 mL 

with a deoxygenated 20% (v/v) mixture of DMSO in pH 9 water.  This constitutes the 
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CdTe NP growth solution.   CdSe NP growth solutions are prepared in a similar manner, 

but the CdTe NPs are replaced with CdSe NPs.  The CdTe NP growth solution and CdSe 

NP growth solution are mixed in ratios varying from 0% CdSe to 100% CdSe.   Solutions 

containing Na2Se are created by the addition of various volumes of 0.04 M Na2Se to 

CdTe NP growth solution.  The resulting mixtures are placed in an 80oC oven from 1 to 3 

days at which time the solutions are removed and studied.  

 

 

 

3.4 RESULTS AND DISCUSSION 

3.4.1 Formation of high aspect ratio Te NWs      

Long, straight, highly crystalline Te NWs result from placing a CdTe growth 

solution, i.e. stabilizer depleted CdTe NPs in a deoxygenated solution of 20% DMSO and 

pH 9 water, in an 80oC oven for 24 hours.  While the solution is deoxygenated, a small 

quantity of oxygen persists in the solution.  This small amount of oxygen and the excess 

DMSO in the solution oxidize Te2- to create small Te atomic clusters, which serve as 

Figure 3.1.  A) SEM image of a large precipitate with Te NWs fused with Cd and Te oxides,  B) EDS spectra 
of the precipitate. 
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seeds that allow further precipitation in the c-axis to form one dimensional 1D 

structures35,52. The relative lack of oxygen and the weak oxidization potential of DMSO 

limit the number Te condensation centers from forming, allowing long NWs to form.  By 

reducing the number of Te seeds, more Te may deposit onto each, resulting in an increase 

in the length of the wires.  In fact, when the sealed vials of growth solution are exposed to 

air, Te NWs along with oxides of Te and Cd precipitate from the solution immediately.  

Figure 3.1 shows the SEM image and corresponding EDS spectrum of the precipitate.   It 

should be noted that the formation of new Te seeds and the growth of existing Te NWs 

occur simultaneously, resulting in an assortment of NW lengths. 

 

 

 

Figure 3.2.  Optical michrographs and SEM images (inserts) of Te NWs synthesized from growth 
solutions with CdSe NP: CdTe NP ratios of A) 0:1, B)  1:1, and C) 2:1; and Se2- concentrations of D) 0, E) 
3.5*10-4 M, F) 6.0*10-4 M. 
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Te NW formation initially occurs after 6 hours, as indicated by a darkening of the 

suspension, and is allowed to continue an additional 24 hours, at after that the solution is 

removed from the oven and studied.  As is clearly seen, the resulting Te NWs are long 

and straight, with high aspect ratios around 50 (Figure 3.2A and D).  The average 

dimensions of the Te NWs, as measured with SEM, are 6.63±1.07 μm by 0.13±0.03 μm.  

Interestingly, they can be easily observed in optical microscope, which is clear 

demonstration of their impressive length (Figure 3.2A and D).  The optical micrographs 

of the Te NWs are similar to the images taken with SEM.   Of course the dimensions, and 

in particularly the width appear larger than they are in reality due to light scattering.    

HRTEM images (Figure 3.3A) show lattice spacing indicative of trigonal Te NWs with a 

001 zone axis, as expected from previous reports35, and an EDS spectrum (Figure 3.3B) 

confirms the composition of the NW as Te.  No Cd or CdTe NWs are observed, and the 

remaining NPs in the NW suspension are rich in Cd (Figure 3.3B and D). 

The formation of Te NWs can be induced from stabilizer depleted CdTe NPs by 

the addition of dipotassium ethylendiaminetetraacetate (EDTA) into the CdTe growth 

solutions.35  There, EDTA, a Cd-complexing agent, was added to a CdTe NP solution, 

where it bound strongly to the Cd2+ ions in the CdTe NPs released free Te2- ions in 

solution which underwent a reaction with oxygen to create Te NWs.  The reaction 

scheme was given below as Eq. 3.1 and 3.2, where E represents either Se or Te.35 

 

CdE + H2EDTA2-  Cd(EDTA)2- + 2H+ 

2E2- + O2 + 2H2O  2E + 4OH- 

 

(3.1) 

(3.2) 
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In the current case, we believe that DMSO acts in a similar fashion as EDTA in 

the work by Z. Tang et. al.35, which is to provide excess Te2- ions in solution that are then 

oxidized by DMSO and traces of oxygen to become Te NWs.  DMSO both serves to 

enhance the decomposition of the CdTe NP into Cd2+ and Te2- ions34 and acts as an 

oxidizer to assist O2 in transforming Te2- to atomic Te52.  Similarly to EDTA, it probably 

complexes Cd2+; and is likely to form a strong solvation shell around Te2- as well.   

 

 

 

Figure 3.3.  A) HRTEM and B) EDAX spectra of Te NW grown in 0:1 CdSe NP: CdTe NP ratio, C) TEM 
and D) EDAX of Te depleted CdTe NPs from solutions in 0:1 CdSe NP: CdTe NP ratio. 
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3.4.2 Effect of CdSe NPs on NW morphology     

Te NWs are allowed to form from the CdTe NW growth solution for ~12 hours in 

the 80 oC oven as before, at which time stabilizer depleted CdSe NPs are added as growth 

modifier.  After an additional 24 hours, the samples are removed from the 80 oC oven and 

studied.  Optical micrographs and SEM images of NWs grown in various CdSe NP: 

CdTe NP ratios are shown in Figure 3.2.  While the Te NWs obtained in the previous 

section are already quite long, their length further increases as the amount of CdSe NPs is 

increased.  Te NWs grown in pure CdTe NP growth solutions are quite straight, while 

NWs grown in a 2:1 CdSe NP: CdTe NP growth solution are tortuous.  Te NW average 

dimensions, as measured with SEM, range from 6.63±1.07 μm by 0.13±0.03 μm, aspect 

ratio of 51, for those grown in pure CdTe NP growth solutions to 15.56±4.16 μm by 

0.15±0.02 μm, aspect ratio of 103, for those grown in a growth solution with a 2:1 CdSe 

NP: CdTe NP ratio.   

To understand better the effect of CdSe NPs and additional series of experiments 

is carried out with Se2- ions added to the CdTe NPs as growth modifiers.  Te NWs are 

allowed to form from the CdTe NW growth solution for ~12 hours in the 80 oC oven, at 

which time Se2- ions are incorporated into the CdTe growth solution by the addition of 

Na2Se.  Again, the samples are studied after an additional 24 hours have passed. Optical 

microscopy and SEM images of NWs grown in various Na2Se concentrations are shown 

in Figure 3.2. We see unmistakable similarity of the effects of addition of CdSe NPs and 

Se2-, which indicate to us an obvious chemical relationship between these two cases.  Te 

NW length and tortuosity initially increase as the Na2Se concentration is increased.  As 

the Na2Se concentration is raised further, the length of the Te NWs is stunted and large 
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Te and Se clusters develop.  So, the effect of Se2- as growth modifier on the morphology 

of Te NWs is strongly non-monotonic, which can also be appreciated from the optical 

images of Te NW dispersions (Figure 3.2).   Again, Te NWs grown in pure CdTe NP 

growth solutions are straight, while NWs grown in higher Na2Se concentrations are 

tortuous.  Te NW average dimensions, as measured with SEM, range from a minimum of 

6.63±1.07 μm by 0.13±0.03 μm, aspect ratio of 51, for those grown in pure CdTe NP 

growth solutions to 10.65±0.99 μm by 0.13±0.02 μm, aspect ratio of 82, for those grown 

in a growth solution with 6.0*10-4 M Na2Se.   

Both addition of CdSe NPs and Se2- initially result in an increase in length and 

tortuosity of the Te NWs at relatively low range of Se2- concentrations.  However, 

stunting and eventual cessation of Te NWs is observed with high concentrations of 

Na2Se, but not with CdSe NPs because the decomposition of CdSe NPs does not provide 

high enough Se2- ion concentrations for this effect to occur.  This is because when Na2Se 

is added to the CdTe NW growth solution, it immediately dissociates into Na+ and Se2- 

ions; however, when CdSe NPs are added to the CdTe NW growth solution, the CdSe 

NPs slowly release Se2- ions into solution, just as the CdTe NPs slowly release Te2- ions 

into solution. 

So, we probably need to discuss both cases from the perspective of a certain 

concentration of Se2- present in the growth media, which acts as generic growth modifier 

in all experiments in the framework of this study. We believe that the length of the Te 

NWs is increased at low Se2- concentrations because Se atoms become incorporated into 

some of the new Te seeds that are formed, fouling them and preventing Te NWs from 

forming from these seeds.   Just as Te2- is oxidized and becomes Te, Se2- is also oxidized 
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to atomic Se; the redox potentials for Te2-/Te and Se2-/Se are -1.143 V and -0.924V, 

respectively.35  This fouling is most probably the result of crystal defects in the Te seeds 

caused by differences in the crystal structure of Se and Te.  These defects prevent 1D 

growth of the Te seed into a Te NW.  By reducing the number of viable Te seeds, more 

Te may be deposited onto each active seed, which results in an increase in the length of 

the wires. 

 

As the Se2- concentration is further increased, the length of the Te NWs continues 

to increase and they become increasingly tortuous.  Again, the further increase in length 

is the result of fewer Te seeds.  The increase in tortuosity is the result of Se atoms 

Figure 3.4.  (A) Dark field TEM image of Te NW grown in a 2:1 CdSe NP: CdTe NP ratio.  The defects in 
this wire are circled.  (B) HRTEM of a defect in Te NW grown in a 2:1 CdSe NP: CdTe NP ratio.  (C) 
EDAX of Te NW grown in a 2:1 CdSe NP: CdTe NP ratio.  The Cu peak is from the copper TEM grid.   
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becoming incorporated into the Te NWs, as is seen in Figure 3.4C, which shows an 

EDAX spectrum of a NW grown in a growth solution in a 2:1 CdSe NP: CdTe NP ratio.  

As expected, very little Se is incorporated into the NWs.  The NWs are made of 

predominantly from Te with minute amounts of Se.  The lattice parameters of trigonal 

P3121 Te are a=4.46Å and c=5.93Å, while those of trigonal P3121 Se are a=4.37Å and 

c=4.96Å. They are fairly close so that the incorporation of Se into the Te NWs can occur.  

At the same time, the difference in c lattice constants apparently creates crystal defects 

that cause the NW to curve.  Figure 3.4A, a dark field image of a tortuous NW, helps 

identify crystal defects in the NW that cause it to curve.  Figure 3.4B shows a likely 

HRTEM image of such a defect.   

Once the Se2- concentration is raised above a certain threshold, Te NW growth is 

stunted, few NWs are formed, and large Te and Se clusters appear.  Few NWs are seen 

because Se fouls all new Te seeds, preventing any new NW formation after the 

introduction of Na2Se.  The same happens probably with all the growth points on NWs, 

which can no longer support proper crystallization pattern with selected 0001 axis, and 

hence, no NWs, but rather disordered agglomerates are produced.  

 

3.5 CONCLUSION 

In conclusion, we show that a deoxygenated growth solution of CdTe NPs with 

DMSO results in long Te NWs with lengths of 6.63±1.07 μm and high aspect ratios of ca. 

50.  Additionally, the presence of CdSe NPs in the growth solution results in longer, more 

tortuous Te NWs.  The length and tortuosity of the Te NWs are related to small 

concentrations of Se2-generated by the NPs.  As was demonstrated by a part of the study 



70 
 

with addition of Se2-, low Se2- concentrations result in long, straight Te NWs; medium 

Se2- concentrations result in long, tortuous Te NWs with lengths of 15.56±4.16 μm and 

aspect ratios 103; and high Se2- concentrations stunt NW formation.  The entire process is 

driven by Se incorporation into the Te seeds and NWs.  Such long, high aspect ratio, 

variable geometry, Te NWs offer numerous uses in various thermoelectric, piezoelectric, 

conducting, photoconducting, and templating applications, while CdTe NPs offer a 

convenient means of control this highly non-monotonic reaction.  The high aspect ratio 

and tunable geometry of the wires,50 which are easily visible even in optical microscope, 

offer the promise of more complex nanocircuitry, more efficient charge transfer, easier 

NW alignment, and stronger mechanical properties in composite uses.  Future directions 

of this research include growing composition gradient CdTe/CdSe NWs using the similar 

technique of adding CdSe into the CdTe NW growth solution, and the incorporation of 

these Te NWs into various devices, such as optical switches. 
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CHAPTER 4  

 

CHIRAL AU COATED CDTE TWISTED NANORIBBONS 
 

4.1 ABSTRACT 

 Chiral CdTe nanoribbons (NRs) are coated with Au NP spots and Au shells by 

soaking substrates coated with chiral, twisted CdTe NRs in HAuCl4 solutions.  High 

energy sites along the twisted CdTe NRs that are caused by crystal defects in the NR 

reduce the HAuCl4 to atomic Au.  The deposition first results in Au NP spotted, twisted 

CdTe NRs.  As the reaction continues, the Au spots become more numerous and 

eventually form a polycrystalline Au shell around the twisted NRs.  These Au NPs and 

the Au film are studied with high resolution transmission microscopy, and energy 

dispersive spectroscopy.  The Au NP spotted/coated chiral, twisted, CdTe NRs may have 

applications in negative index materials (NIMs). 

 

4.2 INTRODUCTION 

Because of their ability to refract light on the opposite side of the normal, NIMs 

have intriguing properties that may find application in construction of perfect lenses and 

cloaking devices1-4.  The two most actively pursued approaches to NIMs are of use 

resonating metallic nanostructures and photonic crystals. Metallic nanostructures 

typically contain a combination of thin wires and resonant rings that provide the negative 
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permittivity and negative permeability components, respectively5-7.  The size of the 

nanostructure determines the wavelengths at which the material would behave as a NIM. 

By scaling down the size of nanostructures, NIM could be obtained in near-IR regime8.  

However at such small dimensions, metals no longer behave as perfect conductors and 

further scaling down is not efficient9.  Another major problem with this design is that 

operating near plasmonic resonances may lead to very high losses from metals, as well as 

limits the restoration of evanescent components of light.  Although compensation of 

losses by embedding a gain material, such as CdTe NPs10, is being explored, it still in the 

very early stages of development11.  On the other hand, photonic crystals are based on the 

excitation of photonic band gaps with negative slope to support negative phase velocity 

in the medium12, and are limited in their performance due to scattering from surface 

imperfections.   

Recent theoretical investigations have showed that NIMs can also be realized 

through chiral materials under certain conditions1,13-16.  In a chiral medium, the 

Maxwell’s constitutive relations are given in Eq. 4.1-4.3, 

D = ε E + ξ H 

B = ζ E + µ H 

ζ = ξ*= j κ sqrt(µ0 ε0) 

where κ is the dimensionless chirality parameter. Some trivial algebra can show that one 

of the required conditions to achieve negative refraction is 

 

A chiral material breaks the degeneracy between two circularly polarized waves, 

increasing the effective refractive index for one polarization and reducing the refractive 

(4.1) 

(4.2) 

(4.3) 

(4.1) 
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index for the other  (n±=   ±κ, where  is the chirality parameter).  Normal chiral 

materials, even at very high concentration, have the chirality parameter on the order of 

10-3, whereas the required magnitude is of order 1, as was recently calculated17.  (The 

term  is effectively the refractive index of a material and such values are typically on 

the order of 1).  Thus one of the key requirements for making a negative index material 

via the chiral route is to induce strong chirality for n- to reach an effective negative value.  

Zhang et al demonstrated chiral NIMs using artificially synthesized metallic chiral 

resonators18 and Zheludev et al demonstrated similar results using twisted planar metal 

patterns in parallel planes19,20.  The size of the resonating structures was on the order of a 

few hundred micrometers and the chiral response generated was observed around 1 THz.  

The resonating structures in both cases were made from lithographic techniques, thus the 

scaling down of size becomes a challenging limitation.  It is also to be noted that 

resonating structures will have to be simplified substantially in their design as research 

scales down the size using lithographic techniques, effectively reducing the strength of 

chirality.  

In this chapter, a novel method of preparing chiral metallic nanostructures is 

presented.   These nanostructures may find applications in NIMs.  Specifically, we 

produce twisted NRs of Au NPs by redox transformation of parent NRs from CdTe21. 

 

4.3 SYNTHESIS 

Twisted CdTe NRs were produced according to literature21.  The twisted NWs 

were produced from CdTe NPs with a reduced ratio of TGA stabilizer for the CdTe NPs 

in the initial synthetic step. The assembly process was allowed to proceed under ambient 
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light conditions, given it is known that light can cause defects such as truncations on the 

surface of the NPs that can change the magnitude and direction of the NP charge dipoles 

(leading to interesting assemblies). CdTe NP dispersions were prepared using literature22 

procedure with the fraction of TGA to Cd2+ close to ~1.0 in ratio. 1.095g of 

Cd(ClO4)2·6H2O was dissolved in 200 mL of pure water. TGA was added into the 

solution at a molar ratio of ~1.0 against Cd2+. The pH values of the solution were 

adjusted to 11.4 by the drop-wise addition of 1 M NaOH solution. The solution was de-

oxygenated by bubbling N2 through the solution for 60 minutes. Under stirring, H2Te gas 

was passed through the solution with a slow nitrogen flow for 60 minutes. The precursors 

were converted to CdTe NPs by refluxing at approximately 100 ºC for 50 min. 

Dispersions with a luminescence peak of 550 nm were obtained. The CdTe NPs were 

then precipitated by addition of methanol and centrifuged for 20 minutes.  The CdTe NPs 

were redispersed in pure water at pH 9 (modified by the addition of NaOH). The 

dispersion was exposed to ambient light and aged. The orange solution of NPs turned 

dark green in ~48 hours, which differs from previous studies were the dispersions turned 

dark brown21. Upon analysis, the samples showed distinctive helical structures and 

straight NWs. NRs twisting in both right and left oriented rotations were observed. Upon 

evaluating ~100 NWs, 52 NRs were right oriented and 48 NRs had left oriented twist21.  

The resulting NRs consist primarily of Cd and S enriched CdTe NRs21. 

The twisted CdTe NRs are then immobilized by modified layer by layer 

deposition23.  For SEM characterization, piranha cleaned Si wafers (Si wafers are soaked 

in a mixture of 30 % (v/v) H2O2 and 70 % (v/v) H2SO4 for 30 minutes and rinsed) are 

used as substrates; for TEM characterization, carbon on holey carbon TEM grids supplied 
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by Ted Pella, Inc are used as substrates.  The substrate is then soaked in 0.5 % (v/v) 

PDDA for 5 minutes, rinsed in water and air dried to create a thin, positively charged film 

on the substrate for the negatively charged twisted NRs to adhere.  The substrate is then 

soaked in the twisted NR solution for 1 minute, rinsed in water and air dried.  The 

resulting substrates give a good dispersion of the twisted CdTe NRs on the substrate 

(Figures 1 and 2).  Once the twisted CdTe NRs are immobilized, the substrate is soaked 

in 0.01M HAuCl4 for between 30 seconds and 5 minutes, at which time it is rinsed in 

water and air dried. 

 

 

 

 

 

 

Figure 4.1.  TEM images and HRTEM inserts of twisted NRs of A) CdTe NRs, B) Au NRs formed after 
30 second soak of CdTe NR in HAuCl4, and C) Au NRs formed after 2.5 minute soak of CdTe NR in 
HAuCl4.  SEM images and STEM inserts of D) CdTe NRs, E) Au NRs formed after 30 second soak of 
CdTe NR in HAuCl4, and F) Au NRs formed after 2.5 minute soak of CdTe NR in HAuCl4.   
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4.4 RESULTS AND DISCUSSION 

 Au NP patterned substrates are synthesized by the reaction of HAuCl4 with chiral, 

twisted CdTe NR templates that have been immobilized on substrates (Figure 4.1).  The 

reaction is rapid and occurs in an aqueous environment, and results in the formation of 

Au NPs that are patterned on the substrate in a similar geometry as the CdTe NR.  The 

reaction can be controlled such that the Au NP patterning retains the pitch (pitch length 

of 240 ± 50 nm before21, and 220 ± 30 nm after Au plating, as calculated using SEM in 

Figure 4.1B and E) and chirality (equal number of left and right hand helices) of the 

twisted CdTe NR.  Since the CdTe NRs are a racemic mixture of helices, neither the 

CdTe NR coated substrates nor the Au NP patterned substrates show any chiral signal 

when measured with CD (Figure 4.S.1).

 

  

The probable reaction of the CdTe NRs with HAuCl4 has been reported 

previously in literature systems with CdTe NPs24 and in CdTe NWs25 and is given as Rx. 

4.1. 

Figure 4.2.  HRTEM images with electron diffraction pattern inserts of A) CdTe NRs, and B) Au NRs 
formed after 30 second soak of CdTe NR in HAuCl4.   
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2AuCl4 + 3CdTe                 2Au + 8Cl- + 3Cd2+ + 3Te 

 

Other systems have reported the formation of Au NPs on semiconductor25-27 at 

high energy sites such as locations of extreme angles or defects that contain sufficient 

energy reduce the HAuCl4 to atomic Au28.  Since the NRs used in this study are highly 

polycrystalline (Figure 4.2A), they contain numerous high energy sites, so the reaction 

occurs simultaneously over the entire CdTe NR length, resulting in the formation Au NPs 

instead of a semiconductor NW with Au NPs adhered to the ends or vertices. 

EDS of CdTe NR structures and Au NP structures seen in Figure 4.1 confirm the 

complete replacement of CdTe with Au with some residual S (Figure 4.3A and B).  

Electron diffraction and HRTEM of a single NR confirms that the polycrystalline zinc 

blende CdTe NR has been replaced by Au (Figure 4.2A and B).  Note that the lattice 

parameters of the Au NP do not precisely match up with cubic Au as S has been 

incorporated into the Au NP lattice.  Electron diffraction of a single NR also shows that 

the CdTe NRs contain many orientations of NPs in order to give a continuous circular 

diffraction pattern, whereas the Au NP diffraction pattern is not continuous, indicating 

that fewer Au NPs are present, thus creating a discontinuous circular image. 

The discrete nature of the Au NPs is confirmed by EDS using STEM.  Focusing 

the beam onto a NP gives a strong Au signal, whereas focusing between NPs gives no 

signal (Figure 4.3C).  The Cu and Si peaks in the EDS spectra are background from the 

TEM grid and the EDS detector, respectively. 

The discontinuous nature of the Au NPs is most likely due to the polycrystallinity 

of the template CdTe NRs (Figure 4.2A), as this provides numerous high energy defect 

4.1 
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sites for Rx. 4.1 to occur.  Since Au replaces CdTe at numerous sites along the NR, there 

are discreet Au NPs formed along the NR length.  These Au NPs do not fuse along the 

NR length and instead result in a discontinuous layer of Au NPs adhered to the substrate 

in place of the CdTe NR.  When the substrate is rinsed, some of Au NPs are dislodged, 

resulting in an Au NP pattern on the substrate in the place of the CdTe NR (Figure 4.1B 

and C).  The S contained in the CdTe NRs is unreacted and is incorporated into the Au 

NPs.  As the twisted NRs are exposed to the HAuCl4 solution for longer periods of time, 

additional Au spots are seen in the NR (Figure 4.1C and F) and Au deposition occurs and 

fills the voids between the NRs to fill with Au (Figure 4.1C and F).  

 

 

 

Figure 4.3.  EDS spectra of A) CdTe NRs and Au NRs formed by soaking CdTe NRs in HAuCl4 for 10 
seconds and 2.5 minutes, B) Image A) expanded from 0-400 keV, C) an Au NP spot and between Au NP 
spots in a twisted Au NR formed by soaking a CdTe NR in HAuCl4 for 30 seconds. 
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As expected, the PL and UV spectra of the CdTe NRs change dramatically upon 

reaction with HAuCl4 (Figure 4.4).  As expected, the PL signal of the CdTe NRs is 

quenched upon addition of HAuCl4 and the formation of Au NPs.  The UV absorbance  

of the CdTe NR coated quartz slide is also dramatically reduced upon formation of Au 

NPs, primarily because a substantial quantity of NR is removed by the coating process.  

There are no distinctive Au NP UV absorbance peaks visible in these samples because 

there are too few Au NPs on the quartz slide to provide a signal. 

 

 

 

4.5 CONCLUSION 

 Chiral, twisted CdTe NRs are 1) surrounded by Au NP spots, and 2) coated by an 

Au shell by soaking substrates coated with chiral, twisted CdTe NRs in 0.01 M HAuCl4 

for various periods of time.  Initial atomic Au deposition occurs at high energy sites along 

the twisted CdTe NR.  Since the twisted CdTe NRs are polycrystalline and ultimately 

twist by strain created in the structure, there are many places for Au deposition to occur 

on the twisted NR.  Further soaking results in an increase in Au spots along the twisted 

NR, until the spots eventually join to form a polycrystalline Au shell surrounding the 

twisted CdTe NR.  If allowed to continue, the Au NP shell will begin to fill in the gaps 

Figure 4.4.  A) UV absorption spectra and PL emission spectra of CdTe NRs on a quartz slide, Au NRs 
formed by soaking CdTe NRs on a quartz silde in HAuCl4 for 30 seconds and 5 minutes, and a clean quartz 
slide. 
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between the twisted NRs, much like the webbing between a duck’s toes.  These chiral, 

twisted NRs with Au spots/coating can potentially find uses in NIMs that are used as 

perfect lenses and cloaking devices.  The next step of this research is to coat the twisted 

CdTe NRs in solution and verify their chiral signal. 
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4.7 SUPPLEMENTAL MATERIALS 

 

 

  

Figure 4.S.1.  CD spectra of CdTe NRs on a quartz slide, Au NRs formed by soaking CdTe NRs on a 
quartz silde in HAuCl4 for 30 seconds and 5 minutes. 
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CHAPTER 5 

 

“Cloud” Nanoassemblies: Quantum Dots Form Electrostatically Bound 
Diffuse Shells Around Gold Nanoparticles with Dynamic Exciton-

Plasmon Coupling 
 

5.1 ABSTRACT 

Self-assembled structures of NPs can be produced by using very basic 

electrostatic interactions similar to ionic double electric layers in solution.  Such 

assemblies were made from large, positively charged Au NPs surrounded by an 

electrostatically bound cloud of smaller, negatively charged CdSe/ZnS QDs or similarly 

charged CdTe QDs.  Topologically, they are similar (although with lower degree of 

organization) to corona-like assemblies linked by polymers, and display similar PL 

intensity enhancement of CdSe/ZnS emission originating from quantum resonance 

between excitons and plasmons.  The great advantages of such assemblies are (1) their 

highly dynamic nature compared to more rigid covalently bound assemblies; (2) 

simplicity of preparation, and (3) versatility of this system in respect to different NPs of 

any kind.  Their structure is responsive to different media conditions, which can be used 

both for elucidation of most fundamental aspects of NP interactions, as well as for 

practical purposes in sensing and biology. We evaluate behavior of the “cloud” 

assemblies for different amounts and types of “satellite” NPs.  It was demonstrated that 
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the behavior of these systems in media with different ionic strength can be described 

reasonably well by standard Gouy-Chapman formalism, which was rather unexpected 

considering the size of NPs compared to ions, but is very convenient for theoretical 

description and future studies. 

 

5.2 INTRODUCTION 

The preparation and understanding of behavior of complex nanoparticle (NP) 

systems are two of the most interesting aspects of nanotechnology. Recently, the ability 

of NPs to self-organize under intrinsic anisotropic interactions was discovered1-4.  

However, many of the resulting structures are fairly static assemblies: once the complex 

NP system is formed, the distances between the nanoscale components and their three-

dimensional distribution becomes fairly permanent5-8.   In general, flexible NP 

assemblies, such as NP polymers9 and other conformation-rich NP superstructures, are 

likely to have quite interesting dynamics, but this aspect of their behavior had received 

limited attention.  The first dynamic NP systems were made by using flexible polymeric 

tethers that could respond to the change of temperature10, presence of specific biological 

components11, or other parameters of the media, such as solvent composition12.  

However, the preparation of particle-on-a-rope type of structures is fairly complex and 

requires expensive bi-functional PEG oligomers. Notwithstanding the potential 

usefulness of NP assemblies connected by polymers as, for instance, nanoscale sensors 

reporting local chemical conditions, it would be interesting to observe a similar dynamic 

behavior in a much simpler system.  The minimalism of the system is essential in terms 

of faster preparation.  More importantly, however, such superstructures are expected to 



91 
 

be more dynamic, open, and adaptable to a larger number of NP systems, and, also, 

involve very fundamental aspects of inter-nanoparticle interactions.   

The “cloud”-like assemblies in this work resemble the systems formed by general 

attractive interactions between spheres of different sizes.  The nature of force can be quite 

different from gravitational, to magnetic13 and electrostatic14.  Surprisingly very little 

research has been done on NP structures created using purely electrostatic forces and 

mostly from a different perspective.  Layer-by-layer assembly of oppositely charged NPs 

and polymers has been used to produce NP-polymer composites. However, in most cases, 

LBL assembly cannot be classified as purely electrostatic and, more importantly, it 

results in solid state material that is quite different from the purpose of this work15-18.  

Other systems are made by adsorption of metal NPs19 and semiconductor quantum dots 

(QDs)20,21 onto latex colloids. They are soluble, but not dynamic, and made primarily to 

impart certain properties of nanoparticles to more traditional latex colloids.  Some 

research has been done on products of interaction of oppositely charged nanostructures 

with more complex dimensionality, including the pairing of NPs with cellulose fibers22, 

carbon NTs23, carbon fullerenes24, and organic dyes25.  Again, they are made to induce 

strong connection between the constituents to gain either appropriate mechanical or 

charge transfer characteristics. Among the variety of nanostructures made by using 

electrostatic forces and relevant to the assemblies described below, one study might be 

particularly representative26.  This work describes electrostatic assembly of small (2 nm 

diameter), negatively charged Au NPs on large, positively charged SiO2 NPs (15 nm 

diameter). The result is a precipitate made of both types of particles, with the relative size 

and connectivity of Au and SiO2 NP in this precipitates varying with the ratio of both 
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components26.    However, this work focused only on the effect of the NP ratio on the 

assembly geometry, and not on the dynamic properties of the system in varied 

environments.  Just like in many examples provided above, the resulting assembly is 

neither dynamic, nor particularly optically active. Although, it certainly provides great 

flexibility in choosing the building blocks that contribute to the properties of the resulting 

solids.  

To acquire greater optical activity and new optical properties the combination of 

oppositely charged semiconductor and metal NPs can be particularly fruitful27-29.  When 

negative Au NPs stabilized with 3-Mercaptopropionic acid and positive CdS QDs 

stabilized with 2-(dimethylamino)ethanthiol at concentrations on the order of 10-5 m are 

mixed, the assemblies remain dispersed when either the NPs or QDs are in excess, and 

precipitate when in a 1:1 ratio28.  This precipitate can be redispersed by changing 

environmental parameters such as NaCl concentration28.   A similar system combining 

large, negative Ag NPs stabilized with thioglycolic acid and small, positive CdTe QDs 

stabilized with 2-dimethylaminoethanethiol again remain dispersed when either the NPs 

or QDs are in excess and precipitate when in a 1:1 ratio27.  This system reports PL 

quenching of the QDs upon addition of the Ag NPs27.    PL quenching and precipitation 

also occurs in mixtures of small, negative Au NPs stabilized with gallic acid and large, 

positive CdTe QDs stabilized with cysteamine with NP concentrations on the order of 10-

5 29.  None of these works describe PL enhancement upon the formation of electrostatic 

interactions of metal NP and semiconductor QDs, or relate the relative electrostatic 

potential of the NPs on the agglomerate structure. 
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With this in mind, we describe a seemingly simple, dynamic system held together 

by electrostatic attraction of large, positively charged Au NPs and smaller, negatively 

charged CdSe/ZnS QDs.  In this system, NP concentrations are much more dilute than 

previous report (~10-7 M), so all NP solutions remain dispersed in solution and do not 

precipitate.  Optical effects due to plasmon-exciton resonance30 manifest in substantial 

PL enhancement, which are identical to those seen in covalently bound corona-like 

assemblies that have been observed8,31.  The dynamic nature of these “cloud” assemblies 

has been demonstrated by varying the ionic strength of the media using NaCl.  The 

behavior of the assemblies in various ionic concentrations is fairly accurately predicted 

using standard Gouy-Chapman theory.  Although one might expect to see strong 

deviations from typical behavior of small Gouy-Chapman ions, this is apparently not the 

case for NPs.  This fact is very convenient for future research.   

 

5.3 SYNTHESIS 

Aqueous l-cysteine stabilized CdSe/ZnS QDs are synthesized by a modification of 

current literature techniques32,33.  Briefly, TBP/TOPO CdSe/ZnS QDs are synthesized in 

a single pot synthesis where 0.04 g CdO is loaded with 5.67 g HDA and 5.67 g TOPO.  

The solution is heated to 340oC under an inert N2 atmosphere until the CdO has dissolved 

and the solution is colorless.  The solution is allowed to cool to 250oC, at which time a 

Se/TBP solution (0.03 g Se and 6 mL TBP) is injected.  The solution is stirred for 2-5 

minutes, when a solution containing Zn and S precursors (125 μL 2M Zn(CH3)2, 130 μL 

(TMS)2S, and 5.3 mL TBP) is injected drop wise at a rate of 0.1 mL/minute.  The 

CdSe/ZnS QD solution is then lowered to 100oC and stirred for 2 hours, at which time 60 
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mL of chloroform is added and the solution further cools to room temperature.  Once 

cooled, excess TOP, HDA, and TBP are removed by multiple steps of adding methanol 

and centrifugation.  Finally, the TOP/TBP ligands are replaced by l-cysteine by 

reconstituting the dry TOP/TBP NPs with 10 mL chloroform, adding 50 mL of a l-

cysteine solution (50 mL H2O, and 0.3 g l-cysteine adjusted to pH 9 with 1 M NaOH) 

followed by vigorous stirring and mild heating (50 oC) for several hours.  The solution is 

then centrifuged to separate the organic and inorganic layers, and the organic layer is 

discarded.  The resulting l-cysteine stabilized CdSe/ZnS QDs have an average diameter 

of 3.4 ± 0.6 nm. 

L-cysteine stabilized CdTe QDs are synthesized according to the literature34.  

H2Te gas, generated by the reaction of 0.5 M H2SO4 and Al2Te3 under an N2 atmosphere, 

is bubbled through a 1.88 X 10-2 M Cd(ClO4)2
.H2O and 4.56 X 10-2 M L-cysteine solution 

that has been adjusted to pH 11.4.  The resulting CdTe QD solution is refluxed until the 

QDs have an average diameter of 2.6 ± 0.75 nm. 

CTAB Au NPs are synthesized according to literature35.  First, citrate stabilized 

Au seeds are formed by the reduction of 2.5 X 10-4 M HAuCl4 with 0.1 M NaBH4 in the 

presence of 2.5 X 10-4 M trisodium citrate.  The Au seeds are grown by the addition of 

2.5 X 10-4 M HAuCl4 and 0.08 M CTAB growth solution.  These CTAB Au NPs can be 

further grown by the subsequent addition of the CTAB growth solution.  Excess CTAB is 

removed by centrifugation and subsequent redissolution of the Au NP precipitate in 

deionized water.  The resulting Au NPs have an average diameter of 15.4 ± 1.9 nm. 
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TEM specimen are prepared by placing a drop of CdSe/ZnS QD and Au NP 

solution onto a TEM grid, flash freezing the droplet by submersion in liquid nitrogen, 

then freeze-drying the sample to preserve the structure of the NPs for TEM viewing.  

 

5.4 RESULTS AND DISCUSSION 

 

 

Although both metal and semiconductor particles in nanoscale dispersions can be 

generally described as generic NPs, in the framework of this study we will refer to Au 

nanocolloids as metal NPs and to semiconductor nanocolloids as QDs for better clarity of 

Figure  5.1.  A) Au NP UV spectrum, CdTe and CdSe/ZnS QD PL spectra; B) PL enhancement of CdSe/ZnS QDs 
after addition of Au NPs; C) HRTEM of  the assemblies formed in solution of Au NPs and  CdSe/ZnS QDs; D) dark 
field STEM images of Au NP core with CdSe/ZnS QD cloud; E) EDAX spectra of the central part of the NP-QD 
electrostatic assembly; F) EDAX spectra of  the peripheral part of the NP-QD electrostatic assembly QD cloud.  
The shape of the cloud is likely to be somewhat distorted by sample processing. 
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the discussion and notations.  CTAB stabilized Au NPs revealed UV-vis absorption at a 

peak of 535 nm, while PL spectra of L-cysteine-stabilized CdSe/ZnS QDs and CdTe QDs 

showed peaks at 590 nm and 555 nm, respectively (Figure 5.1A). These nanocolloids 

were chosen to achieve the spectral overlap of the Au NP plasmon and QD exciton10,30,36.  

This is necessary to achieve the quantum resonance between exciton and plasmon, which 

is exceptionally sensitive to the distance between the particles10,11, so that the dynamic 

behavior of the nanoassemblies can be observed. 

The electrokinetic zeta potential obtained by dynamic light scattering 

measurements, which is a measure of the potential outside of the double layer, is -75±8 

mV for CdSe/ZnS QDs and +9±0.5 mV for Au NPs, respectively (Figure 5.2B). The 

positive Au NPs and the negative CdSe/ZnS QDs generate a strong Coulombic attraction 

that holds the CdSe/ZnS QDs in a shell around the Au NP core.   

 

 

 

The fact that core-satellite assemblies of the NPs and QDs form can be inferred 

from a number of experimental observations. The addition of Au NPs to the CdSe/ZnS 

QD solution results in a considerable enhancement of PL of CdSe/ZnS (Figure 5.1B). J. 

Figure 5.2.  A) Calculated thickness of the Debye layer of Au NPs and CdSe/ZnS QDs with increasing NaCl 
concentration.  This is calculated using Eq. 5 and is the same for both Au NPs, CdSe/ZnS QDs, and CdTe 
QDs.  B) Change of the zeta potential of CdSe/ZnS QDs and Au NPs with NaCl concentration, both as 
calculated by Eq. 3 and 4, and as determined by zeta potential measurement. 
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Lee et. al.8,10,11,31 reported effects that are qualitatively identical in NP assemblies made 

by covalent linking of QDs to metallic NPs using PEG.  TEM images confirm the 

presence of cloud-like formations of QDs around more massive Au NP (Figure 5.1C and 

5.1D). EDS spectroscopy clearly indicates that the “cloud” or satellites consists of 

predominantly CdSe/ZnS and virtually no Au, while the center of the assembly shows 

overwhelmingly strong peak of Au. The presence of Cd, Se, Zn, and S for the central part 

can be seen in the EDAX spectrum because the cloud of CdSe/ZnS QDs completely 

surrounds the Au NP core (Figure 5.1E and 5.1F).  These NP structures are topologically 

similar to those made before by PEG tethering10, NP assemblies held by magnetic 

forces13, and gravitational assemblies of much larger objects. 

 

 

 

As expected, the PL enhancement is dependent on the ratio of Au NPs to 

CdSe/ZnS QDs (Figure 5.3A).  Since the PL spectrum is a cumulative property of all 

CdSe/ZnS QDs in the solution, at low Au NP:CdSe/ZnS QD ratios, some CdSe/ZnS QDs 

form associates with Au NPs and show PL enhancement; however, many excess 

Figure  5.3.  A) Percent PL change of CdSe/ZnS QDs from initial value for various Au NP:CdSe/ZnS QD 
ratios (v/v); B) Percent PL change of CdTe QDs from initial value for various Au NP:CdTe QD ratios (v/v).  
All measurements are done in water at pH 9. 
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CdSe/ZnS QDs are free in the solution and do not form assemblies with Au NPs and 

hence show no PL enhancement.   As the Au NP: CdSe/ZnS QD ratio is increased, more 

CdSe/ZnS QDs associate with Au NPs, so the PL intensity increases.  As the Au NP: 

CdSe/ZnS QD ratio is increased further, there are insufficient CdSe/ZnS QDs to 

completely surround the Au NPs.  Therefore, the PL intensity of the solution decreases 

with high Au NP: CdS/ZnS QD ratios.  The maximum occurs when all CdSe/ZnS QDs 

form cloud-like, electrostatically bound assemblies with Au NPs.   

Conspicuously, the PL of the CdSe/ZnS QDs is never quenched by mixing with 

Au NPs, which is quite different than observations in other systems of Au and other 

semiconductor QDs29,37, which should probably be attributed to different organization of 

the particles.    

The UV absorbance of assemblies of Au NPs and CdSe/ZnS QDs was measured 

for various ratios of Au NPs/CdSe/ZnS QDs to ensure that the UV absorbance (and thus 

the Au NP plasmon) does not shift as the number of CdSe/ZnS QD is varied (Figure 5.4).  

This is a concern as it has been reported that the Au NP plasmon can shift in response to 

changes in the dielectric constant38,39 and refractive index40,41 of the material surrounding 

the Au NP, as has been shown to happen when metal NPs are surrounded by various 

materials38,39.  If the Au NP plasmons shift when surrounded by CdSe/ZnS QDs in 

solution, then this could be an alternative explanation to the change in PL intensity in 

response to Au NP and CdSe/ZnS QD ratio instead of the shape effect of the structure.   

However, the Au NP absorbance is constant with various CdSe/ZnS QD ratios and does 

not shift (Figure 5.4) because the dielectric constant of the material surrounding the Au 

NP is not sufficiently changed by the presence of CdSe/ZnS QDs.  Most of the work 
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showing Au NP absorbance shifts have involved direct Au NP contact on thin films40 and 

three-dimensional NP networks38,39, whereas the system presented here of Au NPs and 

CdSe/ZnS QDs does not offer sufficient contact with CdSe/ZnS QDs to affect the 

plasmon. 

 

 

It should be noted that mixtures of CdTe QDs and Au NPs do not result in PL 

enhancement (Figure 5.3B) or precipitate.  These assemblies serve as a negative control 

in the framework of this study.   This is because CdTe QDs are much less negatively 

charged (zeta potential -20 mV) than CdSe/ZnS QDs.  So, the attractive Coulombic force 

between the CdTe QDs and the Au NP is much smaller than that between the CdSe/ZnS 

QDs and the Au NPs.  Therefore, CdTe QDs do not form a sufficiently closely positioned 

stoiciometric shell around the Au NPs, and the QD exciton and metal plasmon of Au NPs 

Figure 5.4.  UV Absorbance of Au NPs and CdSe/ZnS QDs. 
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do not resonate well and no PL enhancement is observed. This occurs even though the Au 

NP plasmon and the CdTe QD exciton have substantial overlap (Figure 5.1).  Certainly 

some individual events of CdTe QDs and Au NPs approaching five- ten-fold of PL 

enhancement can occur, but the number of these events is relatively small and may be 

offset by some quenching process taking place with CdTe QDs. 

 

 

 

 

Due to the electrostatic nature of associates between two oppositely charged 

nanocolloids, the system should respond to variations in ionic strength (Figure 5.5A).  

Changes in ion strength effects can also be used to demonstrate the dynamic behavior of 

the Au NP and CdSe/ZnS QD structures.  One can observe that PL intensity of the cloud 

assemblies incorporating CdSe/ZnS QDs decreases with increasing NaCl concentration 

(Figure 5.5).  In order to rationalize these tendencies, one needs to understand how the 

distance between the center particle and satellites changes with environmental conditions 

as well as other processes in the system.  

Figure 5.5.  A) PL intensity dependence of Au NP and CdSe/ZnS QD cloud assemblies on ionic strength.  
Insert is PL dependence between 0 and 1 M NaCl.  B) Theoretical calculation of the inter-particle distance of 
the Au NP and CdSe/ZnS QDs, and change in the diameter of the Au NP and CdSe/ZnS QD assemblies with 
increasing NaCl concentration as measured by DLS. 
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The geometrical structure of dynamic NP associates is governed mainly by two 

forces – Coulombic force leading to particle attraction and osmotic pressure between the 

particles leading to particle repulsion.  Both of them are dependent on the thickness of the 

double layers surrounding the Au NPs and the CdSe/ZnS QDs.  van der Waals forces are 

assumed to play an insignificant role and are neglected.   At equilibrium, the attractive 

and repulsive forces are equal, as is shown in Eq. 5.1.  This allows the equilibrium 

distance between the NPs to be calculated. 

 

Coulombic force can be expressed as Eq. 5.2, 

 

where qAu NP is the charge of the Au NP, qCdSe/ZnS QD is the charge of the CdSe/ZnS QD, 

and R is the inter-particle distance.  The charge of the Au NP is related to the electrical 

potential around it, and can be expressed as Eq. 5.3, 

 

where rAu NP is the radius of the Au NP, and ψAu NP is the electrical potential of the Au NP. 

The latter can be connected to the experimental value of zeta-potential in Eq. 5.4,  

 

where ψo,Au NP is the zeta potential of the Au NP in volts and κ can be determined from  

the basic characteristics of the media in Eq. 5.5, 

 

where NAv is Avogadro’s Number.  1/κ is the Debye length, which represents the 

thickness of the double layer. 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
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The osmotic force can be calculated from Eq. 5.6, 

 

where no is the concentration of NaCl in M, z is the charge of the electrolyte, e is the 

charge on an electron, kB is the Boltzmann constant, and T is the temperature in Kelvin, 

and ψm, the electric potential at the midpoint between the NP and QD, is calculated from 

Eq. 5.7. 

 

Before application of this model, it was validated by calculating the electrokinetic 

potential of the Au NPs and CdSe/CdS QDs. As one can see the experimental results 

closely match those obtained by calculations (Figure 5.2B).  

Using the described standard theoretical formalism, we can try to apply it to the 

description of the dynamic behavior of the cloud assemblies.  As expected, as the ionic 

strength of the solution is increased, the thickness of the Debye layer decreases (Figure 

5.2A).  

The net result is that the Au NPs and the CdSe/ZnS QDs move closer together 

(Figure 5.5B) for higher values of ionic strength.  However, this must result in the overall 

increase in intensity of exciton-plasmon resonance and, hence, luminescence 

enhancement, which contradicts the experimental observations. The clue to this 

conundrum comes from the data on DLS of the assemblies, which show that their average 

diameter increases with NaCl concentration (Figure 5.5B).  Since the solution is very 

dilute (10-7 M), no visible precipitation is observed; however, STEM imaging confirms 

the formation of large agglomerates of Au NPs and CdSe/ZnS QDs when exposed to 

NaCl in solution (Figure 5.6).  This process greatly disturbs the geometry of the 

(5.6) 

(5.7) 
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assemblies resulting in the formation of more chaotic, disorganized structures, which 

yield either a lower degree of enhancement or even quenching, especially when two gold 

NPs happen to form a rod-like structure42,43. 

 

 

 

5.5 CONCLUSIONS 

 Aqueous assemblies of Au NPs surrounded by core/shell CdSe/ZnS QDs are 

produced by mixing positive Au NPs with negative CdSe/ZnS QDs.  Upon formation, the 

PL is enhanced up to 40% by resonances between the Au NP plasmon and the exciton of 

the CdSe/ZnS QDs.  The PL of the assemblies is sensitive to the Au NP: CdSe/Zns QD 

ratio such that low ratios gives little PL enhancement, ratios close to 100:1 give a 

maximum enhancement, and higher ratios give progressively less enhancement.  This 

phenomenon occurs because the resonance between the Au NP and the CdSe/ZnS QD 

plasmon best occurs when there is a shell of QDs surrounding the Au NP core.  The PL 

of the CdSe/ZnS QDs is never quenched by Au NPs because the exciton of the core/shell 

QD is trapped in the CdSe core by the higher bandgap ZnS shell.  The formation of the 

Figure 5.6.  A) STEM image of large Au NP, CdSe/ZnS QD, and NaCl flocculate.  B) EDS spectra of 
Au NP rich area, as indicated by the solid green circle; and of the CdSe/ZnS rich area, as indicated by 
the dashed red circle. 
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assemblies is driven by electrostatic interactions between the positive NPs and negative 

QDs; no PL enhancement is seen when Au NPs are mixed with CdTe QDs because the 

CdTe NPs are not as negatively charged as the CdSe/ZnS NPs, so the preferred assembly 

structure of an Au NP core surrounded by a shell of QDs does not occur.  Additionally, 

the PL of the CdTe QDs is quenched by the presence of Au NPs. The structure, and 

therefore PL intensity of, the assemblies of Au NPs and CdSe/ZnS QDs are dependent on 

ionic strength of the solution, so the addition of sodium chloride to solutions with such 

assemblies causes a reduction in the PL intensity.  This is caused because sodium 

chloride decreases the electrostatic attraction between the Au NPs and the CdSe/ZnS QDs 

and allows the NPs and QDs to move closer to one another.  This causes large, unordered 

agglomerates of NPs and QDs to form.  The PL dependence of the assemblies on ionic 

strength allows them a potential use as aqueous salinity sensors. 

 

5.6. ACKNOWLEDGEMENTS 

I would like to thank Jaebeom Lee for his assistance in the synthesis and 

characterization of these NPs and NP assemblies.  I the University of Michigan’s EMAL 

for its assistance with electron microscopy, and for the NSF grant #DMR-9871177 for 

funding for the JEOL 2010F analytical electron microscope used in this work.  



105 
 

5.7 REFERENCES 
 

 1.  Tang, Z.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe 
nanoparticles into luminescent nanowires. Science 2002, 297 (5579), 237-
240. 

 2.  Sinyagin, A. Y.; Belov, A.; Tang, Z.; Kotov, N. A. Monte carlo computer 
simulation of chain formation from nanoparticles. J Phys Chem B 2006, 110 
(14), 7500-7507. 

 3.  Zhang, Z.; Tang, Z.; Kotov, N. A.; Glotzer, S. C. Simulations and Analysis of Self-
Assembly of CdTe Nanoparticles into Wires and Sheets. Nano Letters 2007, 
7 (6), 1670-1675. 

 4.  Nguyen, T. D.; Zhang, Z.; Glotzer, S. C. Molecular simulation study of self-
assembly of tethered V-shaped nanoparticles. Journal of Chemical Physics 
2009, No. 

 5.  Wang, S.; Mamedova, N.; Kotov, N. A.; Chen, W.; Studer, J. Antigen/antibody 
immunocomplex from CdTe nanoparticle bioconjugates. Nano Letters 2002, 
2 (8), 817-822. 

 6.  Mamedova, N. N.; Kotov, N. A.; Rogach, A. L.; Studer, J. Albumin-CdTe 
Nanoparticle Bioconjugates: Preparation, Structure, and Interunit Energy 
Transfer with Antenna Effect. Nano Letters 2001, 1 (6), 281-286. 

 7.  Wang, Y.; Tang, Z.; Tan, S.; Kotov, N. A. Biological Assembly of Nanocircuit 
Prototypes from Protein-Modified CdTe Nanowires. Nano Letters 2005, 5 
(2), 243-248. 

 8.  Lee, J.; Govorov, A. O.; Dulka, J.; Kotov, N. A. Bioconjugates of CdTe Nanowires 
and Au Nanoparticles: Plasmon-Exciton Interactions, Luminescence 
Enhancement, and Collective Effects. Nano Letters 2004, 4 (12), 2323-
2330. 

 9.  DeVries, G. A.; Brunnbauer, M.; Hu, Y.; Jackson, A. M.; Long, B.; Neltner, B. T.; 
Uzun, O.; Wunsch, B. H.; Stellacci, F. Divalent Metal Nanoparticles. 
Science (Washington, DC, U. S. ) 2007, 315 (5810), 358-361. 

 10.  Lee, J.; Govorov, A. O.; Kotov, N. A. Nanoparticle assemblies with molecular 
springs: A nanoscale thermometer. Angewandte Chemie, International 
Edition 2005, 44 (45), 7439-7442. 

 11.  Lee, J.; Hernandez, P.; Lee, J.; Govorov, A. O.; Kotov, N. A. Exciton-plasmon 
interactions in molecular spring assemblies of nanowires and wavelength-
based protein detection. Nature Materials 2007, 6 (4), 291-295. 



106 
 

 12.  Lee, J.; Orazbayev, A.; Govorov, A. O.; Kotov, N. A. Solvent effect in dynamic 
superstructures from Au nanoparticles and Cdte nanowires: experimental 
observation and theoretical description. J. Phys. Chem. Unpublished Work, 
2009. 

 13.  Erb, R. M.; Son, H. S.; Samanta, B.; Rotello, V. M.; Yellen, B. B. Magnetic 
assembly of colloidal superstructures with multipole symmetry. Nature 
(London, U. K. ) 2009, 457 (7232), 999-1002. 

 14.  Israelachvili, J. N. Intermolecular and Surface Forces: With Applications to 
Colloidal and Biological Systems; 1985. 

 15.  kirane-Jessel, N.; Lavalle, P.; Ball, V.; Ogier, J.; Senger, B.; Picart, C.; Schaaf, P.; 
Voegel, J. C.; Decher, G. Polyelectrolyte multilayer films - a general 
approach to functional coatings. Macromol. Eng. 2007, 2, 1249-1305. 

 16.  Nolte, A. J.; Rubner, M. F.; Cohen, R. E. Creating Effective Refractive Index 
Gradients within Polyelectrolyte Multilayer Films: Molecularly Assembled 
Rugate Filters. Langmuir 2004, 20 (8), 3304-3310. 

 17.  Srivastava, S.; Kotov, N. A. Composite Layer-by-Layer (LBL) Assembly with 
Inorganic Nanoparticles and Nanowires. Acc. Chem. Res. 2008, 41 (12), 
1831-1841. 

 18.  Han, Y.; Sukhishvili, S.; Du, H.; Cefaloni, J.; Smolinski, B. Layer-by-layer self-
assembly of oppositely charged Ag nanoparticles on silica microspheres for 
trace analysis of aqueous solutions using surface-enhanced Raman 
scattering. J. Nanosci. Nanotechnol. 2008, 8 (11), 5791-5800. 

 19.  Qu, J. b.; Zhang, C. b.; Feng, J. y. Preparation of polystyrene-Ag latex particles and 
self-assembly behaviour of colloidal crystal. Gaofenzi Cailiao Kexue Yu 
Gongcheng 2008, 24 (11), 180-183. 

 20.  Fortuna, S.; Colard, C. A. L.; Troisi, A.; Bon, S. A. F. Packing Patterns of Silica 
Nanoparticles on Surfaces of Armored Polystyrene Latex Particles. 
Langmuir 2009, ACS. 

 21.  Sherman, R. L., Jr.; Ford, W. T. Semiconductor nanoparticles/polystyrene latex 
composite materials. Polym. Prepr. (Am. Chem. Soc. , Div. Polym. Chem. ) 
2003, 44 (1), 1136-1137. 

 22.  Dong, B. H.; Hinestroza, J. P. Metal Nanoparticles on Natural Cellulose Fibers: 
Electrostatic Assembly and In Situ Synthesis. ACS Appl. Mater. Interfaces 
2009, 1 (4), 797-803. 

 23.  Liu, Y.; Jiang, W.; Li, S.; Li, F. Electrostatic self-assembly of Fe3O4 nanoparticles 
on carbon nanotubes. Appl. Surf. Sci. 2009, 255 (18), 7999-8002. 



107 
 

 24.  Guldi, D. M.; Zilbermann, I.; Anderson, G.; Kotov, N. A.; Tagmatarchis, N.; Prato, 
M. Versatile Organic (Fullerene)-Inorganic (CdTe Nanoparticle) 
Nanoensembles. J. Am. Chem. Soc. 2004, 126 (44), 14340-14341. 

 25.  Halpert, J. E.; Tischler, J. R.; Nair, G.; Walker, B. J.; Liu, W.; Bulovic, V.; 
Bawendi, M. G. Electrostatic Formation of Quantum Dot/J-aggregate FRET 
Pairs in Solution. J. Phys. Chem. C 2009, 113 (23), 9986-9992. 

 26.  Galow, T. H.; Boal, A. K.; Rotello, V. M. A "building block" approach to mixed-
colloid systems through electrostatic self-organization. Adv. Mater. 
(Weinheim, Ger. ) 2000, 12 (8), 576-579. 

 27.  Wang, Y.; Li, M.; Jia, H.; Song, W.; Han, X.; Zhang, J.; Yang, B.; Xu, W.; Zhao, B. 
Optical properties of Ag/CdTe nanocomposite self-organized by 
electrostatic interaction. Spectrochim. Acta, Part A 2006, 64A (1), 101-105. 

 28.  Kolny, J.; Kornowski, A.; Weller, H. Self-Organization of Cadmium Sulfide and 
Gold Nanoparticles by Electrostatic Interaction. Nano Lett. 2002, 2 (4), 361-
364. 

 29.  Yang, D.; Wang, W.; Chen, Q.; Huang, Y.; Xu, S. Electrostatic assembles and 
optical properties of Au-CdTe QDs and Ag/Au-CdTe QDs. Phys. E 
(Amsterdam, Neth. ) 2008, 40 (10), 3072-3077. 

 30.  Govorov, A. O.; Bryant, G. W.; Zhang, W.; Skeini, T.; Lee, J.; Kotov, N. A.; 
Slocik, J. M.; Naik, R. R. Exciton-Plasmon Interaction and Hybrid Excitons 
in Semiconductor-Metal Nanoparticle Assemblies. Nano Letters 2006, 6 (5), 
984-994. 

 31.  Lee, J.; Javid, T.; Skeini, T.; Govorov, A. O.; Bryant, G. W.; Kotov, N. A. 
Bioconjugated Ag nanoparticles and CdTe nanowires: metamaterials with 
field-enhanced light absorption. Angewandte Chemie, International Edition 
2006, 45 (29), 4819-4823. 

 32.  Reiss, P.; Bleuse, J.; Pron, A. Highly Luminescent CdSe/ZnSe Core/Shell 
Nanocrystals of Low Size Dispersion. Nano Letters 2002, 2 (7), 781-784. 

 33.  Huang, G. W.; Chen, C. Y.; Wu, K. C.; Ahmed, M. O.; Chou, P. T. One-pot 
synthesis and characterization of high-quality CdSe/ZnX (X, Se) 
nanocrystals via the CdO precursor. Journal of Crystal Growth 2004, 265 
(1-2), 250-259. 

 34.  Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; 
Kornowski, A.; Eychmuller, A.; Weller, H. Thiol-Capping of CdTe 
Nanocrystals: An Alternative to Organometallic Synthetic Routes`. J. Phys. 
Chem. B 2002, 106, 7177-7185. 



108 
 

 35.  Jana, N. R.; Gearheart, L.; Murphy, C. J. Seeding growth for size control of 5-40 
nm diameter gold nanoparticles. Langmuir 2001, 17 (22), 6782-6786. 

 36.  Govorov, A. O.; Lee, J.; Kotov, N. A. Theory of plasmon-enhanced Forster energy 
transfer in optically excited semiconductor and metal nanoparticles. 76 ed.; 
2007; pp 125308-1-125308/16. 

 37.  Palomba, S.; Palmer, R. E. Optical coupling of core-shell quantum dots to size-
selected gold clusters. J. Appl. Phys. 2008, 104 (9), 094316-1-094316/6. 

 38.  Taleb, A.; Petit, C.; Pileni, M. P. Optical Properties of Self-Assembled 2D and 3D 
Superlattices of Silver Nanoparticles. J. Phys. Chem. B 1998, 102 (12), 
2214-2220. 

 39.  Hosoki, K.; Tayagaki, T.; Yamamoto, S.; Matsuda, K.; Kanemitsu, Y. Direct and 
Stepwise Energy Transfer from Excitons to Plasmons in Close-Packed 
Metal and Semiconductor Nanoparticle Monolayer Films. Phys. Rev. Lett. 
2008, 100 (20), 207404-1-207404/4. 

 40.  Buso, D.; Pacifico, J.; Martucci, A.; Mulvaney, P. Gold-nanoparticle-doped TiO2 
semiconductor thin films: optical characterization. Adv. Funct. Mater. 2007, 
17 (3), 347-354. 

 41.  Underwood, S.; Mulvaney, P. Effect of the Solution Refractive Index on the Color 
of Gold Colloids. Langmuir 1994, 10 (10), 3427-3430. 

 42.  Li, X.; Qian, J.; Jiang, L.; He, S. Fluorescence quenching of quantum dots by gold 
nanorods and its application to DNA detection. Appl. Phys. Lett. 2009, 94 
(6), 063111-1-063111/3. 

 43.  Nikoobakht, B.; Burda, C.; Braun, M.; Hun, M.; El-Sayed, M. A. The quenching of 
CdSe quantum dots photoluminescence by gold nanoparticles in solution. 
Photochem. Photobiol. 2002, 75 (6), 591-597. 

 
 



109 
 

 

 

 

CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 

 

6.1 CONCLUSIONS 

Existing top-down technologies for the synthesis and organization of 

nanomaterials, while effective in producing evidence of concept techniques and 

applications, are typically time consuming, expensive, and difficult to scale-up.  

Furthermore, many top-down technologies have a limit on how far they can be scaled 

down.  Therefore, NP self-assembly is of critical importance in order for devices with 

nano-scale components to be viable in a commercial sense.  My research has focused on 

the self-assembly of nanomaterials for two practical purposes: 1) synthesis of higher 

ordered nanomaterials from the self-assembly of NPs, and 2) the assembly of metallic 

and semiconductor NP heterostructures to form ordered assemblies with practical 

applications. 

Two projects presented in the previous chapters focused on the reorganization of 

CdTe and CdSe NPs into NWs.  In the first, a method used to consistently control the 

length and diameter of TGA stabilized CdTe NPs by the addition of DMSO to the NP 

growth solution was presented.  This method can shed new light onto the mechanism of 

NW formation.  After the formation of pearl necklace NP assemblies in the growth 
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solution, Ostwald ripening caused the chains to recrystallize and grow.  Experimental 

data suggest that the addition of DMSO inhibits the formation of the NP pearl necklace 

aggregates, but enhances Ostwald ripening. As such, in the concentration range when 

particle chains do form, the synthesis of NWs is accelerated.  However, once electrostatic 

repulsion between the NPs becomes too strong (from higher DMSO concentrations), the 

formation of NWs abruptly stopped.   The formation of NP pearl necklace assemblies and 

the direct fusion and growth of NP chains into NWs by Ostwald ripening are competing 

processes. The balance between these and other processes of NW assembly are affected 

by environmental factors, such as temperature and media composition.   

The second project focused on the decomposition of CdTe and CdSe NPs into 

Te/Se NWs.  It was shown that the addition of DMSO to a deoxygenated growth solution 

of CdTe NPs resulted in Te NWs with high aspect ratios.  DMSO caused the CdTe NPs 

to decompose, creating Te2- ions that were oxidized into Te seeds, from which Te NWs 

grew.  Additionally, the presence of Se2- ions to the growth solution resulted in longer, 

more tortuous Te NWs.  The Se2- ions may be introduced by the addition of Na2Se salt, or 

by the decomposition of CdSe NPs.  Low Se2- concentrations resulted in long, straight Te 

NWs, medium Se2- concentrations resulted in long, tortuous Te NWs, and high Se2- 

concentrations stunted NW formation.  The entire process is driven by Se incorporation 

into the Te seeds and NWs that foul them by creating crystal defects.  This process 

prevents Te NW growth, allowing longer NWs to grow from the viable seeds.  Small 

amounts of Se in the Te NWs resulted in point defects in the Te NW crystal lattice, which 

caused the NW to bend.  Large Se2- concentration caused fouling in all seeds and NWs, 

preventing further growth. 
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The next project focused on the placement of Au NPs onto chiral CdTe twisted 

NRs.  Here, the twisted CdTe NRs are immobilized onto a substrate which is then soaked 

in an HAuCl4 solution for various periods of time.  Short soak times resulted in Au NP 

spots on the surface of the NRs.  The Au deposition is caused because high energy sites 

on the polycrystalline NRs trigger Au reduction from Au3+ to atomic Au.  As the soak 

time was increased, more Au NP spots formed, and eventually the Au NP spots merged, 

coating the CdTe twisted NR in an Au film.  Still longer soak times caused overplating of 

the twisted NRs and their dog-bone structures. 

 The final project investigated core/shell assemblies of Au NPs surrounded by a 

cloud of CdSe/ZnS QDs.  The PL intensity of core/shell CdSe/ZnS NPs can be enhanced 

by the addition of much larger Au NPs to the solution.  Electrostatic interactions between 

the positive Au NPs and the negative CdSe/ZnS QDs drove the formation of these 

assemblies.  Changing the ratio of Au NPs and CdSe/ZnS QDs produced different 

degrees of PL intensity enhancements, with the maximum PL enhancement occurring 

when all CdSe/ZnS QDs were used in clouds surrounding the Au NP core.  Insufficient 

CdSe/ZnS QDs in the cloud did not provide the critical resonance of the exciton and 

plasmon, so the PL intensity enhancement was reduced, and excess CdSe/ZnS QDs in the 

solution mask the PL intensity enhancement of the assemblies.  Quenching of the 

CdSe/ZnS QDs was not observed in this system because the exciton is trapped in the 

CdSe core of the CdSe/ZnS QDs and cannot escape to the Au NPs.  Enhancement did not 

occur with CdTe QDs and Au NPs because their surface charges were not sufficiently 

different to cause the core and cloud assemblies to form.  In fact, high ratios of Au NPs to 

CdTe QDs caused PL quenching because the exciton was allowed to escape the CdTe 



112 
 

QD.  The formation of these Au NP and CdSe/ZnS QD assemblies was inhibited by 

changing the salinity of the solution because dissolve salts both mask the attractive 

electrostatic force between the Au NPs and the CdSe/ZnS QDs and reduce the thickness 

of the electrical double layer that surrounds the NPs and QDs.  The net result is that large, 

unstructured agglomerates of Au NPs and CdSe/ZnS QDs form in solutions of high 

salinity. 

 

6.2 FUTURE WORK 

6.2.1 Synthesis of Variable Composition NWs 

 Variable composition NWs will be synthesized in a similar manner as the rough 

CdTe NWs.  CdTe and CdSe NPs will be mixed, the stabilizers partially removed, and 

then redispersed in pH 9 water.  This will allow pearl necklace agglomerates to form that 

contain a mixture of CdTe and CdSe NWs.  Again, the synthesis will take place in room 

temperature with no DMSO in a deoxygenated environment.  The resulting NWs should 

have regions rich in CdTe, and others rich in CdSe.  In this manner, the chemical 

composition, and thus the bandgap, of the NWs will be variable. 

 Other composition gradient NWs of CdTe/CdSe NWs will be produced.  They 

will occur by placing short CdTe NWs (room temperature, no DMSO, deoxygenated).  A 

small amount of the CdSe growth solution is added to the CdTe NR solution, and the 

mixture is allowed to grow.  Since Ostwald ripening should occur in both the CdTe and 

CdSe NPs, there will be Cd2+, Te2-, and Se2- ions in the solution.  It is hoped that both 

species will preferentially attach to the end of the CdTe NR, forming a CdTe/Se section 

on both ends of the CdTe NR.  Additional amounts of CdSe NPs will be added over time.  
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As the concentration of CdSe NPs increases in the CdTe/Se NW solution, the amount of 

Se incorporated into the NW will increase.  This will create a NW which is mostly CdTe 

in the middle and CdSe at the ends.  NWs that are mostly CdSe in the middle and CdTe at 

the ends may be created by reversing the procedure.  Here, CdSe NRs are first 

synthesized and small volumes of CdTe NP growth solutions are added with time.  Since 

it expected that CdTe and CdSe NWs will grow at different optimal rates and conditions, 

it may be difficult to tune the experimental conditions to allow the gradient NWs to form.  

Variables that will affect the process include growth temperature, growth time, DMSO 

concentration in the growth solution, and the relative concentrations of the CdTe and 

CdSe NPs. 

 The second procedure to synthesize CdTe/CdSe gradient NWs is the slow 

addition of Na2Se to forming CdTe NRs.  In this procedure, short CdTe NRs are 

synthesized and Na2Se is slowly added over time.  The addition of Na2Se will provide 

Se2- ions to the solution, much as Ostwald ripening does.  NWs grown by this procedure 

will have middle sections rich in CdTe with the higher concentrations of CdSe in the end 

of the NW. 

The NWs will again be studied using AFM, SEM, and TEM techniques.   Length 

and diameter variations will be observed using the AFM, SEM and TEM.  Other TEM 

techniques will also be used to study the crystalline structure of the NWs, such as 

electron diffraction, dark field imaging, STEM, and EDS.  Confocal microscopy will also 

be used to study the CdTe/CdSe NWs.  Again, the color of fluorescence should change 

along the NW with the chemical gradient.  CdSe has a higher bandgap than CdTe, so 
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sections of the NW with higher CdSe concentrations should fluoresce at lower 

wavelengths than CdTe rich sections. 

6.2.2 Application of Variable Bandgap NWs in Wavelength Shifting Sensors 

 One of the most interesting properties of the variable bandgap NWs produced in 

Section 6.2.1 is their PL properties, which will allow them to be useful in new photonic 

devices.  Of particular interest is the use of these gradient NWs in the metal 

NP/semiconductor NW assemblies used in the Kotov group.  These assemblies consist of 

a semiconductor NW surrounded by a shell of metal NPs that are linked using 

streptavidin and biotin linkages.  Once the NPs are attached to the NW, the PL intensity 

is greatly enhanced, and the PL wavelength experiences a slight blue shift (10 nm 

maximum) while the luminescent lifetime decreases by roughly one half.  For Au NP 

coated CdTe NWs, the PL enhancement and decrease in luminescent lifetime are caused 

when plasmons in the Au NPs shell are excited during incident illumination, which 

produces a strong electromagnetic field surrounding the CdTe NW.  This causes the PL 

intensity of the semiconductor to increase and the lifetime to shorten.  The PL blue shift 

is caused because of the slight nonuniformity of the CdTe NWs used and the PL lifetime 

decrease.  For NWs with a longer lifetime, excitons have time to diffuse to lower energy 

regions along the NW.  The low energy regions are the areas with the lowest band gap, 

which are the thickest regions of the NW.  When the lifetime in the NW shortens, the 

excitons have shorter diffusion lengths, so they get trapped in higher energy sections of 

the NW, which are the narrower regions with larger band gaps.  Since NWs with a larger 

band gap fluoresce with a lower wavelength than those with shorter band gaps, the CdTe 

NW experiences a blue shift in fluorescence when surrounded by a shell of Au NPs3.  
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The blue shift is very small because the CdTe NWs used have a uniform composition and 

very little surface roughness. 

 It is hypothesized that the use of variable bandgap NWs in these structures will 

increase the blue shift of the NW because there will be larger band gap variations in 

gradient NWs than the more homogenous CdTe NWs used in the previous work.  It is 

hoped that PL blue shifts greater than 50 nm will be produced to allow the fluorescence 

of the NWs to visibly change upon conjugation with Au NPs.  The procedure outlined by 

J. Lee et al4 will be followed for these NWs.   

The PL properties of each step of the process will be measured.  Again, it is 

believed that the PL wavelength of the gradient NW will undergo at least a 50 nm blue 

shift that is observable to the eye.  TEM will be used to verify the attachment of Au NPs 

to CdTe NWs.  A recurring problem with creating these types of assemblies is 

agglomeration of the NWs and NPs, which leads to precipitation loss of PL.  If this 

problem presents itself in the conjugation of these assemblies, there are several alternate 

pathways including using shorter NWs (less growth time), more dilute conditions, and 

better mixing of the solutions. 

The unique PL properties of the variable bandgap NWs should similarly allow 

novel PL wavelength shift sensors to be created. Most current sensors are based on PL 

intensity, which makes their use difficult.  Intensity based sensors require an even 

concentration gradient of the sensor, in addition to precisely calibrated equipment to 

accurately measure the results.  PL wavelength based sensors will not require an even 

concentration because their PL wavelength does not depend upon concentration.   
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The Kotov group has synthesized Au NP-PEG-CdTe NP temperature sensors in 

which the PL intensity varies with temperature5.  When Au NPs enhance the PL intensity 

of the CdTe NP, its PL lifetime also decreases.  By replacing the CdTe NPs with variable 

bandgap NWs, as shown in Figure 6.1A, the sensors should be useful as PL wavelength 

based sensors.  When the temperatures are low and PEG is more tightly coiled, the Au 

NPs will be close to the gradient NW.  This will enhance the PL intensity and decrease 

the PL lifetime.  The exciton in the gradient NW will not have time to diffuse to lower 

bandgap regions of the NW, so a large blue shift should occur.  When the temperature is 

raised, the PEG relaxes and the Au NPs move farther from the gradient NW.  This will 

decrease the PL intensity and increase the PL lifetime.  The exciton in the gradient NW 

will have time to diffuse to higher bandgap regions of the NW, causing a red shift.   

Au NPs-PEG-variable bandgap NW temperature sensor assemblies will be made 

using both physical variable bandgap NWs (rough NWs) and composition variable NWs.  

The general structure of these sensors is shown in Figure 6.1A.   

B A 

Figure 6.1.  Wavelength based A) Temperature sensor, and B) antigen sensor. 
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Sensor assemblies will be made using a procedure outlined by J. Lee et al5 to 

make the Au NP-PEG-CdTe NP temperature sensor.  The Au NPs-PEG-variable bandgap 

NW assemblies will then be tested for PL wavelength shifts in response to temperature 

fluctuations.  The temperature of the solution will be varied from 20 oC to 60 oC while the 

PL wavelength and intensity are recorded.  It is expected that both the physical gradient 

NW assemblies and the composition gradient NW assemblies will exhibit wavelength 

shift sensing.  TEM will be used to verify the attachment of Au NPs to the gradient NWs. 

Similar variable bandgap NW wavelength sensors can be engineered to sense a 

variety of substances like pH, biomolecules, other chemicals, and anything else that could 

change the interparticle distance between the Au NPs and the gradient NW.  For example, 

many polymers relax in some solvents and contract in others.  These polymers may be 

used in assemblies instead of PEG to allow solvent concentration to be determined.  

Biomolecules like antibodies, which change shape when they bind to specific antigens, 

could be incorporated into the sensor assembly as shown in Figure 6.1B.  This will permit 

the assemblies to be used to test for specific antigens, allowing them to be used to 

identify cancer markers, as well as test for diseases. 

The Au NPs/variable bandgap NW sensors are also solution based, allowing them 

to be used in many fluidic devices.  Potential uses include microfluidic devices, where 

they can measure mixing and chemical composition.  The gradient NW sensor assemblies 

can also be used in cell scaffolds to measure chemical gradients through the scaffolds. 
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Figure 6.2:  “Energy-level diagram for an excitonic solar cell at zero field.  Excitons created by light 
absorption in OSC 1 and 2 do not possess enough energy to dissociate in the bulk (except at trap sites).  
But the conduction-band valence-vand offsets at the interface between OSC 1 and OSC 2 provide an 
exothermic pathway for dissociation of excitons in both phases, producing electrons in OSC 1 and holes in 
OSC 2.”2  

6.2.3 Application of Gradient NWs in ESCs 

Exciton solar cells (XSCs) work by the creation of an exciton from the absorption 

of photons, which diffuses to an interface where the electron and hole are separated to 

produce current2. 

 

Excitons are bound electrons and holes that are generated when an EHP absorbs 

photons.  Excitons are formed in materials where, when stimulated, an electron and hole 

are unable to separate and form an uncharged, tightly bound pair that is unaffected by 

electric fields2.  This phenomenon usually occurs in organic materials and certain 

nanostructures.  In organic materials, the exciton forms for two reasons.  The first is a 

large Coulomb potential surrounding the electron hole pair that extends over a large 

volume.  The second is because of weak non-covalent interactions between organic 

molecules, which results in a narrow bandwidthError! Bookmark not defined..  

Nanostructures such as NPs and NWs confine EHPs in certain dimensions.  These 
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nanostructures create quantum confinement,  which in turn creates discrete energy levels 

that are atom like6.  This prevents the EHP from separating and creates an exciton.   

The resulting exciton has gained an energy called the optical bandgap, Eopt.  The 

optical bandgap has less energy than the energy of free EHP, which is the energy of the 

bandgap, Ebg.  Figure 6.2 gives a schematic showing the optical bandgap compared to the 

bandgap2. 

Since the Eopt is less than the Ebg, excitons are the preferred state in certain 

organic and nano materials.  They are free to diffuse inside of the material in much the 

same way free electrons and holes diffuse.  The diffusion length of excitons varies with 

different materials.  Since the exciton is uncharged, the direction of the exciton is random 

and is referred to as drift.  To separate electrons and holes from excitons, the exciton 

must be exposed to a region that has a lower bandgap than the Eopt.  This occurs at 

interfaces and trap sites.  Trap sites exist in all types of solar cells and do not significantly 

affect the performance of XSCs.  Here, excitons dissociate into electrons and holes, one 

of which is trapped in the site.  The other is free to diffuse through the material.  The 

behavior of excitons at interfaces governs the behavior of XSCs.  When interfaces are 

created so that a material with a bandgap smaller than the Eopt borders the material with 

the excitons, the exciton will separate into an EHP2.   

When the exciton reaches an interface, it separates into electrons and holes.  The 

electrons move to electron conducting regions (n-type) and holes to hole conducting 

regions (p-type).  Since excitons are constantly dissociating into electrons and holes at the 

interface, a gradient is created where the concentration of electrons and holes is greater at 

the interface than the opposite end of the region.  This concentration gradient drives the 
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flow of electrons and holes to opposite ends of the material.  When the device is 

connected to a circuit, a current will flow because electrons are driven around the device 

to recombine with holes. 

The materials used in inorganic nanostructured solar cells are similar to those 

used in today's solar cells. However, the structures of the cells, along with the way the 

devices work, are very different from today’s solar cells. The n-conducting nanorods, 

nanowires, or nanoparticles can be fabricated from a number of different materials, 

ranging from CdS to CdSe to CdTe. The band gap size of these semiconductors must be 

larger but still close to the band gap size of the surrounding p-conducting material.  These 

materials not only match the bandgap size of the n-conducting materials, but also have a 

close crystal lattice match with the n-conducting materials.  The band gap sizes of some 

nanostructured materials can be seen in Table 6.1.  

 

n - conducting p - conducting 

Material Band Gap (eV) Material Band Gap (eV) 

CdS 2.6 CIS 1.04 

CdSe 1.84 CIGS 1.00 

CdTe 1.61   

 

 

 Research has also found that large dipoles in the nanostructures help to quickly 

promote the electron from one electrode to the other.  These dipoles are a result of the 

high charge difference between the two sides of the solar cell.  The high crystallinity of 

Table 6.1: Comparison of materials and general band gap energies of those materials for both n and p type 
semiconductors1. 
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these structures helps to increase the mobility of the charge carriers.  NW solar cell 

structures can be divided into three different structure types: nanorods, NWs, and NPs.  

Each structure has their own advantages and disadvantages, but each work in essentially 

the same way.  

Nanorods and NWs work in a similar fashion to NPs.  Nanorods and NWs avoid 

any high energy tunneling which may occur in a NP structure.  Nanorods and NWs also 

excel in electron transport due to a dipole which occurs through the length of the rod.  If a 

NR is connected between the solar cell's two electrodes, electron moves fast enough that 

it has no time to diffuse to the sides of the rod wall and recombine.  The efficiency of 

electrons traveling through the NRs/NWs is dependent on the crystallinity of the NW, the 

density of the NWs throughout the matrix, the overall size of the NWs, and the 

orientation of the NWs.  As with NPs, the NWs must be in tune with the matrix around it, 

in terms of both band gap size and crystallinity.  Better crystalline interaction at the P-N 

junction decreases the energy requirement for charge transfer between the 

semiconductors. 

 The incorporation of gradient CdTe/CdSe NWs into these devices offers the 

possibility of facilitating the diffusion of the exciton to the area of the NW with the lower 

bandgap (the CdTe rich regions).  By aligning the NWs such that the low and high 

bandgap regions overlap, the XSC can more efficiently convert excitons into electrons 

and holes, and finally, electricity.  A varied bandgap will also allow for more varied 

wavelengths of light to be used to create electricity. 
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