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CHAPTER I

Introduction

The vast majority of fluid flows found in nature and engineering are not smooth, steady,
or organized. Everything from smoke billowing from a fire to water rushing through a
pipe involves highly complex motions that are seemingly impossible to understand. Such
complex flow is referred to as turbulent, by contrast to the smooth and steady fluid behavior
found in laminar flows. Turbulent flows are characterized by highly unsteady and chaotic
fluid motions, and the underlying dynamics are dominated by nonlinear inertial processes.
The Reynolds number, defined as

Re ≡ ρUL

µ
, (1.1)

characterizes the ratio of nonlinear inertial effects to linear viscous effects in the flow, where ρ

and µ are, respectively, the density and viscosity of the fluid, and U and L are characteristic
velocity and length scales of the mechanism by which the turbulence is generated. For
shear-driven turbulent flows – which comprise the majority of the flows considered in this
dissertation – U and L are determined by the imposed mean shear. When the Reynolds
number is large, the dynamics are dominated by nonlinear effects and the flow is turbulent.
In addition to a wide range of natural occurrences, turbulence also plays a critical role
in many practical applications, particularly within aerospace engineering. For instance,
combustion processes in gas turbine engines, the sequence of shocks in supersonic jet inlets,
and the flow over aircraft all involve turbulent fluid flow.

Despite the ubiquity of turbulence in nature and engineering however, prior attempts to
computationally simulate turbulent flows have been notoriously problematic. The difficulty
stems in large part from the wide-range of spatial scales that must be predicted in simula-
tions of most practical problems. Energy input at the largest scales – which are typically
on the order of the system geometry in many applications – cascades to smaller scales until
it is dissipated as heat by viscous processes at the very small scales. The ratio of the energy
input to viscous scales increases with Reynolds number as Re3/4, and for the high Reynolds
numbers found in many engineering problems the range of spatial scales can be substantial.

Some progress in simulating this wide range of scales has been made over the last several
decades as computing power has increased, resulting in the increasing use of direct numeri-
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cal simulations (DNS) for the study of turbulent flows. In DNS, all scales of the turbulence
are calculated directly from the Navier-Stokes equations, and every year increasingly am-
bitious DNS studies of increasingly complex flows are undertaken. However, due to the
overwhelming computational resources required for DNS of even the most basic problems –
as indicated by the Re9/4 scaling of the number of spatial grid points in such simulations –
this approach is not viewed as a viable computational tool for practical engineering turbu-
lent flow problems where the flow geometry can become quite complicated and the Reynolds
number is, in nearly all instances, very large. Indeed, essentially all DNS studies to date
have focused on relatively basic flows at only low to moderate Reynolds numbers, and it is
unclear if DNS will ever be an option for simulations of practical aerospace applications.

As a result, computational simulations of practical problems will continue to require
physically-accurate models for all – or at least some – of the scales in turbulent flows. The
formulation of such models, which effectively reduce the range of scales calculated in com-
putational simulations, has been the goal of turbulence researchers for over half a century.
However, a high-fidelity, universally accurate approach has yet to be developed. The failure
of existing turbulence model approaches has become particularly problematic over the last
several decades, as simulations of practical applications involving turbulent fluid flow have
become an increasingly important aspect of the design process for a variety of problems. For
example, it is much more time- and cost-efficient to conduct computational design analyses
of new aerospace propulsion systems than it is to carry out real-world manufacture and
testing, which can be expensive, time-consuming, and hazardous. However, such computa-
tional analyses require physically-accurate predictions of various turbulent processes, and
to date standard turbulence models have been unreliable in essentially all such simulations.

Currently the most widely-used simulation approaches are based on the Reynolds-
averaged Navier-Stokes (RANS) equations, where closure of the governing equations re-
quires a representation for the ensemble-averaged Reynolds stress anisotropy. The exact
transport equation for the anisotropy is readily derived, but additional higher-order terms
are introduced which prevent closure. As a result, it has been common to model these
unclosed terms, or to simply model the anisotropy directly beginning either from the ex-
act anisotropy transport equation or physical considerations. In contrast to DNS, RANS
approaches only attempt to provide predictions of the mean flow and turbulence statistics,
which in many cases are all that is required from simulations of practical problems. Such
approaches generally provide reasonably accurate predictions of the flow statistics within a
computationally-simple framework, and consequently RANS models have been common in
engineering practice for several decades. Despite their popularity however, the accuracy of
these approaches is limited by the fidelity of the modeled representation for the anisotropy.
In many cases, physical accuracy is sacrificed in the interest of obtaining a computationally-
simple closure model, resulting in generally unreliable simulations of complex problems.

In response to the inaccuracy of existing RANS approaches, large eddy simulations

2



(LES) have been viewed as a promising alternative for turbulent flow simulations. In such
approaches only the smallest scales of the flow are modeled, and the increasing popular-
ity of LES is due in large part to the increased accuracy that is obtained by calculating
the largest scales of the flow directly. For the practical user however, the computational
resources required even for LES can be prohibitive, and for many problems there remain
issues concerning the physically-accurate modeling of the small scale motions. As a result,
RANS approaches remain the “state of the practice” for simulating practical turbulent flow
problems, due in large part to their computational simplicity. This situation is expected
to continue for the foreseeable future as the complexity and ambitiousness of simulations
for practical applications continue to outpace the development, and more importantly the
availability, of the high-power computational resources required for DNS and LES.

There thus continues to be substantial demand, especially from the user community,
for new high-fidelity, computationally-efficient turbulence closure models. In particular,
physically-accurate representations for the turbulence anisotropy in strongly nonequilib-
rium and inhomogeneous flows are critical for obtaining reliable flow predictions in a wide
range of practical applications. For example, the interaction of a shock wave impinging
on a turbulent boundary layer plays a key role in the flow-field of embedded propulsion
systems for next-generation supersonic and hypersonic air vehicles [15]. However, most
existing turbulence models are largely incapable of capturing effects due to the rapid and
large straining of the shock in the near-wall region of the flow. Inhomogeneities in the
imposed mean strain rate, such as those created by the solid wall in shock-boundary layer
interactions, have posed particular problems for existing approaches, since such inhomo-
geneities lead to spatially nonlocal effects that are difficult to predict within simple single-
point model frameworks. While efforts have been made to develop closure models that
account for nonlocal and nonequilibrium effects on the anisotropy, a physically-accurate
and computationally-efficient solution approach has yet to be formulated.

In response to the need for novel turbulence closure strategies in complex problems, a
new representation for the turbulence anisotropy that is directly aimed at providing im-
proved predictions of nonlocal and nonequilibrium effects in turbulent flows is outlined
in this dissertation. The new approach is based on fundamental considerations of tur-
bulence physics and vortex dynamics, and is intended to provide a physically-accurate,
computationally-efficient alternative to existing simulation strategies by bridging the gap
between relatively inaccurate, currently popular RANS models, and more computationally-
demanding LES approaches. If turbulence modeling is to continue as a common simulation
strategy for practical problems over the next decade and beyond – as seems likely – then new
high-fidelity closure approaches such as that developed in this dissertation will be critical
for enabling the reliable computational design of next-generation aerospace applications.
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1.1 The Reynolds-Averaged Navier-Stokes (RANS) Equations

Simulation approaches based on the RANS equations are likely to remain, for the fore-
seeable future at least, the primary computational design tool used by the majority of
engineers for the majority of practical problems. Focusing here for purposes of clarity on
incompressible turbulent flows, ensemble-averaging the continuity and momentum equations
leads to the single-point RANS equations for the mean-flow velocity components ui(x, t)
and kinematic pressure p(x, t), namely

∂ui

∂xi
= 0 , (1.2)

Dui

Dt
= − ∂p

∂xi
+

∂

∂xj

[
2νSij − u′iu

′
j

]
, (1.3)

where D/Dt ≡ (∂/∂t + uj∂/∂xj) denotes the mean-flow material derivative, and

Sij ≡ 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(1.4)

is the mean strain rate tensor. The overbar in (1.2)-(1.4) and elsewhere herein is understood
to be an ensemble average at location x and time t over infinitely many realizations of the
“same” turbulent flow having nominally identical initial and boundary conditions, despite
the fact that this average is often implemented in practice via time or space averaging.
Much of this dissertation will focus primarily on incompressible turbulent flows, with the
understanding that all model developments are readily extended to transonic and supersonic
flows where compressible effects on the mean flow may be important. Compressibility very
seldom has a direct impact on the turbulence itself, since the turbulence Mach number MT ≡
u′rms/a is typically substantially below about 0.3, where u′rms is the characteristic velocity of
the turbulence and a is the speed of sound. In such cases, compressibility effects can still be
important in the mean flow, but the turbulence fluctuations are essentially incompressible.
As a result, compressible effects on the evolution of the turbulence anisotropy will not be
addressed herein.

Solving (1.2)-(1.4) requires a representation for the Reynolds stresses u′iu
′
j in (1.3), where

primes denote fluctuations relative to the average. This stress tensor can be written in terms
of its isotropic form 2

3kδij and the deviations from isotropy as

u′iu
′
j =

2
3
kδij −

(
u′iu

′
j

)
aniso

, (1.5)

where k ≡ 1
2u′iu

′
i is the turbulence kinetic energy. The anisotropic part (u′iu

′
j)aniso can be

equivalently expressed in terms of the Reynolds stress anisotropy tensor

aij ≡ −(u′iu
′
j)aniso

k
=

u′iu
′
j

k
− 2

3
δij , (1.6)
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where due to the symmetry of the tensor there are six independent components of aij .
The closure required in (1.2)-(1.5) thus amounts to constructing a representation for the
anisotropy tensor aij in (1.6). It has been a major goal of fluid dynamics research for
well over a century to solve the resulting ‘closure problem’ by developing a turbulence
model that is reliably accurate over the range of conditions encountered in essentially all
practical problems. As will be seen in the following, the exact transport equation for aij is
readily derived, although additional unclosed terms are introduced. Formulating physically-
accurate representations for these terms, and then solving the subsequent modeled equation
for aij , remains one of the greatest challenges in turbulence modeling research.

1.2 The Exact Anisotropy Transport Equation

From the definition of the Reynolds stress anisotropy tensor in (1.6), the exact anisotropy
transport equation can be obtained from

Daij

Dt
=

1
k

(
Du′iu

′
j

Dt
− u′iu

′
j

k

Dk

Dt

)
. (1.7)

On the right-hand side, the transport equation for the Reynolds stress tensor u′iu
′
j can be

written [24, 42, 78, 96] as

Du′iu
′
j

Dt
= Pij + Πij − εij + Dij . (1.8)

In (1.8), Pij is the production tensor

Pij ≡ −u′iu
′
l

∂uj

∂xl
− u′ju

′
l

∂ui

∂xl
, (1.9)

Πij is the pressure-strain rate correlation tensor given by

Πij(x) ≡ 2
ρ

p′(x)S′ij(x) , (1.10)

with the fluctuating strain rate tensor S′ij defined as

S′ij ≡
1
2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
, (1.11)

εij is the dissipation rate tensor given by

εij ≡ 2ν
∂u′i
∂xl

∂u′j
∂xl

, (1.12)
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and Dij accounts for viscous, turbulent, and pressure transport and is defined as

Dij ≡ − ∂

∂xl

(
u′iu

′
ju
′
l +

p′

ρ
ujδli +

p′

ρ
u′iδjl − ν

∂u′iu
′
j

∂xl

)
. (1.13)

The corresponding transport equation for the turbulence kinetic energy k is obtained from
the trace of (1.8) as

Dk

Dt
= P − ε + D , (1.14)

where P ≡ Pnn/2, D ≡ Dnn/2, ε ≡ εnn/2, and Πnn = 0 in incompressible turbulence.
Substituting (1.8) and (1.14) into (1.7), and employing the definition of the anisotropy
tensor in (1.6), gives the exact anisotropy transport equation

Daij

Dt
= −

(
P

ε
− 1

)
ε

k
aij +

1
k

[
Pij − 2

3
Pδij

]
+

1
k
Πij − 1

k

[
εij − 2

3
εδij

]
(1.15)

+
1
k

[
Dij −

(
aij +

2
3
δij

)
D

]
.

The production term in (1.15) can be exactly written in terms of aij , Sij , and the antisym-
metric part of the mean velocity gradient tensor W ij , defined as

W ij ≡ 1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
, (1.16)

to obtain the exact form
[
Pij − 2

3
Pδij

]
= −4

3
kSij − k(ailSlj + Silalj − 2

3
anlSnlδij) + k(ailW lj −W ilalj) , (1.17)

where the kinetic energy production P is given by

P = −k aij Sij . (1.18)

With (1.17), the transport equation in (1.15) is then written as

Daij

Dt
= −

(
P

ε
− 1

)
ε

k
aij − 4

3
Sij −

(
ailSlj + Silalj − 2

3
anlSnlδij

)
(1.19)

+
(
ailW lj −W ilalj

)
+

1
k
Πij − 1

k

[
εij − 2

3
εδij

]
+

1
k

[
Dij −

(
aij +

2
3
δij

)
D

]
.

In (1.19), k is given by (1.14), P is given by (1.18), and the remaining unclosed terms are εij ,
Dij , and Πij . If physically-accurate closed representations for these terms can be obtained
then the transport equation in (1.19) can be used to solve (1.2)-(1.4) for any flow.
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1.3 Prior Anisotropy Closure Models

Nearly all standard approaches for modeling the anisotropy and closing (1.2)-(1.4) can
be related to the exact transport equation in (1.19). In the following various prior ap-
proaches are outlined, beginning with second-order Reynolds stress transport models. These
approaches model the εij , Dij , and Πij terms in (1.19) and obtain the anisotropy from solu-
tion of the subsequent closed system of partial differential equations for the six independent
components of aij . An outline of prior two-equation linear and nonlinear eddy viscosity
closure models is then provided. These models are obtained as convective equilibrium so-
lutions to (1.19) and are overwhelmingly the most widely-used RANS models in standard
engineering practice.

1.3.1 Second-Order Reynolds Stress Transport Models

Reynolds stress transport models are the highest commonly-used level of closure for the
anisotropy, and seek to retain much of the physics contained in the exact transport equation
in (1.19). The dissipation tensor εij , transport term Dij , and pressure-strain correlation Πij

are the only unclosed terms in (1.19), and Reynolds stress transport models provide closed
representations for each of these terms.

For high Reynolds number flow, the dissipation tensor εij is concentrated at the smallest
scales of the flow, which are assumed to be isotropic by the Kolmogorov hypotheses [49, 78].
As a result, the dissipation is given in nearly all Reynolds stress transport models (e.g. Refs.
[51, 98]) by its isotropic form, namely

εij =
2
3
εδij . (1.20)

The transport terms Dij and D in (1.15) are typically represented using gradient-transport
hypotheses (e.g. Daly and Harlow [17], Hanjalic and Launder [35], and Mellor and Herring
[65]), and an overview of these prior representations is given in Ref. [99].

The only remaining unclosed term in (1.19) is thus the pressure-strain correlation Πij ,
defined in (1.10). Physically-accurate closures for Πij have been the focus of turbulence
researchers since the pioneering works of Chou [14] and Rotta [85, 86]. Chou proposed
splitting Πij into slow and rapid parts, denoted Π(s)

ij and Π(r)
ij , respectively, as

Πij = Π(s)
ij + Π(r)

ij . (1.21)

While the exact integral representations for both parts of Πij are readily derived (and will
be discussed in more detail in Chapter III), it has been common to express Π(s)

ij and Π(r)
ij

in terms of local variables only, with little regard to the nonlocality inherent in the exact
integrals for these terms.

Nearly all existing models for Π(s)
ij rely on insights obtained from the decay of the
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anisotropy in unstrained turbulence, for example during the relaxation of grid turbulence.
Rotta [86] proposed a simple linear “return-to-isotropy” model as

Π(s)
ij = −C1εaij , (1.22)

and in unstrained homogeneous turbulence, substitution of (1.22) into (1.19) with εij given
by (1.20) yields the simplified anisotropy transport equation

daij

dt
= −(C1 − 1)

ε

k
aij , (1.23)

resulting in decay of the anisotropy on a time scale determined by the turbulence time scale
k/ε. Sarkar and Speziale [89, 98] have argued that additional higher order quadratic terms
should also be included in (1.22) to yield better agreement with experimental results, but
it has been noted [99] that these terms are typically small. As a result, models for Π(s)

ij

remain relatively simple, and the standard form in (1.22) continues to be widely used.
To date, models for Π(r)

ij have typically been obtained by assuming that the mean velocity
gradient is spatially invariant (as in homogeneous flows), and the subsequent general form
for Π(r)

ij that is linear in aij is given by [24, 51, 96, 98]

Π(r)
ij = C2kSij − C3k

(
ailSlj + Silalj − 2

3
anlSnlδij

)
+ C4k

(
ailW lj −W ilalj

)
, (1.24)

where all variables are evaluated locally at point x and time t. With the exception of
C2, which has been shown by Crow [16] to have an exact value of C2 = 4/5 based on
consideration of turbulence in the rapid distortion limit, the Ci coefficients in (1.24) are
typically not determined in a systematic manner, and are often based on comparisons with
experimental or computational data.

With (1.22), the rapid pressure-strain correlation in (1.24) gives the commonly-used
local homogeneous model for Πij as

Πij = −C1εaij + C2kSij − C3k

(
ailSlj + Silalj − 2

3
anlSnlδij

)
+ C4k

(
ailW lj −W ilalj

)
,

(1.25)
where the Ci are constants that may depend on invariants of aij , Sij , and W ij . For the
most common second-order Reynolds stress transport closures, the constants Ci are taken
as

C1 = 1.5, C2 = 0.8, C3 = 0.875, C4 = 0.655 , (1.26)

in the Launder, Reece, and Rodi (LRR) model [51], and as

C1 = 0.9
P

ε
+ 1.7, C2 = 0.8− 0.65 (IIa)

1/2 , C3 = 0.625, C4 = 0.2 , (1.27)
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in the Speziale, Sarkar, and Gatski (SSG) model [98], where IIa ≡ anlaln is the second
invariant of the anisotropy tensor. It should be noted that the SSG model typically includes
an additional quadratic ailalj term in the slow pressure-strain correlation in (1.22), but as
noted previously this term is typically small and can be neglected for most flows.

Substituting (1.20) and (1.25) into (1.19) and rearranging terms gives the conventional
modeled anisotropy transport equation that forms the basis of nearly all Reynolds stress
transport models, namely

Daij

Dt
= −α1

ε

k
aij + α2Sij + α3(ailSlj + Silalj − 2

3
anlSnlδij) (1.28)

−α4

(
ailW lj −W ilalj

)
+

1
k

[
Dij −

(
aij +

2
3
δij

)
D

]
,

where common representations for Dij are summarized in [99] and the αi are given by

α1 =
P

ε
− 1 + C1, α2 =

(
C2 − 4

3

)
, α3 = (C3 − 1) , α4 = (C4 − 1) . (1.29)

The coefficients Ci in (1.29) are given by the specific choice of pressure-strain model, for
example (1.26) for the LRR [51] model or (1.27) for the SSG [98] model. Thus, while the
exact anisotropy transport equation in (1.19) includes unclosed dissipation, transport, and
pressure-strain terms, the modeled equation given by (1.28) and (1.29) – with appropriately
chosen transport equations for the turbulence kinetic energy k and its dissipation rate ε –
allows closure of (1.2)-(1.4).

In principle, the set of partial differential equations given by (1.28) and (1.29) contains
all of the relevant dynamics that determines the evolution of aij . In practice however, the
representations for εij and Πij in (1.20) and (1.25) can become inaccurate in even basic flow
problems. For example, in the near-wall region of wall bounded flows the local Reynolds
number can become quite small, and the high-Reynolds number isotropic representation
for εij in (1.20) becomes inaccurate. Moreover, the neglect of nonlocality in obtaining
the purely local representation for Πij in (1.25) poses problems in strongly inhomogeneous
regions such as those found, once again, in the near-wall region of wall bounded flows, where
flow properties vary rapidly in the wall-normal direction.

Perhaps more so than these physical inaccuracies however, the greatest impediment to
the widespread adoption of Reynolds stress transport models has been the challenge of
integrating the six coupled partial differential equations given by (1.28) – in addition to
the two transport equations required for the variables k and ε – in simulations of complex
problems. Numerical integration of this set of eight equations increases the computational
requirements and introduces stability issues associated with solving (1.2)-(1.4), often to
such an extent that Reynolds stress transport models can be prohibitive for many practical
applications.
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1.3.2 Two-Equation Equilibrium Closure Models

By contrast to Reynolds stress transport models, the most widely used anisotropy models
are obtained by assuming convective equilibrium on the left-hand side of (1.28), namely
Daij/Dt ≈ 0, as originally suggested by Pope [77] and Rodi [83]. Further neglecting the
transport term Dij , this allows the anisotropy to be obtained from (1.28) as

aij =
α2

α1

k

ε
Sij +

α3

α1

k

ε
(ailSlj + Silalj − 2

3
anlSnlδij)− α4

α1

k

ε

(
ailW lj −W ilalj

)
, (1.30)

where α1 depends on aij through P/ε in (1.29). As a result, (1.30) is an implicit algebraic
expression for the anisotropy.

In both nonlinear and linear two equation eddy viscosity models, aij is given by an
explicit algebraic formulation based on (1.30). The closure is completed by specifying two
additional modeled transport equations for k and ε, usually written as

Dk

Dt
= P − ε +

∂

∂xj

[(
ν +

νT

σk

)
∂k

∂xj

]
, (1.31)

Dε

Dt
= Cε1P

ε

k
− Cε2

ε2

k
+

∂

∂xj

[(
ν +

νT

σε

)
∂ε

∂xj

]
, (1.32)

where the kinetic energy production rate P is given by (1.18). There have been a number
of proposals for the values of the constants in (1.31) and (1.32), however standard values
[52] are

Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3 . (1.33)

It is possible (e.g. Wilcox [108]) to replace ε in (1.30) with the variable ω ∼ ε/k, resulting in
what are commonly known as two-equation k-ω models. However this modification does not
introduce any additional physics in the specific closure representation for the anisotropy,
and as a result this dissertation will focus primarily on the variables k and ε, with the
understanding that all model developments can be readily implemented in k-ω frameworks.

1.3.2.1 Nonlinear Eddy Viscosity Models

Nonlinear eddy viscosity models seek to obtain an explicit representation for aij from
(1.30) while retaining much of the nonlinearity in the anisotropy evolution. As originally
shown by Pope [77], if the anisotropy is written as a general nonlinear expansion in terms
of Sij and W ij and substituted into (1.30), then it is possible to obtain an explicit closure
for the anisotropy of the form

aij = G1
k

ε
Sij + G2

(
k

ε

)2 [
SilSlj − δij

3
SklSkl

]
+ G3

[
SilW lj −W ilSlj

]
, (1.34)
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where the Gi coefficients are related to the αi in (1.30) and typically depend on invariants
of Sij and W ij . The resulting nonlinear form in (1.34) is termed an explicit algebraic stress
model, and is closely connected through (1.30) to the modeled transport equation for aij in
(1.28) and (1.29). Perhaps the most notable examples of models based on (1.34) have been
obtained by Gatski and Speziale [24], Girimaji [27], and Wallin and Johansson [107], all of
whom derived explicit algebraic stress models using various equilibrium assumptions.

While such nonlinear models seek to remain closely connected to the transport equation
in (1.28) by relating the Gi to the αi coefficients, various nonlinear closures based on
expansion methods and physical considerations have also been proposed. In these models
no rigorous connection to the implicit equation in (1.30) or the transport equation in (1.28)
is attempted, and the anisotropy is simply represented as a tensorial expansion in powers of
Sij and W ij . The expansion coefficients are then determined by physical considerations or
other means, often through comparison with experimental and DNS data. Yoshizawa [112],
Speziale [95], Rubinstein and Barton [88], Taulbee [102], and Yakhot, Orszag and coworkers
[111] have derived nonlinear models based on various expansion methods, and the resulting
models are distinct from explicit algebraic stress models due to their disconnect from the
anisotropy transport equation given exactly by (1.19), or in modeled form by (1.28).

Regardless of the derivation method however, essentially all nonlinear eddy viscosity
models express the anisotropy in terms of the local instantaneous mean strain and rotation
rate tensors only, and thus are fundamentally equilibrium closure representations. Moreover,
these models do not account for nonlocal effects in the pressure-strain correlation that arise
due to spatial variations in the mean velocity gradient field. Thus, while nonlinear models
hold the promise of providing physically accurate predictions for aij in a relatively simple
computational framework, they are primarily aimed at capturing the nonlinearity in (1.28)
and (1.30), and do not account for nonlocal or nonequilibrium effects on the anisotropy.
In addition, there has been a proliferation of nonlinear closure models over the last several
decades (perhaps more so than any other general class of closure approach), and the “best”
nonlinear model for any particular problem remains unclear. This has, in general, lead to
the widespread avoidance of nonlinear eddy viscosity models in engineering practice.

1.3.2.2 Linear Eddy Viscosity Models

From the implicit algebraic formulation for aij in (1.30), a linear equilibrium closure
is obtained by neglecting all terms involving higher-order combinations Sij and W ij on
the right-hand side. The resulting closure, which is identical to the classical Boussinesq
hypothesis first introduced in 1877, fundamentally assumes the anisotropy to be directly
proportional to the local instantaneous mean strain rate tensor Sij . The corresponding
model for aij is then given by

aij = −2
νT

k
Sij , (1.35)
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where νT is an eddy viscosity that is rigorously defined from (1.30) as

νT ≡ Cµ
k2

ε
, (1.36)

with the eddy viscosity coefficient Cµ given in terms of the αi in (1.29) as

Cµ ≡ − α2

2α1
. (1.37)

When the equilibrium closure in (1.35) is used for the anisotropy with the eddy viscosity in
(1.36), the resulting equilibrium k-ε model represents the anisotropy as

aij = −2Cµ
k

ε
Sij = −2Cµ

(
Sk

ε

)
Sij

S
, (1.38)

where S ≡ (
2SijSji

)1/2 characterizes the mean strain rate magnitude. Closure is then
achieved through solution of the transport equations for k and ε in (1.31) and (1.32),
respectively.

While Cµ defined in (1.37) is rigorously connected to the modeled transport equation
for aij through the αi coefficients, the dependence on α1, and hence P/ε via (1.29), has
posed particular challenges when using the equilibrium closure given by (1.38). It has been
common [52] to write Cµ using the constant value

Cµ = 0.09 , (1.39)

and with (1.38) this gives the standard k-ε (SKE) linear eddy viscosity model. The SKE
model is relatively successful in turbulent flows where the non-dimensional shear parameter
Sk/ε and Lagrangian derivatives of flow properties like k and ε are sufficiently small, such as
in channel flow or other thin shear flows. In regions where Sk/ε becomes large however, the
neglect of the dependence on P/ε in obtaining (1.39) from (1.37) becomes problematic. In
reality, when P/ε and the closely connected variable Sk/ε become large, Cµ should decrease
due to its dependence on 1/α1 ∼ (P/ε)−1. Rodi [83] was the first to note the relation
between Cµ and P/ε, and several approaches for reducing Cµ when P/ε – and hence Sk/ε

– becomes large have been proposed. Perhaps the simplest approach, which was originally
proposed as a realizable form for Cµ, is the Bradshaw hypothesis where Cµ is given as

Cµ =

{
0.09 for (Sk/ε) ≤ 3.4
0.31(Sk/ε)−1 for (Sk/ε) > 3.4

. (1.40)

With (1.38), the formulation for Cµ in (1.40) gives the partially realizable k-ε (RKE) model.
Substitution of (1.40) into (1.38) results in an anisotropy magnitude that is independent of
Sk/ε, resulting in improved predictions of the anisotropy for large values of Sk/ε.
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While a number of representations for νT – and Cµ in particular – have been pro-
posed, all models based on the equilibrium closure in (1.35) fundamentally assume that the
anisotropy is proportional to the local instantaneous mean strain rate tensor Sij . However,
such a representation fares poorly when nonequilibrium or nonlocal effects are significant,
namely when there are large temporal or spatial variations in the mean strain rate tensor.
Despite these shortcomings, two-equation linear eddy viscosity models based on (1.35) are
overwhelmingly the most popular models for the anisotropy used in common engineering
practice, due primarily to their computational simplicity and stability.

1.3.3 Performance of Prior Closures in Inhomogeneous Flows

The equilibrium SKE and RKE closures have been applied to a wide-range of turbulent
flow problems, often with a surprising level of success. Indeed, Figure 1.1 shows close agree-
ment between DNS results [39] and the SKE model in fully-developed turbulent channel
flow for y+ > 60, where y+ ≡ yuτ/ν and uτ is the wall friction velocity. For y+ < 60
however, the SKE model predicts an increase in the anisotropy magnitude, which is in poor
agreement with DNS results.

The disagreement between the SKE and DNS results in the near-wall region is due in
part to the linear dependence of the SKE model on the parameter Sk/ε in (1.38). As shown
in Figure 1.2, the SKE model agrees closely with the DNS results [39] for small values of
Sk/ε, but in the near-wall region where Sk/ε becomes large the SKE model over-predicts the
anisotropy magnitude due to its linear dependence on Sk/ε. Somewhat better agreement
is obtained by the RKE model with Cµ from (1.40), where the anisotropy magnitude is
independent of Sk/ε in the near-wall region. However, even the RKE model is unable to
capture the decrease in the anisotropy magnitude as the wall is approached, as shown in
Figure 1.1, and the non-trivial relation between a12 and Sk/ε shown in Figure 1.2 is not
accurately predicted.

While the RKE model has certainly captured some additional physics in the near-wall
region by limiting Cµ for large Sk/ε, in order to obtain better agreement with the DNS
results nonlocal effects due to the strong near-wall variations in S12 must also be accounted
for. The local equilibrium closure in (1.35), which forms the basis of both the SKE and RKE
models, is fundamentally obtained by assuming that the mean velocity gradient field in the
rapid pressure-strain correlation is homogeneous. The good agreement between the SKE and
RKE models with DNS for y+ > 60 suggests that this may be an adequate approximation
near the center of the channel, but as the wall is approached this approximation becomes
invalid. In reality, the near-wall spatial variations in S12 introduce nonlocal effects which
must be accurately predicted by the anisotropy closure model to obtain good agreement
with DNS all of the way to the wall.

In the past it has been common to account for these nonlocal effects (as well as other
effects due to the low-Reynolds number and two dimensionality of the flow in the near-wall
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region) through the use of wall damping functions fµ. These functions modify the eddy
viscosity in (1.36) as

νT = fµCµ
k2

ε
, (1.41)

where Cµ is still given by (1.39) or (1.40). A wide variety of forms for fµ have been
suggested (the review by Speziale and So [99] provides an extensive account of many such
formulations), and Figures 1.1 and 1.2 show that using the van Driest [19] function

fµ = 1− exp
(
− y+

A+

)
(1.42)

in (1.41), with A+ = 26 and Cµ given by the realizable form in (1.40), gives significantly
improved agreement with DNS results in the near-wall region. However, while wall-damping
approaches clearly yield improved predictions in certain flows, they are distinctly ad hoc
and suffer from a lack of universality that makes their use problematic in more complex
flows, particularly in the presence of separated flow regions.

1.3.4 Performance of Prior Closures in Nonequilibrium Flows

Figures 1.3 and 1.4 show the performance of the equilibrium anisotropy closure from
(1.35) in the SKE and RKE models for the case of initially-isotropic homogeneous turbulence
with k = k0 and ε = ε0 at t = 0 that is suddenly subjected for t > 0 to homogeneous mean
shear with relative magnitude Sk0/ε0 = 3.4. The anisotropy created by the impulsive shear
S12(t) leads to changes in k(t), ε(t) and aij(t). The resulting k(t) from the equilibrium
closure in the SKE and RKE models is compared in Figure 1.3 with results from the LRR
Reynolds stress transport model [51] in (1.28) using the constants in (1.26) and LES [3] for
this case. At relative times (S · t) À 1, all models and the LES show an increase in k with
time. However, until (S · t) ≈ 2 there are significant differences between the various results.
In particular, LES and the LRR model show that the initial response of the turbulence
to the impulsively applied shear is a decrease in k(t), while the equilibrium closure in the
SKE and RKE models causes the turbulence kinetic energy to instead immediately increase
with time. Similarly, the SKE, RKE, and LRR models all predict an approach to an
asymptotically unchanging shear anisotropy a12 for large times, as shown in Figure 1.4, but
the LRR model predicts a relatively gradual increase in the anisotropy magnitude. The
differences between the equilibrium SKE and RKE models and the LRR model are due to
nonequilibrium effects in the anisotropy response, as given by the Daij/Dt on the left-hand
side of (1.28), which are not correctly represented by the equilibrium closure in (1.35).

Figure 1.5 shows the evolution of the shear anisotropy a12 for initially-isotropic pe-
riodically sheared homogeneous turbulence at three different relative shearing frequen-
cies. In this case, the turbulence is suddenly subjected at t = 0 to the periodic shear-
ing S12(t) = (S/2) sin(ωt), where the initial shearing magnitude is Sk0/ε0 = 3.3 and ω/S
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is the relative shearing frequency. Figure 1.5 compares results from the SKE, RKE, and
LRR models with DNS results obtained by Yu and Girimaji [115]. It is clear that for all
shearing frequencies there are substantial amplitude and phase disagreements between the
SKE and RKE models and DNS results. In particular, the equilibrium closure in (1.35),
which is used in both the SKE and RKE models, predicts a frequency-independent phase
shift φ = π between a12 and S12, whereas the DNS shows that φ → π for small ω/S and
φ → π/2 for large ω/S. There is also a substantial amplitude disagreement between the
SKE and DNS results, particularly for large values of ω/S. The amplitude agreement is
somewhat improved for small and moderate shearing frequencies using the RKE model, but
Figure 1.5(c) shows that for the largest frequencies both the SKE and RKE models fail to
predict the large decrease in the anisotropy amplitude. As with the impulsively-sheared
case, these discrepancies are caused by the neglect of nonequilibrium effects in (1.35), and
the generally good agreement between the LRR model and DNS results in Figure 1.5 is due
to the retention of the nonequilibrium Daij/Dt term in the closure.

In general, nonequilibrium effects in turbulent flows will arise whenever Lagrangian
time variations in the strain rate Sij(t), as well as corresponding variations of k and ε,
are sufficiently large that the finite time-response of the turbulence prevents the anisotropy
from reaching equilibrium with the strain rate (as assumed by the closure in (1.35)). As
will be seen in Chapter III, such nonequilibrium in the turbulence response can also occur
where rotation effects along the mean-flow streamlines are sufficiently large, and even when
cross-stream spatial inhomogeneities in the strain and rotation rates are sufficiently large.
Since these features commonly arise in practical engineering turbulent flow problems, at
least some of the shortcomings of traditional equilibrium turbulence models based on (1.35)
may be addressed by properly incorporating nonequilibrium effects into the closure scheme.

1.4 Present Study

The present study outlines the formulation of a new computationally-efficient closure
for the anisotropy that provides more accurate predictions of nonlocal and nonequilibrium
effects in turbulent flows than closure approaches based on the equilibrium implicit alge-
braic relation for aij in (1.30). Fundamentally, the new closure attempts to remain closely
connected to the physics underlying the anisotropy evolution in complex turbulent flows,
most notably by developing – and then solving – a physically-accurate nonlocal transport
equation for the anisotropy. In the following the general “philosophy” of the present ap-
proach is outlined, and an attempt is made to place the present study within the field of
current research on turbulence modeling.
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1.4.1 Philosophy of the Present Approach

As noted in Section 1.3, progress in developing turbulence anisotropy closures has been
made over the last several decades by firmly rooting all closure approaches for (1.2)-(1.4)
in the exact transport equation for the anisotropy given by (1.19). Certainly, Reynolds
stress transport models based on (1.28) have long attempted to remain faithful to the exact
anisotropy equation, but it has become increasingly common to connect algebraic closure
approaches with this exact equation as well, as in (1.30). In general, there has been a marked
movement in recent years away from developing new closures on an ad hoc or heuristic basis.
This shift is perhaps most clearly demonstrated by the equilibrium closure given in (1.35)-
(1.37); the general form of this closure was originally proposed by Boussinesq in 1877 from
gradient transport arguments, but has been shown more recently to have a direct relation
to the exact and modeled transport equations for aij in (1.19) and (1.28), respectively.

As a result of the increased emphasis on physical rigor in recent years, it is reasonable
to divide current research on turbulence anisotropy closure modeling into two separate
areas. First, there is the issue of how the anisotropy evolution in turbulent flows can be
understood and represented from a fundamental physical standpoint. As shown in Section
1.2, the exact transport equation for the anisotropy is known, but there is still substantial
uncertainty as to how the pressure-strain correlation, dissipation, and transport terms in
this equation should be represented in complex flows. The quantity of research on models
for the pressure-strain correlation has been overwhelmingly greater than on the dissipation
and transport terms, but still a closed representation that provides accurate predictions for
a wide-range of flows has yet to be developed. In particular, while significant progress has
been made in developing pressure-strain correlation models for homogeneous flows, such as
the representation for Πij in (1.25), inhomogeneous flows remain a challenge for nearly all
approaches.

The second important area of research of anisotropy closures concerns the issue of how,
once a modeled anisotropy transport equation such as that in (1.28) is obtained, this equa-
tion can best be solved. Here “best” refers not just to the physical accuracy of the solution,
but also to its computational complexity. The relatively modest computing resources avail-
able to the typical engineer rules out, in most cases, the use of DNS or LES for practical flow
problems, and even second-order Reynolds stress transport models can be problematic in
terms of the computational resources required (not to mention their sometimes unfavorable
convergence and stability properties). As a result, approaches based on algebraic stress
models and the linear equilibrium closure in (1.35) remain overwhelmingly popular because
they are currently the “best” available solution methods, in terms of both accuracy and
efficiency, for the typical engineer.

Ultimately, the objective of this dissertation is to make fundamental contributions to
both the research areas noted above. An attempt is made to improve upon the existing
anisotropy transport equation in (1.28) by obtaining a new nonlocal representation for the
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rapid pressure-strain correlation Π(r)
ij . Despite the inherently nonlocal nature of Π(r)

ij , which
is given exactly as an integral over the entire flow, previous models for the correlation are
incorrectly expressed in terms of local flow variables only, as in (1.24). This approximation is
based on the assumption of a spatially invariant mean velocity gradient tensor in the integral
for Π(r)

ij , which is not accurate in strongly inhomogeneous flows. The new nonlocal rapid
pressure-strain correlation developed herein reconsiders this fundamental assumption, and
the resulting nonlocal anisotropy transport equation extends the accuracy of even Reynolds
stress transport models without significantly increasing the computational complexity of
existing approaches.

This nonlocal anisotropy transport equation is then solved through a linearization of the
anisotropy dynamics, where the primary nonequilibrium dynamics neglected in obtaining
prior linear and nonlinear eddy viscosity approaches from (1.30) are now retained. The
resulting closure accounts for both nonlocal and nonequilibrium effects on the turbulence
anisotropy, but does so within a relatively simple formulation that allows straightforward
implementation in existing two equation frameworks for solving (1.2)-(1.4). This closure
approach is specifically developed with a view towards maintaining high physical accuracy
within a computationally-efficient framework, and thus addresses the second challenge of
current research on turbulence anisotropy closures noted above.

Finally, as a general principal it may be claimed that reductions in computational com-
plexity without large sacrifices in closure accuracy require new physical insights into the
anisotropy evolution in real turbulent flows. In nearly all closure model approaches, com-
putational complexity is reduced by neglecting certain aspects of the underlying physics
(almost by definition), and this can only be accomplished in a rational manner through
consideration of the most important physical effects on the anisotropy evolution in common
problems. Moreover, when physical accuracy is lost it is important to understand the types
of problems in which the resulting closure is less accurate. Once again, this can only be
achieved by basing all closure assumptions in physical reasoning, where the limits of the
closure become obvious. In the present work, new physical insights into the anisotropy
evolution have been obtained through fundamental DNS studies of the vorticity alignment
in turbulent flows. These studies suggest a substantial nonlocal, quasi-linear aspect to the
anisotropy evolution, and this result has been used to motivate the quasi-linearization of
the anisotropy dynamics noted above.

1.4.2 Organization of this Dissertation

In Chapter II the vorticity alignment in turbulent flows is examined using high-resolution
DNS of homogeneous isotropic turbulence. It is shown that decomposition of the total strain
rate tensor into its local and nonlocal constituents reveals a substantial nonlocal and quasi-
linear aspect to the vorticity dynamics. The anomalous alignment of the vorticity with
the eigenvector of the strain rate tensor corresponding to the intermediate eigenvalue is
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also partially resolved, and it is shown for the first time that the vorticity aligns with the
most extensional eigenvector of the nonlocal background strain rate tensor. An expansion
solution for the background strain rate is also derived in terms of Laplacians of the total
strain rate. Certain aspects of Chapter II can be found in Refs. [33, 34].

Using insights from the vorticity alignment studies in Chapter II, Chapter III outlines
the derivation of a physics-based anisotropy closure for nonlocal and nonequilibrium effects
in turbulent flows. Through reexamination of the homogeneity approximation typically
used to model the rapid pressure-strain correlation Π(r)

ij , a new nonlocal representation

for Π(r)
ij is obtained. The nonlocal formulation is derived by Taylor-expanding the mean

velocity gradient appearing in the exact integral for Π(r)
ij , and closely mirrors the derivation

of the expansion for the background strain rate tensor in Chapter II. The new correlation
is expressed in terms of Laplacians of the mean strain rate tensor and thereby accounts
for nonlocal effects due to spatial variations in the mean strain field. When used in the
exact anisotropy transport equation, this nonlocal rapid pressure-strain correlation gives
a new nonlocal anisotropy transport equation. Motivated by the quasi-linearity suggested
by the alignment studies in Chapter II, higher-order nonlinear terms in this equation are
neglected, resulting in a nonlocal quasi-linear equation for the anisotropy evolution. It
is then shown that this equation permits a relatively simple convolution integral solution
for the anisotropy. In particular, a history-dependent nonlocal effective strain rate tensor
replaces the traditional mean strain rate tensor in the classical local equilibrium closure in
(1.35), resulting in a relatively simple formulation of nonlocal and nonequilibrium effects in
turbulent flows. This new closure is closely related to the nonequilibrium closure outlined
in Ref. [31], but now additionally accounts for nonlocal effects on the anisotropy evolution.
It is further shown that the nonlocal effective strain rate can be written in simple time-local
form for implementation in existing computational frameworks for solving (1.2)-(1.4). In
such frameworks only local instantaneous variables are typically available, and the time-
local formulation of the nonlocal effective strain rate avoids the need to explicitly calculate
the history-dependent convolution integral.

Chapters IV and V then present nonequilibrium and nonlocal tests, respectively, of the
present closure. In Chapter IV the new closure is examined in nonequilibrium homogeneous
flows, for which the nonlocal behavior of the new closure is unimportant. It is shown that
the new closure gives significantly improved results over various prior approaches for a wide
range of nonequilibrium test cases. Six cases are examined in total: (i) impulsively sheared
turbulence, (ii) impulsive axisymmetric contraction, (iii) decaying anisotropic turbulence,
(iv) turbulence that is strained, relaxed, and destrained, (v) periodically sheared turbulence,
and (vi) the interaction of turbulence with a normal shock. For the periodically sheared
case a rigorous parametric frequency analysis of the anisotropy dynamics is conducted, and
the new closure is used to develop analytical scalings for many key quantities. Additional
details of this frequency response analysis can be found in Ref. [32].
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In Chapter V the new closure is tested in fully-developed turbulent channel flow and the
zero pressure gradient turbulent boundary layer. In both flows nonequilibrium effects are
small, and it is shown that by addressing nonlocal effects the present closure approach gives
substantially improved agreement with computational and experimental results compared
to prior closures based on the local equilibrium hypothesis in (1.35). For the fully-developed
channel flow, direct comparisons are made with results from DNS of eight different Reynolds
numbers cases. These channel flow tests allow the nonlocal behavior of the new closure to
be directly examined, since Sij , k, and ε are all taken directly from the DNS databases. It
is shown that the new closure gives good agreement with DNS results down to y+ ≈ 16, and
a blended model is formulated to further allow integration to y+ = 0. This blended model
is then applied within a full computational fluid dynamics (CFD) code for the zero pressure
gradient boundary layer, demonstrating not only the practical utility of the present closure
for computational simulations of real turbulent flow problems, but also the accuracy of the
closure in predicting nonlocal effects on the anisotropy.

Finally, conclusions and an outline of future research are provided in Chapter VI. Ap-
pendix 6.2 addresses nonlinear effects in turbulent flows through the formulation of a non-
linear representation for Cµ appearing in the standard definition of the eddy viscosity in
(1.36). When implemented in the present closure approach, the nonlinear Cµ gives a closure
that accounts for nonlinear, nonlocal, and nonequilibrium effects on the anisotropy.

19



10
0

10
1

10
2

10
−2

10
−1

10
0

y+

−a12

SKE

RKE

RKE fµ

DNS

Figure 1.1: Variation of anisotropy −a12 with y+ in turbulent channel flow, showing good
agreement of linear form from equilibrium k-ε models (SKE and RKE) in (1.38)
with DNS results of Iwamoto et al. [39] for y+ > 60. Better agreement is
obtained with DNS results using the wall damping function fµ in (1.42).
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Figure 1.2: Variation of anisotropy component −a12 with Sk/ε in turbulent channel flow,
showing good agreement of linear form from equilibrium k-ε models (SKE and
RKE) in (1.38) with DNS results of Iwamoto et al. [39] for Sk/ε values outside
the near-wall region. Once again, better agreement with DNS results is obtained
using fµ in (1.42).
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Figure 1.3: Evolution of turbulence kinetic energy k(t) for initially isotropic impulsively
sheared homogeneous turbulence with Sk0/ε0 = 3.4, showing failure of equilib-
rium k-ε (SKE and RKE) models to predict initial nonequilibrium response in
k(t) from LES results of Bardina et al. [3]. Results from the LRR model [51]
from (1.28) with the constants in (1.26) are also shown.
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Figure 1.4: Evolution of shear anisotropy a12 for initially-isotropic impulsively-sheared ho-
mogeneous turbulence with Sk0/ε0 = 3.4, showing results from k-ε (SKE and
RKE) models and the LRR model [51] given by (1.28) with the constants in
(1.26).
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Figure 1.5: Evolution of anisotropy a12 for initially-isotropic periodically-sheared homoge-
neous turbulence with Sk0/ε0 = 3.3 for ω/S = 0.5 (a), ω/S = 1.0 (b), and
ω/S = 10 (c). Results from the SKE and RKE models fail to predict frequency
dependent phase shift and amplitude seen in the DNS by Yu and Girimaji [115].
Results from the LRR model [51] given by (1.28) with the constants in (1.26)
are also shown.
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CHAPTER II

Vorticity Alignment Physics and Relation to Turbulence

Anisotropy

There has been little prior work on the connection between vorticity alignment in tur-
bulent flows and the evolution of the Reynolds stress anisotropy aij , despite substantial re-
search on each area individually. This is due in large part to the fact that vorticity alignment
has primarily been studied in homogeneous isotropic turbulence, and similar fundamental
studies of anisotropic flows have been relatively uncommon. However, a formal relationship
between the vorticity and the anisotropy can be established via the Biot-Savart integral for
the fluctuating velocity u′i(x, t), namely

u′i(x, t) =
1
4π

∫

R̂
ω′(x̂, t)× (x− x̂)

|x− x̂|3 dx̂ , (2.1)

where ω′ ≡ ∇ × u′ is the fluctuating vorticity and the integration is carried out over
the entire spatial domain, denoted by R̂. From (2.1), the single-point velocity fluctuation
correlation can be written exactly in terms of the two-point vorticity fluctuation correlation
via a double Biot-Savart integral as

u′iu
′
j(x, t) =

1
4π

∫

R̂

1
4π

∫

Ř
εiklεjmn ω′k(x̌, t)ω′m(x̂, t)

(xl − x̌l)
|x− x̌|3

(xn − x̂n)
|x− x̂|3 dx̌ dx̂ , (2.2)

where we have used the definition ω′×x ≡ εikl ω
′
k xl and εikl is the cyclic permutation tensor.

It is apparent from (2.2) that the two-point vorticity fluctuation correlation determines the
Reynolds stresses, and thus the anisotropy aij . The vorticity fluctuation correlation, being
a small-scale quantity, is in turn fundamentally determined by the relative alignment of
the vorticity field ωi(x, t) at relatively closely-spaced points, and thus a rigorous connection
between vorticity alignment and the anisotropy is established.

In the following, fundamental studies of the vorticity alignment in homogeneous isotropic
turbulence are used to gain insights into the physics underlying the anisotropy evolution
in turbulent flows. These studies also provide new insights into the mechanisms by which
the vorticity aligns with the intermediate strain rate eigenvector. This has generally been
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regarded as a somewhat surprising result, and reflects fundamental physical aspects of the
structure and dynamics of turbulent flows. Through decomposition of the total strain
rate tensor into its local and nonlocal constituents, this “anomalous” alignment is partly
resolved and it is shown that there is a substantial nonlocal, quasi-linear aspect to the
vorticity dynamics. This last result provides physical motivation for the new anisotropy
closure for nonlocal and nonequilibrium effects in turbulent flows that will be developed in
Chapter III.

2.1 Prior Approaches for Understanding Vorticity Dynamics

The alignment of the vorticity vector ω ≡ ∇ × u with the eigenvectors of the strain
rate tensor Sij in turbulent flows has been a subject of considerable interest over the past
two decades. The vorticity alignment is ultimately responsible for the transfer of kinetic
energy between scales in three-dimensional incompressible turbulent flows, as well as for
the nonlinearity in the dynamics of the underlying vorticity field [4, 9, 58, 59, 103]. The
evolution of the vorticity is given by the transport equation [78]

Dωi

Dt
= Sijωj + ν∇2ωi , (2.3)

where the strain rate tensor Sij is defined as the symmetric part of the velocity gradient
tensor, namely

Sij ≡ 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (2.4)

On the right side of (2.3) the magnitude of the nonlinear stretching term

|Sijωj | ≡ ω[s2
i (ei · eω)2]1/2 (2.5)

depends on the strain rate eigenvalues si and the vorticity magnitude ω ≡ (ωiωi)
1/2, and

also on the alignment cosines (ei · eω) between the vorticity unit vector eω and the strain
rate eigenvectors ei. For perfectly aligned vectors (ei · eω) = 1, whereas for completely
misaligned – or perpendicular – vectors (ei · eω) = 0. The strain rate eigenvalues si can be
ordered as s1 ≥ s2 ≥ s3 so that incompressibility (s1 + s2 + s3 ≡ 0) requires s1 ≥ 0 and s3 ≤
0. The positivity of s1 and the negativity of s3 correspond, respectively, to extensional and
compressional straining along the e1 and e3 directions. While the intermediate eigenvalue
s2 is on average weakly positive in turbulent flows, the instantaneous s2 can take on large
positive or negative values [2, 101, 103] bounded only by the s1 and s3 values. The alignment
between the vorticity and the strain rate eigenvectors similarly determines the production
rate

ωiSijωj ≡ ω2si (ei · eω)2 , (2.6)
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for the enstrophy 1
2 (ω · ω). The three alignment cosines (ei · eω) thus play an essential role

in the structure and dynamics of turbulent flows.
Despite its importance, the mechanism by which the vorticity aligns with the strain rate

eigenvectors ei is still not well understood. In particular, the maximality and positivity of
s1 might suggest that the vorticity in (2.3) would show preferred alignment with the most
extensional eigenvector e1. However, since Sij on the right side of (2.3) is coupled back
to ωi, the resulting nonlinearity complicates any such simple alignment. Indeed, DNS (e.g.
[2, 70, 92]) and experimental studies (e.g. [8, 68, 101, 104, 116]) of the fine-scale structure of
turbulence have revealed a somewhat unexpected preferred alignment with the intermediate
eigenvector e2 of the strain rate tensor.

This can be seen, for example, in Figure 2.1, where distributions of the three alignment
cosines |ei · eω| are shown from a recent highly-resolved, three-dimensional, 20483 DNS
generated by Schumacher et al. [90, 91] of statistically stationary, forced, homogeneous,
isotropic turbulence at Taylor-scale Reynolds number Reλ = 107. The DNS was done using
a pseudospectral method with a spectral resolution that exceeds the standard value by a
factor of eight. As a result the highest wavenumber corresponds to kmaxηK = 10, and the
Kolmogorov lengthscale ηK ≡ (ν3/ε)1/4 is resolved with three grid spacings. Figure 2.2
gives a representative sample of the DNS data, where the instantaneous shear component
S12(x) is shown in a typical two-dimensional intersection through the 20483 cube. Using
these simulations, the resulting alignment distributions in Figure 2.1 agree with those from
lower-resolution DNS studies as well as from laboratory measurements [68, 101, 104]. In
particular, the vorticity tends to point away from the most compressive eigenvector e3,
namely |e3 · eω| → 0, and there is essentially no tendency for any preferred alignment
relative to the most extensional strain rate eigenvector e1, since P (|e1 · eω|) ≈ 1. However,
the vorticity shows a strong tendency toward alignment with the intermediate strain rate
eigenvector e2, namely |e2 · eω| → 1.

There have been numerous studies seeking to understand the reasons for this result, and
various theoretical approaches have been proposed to explain the failure of the vorticity to
align with the most extensional strain rate eigenvector. Previous explanations have tended
to focus on the vorticity-strain coupling in the evolution equation for the strain rate tensor,
namely [70, 103]

DSij

Dt
= −SikSkj − 1

4
(ωiωj − ωkωkδij)− 1

ρ

∂2p

∂xi∂xj
+ ν∇2Sij . (2.7)

The nonlinear coupling between the strain rate and the vorticity is apparent in (2.3) and
(2.7), where the nonlocality of the vorticity and strain rate co-evolution arises from the
pressure Hessian, which can be written in terms of isotropic and anisotropic parts as [70, 72]

∂2p

∂xi∂xj
=

ωlωl − 2SlnSln

6
δij +

(
∂2p

∂xi∂xj

)

aniso

, (2.8)
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where
(
∂2p/∂xi∂xj

)
aniso

is the anisotropic contribution. The isotropic part is clearly ex-
pressed in terms of local variables, while the anisotropic part accounts for the remaining
nonlocal contribution to the pressure Hessian in the flow.

Some progress has been made in understanding the alignments in Figure 2.1 via the
restricted Euler (RE) equations, which are obtained by neglecting the anisotropic (nonlocal)
contribution to the pressure Hessian in (2.8), and writing (2.3) and (2.7) in inviscid principal
strain coordinates (e.g. [10, 70, 105]). While nonlocal effects are neglected entirely in the
RE equations, these equations result in alignment of the vorticity with e2, as shown by the
maximality of ω2 in Figure 2.3. However, it is also clear from the evolution of ωi and si in
Figures 2.3 and 2.4, respectively, that there is a finite-time singularity in the RE dynamics
due to the neglect [12] of viscous and nonlocal effects in the RE equations. While various
approaches have been outlined for modeling these additional terms (e.g. Girimaji and Pope
[29], Martin et al. [64], Naso and Pumir [69], and Chevillard and Meneveau [12]), the
analysis of vorticity alignment in real turbulent flows using (2.7) is generally complicated
by the challenge of addressing nonlocal effects due to the anisotropic part of the pressure-
Hessian in (2.8). This is true even in inviscid flows for which the viscous diffusion terms
in (2.3) and (2.7) can be neglected. As a result, a complete picture of vorticity alignment
that clearly accounts for nonlinear and nonlocal contributions to the coupled vorticity-strain
dynamics – without resorting to substantial simplifications of (2.7) and (2.8) or models for
the unclosed terms – has remained largely elusive.

2.2 Present Study of Local and Nonlocal Effects on Vorticity Alignment

In the following, the anomalous alignment of the vorticity in Figure 2.1 is examined
through decomposition of the total strain rate tensor into its local and nonlocal constituents.
It is shown that vorticity does tend toward alignment with the most extensional eigenvector
of the nonlocal (background) strain, namely the strain field induced in the immediate region
around any vortical structure by the surrounding vorticity outside this region. The anoma-
lous alignment occurs with the eigenvectors of the combined strain rate in (2.4), namely the
sum of this nonlocal background strain and the local strain induced in the region by the
vorticity within it.

In contrast to analyses based on the RE equations, here we forego the use of (2.7) in
representing the strain rate appearing in (2.3) and instead use an integral representation for
the strain rate. This integral relation can then be used to gain insights into the effects of
nonlocality and nonlinearity on the vorticity alignment. Compared to working with (2.7),
this approach has the advantage of addressing nonlocal effects on the coupled vorticity-strain
dynamics directly, without the need to neglect or model the anisotropic pressure-Hessian
term in (2.8).

To obtain an integral relation for Sij we first note that the velocity u at any point x

induced by the vorticity field ω(x) is given by the Biot-Savart integral, which is written in
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index notation as
ui(x) =

1
4π

∫

R
εilkωl(x̂)

(xk − x̂k)
|x− x̂|3 dx̂ , (2.9)

where the integration is carried out over the entire spatial domain, denoted by R. The
derivative with respect to xj then gives the velocity gradient tensor

∂

∂xj
ui(x) =

1
4π

∫

R
εilkωl(x̂)

[
δkj

r3
− 3

rkrj

r5

]
dx̂ , (2.10)

where r ≡ |x− x̂| and rm ≡ xm − x̂m. From (2.4) and (2.10), Sij(x) can be expressed [71]
as an integral over the vorticity field as

Sij(x) =
3
8π

∫

R
(εiklrj + riεjkl)

rk

r5
ωl(x̂)dx̂ . (2.11)

Substituting (2.11) in (2.3) then gives a direct nonlocal integro-differential equation for the
vorticity evolution as

Dωi

Dt
=

3
8π

∫

R
(εiklrj + riεjkl)

rk

r5
[ωj(x)ωl(x̂)] dx̂ + ν∇2ωi , (2.12)

which depends only on the vorticity field itself.

2.2.1 Background Strain Rate Decomposition

In (2.11) and (2.12) the local and nonlocal contributions to the strain rate and vorticity
dynamics can be understood by separating the integration domain into a local spherical
region of radius r ≤ R centered on x, and a nonlocal region that accounts for the rest of
the domain [92]. The strain rate in (2.11) then is the sum

Sij(x) = SR
ij(x) + SB

ij (x) (2.13)

of the local strain rate SR
ij(x) induced at x by the vorticity within R, and the nonlocal

(background) strain rate SB
ij (x) induced at x by all the vorticity outside R. From (2.13),

the strain rate tensor in (2.11) thus becomes

Sij(x) =
3
8π

∫

r≤R
[· · · ] dx̂

︸ ︷︷ ︸
+

3
8π

∫

r>R
[· · · ] dx̂

︸ ︷︷ ︸
, (2.14)

≡ SR
ij(x) ≡ SB

ij (x)

where [· · · ] denotes the integrand in (2.11), and the nonlocal background strain is then
given by

SB
ij (x) = Sij(x)− SR

ij(x) . (2.15)
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The total strain tensor Sij(x) in (2.15) is readily evaluated via (2.4) from derivatives of
the velocity field at point x. Thus all that is required to obtain the background strain rate
tensor SB

ij (x) via (2.15) is an evaluation of the local strain integral SR
ij(x) in (2.14) produced

by the vorticity field ωl(x̂) within r ≤ R.
As a practical matter, an appropriate value for R is required to calculate SR

ij(x) from
(2.14) and thus obtain SB

ij (x). From a physical standpoint, the background strain field
SB

ij (x) in the vicinity of any local vortical structure in the turbulence is that induced by
all the other vortical structures. Thus, the proper physical value for R used to obtain
SB

ij (x) should exclude from (2.11) essentially all the vorticity associated with any local
vortical structure. Prior studies (e.g. [41, 45]) have shown that the characteristic radius
of intense vortical structures in turbulence is in the range r/ηK ≈ 4 − 10, where ηK is
the Kolmogorov length scale. This is consistent with the two-point vorticity correlation
from the present DNS of homogeneous isotropic turbulence, which is found to decrease to
20% of its maximum value at r ≈ 12ηK as shown in Figure 2.6. This gives a physically
appropriate cutoff radius, since beyond this the vorticity becomes essentially uncorrelated
with itself. Thus, R = 12ηK as used herein excludes essentially all the local vorticity for
most structures, and thereby allows the self-induced strain field in the vicinity of typical
vortical structures to be separated from the background strain field in which the structures
reside.

With this choice of R, the local strain rate SR
ij(x) in (2.15) can then be obtained by

directly integrating (2.11) over the domain R centered on x. As shown schematically in
Figure 2.5, at any point x in the 20483 cubic simulation domain, a smaller cubic subdomain
with side length 2R is taken to define the local region around x. The local strain rate SR

ij(x)
is obtained by numerically integrating (2.11) over this subdomain. We then determine the
nonlocal strain rate from (2.15) and examine the alignment of the vorticity ω(x) with each
of these strain rates to understand how the alignment in Figure 2.1 arises.

As a test of the analysis procedure, Figure 2.7 shows that for an axisymmetric Burgers
vortex with vorticity field given by

ω(x) = ωz(r)ẑ =
α

π

Γ
λ2

ν

exp
(−αη2

)
ẑ , (2.16)

the local straining induced by the vortex is increasingly removed as the cutoff radius R

increases, resulting in convergence to the expected result SB
12(x) = 0. In (2.16), Γ is the

circulation, λν is the viscous lengthscale that characterizes the diameter of the vortex,
η ≡ r/λν is the radial similarity coordinate, and the constant α reflects the chosen definition
of λν . The Burgers vortex test case will be examined in more detail in Section 2.4, but here
Figure 2.7 suffices to demonstrate the accuracy of the direct procedure for separating the
local and nonlocal strain rates.
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2.2.2 Vorticity Alignment in Turbulent Flows

For the high resolution DNS of Schumacher et al. [90, 91], Figures 2.8 and 2.9 show an
example of the resulting decomposition of the shear strain rate field S12(x) (shown in Figure
2.8) into its background and local fields, SB

12(x) (Figure 2.9(a)) and SR
12(x) (Figure 2.9(b)).

Similar local-nonlocal decompositions are obtained for the other strain rate components, and
the eigenvalues and eigenvectors of the resulting background and local strain rate tensor
fields are then computed. At every point x, the alignment cosines |ei · eω| of the vorticity
with the background and local strain rate eigenvectors, denoted eB

i and eR
i respectively,

can then be evaluated.
The resulting vorticity alignment distributions P

(|eB
i · eω|

)
and P

(|eR
i · eω|

)
are shown,

respectively, in Figures 2.10 and 2.11. From the background strain alignments in Figure
2.10 it is apparent that the vorticity is preferentially aligned with the most extensional
background strain rate eigenvector eB

1 , namely |eB
1 · eω| → 1. There is essentially no

preferred alignment of the vorticity relative to the intermediate background eigenvector eB
2 ,

since P
(|eB

2 · eω|
) ≈ 1, while the vorticity tends to point preferentially away from the most

compressive background eigenvector eB
3 , namely |eB

3 ·eω| → 0. Note that Figure 2.12 shows
the background strain alignment as a function of R, and it is clear that R = 12ηK as used
herein is sufficient to fully reveal the alignment of the vorticity with the background strain
rate tensor. As shown in Figure 2.12, larger values of R result in only small changes in the
observed distributions.

The alignments in Figure 2.10 with the background strain rate are precisely as would
be expected when the strain rate evolution is decoupled from that of the vorticity, as is
essentially the case for the background strain. From (2.3) with (2.13), the inviscid dynamics
of the vorticity satisfies

Dωi

Dt
= SB

ij ωj + SR
ijωj . (2.17)

By definition, the background strain rate SB
ij in (2.17) is independent of the vorticity at x,

and thus its effect on the dynamics of the vorticity ωi(x) is essentially linear. Since sB
1 ≥ 0

and sB
3 ≤ 0, and since sB

2 ≤ sB
1 , the effect is to cause ω to rotate toward alignment with

the most extensional eigenvector eB
1 of SB

ij . The fact that such alignment of the vorticity
is seen in Figure 2.10 suggests that the quasi-linear dynamics from the first term on the
right in (2.17) plays at least a significant role in the overall evolution of the vorticity field in
turbulent flows. In the terminology of She et al. [92], this would be referred to as kinematic
nonlocality, as distinguished from the dynamic locality that was the focus of their study.

From the vorticity alignments in Figure 2.11 with the local strain rate field induced in
R by the local vorticity, ω shows substantial and essentially equal preference for pointing
largely perpendicular to the most extensional and compressional eigenvectors eR

1 and eR
3 of

the local strain rate SR
ij , namely |eR

1 · eω| → 0 and |eR
3 · eω| → 0. This is consistent with

the fact that much of the vorticity in turbulent flows concentrates into relatively compact
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line-like and sheet-like structures formed by locally axisymmetric and planar background
strain rate fields [8, 40]. In the former case, the axisymmetric Burgers vortex is often used
as an idealized representation of such structures, while in the latter case the planar Burgers
vortex sheet provides a similar idealized representation. In both cases, the two-dimensional
local strain field induced by the vortical structure has large extensional and compressional
eigenvalues with eigenvectors that are necessarily perpendicular to the vorticity, due to the
geometry of the structures. The remaining eigenvalue is zero for perfectly two-dimensional
structures, and will be nonzero only due to small departures from strict two-dimensionality
of the structures. Its small magnitude is thus nearly always between the other two eigenval-
ues, and will therefore be the intermediate eigenvalue. Its eigenvector must necessarily be
perpendicular to the other two, and so will necessarily be closely aligned with the vorticity
itself.

This is precisely the alignment seen with eR
2 in Figure 2.11, where the vorticity points

strongly along the direction of the intermediate eigenvector, namely |eR
2 · eω| → 1. Note

that this ‘preferred’ alignment of the vorticity with the intermediate local strain eigenvector
in Figure 2.11 is not a result of the nonlinear dynamics from the second term on the right
side in (2.17), but rather is a simple geometric consequence of the largely sheet-like and
line-like structures into which the vorticity is formed [40].

The alignments in Figures 2.10 and 2.11 allow the relative contributions from the two
terms on the right side of the inviscid vorticity dynamics in (2.17) to be understood. In
particular, Figure 2.13 shows the distribution of the ratio of background and local vortex
stretching rates, which is given from (2.5) as

|SB
ij ωj |

|SR
ijωj |

≡


 (sB

i )2
(
eB

i · eω

)2

(sR
j )2

(
eR

j · eω

)2




1/2

(2.18)

It is apparent that in much of the flow this stretching ratio exceeds one, meaning that the
linear stretching dynamics produced by the background (nonlocal) strain field SB

ij in (2.17)
exceeds the nonlinear stretching dynamics from the local strain field SR

ij . Thus, despite the
overall nonlinear dynamics governing the vorticity evolution in (2.3), a substantial part of
the underlying dynamics is linear and nonlocal.

This is consistent with the alignment in Figure 2.11 of the vorticity with the intermediate
eigenvector of the local strain rate SR

ij , for which the associated eigenvalue sR
2 has the small-

est magnitude among the three local strain eigenvalues, and thus the associated stretching
is not necessarily large. By contrast, Figure 2.10 shows that the vorticity aligns with the
most extensional eigenvector of the background strain rate SB

ij , and thus is stretched by
the largest of its three eigenvalues. As a result, even when |SB

ij | is smaller than |SR
ij |, the

background stretching may be larger than the local stretching. This is a consequence of the
fact that in (2.17) vortex stretching by the local strain rate is generally not favored from
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the standpoint of geometrical alignment. It is remarkable that the linear stretching dynam-
ics from this background (nonlocal) strain field is comparable to the nonlinear stretching
dynamics from the local strain field.

Further insights into the background and local dynamics may be gained by conditioning
the vortex stretching ratio on the vorticity magnitude ω, as shown in Figure 2.14. While
there is a tendency towards smaller vortex stretching ratios for large vorticity magnitudes
in Figure 2.14, the observed dependence is relatively weak. This is due to the competi-
tion between increased local strain rate magnitude (which favors local stretching) and the
correspondence with nearly two-dimensional intense vortical structures (which favors back-
ground stretching) for large values of ω. Unraveling the contributions of these two effects
to the distribution in Figure 2.14 is an important direction for future research.

2.3 Exact Series Expansion for Background Strain Rate

In the preceding sections, the strain rate was decomposed into its local and nonlocal
constituents through direct numerical integration of (2.11) over a cubic subdomain of length
2R, as shown in Figure 2.5. However, such an integration is generally impractical if the
background strain tensor is ever to be connected to existing computational frameworks for
solving (1.2)-(1.4). In such frameworks, only local instantaneous variables at location x and
time t are typically available. As a result of this restriction, a systematic expansion of the
total strain rate field Sij(x) is derived in the following, allowing the background strain rate
field SB

ij (x) to be extracted in any flow. This approach is based on an expansion of the
vorticity over a local spherical region of radius R centered at any point x. This leads to an
exact operator that provides direct access to the background strain rate field. The operator
is tested for the case of a Burgers vortex, where it is shown that the local self-induced strain
field produced by the vortex can be successfully removed, and the underlying background
strain field can be increasingly recovered as higher order terms are retained in the expansion.
The anomalous alignment of the vorticity with respect to the eigenvectors of the total
strain field is shown in that case to follow from a local switching of the principal strain
axes when the vortex becomes sufficiently strong relative to the background strain. Finally,
the operator is applied to obtain insights into the vorticity alignment with the background
strain in DNS of homogeneous isotropic turbulence. The resulting alignment distributions
are shown to be consistent with those obtained from the full numerical integration procedure
outlined in the previous section.
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2.3.1 Evaluating the Background Strain Rate Tensor

Considering the strain integrals in (2.11) and (2.14), the vorticity field within the sphere
of radius R can be represented by its Taylor expansion about the center point x as

ωl(x̂)|r≤R = ωl(x) + (x̂m − xm)
∂ωl

∂xm

∣∣∣∣
x

+
1
2

(x̂m − xm) (x̂n − xn)
∂2ωl

∂xm∂xn

∣∣∣∣
x

+ · · · . (2.19)

Recalling that xm − x̂m ≡ rm and using al, blm, clmn, . . . to abbreviate the vorticity and its
derivatives at x, we can write (2.19) as

ωl(x̂)|r≤R ≡ al − rmblm +
1
2
rmrnclmn − · · · . (2.20)

Substituting (2.20) into the SR
ij integral in (2.14) and changing the integration variable to

r = x− x̂, the strain tensor at x produced by the vorticity in R is

SR
ij(x) =

3
8π

∫

r≤R
(εiklrj + riεjkl)

rk

r5

[
al − rmblm +

rmrn

2
clmn − · · ·

]
dr . (2.21)

This integral can be solved in spherical coordinates centered on x, with r1 = r sin θ cosφ,
r2 = r sin θ sinφ, and r3 = r cos θ for r ∈ [0, R], θ ∈ [0, π], and φ ∈ [0, 2π). To integrate
(2.21) note that

∫

r≤R

rkrj

r5
dr =

4π

3
δjk

∫ R

0

1
r
dr , (2.22a)

∫

r≤R

rkrjrm

r5
dr = 0 , (2.22b)

∫

r≤R

rkrjrmrn

r5
dr =

2π

15
R2 (δmnδjk + δmjδkn + δmkδjn) . (2.22c)

The resulting local strain rate tensor at x is then

SR
ij(x) =

R2

40
clmn (εijlδmn + εjilδmn + εinlδmj + εjnlδmi + εimlδnj + εjmlδni) + O(R4) ,

(2.23)
where the contribution from the al term in (2.21) is zero since εijl = −εjil. For the same
reason the first two terms in (2.23) also cancel, giving

SR
ij(x) =

R2

40
clmn (εinlδmj + εjnlδmi + εimlδnj + εjmlδni) + O(R4) . (2.24)

Recalling that clmn = clnm ≡ ∂2ωl/∂xm∂xn, and contracting with the δ and ε in (2.24),
gives

SR
ij(x) =

R2

20

[
∂

∂xj

(
εiml

∂ωl

∂xm

)
+

∂

∂xi

(
εjml

∂ωl

∂xm

)]
+ O(R4) . (2.25)
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Note that εiml ∂ωl/∂xm ≡ (∇× ω)i and

∇× ω = ∇× (∇× u) = ∇ (∇ · u)−∇2u , (2.26)

so for an incompressible flow (∇ · u ≡ 0) the local strain rate tensor at x becomes

SR
ij(x) = −R2

20
∇2

(
∂ui

∂xj
+

∂uj

∂xi

)
+ O(R4) . (2.27)

From (2.15), with SR
ij from (2.27) we obtain the background strain tensor as

SB
ij (x) = Sij(x) +

R2

10
∇2Sij(x) + O(R4) . (2.28)

The remaining terms in (2.28) result from the higher-order terms in (2.20). These terms
are readily obtained by rewriting (2.21) as a series expansion for the local strain rate SR

ij ,
namely

SR
ij(x) =

∞∑

n=0

3(−1)n

8πn!

[
∂nωl

∂xm∂xp . . .

] ∫

r≤R

(
εikl

rj

r
+ εjkl

ri

r

) rk

r
rn−3

[rmrp . . .

rn

]
dr . (2.29)

Writing the differential in spherical coordinates as dr = r2drdΩ, where dΩ = sin θdφdθ, we
obtain

SR
ij(x) =

∞∑

n=0

3(−1)n

8πn!

[
∂nωl

∂xm∂xp . . .

] ∫ R

0
rn−1dr

∫

Ω

(
εikl

rj

r
+ εjkl

ri

r

) [rkrmrp . . .

rn+1

]
dΩ .

(2.30)
In order to solve the integrals in (2.29) we note the general integral relations

∫

Ω

rmrprqrs . . .

rn
dΩ = 0 , n = odd (2.31a)

∫

Ω

rmrprqrs . . .

rn
dΩ =

4π

(n + 1)!!
[δmpδqs . . . + δmqδrs . . . + · · · ] , n = even (2.31b)

where the terms in the brackets on the right-hand side of (2.31b) represent all possible
combinations of delta functions for the indices (m, p, q, s, . . .). For any n, there are (n− 1)!!
delta function terms, and each term consists of n/2 delta functions. The double factorial !!
in (2.31b) is defined as

n!! ≡ n(n− 2)(n− 4) · · · , (2.32)

with the definitions 0!! ≡ 1 and (−1)!! ≡ 1.
Using (2.31a) it can be shown that all odd order terms in (2.30) are zero. Considering
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the n = 0 term in (2.30), the integral over dΩ is solved using (2.31) as

∫

Ω

(
εikl

rjrk

r2
+ εjkl

rirk

r2

)
dΩ =

4π

3
(εijl + εjil) . (2.33)

However, εijl = −εjil and thus the entire n = 0 term in (2.30) is zero. With this result we
obtain nonzero terms only for n ≥ 2, and the integral over dr in (2.30) is solved as

∫ R

0
rn−1dr =

Rn

n
. (2.34)

We can then write (2.30) as

SR
ij(x) =

∞∑

n=2,even

3Rn

8πn! · n
[

∂nωl

∂xm∂xp . . .

] ∫

Ω

(
εikl

rj

r
+ εjkl

ri

r

) [rkrmrp . . .

rn+1

]
dΩ , (2.35)

where once again we note that only the n = even terms are nonzero, and since n = even

we have (−1)n = 1 always. For the remaining integrals over dΩ, from (2.31b) we obtain

εikl

∫

Ω

rjrkrmrp . . .

rn+2
dΩ =

4π

(n + 3)!!
εikl [δjkδmp . . . + δjmδkp . . . + · · · ] , (2.36)

where there are now (n+1)!! terms in the square brackets. Note however, that the terms in-
volving δjk in (2.36) yield terms involving εijl when contracted with εikl. These terms exactly
cancel the corresponding εjil terms from the solution to the integral of [rirkrm . . .]/rn+2,
similar to the reasoning used to obtain the result in (2.33). Thus, the (n − 1)!! terms in-
volving δjk in (2.36) can all be neglected, leaving [(n + 1)!!− (n− 1)!!] terms in the square
brackets on the right-hand side. When contracted with the derivatives of ωl in (2.35), it
can be shown that all of the remaining terms in (2.36) are given by

4πεikl

(n + 3)!!
[δjmδkpδqs . . .]

[
∂nωl

∂xm∂xp∂xq∂xs . . .

]
=

4π

(n + 3)!!
(∇2)n/2−1 ∂

∂xj

[
εipl

∂ωl

∂xp

]
. (2.37)

Note that there are [(n + 1)!!− (n− 1)!!] remaining terms in (2.36), and all yield the result
in (2.37) due to the invariance of the left-hand side of (2.37) to the order of (m,n, p, q . . .).

Substituting (2.37) into (2.35) then gives

SR
ij(x) =

∞∑

n=2,even

3Rn [(n + 1)!!− (n− 1)!!]
2n!(n + 3)!!n

(∇2
)n/2−1

[
∂

∂xj

(
εipl

∂ωl

∂xp

)
+

∂

∂xi

(
εjpl

∂ωl

∂xp

)]
.

(2.38)
However, we note that by definition

εipl
∂ωl

∂xp
≡ (∇× ω)i , (2.39)
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and from the kinematic relation in (2.26) we obtain

εipl
∂ωl

∂xp
= −∇2ui (2.40)

for incompressible flows, where ∇ · u = 0. Substitution of (2.40) into (2.38) then yields

SR
ij(x) = −

∞∑

n=2,even

3 Rn [(n + 1)!!− (n− 1)!!]
2n!(n + 3)!!n

(∇2
)n/2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (2.41)

From the definition of the strain rate Sij in (2.4) we can write

SR
ij(x) = −

∞∑

n=2,even

3Rn [(n + 1)!!− (n− 1)!!]
n!(n + 3)!!n

(∇2
)n/2

Sij , (2.42)

and simplification of the double factorial terms yields

SR
ij(x) = −

∞∑

n=2,even

3Rn

n!(n + 3)(n + 1)
(∇2

)n/2
Sij . (2.43)

From (2.15) we then obtain the background strain rate SB
ij (x) as

SB
ij (x) =

∞∑

n=0,even

3Rn

n!(n + 3)(n + 1)
(∇2

)n/2
Sij , (2.44)

where we note that the n = 0 term in (2.44) yields simply Sij . In order to obtain the
final result, we can change the variable n to (2n − 2) and carry out the summation over
n = 1, 2, 3, . . ., which finally gives

SB
ij (x) =

∞∑

n=1

3R2n−2

(2n− 2)!(4n2 − 1)
(∇2

)n−1
Sij . (2.45)

The final result in (2.45) is an operator that extracts the nonlocal background strain rate
tensor SB

ij at any point x from the total strain rate tensor Sij . For the Taylor expansion in
(2.19), this operator involves Laplacians of the total strain rate field Sij(x).

2.3.2 Practical Implementation

When using (2.45) to examine the local alignment of any concentrated vortical structure
with the principal axes of the background strain rate field SB

ij (x) in which it resides, the
radius R must be taken sufficiently large that the spherical region |x′ − x| ≤ R encloses
essentially all the vorticity associated with the structure, so that its local induced strain
rate field is fully accounted for. Generally, as R increases it is necessary in (2.45) to
retain terms of increasingly higher order n to maintain a sufficient representation of ω(x′)

35



over the spherical region. Thus for any vortical structure having a characteristic gradient
lengthscale λν , it can be expected that R must be of the order of λν , and n will then need to
be sufficiently large to adequately represent the vorticity field within this sphere. However,
since the local gradient lengthscale in the vorticity field in a turbulent flow is determined
by an equilibrium between strain and diffusion, the vorticity field over the lengthscale λν

will be relatively smooth, and thus relatively low values of n may suffice to give a usable
representation of ω(x′). This is examined in the following section.

2.4 Background Strain Expansion Test Case: Burgers Vortex

The equilibrium Burgers vortex [8, 9, 25, 58] is formed from vorticity in a fluid with
viscosity ν by a spatially uniform, irrotational, axisymmetric background strain rate field
SB

ij that has a single extensional principal strain rate Szz directed along the z axis, as
shown in Fig. 2.15. This simple flow, often regarded as an idealized model of the most
concentrated vortical structures in turbulent flows, provides a test case for the result in
(2.45). The combined strain rate field Sij(x) produced by the vortex and the background
strain flow should, when applied in (2.45), produce the underlying background strain field
(SB

rr, S
B
θθ, S

B
zz) = (−1

2 ,−1
2 , 1)Szz at all x when R → ∞ and all orders n are retained. For

finite R and n, the resulting SB
ij (x) will reflect the convergence properties of (2.45).

2.4.1 Strain Rate Tensor

The equilibrium Burgers vortex aligned with the extensional principal axis of the back-
ground strain rate field has a vorticity field given by (2.16). Following [8], λν is taken as
the full width of the vortical structure at which ωz has decreased to one-fifth of its peak
value, for which α = 4 ln 5. When diffusion of the vorticity is in equilibrium [8] with the
background strain, then

λν =
√

8α

(
ν

Szz

)1/2

. (2.46)

The combined velocity field u(x) produced by the vortex and the irrotational background
strain is given by the cylindrical components

ur(r, θ, z) = −Szz

2
r , (2.47a)

uθ(r, θ, z) =
Γ

2πλν

1
η

[
1− exp

(−αη2
)]

, (2.47b)

uz(r, θ, z) = Szzz . (2.47c)
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The combined strain rate tensor for such a Burgers vortex is thus

Sij(x) =



−Szz/2 Sv

rθ 0
Sv

rθ −Szz/2 0
0 0 Szz


 , (2.48)

where Sv
rθ is the shear strain rate induced by the vortex, given by

Sv
rθ (x) =

Γ
πλ2

ν

[(
α +

1
η2

)
exp

(−αη2
)− 1

η2

]
. (2.49)

From (2.48), Sij(x) has one extensional principal strain rate equal to Szz along the ẑ axis,
with the remaining two principal strain axes lying in the r-θ plane and corresponding to
the principal strain rates

s = −1
2
Szz ± |Sv

rθ| . (2.50)

As long as the largest s in (2.50) is smaller than Szz, the most extensional principal strain
rate s1 of Sij will be Szz, and the corresponding principal strain axis will point in the ẑ

direction. The vorticity is then aligned with the most extensional eigenvector of Sij . This
remains the case until the vortex becomes sufficiently strong relative to the background
strain rate that s > Szz, namely

|Sv
rθ| ≥

3
2
Szz , (2.51)

which from (2.49) occurs wherever

(
α +

1
η2

)
exp(−αη2)− 1

η2
≥ 3π

2

(
Γ/λ2

ν

Szz

)−1

. (2.52)

At any η for which (2.52) is satisfied, the most extensional principal axis of the combined
strain rate tensor Sij(x) will switch from the ẑ direction to instead lie in the r-θ plane. Since
the vorticity vector everywhere points in the ẑ direction, wherever (2.52) is satisfied the
principal axis of Sij that is aligned with the vorticity will switch from the most extensional
eigenvector to the intermediate eigenvector. This alignment switching is purely a result of
the induced strain field Sv

ij(x) locally dominating the background strain field SB
ij (x).

The dimensionless vortex strength parameter

Ω ≡
[
Γ/λ2

ν

Szz

]
=

π

α

ωmax

Szz
(2.53)

on the right-hand side of (2.52) characterizes the relative strength of the background strain
and the induced strain from the vortical structure, where ωmax is obtained from (2.16) at
η = 0. For

Ω < Ω∗ ≈ 2.45 , (2.54)
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the background strain rate Szz is everywhere larger than the largest s in (2.50), and thus
no alignment switching occurs at any η. For Ω > Ω∗, alignment switching will occur over
the limited range of η values that satisfy (2.52). With increasing values of Ω, more of the
vorticity field will be aligned with the intermediate principal axis of the combined strain
rate tensor, even though all of the vorticity field remains aligned with the most extensional
principal axis of the background strain rate tensor.

Figure 2.16 shows the vorticity ωz and the induced shear strain component −Sv
rθ as a

function of η. The horizontal dashed lines correspond to three different values of Ω, and
indicate the range of η values where the alignment switching in (2.52) occurs for each Ω.
Wherever −Sv

rθ is above the dashed line for a given Ω, the vorticity will be aligned with the
local intermediate principal axis of the combined strain rate field.

In principle, regardless of the vortex strength parameter Ω, at any η the result in (2.45)
can reveal the alignment of the vorticity with the most extensional principal axis of the
background strain field SB

ij . However, this requires R to be sufficiently large that a sphere
with diameter 2R, centered at the largest η for which −Sv

rθ in Figure 2.16 is still above
the horizontal dashed line, will enclose essentially all of the vorticity associated with the
vortical structure. As Ω increases, the required R will increase accordingly as dictated by
(2.52), and as R is increased the required n in (2.45) also increases.

Irrespective of the value of Ω, when (2.45) is applied to the combined strain rate field
Sij(x) in (2.48) and (2.49), if R̃ ≡ (R/λν) → ∞ and all orders n are retained then the
resulting SB

ij (x) should recover the background strain field, namely

SB
rθ → 0 (2.55)

for all x, and the vorticity should show alignment with the most extensional principal axis
of SB

ij . For finite R/λν and various orders n, the convergence of SB
ij from (2.45) to this

background strain field is examined below.

2.4.2 Convergence of the Background Strain

The accuracy with which (2.45) can recover the background strain field SB
ij (x) that acts

on a concentrated vortical structure depends on how well the expansion in (2.19) represents
the vorticity field within the local spherical neighborhood R. Figure 2.17 shows the results
of a local sixth-order Taylor series approximation for the vorticity in (2.16) at various radial
locations across the Burgers vortex. In each panel, the blue square marks the location x

at which the sphere is centered, and the red dashed curve shows the resulting Taylor series
approximation for the vorticity. On the axis of the vortex, the approximated vorticity field
correctly accounts for most of the circulation in the vortex, and thus the induced strain field
from the vortex will be reasonably approximated. Off the axis, the approximation becomes
increasingly poorer, but the 1/r2 decrease in the Biot-Savart kernel in (2.11) nevertheless
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renders it adequate to account for most of the vortex-induced strain rate field. At the largest
radial location, corresponding to the bottom right panel of Figure 2.17, the approximation
becomes relatively poor, however at large η values the vortex-induced strain is sufficiently
small that it is unlikely to lead to alignment switching for typical Ω values.

Figures 2.18-2.20 show the shear component SB
rθ(η) of the background strain rate tensor

obtained via (2.45) for various n and R̃ as a function of η. In each Figure, the black
curve shows the total strain rate Srθ(η) and the colored curves show the background strain
rate SB

rθ(η) from (2.45) for the (n, R̃) combinations listed. The horizontal dashed line
corresponding to Ω = (3/2)Ω∗ reflects the relative vortex strength, and shows the range of
η where the anomalous alignment switching occurs due to the vortex-induced strain field.
Wherever the −SB

rθ curves are above this line, the vorticity there will be aligned with the
intermediate principal axis of the combined strain rate tensor Sij . Figure 2.18 examines the
effect of increasing the radius R̃ of the spherical region for fixed order n = 6. It is apparent
that with increasing R̃ the resulting −SB

rθ converges toward the correct background strain
field in (2.55). For the value of Ω shown, it can be seen that for R & 0.5λν the resulting
SB

rθ is everywhere below the horizontal dashed line, indicating that the vorticity everywhere
is aligned with the most extensional principal axis of the resulting background strain rate
tensor SB

ij (x) from (2.45).
In Figure 2.19 similar results are shown for the effect of increasing the order n of the

expansion for the vorticity field for fixed R̃ = 0.65. It is apparent that the effect of n is
somewhat smaller than for R̃ in Figure 2.18. Moreover, the results suggest that the series
in (2.45) alternates with increasing order n. For this Ω and R̃, even n = 3 is seen to be
sufficient to remove most of the vortex-induced shear strain, and thus reduce SB

rθ(x) below
the horizontal dashed line. For these parameters, the SB

rθ field from (2.45) would thus reveal
alignment of the vorticity with the most extensional principal axis of the background strain
tensor throughout the entire field.

Figure 2.20 shows the combined effects of increasing both R̃ and n, in accordance with
the expectation that larger R̃ should require a higher order n to adequately represent the
vorticity field within the spherical region. The shear strain rate field shows convergence
to the correct background strain field in (2.55). The convergence of the shear strain rate
SB

rθ(x) to zero in the vicinity of the vortex core is of particular importance. The systematic
reduction in the peak remaining shear stress indicates that, even for increasingly stronger
vortices or increasingly weaker background strain fields as measured by Ω, the resulting
SB

rθ(x) from (2.45) will reveal the alignment of all the vorticity in such a structure with the
most extensional principal strain axis of the background strain field.

2.5 Vorticity Alignment Using Background Strain Expansion

Having seen in the previous Section how (2.45) is able to reveal the expected alignment
of vortical structures with the most extensional eigenvector of the background strain rate in
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which they reside, in this Section we apply it to obtain insights into the vorticity alignment
in turbulent flows. In particular, we examine the alignment at every point x of the vorticity
ω relative to the eigenvectors of the total strain rate tensor field Sij(x) and those of the
background strain field data SB

ij (x). This analysis uses data from the same highly-resolved,
three-dimensional DNS of statistically stationary, forced, homogeneous, isotropic turbulence
[90, 91] described in Section 2.2. The superfine resolution of this DNS makes it possible
to apply the result in (2.45) for relatively high orders n, which require accurate evaluation
of high-order derivatives of the DNS data. In Schumacher et al. [91] it was demonstrated
that derivatives up to order six are statistically converged. More details on the numerical
simulations are given in Refs. [90, 91].

The background strain rate tensor field SB
ij (x) is first extracted via (2.45) from Sij(x)

for n = 3 and various (R/ηK). Higher-order evaluation of the background strain rate is
not feasible, as the results in Ref. [91] show that only spatial derivatives of the velocity
field up to order six can be accurately obtained from these high-resolution DNS data. For
n = 4, the expansion in (2.45) involves seventh-order derivatives of the velocity field, and
the background strain evaluation becomes limited due to the grid resolution. The results are
shown and compared in Figure 2.21, where the shear component S12 of the full strain rate
tensor is shown at the top, and the corresponding nonlocal (background) component SB

12 and
local component SR

12 are shown, respectively, in the left and right columns for (R/ηK) = 2.5
(top row), 3.5 (middle row), and 4.5 (bottom row). Consistent with the results from the
Burgers vortex in Figure 2.18-2.20, as (R/ηK) increases the magnitude of the extracted
local strain rate in the right column increases. However, for the largest (R/ηK) = 4.5 case,
n = 3 appears to be too small to adequately represent the local vorticity field. This leads to
truncation errors which are manifested as strong ripples in the background and local strain
fields (see panels (f) and (g)).

The results in Figure 2.21 thus indicate that radii up to (R/ηK) = 3.5 in combination
with n = 3 can be used to assess alignment of the vorticity vector with the eigenvectors
of the background strain rate field. Figure 2.22 shows the probability densities of the
alignment cosines for the vorticity vector with the total strain rate tensor and with the
background strain rate tensors from (2.45). We compare Sij (Figure 2.22a) with SB

ij for
(R/ηK) = 2.5, n = 3 (Figure 2.22b) and SB

ij for (R/ηK) = 3.5, n = 3 (Figure 2.22c). The
results for alignment with the total strain rate tensor are identical to those in Figure 2.1,
and are shown in Figure 2.22a for comparison with the background alignments in Figures
2.22b and c.

Consistent with Figure (2.10), the results in Figure 2.22 (b) and (c) obtained for the
alignment cosines of the vorticity vector with the background strain rate tensor SB

ij from
(2.45) show a significant decrease in alignment with the intermediate eigenvector, and an
increase in alignment with the most extensional eigenvector. While data in panel (b) show
only a slight change compared to those in (a), the results in panel (c) demonstrate that the
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decomposition can indeed diminish the anomalous alignment significantly. This is consis-
tent with the results in Section 2.2 and with the hypothesis that the alignment switching
mechanism due to the local contribution SR

ij to the total strain rate tensor is the primary
reason for the anomalous alignment seen in earlier studies. While a more detailed study
is needed to examine possible nonequilibrium contributions to the alignment distributions
associated with eigenvector rotations of the background strain field, as well as to defini-
tively determine the R and n convergence of the background strain rate tensor in Figure
2.21, the present findings support both the validity of the result in (2.45) for extracting
the background strain rate tensor field SB

ij (x) from the total strain rate tensor field Sij(x),
and the hypothesis that at least much of the anomalous alignment of vorticity in turbulent
flows is due to the differences between the total and background strain rate tensors and the
resulting alignment switching noted herein.

2.6 Connection Between Vorticity Alignment and Anisotropy Evolution

At the beginning of this chapter, it was noted that the anisotropy tensor aij is rigor-
ously connected to the vorticity alignment through the double Biot-Savart integral relation
in (2.2). Since the two-point vorticity fluctuation appearing in this relation is a small-scale
quantity that depends on the vorticity alignment, there exists a connection between vor-
ticity alignment and the anisotropy in turbulent flows. While establishing a more rigorous
connection requires additional insights into how the two-point vorticity fluctuation correla-
tion is exactly related to the vorticity alignment, certain heuristic conclusions concerning
the anisotropy evolution can be obtained from the studies outlined herein.

Most significantly, the vorticity alignment studies in this chapter have revealed a sub-
stantial nonlocal, quasi-linear aspect to the vorticity dynamics in turbulent flows. The
alignment of the vorticity with the most extensional eigenvector of the background strain
rate tensor suggests that the turbulence responds in a linear fashion to at least some non-
local measure of the strain rate. With respect to vorticity alignment, this nonlocal tensor
is the background strain rate tensor defined in (2.15) and (2.45). In the next chapter, the
evolution of the anisotropy is shown to depend on a nonlocal measure of the strain that is
qualitatively similar to (2.45), where the principal nonlocality affecting the anisotropy has
its origins in the exact integral relation for the pressure-strain correlation Πij .

With respect to the quasi-linearity of the vorticity dynamics, it can be seen that the
time dynamics of u′iu

′
j from (2.2) are completely determined by the time-dynamics of the

two-point vorticity fluctuation correlation. Thus, if this fluctuation correlation behaves
in a quasi-linear fashion over a significant fraction of the flow, as would seem reasonable
given the quasi-linearity of the vorticity dynamics, then it is reasonable to expect that
the Reynolds stresses, and hence the anisotropy, may also behave in a similar quasi-linear
manner. In the next chapter it is shown that quasi-linearization of the anisotropy dynamics,
which is loosely motivated by the quasi-linearity of the vorticity dynamics noted herein, is
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sufficient to obtain the principal nonequilibrium response of the anisotropy in real turbulent
flows. Additional details of the connection between vorticity alignment and the anisotropy
evolution are outlined in the next chapter.
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eigenvectors of the total strain rate Sij using high-resolution Reλ = 107 DNS
of homogeneous, isotropic turbulence [90, 91].
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and Post [70] and are ωi(0) = [3.0, 2.0, 0.8] and si(0) = [2.4, 0.2,−2.6].
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Figure 2.4: Evolution of strain eigenvalues for the restricted Euler equations (e.g. Ref. [70]).
The initial conditions are taken the same as in Figure 2.3.
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Figure 2.5: Schematic of the decomposition of the vorticity field in the vicinity of any point

x into local and nonlocal parts; the Biot-Savart integral in (2.14) over each part
gives the local and nonlocal (background) contributions to the total strain rate
tensor Sij at x.
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obtained from decomposition of the total strain field in Figure 2.8.
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obtained from total field Sij(x) using (2.45) for various (n, R̃) combinations,
where R̃ ≡ R/λν . Shown are effects of increasing n and R̃ simultaneously. The
dashed horizontal lines follow from (2.51) and (2.53).

55



(a)
S12(x)

(b)
SB

12(x)

(c)
SR

12(x)

(d) (e)

(f) (g)

 

 

S12(x), SB

12(x), SR

12(x)

−15 −10 −5 0 5 10 15

Figure 2.21: Total strain rate component field S12(x) (a), with corresponding results from
(2.45) for nonlocal (background) field SB

12(x) (left) and local field SR
12(x)

(right) for (R/ηK) = 2.5 (b, c), (R/ηK) = 3.5 (d, e), and (R/ηK) = 4.5
(f, g), all with n = 3.

56



0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

(a)

Alignment |ei · eω|

P
(
|
e

i
·
e

ω
|
)

Extensional e1

Intermediate e2

Compressional e3

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

(b)

Alignment |e
B

i
· eω|

P
(

|
e

B i
·
e

ω
|

)

Extensional e
B

1

Intermediate e
B

2

Compressional e
B

3

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

(c)

Alignment |e
B

i
· eω|

P
(

|
e

B i
·
e

ω
|

)

Extensional e
B

1

Intermediate e
B

2

Compressional e
B

3

Figure 2.22: Probability densities of alignment cosines for the vorticity with the eigenvectors
of the strain rate tensor, showing results for Sij (a) and for SB
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CHAPTER III

Present Anisotropy Closure for Nonlocal and

Nonequilibrium Effects in Turbulent Flows

The fundamental studies of vorticity alignment in the previous Chapter have revealed a
substantial nonlocal, quasi-linear aspect to the vorticity dynamics in turbulent flows. The
relation in (2.2) establishes a rigorous connection between the two-point vorticity fluctuation
correlation and the Reynolds stress anisotropy aij , and through this relation the dynamics
of the vorticity are closely linked to those of the anisotropy.

The relation in (2.2) is written as a double Biot-Savart integral over the entire spatial
domain, and thus explicitly accounts for nonlocal effects on the anisotropy evolution. Non-
local effects are also present in the exact transport equation for the anisotropy in (1.19) via
the pressure-strain correlation Πij , which is itself exactly expressed as an integral over the
entire spatial domain. Despite the obvious importance of nonlocal effects on the anisotropy
however, nearly all existing closures represent the anisotropy in terms of local variables
only, as outlined in Chapter I. Nonlocal effects are particularly important in flows where
the mean velocity gradient field is strongly varying, for example in wall-bounded flows, and
must be accurately accounted for in order to obtain reliable predictions of the anisotropy
in nearly all practical problems.

With respect to the Lagrangian evolution of the anisotropy (that is, temporal and con-
vective changes in aij), the relation in (2.2) is a purely spatial integral and the dynamics of
the anisotropy are completely determined by the dynamics of the two-point vorticity fluctu-
ation correlation. The fundamental studies of vorticity alignment in the previous Chapter
have revealed a substantial quasi-linear aspect to the vorticity dynamics in turbulent flows,
and through (2.2) this thus suggests that the anisotropy dynamics can also be understood
as a quasi-linear system. In this system, the anisotropy has a finite-time response to La-
grangian variations in flow properties, and aij at any point depends on the prior history of
the anisotropy experienced by fluid elements in the flow. Such history effects are particu-
larly important in strongly nonequilibrium turbulent flows where the mean strain may be
large and rapidly varying.

In the following, a new anisotropy closure that addresses both nonlocal and nonequilib-
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rium effects in turbulent flows is formulated. The new closure seeks to include the principal
nonequilibrium dynamics of aij contained in full Reynolds stress transport models, while
also accounting for nonlocal effects due to spatial variations in the mean strain rate tensor.
This is accomplished by formulating a new nonlocal representation for the rapid pressure-
strain rate correlation Π(r)

ij , resulting in a nonlocal transport equation for the anisotropy
that improves upon the conventional purely local model equation in (1.28). Based on the
vorticity alignment studies in Chapter II, this nonlocal equation is linearized and then solved
in order to replace the local instantaneous mean strain rate Sij appearing in the classical
equilibrium closure in (1.35) with a nonlocal, nonequilibrium effective strain rate S̃ij . This
new tensor accounts for both the spatial structure of the mean strain rate as well as the
straining history of the flow, but does so within a relatively simple approach that allows
straightforward implementation in existing two-equation frameworks for solving (1.2)-(1.4).

3.1 Physical Basis of Turbulence Anisotropy

As noted in Chapter II, the relation in (2.2) establishes a rigorous connection between
the two-point vorticity fluctuation correlation and the anisotropy in turbulent flows. Fun-
damentally, the two-point fluctuation correlation depends on the small-scale structure and
vorticity alignment in the flow, and thus an informal connection between vorticity alignment
and the anisotropy evolution is established.

In order to understand the effect of the strain rate Sij on the alignment of the vorticity
and the resulting anisotropy from a heuristic standpoint, we can consider a small material
element containing a segment of a typical vortical structure into which the vorticity is
naturally concentrated at large Reynolds numbers by the competing effects of the stretching
and diffusion terms in (2.3). As shown in (2.13) and (2.14), the strain rate field within such
an element can be separated into a local part SR

ij induced within the element by the local
vorticity inside the element, and a background part SB

ij induced within the element by all
the remaining (nonlocal) vorticity outside the element. The background strain SB

ij reflects
the largely linear influence of all the surrounding vorticity on the element; this provides
only a relatively weak and indirect nonlinear coupling due to the effect of the local vorticity
on the nonlocal vorticity. The direct nonlinearity in the vorticity dynamics is due to the
local strain SR

ij , through which the structure acts on itself. As described in Chapter II, the
instantaneous vorticity vector naturally rotates toward alignment with the most extensional
eigenvector of SB

ij , while SR
ij induced by any vortical structure has almost no component

along the vorticity vector direction. It is primarily through local curvature in the vortical
structure that the effect of the local strain on the local vorticity becomes significant. Indeed,
for axisymmetric (line-like) and planar (sheet-like) vortical structures [8] the local strain
SR

ij may be large but has no component that interacts with the local vorticity.
This suggests that the local dynamics of the vorticity field may be represented in many

regions of the flow as a linear inviscid process governed by the imposed nonlocal background
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strain SB
ij (x, t), namely

Dωi

Dt
≈ ωjS

B
ij . (3.1)

Key features of the nonequilibrium vorticity alignment dynamics in turbulence can be seen
in (3.1). For slowly varying SB

ij (x, t), the vorticity vector will rotate toward alignment with
the most extensional principal axis of the background strain rate tensor – this is typically
the intermediate principal axis of the combined strain rate tensor Sij . So long as SB

ij (x, t)
varies sufficiently slowly, the vorticity will remain in this equilibrium alignment with the
background strain rate tensor. However, when the background strain rate SB

ij (x, t) changes
rapidly, then in a frame aligned with the new eigenvectors of SB

ij the short-time dynamics in
(3.1) leads to an exponential reorientation of the vorticity, on the reorientation time scale

1/SB where SB ≡
(
2SB

ij S
B
ij

)1/2
, toward the new most extensional principal axis of SB

ij .
From this quasi-linearized model of the local vorticity orientation dynamics in a small

material element, we now consider a Lagrangian element that is large enough to contain
many such concentrated vortical structures, and thereby allows a spatial average within it
to define the anisotropy tensor aij(t) as well as the kinetic energy k(t) and dissipation rate
ε(t). In the absence of any preferred direction imposed by the strain rate tensor SB

ij acting
on the element, the self-induced and mutual straining of the vortical structures produces a
characteristic local strain rate ε/k that leads to randomization of the vorticity vector orien-
tations within the element, and thus aij = 0. We then examine the impulse response of the
anisotropy in this element by imposing a large background strain, specifically (SBk/ε) →∞,
over a short duration. Since SB À ε/k during the impulse, the vortical structures must
all align on the time scale 1/SB with the most extensional principal axis of SB

ij . For the
resulting completely aligned vorticity field, the anisotropy aij then attains its maximum
value. Once the imposed strain is relaxed, the self-induced and mutual straining of the
vortical structures gradually returns the random orientations of the vorticity vectors within
the element on the timescale k/ε, so that aij → 0. This impulse response of the vortic-
ity alignment in the turbulence suggests a linearized description of turbulence anisotropy
dynamics for an arbitrary imposed strain rate SB

ij .
To formalize this, we return to the original small material element, where the dynamics

are essentially linear due to (3.1), but rather than examining a single element we now
consider the ensemble of elements – one from each realization of the flow for the same
nominal initial and boundary conditions – that arrive at location x at time t, as indicated
in Figure 3.1. Each element arrives along a different pathline, and thus has been subjected
to a different straining history SB

ij (τ), where the time τ identifies the position along the
pathline. The ensemble average over all elements at time t now defines the anisotropy
tensor, and from the above considerations it is apparent that the resulting aij(x, t) will
not be proportional to the local instantaneous ensemble average of SB

ij at location x and
time t. Rather, if we seek an effective strain rate S̃ij so that aij ∼ S̃ij , then motivated by
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the above considerations of the impulse response in the vorticity alignment we can regard
the vorticity dynamics and associated turbulence anisotropy as a linear system, having the
ensemble average of the straining history, denoted 〈SB

ij (τ)〉, as its input, h(t − τ) as its
impulse response, and aij – or equivalently S̃ij – as its output. From linear system theory,
the output will be a convolution of the input 〈SB

ij (τ)〉 with the impulse response h(t − τ),
and thus the effective strain rate will be of the form

S̃ij(x, t) =
∫ t

−∞
〈SB

ij (τ)〉R(τ)h(t− τ)Dτ. (3.2)

Here 〈SB
ij (τ)〉R(τ) is the ensemble average over all elements at time τ along their individual

pathlines, as indicated in Figure 3.1.
Note that as the material elements in Figure 3.1 translate, they also rotate with the

local average rotation rate tensor

−Ωij ≡ 1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
, (3.3)

the elements of which are the components of the average vorticity vector within the element.
The vortical structures within the element rotate with this mean rotation tensor Ωij , and
thus at earlier times τ in Figure 3.1 the orientation of the vortical structures differs from
that at time τ = t. The rate of change in the anisotropy is determined by the relative
alignment of these structures with the background strain rate tensor SB

ij . As a consequence,
in (3.2) the components of the background strain rate tensor 〈SB

ij (τ)〉R(τ) must be given in
the coordinate frame of the element at time τ .

In the following sections, the heuristic result in (3.2) is derived more formally from a new
nonlocal transport equation for aij . The linearization of the aij dynamics, while historically
done for other reasons, is here motivated by the quasi-linearized vorticity dynamics in (3.1),
and will be seen to produce a closure for the anisotropy analogous to (3.2).

3.2 Nonlocal Formulation for the Pressure-Strain Correlation

The anisotropy closure for nonlocal and nonequilibrium effects in turbulent flows is
fundamentally obtained as a quasi-linear solution to a new nonlocal anisotropy transport
equation. This equation is based on a nonlocal formulation for the pressure-strain correla-
tion Πij , and allows more accurate predictions of the anisotropy in flows with strong spatial
variations in the mean velocity gradient field.

The challenge in representing Πij stems in large part from the inherently nonlocal nature
of the pressure-strain correlation, since the local pressure p′ in the definition for Πij in (1.10)
depends on an integral over the entire spatial domain of the flow. Some progress has been
made by splitting Πij into the sum of “slow” and “rapid” parts [14] as noted in Chapter I,
where the rapid part Π(r)

ij is so named due to its direct dependence on the mean-flow velocity
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gradients ∂ui/∂xj , variations in which have an immediate effect on Daij/Dt. Typically, the
slow part Π(s)

ij is represented in terms of the local values of aij and ε, as in (1.22). For
the rapid part, it has been common (e.g., [14, 16, 86]) to take the mean velocity gradients
as being essentially homogeneous, thus allowing them to be brought outside the integral.
Under certain conditions [16] the remaining integral can then be solved for the local part of
Π(r)

ij . This is then typically combined with additional ad hoc terms involving aij to model
the rapid part solely in terms of local flow variables (e.g. Eq. (1.24)). Together with the
assumed local representation for the slow part, this yields the purely local formulation for
Πij given by (1.25) that allows the exact anisotropy transport equation in (1.19) to be
solved, but that neglects all nonlocal effects in the evolution of the anisotropy.

Such purely local models for Πij have allowed relatively accurate simulations of homo-
geneous turbulent flows, where by construction there are no spatial variations in ∂ui/∂xj

and thereby all nonlocal effects vanish. However most practical situations involve strongly
inhomogeneous flows, where large-scale structure and other manifestations of spatial vari-
ations in the mean-flow velocity gradients can produce significant nonlocal effects in the
turbulence, the neglect of which in Πij can lead to substantial inaccuracies in the result-
ing anisotropy. Such nonlocal effects are significant even in free shear flows such as jets,
wakes, and mixing layers, and can become especially important in near-wall flows, where
flow properties vary rapidly in the wall-normal direction. Improving the fidelity of turbulent
flow simulations requires a fundamentally-based formulation for nonlocal effects in Π(r)

ij to
account for spatial variations of velocity gradients in the ensemble-averaged flow.

Various methods for addressing such spatial variations have been proposed, however
nearly all suffer from a lack of systematic physical and mathematical justification. For near-
wall flows, by far the most common yet also least satisfying approach is the use of empirical
wall damping functions, as discussed in Section 1.3.3. Although such functions are relatively
straightforward to implement, they are also distinctly ad hoc and as a consequence do not
perform well across a wide range of flows. Moreover, wall functions typically conflate the
treatment of a number of near-wall effects that in fact originate from distinctly different
physical mechanisms, including low Reynolds number effects, large strain effects, and wall-
induced kinematic effects, and are not formulated to specifically account for nonlocality due
to spatial variations in the mean flow gradients.

In the following we depart from these prior approaches by systematically deriving a new
nonlocal formulation for the rapid pressure-strain correlation from the exact integral relation
for the rapid part of Πij . Specifically, nonlocal effects due to mean-flow velocity gradients
are accounted for through Taylor expansion of ∂uk/∂xl in the rapid pressure-strain integral.
The resulting nonlocal form of the rapid pressure-strain correlation Π(r)

ij appears as a series
of Laplacians of the mean strain rate tensor. The only approximation involved – beyond the
central hypothesis on which the present formulation is based – is an explicit form for the
longitudinal correlation function f(r), though the effect of this is only to determine specific
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values of the coefficients in an otherwise fundamental result for the nonlocal effects in Π(r)
ij .

The coefficients are obtained here for the exponential form of f(r) appropriate for high
Reynolds numbers, and for the exact Gaussian f(r) that applies at low Reynolds numbers.
The resulting formulation for the rapid part of Πij then provides a new nonlocal anisotropy
transport equation that can be used with any number of closure approaches for representing
aij , including Reynolds stress transport models as well as explicit stress models suitable for
two-equation closures.

3.2.1 Exact Integral Expressions for Π(s)
ij and Π(r)

ij

The starting point for developing a fundamentally-based representation for Πij is the
exact Poisson equation for the pressure fluctuations p′ appearing in (1.10), namely

1
ρ
∇2p′ = −2

∂uk

∂xl

∂u′l
∂xk

− ∂2

∂xk∂xl

(
u′ku

′
l − u′ku

′
l

)
(3.4)

(e.g., [78]). Beginning with Chou [14], it has been common to write p′ in terms of rapid,
slow, and wall parts as

p′ ≡ p′(r) + p′(s) + p′(w) , (3.5)

defined by their respective Poisson equations from (3.4) as

1
ρ
∇2p′(r) = −2

∂uk

∂xl

∂u′l
∂xk

, (3.6)

1
ρ
∇2p′(s) = − ∂2

∂xk∂xl

(
u′ku

′
l − u′ku

′
l

)
, (3.7)

1
ρ
∇2p′(w) = 0 . (3.8)

The effect of p′(w) is significant in (1.15) only in the extreme near-wall region of wall-bounded
flows [63, 78]. The remaining rapid and slow parts produce corresponding rapid and slow
contributions to the pressure-strain correlation Πij in (1.10), with Green’s function solutions
[78] of (3.6) and (3.7) giving these as

Π(r)
ij (x) =

1
π

∫

R

∂uk(x̂)
∂x̂l

∂u′l(x̂)
∂x̂k

S′ij(x)
dx̂

|x− x̂| (3.9)

Π(s)
ij (x) =

1
2π

∫

R

∂2
(
u′ku

′
l

)
x̂

∂x̂k∂x̂l
S′ij(x)

dx̂
|x− x̂| , (3.10)

where the integration spans the entire flow domain R.
The slow part Π(s)

ij is typically not treated in a systematic fashion via integration of

(3.10). Instead, nearly all existing representations for Π(s)
ij are based on insights obtained

from the return to isotropy of various forms of initially-strained grid turbulence, resulting
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in the widely-used purely local formulation for Π(s)
ij given by (1.22). By contrast to the

slow correlation, Π(r)
ij has received substantially greater attention. The direct effect of

the mean velocity gradients ∂uk/∂xl on this rapid part of the pressure-strain correlation
is apparent in (3.9). In the following sections, we use the integral in (3.9) to develop
a fundamentally-based representation for Π(r)

ij that accounts for nonlocal effects resulting
from spatial nonuniformities in the mean velocity gradients.

3.2.2 Prior Local Formulation for Π(r)
ij

Chou [14] first suggested the notion of using the integral form in (3.9) to obtain a
representation for the rapid pressure-strain correlation. Subsequently, Rotta [86] and then
Crow [16] used that approach to rigorously derive the purely local part of Π(r)

ij , by assuming
the mean velocity gradients in (3.9) to vary slowly enough that they could be taken as
constant over the length scale on which the two-point correlation

[
∂u′k(x̂)/∂x̂l

]
S′ij(x) in

(3.9) is nonzero. Under such conditions, the mean velocity gradient in (3.9) can be brought
through the integral, and Π(r)

ij then becomes

Π(r)
ij (x) ≈ ∂uk(x)

∂xl
· 1
π

∫

R

∂u′l(x̂)
∂x̂k

S′ij(x)
dx̂

|x− x̂| . (3.11)

With S′ij(x) in (1.10), the integrand in (3.11) involves two-point correlations among velocity
gradients of the form

∂u′i(x)
∂xj

∂u′l(x̂)
∂x̂k

= −∂2Ril(r)
∂rj∂rk

, (3.12)

where Ril(r) denotes the velocity fluctuation correlation

Ril(r) ≡ u′i(x)u′l(r + x) (3.13)

with r ≡ x̂− x. Defining [14, 16, 86]

Miljk ≡ − 1
2π

∫

R

∂2Ril(r)
∂rj∂rk

dr
r

, (3.14)

the rapid pressure-strain correlation in (3.11) can then be expressed as

Π(r)
ij (x) ≈ ∂uk(x)

∂xl
[Miljk + Mjlik] . (3.15)

Using the homogeneous isotropic form of Ril(r), namely

Ril(r) =
2
3
k

[
f(r)δil +

r

2
df

dr

(
δil − rirl

r2

)]
(3.16)
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with

f(r) ≡ 3
2

u′(x + r)u′(x)
k

, (3.17)

where k is the turbulence kinetic energy, it can be shown [16] that Miljk in (3.14) becomes

Miljk =
2
15

k (4δjkδil − δijδkl − δjlδki) , (3.18)

where the leading k again denotes the turbulence kinetic energy. Note that in (3.17), r ≡ |r|,
u′ is the velocity component along the direction of the separation vector r, and we have used
the isotropic relation u′2 = 2

3k. Using (3.18) in (3.15) then gives the rapid pressure-strain
correlation as

1
k
Π(r)

ij ≈ 4
5
Sij , (3.19)

where Sij is the local mean-flow strain rate tensor

Sij ≡ 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (3.20)

Typically, (3.19) is used as the leading-order isotropic term in tensorial expansions for the
rapid pressure-strain correlation Π(r)

ij (x), where the remaining terms are expressed in terms
of the local anisotropy aij and the local mean velocity gradient tensor as in (1.24). Note
however that such representations are still purely local, since in going from (3.9) to (3.11)
all spatial variations in the mean velocity gradients ∂uk/∂xl over the length scale on which
the two-point correlations

[
∂u′k(x̂)/∂x̂l

]
S′ij(x) are nonzero were ignored. The resulting

neglect of nonlocal contributions to Π(r)
ij from that approximation can lead to substantial

inaccuracies in many turbulent flows, including free shear flows and wall-bounded flows as
noted in Section 1.3.3. In mitigation, it is usually claimed [16, 48] that ∂uk/∂xl only has
to be approximately homogeneous over the domain for which Ril(r) is nonzero, which is
typically much less than (−∞,∞). However, Bradshaw et al. [7] showed using DNS of
fully-developed turbulent channel flow [46] that the homogeneity approximation used to
obtain (3.15) is invalid for y+ ≤ 30. Figure 3.2 further shows that the dominant component
S12 of the mean strain begins to vary dramatically at locations as far from the wall as
y+ ≈ 60. Comparable variations in mean velocity gradients are also found in turbulent jets,
wakes, and mixing layers, where there are substantial spatial variations in S12 across the
flow. Indeed in most turbulent flows of practical interest, there are significant variations
in the mean flow velocity gradients that will produce nonlocal contributions to the rapid
pressure-strain correlation via (3.9). In such situations, it may be essential to account for
these nonlocal effects in Π(r)

ij to obtain accurate results from any closures based on the exact
anisotropy equation in (1.19).
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3.2.3 Present Nonlocal Formulation for Π(r)
ij

In the following, nonlocal effects due to spatial variations in the mean flow are accounted
for in Π(r)

ij through Taylor expansion of the mean velocity gradients appearing in (3.9).

The central hypothesis in the approach developed here is that the nonlocality in Π(r)
ij is

substantially due to spatial variations in ∂uk/∂xl in (3.9), and that in order to address
this effect all other factors in (3.9) can be adequately represented by their homogeneous
isotropic forms. This allows a formulation of the rapid pressure-strain correlation analogous
to that in (3.19), but goes beyond a purely local formulation to take into account the effects
of spatial variations in the mean flow gradients.

We begin by defining the ensemble-averaged velocity gradients

Akl ≡ ∂uk/∂xl , (3.21)

and account for spatial variations in Akl(x̂) in (3.9) via its local Taylor expansion about the
point x as

Akl(x̂) = Akl(x) + rm
∂Akl

∂xm
+

rmrp

2
∂2Akl

∂xm∂xp
+ · · ·+ 1

n!
(rmrp . . .)

∂nAkl

∂xm∂xp . . .
, (3.22)

where r ≡ x̂ − x and all derivatives of Akl are evaluated at x, and where n is the order of
the expansion. As n → ∞, the expansion provides an exact representation of all spatial
variations in Akl(r + x) from purely local information at x. Substituting (3.22) into (3.9)
then gives

Π(r)
ij (x) =

∞∑

n=0

∂nAkl(x)
∂xm∂xp . . .

[
(mp...)M

(n)
iljk +(mp...) M

(n)
jlik

]
, (3.23)

where

(mp...)M
(n)
iljk ≡ − 1

2πn!

∫

R

[rmrp . . .

rn

]
rn−1 ∂2Ril(r)

∂rjrk
dr . (3.24)

The nth-order term in (3.23) involves n derivatives of Akl as well as n total indices (mp . . .)
in (mp...)M

(n)
iljk.

From the central hypothesis on which the present treatment of nonlocal effects in Π(r)
ij

is based, we represent Ril(r) in (3.24) by the form in (3.16). With the relations

∂r

∂rj
=

rj

r
,

∂ri

∂rj
= δij , (3.25)

the double derivative of Ril(r) in (3.24) is then given by

∂2Ril(r)
∂rj∂rk

=
k

3

[
aijkl

1
r

df

dr
+ bijkl

d2f

dr2
+ cijklr

d3f

dr3

]
, (3.26)
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where we have introduced the compact notation

aijkl ≡ 3δjkδil − δijδkl − δjlδki − 3αjkδil + δijαlk + δjlαik + δikαlj + δklαij + δkjαil − 3βiljk ,

(3.27a)
bijkl ≡ δilδjk + 3αjkδil − δijαlk − δljαik − δikαlj − δklαij − δkjαil + 3βiljk , (3.27b)

cijkl ≡ δilαjk − βiljk , (3.27c)

with
αij ≡ rirj

r2
, βijkl ≡ rirjrkrl

r4
. (3.28)

Using (3.26)-(3.28), the integral in (3.24) can then be written as

(mp...)M
(n)
iljk = − k

6πn!

∫ ∞

−∞

[rmrp . . .

rn

] [
aijklr

n−2 df

dr
+ bijklr

n−1 d2f

dr2
+ cijklr

n d3f

dr3

]
dr .

(3.29)
Writing the differential in (3.29) in spherical coordinates as dr = r2dr dΩ, where dΩ =
sin θ dθ dφ and r = [0,∞), θ = [0, π], and φ = [0, 2π), since f(r) has no dependence on θ or
φ and since aijkl, bijkl, and cijkl in (3.27) have no dependence on r, the integrals over these
terms in (3.29) can be considered separately. Using (3.26), the integral in (3.29) can then
be written as

(mp...)M
(n)
iljk = − k

6πn!

[∫ ∞

0
rn df

dr
dr

∫

Ω
aijkl

rmrp . . .

rn
dΩ (3.30)

+
∫ ∞

0
rn+1 d2f

dr2
dr

∫

Ω
bijkl

rmrp . . .

rn
dΩ +

∫ ∞

0
rn+2 d3f

dr3
dr

∫

Ω
cijkl

rmrp . . .

rn
dΩ

]
,

where k in the leading factor is the turbulence kinetic energy. With the corresponding
expression for (mp...)M

(n)
jlik, (3.23) and (3.30) provide a nonlocal form for the rapid pressure-

strain rate correlation Π(r)
ij in terms of the longitudinal correlation f(r).

3.2.4 Representing the Longitudinal Correlation f(r)

As will be seen later, in (3.30) the integrals over dΩ can be readily evaluated. Moreover,
for n = 0 the integrals over dr are independent of f(r), and thus M

(0)
iljk can be obtained

from the general properties

Λ =
∫ ∞

0
f(r)dr , f(0) = 1 , f(∞) = 0 . (3.31)

However for n > 0, evaluating the integrals over dr to obtain (mp...)M
(n)
jlik requires an explicit

form for the longitudinal correlation function f(r). We can anticipate, however, that the
precise form may not be of central importance to our eventual result for Π(r)

ij , since the only
role of f(r) is to weight the contributions from velocity gradients Akl(x + r) around the
local point x. It is thus likely that the integral scale Λ in (3.31) plays the most essential
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role, since it determines the size of the region around x from which nonlocal contributions
to the integral for Π(r)

ij will be significant. When r is scaled by Λ, the precise form of f(r/Λ)
is likely to be far less important for most reasonable forms that satisfy the constraints in
(3.31).

Despite its fundamental significance in turbulence theory, the form of f(r) for any r and
all Reynolds numbers has yet to be determined even for homogeneous isotropic turbulence.
Perhaps the most widely-accepted representation for f(r) comes from Kolmogorov’s 1941
universal equilibrium hypotheses. For large values of ReΛ ≡ k1/2Λ/ν and inertial range
separations λν ¿ r ¿ Λ, where λν ∼ (ν3/ε)1/4 is the viscous diffusion scale and Λ is the
integral length scale in (3.31), the mean-square velocity difference is taken to depend solely
on r and the turbulent dissipation rate ε, and thus on dimensional grounds must scale as

[u′(x + r)− u′(x)]2 ∼ ε2/3r2/3 . (3.32)

Expanding the left-hand side of (3.32) and using (3.17) gives

4
3
k [1− f(r)] ∼ ε2/3r2/3 . (3.33)

Defining the proportionality constant in (3.33) as Cf and rearranging gives the inertial
range form of f(r) as

f(r) = 1− 3
4
Cf

[
r

k3/2/ε

]2/3

. (3.34)

From Hinze [36], a value for Cf can be obtained in terms of the Kolmogorov constant
K ≡ (8/9α)2/3 ≈ 1.7, where α ≈ 0.405, as

Cf =
81
55

Γ(4/3)K ≈ 2.24 , (3.35)

where we have used Γ(4/3) ≈ 0.893. Expressing Λ in terms of k and ε on dimensional
grounds as

Λ = Cλ
k3/2

ε
, (3.36)

where Cλ is a presumably universal constant, then allows the inertial-range form of f(r) in
(3.34) to be given as

f(r/Λ) = 1− 3
4
CfC

2/3
λ

( r

Λ

)2/3
. (3.37)

However the form for f(r) in (3.37) is valid only for inertial-range r values, namely
λν ¿ r ¿ Λ and thus for Re

−3/4
Λ ¿ (r/Λ) ¿ 1. As a consequence, this form cannot

be used directly to evaluate the r-integrals in (3.30). However, experimental data from a
wide range of turbulent free shear flows (e.g., [109, 110]) and direct numerical simulation
results for wall-bounded turbulent flows (e.g., [39, 46]) show that f(r) can be reasonably
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represented by the exponential form

f(r/Λ) = e−r/Λ , (3.38)

as can be seen in Figures 3.3(a)-(c). Moreover, Cλ in (3.36) can be chosen to closely match
f(r) in (3.38) with the fundamentally-rooted inertial-range form in (3.37). Indeed, Figure
3.4 shows that with

Cλ ≈ 0.23 (3.39)

the exponential form in (3.38) gives reasonable agreement with the inertial-range form in
(3.37) up to r/Λ ≈ 1. This exponential form is thus here taken to represent f(r) in high-
ReΛ turbulent flows, and will be used in (3.30) to obtain an explicit form for the nonlocal
rapid pressure-strain correlation. Since (3.23) with (3.30) is a rigorous formulation for
Π(r)

ij within the central hypothesis on which the present approach is based, the exponential
representation for f(r) is the principal additional approximation that will be used below in
deriving the present result for the rapid pressure-strain correlation.

While the exponential f(r) appears appropriate for high ReΛ, in the ReΛ → 0 limit
the Kármán-Haworth equation [106] allows a solution for f(r). Batchelor and Townsend
[5] showed that for small ReΛ when inertial effects can be neglected, this equation can be
solved exactly, giving a Gaussian form for f(r) as

f(r/Λ) = exp
[
− 4

π

( r

Λ

)2
]

. (3.40)

Ristorcelli [81] has proposed a blended form for f(r) that satisfies various conditions placed
on f(r), including those in (3.31), while recovering the Gaussian f(r) in (3.40) as ReΛ → 0
and the exponential f(r) in (3.38) as ReΛ →∞. It should be possible to use such blended
forms for f(r) to obtain a nonlocal pressure-strain correlation valid for all Reynolds numbers,
following the procedure developed herein. In the following we obtain the nonlocal pressure-
strain correlation using the high-Reynolds number exponential form in (3.38), which should
be accurate for the vast majority of turbulent flow problems, and then show how this result
can be extended to the low-Reynolds number limit using (3.40).

3.2.5 The Nonlocal Rapid Pressure-Strain Rate Correlation

Using (3.38), it can be shown that solution of the integrals over dr in (3.29) gives

∫ ∞

0
rn−2 df

dr
r2dr =

∫ ∞

0
rn df

dr
dr = −n!Λn , (3.41a)

∫ ∞

0
rn−1 d2f

dr2
r2dr = −(n + 1)

∫ ∞

0
rn df

dr
dr = (n + 1)!Λn , (3.41b)
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∫ ∞

0
rn d3f

dr3
r2dr = (n + 2)(n + 1)

∫ ∞

0
rn df

dr
dr = −(n + 2)!Λn . (3.41c)

With these results, (3.29) is then given by

(mp...)M
(n)
iljk =

kΛn

6π

∫

Ω

[rmrp . . .

rn

]
[aijkl − (n + 1)bijkl + (n + 2)(n + 1)cijkl] dΩ . (3.42)

The remaining integrals over dΩ are all of the form (rmrp . . .)/rn and can be solved using
the identities in (2.31).

For n = 0, it can be shown using (2.31b) that M
(0)
iljk is given from (3.42) as

M
(0)
iljk =

2k

15
[4δilδjk − δijδkl − δjlδki] . (3.43)

There is no contribution from the n = 1 term M
(1)
iljk due to (2.31a), and for n = 2, from

(2.31b), mpM
(2)
iljk is given by

mpM
(2)
iljk =

2kΛ2

315
[4δjkδilδmp − 3 (δijδklδmp + δjlδikδmp)− 24 (δilδjmδkp + δilδkmδjp) (3.44)

+4 (δijδlmδkp + δijδkmδlp + δjlδimδkp + δjlδkmδip + δikδlmδjp

+δikδjmδlp + δklδimδjp + δklδjmδip + δjkδimδpl + δjkδlmδip)] .

Contracting (3.43) and (3.44) with Akl and its derivatives as in (3.23) then gives

Akl

[
M

(0)
iljk + M

(0)
jlik

]
=

4
5
kSij , (3.45)

and
∂2Akl

∂xm∂xn

[
mpM

(2)
iljk +mp M

(2)
jlik

]
=

68
315

kΛ2∇2Sij , (3.46)

where we have used Akk ≡ 0 and the commutativity of the derivatives of Akl, namely

∂2Aim

∂xm∂xj
=

∂3ui

∂xm∂xm∂xj
= ∇2Aij . (3.47)

From (3.45) and (3.46), the first two terms in the present formulation for the rapid pressure-
strain correlation in (3.23) are thus given by

1
k
Π(r)

ij (x) =
4
5
Sij +

68
315

Λ2∇2Sij + · · · . (3.48)

The first term on the right in (3.48) is the same as that in (3.19) obtained by Crow [16]
assuming spatially uniform mean velocity gradients. Thus the second term in (3.48) is the
first-order nonlocal correction accounting for spatial variations in the mean velocity gradient
field.

To obtain the remaining higher-order nonlocal corrections in (3.48), it is helpful to
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contract (3.42) with the derivatives of Akl and again use Akk ≡ 0. It is then readily shown
that all terms involving δkl, δkm, δkp, . . . from the integral over dΩ are zero when contracted
with the derivatives of Akl, and as a result the coefficients in (3.27) can be simplified as

aijkl = 4δjkδil − δjlδki − bijkl , (3.49a)

bijkl = δilδjk + b∗ijkl , (3.49b)

b∗ijkl = 3αjkδil − δljαik − δikαlj − δkjαil + 3βiljk , (3.49c)

cijkl = δilαjk − βiljk , (3.49d)

where b∗ijkl has been introduced to simplify the notation. Using (3.49) and contracting
(3.42) with the derivatives of Akl we thus obtain

∂nAkl

∂xm∂xp . . .

[
(mp...)M

(n)
iljk

]
= kΛn 1

6π

[
∂nAkl

∂xm∂xp . . .

] ∫

Ω

[rmrprq . . .

rn

]
(3.50)

×[(2− n) δilδjk − δikδjl − (n + 2) b∗ijkl + (n + 2)(n + 1)cijkl]dΩ .

From (2.31a) all odd-n terms in (3.50) are zero. For even-n, the integrals over dΩ are readily
evaluated using (2.31b), and it can be shown that

∂nAkl

∂xm∂xp . . .

∫

Ω

[rmrprq . . .

rn

]
δjkδildΩ =

4π(n− 1)!!
(n + 1)!!

(∇2
)n/2

Aji , (3.51)

where the invariance of the integral to the order of (m,n, p, . . .) has been used in the result.
We can then write (3.50) as

∂nAkl

∂xm∂xp . . .

[
(mp...)M

(n)
iljk

]
=

2kΛn

3(n + 1)
(∇2

)n/2 [(2− n) Aji −Aij ] (3.52)

−kΛn (n + 2)
6π

[
∂nAkl

∂xm∂xp . . .

] ∫

Ω

[rmrprq . . .

rn

] [
b∗ijkl − (n + 1)cijkl

]
dΩ ,

where we have used (n− 1)!!/(n + 1)!! = 1/(n + 1), and upon switching the i and j indices
(3.51) also provides the solution for the integral involving δjlδki in (3.50). To solve the last
integral in (3.52), from (3.49) we can write

b∗ijkl − (n + 1)cijkl = (2− n) δilαjk − δljαik − δikαlj − δkjαil + (n + 4)βiljk . (3.53)

Considering the first term involving δilαjk, we obtain

[
∂nAki

∂xm∂xp . . .

] ∫

Ω

[rjrkrmrprq . . .

rn+2

]
dΩ =

4π(n− 1)!!
(n + 3)!!

(∇2
)n/2

Aji . (3.54)

The (n− 1)!! term in the numerator results from the fact that there are (n+1)!! total delta
product terms in the solution to (3.54), but by incompressibility only those terms involving
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δjk are nonzero. This leaves (n − 1)!! nonzero terms, all of which yield
(∇2

)n/2
Aji when

contracted with the derivatives of Akl. The integral of the δljαik term in (3.52) gives a
similar result to that in (3.38), except that the i and j indices are once again switched. We
can thus rewrite (3.52) using (3.53) and (3.54) as

∂nAkl

∂xm∂xp . . .

[
(mp...)M

(n)
iljk

]
=

2kΛn

3(n + 1)
(∇2

)n/2 [(2− n) Aji −Aij ] (3.55)

−2kΛn(n + 2)(n− 1)!!
3(n + 3)!!

(∇2
)n/2 [(2− n)Aji −Aij ]

+
kΛn(n + 2)

6π

[
∂nAkl

∂xm∂xp . . .

] ∫

Ω

[rmrprq . . .

rn

]
[δikαlj + δkjαil − (n + 4) βiljk] dΩ .

Now considering the integral involving the δikαlj term we obtain

∂nAil

∂xm∂xp . . .

∫

Ω

[rmrprq . . .

rn

]
αljdΩ =

∂nAil

∂xm∂xp . . .

∫

Ω

rlrjrmrprq . . .

rn+2
dΩ , (3.56)

and using (2.31b) this is solved as

∂nAil

∂xm∂xp . . .

∫

Ω

rlrjrmrprq . . .

rn+2
dΩ =

∂nAil

∂xm∂xp . . .

4π

(n + 3)!!
[δljδmp . . . + δlmδjp . . . + · · · ] .

(3.57)
However, since Akl = ∂uk/∂xl, the order of the indices (l, m, p, . . .) on the right-hand side
of (3.57) is irrelevant, and each term gives the same result, namely

∂nAil

∂xm∂xp . . .
[δljδmp . . .] =

(∇2
)n/2

Aij . (3.58)

Since there are (n + 1)!! such terms in (3.57) we obtain

∂nAil

∂xm∂xp . . .

∫

Ω

rlrjrmrprq . . .

rn+2
dΩ =

4π(n + 1)!!
(n + 3)!!

(∇2
)n/2

Aij . (3.59)

A similar result is obtained for the δkjαil term in (3.55), again where the i and j indices
are switched, so (3.55) can be written as

∂nAkl

∂xm∂xp . . .

[
(mp...)M

(n)
iljk

]
=

2kΛn

3(n + 1)
(∇2

)n/2 [(2− n) Aji −Aij ] (3.60)

−2kΛn(n + 2)(n− 1)!!
3(n + 3)!!

(∇2
)n/2 [(2− n)Aji −Aij ]

+
2kΛn(n + 2)(n + 1)!!

3(n + 3)!!
(∇2

)n/2 [Aji + Aij ]

−kΛn(n + 2)(n + 4)
6π

[
∂nAkl

∂xm∂xp . . .

] ∫

Ω

[rmrprq . . .

rn

]
βiljkdΩ .
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Now for the last integral we can write

∂nAkl

∂xm∂xp . . .

∫

Ω

[rmrprq . . .

rn

]
βiljkdΩ =

∂nAkl

∂xm∂xp . . .

∫

Ω

rirjrkrlrmrprq . . .

rn+4
dΩ . (3.61)

We again note that by incompressibility, all terms involving δkl, δkm, δkp, etc. in the solution
to (3.61) are zero. Thus we only obtain nonzero contributions to the result from the δik and
δkj terms. Following the same reasoning used to obtain the result in (3.59), we can solve
(3.61) as

∂nAkl

∂xm∂xp . . .

∫

Ω

[rmrprq . . .

rn

]
βiljkdΩ =

4π(n + 1)!!
(n + 5)!!

(∇2
)n/2 [Aji + Aij ] . (3.62)

Note that here we have used the fact that of the (n+3)!! delta function terms in the solution
to (3.61), only the (n + 1)!! terms involving δik and the (n + 1)!! terms involving δjk give
a nonzero result when contracted with the derivatives of Akl. As in (3.58), the resulting
contracted terms are all equal, and switching i and j indices yields the final solution in
(3.62). Substituting (3.62) into (3.60) then yields

∂nAkl

∂xm∂xp . . .

[
(mp...)M

(n)
iljk

]
=

2kΛn

3(n + 1)
(∇2

)n/2 [(2− n) Aji −Aij ] (3.63)

−2kΛn(n + 2)(n− 1)!!
3(n + 3)!!

(∇2
)n/2 [(2− n)Aji −Aij ]

+
2kΛn(n + 2)(n + 1)!!

3(n + 3)!!
(∇2

)n/2 [Aji + Aij ]

−2kΛn(n + 2)(n + 4)(n + 1)!!
3(n + 5)!!

(∇2
)n/2 [Aji + Aij ] .

Adding the corresponding result for M
(n)
jlik to (3.63) then gives Π(r)

ij in (3.23) as

1
k
Π(r)

ij =
∞∑

n=0,even

[
C

(n)
2 Λn

(∇2
)n/2

Sij

]
, (3.64)

where the coefficients are

C
(n)
2 ≡ 4(n2 + 2n + 9)

3(n + 5)(n + 3)(n + 1)
. (3.65)

Since the indices in (3.65) and (3.64) are required to be even, we can change the index n

to (2n − 2), where then n = 1, 2, 3, . . .. This gives the final result for the nonlocal rapid
pressure-strain correlation from the present approach as

1
k
Π(r)

ij = C
(1)
2 Sij +

∞∑

n=2

[
C

(n)
2 Λ2n−2

(∇2
)n−1

Sij

]
(3.66)
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with

C
(n)
2 ≡ 16n2 − 16n + 36

3(2n + 3)(4n2 − 1)
, (3.67)

where Λ in (3.66) is from (3.36) and (3.39). In (3.67) it may be readily verified that
C

(1)
2 = 4/5 and C

(2)
2 = 68/315, consistent with (3.48) and (3.19). The first term on the

right in (3.66) accounts for purely local effects on Π(r)
ij , while the series term accounts for

nonlocal effects.
The result in (3.66) and (3.67) is the first rigorous formulation for the rapid pressure-

strain correlation Π(r)
ij that accounts for nonlocal effects due to spatial variations in the

mean velocity gradients. Within the central hypothesis on which the present approach is
based, the principal approximation used in deriving (3.66) and (3.67) is the exponential form
of f(r) in (3.38) for high-ReΛ turbulent flows. However, the only effect of this choice of
f(r) is in the resulting coefficients C

(n)
2 in (3.67). All other aspects of (3.66) are unaffected

by the particular form of f(r), and instead result directly from the fundamental approach
taken here in solving (3.9) via Taylor expansion of the mean velocity gradients ∂uk/∂xl to
account for nonlocal effects in Π(r)

ij .

The coefficients C
(n)
2 in (3.67) from the exponential representation of f(r) are shown in

Figure 3.5 and listed in Table 3.1 up to n = 8 for high-ReΛ flows. It is apparent that the
n = 1 term in (3.66), which accounts for the purely local contribution to Π(r)

ij as verified
in (3.48), is by far the dominant coefficient. The remaining coefficients for n = 2, 3, 4, . . .

correspond to the nonlocal contributions to Π(r)
ij , and can be seen in Figure 3.5 to decrease

only slowly with increasing order n. However, while C
(1)
2 is clearly the dominant coefficient,

in (3.66) the remaining coefficients are multiplied by successively higher-order Laplacians
of the mean strain rate field, and thus may produce net contributions to Π(r)

ij that are
comparable to, or possibly even larger than, the local term due to n = 1.

3.2.6 Corresponding Coefficients for ReΛ → 0

While the coefficients in (3.67) are appropriate for ReΛ À 1, in this section we use the
exact Gaussian form for f(r) in (3.40) that applies in the ReΛ → 0 limit to obtain the result
for Π(r)

ij applicable to low-ReΛ flows, as may occur in the near-wall region of wall-bounded
turbulent flows. Using this expression for f(r), the integrals in (3.41) can be calculated for
low-ReΛ as

∫ ∞

0
rn−2 df

dr
r2dr =

∫ ∞

0
rn df

dr
dr = −n!Λn

[
(n/2)!

n!

(
2√
π

)n]
, (3.68a)

∫ ∞

0
rn−1 d2f

dr2
r2dr = −(n + 1)

∫ ∞

0
rn df

dr
dr = (n + 1)!Λn

[
(n/2)!

n!

(
2√
π

)n]
, (3.68b)

∫ ∞

0
rn d3f

dr3
r2dr = (n + 2)(n + 1)

∫ ∞

0
rn df

dr
dr = −(n + 2)!Λn

[
(n/2)!

n!

(
2√
π

)n]
. (3.68c)
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The result for M
(0)
iljk in (3.43) is independent of the form of f(r) and thus is unchanged in

this limit, but now mpM
(2)
iljk in (3.44) is reduced by the factor 2/π to give

mpM
(2)
iljk =

4kΛ2

315π
[4δjkδilδmp − 3 (δijδklδmp + δjlδikδmp)− 24 (δilδjmδkp + δilδkmδjp) (3.69)

+4 (δijδlmδkp + δijδkmδlp + δjlδimδkp + δjlδkmδip + δikδlmδjp

+δikδjmδlp + δklδimδjp + δklδjmδip + δjkδimδpl + δjkδlmδip)] .

With the remaining higher-order terms (mp...)M
(n)
iljk, it may be readily verified that the result

for Π(r)
ij in (3.66) is unchanged in this low-ReΛ limit, but the coefficients C

(n)
2 are now given

by

C
(n)
2 =

16n2 − 16n + 36
3(2n + 3)(4n2 − 1)

[
(n− 1)!
(2n− 2)!

(
4
π

)n−1
]

, (3.70)

where again n = 1, 2, 3, . . .. The effect of the additional factor in (3.70) relative to (3.67)
is to damp the higher-order terms in the ReΛ À 1 coefficients, as shown in Figure 3.5. It
is apparent that in this ReΛ → 0 limit, only the first nonlocal term (n = 2) in (3.66) is
significant, with all higher-order coefficients being negligible. This may introduce significant
simplifications in near-wall modeling, where this limit applies as y+ → 0.

3.2.7 Relation to Rotta

The present result in (3.66) with (3.67) for ReΛ À 1 or (3.70) for ReΛ → 0 is the first
nonlocal rapid pressure-strain correlation that rigorously accounts for the effect of spatial
variations in the mean velocity gradients on the turbulence anisotropy. Previously, Rotta
[86] derived some of the components of M

(0)
iljk and mpM

(2)
iljk, although not enough to construct

the full series result for Π(r)
ij in (3.66). Using symmetry properties and isotropy arguments

Rotta was able to deduce several components of M
(0)
iljk as

M (0)
αααα = 0.4u′2 , M

(0)
ααββ = 0.8u′2 ,

where summation over Greek indices is not assumed and α 6= β 6= γ. The components of
M

(0)
iljk in (3.71) agree with the general expressions in (3.18) and (3.43) obtained by Crow

[16] and the present approach, although it should be emphasized that Rotta was unable
to obtain all components of the M

(0)
iljk tensor. It is also emphasized that these results are

independent of the specific representation for the correlation function f(r), and thus are
valid for all Reynolds numbers.

In agreement with the present study, Rotta showed that all components of mM
(1)
iljk are

identically zero. Using an inertial-range form for f(r) similar to (3.34), Rotta obtained
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several components of mpM
(2)
iljk in the high Reynolds number limit as

ααM
(2)
αααα = −0.52u′2L2 , ααM

(2)
ββββ = −0.104u′2L2 , (3.71)

ααM
(2)
ββγγ = 0.207u′2L2 , ααM

(2)
ββαα = −2.28u′2L2 , ααM

(2)
ααββ = 0.62u′2L2 ,

while in the low-Reynolds number limit Rotta used the Gaussian representation for f(r) in
(3.40) to obtain

ααM
(2)
αααα = −0.243u′2L2 , ααM

(2)
ββββ = −0.049u′2L2 , (3.72)

ααM
(2)
ββγγ = 0.097u′2L2 , ααM

(2)
ββαα = −1.07u′2L2 , ααM

(2)
ααββ = 0.292u′2L2 .

Note that rather than using the longitudinal integral scale Λ, Rotta expressed his results
[86] in terms of the transverse integral scale L, defined as

L ≡
∫ ∞

0
g(r)dr , (3.73)

where g(r) is the transverse correlation function. The two length scales are related by
L = 0.5Λ for incompressible flows, and this relation can be used directly in the ReΛ → 0 limit
to verify that the present low-ReΛ result for mpM

(2)
iljk in (3.69) agrees with the components

obtained by Rotta in (3.72).
For high Reynolds numbers, the inertial range representation for f(r) used by Rotta

is different than the exponential representation in (3.38), and subsequently the relation
L = 0.5Λ between the L defined by Rotta and Λ used herein does not hold in the high-
Reynolds number limit. These differences can be addressed by considering that in both the
present approach and the derivation by Rotta, the integral of [r2(df/dr)] from r = 0 to
r = ∞ is critical for obtaining mpM

(2)
iljk. This can be seen, for example, from the integrals in

(3.41) for n = 2. By contrast to the present approach however, where this integral is solved
in (3.41a) using the exponential f(r) in (3.38), Rotta instead used the relation

∫ ∞

0
r2 df

dr
dr = − 4

u′2

∫ ∞

0

F (κ)
κ2

dκ , (3.74)

where κ is the wavenumber. For high Reynolds numbers, the spectrum F (κ) is given by

F (κ) ∝
{

κ4 for small κ

κ−5/3 for large κ
, (3.75)

where the large-κ result is obtained from inertial range scaling arguments and is analogous
to the inertial range f(r) in (3.34). Using (3.75), Rotta obtained [86]

∫ ∞

0

F (κ)
κ2

dκ = 2.72u′2L2 . (3.76)
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and the integral in (3.74) can thus be solved as

∫ ∞

0
r2 df

dr
dr = −10.88L2 . (3.77)

Equating (3.77) with the present result in (3.41a) for n = 2 gives a relation between Λ used
herein and L used by Rotta as

L = 0.43Λ . (3.78)

Using this relation, the high-Reynolds number results obtained by Rotta in (3.71) can thus
be written in terms of the present Λ as

ααM
(2)
αααα = −0.064kΛ2 , ααM

(2)
ββββ = −0.013kΛ2 , (3.79)

ααM
(2)
ββγγ = 0.025kΛ2 , ααM

(2)
ββαα = −0.28kΛ2 , ααM

(2)
ααββ = 0.076kΛ2 ,

where we have used the relation u′2 = 2
3k for isotropic turbulence to obtain the results. It

is readily verified that the values in (3.79) agree with the corresponding tensor components
from (3.44).

The agreement with those components of mpM
(2)
iljk reported by Rotta [86] provides partial

validation of the present results. However, the present results go much further by address-
ing the complete components of (mp...)M

(n)
iljk for all n, thereby allowing the first complete

formulation of nonlocal effects in the rapid pressure-strain correlation Π(r)
ij due to spatial

variations in the mean-flow gradients ∂ui/∂xj .

3.2.8 Final Form of the Nonlocal Pressure-Strain Correlation

The present result for nonlocal effects in the rapid part Π(r)
ij of the pressure-strain

correlation, given by (3.66) with the coefficients C
(n)
2 in (3.67) or (3.70) and with Λ in

(3.36) and (3.39), can be combined with (1.22) for the slow part Π(s)
ij to give Πij in (1.15)

as

1
k
Πij = −C1

ε

k
aij + C

(1)
2 Sij +

∞∑

n=2

[
C

(n)
2 Λ2n−2

(∇2
)n−1

Sij

]
. (3.80)

In homogeneous flows, for which prior purely local models for Πij have been relatively
successful, the Laplacians of Sij in (3.80) vanish, and thus the present nonlocal pressure-
strain formulation recovers the local form from (1.22) and (3.19), since C

(1)
2 = 4/5 in both

(3.67) and (3.70).
Note that while the formulation for Πij in (3.80) addresses nonlocal effects due to varia-

tions in the mean strain, it does not address nonlocal effects that may arise due to inhomo-
geneities in the turbulence. For many free-shear and wall bounded flows it is expected that
in much of the flow the principal nonlocality in the anisotropy evolution will be captured
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by (3.80). However, in certain situations nonlocal effects due to turbulence inhomogeneities
may also be significant, and future work is required to address these effects. Nevertheless,
it will be seen from the nonlocal tests in Chapter V that the new nonlocal, nonequilibrium
anisotropy closure developed in the following, which is based on the nonlocal pressure-
strain formulation in (3.80), is sufficient to give substantially improved predictions of the
anisotropy in wall-bounded flows compared to prior purely local closure approaches.

3.3 The Nonlocal Anisotropy Transport Equation

When (3.80) is introduced in (1.15) it gives a new anisotropy transport equation that
accounts for both local and nonlocal effects via the present fundamental treatment of spatial
variations in the mean velocity gradients in (3.9). However, (3.80) does not account for
possible additional anisotropic effects in Π(r)

ij , since the present nonlocal pressure-strain
result in (3.80) is based on the central hypothesis that Ril(r) in (3.24) can be represented
by its isotropic form in (3.16). Fundamentally-based approaches for any such remaining
anisotropic effects in Πij have yet to be rigorously formulated, however it has been argued
(e.g., [51, 98]) that such additional anisotropy effects may be represented by higher-order
tensorial combinations of aij , Sij , and W ij . The most general of such combinations that
remains linear in aij is

1
k
Π(aniso)

ij = C3

(
ailSlj + Silalj − 2

3
anlSnlδij

)
+ C4

(
ailW lj −W ilalj

)
, (3.81)

where the constants C3 and C4 can be chosen to presumably account for such additional
anisotropic effects. In general, choices for these coefficients vary widely from one model to
another; a summary of various models is given in Ref. [99].

When (3.80) is combined with (3.81), it provides an anisotropy transport equation that
accounts for both local and nonlocal effects, as well as possible additional anisotropic effects,
in the pressure-strain correlation as

Daij

Dt
= −α1

ε

k
aij + α2Sij +

∞∑

n=2

[
C

(n)
2 Λ2n−2

(∇2
)n−1

Sij

]
(3.82)

−1
k

[
εij − 2

3
εδij

]
+ α3

(
ailSlj + Silalj − 2

3
anlSnlδij

)

−α4

(
ailW lj −W ilalj

)
+

1
k

[
Dij −

(
aij +

2
3
δij

)
D

]
,

where the C
(n)
2 coefficients are given in (3.67) or (3.70), and the αi are defined as

α1 =
P

ε
− 1 + C1 , α2 = C

(1)
2 − 4

3
, α3 = C3 − 1 , α4 = C4 − 1 . (3.83)

Values for the constants C1, C3 and C4 in (3.83) may be inferred from prior purely local
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models, such as the LRR [51] or SSG [98] models in (1.26) and (1.27), respectively, which are
all based on forms of (3.82) without the nonlocal effects given by the series term. However,
optimal values for these constants may change in the presence of the nonlocal pressure-strain
term in (3.83).

With respect to the remaining terms in (3.82), for high Reynolds numbers the dissipation
tensor εij is concentrated at the smallest scales of the flow, which are assumed to be isotropic.
Thus, consistent with the central hypothesis on which the present result for the pressure-
strain tensor is derived, the dissipation is commonly represented by its isotropic form in
(1.20), with the result that the dissipation term in (3.82) vanishes entirely. The only
remaining unclosed terms when (3.82) is used with the ensemble-averaged Navier-Stokes
equations are the transport terms Dij and D, and these are typically represented using
gradient-transport hypotheses, with several possible such formulations summarized in Ref.
[99].

A number of different approaches can be taken for solving (3.82), many of which have
been outlined in Section 1.3. First, (3.82) may be solved as a set of six coupled partial dif-
ferential equations, together with the ensemble-averaged Navier-Stokes equations, to obtain
a new nonlocal Reynolds stress transport closure that improves on existing approaches such
as the LRR and SSG models in strongly inhomogeneous flows. Alternatively, equilibrium
approximations may be used to neglect the Daij/Dt and Dij terms in (3.82) to obtain
a new explicit nonlocal equilibrium stress model for aij , analogous to the existing local
models developed, for example, by Gatski and Speziale [24], Girimaji [27], and Wallin and
Johannson [107] as discussed in Section 1.3.2.1. Perhaps preferably, a new explicit nonlocal,
nonequilibrium stress model for aij can be obtained from (3.82) following the approach in
Ref. [31], by retaining Daij/Dt and explicitly solving a quasi-linear form of (3.82).

3.4 New Nonlocal, Nonequilibrium Turbulence Anisotropy Closure

The new nonlocal, nonequilibrium anisotropy closure developed herein seeks to include
the finite-time response of the turbulence anisotropy found in full Reynolds stress transport
models, but will do so within a comparatively simple direct model for the anisotropy tensor
aij . In the following, the new closure is rigorously derived from the nonlocal transport
equation for the Reynolds stress anisotropy in (3.82).

3.4.1 Quasi-Linear Nonlocal Anisotropy Transport Equation

Motivated by the largely linear dynamics that govern the strain-vorticity alignment and
thus the anisotropy, as discussed in Section 3.1, here we retain only the first three terms on
the right-hand side of (3.82). This gives a nonlocal quasi-linearized dynamical equation for
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the anisotropy evolution as

Daij

Dt
= − 1

Λm
aij + α2Sij +

∞∑

n=2

[
C

(n)
2 Λ2n−2

(∇2
)n−1

Sij

]
, (3.84)

where the C
(n)
2 coefficients are given in (3.67) or (3.70), α2 is given in (3.83), and we have

denoted the resulting turbulence memory time scale Λm as

Λm ≡ CΛ
k

ε
, (3.85)

with
CΛ ≡ 1

α1
. (3.86)

Despite the dependence of α1 on P/ε, as noted in (3.83), here we will determine a constant
value for CΛ from the nonequilibrium test cases in Chapter IV. It should be noted that
the quasi-linear equation in (3.84) is similar in some respects to the Maxwell model for
linear viscoelastic fluids [6], where Λm is the analogous relaxation time. This connection
is not surprising, and Rivlin [82] and Crow [16] in particular have noted strong similarities
between the dynamics of the stresses in turbulent and viscoelastic fluids.

While the nonlocal quasi-linear equation in (3.84) lacks many of the higher-order in-
teractions between aij , Sij , and W ij on the right-hand side of (3.82), it still contains the
principal dynamics governing the evolution of the anisotropy in nonequilibrium turbulence,
where the mean strain rate varies rapidly with respect to the turbulence response time scale
Λm. The linearized anisotropy transport equation in (3.84) contains a “slow” (−aij/Λm),
a “fast” (α2Sij), and a nonlocal (via the Laplacians of Sij) contribution to the anisotropy
evolution. The “fast” term accounts for the direct response of the turbulence to changes in
the mean strain, and is often the leading term in rapid distortion analyses of the Reynolds
stress anisotropy equation [78]. The “slow” term represents the vortex scrambling noted
in Section 3.1 and thus accounts for the decreasing effect over time of the prior strain-
ing history on the local anisotropy. As a result, (3.84) addresses the two canonical limits
of nonequilibrium turbulence, namely turbulence subjected to impulsively applied mean
strain, where the “fast” term is dominant, and impulsively removed mean strain, where
the “slow” term is dominant. Moreover, Figure 3.6 shows for various shearing frequencies
in periodically-sheared homogeneous turbulence (in which the nonlocal terms can be ne-
glected) that the evolution of a12 predicted by (3.84) is in good agreement with results from
the full aij equation in (3.82) using the constants in (1.26), with only slight amplitude dis-
crepancies at the maxima and minima of each cycle. The nonlocal term in (3.84) accounts
for the effects of inhomogeneities in the mean strain rate on the anisotropy evolution, and
has not been addressed by prior closure approaches. By contrast to the current nonlocal
quasi-linear equation, a purely local form of (3.84) was originally proposed by Rotta [87],
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and was used, for example, by Yakhot, Orszag and co-workers [111] as the basis for a simple
“Reynolds stress transport model”, where the six equations for aij are solved together with
the k and ε equations.

3.4.2 The Nonlocal Effective Strain Rate Tensor

Here we will integrate (3.84) directly to obtain a relatively simple “direct Reynolds
stress model” that can be readily implemented in conventional two-equation frameworks
for closing the mean-flow equations in (1.2)-(1.4). Defining the nonlocal tensor Tij as

Tij ≡ Sij +
∞∑

n=2

[
C

(n)
2

α2
Λ2n−2

(∇2
)n−1

Sij

]
, (3.87)

the nonlocal quasi-linear equation in (3.82) is written as

Daij

Dt
= −α1

ε

k
aij + α2Tij . (3.88)

This equation is solved exactly as

aij(t) =
∫ t

t0

α2Tij(τ)h(t− τ)Dτ + aij(t0) exp
[
−

∫ t

t0

1
Λm(t′)

Dt′
]

, (3.89)

where t0 is the initial time and h(t− τ) is the impulse response function that represents the
effective “memory” of the turbulence, namely

h(t− τ) ≡ exp
[
−

∫ t

τ

[
Λm(t′)

]−1
Dt′

]
. (3.90)

The histories of both Tij and the time scale Λm along a mean-flow pathline are accounted
for in (3.89) and (3.90). Expanding the relaxation time scale Λm(t′) around the current
time t and integrating, (3.90) can be written as

h(t− τ) = exp
[
−(t− τ)

Λm(t)
+

1
2
(t− τ)2

D (1/Λm)
Dt

+ . . .

]
. (3.91)

Here it is assumed that the derivative terms in (3.91) are negligible relative to the leading
term, thus ignoring the explicit time history of Λm in the aij dynamics. However, the
history of Λm in (3.85) is still accounted for indirectly through the dynamical equations for
k and ε [e.g. (1.31) and (1.32)]. Thus the solution for aij from (3.89) becomes a convolution
integral of the form

aij(t) =
∫ t

−∞
α2Tij(τ)e−(t−τ)/Λm(t)Dτ , (3.92)

where t0 → −∞ and aij(−∞) ≡ 0. It should be noted that the convolution integral in
(3.92) is consistent with the heuristic result in (3.2) from Section 3.1. The present focus
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on nonequilibrium effects due to the “fast” term in (3.84), as well as the emphasis on
nonlocality, distinguishes the present approach from prior nonequilibrium eddy-viscosity
models [73, 113, 114], which have emphasized purely local nonequilibrium effects related to
the time variation of k/ε in the “slow” term and the associated time-varying eddy viscosity
νT (t). The closure in (3.92) also provides a direct model for the anisotropy, whereas various
prior nonequilibrium approaches [44, 100, 111] require the solution of more extensive sets
of coupled differential equations.

By noting [24] that Cµ in (1.36) is related to the αi as in (1.37), the convolution in
(3.92) can be equivalently written, with (3.85) and (3.86), as

aij(t) = −2Cµ
k

ε

1
Λm(t)

∫ t

−∞
Tij(τ)e−(t−τ)/Λm(t)Dτ . (3.93)

Since Λm(t) is a constant with respect to the integration variable τ , the effective strain
tensor S̃ij can be defined as

S̃ij(t) =
∫ t

−∞
Tij(τ)

e−(t−τ)/Λm(t)

Λm(t)
Dτ , (3.94)

in terms of which the nonlocal, nonequilibrium anisotropy closure can be written in a form
analogous to the traditional equilibrium closure in (1.38) as

aij(t) = −2Cµ
k

ε
S̃ij(t) . (3.95)

From (3.87) and (3.94), the nonlocal effective strain rate S̃ij is written in terms of Sij only
as

S̃ij =
∫ t

−∞
Sij(τ)

e−(t−τ)/Λm(t)

Λm(t)
Dτ +

∞∑

n=2

C
(n)
2

α2

∫ t

−∞

[
Λ2n−2

(∇2
)n−1

Sij

]
τ

e−(t−τ)/Λm

Λm
Dτ .

(3.96)
The closure in (3.95) with (3.94) or (3.96) thus accounts for nonequilibrium effects via
the history-dependent convolution integrals, as well as spatially nonlocal effects via the
Laplacians of Sij . In homogeneous flows, all Laplacians of Sij are zero and the second term
on the right-hand side of (3.96) can be neglected. The resulting formulation for S̃ij is then
identical to the purely nonequilibrium form derived in Ref. [31].

3.4.3 The Nonlocal, Nonequilibrium Anisotropy Hypothesis

By accounting for nonlocal effects in the pressure-strain correlation and retaining nonequi-
librium effects through solution of the quasi-linear transport equation in (3.84), a new
anisotropy closure for nonlocal and nonequilibrium effects in turbulent flows can be ob-
tained. The relation in (3.95) between the anisotropy aij and the effective strain, together
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with the definition of the eddy viscosity νT in (1.36), gives the final form

aij = −2
νT

k
S̃ij . (3.97)

The result in (3.97) is a general nonlocal, nonequilibrium anisotropy closure hypothesis that
replaces the classical local equilibrium anisotropy closure in (1.35). Comparison with (1.35)
shows that (3.97) is still an eddy viscosity formulation, and that it differs from the classical
closure only in that the anisotropy tensor is proportional to the nonlocal, nonequilibrium
effective strain rate tensor S̃ij in (3.96), rather than to the local instantaneous mean strain
rate tensor Sij . This new closure can thus be readily implemented in essentially any existing
computational framework for solving (1.2)-(1.4) based on an eddy viscosity approach, and
modeling of the eddy viscosity νT can be done by precisely the same methods as currently
used for the local equilibrium closure in (1.35).

It should be noted that the underlying convolution for the anisotropy in (3.92) is sim-
ilar in some respects to a constitutive equation proposed by Crow [16]. In the present
approach, however, the vortex scrambling effect that leads to the memory function h(τ)
in the convolution is arrived at in a more natural way from the simple formulation for
the slow pressure-strain correlation in (1.22). The Crow model is often cited [98, 99, 111]
for its prediction of α2 in the “fast” pressure-strain term in (3.84) (see for example equa-
tions (3.18) and (3.19)). Here however, we have used the more recent form in (1.22) for
the pressure-strain correlation to additionally incorporate effects due to the “slow” vortex
scrambling term in (3.84). Several other studies [30, 76] have also noted the importance
of the accumulated strain

∫
Sij(τ)dτ in the response of turbulence anisotropy subjected to

rapidly varying mean strain. However, this accumulated strain is derived from (3.84) by
retaining only the “fast” term (α2Sij), while the exponentially-decreasing “memory” effect
in (3.94) arises from the “slow” term (−aij/Λm). It has been noted [115] that the “slow”
term is necessary for correctly capturing the physics governing the anisotropy evolution in
periodically-sheared turbulence, and it will be seen in the test cases in Chapter IV that the
memory effect in (3.94) is an essential aspect of the nonequilibrium response of turbulence
anisotropy. Fundamentally however, none of these prior approaches address nonlocal effects
in the context of a nonequilibrium model, as is done here in (3.96) and (3.97).

The numerical value of the memory time scale coefficient CΛ in (3.86) can be anticipated
from the α1 values in various prior models. In particular, the stress relaxation model of
Yakhot et al. [111], the pressure-strain correlation models of Launder et al. [51] and Gibson
and Launder [26], and the explicit algebraic Reynolds stress model of Gatski and Speziale
[24] give corresponding values of CΛ from (3.86) shown in Table 3.2 (where P/ε ≈ 1.9 for
homogeneous flows was used to calculate α1). These earlier models thus suggest CΛ ≈ 0.3,
and it will be seen in Chapter IV that for the constants in (1.33) the value

CΛ = 0.26 (3.98)
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yields good agreement between the present closure and validation data for various test cases.
Modifications of the constants in (1.33) can lead to changes in (3.98), although CΛ remains
close to 0.3 for most commonly used values of the constants.

With respect to the extent of nonequilibrium and nonlocal effects in turbulent flows,
we can formulate single parameters that quantify the magnitude of both of these effects.
Such parameterizations are important for determining situations in which nonlocal and
nonequilibrium effects on the anisotropy are important, and for indicating flow conditions
in which significant improvements from the nonlocal, nonequilibrium closure in (3.97) are
expected compared to predictions from prior local equilibrium closures such as (1.35).

Nonequilibrium effects can be parameterized through consideration of the anisotropy
dynamics from the quasi-linear transport equation in (3.88). Defining the anisotropy mag-
nitude

a ≡ [aijaij ]
1/2 , (3.99)

we can multiply (3.88) by aij to obtain

1
2

Da2

Dt
= −α1

ε

k
a2 − |α2|Tij aij , (3.100)

where α1 > 0 and α2 < 0. On the right-hand side of (3.100) the first term is always negative,
since ε, k, and a2 are strictly positive, and as a consequence this term always contributes
to a relaxation toward isotropy. The second term on the right-hand side of (3.100) may be
positive or negative depending on the sign of Tij aij . The sum of these two terms may thus
be positive, in which case the local rate-of-change Da2/Dt in the anisotropy magnitude is
increasing, or may be negative, in which case the rate-of-change in the anisotropy magnitude
is decreasing.

The two terms on the right-hand side of (3.100) allow a measure of the local extent of
nonequilibrium effects in the flow. Since the first term reduces Da2/Dt by the “natural
relaxation” of the turbulence toward isotropy, we can take the ratio of the two terms as

−|α2|Tij aij

α1(ε/k)a2
= −|α2|

α1

k

ε

[
Tij aij

aij aij

]
≡ Ω . (3.101)

Whenever Ω = 1 we have Da2/Dt = 0 in (3.100), corresponding to local equilibrium in the
anisotropy dynamics. When Ω = 0 the turbulence is locally undergoing only its natural
relaxation toward isotropy due to the first term on the right-hand side of (3.100). When
0 ≤ Ω ≤ 1, the turbulence is locally undergoing retarded relaxation, since its relaxation is
slower than the “natural rate” due to the first term on the right-hand side of (3.100). When
−∞ < Ω < 0, the turbulence is undergoing accelerated relaxation to isotropy, since now
the natural relaxation due to the first term is aided by the effect from the second term.
Similarly, when Ω > 1 the right-hand side of (3.100) is positive, and thus we have locally
increasing anisotropy.
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With regard to equilibrium versus nonequilibrium dynamics in the turbulence anisotropy,
whether Da2/Dt in (3.100) is positive or negative depends only on whether the local
nonequilibrium effects drive the turbulence toward anisotropy or away from isotropy. By
contrast, the degree of nonequilibrium is measured by Υ ≡ |Ω− 1|, with Υ = 0 correspond-
ing to equilibrium (i.e. Da2/Dt = 0) and with increasing Υ corresponding to increasing
degrees of nonequilibrium in the anisotropy dynamics, regardless of whether the dynamics
are driving the turbulence toward larger or smaller anisotropy magnitudes. Note that Υ = 1
corresponds to the natural relaxation of turbulence towards isotropy in the absence of an
applied Tij .

From the definition of Ω in (3.101), the nonequilibrium parameter Υ is given by

Υ =
∣∣∣∣
|α2|
α1

k

ε

Tij aij

aij aij
+ 1

∣∣∣∣ . (3.102)

Using the present closure in (3.97) and the definition of Cµ in (1.37), we can write Ω in
terms of Tij and S̃ij as

Ω =
TijS̃ij

S̃ijS̃ij

, (3.103)

which then gives

Υ ≡
∣∣∣∣∣
TijS̃ij

S̃ijS̃ij

− 1

∣∣∣∣∣ . (3.104)

Thus, for the equilibrium condition Υ = 0 we obtain Tij = S̃ij . Nonzero values of Υ,
corresponding to nonequilibrium turbulence, are obtained when Tij and S̃ij are substantially
different. The expression for Υ in (3.104) will play a key role in characterizing the degree
of local nonequilibrium in the homogeneous test cases examined in Chapter IV.

A similar parameter characterizing the extent of nonlocal effects can be obtained from
comparison of Tij and Sij . Following a similar approach to that used to obtain (3.104), we
can define the nonlocal parameter Ψ as

Ψ ≡
∣∣∣∣
TijSij

TijTij
− 1

∣∣∣∣ . (3.105)

In purely local regions, such as might be found in homogeneous turbulence, Ψ = 0 since
Tij = Sij , whereas Ψ > 0 corresponds to increasing nonlocal effects on the anisotropy
evolution. The magnitude of Ψ in nonlocal inhomogeneous wall-bounded flows will be
considered in Chapter V.

While the closure given by (3.96) and (3.97) accounts for nonlocal and nonequilibrium
effects in turbulent flows, it neglects much of the nonlinear dynamics governing the evolution
of the anisotropy. The vorticity alignment studies in Chapter II and the comparison of the
truncated and full anisotropy transport equations for periodically-sheared turbulence in
Figure 3.6 indicate that the quasi-linearization of the anisotropy dynamics used to obtain
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the present closure is a reasonable approximation in many cases. However, in instances
where nonlinear effects due to the higher-order terms on the right-hand side of (3.82) are
significant, the present closure – which primarily addresses nonlocal and nonequilibrium
effects on the anisotropy – will not be able to account for certain important aspects of
the anisotropy dynamics. Similarly, the dependence of CΛ on P/ε and the time history
of Λm have been neglected in obtaining the closure in (3.96) and (3.97), with CΛ given
by (3.98). Thus, in cases where either Λm is rapidly varying or P/ε takes on extreme
values (for example, P/ε = 0), the assumptions used to obtain the present closure may
become inaccurate. With respect to the neglect of the explicit dependence of CΛ on P/ε,
a similar linear approach is also typically used when formulating a representation for Cµ,
which rigorously depends on P/ε from (1.37). Nevertheless, it will be seen from the tests
in Chapters IV and V that the neglect of certain nonlinear effects in the present closure
does not significantly affect the accuracy of the anisotropy predictions for a wide range
of problems. Furthermore, Appendix 6.2 gives insights into how nonlinear effects may
be incorporated in the present approach in the future, resulting in a nonlinear, nonlocal,
nonequilibrium closure for the anisotropy.

Finally, it should be noted that (3.94) bears a resemblance to the heuristically-motivated
background effective strain rate in (3.2). While Tij is not identical to the ensemble-averaged
SB

ij from (2.45), both are nonlocal tensors involving Laplacians of Sij . The key physical
motivation for the convolution integral in (3.2) comes from the vorticity alignment studies
in Chapter II. Namely, the alignment of the vorticity with the most extensional eigenvector
of the background strain rate suggests that the anisotropy responds in a quasi-linear manner
to a nonlocal measure of the strain rate. Based on the DNS studies in Chapter II and the
discussion in Section 3.1, this nonlocal strain rate was assumed in (3.2) to be S

B
ij . The

rigorously-derived closure in (3.97) and (3.94) suggests that while this assumption does not
seem to be quantitatively correct, it is at least qualitatively accurate. That is, the quasi-
linear response of the anisotropy in turbulent flows is driven by the nonlocal tensor Tij in
(3.87), as opposed to the local mean strain rate Sij assumed by previous models.

3.5 Practical Implementation of Nonlocal, Nonequilibrium Closure

Nonequilibrium effects in the effective strain rate S̃ij were introduced naturally in (3.94)
and (3.96) in the form of convolution integrals. These integrals can be directly evaluated
in homogeneous flows for given imposed strain rate histories Sij(t), as in the homogeneous
nonequilibrium tests that will be presented in Chapter IV. However, the convolution integral
does not readily lend itself to implementation in most computational frameworks for solving
(1.2)-(1.4), where only local instantaneous variables are typically available. The integral
can, however, be written in an equivalent time-local form that allows S̃ij to be readily
evaluated in terms of an infinite series of material derivatives of Sij .

The resulting infinite series, together with the infinite series of Laplacians for nonlo-
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cal effects in (3.96), introduces additional practical issues when using the present closure
to solve (1.2)-(1.4). In particular, the computational complexity of the closure increases
dramatically as higher-order terms are retained and as a result, practical implementation
requires truncation of the series for nonequilibrium and nonlocal effects. This in turn re-
quires special treatment of the integrals used to obtain (3.96) in order to avoid truncation
errors.

3.5.1 Time-Local Implementation of Nonequilibrium Effects

The Lagrangian history term Tij(τ) in the convolution integral in (3.94) can be expanded
about the current time t as

Tij(τ) = Tij − DTij

Dt

∣∣∣∣
t

(t− τ) +
1
2

D2Tij

Dt2

∣∣∣∣
t

(t− τ)2 + · · · . (3.106)

Substituting (3.106) in (3.94), the nonlocal effective strain rate can be written as

S̃ij(t) =
∫ t

−∞

e−(t−τ)/Λm

Λm

[
Tij − DTij

Dt
(t− τ) +

1
2

D2Tij

Dt2
(t− τ)2 + · · ·

]
Dτ , (3.107)

where the derivatives of Tij are evaluated at time t. Since these derivatives do not depend
on τ , (3.107) can be written as

S̃ij(t) =
∞∑

m=0

(−1)m

m!
DmTij

Dtm

∫ t

−∞
(t− τ)m e−(t−τ)/Λm

Λm
Dτ , (3.108)

which then gives

S̃ij(t) = Tij(t) +
∞∑

m=1

(−Λm)m DmTij

Dtm

∣∣∣∣
t

. (3.109)

The form of the nonlocal effective strain rate tensor in (3.109) is equivalent to the con-
volution integral in (3.94), but allows a time-local evaluation of S̃ij . With the nonlo-
cal, nonequilibrium anisotropy hypothesis in (3.97), the time-local form in (3.109) allows
straightforward implementation of the present closure in a computational framework where
only local instantaneous variables are available.

Writing (3.109) in terms of Sij using the definition of Tij in (3.87) then gives

S̃ij(t) = Sij(t) +
∞∑

m=1

(−Λm)m DmSij

Dtm

∣∣∣∣
t

+
∞∑

n=2

[
C

(n)
2

α2
Λ2n−2

(∇2
)n−1

Sij

]

t

(3.110)

+
∞∑

n=2

∞∑

m=1

C
(n)
2

α2
(−Λm)m Dm

Dtm

[
Λ2n−2

(∇2
)n−1

Sij

]
t
,

The first term on the right-hand side of (3.110) is the equilibrium response of the anisotropy
to the mean strain Sij found in the local equilibrium closure in (1.35). The second term

87



on the right in (3.110) accounts for nonequilibrium effects in the flow, while the third term
accounts for nonlocal effects due to spatial variations in the mean velocity gradient. The last
term in (3.110) is a mixed term that addresses both nonequilibrium and nonlocal effects,
and is only expected to be significant in flow regions that simultaneously exhibit both
strong nonequilibrium and inhomogeneity. The form for S̃ij in (3.110) is appropriate for
implementation in existing computational frameworks for solving (1.2)-(1.4), where typically
only local and instantaneous flow variables are available.

Note that using the time-local effective strain in (3.110) to account for nonlocal and
nonequilibrium effects requires that the applied strain Sij be both temporally and spatially
differentiable. The differentiability of the applied strain is not expected to be an issue for
most practical problems, but in the homogeneous nonequilibrium tests in Chapter IV the
applied mean strain will be seen to vary discontinuously in several instances. For example,
the applied strain in impulsively-sheared turbulence is non-differentiable at t = 0, and as
a result the time-local effective strain in (3.110) will be unable to account for the isotropic
state of the turbulence for t < 0. Similarly, the time-local form in (3.110) cannot account
for relaxation effects in unstrained, initially anisotropic turbulence if the applied strain is
assumed to have been impulsively removed. Such abrupt and discontinuous transitions are
not expected for most realistic problems however, and even in cases when the applied strain
varies rapidly (but still smoothly) the time-local effective strain from (3.110) will converge
to the full convolution formulation in (3.96) as an increasing number of terms are retained
in the series.

3.5.2 Truncated Form of Nonlocal, Nonequilibrium Anisotropy Closure

Implementation of the nonlocal, nonequilibrium closure in (3.97) with (3.110) requires
the calculation of numerous higher-order material derivatives and Laplacians of Sij . How-
ever, these higher-order derivatives may lead to stability issues associated with solving (1.2)-
(1.4) in engineering simulations, and will certainly increase the computational resources
required for the simulation. Tests using DNS or experimental data will also be affected,
since data from even highly-resolved DNS typically permits only six or seven derivatives of
the velocity field (e.g. Schumacher et al. [91]). Since there are (n− 1) Laplacians of Sij for
the nth term in (3.110), the expansion is therefore only well-resolved up to n = 4 for most
DNS data. Consequently, in nearly all applications of the nonlocal, nonequilibrium closure
in (3.97) with (3.110), it will be necessary to truncate the series expansions at finite n and
m for which issues due to computational requirements and grid resolution are not expected
to be prohibitive.

While the exact truncation order of the series in (3.110) is ultimately determined by the
specific user, application, and available computing resources, truncation of (3.110) imposes
restrictions on the limits of the r integrals in (3.30) and the τ integrals in (3.107). The
present closure approach accounts for nonlocal effects in the rapid pressure-strain correlation
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through Taylor expansion of Akl(x̂) about the point x, which gives the series in (3.23) with
the integral coefficients in (3.30). Similarly, the time-local nonequilibrium effects in (3.110)
are obtained through Taylor expansion of Tij(τ) in (3.94) about the current location and
time (x, t), which gives the relation in (3.107) as shown in Section 3.5.1. However, truncating
the infinite series in (3.110) is fundamentally equivalent to truncating the expansions for
Akl(x̂) and Tij(τ) in (3.22) and (3.106), respectively, and this can result in errors for the
representations of Akl(x̂) and Tij(τ) outside a certain region centered on x and t.

In order to avoid these errors, we can replace the infinite limits on the integrals in (3.30)
and (3.107) with finite bounds related to the order of the expansions for Akl(x̂) and Tij(τ).
For truncations of the expansion for Akl at order N , we integrate r in (3.30) from 0 to the
length scale R, and for truncations of the expansion for Tij at order M we replace −∞ in
the lower integration bound of (3.107) with the parameter Γ. Both R and Γ are related to
the orders N and M of the expansions, as well as to the degree of local variation in Akl and
Tij . In general, only for N →∞ and M →∞ can we set R →∞ and Γ → −∞.

Replacing the upper integration bound on the integrals over r in (3.30) with R, integra-
tion using the exponential f(r) in (3.38) gives

∫ R

0
rn−2 df

dr
r2dr = −n!Λn

[
γ

(n)
1 (R/Λ)

]
, (3.111a)

∫ R

0
rn−1 d2f

dr2
r2dr = (n + 1)!Λn

[
γ

(n)
2 (R/Λ)

]
, (3.111b)

∫ R

0
rn d3f

dr3
r2dr = −(n + 2)!Λn

[
γ

(n)
3 (R/Λ)

]
, (3.111c)

where

γ
(n)
j (x) ≡ 1− e−x

n+j∑

i=1

xi−1

(i− 1)!
. (3.112)

As shown in Figure 3.7, for any n the γ
(n)
j coefficients are bounded by 0 and 1, and thus

behave as damping functions in (3.111). In the limit R/Λ → ∞, (3.112) gives simply
γ

(n)
j = 1 and we obtain the results in (3.41). It should be noted that as the order n

increases, the γ
(n)
j coefficients in Figure 3.7 decrease for any particular value of R/Λ. As

a result, for any finite R/Λ the higher-order n terms in (3.29) make a relatively smaller
contribution to the final result.

With (3.111) and (3.112), we can then write (3.42) as

(mp...)M
(n)
iljk =

kΛn

6π

∫

Ω

[rmrp . . .

rn

] [
γ

(n)
1 aijkl − (n + 1)γ(n)

2 bijkl (3.113)

+(n + 2)(n + 1)γ(n)
3 cijkl

]
dΩ .

Following the same approach used to obtain (3.43) and (3.44), it can be shown that M
(0)
iljk
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and mpM
(2)
iljk are given from (3.113) as

M
(0)
iljk =

2k

45

[(
32γ

(0)
1 − 28γ

(0)
2 + 8γ

(0)
3

)
δilδjk −

(
8γ

(0)
1 − 7γ

(0)
2 + 2γ

(0)
3

)
(δijδkl + δjlδki)

]
,

(3.114)

mpM
(2)
iljk =

2kΛ2

315

[(
88γ(2)

1 − 156γ
(2)
2 + 72γ(2)

3

)
δjkδilδmp (3.115)

−
(
24γ(2)

1 − 33γ
(2)
2 + 12γ(2)

3

)
(δijδklδmp + δjlδikδmp)

−
(
24γ(2)

1 + 72γ
(2)
2 − 72γ(2)

3

)
(δilδjmδkp + δilδkmδjp)

+
(
4γ

(2)
1 + 12γ

(2)
2 − 12γ

(2)
3

)
(δijδlmδkp + δijδkmδlp + δjlδimδkp + δjlδkmδip

+ δikδlmδjp + δikδjmδlp + δklδimδjp + δklδjmδip + δjkδimδpl + δjkδlmδip)] .

Contracting (3.114) and (3.115) with the derivatives of Akl and then gives the first two
terms of Π(r)

ij as

Π(r)
ij (x) =

4k

15

(
8γ

(0)
1 − 7γ

(0)
2 + 2γ

(0)
3

)
Sij +

4kΛ2

315

(
80γ

(0)
1 − 75γ(0)

2 + 12γ
(0)
3

)
∇2Sij + · · · ,

(3.116)
where Akk ≡ 0. Following a derivation similar to that in Section 3.2.3 it can be shown
that the general higher-order representation for Π(r)

ij – which now accounts for the finite
convergence radius R – is given by

Π(r)
ij = k

N∑

n=1

C
(n)
2 Λ2n−2

(∇2
)n−1

Sij , (3.117)

where N denotes the order of the truncation, and the coefficients C
(n)
2 are written as

C
(n)
2 =

32n

3(2n + 3)(2n− 1)
γ

(2n−2)
1 +

4(2n− 9)
3(2n + 3)

γ
(2n−2)
2 − 8n(2n− 5)

3(2n + 3)(2n + 1)
γ

(2n−2)
3 . (3.118)

For convenience, Table 3.1 lists values of C
(n)
2 up to n = 8, corresponding to seven Laplacians

of Sij in (3.117). Note that the general form of the nonlocal, nonequilibrium anisotropy clo-
sure in (3.110) and (3.97) is essentially unchanged by the finite-R formulation; the primary
difference between the two formulations are the new C

(n)
2 coefficients in (3.118).

With respect to the nonequilibrium terms, for truncation at highest order M the inte-
gration limits in (3.107) become τ = Γ to τ = t, and the expansion in (3.107) can be written
as

S̃ij(t) =
M∑

m=0

(−1)m

m!
DmTij

Dtm

∫ t

Γ
(t− τ)m e−(t−τ)/Λm

Λm
Dτ . (3.119)
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It can be shown that solution of the integrals in (3.119) gives

S̃ij(t) =
M∑

m=0

(−Λm)m DmTij

Dtm

[
γ

(m)
1

(
t− Γ
Λm

)]
, (3.120)

where the damping function γ
(m)
1 is defined in (3.112). Once again, for Γ → −∞ we obtain

γ
(m)
1 → 1, and the result in (3.110) is recovered. By analogy with the coefficients C

(n)
2 in

(3.117), we can define

B(m) ≡ γ
(m)
1

(
t− Γ
Λm

)
, (3.121)

which from (3.120) gives

S̃ij(t) = B(0)

[
Tij +

M∑

m=1

B(m)

B(0)
(−Λm)m DmTij

Dtm

]
. (3.122)

With (3.117) and (3.122), the final truncated time-local representation for S̃ij in (3.110)
can be written as

S̃ij(t) = Sij(t) +
M∑

m=1

B(m)

B(0)
(−Λm)m DmSij

Dtm

∣∣∣∣
t

+
N∑

n=2

[
C

(n)
2

α2
Λ2n−2

(∇2
)n−1

Sij

]

t

(3.123)

+
N∑

n=2

M∑

m=1

C
(n)
2

α2

B(m)

B(0)
(−Λm)m Dm

Dtm

[
Λ2n−2

(∇2
)n−1

Sij

]
t
,

where the C
(n)
2 are defined in (3.118) and the B(m) are defined in (3.121). With (3.123) the

anisotropy closure is still given by (3.97), but now the eddy viscosity, previously defined in
(1.36) with Cµ given by (1.37), is written as

νT = −
B(0)

[
C

(1)
2 − 4/3

]

2α1

k2

ε
. (3.124)

In contrast to most prior approaches there is a damping effect due to the B(0) and C
(1)
2 co-

efficients. For R →∞ and Γ → −∞, C
(1)
2 attains the standard value 4/5 and B(0) = 1, but

it is clear from (3.124) that the finite-R and finite-Γ formulations in the present approach
introduce a dependence on R/Λ and (t−Γ)/Λm in νT . Coupled with the dependence of α1

on P/ε, the formulation for the eddy viscosity from (3.124) is substantially different than
the classical form in (1.36) with the constant Cµ in (1.39). Since nearly all practical imple-
mentations of (3.97) with (3.123) will require relatively small N and M , the finite R and
Γ effects in νT may become important, particularly in regions with strong inhomogeneities
or nonequilibrium effects. While this may introduce a connection between the present ap-
proach and prior ad hoc damping functions for the eddy viscosity, this connection will not
be explored in more detail here. For the tests in Chapters V and IV, we will continue to
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use standard forms for νT , such as that in (1.36) with Cµ given by (1.39) or the realizable
form in (1.40).

3.5.3 Representation for Radius of Convergence R

Closure of the anisotropy using (3.97) with (3.123) requires formulations for R appearing
in the C

(n)
2 coefficients given by (3.118), and for Γ appearing in the B(m) coefficients given

by (3.121). While the parameter Γ is important in nonequilibrium turbulent flows, here we
focus specifically on the representation for R, since the N = 2 truncated form for S̃ij from
(3.123) will be used for the wall bounded nonlocal tests in Chapter V.

As noted in Section 3.5.2, R is fundamentally determined by competition between two
opposing effects, one physical and the other practical. From a physical standpoint, R should
be as large as possible in order to obtain good agreement between the result in (3.117) with
(3.118) and the full integral solution for Π(r)

ij in (3.9), which is strictly defined as an integral
over (−∞,∞). This would suggest that good agreement requires R → ∞, or at the very
least R À Λ. At the same time however, the largest allowable value of R is practically
limited by the size of the region in which truncations of (3.22) are good approximations
to the exact Akl(x + r). Fundamentally, the accuracy of the approximation at any point
is determined by both the order N and the smoothness of Akl near the point of interest.
In general, the allowable R increases as N increases, or the local inhomogeneity in Akl

decreases. Conversely, for small N or rapidly varying Akl the allowable R will generally
become relatively small. Only in the limit N →∞ does the allowable radius R go to ∞.

Thus, we can make the following exact statement: R is strictly defined as the radius of the
largest spherical region centered on x in which the N th-order truncation of (3.22) is in good
agreement with the exact value of Akl(x + r) within the region. To obtain good agreement
with the integral in (3.9), R should ideally be greater than Λ, although this condition
may be impractical for the relatively small N permitted by the available computational
resources as well as issues of numerical stability. As a result, a good approximation to the
full integral for Π(r)

ij in (3.9) may be obtained for values of R near Λ. In the following we

will let R ∝ Λ, and consequently the ratio R/Λ appearing in the γ
(n)
j damping coefficients

in (3.112) is constant everywhere in the flow. It will be seen from comparisons with DNS
of fully-developed turbulent channel flow and experiments of the zero pressure gradient
turbulent boundary layer that for truncation at N = 2 in (3.123), the value

R

Λ
≈ 0.9 , (3.125)

is sufficient to give good agreement with DNS and experimental results well into the near-
wall region of both flows.
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3.6 Relation to Prior Anisotropy Closure Models

The present closure given by (3.97) with the effective strain in (3.96), (3.110), or (3.123)
is the first anisotropy closure that seeks to rigorously capture both nonlocal and nonequi-
librium effects in turbulent flows within a relatively simple closure framework. However,
there have been several prior attempts to predict either nonlocal or nonequilibrium effects
within existing closure approaches for the anisotropy, and the strengths and weaknesses of
each approach can be better understood in light of the developments used to obtain the
present closure.

3.6.1 Relation to Prior Nonlocal Approaches

A number of approaches for addressing nonlocal effects in standard anisotropy closures
have been proposed over the last several decades. Nearly all such approaches have been
aimed at extending conventional closures, such as the classical local equilibrium closure
in (1.35), into the near-wall region of wall-bounded flows where the mean shear becomes
large and strongly inhomogeneous. As noted in Chapter I and Section 3.2, perhaps the
most common method of addressing near-wall effects in standard models is to introduce an
empirically-determined damping function fµ in the eddy viscosity (e.g. Jones and Launder
[43], Abid [1], and Rodi and Mansour [84]). These damping functions typically depend on
the distance to the nearest viscous wall and are calibrated to give good agreement with
experimental or computational data from either channel or boundary layer flows.

Fundamentally however, these approaches are simply ad hoc corrections to account for
the omission of important physical effects in the derivation of simple closure approaches such
as (1.35). Consequently, there has been substantial research on more rigorous approaches for
predicting nonlocal effects due to nonuniformities in the mean velocity gradient, resulting
in several notable prior approaches.

Launder and Tselepidakis [53, 54] have attempted to account for nonlocal effects in
the pressure-strain correlation by replacing Sij and W ij in (1.25) with the effective mean
velocity gradient tensor

∂ui

∂xj

∣∣∣∣
eff

=
∂ui

∂xj
+ clln

∂ln
∂xk

∂2ui

∂xj∂xk
, (3.126)

where cl = 0.3, ln = (k/ε)(u′pu′qnpnq), and n is the outward unit vector normal to the
wall. In contrast to the present approach, (3.126) attempts to simultaneously address
inhomogeneities in both the turbulence length-scale k3/2/ε (related to ln) as well as the
mean velocity gradient field. By addressing such inhomogeneities, improved predictions for
the Reynolds stresses in the near-wall region of the turbulent channel flow were obtained
[53]. However, the mathematical foundations of (3.126) remain unclear, and subsequent
versions of the modification in (3.126) were proposed to remove the somewhat undesirable
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dependence on the wall-normal unit vector n [50].
The fundamental difference between the approach by Launder and Tselepidakis and

that proposed herein is tied to the homogeneous representation for the two-point turbulence
correlation Ril(r) in (3.16), which implicitly assumes ∂ln/∂xk = 0. The present approach
is based on the central hypothesis that nonlocal effects on the anisotropy in the near-wall
region are substantially due to variations in the mean velocity gradient, and it will be
seen from the channel flow and boundary layer tests in Chapter V that addressing these
nonlocal effects gives good agreement with computational and experimental results well
into the near-wall region of both flows. By contrast, the importance of nonlocal effects due
to inhomogeneities in the turbulence, as addressed by (3.126), can be understood from an
approach proposed by Manceau et al. [62], where the exponential correlation function f(r)
in (3.38) is reformulated to account for gradients in the turbulent length scale Λ as

f(r) = exp
[
− r

Λ + rm∂Λ/∂xm

]
. (3.127)

Taylor expansion of (3.127) then results in

f(r) = e−r/Λ +
r2

Λ2

rm

r

∂Λ
∂xm

e−r/Λ , (3.128)

where higher order terms have been neglected. The first term in (3.128) is identical to (3.38)
and thus gives the present result in (3.66) and (3.67), but the second term provides an ad-
ditional nonlocal correction due to inhomogeneities in Λ. It can be shown that substitution
of (3.128) in (3.30) introduces an additional factor of rm/r in the integrand, and as a result
the n = odd terms in the expansion for Πij are nonzero. This is in contrast to the leading
exponential term in (3.128), which has already been shown to yield nonzero integrals in
(3.29) for n = even only. The resulting odd-order terms from (3.128) introduce derivatives
of Sij combined with gradients of Λ, namely terms of the form (∂Λ2/∂xm)(∂Sij/∂xm), as in
the Launder and Tselepidakis approach from (3.126). For fully-developed turbulent chan-
nel flow, this additional term reaches its maximum value at y+ ≈ 8, whereas the first-order
Laplacian of S12 from the present result in (3.66) attains its maximum y+ ≈ 14, as shown
qualitatively in Figure 3.8. Thus it is only very near the wall that inhomogeneities in Λ may
become important, and the present focus on nonlocal effects due to variations in Sij , as
opposed to inhomogeneities in the turbulence considered in (3.126), will be seen in Chapter
V to give substantially improved predictions of the anisotropy in the near-wall region of the
channel and boundary layer flows.

Perhaps the most notable prior approach for addressing nonlocal effects on the anisotropy
evolution is the elliptic relaxation method, first proposed by Durbin [20, 21], where Πij is
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obtained through solution of the additional equation

φij − L2∇2φij =
1
k
Πh

ij , (3.129)

where
Πij = kφij , (3.130)

and Πh
ij is a homogeneous representation for the pressure-strain correlation as in (1.25).

The length scale L in (3.129) is given by

L = CLmax

[
k3/2

ε
, CηηK

]
, (3.131)

where [62] CL = 0.2, Cη = 80, and ηK is the Kolmogorov length scale. Physical justification
for (3.129) is typically provided by noting that the Poisson equation in (3.4) can be rewritten
as [78]

1
ρ
∇2p′(x) = F (x) , (3.132)

where F (x) denotes the right-hand side of (3.4). The solution for the pressure-strain corre-
lation Πij in (1.10) is then given by

Πij(x) ≡ 2
ρ

p′(x)S′ij(x) = − 1
2π

∫ ∞

−∞
F (y)S′ij(x)

dy
|x− y| . (3.133)

The correlation F (y)S′ij(x) can be modeled using the approximate relation [78]

F (y)S′ij(x) ≈ F (y)S′ij(y)e−|x−y|/L , (3.134)

which is then substituted into (3.133) to yield

Πij(x) = 2
∫ ∞

−∞
F (y)S′ij(y)

[
− 1

4π

e−|x−y|/L

|x− y|

]
dy . (3.135)

The physical argument is completed [78] by noting that, when multiplied by L2, the term
in square brackets in (3.135) is the Green’s function for the operator (I − L2∇2) on the
left-hand side of (3.129). The right-hand side of (3.129) is obtained by assuming Πh

ij(x) =
F (x)S′ij(x). The accuracy of elliptic relaxation approaches thus depends in large part
on the latter assumption as well as the validity of the approximation in (3.134), both of
which are somewhat tenuous. Nevertheless, it has been shown that such approaches are
relatively successful in a variety of flows [18, 21, 62]. The appearance of the Laplacian
operator in both (3.129) and the present closure also suggests a connection between the
two approaches which is undoubtedly due, at some fundamental level, to the functional
similarity between the approximation in (3.134) and the exponential representation for
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f(r) used herein. However, there is still uncertainty as to the correct form for (3.129) in
wall-bounded flows, and both the representation for the right-hand side of (3.129) and the
approximation in (3.134) remain weaknesses in the physical justification for the approach
(see Manceau et al. [61, 62] for a discussion of various possible modifications and their
respective effects on the anisotropy in fully developed channel flow). Perhaps most telling,
Durbin and Pettersson-Reif have noted [22] that while the elliptic relaxation method gives
improved predictions of the pressure-strain correlation, it is not yet mathematically clear
why this is the case. The present approach for addressing nonlocal effects may provide some
clues as to the accuracy of the elliptic relaxation method, particularly with respect to the
appearance of the Laplacian operator in both approaches, but this connection will not be
explored in more detail here.

3.6.2 Relation to Prior Nonequilibrium Models

While the nonequilibrium effects in the anisotropy closure outlined herein enter naturally
through the effective strain rate tensor S̃ij in (3.97), there have been several prior approaches
that have sought to introduce nonequilibrium effects within the traditional equilibrium
closure via various modifications to the eddy viscosity νT in (1.35).

For example, Olsen and Coakley [73, 74] have developed a relatively straightforward
nonequilibrium eddy viscosity model that takes into account nonequilibrium effects by solv-
ing an additional transport equation for the eddy viscosity as

DνT

Dt
= a0

ε

k
(νTe − νT ) , (3.136)

where a0 ≈ 3.9. The parameter νTe is the equilibrium eddy viscosity, given in (1.36) in the
context of a k-ε implementation, and the transport equation for νT in (3.136) is then solved
with the equations for k and ε in (1.31) and (1.32). However, the equilibrium closure in
(1.35) is still used to relate the Reynolds stresses to the eddy viscosity νT and the mean
strain rate tensor Sij .

The Olsen and Coakley model shows modest improvements over standard equilibrium
models for a range of flow problems. However, despite the inclusion of the additional
transport equation for νT , owing to the equilibrium relation between aij(t) and Sij(t) in
(1.35) the model cannot predict the phase lag between the strain rate Sij(t) and the re-
sulting anisotropy aij(t) in periodically-sheared turbulence, as shown in Figure 3.9. While
the additional eddy-viscosity transport equation accounts for some nonequilibrium effects,
the continued reliance on the instantaneous mean strain rate tensor in the equilibrium
anisotropy closure inherently limits the model in accurately accounting for nonequilibrium
effects.

In a somewhat similar approach, Yoshizawa and Nisizima [112, 113] have proposed a
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lagged eddy viscosity having the basic form

νT = νTe − C
k

ε

DνTe

Dt
, (3.137)

where νTe is the equilibrium eddy viscosity in (1.36). More recently Yoshizawa, Nisizima
and co-workers [114] developed a modified version of the same basic model, in which (3.137)
is replaced by

νT =





νTe

[
Λy + CA

1
k

D
Dt

(
k2

ε

)]−1
for DνTe

Dt > 0

νTe

[
1

Λy
− CA

Λ2
y

1
k

D
Dt

(
k2

ε

)]
for DνTe

Dt < 0
(3.138)

where Λy is a dimensionless parameter that depends on Sk/ε and Wk/ε, with W ≡(
2W ijW ij

)1/2. However, this approach still uses the equilibrium closure in (1.35) to relate
the anisotropy aij(t) to the mean strain rate tensor Sij(t). Thus, although this nonequilib-
rium eddy-viscosity model was seen, for example, to improve agreement with DNS results in
homogeneous sheared turbulence [113, 114], the phase properties in the resulting anisotropy
evolution for periodically sheared turbulence are not substantially different from those in
Figure 3.9 using the Olsen and Coakley model.

Recently Revell et al. [80] proposed a novel nonequilibrium k-ε-Cas eddy-viscosity model
in which an additional parameter

Cas = −aijSij

S
, (3.139)

is used to account for alignment between the Reynolds stress and mean strain rate tensors.
In this case, the turbulence kinetic energy production is written as P = CaskS, and an
additional transport equation is solved to determine Cas. This additional equation can be
incorporated into standard approaches such as the SKE model, in which case the eddy
viscosity becomes

νT = k min
[
Cµk

ε
,
Cas

S

]
, (3.140)

and the usual transport equations in (4.3) and (4.4) are solved for k and ε. However,
as with the Olsen and Coakley and Yoshizawa and Nisizima models, the k-ε-Cas model
fundamentally still employs the Boussinesq equilibrium closure between the anisotropy aij(t)
and the mean strain Sij(t). Thus, while the k-ε-Cas model shows some improvement over
the SKE model in predicting the evolution of periodically strained homogeneous turbulence
[80], it still predicts zero anisotropy for zero applied strain, resulting in poor agreement
with DNS for the periodically-sheared case when the applied shear is zero.

All of the prior nonequilibrium models noted above modify the eddy viscosity νT to
account for nonequilibrium effects, but still use the equilibrium closure in (1.35) to relate
the anisotropy aij to the mean strain rate Sij . While such νT modifications allow some
nonequilibrium effects to be addressed, it is clear that a general nonequilibrium Reynolds
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stress closure cannot represent the anisotropy aij as being directly proportional to Sij as in
(1.35), and must take into account the straining history of the turbulence via some method
such as the effective strain rate S̃ij in the present nonequilibrium closure.

3.6.3 Relation to Prior Nonlinear Models

In order to retain some dependence on the straining history, several prior anisotropy
models [38, 95, 102, 112] have included various time derivatives of Sij in nonlinear expan-
sions of the anisotropy to obtain the most general closure possible. However, in contrast
to the present closure the focus of most prior nonlinear models has not been explicitly on
nonequilibrium effects due to Lagrangian variations in the mean strain rate, often to the
detriment of the model accuracy in nonequilibrium flows.

For instance, using the most general nonlinear constitutive equation for the Reynolds
stress tensor, Speziale [95] devised a nonlinear k-ε anisotropy closure of the form

aij = −2Cµ
k

ε
Sij − 4CDC2

µ

(
k

ε

)2 (
SilSlj − δij

3
SnlSnl

)
(3.141)

−4CEC2
µ

(
k

ε

)2 (DSij

Dt
− δij

3
DSll

Dt

)
,

where CD = CE ≈ 1.68 and D/Dt denotes the Oldroyd derivative defined as

DSij

Dt
=

DSij

Dt
− ∂ui

∂xl
Slj − ∂uj

∂xl
Sli . (3.142)

The analogous memory time scale in the Speziale model is Λm = 2CECµ (k/ε), which
comparing with (3.85) shows that CΛ = 2CECµ. Typically, Cµ is given a value between
0.08 and 0.09, and for this range the Speziale model gives a memory time scale coefficient
CΛ between 0.27 and 0.30, which is in good agreement with the value in (3.98) used for the
preceding test cases.

However, in deriving the empirical constants CE and CD, Speziale relied on fully devel-
oped turbulent channel flow data, for which the material derivative DSij/Dt is zero. This
has significant consequences for application of the Speziale model to nonequilibrium flows,
since the sign accompanying the DSij/Dt term in (3.141) is opposite that accompanying
the first-order DSij/Dt term in the present closure using (3.110). The discrepancy arises
because the Oldroyd derivative was introduced in the Speziale model in an ad hoc manner
to obtain the most general nonlinear expansion for the Reynolds stress anisotropy, with the
coefficient CE determined from channel flow data where DSij/Dt = 0. The Lagrangian
derivatives of the mean strain in (3.110), on the other hand, are derived from the expansion
of the effective strain rate in (3.107), which is itself directly linked to the physics underlying
the evolution of the anisotropy, as embodied in (3.84).

The effects of the differing signs become especially apparent in periodically-sheared
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turbulence. Using the Speziale model as in (3.141), Figure 3.10 shows that the phase of
the resulting anisotropy is significantly different than in the DNS data. A similar Reynolds
stress model by Huang and Ma [38] also includes a negatively-signed Oldroyd derivative
term, as in (3.141), and is therefore expected to be comparably limited in simulating the
anisotropy dynamics in periodically-sheared turbulence.

It should be noted that as an intermediate step in the derivation of a nonlinear Reynolds
stress model, Taulbee [102] derived an expression for the anisotropy of the form

aij = −2Cµ
k

ε
Sij − 4α2

(
k

ε

)2 (
SilW lj −W ilSlj

)
(3.143)

−4α3

(
k

ε

)2 (
SilSlj − 1

3
SnlSnlδij

)
+ 4C ′

µ

(
k

ε

)2 DSij

Dt
+ . . . ,

where the only relevant constant for this discussion is C ′
µ = 1

2 (0.35) Cµ, where Cµ ≈ 0.09
and we have taken P/ε ≈ 1.9. While the final nonlinear Reynolds stress model devised by
Taulbee cannot capture certain nonequilibrium effects due to its dependence on the local
and instantaneous values of Sij and W ij , it can be seen that the sign accompanying the
DSij/Dt term in the intermediate result in (3.143) is positive, in agreement with the present
model in (3.97) using (3.110). When applied to periodically-sheared turbulence the closure
in (3.143) gives the anisotropy evolution shown in Figure 3.11, which is clearly in better
agreement with the DNS results than is the Speziale model, due to the correctly predicted
sign accompanying the DSij/Dt term in (3.143).

Thus, in the form in (3.97) with (3.110) for the present nonequilibrium closure the
time derivative of the strain rate results directly from the physics underlying nonequilib-
rium turbulence anisotropy, resulting in a model that reveals the correct dependence of
the anisotropy on time variations in the mean strain rate tensor. Moreover, the coefficient
CΛ associated with this term in (3.110) will be validated for a wide range of nonequilib-
rium flows in Chapter IV, resulting in increased accuracy over prior models that introduce
nonequilibrium effects in an ad hoc manner.
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Figure 3.1: Schematic showing material elements arriving at (x, t) along different pathlines
in three realizations of the same turbulent flow. Anisotropy aij(x, t) results
from ensemble average over all elements at (x, t), and thus reflects vorticity
alignments due to different straining histories along different pathlines. R(τ)
shows representative ensemble of all elements at earlier time τ , revealing effect
of strain and rotation histories of mean-flow streamline on aij(x, t).
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12 ≈ (1/2)∂u+/∂y+ for a range of Reynolds numbers from the

turbulent channel flow DNS of Iwamoto et al. [39]. Inhomogeneities in S
+
12

become significant for y+ < 60, as indicated by the vertical line.
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Figure 3.3: Comparison of exponential f(r) in (3.38) with experimental data from axisym-
metric turbulent jet [109] (a) and planar turbulent mixing layer [110] (b), and
with DNS data from turbulent channel flow at Reτ = 650 [39] (c).
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Figure 3.4: Comparison of inertial range and exponential forms for f(r) from (3.34) and
(3.38), respectively. In both cases, f(r) is shown as a function of r/Λ and
Cλ = 0.23 in (3.39) gives good agreement between the two forms.
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Figure 3.5: Comparison of rapid pressure-strain coefficients C
(n)
2 from (3.67) for the high-

Reynolds number exponential f(r) in (3.38), and from (3.70) for the low-
Reynolds number Gaussian f(r) in (3.40).
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Figure 3.6: Comparison of anisotropy a12(t) from full aij equation in (1.28) and truncated
quasi-linear form in (3.84) for shearing frequencies ω/S = 0.25 (a), ω/S = 0.5
(b), and ω/S = 1.0 (c); both curves are for LRR [51] constants in (1.26).
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Figure 3.9: Comparison of anisotropy a12(t) in periodically-sheared turbulence at ω/S = 0.5
from DNS of Yu and Girimaji [115] with corresponding results from nonequi-
librium model of Olsen and Coakley [73, 74] and with results from the present
closure (NKE), which are discussed in Section 4.5.
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Figure 3.10: Comparison of anisotropy a12(t) in periodically-sheared turbulence at ω/S =
0.5 from DNS of Yu and Girimaji [115] with corresponding results from Speziale
[95] and with results from the present closure (NKE), which are discussed in
Section 4.5.
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Figure 3.11: Comparison of anisotropy a12(t) in periodically-sheared turbulence at ω/S =
0.5 from DNS of Yu and Girimaji [115] with corresponding results from Taulbee
[102] and with results from the present closure (NKE), which are discussed in
more detail in Section 4.5.
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n C
(n)
2 Finite R C

(n)
2

1 4/5 (32/15)γ(0)
1 − (28/15)γ(0)

2 + (8/15)γ(0)
3

2 68/315 (64/63)γ(2)
1 − (20/21)γ(2)

2 + (16/105)γ(2)
3

3 44/315 (32/45)γ(4)
1 − (4/9)γ(4)

2 − (8/63)γ(4)
3

4 76/693 (128/231)γ(6)
1 − (4/33)γ(6)

2 − (32/99)γ(6)
3

5 356/3861 (160/351)γ(8)
1 + (4/39)γ(8)

2 − (200/429)γ(8)
3

6 172/2145 (64/165)γ(10)
1 + (4/15)γ(10)

2 − (112/195)γ(10)
3

7 236/3315 (224/663)γ(12)
1 + (20/51)γ(12)

2 − (56/85)γ(12)
3

8 932/14535 (256/855)γ(14)
1 + (28/57)γ(14)

2 − (704/969)γ(14)
3

Table 3.1: Values of the coefficients C
(n)
2 for n = [1, 8] from (3.67), and from (3.118) for the

finite R and N truncated formulation of Π(r)
ij in (3.117).

α1 CΛ

Yakhot et al. [111] 4.4 0.23
Launder et al. [51] 2.4 0.42
Gibson and Launder [26] 2.7 0.37
Gatski and Speziale [24] 4.3 0.23

Table 3.2: Recommended α1 values and corresponding CΛ values from various prior closure
approaches.
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CHAPTER IV

Nonequilibrium Tests of the Present Anisotropy Closure

In the following, the nonlocal, nonequilibrium closure in (3.97) with the corresponding
convolution effective strain rate in (3.96) is examined for various homogeneous turbulence
test cases. Such homogeneous flows play a key role in turbulence model development since
they allow the underlying model physics to be probed directly. The resulting decoupling
of the turbulence model from the mean flow equations allows the anisotropy evolution to
be calculated by simple numerical integration of ordinary differential equations, without
the need for a full computational framework that can often confuse numerical issues with
the performance of the turbulence closure model. Nonequilibrium homogeneous flows are
used in this section to conduct a detailed evaluation of turbulence model dynamics in
the presence of time-varying imposed mean strain rates Sij(t). Such direct assessments
of nonequilibrium closure models can be difficult to conduct in the framework of a full
computational simulation for various steady and equilibrium mean flow problems that are
often used for turbulence model validation [76].

For homogeneous flows the closure in (3.96) and (3.97) can be substantially simplified.
Nonlocal effects are not important in homogeneous flows and all Laplacians of the mean
strain rate in (3.96) are zero. Consequently, a greatly simplified closure formulation is
obtained, identical to that derived and validated in Ref. [31]. Moreover, by considering
homogeneous tests for which the entire straining history Sij(t) is known, the full convolu-
tion form of the effective strain in (3.96) can be used to obtain the anisotropy evolution.
The homogeneous tests in this Chapter thus permit a full assessment of the nonequilibrium
aspects of the new closure approach. In the next Section the model formulation for equilib-
rium flows is outlined in the context of a k-ε framework, where the evolution of k and ε is
given by the homogeneous forms of (1.31) and (1.32), respectively, and the eddy viscosity
will be given in standard form by (1.36).

The closure given by (3.96) and (3.97) will be applied herein to six different homo-
geneous nonequilibrium test cases, namely (i) impulsively sheared turbulence, for which
LES results are available for comparison from Bardina et al. [3], (ii) axisymmetrically con-
tracted turbulence, which has been studied using DNS by Lee and Reynolds [55], (iii)

109



decaying anisotropic turbulence, for which experimental data are available from Choi and
Lumley [13] and Le Penven et al. [75], (iv) strained, relaxed, and destrained turbulence,
for which experimental data are available from Chen et al. [11], (v) periodically-sheared
turbulence, for which computational data are available from Yu and Girimaji [115], and
(vi) the interaction of initially-isotropic turbulence with a shock wave, for which DNS data
are available from Lee et al. [56] and Mahesh et al. [60]. In each case, comparisons of the
present closure in (3.97) are made with the equilibrium hypothesis in (1.35) via the SKE or
RKE models outlined in Chapter I. For nearly all cases, comparisons are also made with
the LRR [51] Reynolds stress transport model, where the anisotropy transport equation in
(1.28) is solved directly using the model coefficients in (1.26). In all cases, the imposed mean
strain rate Sij(t) allows the effective strain rate S̃ij(t) in (3.96) to be evaluated analytically.

With respect to the periodic-shearing case, the present closure will be used to conduct
a detailed frequency response analysis of the anisotropy dynamics. This demonstrates the
full analytical power of the new closure approach, and also yields valuable physical insights
into the different frequency regimes of homogeneous turbulence. At the end of this Chapter,
the time-local implementation of the new closure proposed in Section 3.5.1 is evaluated for
periodically-sheared and Gaussian-strained turbulence.

4.1 Nonequilibrium Anisotropy Closure in Homogeneous Flows

In homogeneous turbulence, the Laplacians of Sij in the definition of T ij in (3.87) are
zero, and we thus obtain T ij = Sij . As a result, the effective strain rate in (3.96) can be
written for homogeneous turbulence as

S̃ij =
∫ t

−∞
Sij(τ)

e−(t−τ)/Λm(t)

Λm(t)
Dτ , (4.1)

where the anisotropy is still given by (3.97) and Λm is defined in (3.85) with CΛ given by
(3.98). In the following, the eddy viscosity νT is given in standard k-ε form by (1.36), which
then gives the anisotropy as

aij = −2Cµ
k

ε
S̃ij . (4.2)

This formulation for the anisotropy is identical to the purely nonequilibrium closure that
was derived and validated in Ref. [31].

Here, this model is applied to predict the turbulence response in a range of different
nonequilibrium homogeneous turbulence test cases. These cases provide ideal tests for
assessing the accuracy of new turbulence closure approaches, in large part because the k

and ε equations in (1.31) and (1.32) become substantially simpler in homogeneous flows.
Since ∂/∂xj( ) ≡ 0 in homogeneous turbulence, the time-evolution of the Reynolds stress
tensor becomes decoupled from (1.2)-(1.4). For a given applied strain rate tensor Sij(t),
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the equations for k(t) and ε(t) in (1.31) and (1.32) thus reduce to

dk

dt
= −kaijSij − ε , (4.3)

dε

dt
= −Cε1ε aijSij − Cε2

ε2

k
. (4.4)

For a given Sij(t) the resulting k(t) and ε(t) are found from (4.3) and (4.4), with the
anisotropy aij(t) given by (4.2).

Thus (4.3) and (4.4) with the standard model constants in (1.33) still determine the
resulting k(t) and ε(t), but the anisotropy aij(t) in these equations is now obtained using
the closure in (4.2) with (4.1), by contrast to the formulation for aij(t) from the equilibrium
closure in (1.35) used in the SKE and RKE models. The turbulence memory time scale Λm

is given by (3.85), and for all tests presented herein we use the value of CΛ given by (3.98).
When implemented in this manner, the resulting nonequilibrium k-ε (NKE) model differs
from the SKE and RKE models outlined in Chapter I solely due to this new nonequilibrium
anisotropy relation for aij .

4.2 Impulsively-Strained Homogeneous Test Cases

For initially isotropic, impulsively-strained homogeneous turbulence the applied mean
strain Sij is zero for t < 0 and takes on a constant nonzero value for t ≥ 0. The equilibrium
closure in (1.35) with νT in (1.36) gives the corresponding anisotropy in the SKE model for
t ≥ 0 as

aij(t) = −2Cµ
k

ε
Sij , (4.5)

which results in nonzero aij at t = 0 – a result that is inconsistent with the isotropic initial
condition. For the present nonequilibrium closure however, the effective strain rate S̃ij(t)
for t ≥ 0 is obtained from (4.1) for all initially-isotropic impulsively-strained test cases as

S̃ij(t) = Sij

[
1− e−t/Λm

]
, (4.6)

where Sij used here is constant (time-independent) for t ≥ 0, and the corresponding
anisotropy from (4.2) is given by

aij(t) = −2Cµ
k

ε
Sij

[
1− e−t/Λm

]
. (4.7)

It is clear that the form in (4.7) is zero at t = 0, consistent with the isotropic initial condition,
and approaches the equilibrium result in (4.5) in a finite time given by the memory time
scale Λm.

For these impulsively-strained flows, where the time rate of change of Sij at t = 0 is
infinite, the degree of nonequilibrium can be characterized by the non-dimensional initial
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strain parameter Sk0/ε0, where S ≡ (2S̃ijS̃ji)1/2. This can be seen by considering that the
nonequilibrium parameter Υ defined in (3.104) is given using (4.6) as

Υ =
∣∣∣∣

1
e(St)/(SΛm) − 1

∣∣∣∣ . (4.8)

Recall that Υ = 0 in full equilibrium, whereas Υ > 0 corresponds to nonequilibrium con-
ditions. At t = 0 we obtain Υ = ∞, consistent with the impulsive nature of the shearing.
However, the rate at which the equilibrium condition Υ = 0 is recovered is fundamentally
determined by the magnitude of SΛm = CΛ(Sk/ε). For large values of the initial strain
parameter Sk0/ε0, SΛm is initially large and the equilibrium condition Υ = 0 is approached
only very slowly with increasing non-dimensional time (St). As a result, the degree of
nonequilibrium in the flow can remain substantial for relatively long times. For small val-
ues of Sk0/ε0 however, Υ = 0 can be quickly recovered even for small (St), resulting in
equilibrium flow conditions for essentially all t > 0. In such quasi-equilibrium flows there
are thus only small differences between the anisotropy predicted by the equilibrium and
nonequilibrium closures in (4.5) and (4.7), respectively. As will be seen herein however,
for large Sk0/ε0 there are substantial differences between results from the equilibrium and
nonequilibrium closures due to the resulting large degree of nonequilibrium in the flow.

In the following, kinetic energy and anisotropy results from (4.7) are compared with
results from (4.5) and the LRR model for impulsively-sheared turbulence [3] and turbulence
subjected to an impulsive axisymmetric contraction [55]. In these cases aij is initially zero,
and the applied mean strain Sij is constant for t > 0. The initial magnitude of the applied
strain, characterized by Sk0/ε0, is relatively large in both cases, resulting in substantial
nonequilibrium effects on the anisotropy evolution. These effects, which can dominate the
anisotropy dynamics for sufficiently large Sk0/ε0, require the use of the nonequilibrium
closure in (4.7) to give good agreement with validation results. By contrast, nonequilibrium
effects do not have a dominant effect on the anisotropy in flows where Sk0/ε0 is relatively
small, and as a result such quasi-equilibrium flows are not considered herein.

4.2.1 Sheared Turbulence

For impulsively-sheared homogeneous turbulence the imposed mean strain rate is given
for t ≥ 0 as

Sij =




0 S/2 0
S/2 0 0
0 0 0


 , (4.9)

For the particular case (Sk0/ε0) = 3.4, for which Bardina et al. [3] give LES results, integra-
tion of (4.3) and (4.4) for k(t) and ε(t) from the SKE and NKE models in (4.5) and (4.7),
respectively, gives the kinetic energy evolution shown in Figure 4.1. The history effect in the
nonequilibrium closure, and the consequent reduction in (4.7) of the anisotropy magnitude
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relative to that in (4.5) from the equilibrium closure, lowers the initial kinetic energy pro-
duction from the NKE model relative to the corresponding production from the equilibrium
closure in the SKE model. This can be seen in Figure 4.1 to give an initial reduction in the
kinetic energy k(t) from the nonequilibrium closure, in good agreement with results from
LES and the LRR model, while the equilibrium closure shows a strictly monotonic increase
in k(t). Figure 4.2 additionally shows that the NKE model in (4.7) predicts an evolution
of a12 that is in good agreement with LRR model results. While the SKE model predicts a
nonzero value for a12 at t = 0, both the NKE and LRR models predict a finite-time increase
in a12 from zero at t = 0. The SKE and NKE models show large discrepancies until St ≈ 3,
in agreement with the results for the evolution of k in Figure 4.1.

Note that due to the initially lower kinetic energy production, k(t) from the nonequi-
librium closure in the NKE model is always below that from the equilibrium closure in the
SKE model. For t À Λm, the nonequilibrium correction to the anisotropy in (4.7) becomes
negligible, and the kinetic energy production in the NKE model can be seen in Figure 4.1 to
become similar to that from the equilibrium closure in the SKE model. Thus the nonequi-
librium effect that creates the initially lower kinetic energy production remains active only
for a time of O(Λm) after the turbulence is subjected to the change in shear. However,
this temporary nonequilibrium effect produces a permanent lag in the turbulence response
relative to that from the equilibrium closure. This nonequilibrium lag will be seen in the
remaining test cases to be a key component of the turbulence response to changes in the
mean shear, and cannot be accounted for by the classical local equilibrium closure in (1.35).

4.2.2 Axisymmetric Contraction

For initially isotropic turbulence subjected to an impulsively applied axisymmetric con-
traction at t = 0, the mean strain is given by

Sij =




S 0 0
0 −S/2 0
0 0 −S/2


 . (4.10)

This case has been studied using DNS by Lee and Reynolds [55] for the initial strain
parameter Sk0/ε0 = 5.59.

Figure 4.3 shows large differences between the kinetic energy evolution predicted by the
SKE model in (4.5) and the NKE model in (4.7). As with the impulsively-sheared case
in Figure 4.1, the SKE model predicts a large growth rate of k for small times, whereas
the NKE and LRR models predict much more modest growth of k, in better agreement
with DNS results. Similarly, results for aij from the NKE model follow the LRR and DNS
results much more closely than the SKE results, as shown in Figure 4.4. The substantial
differences between the SKE and NKE results in Figures 4.3 and 4.4 for this case are due to
the relatively large initial value of Sk0/ε0. This results in a large degree of nonequilibrium
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when the strain in (4.10) is applied at t = 0, and the anisotropy lag in (4.7) is required to
obtain good agreement with the DNS results for small times.

Taken together, the impulsively-strained results in Figures 4.1-4.4 indicate that results
from the NKE model in (4.7) generally show better agreement with LRR and computational
results than results from the SKE model in (4.5). In particular, the NKE model predicts
a finite-time increase in the anisotropy magnitude at t = 0 from the initially isotropic
state, which results in a lag between the kinetic energy evolution predicted by the SKE and
NKE models for all times. Moreover, the exact nature of the applied strain (e.g. sheared
versus axisymmetric contraction) does not seem to affect the accuracy of the nonequilibrium
closure. Note that the observed large differences between the SKE and NKE model results is
not surprising, since the parameter Sk0/ε0, which characterizes the degree of nonequilibrium
in the flow as shown in (4.8), is relatively large for both impulsively-strained cases considered
herein. As noted previously, for large values of Sk0/ε0 the nonequilibrium correction in (4.7)
– which is fundamentally obtained by retaining the Daij/Dt term in (3.84) – is critical for
accurately capturing the most important physics underlying the anisotropy evolution.

4.3 Decaying Anisotropic Turbulence

For the impulsively-strained test cases in the preceding section, the effect of the rapid
straining term α2Sij in (3.84) generally dominates the slow turbulence relaxation term
aij/Λm, particularly when the initial shearing parameter Sk0/ε0 is large. However, in
decaying initially anisotropic homogeneous turbulence there is no applied strain and the
anisotropy evolution is completely determined by the slow relaxation term. As a result, the
nonequilibrium parameter in (3.104) is given for this case as Υ = 1 – reflecting the fact
that the nonequilibrium in this flow (where in general Υ > 0 reflects nonequilibrium flow
conditions) is dominated by slow relaxation processes.

We here consider an arbitrary flow subjected to a constant applied strain Sij for all
t < 0, which is then impulsively removed at t = 0. For all t ≥ 0, the equilibrium closure in
(1.35) predicts aij(t) = 0. From (3.89) however, the nonequilibrium closure yields

aij(t) = aij(0)e−t/Λm , (4.11)

where we have used t0 = 0 and higher-order derivatives of 1/Λm have been neglected as in
(3.92). The nonequilibrium closure in (4.11) thus predicts a finite-time exponential decay
of the initial anisotropy aij(0). In decaying turbulence the anisotropy has no effect on the
evolution of k and ε since P = 0 due to Sij(t) = 0 for t > 0. Thus, from (4.3) and (4.4) we
obtain the transport equation for k/ε as

d(k/ε)
dt

= (Cε2 − 1) , (4.12)
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which has the solution
(k/ε)(τ)
(k0/ε0)

= (Cε2 − 1) τ + 1 , (4.13)

where we have defined the dimensionless time τ ≡ tε0/k0, and k0 and ε0 denote the initial
values k and ε at t = 0. Substitution of (4.13) into (4.11) then gives

aij(τ) = aij(0) exp
[
− τ

CΛ (Cε2 − 1) τ + CΛ

]
. (4.14)

This expression describes the decay of the initial anisotropy aij(0) in any unstrained flow
using the nonequilibrium closure in (4.2).

Experimental results for decaying anisotropic turbulence have been obtained by Choi and
Lumley [13] for initially plane-strained turbulence and by Le Penven et al. [75] for a plane
contraction. Using the initial values of aij(0) specified in these experiments, Figures 4.5
and 4.6 compare the anisotropy predicted by the NKE and LRR models with the available
experimental data. Note that it can be anticipated for this case that the value of CΛ in
(3.98) is too small to give good agreement with the experimental data. This can be seen
from the definition of CΛ in (3.86), which gives CΛ = 1/(C1 − 1) for unstrained turbulence
where P/ε = 0. Using the value for C1 from the LRR model [51] in (1.26) then gives CΛ = 2.
With this value for CΛ, Figures 4.5 and 4.6 show that results from the NKE model in (4.14)
are in good agreement with the LRR and experimental results. In particular, the NKE
model predicts a finite-time decay of the anisotropy magnitude that is in good agreement
with the LRR and experimental results for both cases, whereas the SKE model predicts
aij = 0 for all τ > 0. The remaining discrepancies between the NKE and LRR models are
due to the neglect of the higher-order derivatives of 1/Λm in obtaining (4.11) from (3.89).

While Figures 4.5 and 4.6 indicate that good agreement with LRR and experimental
results for this case requires a modified value for CΛ, it should be borne in mind that
the constant value of CΛ given by (3.98) and used for the rest of the tests in this study
is intended as a reasonable approximate value that gives good agreement with a wide-
range of tests where P/ε is typically nonzero. Since CΛ is related to P/ε from (3.86) as
CΛ = 1/(P/ε− 1 + C1), extreme values such as P/ε = 0 are expected to affect the accuracy
of the present closure. Nevertheless, for the preceding impulsively strained tests and the
remaining more complex tests, it will be seen that the constant value of CΛ in (3.98) is
sufficient to give substantially improved agreement with validation data when compared to
the equilibrium closure in (1.35), due to the focus on nonequilibrium effects in the present
approach.

4.4 Straining, Relaxation, and Destraining

An even more complex test of the nonequilibrium turbulence response to an imposed
mean strain Sij(t) is provided by recent experimental results of Chen et al. [11] for the
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straining, relaxation, and destraining of initially-isotropic homogeneous turbulence. This
test effectively combines the impulsive straining cases in Section 4.2 and the decaying case
in Section 4.3, and thus allows a more sophisticated evaluation of the anisotropy predictions
from the various models in a relatively complex flow.

In the experiment by Chen et al., S22(t) = −S11(t) and all other components of the
imposed mean strain are zero. Their measured values for the imposed S11(t) are given by
the symbols in Figure 4.7, and this straining history can be analytically approximated by
the piecewise linear form

S11(t) =





0 for 0 ≤ t ≤ t1

c1(t− t1) for t1 < t ≤ t2

−c2(t− t3) for t2 < t ≤ t3

0 for t3 < t ≤ t4

−c3(t− t4) for t4 < t ≤ t5

c4(t− t6) for t5 < t ≤ t6

, (4.15)

where S22(t) = −S11(t). The ci have dimensions of 1/t2 and are chosen, along with the
ti, to give good agreement with the experimentally applied strain, as shown in Figure
4.7. The straining in (4.15) serves as the input for the various closures to generate their
respective turbulence anisotropy responses aij(t). The only nonzero components are a11(t)
and a22(t), and for the traditional equilibrium closure in the SKE model the resulting
anisotropy components are

a11(t) = −a22(t) = −2Cµ
k

ε
S11(t) . (4.16)

For the proposed closure in the NKE model, the effective strain rate S̃11(t) is obtained via
(4.1) by integrating the piecewise linear analytical form of S11(t) in (4.15), which yields

S̃11(t) =





S̃
(1)
11 (t) for 0 ≤ t ≤ t1

S̃
(2)
11 (t) for t1 < t ≤ t2

S̃
(3)
11 (t) for t2 < t ≤ t3

S̃
(4)
11 (t) for t3 < t ≤ t4

S̃
(5)
11 (t) for t4 < t ≤ t5

S̃
(6)
11 (t) for t5 < t ≤ t6

, (4.17)

where
S̃

(1)
11 (t) = 0 , (4.18a)

S̃
(2)
11 (t) = c1

[
t− t1 − Λm

(
1− e−(t−t1)/Λm

)]
, (4.18b)
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S̃
(3)
11 (t) = c1

[
Λme−(t−t1)/Λm − (Λm + t1 − t2) e−(t−t2)/Λm

]
(4.18c)

+ c2

[
Λm − t + t3 − (Λm − t2 + t3) e−(t−t2)/Λm

]
,

S̃
(4)
11 (t) = c1

[
Λme−(t−t1)/Λm − (Λm + t1 − t2) e−(t−t2)/Λm

]
(4.18d)

+ c2

[
Λme−(t−t3)/Λm − (Λm − t2 + t3) e−(t−t2)/Λm

]
,

S̃
(5)
11 (t) = S̃

(4)
11 (t) + c3

[
Λm − t + t4 − Λme−(t−t4)/Λm

]
, (4.18e)

S̃
(6)
11 (t) = S̃

(4)
11 (t) + c3

[
(Λm + t4 − t5) e−(t−t5)/Λm − Λme−(t−t4)/Λm

]
(4.18f)

+ c4

[
t− t6 − Λm + (Λm − t5 + t6) e−(t−t5)/Λm

]
.

The resulting anisotropy components are then

a11(t) = −a22(t) = −2Cµ
k

ε
S̃11(t) . (4.19)

For both (4.16) and (4.19), the respective aij(t) allows the corresponding k(t) and ε(t) to
be obtained by integrating (4.3) and (4.4).

The results for a11(t) from the SKE, NKE, and LRR models are shown in Figure 4.8,
with the measured anisotropy values from Chen et al. [11] shown by the symbols for compar-
ison. The measured values were converted from the two-dimensional anisotropy reported by
Chen et al. to the usual three-dimensional form via isotropy in the unstrained out-of-plane
component. The large strain rate values in this test case require the weak realizability
constraint in (1.40) to limit the Cµ value. Using the average strain rate magnitude in Fig-
ure 4.7, together with S = 2|S11|, gives Cµ = 0.05. This value is used in both the SKE
and NKE models and reflects the fact that the present closure given by (3.97) with (3.96)
addresses nonlocal and nonequilibrium effects on the anisotropy without specifying a repre-
sentation for the eddy viscosity νT . As a result, in many instances (including the nonlocal
wall bounded tests in Chapter V) it may be necessary to specify a more appropriate rep-
resentation for νT and Cµ than the standard representations in (1.36) and (1.39). A more
sophisticated nonlinear representation for Cµ within the present nonlocal, nonequilibrium
closure framework is provided in Appendix 6.2.

In any case, it is apparent in Figure 4.8 that even with the realizable value Cµ = 0.05,
the results from the classical equilibrium closure in the SKE model compare very poorly
with the measured values from Chen et al. This is due to the fact that the equilibrium
closure in (1.35) assumes the turbulence anisotropy to respond instantaneously to the im-
posed strain. Thus, for instance, the equilibrium closure predicts zero anisotropy during
the relaxation phase. By contrast, over the entire straining, relaxation, and destraining
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cycle in Figure 4.8 the results from the present closure in (4.2) can be seen to agree re-
markably well with the measured anisotropy values from Chen et al. [11]. In particular, the
present closure correctly predicts a more gradual increase in anisotropy magnitude during
the straining phase, as opposed to the rapid increase predicted by the standard equilibrium
closure. The nonequilibrium closure then predicts a slow decay of the anisotropy magni-
tude during the relaxation phase, and a gradual increase to positive anisotropy during the
destraining phase. The timescales associated with these dynamics show good agreement
with the measurements, and the anisotropy values from the NKE model are also in good
agreement with the measurements.

Moreover, the results from the NKE model seem to agree better in many respects with
the experimental results than do results from the LRR model. In particular, the LRR model
predicts only a very slow decay of the anisotropy during the relaxation phase, whereas the
more rapid decay predicted by the NKE model is in better agreement with the measure-
ments. This is due to the choice of CΛ in (3.98) for the NKE model, which is substantially
less than CΛ = 2 given by the LRR model, as noted for the decaying anisotropic case in
Section 4.3. For the present case, the more rapid decay from the NKE model during the
relaxation phase gives better agreement with the experimental measurements. These results
for straining, relaxation, and destraining of turbulence indicate that the effective strain rate
S̃ij(t) in (4.1) and the associated closure in (3.97) capture much of the nonequilibrium dy-
namics of turbulent flows, and thereby allow most of the advantages of a Reynolds stress
transport model to be obtained within the computationally simpler framework of a direct
model for the Reynolds stresses.

4.5 Periodically-Sheared Turbulence

Tests based on time-periodic shear applied to initially-isotropic homogeneous turbulence
allow an examination of the nonequilibrium frequency response of turbulent flows. Yu and
Girimaji [115] provide simulation results for applied mean shear of the form

S12(t) = S21(t) =

{
0 for t < 0
(S/2) sin(ωt) for t ≥ 0

, (4.20)

where S is the shearing amplitude, ω is the shearing frequency, and all other components
of the mean strain are zero. The equilibrium closure in (1.35) with νT in (1.36) gives the
corresponding anisotropy in the SKE model as

a12(t) = a21(t) = −Cµ
Sk

ε
sin(ωt) . (4.21)

From (4.20) and (4.21), the equilibrium closure thus produces anisotropy that remains in
phase with the imposed mean shear, and an anisotropy response amplitude that has no
direct dependence on the shearing frequency ω. For sufficiently large ω however, the time
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scale on which the shear varies can become much faster than the turbulence response time
scale, leading to substantial nonequilibrium between the turbulence and the applied shear.
This gives rise to frequency-dependent phase and amplitude that the classical equilibrium
closure in (1.35) cannot accurately account for, as shown in Figure 1.5 in Chapter I.

4.5.1 Anisotropy Evolution

For the nonequilibrium closure, the effective strain S̃ij(t) from (4.1) and (4.20) for t ≥ 0
is

S̃12(t) =
S

2

[
1

1 + (ωΛm)2

]{
sin (ωt)− (ωΛm)

[
cos (ωt)− e−t/Λm

]}
, (4.22)

where S̃21(t) = S̃12(t), and the nonequilibrium anisotropy from (4.2) can then be written as

a12(t) = −Cµ

CΛ

(
S

ω

) [
ωΛm

1 + (ωΛm)2

] {
sin (ωt)− (ωΛm)

[
cos (ωt)− e−t/Λm

]}
. (4.23)

By contrast to the equilibrium response in (4.21), the response in (4.23) from the nonequi-
librium closure predicts that as the relative shearing frequency increases and the nondimen-
sional parameter (ωΛm) becomes large, there will be a decrease in the anisotropy amplitude
and an increase in the phase difference between the imposed shear and the anisotropy.
Additionally, the nonequilibrium closure also predicts a lag in the anisotropy response,
analogous to the lag seen in the impulsively-strained cases in Section 4.2, but predicts
that in this case the lag depends on (ωΛm). This frequency-dependent lag, as well as
the frequency-dependent phase shift and response amplitude, are all missed by classical
equilibrium closures based on (1.35).

For (Sk0/ε0) = 3.3 and (ω/S) = 0.5, 1.0, and 10, Yu and Girimaji [115] give simulation
results for the anisotropy response a12(t) shown by the heavy lines in Figures 4.9(a)-(c). For
the same conditions, the SKE, NKE, and LRR models yield the corresponding anisotropy
evolution also shown in Figures 4.9(a)-(c). Comparisons of these results with the Yu and
Girimaji simulations show that the present closure in the NKE model provides an anisotropy
response that agrees far more closely with the simulations than does the equilibrium closure
in the SKE model. In particular, as the shearing frequency (ω/S) increases, the direct
decrease in anisotropy amplitude from the nonequilibrium closure, as well as the indirect
effect from changes in k and ε with straining frequency, are in overall good agreement with
the simulation results. By contrast, the equilibrium closure shows only a far weaker indirect
decrease in anisotropy amplitude via the changes in k and ε with shearing frequency.

Moreover, for ω/S = 0.5 in Figure 4.9(a) the LRR model shows significantly poorer
phase agreement with the DNS results at large times than does the closure in (4.23), de-
spite giving slightly better prediction of the anisotropy amplitude at this frequency. For the
two higher shearing frequencies in Figures 4.9(b) and (c), the phase and amplitude from
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the LRR model are only slightly better than those from (4.23), and both models are in
generally good agreement with the DNS results. The result in (4.23) thus retains the most
relevant dynamics governing the evolution of the anisotropy in periodically sheared turbu-
lence, giving predictions of the shear anisotropy in Figure 4.9 that are of nearly comparable
fidelity as the more computationally intensive LRR model.

4.5.2 Production to Dissipation Ratio

In periodically-sheared turbulence, the phase difference between the anisotropy a12(t)
and the imposed mean shear S12(t) is of additional interest, since any phase lag between the
two corresponds to negative turbulence kinetic energy production over part of each period.
It is qualitatively apparent in Figure 4.9 that the phase response from the nonequilibrium
closure is in good agreement with the simulation results, while that from the equilibrium
closure in the SKE model is in very poor agreement, particularly at the higher shearing
frequencies in Figures 4.9(b) and 4.9(c). This poor phase agreement corresponds to poor
predictions of the production-to-dissipation ratio P/ε, as shown in Figure 4.10 for shearing
frequencies ω/S = 0.5 and 1.0, and in Figure 4.11 for ω/S = 10. The production-to-
dissipation ratio P/ε is given generally as

P

ε
= −k

ε
aijSij , (4.24)

and from (4.21) and (4.20) the equilibrium closure in the SKE model gives

P

ε
= Cµ

(
Sk

ε

)2

sin2(ωt) . (4.25)

It is clear from (4.25) and Figures 4.10 and 4.11 that the SKE model predicts strictly
positive P/ε regardless of shearing frequency, in poor agreement with DNS results from Yu
and Girimaji [115] where P/ε takes on both positive and negative values. From (4.24) and
(4.23), P/ε from the present closure in (4.2) is given as

P

ε
=

Cµ

C2
Λ

(
S

ω

)2
[

(ωΛm)2

1 + (ωΛm)2

]{
sin2 (ωt)− (ωΛm) sin (ωt)

[
cos (ωt)− e−t/Λm

]}
. (4.26)

The resulting evolution of P/ε from (4.26) is shown for shearing frequencies (ω/S) = 0.5,
1.0, and 10 in Figures 4.10 and 4.11. The evolution of P/ε in (4.26) can be seen to agree
better with the DNS results in many respects than do the results from the LRR model,
though the asymmetry at the highest frequency is not captured. For all shearing frequen-
cies, the SKE model shows very poor amplitude agreement with DNS results and the NKE
and LRR models, and in particular for (ω/S) = 10 in Figure 4.11 the amplitude predicted
by the SKE model is much larger than that predicted by the other models. As noted
earlier, the evolution of P/ε is closely connected to the frequency-dependent phase shift
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between the anisotropy and the applied shear, and in the next section the frequency re-
sponse of periodically-sheared turbulence will be examined in more detail using the new
nonequilibrium closure.

4.6 Frequency Analysis of Periodically-Sheared Turbulence

The DNS study by Yu and Girimaji [115] of initially-isotropic homogeneous turbulence
subjected to periodic shear has revealed some aspects of the frequency response produced
by unsteady shearing of turbulent flows. In particular, the DNS results show a frequency-
dependent phase lag between the applied shear S12(t) and the resulting Reynolds shear
stress anisotropy a12(t). The DNS results have also revealed a transition from asymptotic
growth in k(t) at low shearing frequencies to asymptotic decay above a critical frequency
ωcr ≈ 0.5S. Somewhat similar frequency-dependent nonequilibrium features have also been
observed in turbulence subjected to time-varying plane strain [11, 30].

While the computational burden of DNS necessarily limits the extent of any detailed
parametric study of periodically sheared turbulence dynamics, accurate second-order RANS
closures such as the LRR model could in principle allow a more extensive parametric in-
vestigation. In general, however, the correct prediction of nonequilibrium dynamics in the
anisotropy and energetics of turbulence poses a significant challenge for turbulence mod-
eling. The widely used LRR [51] and SSG [98] models, for example, were found [115] to
significantly underpredict the critical shearing frequency ωcr observed in the DNS study
of Yu and Girimaji. Rapid distortion theory (RDT) has also been used to investigate
nonequilibrium effects, such as in homogeneous turbulence subjected to rotating shear [28].
However, for periodically sheared homogeneous turbulence as in (4.20), RDT cannot be
used [115] due both to the reversibility properties of the RDT equations and the invalidity
of the linearized Navier-Stokes equations when the applied mean strain Sij(t) is near zero.

Using the nonequilibrium solution for the anisotropy in (4.23), the DNS study of Yu
and Girimaji can be substantially extended to present a relatively complete parametric
analysis for the frequency response of periodically sheared homogeneous turbulence. As
shown in Figures 4.9 and 4.10, the solution in (4.23) yields good agreement with DNS, and
will be used in the following to predict the frequency-dependent amplitude and phase lag
between the anisotropy and the applied shear over a wide range of frequencies, from the full
equilibrium limit through the saturated nonequilibrium regime. It will also used to obtain an
analytical result for the critical shearing frequency ωcr. The new nonequilibrium approach
furthermore gives analytical scalings for key dynamical quantities such as the anisotropy, the
production-to-dissipation ratio, and the turbulence time scale in the full equilibrium limit as
well as the quasi-equilibrium and saturated nonequilibrium regimes. The simplicity of the
result in (4.23), combined with its accuracy in reproducing results from DNS, thus permits
a detailed parametric frequency response analysis of the periodically sheared homogeneous
turbulence case.
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4.6.1 Anisotropy Phase Response

In the long-time limit, after initial transients have sufficiently decayed and thus e−t/Λm →
0, the anisotropy in (4.23) can be written as

a12(t) = −Cµα1

(
S

ω

)[
ωΛm

1 + (ωΛm)2

]
[sin (ωt)− (ωΛm) cos (ωt)] . (4.27)

Defining the phase difference φ as the lag between the zero-crossing times for the anisotropy
a12(t) and the applied shear S12(t) in the long-time limit S · t →∞, this phase lag can be
obtained analytically from (4.27) as

φ = π − tan−1 [ωΛm(t0)] , (4.28)

where t0 denotes the time at which a12 = 0.
Figure 4.12 shows that the analytical result for φ in (4.28) agrees well with the DNS

results of Yu and Girimaji [115] over a wide range of shearing frequencies. For small values
of ω/S, corresponding to the quasi-equilibrium regime, the phase difference approaches π in
the full equilibrium limit ω/S → 0, where a12(t) responds instantly to changes in S12(t). As
ω/S increases, nonequilibrium effects become significant and φ smoothly approaches π/2 as
shown in Figure 4.12. For values of ω above a critical frequency ωcr, the dynamics reach a
saturated nonequilibrium regime for which the phase difference remains at the frequency-
independent value π/2. From Figure 4.12 it is apparent that ωcr/S ≈ 0.5, although a more
precise value will be obtained analytically in Section 4.6.4.

By contrast to the NKE model results in Figure 4.12, the equilibrium SKE model in
(4.21) incorrectly predicts φ = π for all shearing frequencies. Figure 4.12 also shows that
the phase response from the LRR model agrees relatively poorly with the DNS results. In
particular, the LRR model significantly underpredicts the critical frequency ωcr, in agree-
ment with Figure 31 of Yu and Girimaji [115], leading to poorer phase agreement with the
DNS results for ω < ωcr. This in turn is the origin of the slight phase errors from the
LRR model for ω/S = 0.5 in Figure 4.9(a). While the LRR results might be improved by
changing the model constants in (1.26), for periodically sheared homogeneous turbulence
Figure 4.12 shows that the standard values of these constants do not give results for the
phase response at ω < ωcr that are as accurate as the anisotropy in (4.28) from the present
closure.

Before continuing, it should be noted that in Figure 4.12 the transition to φ ≡ π/2 in
the saturated nonequilibrium regime for the LRR model, the NKE model, and in the DNS
results is remarkably abrupt. This is indicative of a bifurcation in the turbulence dynamics
at the critical frequency ωcr. The result in (4.28) suggests that the observed φ = π/2 for all
ω > ωcr is a result of (ωΛm) →∞ above the critical frequency. This in turn suggests that
Λm → ∞ in the long-time limit S · t → ∞, while for ω < ωcr the associated Λm remains
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finite for all time. The long-time limit of Λm for ω > ωcr will be explored in more detail in
Section 4.6.5, and it will be shown in Section 4.6.4 that ωcr has a value that is determined
by the model constants in (4.23) and the k and ε equations in (4.3) and (4.4), respectively.

4.6.2 Anisotropy Limit Forms

From a physical standpoint, the parameter (ωΛm) characterizes how rapidly the applied
shear varies with respect to the turbulence relaxation time scale Λm, and is thus the appro-
priate nonequilibrium parameter for periodically sheared turbulence. However, Λm is itself
part of the turbulence response to the applied shearing, and for this reason ω/S provides
an alternative nonequilibrium parameter that involves only parameters associated with the
applied periodic shear. It will be seen later that the cycle average of (ωΛm) increases mono-
tonically with ω/S, and thus either can be used as a nonequilibrium parameter. In this
Section we consider the characteristics of the turbulence anisotropy in the full equilibrium
limit ω/S → 0 where (ωΛm) → 0, in the quasi-equilibrium regime for small ω/S where
(ωΛm) ¿ 1, and in the saturated nonequilibrium regime where (ωΛm) →∞ for all ω > ωcr.

For ω/S → 0 and (ωΛm) → 0, the turbulence responds more rapidly than the variations
in the applied shear, allowing the turbulence anisotropy to remain in full equilibrium with
the mean shear. Thus the resulting anisotropy in the long-time limit from (4.27) is

lim
(ωΛm)→0

a12(t) = −Cµ
Sk

ε
sin (ωt) , (4.29)

which is identical to the result from the classical equilibrium Boussinesq closure in (4.21),
where the anisotropy is assumed to be directly proportional to the instantaneous mean
strain rate. The full equilibrium result in (4.29) for the anisotropy is consistent with the
phase results in Figure 4.12, where the phase difference between the anisotropy and the
shear approaches φ = π for small ω/S, and hence small (ωΛm). However, it can be seen
from (4.28) in Figure 4.12 that even for shearing frequencies as small as ω/S = 0.01, the
turbulence is still not fully in equilibrium with the applied shear. This result establishes the
existence of a quasi-equilibrium regime for small but non-zero values of ω/S corresponding
to (ωΛm) ¿ 1, where the anisotropy is given as

lim
(ωΛm)¿1

a12(t) = −Cµ
Sk

ε
[sin (ωt)− (ωΛm) cos(ωt)] . (4.30)

The full equilibrium result in (4.29) for (ωΛm) → 0 is only obtained as ω/S → 0.
In the saturated nonequilibrium regime where (ωΛm) → ∞ the turbulence response is

far slower than the rate at which the mean shear varies. In this regime, the anisotropy from
(4.27) is thus

lim
(ωΛm)→∞

a12(t) =
Cµ

CΛ

(
S

ω

)
cos (ωt) . (4.31)
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It is apparent in (4.31) that the amplitude of the anisotropy decreases with increasing
shearing frequency as ω−1, and that the phase difference relative to S12(t) in (4.20) is
constant at φ = π/2, independent of Λm or ω. The abrupt switch to φ = π/2 at ω = ωcr in
Figure 4.12 suggests that (4.31) describes the anisotropy for all ω > ωcr.

The root mean square (rms) amplitude of the anisotropy gives additional insights into the
turbulence response in the full equilibrium limit and the saturated nonequilibrium regime,
and also into the abrupt transition in the dynamics at ωcr. We define

〈f〉 ≡ lim
t→∞

ω

2π

∫ t+π/ω

t−π/ω
f(t′)dt′ , (4.32)

as the long-time cycle average of any time-dependent quantity f(t), and note that the rms
amplitude of the anisotropy, here denoted a′12, is defined as (a′12)

2 ≡ 〈a2
12〉 − 〈a12〉2. From

(4.27), it is apparent that in the long-time limit 〈a12〉 ≡ 0 for all shearing frequencies, giving

lim
(ωΛm)→0

a′12 =
Cµ

CΛ
S

〈
Λ2

m sin2(ωt)
〉1/2

, (4.33)

in the full equilibrium limit. It will be seen later that the existence of a fixed point in the
dynamics of 〈Λm〉 for ω < ωcr yields the relation

lim
(ωΛm)→0

〈Λ2
m sin2(ωt)〉 =

C2
Λ

CµS2

[
Cε2 − 1
Cε1 − 1

]
, (4.34)

which allows (4.33) to be written as

lim
(ωΛm)→0

a′12 =
[
Cµ (Cε2 − 1)

Cε1 − 1

]1/2

= 0.43 , (4.35)

where values of the constants in (1.33) and (3.98) have been used to obtain the numeri-
cal result. The corresponding form of a′12 in the saturated nonequilibrium regime where
(ωΛm) →∞ is given by

lim
(ωΛm)→∞

a′12 =
Cµ√
2CΛ

(
S

ω

)
. (4.36)

Figure 4.13 shows the resulting frequency dependence of a′12 obtained from the long-time
limit anisotropy in (4.27), and also shows the equilibrium and nonequilibrium limit forms
given by (4.35) and (4.36), respectively. For small ω/S, a′12 approaches the full equilibrium
result in (4.35), but even for ω/S = 0.01 it is clear that the turbulence is not fully in
equilibrium with the applied shear, consistent with the phase results in Figure 4.12. For
all ω > ωcr, a′12 decreases as (ω/S)−1 in accordance with the saturated nonequilibrium
result in (4.36). As with the phase results in Figure 4.12, Figure 4.13 shows that a′12

transitions abruptly at ωcr to the nonequilibrium form in (4.36), again reflecting the fact
that (ωΛm) →∞ in the saturated nonequilibrium regime for all ω > ωcr.
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Figures 4.12 and 4.13 thus indicate that the full equilibrium limit of periodically sheared
turbulence is attained only at very small shearing frequencies as ω/S → 0. At slightly
larger frequencies, the turbulence is in a quasi-equilibrium regime where (ωΛm) ¿ 1. As
ω/S continues to increase, but remains below ωcr/S, the degree of nonequilibrium increases
smoothly, as indicated by the gradual approach of the phase difference φ to π/2 in Figure
4.12. At the critical frequency ωcr, however, the turbulence abruptly transitions to the
saturated nonequilibrium regime, where the phase difference remains constant at π/2 and
the anisotropy amplitude begins to decrease as ω−1. It can be inferred from the abrupt
transition at ωcr to the saturated nonequilibrium regime that (ωΛm) →∞ in the long-time
limit for all ω > ωcr, and this result will be explored in more detail in Sections 4.6.4 and
4.6.5.

4.6.3 Production-to-Dissipation Limit Forms

In the long-time limit S · t → ∞, where initial transients have fully decayed, P/ε from
(4.26) is given as

P

ε
=

Cµ

2C2
Λ

(
S

ω

)2
[

(ωΛm)2

1 + (ωΛm)2

]
[1− cos (2ωt)− (ωΛm) sin (2ωt)] . (4.37)

For the full equilibrium limit where (ωΛm) → 0 the production-to-dissipation ratio from
(4.37) becomes

lim
(ωΛm)→0

P

ε
= Cµ

(
Sk

ε

)2

sin2(ωt) . (4.38)

As with the anisotropy a12(t) in the full equilibrium limit in (4.29), this form, valid for
ω/S → 0, is identical to the result in (4.25) obtained from the equilibrium Boussinesq
closure. In the quasi-equilibrium regime for small but non-zero ω/S, where (ωΛm) ¿ 1,
P/ε is

lim
(ωΛm)¿1

P

ε
= Cµ

(
Sk

ε

)2 [
sin2(ωt)− (ωΛm)

2
sin(2ωt)

]
. (4.39)

In the saturated nonequilibrium regime where (ωΛm) →∞ for all ω > ωcr, P/ε from (4.37)
becomes

lim
(ωΛm)→∞

P

ε
=

Cµ

2C2
Λ

(
S

ω

)2

[1− cos(2ωt)− (ωΛm) sin (2ωt)] , (4.40)

and since (ωΛm) is large in this limit, the amplitude of the P/ε fluctuations become corre-
spondingly large.

While (4.38)-(4.40) provide insights into the time dynamics of P/ε in the full equilibrium
limit and the quasi-equilibrium and saturated nonequilibrium regimes, it is the cycle average
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value of P/ε that determines the asymptotic behavior of the turbulence kinetic energy
k and the relaxation time scale Λm. Applying the definition of the cycle average from
(4.32) to (4.37) gives the resulting frequency response of 〈P/ε〉 shown in Figure 4.14, where
frequency-independent scaling is observed for ω < ωcr, and power-law scaling is observed
in the saturated nonequilibrium regime for ω > ωcr.

The low- and high-frequency scaling of 〈P/ε〉 in Figure 4.14 can be understood analyti-
cally from the long-time limit forms of 〈P/ε〉 obtained from (4.37). In the full equilibrium
limit (ωΛm) → 0, the cycle average of (4.37) is given as

lim
(ωΛm)→0

〈
P

ε

〉
=

CµS2

C2
Λ

〈
Λ2

m sin2(ωt)
〉

, (4.41)

where there is no explicit dependence on the shearing frequency ω. While 〈Λ2
m sin2(ωt)〉

appearing in (4.41) does not appear at first to permit an analytical solution, it will be seen
in Section 4.6.5 that the evolution of 〈Λm〉 depends on 〈P/ε〉, and that there is a stable
fixed point in the dynamics of 〈Λm〉 when

〈
P

ε

〉
=

Cε2 − 1
Cε1 − 1

. (4.42)

Equating (4.41) and (4.42) thus provides the analytical expression for 〈Λ2
m sin2(ωt)〉 in

(4.34), and for the standard values of the constants in (1.33), (4.42) gives the classical value

〈
P

ε

〉
= 2.09 (4.43)

indicated by the horizontal dashed line in Figure 4.14. The agreement between the low-
frequency limit of 〈P/ε〉 from (4.37) in Figure 4.14 and the result in (4.43) indicates that
for ω < ωcr, the long-time dynamics of 〈Λm〉 correspond to the fixed point and 〈P/ε〉 thus
attains the frequency-independent value in (4.43). In the saturated nonequilibrium regime
ω > ωcr where (ωΛm) → ∞ and 〈Λ sin(2ωt)〉 is negligible, the cycle average of 〈P/ε〉 from
(4.37) becomes

lim
(ωΛm)→∞

〈
P

ε

〉
=

Cµ

2C2
Λ

(
S

ω

)2

, (4.44)

and thus 〈P/ε〉 decreases with increasing frequency as (ω/S)−2. The result in (4.44) agrees
in Figure 4.14 with the frequency response of 〈P/ε〉 from (4.37) for essentially all ω > ωcr.

It is the decrease in 〈P/ε〉 with increasing frequency in the saturated nonequilibrium
regime that is responsible for the distinctly different turbulence response for shearing fre-
quencies above and below ωcr. As the shearing frequency increases past ωcr, the cycle av-
erage of 〈P/ε〉 drops below the value required to support turbulence kinetic energy growth,
resulting in kinetic energy decay for all ω > ωcr. The asymptotic frequency response of
the turbulence kinetic energy k(t) and the relaxation time scale Λm(t) is examined in more
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detail in Section 4.6.5.

4.6.4 Analytical Result for the Critical Frequency

Due to the abrupt transition in Figure 4.14 from the fixed point dynamics for ω < ωcr to
the saturated nonequilibrium dynamics for ω > ωcr, the corresponding limit forms of 〈P/ε〉
in (4.42) and (4.44) can be used to determine an analytical result for the critical frequency
ωcr. Equating (4.42) and (4.44) at ω = ωcr thus gives

ωcr = S

[
Cµ (Cε1 − 1)
2C2

Λ (Cε2 − 1)

]1/2

. (4.45)

For the standard values of the constants in (1.33) and CΛ in (3.98), the resulting critical
frequency is

ωcr = 0.55S , (4.46)

which is in good agreement with the approximate empirical value ωcr ≈ 0.5S reported by
Yu and Girimaji [115] from their DNS results.

The fact that the critical frequency in (4.46) depends only on model constants may
provide guidance in determining more appropriate values of the constants in (1.26) and
(1.27) for second-order closure models in unsteadily forced turbulent flows. Values for CΛ

in such models can vary widely, as shown in Table 3.2 where CΛ = 0.42 in the LRR model
and CΛ = 0.23 in the SSG model. In the present approach however, CΛ is dictated by ωcr in
(4.45). For the values of Cµ, Cε1, and Cε2 in (1.33) we must have CΛ = 0.26 in order to have
ωcr ≈ 0.5S as observed in the DNS data. As noted in Chapter III, the choice of CΛ depends
on the values for Cε1 and Cε2, and if the common alternative value Cε2 = 1.83 is used then
(4.45) indicates that CΛ = 0.28 is required to give good agreement with ωcr ≈ 0.5S from
the DNS.

With respect to the DNS study by Yu and Girimaji [115], Figure 4.12 shows that the
critical frequency ωcr is more clearly defined in the NKE model than in the DNS results,
thereby allowing the precise determination of ωcr in (4.46). Whereas the NKE model
transitions abruptly to the saturated nonequilibrium regime at ωcr, the DNS results indicate
a more gradual approach to this regime. The slight differences between the NKE model
and DNS results near ωcr are most likely due, in part, to the physical approximations
used in the formulation of the NKE model. At the same time however, owing to the
substantial computational demands of the DNS approach used in the Yu and Girimaji [115]
study, a precise determination of the critical frequency such as that provided in (4.46) was
impractical. Only a limited number of frequencies could be simulated, as evident in Figure
4.12, and - even more importantly - for ω ≈ ωcr the simulations would need to have run
for impractically long times to accurately discern between the extremely slow average rates
of growth and decay in the otherwise oscillatory k(t) as ωcr is crossed. Similarly, it will
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be seen in Section 4.6.5 that as ωcr is crossed, 〈Λ〉 grows only very slowly with increasing
time t, thus requiring simulation times much greater than S · t = 50 in order to obtain
〈Λ〉 → ∞ and the corresponding asymptotic phase shift φ = π/2 from (4.28). It is thus
likely that the small differences between the NKE model and DNS results near ωcr are due
to a combination of effects from the physical simplifications used to derive the NKE model,
as well as the practical limitations of the DNS.

4.6.5 Turbulence Kinetic Energy and Relaxation Time

The turbulence kinetic energy k(t) is determined by (4.3) and (4.4), with S12(t) from
(4.20) and a12(t) from (4.23). Results are shown for a range of shearing frequencies ω/S

in Figure 4.15. It can be seen that the kinetic energy varies with a frequency twice that of
the applied shear, consistent with the frequency doubling for P/ε seen in (4.37). Its cycle
average value 〈k〉 can be seen in Figure 4.15 to grow for frequencies below the ωcr/S = 0.55
critical value, and decay for higher frequencies, in agreement with the findings of Yu and
Girimaji [115]. As noted in Section 4.6.3, the decay in k(t) for ω > ωcr in Figure 4.15 is
due to the (ω/S)−2 decrease in the cycle average of P/ε in the saturated nonequilibrium
regime.

From (4.3) and (4.4), the dynamical equation for the turbulence relaxation time scale
Λm(t) is

dΛm

dt
= CΛ (1− Cε1)

P

ε
+ CΛ (Cε2 − 1) . (4.47)

Figure 4.16 shows the evolution of Λm(t) for various shearing frequencies, where the tran-
sition in the dynamics is apparent as the frequency increases past ωcr. The cycle average
value 〈Λm〉 grows without bound for ω > ωcr, while for ω < ωcr the resulting Λm(t) oscillates
around a mean that remains constant after the initial transient has decayed.

As with the production-to-dissipation ratio in the previous section, the cycle average
〈Λm〉 reveals the transition in the dynamics as ω increases above the critical value ωcr. From
the equation for Λm in (4.47), the corresponding equation for 〈Λm〉 is

d〈Λm〉
dt

= CΛ (1− Cε1)
〈

P

ε

〉
+ CΛ (Cε2 − 1) . (4.48)

The frequency response of d〈Λm〉/dt from (4.48) is shown in Figure 4.17, where d〈Λm〉/dt =
0 for ω < ωcr, and there is a clear power-law increase in d〈Λm〉/dt in the saturated nonequi-
librium regime for ω > ωcr.

The evolution of 〈Λm〉 from (4.48) can be understood analytically for all ω from the
corresponding forms of 〈P/ε〉 in (4.42) and (4.44). For ω < ωcr there is clearly a stable
fixed point in the dynamics of 〈Λm〉, as indicated by the fluctuations of Λm(t) about a
steady mean value for ω/S = 0.125 and ω/S = 0.25 in Figure 4.16, and by the fact that
d〈Λm〉/dt = 0 for ω < ωcr in Figure 4.17. In Section 4.6.3, the existence of this fixed point
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was used to obtain the value of 〈P/ε〉 in (4.42). With this, the right hand side of (4.48)
is thus zero, giving 〈Λm〉 as a time-independent value that depends on ω and S. Figure
4.18(a) shows 〈Λm〉 as a function of ω/S, where 〈Λm〉 generally decreases with increasing
ω/S for ω ¿ ωcr.

In the saturated nonequilibrium regime ω > ωcr, 〈P/ε〉 depends on ω/S as in (4.44),
and thus the resulting dynamical equation for 〈Λm〉 is

lim
(ωΛm)→∞

d〈Λm〉
dt

= (1− Cε1)
Cµ

2CΛ

(
S

ω

)2

+ CΛ (Cε2 − 1) . (4.49)

This form of d〈Λm〉/dt is seen to agree well with the result from (4.48) in Figure 4.17 for
ω > ωcr, and since none of the quantities on the right-hand side vary with time, in the
saturated nonequilibrium regime the cycle average 〈Λm〉 increases linearly with t. This thus
gives 〈Λm〉 → ∞ as S · t → ∞ in the saturated nonequilibrium regime for all ω > ωcr, as
shown in Figure 4.18(a).

Finally, Figure 4.16(b) shows the relationship between 〈ωΛm〉 and ω/S. The former is
the proper nonequilibrium parameter, since it compares the shearing frequency with the
turbulence relaxation time, but is not known a priori from the specified forcing parameters
ω and S for any given case. In contrast, ω/S can be determined directly from these pa-
rameters, and also provides an indirect indication of the degree of nonequilibrium. Figure
4.16 verifies that these two nonequilibrium parameters depend monotonically on one an-
other, and thus either can be used to identify the extent of nonequilibrium in periodically
sheared homogeneous turbulence. Consistent with the linear increase in 〈Λm〉 with time
from (4.49), Figure 4.16(b) shows that 〈ωΛm〉 → ∞ in the saturated nonequilibrium regime
for all ω > ωcr.

4.7 Shock-Turbulence Interaction

A final test case deals with homogeneous initially-isotropic turbulence passing through
a shock wave – a highly nonequilibrium process that is known [94] to be very poorly pre-
dicted by equilibrium models. The interaction is typically represented as steady and one-
dimensional, and following Sinha et al. [94] the dissipation ε is taken to have a negligible
effect on the evolution of k and ε across the shock. The resulting k transport equation is
therefore dominated by kinetic energy production, and thus in a Lagrangian frame becomes

dk

dt
= −u′u′ S11 . (4.50)

The straining imposed as the turbulence passes through the normal shock can be repre-
sented by a top-hat function in terms of the pre- and post-shock speeds u1 and u2 and the
shock width ∆ as

S11 = lim
∆→0

u2 − u1

∆
, (4.51)
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where the straining begins at time t1 and ends at t2 → t1 as ∆ → 0. For all other times
S11 ≡ 0. The effective strain rate for t1 ≤ t ≤ t2 is thus obtained using (4.1) as

S̃11(t) = lim
∆→0

(
u2 − u1

∆

)[
1− e−(t−t1)/Λm

]
. (4.52)

With the general form of the anisotropy closure in (3.97) for a compressible flow, given as

aij = −2
νT

k

(
S̃ij − 1

3
S̃llδij

)
, (4.53)

expansion of the exponential contribution to the effective strain rate in (4.52) in a Taylor
series then allows (4.50) to be written as

1
k

dk

dt
= −2

3

(
u2 − u1

∆

)
+

4
3

Cµ

CΛ

(
u2 − u1

∆

)2

(t− t1) , (4.54)

where (t−t1)/Λm → 0 within the shock removes higher-order terms in the Taylor expansion.
Integrating with respect to t and defining ∆ ≡ Us(t2 − t1), where Us ≡ 1

2(u2 + u1) is the
characteristic speed through the shock, the turbulence kinetic energy amplification from
(4.54) then is

k2

k1
= exp

[
−4

3

(
1− u1/u2

1 + u1/u2

)
+

8
3

Cµ

CΛ

(
1− u1/u2

1 + u1/u2

)2
]

. (4.55)

As shown in Figure 4.19, results from the present closure in (4.55) show closer agreement
with the DNS data [56, 60] than do either the standard (SKE) or realizable (RKE) k-ε
models. In particular, for small upstream Mach numbers Figure 4.19 shows that the present
closure predicts significantly lower kinetic energy amplification across the shock than the
SKE model. Moreover, Figure 4.19 indicates that the nonequilibrium closure in the NKE
model better predicts the kinetic energy amplification k2/k1 across the shock at all Mach
numbers than does the equilibrium closure in either the SKE and RKE models. For large
values of the incoming Mach number M1, ad hoc treatments specific to this problem that
provide further reductions in the kinetic energy amplification, as in Sinha et al. [94], can
be used to obtain even better agreement with the DNS data.

4.8 Accuracy of Time-Local Nonequilibrium Closure

Existing codes for solving (1.2)-(1.4) typically only store flow variables at the current
time step, or at most one or two time steps in the past. While it may be possible to develop
an entirely new computational approach that is specifically designed to handle the mean
pathline convolution form of S̃ij in (3.96), which requires knowledge of the past straining
history of the flow, implementation of the present closure in standard codes requires the
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time-local formulation for S̃ij in (3.123), which is written for homogeneous flows as

S̃ij(t) = Sij(t) +
M∑

m=1

B(m)

B(0)
(−Λm)m DmSij

Dtm

∣∣∣∣
t

, (4.56)

where the B(m) are defined in (3.121) with Γ determined by the order of the expansion
M and the degree of variation in Sij . The representation in (4.56) is equivalent to the
homogeneous convolution form for S̃ij in (4.1) when M →∞ and Γ → −∞.

In order to avoid issues of numerical stability and computational complexity as an
increasing number of terms are retained in (4.56) – as discussed in Section 3.5 – it is of
interest to consider how truncations of (4.56) affect the agreement with results from the full
convolution effective strain in (4.1). This analysis can be carried out through consideration
of initially isotropic periodically-sheared homogeneous turbulence [115] with the shear given
by (4.20), and turbulence that is subjected to a Gaussian strain, as in the straining phase
in Figure 4.7 for the straining-relaxation-destraining case [11] in Section 4.4. These tests
provide insights into the accuracy of (4.56) over a range of nonequilibrium flow conditions
characterized by the magnitude of the shearing frequency ω/S in the periodic shear case,
and the duration of the straining in the Gaussian case (as determined by the width of the
Gaussian). Moreover, both these cases allow an analytical evaluation of the convergence
of (4.56) to the convolution form in (4.1) as an increasing number of terms are retained in
the expansion. For problems where the straining history is inherently non-differentiable, for
instance the impulsive strain cases in Section 4.2, the time-local formulation for S̃ij from
(4.56) cannot be used to obtain reliable predictions of the anisotropy near the points of
non-differentiability.

4.8.1 Periodically-Sheared Turbulence

From the convolution form of the present closure in (4.1) and (4.2), the shear anisotropy
a12 for the periodic shear in (4.20) is given in (4.23). Considering the time-local formulation
of the anisotropy from (4.2) and (4.56) for the shearing in (4.20) we obtain

a12(t) = −νT

k
S

{
1− (ωΛm)2 + (ωΛm)4 + · · ·

}
[sin(ωt)− ωΛm cos(ωt)] , (4.57)

where we have set M → ∞ with Γ → −∞, and hence B(m) = 1. The series in braces on
the right-hand side of (4.57) is the Taylor expansion of the frequency-dependent amplitude[
1 + (ωΛm)2

]−1 in (4.23). The frequency-dependent phase shift in (4.23) is thus almost
entirely accounted for in (4.57) by the [ωΛm cos(ωt)] term, which appears for M ≥ 1 with
M = odd, and inclusion of higher-order terms serves primarily to yield better amplitude
agreement with (4.23) via the expansion for

[
1 + (ωΛm)2

]−1 . As a result, we may expect
low order truncations of (4.56) to give reasonable predictions of the anisotropy for flows
with moderately strong nonequilibrium effects, which are parameterized for the periodic
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shear case by the magnitude of ω/S.
The accuracy of truncations of (4.57) can be assessed by integrating the k and ε equations

in (4.3) and (4.4), with νT given by (1.36). The anisotropy a12 is obtained from (3.97) using
(4.56), where here we consider the M = 1 and M = 3 truncated forms for a12, namely

a12(t) = −νT

k
S

[
sin(ωt)− B(1)

B(0)
(ωΛm) cos(ωt)

]
(4.58)

for M = 1 and

a12(t) = −νT

k
S

{[
1− B(2)

B(0)
(ωΛ)2

]
sin(ωt)−

[
B(1)

B(0)
− B(3)

B(0)
(ωΛ)2

]
(ωΛm) cos(ωt)

}

(4.59)
for M = 3, where the B(m) coefficients are defined in (3.121). Note that we do not consider
the M = 2 expansion, since only odd order expansions of the effective strain in (4.56) yield
the correct phase term [(ωΛm) cos ωt] in (4.57)-(4.59) for periodically-sheared turbulence.

Figure 4.20 shows for shearing frequencies ω/S = 0.125, ω/S = 0.25, and ω/S = 0.5
that the anisotropy evolution predicted by (4.58) and (4.59) is generally in good agreement
with the full convolution form for a12 from (4.23). For the two lower shearing frequency
cases in Figures 4.20(a) and (b), the relatively small ω/S allows the use of Γ → −∞, where
B(m) = 1 for all m. While both the M = 1 and M = 3 forms for a12 in (4.58) and (4.59),
respectively, closely agree with the full convolution form in (4.23) for these lower shearing
frequencies, Figure 4.20(b) does show that the form in (4.59) is in slightly better agreement
with (4.23) as a result of retaining terms up to M = 3 in the expansion.

For the higher shearing frequency case in Figure 4.20(c), the truncations of (4.56) used to
obtain (4.58) and (4.59) lead to integration errors when calculating the temporal evolution
of a12 using Γ → −∞. In particular, the M = 3 form in (4.59) could not be stably
integrated beyond S · t ≈ 10, and consequently results from (4.59) are not shown in Figure
4.20(c). Even the M = 1 form in (4.58) begins to show amplitude disagreements with the
full convolution form in (4.23) for the higher shearing frequency in Figure 4.20(c), although
the phase response of the anisotropy is still predicted relatively accurately.

As discussed in Section 3.5, these truncation errors can be avoided by using a finite
value for Γ, resulting in values of the B(m) coefficients that are less than 1. Figure 4.21
shows predictions for a12 from (4.58) and (4.59) using (t − Γ)/Λm = 1.7 for ω/S = 0.5. It
is clear that results from the truncated forms are in relatively good agreement with results
from the convolution form in (4.23), and that the higher-order M = 3 expansion in (4.59)
is in better agreement with (4.23) than the M = 1 expansion in (4.58). In general, as the
shearing frequency ω/S is increased the value of (t − Γ)/Λm must be decreased to avoid
errors due to the truncation of (4.56).

With respect to the phase difference between a12 and S12 considered in Figure 4.12,
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Figure 4.22 shows that for Γ → −∞, where B(m) = 1 for all m, both (4.58) and (4.59)
reproduce the phase difference predicted by the full nonequilibrium model in (4.23) up to
ω/S ≈ 0.25. The M = 1 model in (4.58) further predicts the same qualitative approach to
φ = π/2 for large ω/S seen in the DNS and full convolution results, although agreement
in the intermediate frequency range is somewhat poor. Despite this disagreement however,
the truncated forms are still in much better agreement with DNS results [115] than the
equilibrium expression for a12 in (4.21) over all shearing frequencies. While the M = 3
truncation of a12 more closely matches the full convolution result for the available shearing
frequencies, it is clear from (4.22) that the bulk of the phase response is correctly captured
even by the lowest-order M = 1 truncation in (4.58). Note that integration of the M = 3
closure is stopped at ω/S = 0.25 due to truncation errors introduced by the use of Γ → −∞,
as discussed with respect to Figures 4.20(c) and 4.21.

Taken together, Figures 4.20-4.22 show that there is greater disagreement between the
truncated and convolution results for higher relative shearing frequencies ω/S, correspond-
ing to stronger nonequilibrium in the flow. The relatively poorer agreement as the shearing
frequency increases is due in large part to the neglect of the higher-order amplitude terms
in obtaining (4.58) and (4.59) from (4.57), as well as errors due to the truncation of the
expansion for S̃ij in (4.56). This indicates that as the degree of nonequilibrium increases
(as characterized by ω/S or ωΛm in periodically sheared turbulence), a greater number of
terms in the time-local expansion in (4.56) must be retained to yield good agreement with
the convolution form in (4.1). Nevertheless, Figures 4.20-4.22 do indicate that even the
M = 1 truncated closure in (4.58) is sufficient to obtain significantly higher-fidelity results
for periodically-sheared turbulence than the classical equilibrium closure in (1.35). This
suggests that a truncated M = 1 form of the anisotropy closure in (4.56), where numerical
difficulties are not expected to be prohibitive, is sufficient to give good results for practical
nonequilibrium turbulent flow problems.

It should be noted before continuing that retention of terms up to M = 3 in (4.56)
may give additional large improvements for strongly nonequilibrium test cases. While this
higher level of closure may introduce additional numerical difficulties in computational
implementations of the closure, the computational resources and complexity required to
simulate practical flow problems using (3.97) with the M = 3 form of (4.56) are still
expected to be substantially less than for full Reynolds stress transport closures such as
the LRR model. Regardless of the order of expansion used for the effective strain rate
however, it is important for practical implementation of the closure to limit the resulting
nonequilibrium correction terms using the B(m) coefficients with finite Γ in order to prevent
errors for large degrees of nonequilibrium due to truncations of the time-local expansion in
(4.56).
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4.8.2 Gaussian-Strained Turbulence

For the straining-relaxation-destraining case examined experimentally by Chen et al.
[11], Figure 4.8 shows that the full convolution results for the anisotropy from the NKE
closure are in good agreement with experimental results, where the applied strain is ap-
proximated by the piecewise-linear profile in Figure 4.7. However, the “straining” phase of
the straining cycle can also be represented by the Gaussian form

S11(t) = Smax exp
[
−(t− t0)2

σ2
s

]
for t ≥ 0 , (4.60)

where S11(t) = 0 for t < 0. In (4.60), Smax is the amplitude of the applied strain, t0

is the location of the maximum applied strain, and σs is a measure of the duration of the
straining. As with the periodically-sheared case, the Gaussian strain in (4.60) readily allows
calculation of the higher-order strain derivatives in (4.56), and thus provides an ideal case
for assessing the convergence of truncated time-local forms of (4.56) to the exact convolution
result for S̃ij .

Using (4.60) in the convolution form for S̃ij in (4.1), the anisotropy a11 is given from
the present closure in (4.2) as

a11(t) = Smax
σs
√

π

2Λm
exp

[
σ2

s + 4Λm(t0 − t)
4Λ2

m

]
(4.61)

×
[
erf

(
σ2

s + 2Λmt0
2Λmσs

)
− erf

(
σ2

s + 2Λm(t0 − t)
2Λmσs

)]
.

In order to use the time-local representation for S̃ij in (4.56) for this case, several higher-
order derivatives of S11 from (4.60) must be calculated. These are given up to m = 3 for
t ≥ 0 by

DS11

Dt
=

dS11

dt
= −Smax

2
σ2

s

(t− t0) exp
[
−(t− t0)2

σ2
s

]
, (4.62)

D2S11

Dt2
=

d2S11

dt2
= Smax

[
4 (t− t0)

2

σ4
s

− 2
σ2

s

]
exp

[
−(t− t0)2

σ2
s

]
, (4.63)

D3S11

Dt3
=

d3S11

dt3
= Smax

[
12 (t− t0)

σ4
s

− 8 (t− t0)
3

σ6
s

]
exp

[
−(t− t0)2

σ2
s

]
, (4.64)

and the corresponding time-local truncated anisotropy closures are given from (4.56) and
(4.2) for M = 1, 2, 3 as

a
(1)
11 = −2Cµ

k

ε

[
S11 − B(1)

B(0)
Λm

DS11

Dt

]
, (4.65)
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a
(2)
11 = −2Cµ

k

ε

[
S11 − B(1)

B(0)
Λm

DS11

Dt
+

B(2)

B(0)
Λ2

m

D2S11

Dt2

]
, (4.66)

a
(3)
11 = −2Cµ

k

ε

[
S11 − B(1)

B(0)
Λm

DS11

Dt
+

B(2)

B(0)
Λ2

m

D2S11

Dt2
− B(3)

B(0)
Λ3

m

D3S11

Dt3

]
. (4.67)

The B(m) coefficients are defined in (3.121) and require a formulation for the parameter
(t − Γ)/Λm. As noted in Section 4.8.1, the value of this parameter generally decreases as
the degree of nonequilibrium in the flow (in this case determined by σs) increases. At the
same time however, larger values of (t−Γ)/Λm are permitted as the order of the truncation
of the effective strain in (4.56) increases. For the following tests of the time-local closures
in (4.65)-(4.67), the dependence of (t − Γ)/Λm on both the degree of nonequilibrium and
the truncation order M will be accounted for by increasing (t− Γ)/Λm – which is taken to
be independent of t in the following – as M and the parameter σs increase.

For the large and rapid straining in the Chen et al. [11] experiment, where σsε0/k0 ≈ 0.09
gives good agreement between (4.60) and the applied strain during the “straining” phase in
Figure 4.7, it can be anticipated that a large number of terms in the time-local effective strain
will be necessary to obtain good agreement with the full convolution result. Consequently,
here we will follow a similar approach to that employed in the periodically-sheared case and
consider the convergence of the time-local forms in (4.65)-(4.67) to (4.61) for more realistic
degrees of nonequilibrium. Results for a11 are shown in Figure 4.23 for the Gaussian applied
strain in (4.60) with σsε0/k0 = [1.0, 0.7, 0.4], where Smaxk0/ε0 = 9.5 for each case. The
degree of nonequilibrium increases as the width of the applied Gaussian strain decreases,
and as a result σsε0/k0 = 0.4 corresponds to the strongest degree of nonequilibrium for the
three cases shown in Figure 4.23.

For σsε0/k0 = 1.0 in Figure 4.23(a), Figure 4.23(b) shows that the evolutions of a11

predicted by the time-local closures in (4.65)-(4.67) are all in relatively good agreement
with the exact convolution result, particularly for small times when the magnitude of the
straining is increasing. This is in contrast to results from the SKE closure, which over-
predicts the magnitude of the anisotropy as the strain increases, and under-predicts the
decaying anisotropy magnitude as the strain is removed. Similarly good agreement between
the time-local and full convolution results is seen in Figure 4.23(d) for the σsε0/k0 = 0.7
Gaussian strain in Figure 4.23(c). Once again, results from the time-local closures more
closely follow the full convolution results, particularly as the strain increases for small times,
whereas the SKE model over-predicts the peak anisotropy magnitude as well as the rate at
which the anisotropy decays as the strain decreases. For both the Gaussian strain cases in
Figures 4.23(b) and (d), it is clear that the M = 3 truncated closure in (4.67) generally
shows the best agreement with the full convolution results, although even the lowest-order
M = 1 closure provides significantly improved predictions of the anisotropy compared to
the local equilibrium closure in the SKE model. Note also that the values of (t − Γ)/Λm
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used in the truncated closures in Figures 4.23(b) and (d) are consistent with the value used
for the ω/S = 0.5 periodically-sheared case shown in Figure 4.21.

For the most rapidly strained case in Figure 4.23(e), where σsε0/k0 = 0.4, Figure 4.23(f)
shows that the truncated time-local closures are in somewhat poorer agreement with the
full convolution closure than for the cases in Figures 4.23(a)-(d). Due to the relatively
high degree of nonequilibrium in this case, the convergence of the time-local anisotropy
formulations in (4.65)-(4.67) to the full convolution result is relatively slow with increasing
M . Moreover, relatively small values of (t−Γ)/Λm are required to avoid truncation errors.
Nevertheless, Figure 4.23(f) does show that predictions from the time-local closures are still
in better agreement with the full convolution NKE model results than results from the SKE
model, and it is clear that the agreement improves as the truncation order M increases. In
particular, the peak anisotropy magnitude is seen to decrease as the truncation order M

increases, and the decay of the anisotropy as the strain is removed becomes less rapid.
Taken together, the results for the periodic-shear and Gaussian-strain cases show that

for many practical flows where the degree of nonequilibrium is relatively moderate, low-
order truncations of the time-local effective strain from (4.56) give good agreement with
the full convolution formulation for S̃ij in (4.1). As the degree of nonequilibrium increases
however, an increasing number of time-local terms are required to give good agreement
with predictions from the convolution form. Moreover, since the parameter (t − Γ)/Λm

must be decreased in order to avoid truncation errors for large degrees of nonequilibrium,
resulting in reduced values of the B(m) coefficients, the convergence to the full convolution
form can become relatively slow. This is evident, for example, from the convergence of
(4.65)-(4.67) to (4.61) for the relatively strong nonequilibrium case in Figures 4.23(e) and
(f). Nevertheless, the periodic-shear and Gaussian-strain time-local tests indicate that for
the relatively moderate degree of nonequilibrium found in many practical problems, low-
order truncations of (4.56) – where computational issues are not expected to be prohibitive
– are sufficient to give significantly improved predictions of the anisotropy when compared
to results from the local equilibrium closure in (1.35).
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Figure 4.1: Turbulence kinetic energy k(t)/k0 for initially-isotropic impulsively-sheared ho-
mogeneous turbulence in (4.9), where Sk0/ε0 = 3.4. NKE model results are
compared with results from the SKE and LRR [51] models, and the LES of
Bardina et al. [3].
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Figure 4.2: Anisotropy a12 for initially-isotropic impulsively-sheared homogeneous turbu-
lence in (4.9), where Sk0/ε0 = 3.4. NKE model results are compared with
results from the SKE and LRR [51] models, and the LES of Bardina et al. [3].
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Figure 4.3: Turbulence kinetic energy k(t)/k0 for initially-isotropic axisymmetrically-
contracted homogeneous turbulence in (4.10), where Sk0/ε0 = 5.54. NKE model
results are compared with results from the SKE and LRR [51] models, and the
DNS of Lee and Reynolds [55].
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Figure 4.4: Anisotropy aij for initially-isotropic axisymmetrically-contracted homogeneous
turbulence in (4.10), where Sk0/ε0 = 5.54. NKE model results are compared
with results from the SKE and LRR [51] models, and the DNS of Lee and
Reynolds [55].
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Figure 4.5: Decay of the anisotropy aij in the plane strain experiment of Choi and Lumley
[13]. NKE model results (using CΛ = 2) are compared with experimental results
[13] and results from the LRR [51] model.
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Figure 4.6: Decay of the anisotropy aij in the plane contraction experiment of Le Penven
et al. [75]. NKE model results (using CΛ = 2) are compared with experimental
results [75] and results from the LRR [51] model.
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Figure 4.7: Imposed mean strain rate S11(t) in strained, relaxed, and destrained turbulence
experiment of Chen, Meneveau and Katz [11], with piecewise linear approxi-
mation used to permit analytical evaluation of equivalent strain rate S̃11(t) via
(4.1).
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Figure 4.8: Anisotropy a11(t) in strained, relaxed, and destrained turbulence in Figure 4.7,
showing comparisons of measured values from Chen et al. [11] with results from
present closure in NKE model, from classical equilibrium closure in SKE model,
and from the LRR model [51].
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Figure 4.9: Anisotropy a12(t) in periodically sheared turbulence for relative shearing fre-
quencies ω/S = 0.5 (a), 1.0 (b), and 10 (c), comparing the present solution in
(4.23) with results from the SKE and LRR [51] models, and with corresponding
DNS results of Yu and Girimaji [115].
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Figure 4.10: Time-evolution of the production-to-dissipation ratio P/ε from (4.26) for fre-
quencies ω/S = 0.5 (a) and 1.0 (b), showing good agreement with DNS results
of Yu and Girimaji [115]. Results from the SKE and LRR [51] models are also
shown.
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Figure 4.11: Time-evolution of the production-to-dissipation ratio P/ε from (4.26) for shear-
ing frequency ω/S = 10 showing good agreement of present closure with results
from the LRR [51] model, while the SKE model significantly overpredicts the
amplitude of P/ε.
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Figure 4.12: Phase difference between the shear stress anisotropy and the applied mean
shear, showing good agreement of the present result in (4.28) with the DNS
results of Yu and Girimaji [115], and comparisons with corresponding SKE
and LRR [51] model results.
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Figure 4.13: Rms amplitude of the long-time limit anisotropy from NKE model in (4.27),
showing approach to equilibrium limit value in (4.35) and good agreement with
form for the saturated nonequilibrium regime in (4.36) for ω > ωcr.
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Figure 4.14: Cycle average of P/ε in long-time limit from NKE model in (4.37), showing
also fixed point form in (4.43) for ω < ωcr, saturated nonequilibrium form in
(4.44) for ω > ωcr, and abrupt transition at the critical frequency ωcr given in
(4.45) and (4.46).
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Figure 4.15: Kinetic energy evolution k(t) from NKE model normalized by the initial value
k0 for various shearing frequencies ω/S, showing the transition from kinetic
energy growth (ω < ωcr) to decay (ω > ωcr) at the critical frequency ωcr/S =
0.55 from (4.45).
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Figure 4.16: Evolution of the turbulence relaxation time scale Λ from NKE model normal-
ized by the initial value Λ0 for various shearing frequencies ω/S. The magni-
tude of Λ becomes unbounded in the long-time limit for shearing frequencies
above the critical value ωcr/S = 0.55.
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Figure 4.17: Frequency response of d〈Λ〉/dt in long-time limit from NKE model in (4.48),
showing fixed point dynamics for ω < ωcr and good agreement with saturated
nonequilibrium form in (4.49) for ω > ωcr.
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Figure 4.18: Variation in the cycle average of Λ (a) and the nonequilibrium parameter
(ωΛ) (b) from the NKE model in long-time limit with shearing frequency ω/S,
showing 〈Λ〉 → ∞ and 〈ωΛ〉 → ∞ for all ω > ωcr. Figure (b) shows monotonic
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Figure 4.19: Amplification of turbulence kinetic energy k across normal shock at various
upstream Mach numbers M1, comparing DNS [56, 60] with NKE model and
classical equilibrium SKE [94] and RKE models.
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Figure 4.20: Temporal evolution of a12 for shearing frequencies (a) ω/S = 0.125, (b) ω/S =
0.25, and (c) ω/S = 0.5, showing results from M = 1 truncated closure in
(4.58) (NKE M = 1), M = 3 closure in (4.59) (NKE M = 3), standard k-ε
model in (4.21) (SKE), and full nonequilibrium closure in (4.23) (NKE). In all
cases, (t− Γ)/Λm = ∞ has been used for the B(m) coefficients in (3.121). For
ω/S = 0.5, the M = 3 closure requires finite (t− Γ)/Λm; consequently M = 3
results are not shown in (c).
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Figure 4.21: Temporal evolution of anisotropy a12 for shearing frequency ω/Smax = 0.5,
showing results from M = 1 truncated nonequilibrium closure in (4.58) (NKE
M = 1), M = 3 closure in (4.59) (NKE M = 3), standard k-ε model in
(4.21) (SKE), and full nonequilibrium closure in (4.23) (NKE). The value (t−
Γ)/Λm = 1.7 has been used for the B(m) coefficients defined in (3.121).
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Figure 4.22: Phase difference between anisotropy a12 and imposed mean shear S12 in
periodically-sheared turbulence, comparing results obtained from M = 1 trun-
cated nonequilibrium closure in (4.58) (NKE M = 1) and the M = 3 closure
in (4.59) (NKE M = 3) with standard k-ε model in (4.21) (SKE), full nonequi-
librium closure in (4.23) (NKE), and DNS results from Yu and Girimaji [115].
Due to the use of (t − Γ)/Λm = ∞, results from the M = 3 model are only
shown up to ω/S ≈ 0.25.
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Figure 4.23: Temporal evolution of anisotropy a11 (right column) for Gaussian applied
strain from (4.60) (left column). The rows correspond to σsε0/k0 = 1.0 (a)
and (b), σsε0/k0 = 0.7 (c) and (d), and σsε0/k0 = 0.4 (e) and (f). Results are
shown from the SKE closure and the M = 1, 2, 3 truncated closures in (4.65)-
(4.67). The truncated closures are denoted in the legends by (M, γ), where
γ ≡ (t− Γ)/Λm is used to obtain the B(m) coefficients in (3.121). Results are
compared with the full NKE closure in (4.61) for all cases.
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CHAPTER V

Computational Implementation and Nonlocal Tests of the

Present Anisotropy Closure

The vast majority of practical turbulent flow problems are inhomogeneous, exhibiting
often strong spatial variations in mean flow quantities. For example, in free-shear flows such
as jets, mixing layers, and wakes the mean shear varies dramatically in the cross-stream
direction. Similar strong spatial variations are also observed in the near-wall region of wall
bounded flows such as turbulent channels and boundary layers. As discussed in Chapter
III, such variations introduce substantial nonlocal effects on the anisotropy, which must be
accurately predicted in order to obtain reliable, high-fidelity solutions of (1.2)-(1.4).

In order to assess the accuracy of the anisotropy closure outlined in Chapter III for
addressing nonlocal effects in turbulent flows, fully-developed turbulent channel and the
zero pressure gradient turbulent boundary layer are examined in the following. While
nonequilibrium effects on the anisotropy are not significant in these flows, nonlocal effects
are particularly important in both the channel and boundary layer cases since the mean
strain varies rapidly in the near-wall region. As shown in Figure 1.2 for the channel flow,
the classical local equilibrium closure in (1.35) provides relatively accurate predictions of
the anisotropy away from the channel walls, but substantially over-predicts the anisotropy
magnitude for y+ < 60. This failure is due in large part to the neglect of nonlocal effects
in the closure, as discussed in Section 1.3.3.

In the following, the present focus on nonlocal effects is shown to give substantially
improved agreement with computational and experimental results in the turbulent channel
and boundary layer cases when compared to results from the classical local equilibrium
closure in (1.35). It is first shown how the present closure from (3.97) with (3.110) or
(3.123) can be written for equilibrium flows. This closure is then applied analytically to
the logarithmic velocity profile found near the wall in wall bounded flows, showing that
the present nonlocal correction terms lead to a decrease in the anisotropy magnitude in the
near-wall region compared to the local equilibrium closure in (1.35). The present closure
is then evaluated using results from various fully-developed turbulent channel flow DNS
studies, where all flow variables are obtained exactly from the DNS databases. This allows
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a direct evaluation of the present closure formulation without concerns as to how k and
ε are obtained, or how (1.2)-(1.4) are solved to obtain Sij . Finally, the present closure
is implemented in a full computational framework for solving (1.2)-(1.4), and results are
shown for the zero pressure gradient boundary layer.

It should be noted before continuing that while the present closure is expected to provide
improved predictions of the anisotropy in any flow with a spatially varying mean velocity
gradient field, the turbulent channel flow and boundary layer are particularly attractive
validation cases for a number of reasons. For the channel flow, the availability of a number
of high-quality DNS databases makes it possible to accurately calculate several higher-order
Laplacians of Sij in (3.96). In general, calculation of these terms requires high-resolution
data, and such data is simply not currently available for other canonical inhomogeneous
flows, such as the turbulent jet and mixing layer. With respect to the boundary layer,
the relative simplicity of this case allows straightforward implementation and testing of the
present closure in a full computational framework for solving (1.2)-(1.4). At the same time
however, the turbulent boundary layer is a fundamental flow of substantial engineering im-
portance, and correctly predicting the anisotropy within the boundary layer (particularly in
the near-wall region) has been problematic for nearly all prior turbulence model approaches.

5.1 Nonlocal Anisotropy Closure in Equilibrium Turbulence

The anisotropy closure in (3.97) expresses aij in terms of the nonlocal and nonequilib-
rium effective strain S̃ij , which is given by (3.94) as a convolution integral over the entire
history of the nonlocal tensor Tij , defined in (3.87), along mean flow pathlines. For tur-
bulent flows near equilibrium however, the turbulence memory time scale Λm in (3.94) is
much less than the time scale over which Tij varies, here denoted ΛT . In such equilibrium
flows the representation for S̃ij from (3.94) becomes greatly simplified, and in particular
nonequilibrium history effects on the anisotropy evolution can be neglected in the closure
representation.

The effective strain can be written for equilibrium flows by taking the limit of S̃ij in
(3.94) as (Λm/ΛT ) → 0. Making the change of variables z = −(t− τ)/(Λm/ΛT ), (3.94) can
be written as

S̃ij(t) =
∫ 0

−∞
Tij

(
t +

Λm

ΛT
z

)
ez/ΛT

ΛT
dz . (5.1)

In the limit Λm/ΛT → 0, (5.1) then yields the equilibrium relation

lim
Λm/ΛT→0

S̃ij(t) = Tij(t) , (5.2)

and consequently there is no longer any nonequilibrium history-dependence in S̃ij .
With (5.2) and the definition of Tij in (3.87), the present anisotropy closure is written
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for equilibrium flows from (3.97) as

aij = −2
νT

k

[
Sij +

N∑

n=2

C
(n)
2

α2
Λ2n−2

(∇2
)n−1

Sij

]
, (5.3)

where the C
(n)
2 are given by (3.67) for N →∞ and (3.118) for finite N , with α2 = C

(1)
2 −4/3.

The first term in the square brackets is the local equilibrium response of the anisotropy, and
corresponds to the classical closure in (1.35). By contrast to the classical closure however,
the series of Laplacians in (5.3) additionally accounts for nonlocal effects due to variations in
the mean strain rate tensor. It will be seen herein from the channel flow and boundary layer
tests that these additional terms give dramatically improved predictions of the anisotropy
when compared to results from the classical local equilibrium closure in (1.35).

5.2 Log-Layer Analysis

Both turbulent channel and boundary layer flows display a logarithmic velocity profile
in the near-wall region, and this profile can be used to carry out a preliminary analytical
evaluation of the nonlocal terms in (5.3) and their effect on predictions of the anisotropy
in wall-bounded flows. Within the so-called “log-layer” region, the streamwise velocity is
given by [78]

u+ =
1
κ

ln y+ + B , (5.4)

where κ = 0.41, B = 5.2, u+ ≡ u/uτ , and y+ ≡ yuτ/ν. The wall friction velocity uτ

is defined as uτ ≡
√

τw/ρ, where τw is the shear stress at the wall. The profile in (5.4)
generally shows good agreement with DNS and experimental results well into the near-wall
region [78], often down to y+ ≈ 30. Within the log-layer, the mean shear S12 is given from
(5.4) as

S12 ≈ 1
2

∂u

∂y
=

1
2

u2
τ

ν

∂u+

∂y+
=

1
2

u2
τ

ν

1
κy+

, (5.5)

where ∂u/∂y À ∂v/∂x in turbulent channel and boundary layer flows. The shear anisotropy
a12 from (5.3) and (5.5) can thus be written as

a12 = −2
νT

k
S12

[
1− 17

21

(
Λ+

y+

)2

− 44
7

(
Λ+

y+

)4

− 11400
77

(
Λ+

y+

)6

+ · · ·
]

, (5.6)

where Λ+ ≡ Λuτ/ν and the C
(n)
2 coefficients from (3.67) have been used to obtain the result.

By contrast, the local equilibrium closure in (1.35) gives the anisotropy in the log-layer as

a12 = −2
νT

k
S12 . (5.7)
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Comparison of (5.6) with (5.7) shows that the magnitude of a12 is reduced in the log-
layer by the nonlocal correction terms. As seen in Figure 1.2, the local equilibrium closure
substantially over-predicts the anisotropy magnitude in the near-wall region of the turbulent
channel, and the reduction in the magnitude of a12 from (5.6) – which is fundamentally
obtained by accounting for nonlocal effects on the anisotropy – may thus be sufficient to
give better agreement with DNS and experimental results in wall-bounded flows.

5.3 Fully-Developed Turbulent Channel Flow

Fully-developed turbulent channel flow provides an ideal nonlocal test of the present
anisotropy closure due to the substantial spatial variations in mean flow quantities in the
near-wall region, as well as due to the availability of several high-resolution turbulent channel
flow DNS data sets. Since the channel flow is fundamentally in equilibrium – as evidenced
by the fact that flow properties do not change along mean flow streamlines and material
derivatives D/Dt of all flow properties are identically zero – the equilibrium form of the
present nonlocal closure in (5.3) can be used to make quantitative comparisons of the
anisotropy with results from DNS.

In the following, eight different Reynolds numbers from three different channel flow DNS
databases are examined. The Reynolds number cases considered herein are (i) Reτ = 150,
300, 400, 650 from Iwamoto et al. [39], (ii) Reτ = 180 and 395 from Moser et al. [67], and
(iii) Reτ = 550 and 950 from Hoyas and Jimenez [37]. Perhaps the main advantage of using
these DNS databases for testing the present closure is that all flow variables, including k

and ε, are provided exactly. The specific closure relation for the anisotropy can thus be
tested without concerns as to the representations for the turbulence variables. This is in
contrast to the various nonequilibrium test cases considered in Chapter IV, where k and ε

were obtained from transport equations such as those in (1.31) and (1.32).

5.3.1 Truncated Anisotropy Closure for Channel Flow Tests

As discussed in Section 3.5, as higher-order nonlocal terms are retained in the closure in
(5.3), an increasing number of Laplacians of Sij must be calculated. However, the resolution
of the DNS can become an issue for large N , and in the following we will consider the N = 2
truncation of (5.3), which gives

aij = −2
νT

k


Sij +

C
(2)
2(

C
(1)
2 − 4/3

)Λ2∇2Sij


 , (5.8)

where C
(1)
2 and C

(2)
2 are given by (3.118) and we use R/Λ = 0.86, consistent with (3.125).

In turbulent channel flow the local Reynolds number can become small in the near-wall
region, resulting in increasingly important viscous effects. As a result, Λ in (3.36) is here
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written as

Λ = max

[
0.23

k3/2

ε
, CηηK

]
, (5.9)

where ηK =
(
ν3/ε

)1/4 is the Kolmogorov length scale and it will be seen that

Cη = 12.4 (5.10)

gives good agreement with DNS for all Reynolds numbers. This approach for addressing
low-Reynolds number effects is similar to the formulation for L in (3.131) used in elliptic
relaxation models (e.g. [20, 21]). Note also that in obtaining (5.9) from (3.36) we have used
the value for Cλ in (3.39), which comes from comparison of the exponential f(r) given by
(3.38) with the inertial range form for f(r) obtained from the Kolmogorov hypotheses, as
discussed in Section 3.2.4.

The eddy viscosity νT in (5.8) is given by the standard form in (1.36) where here Cµ is
given by the realizable Bradshaw hypothesis in (1.40). From the definition of Cµ in (1.37) it
can be seen that Cµ ∼ (P/ε)−1, and thus Cµ must be limited in regions where P/ε becomes
large. In reality, the magnitudes of P/ε and Sk/ε are closely linked, and the realizable Cµ

in (1.40) provides a relatively straightforward way of accounting for the dependence of Cµ

on P/ε. Use of (1.40) is particularly important in the turbulent channel flow, since Sk/ε

becomes large in the near-wall region and reaches a maximum value of Sk/ε ≈ 18 at y+ ≈ 8
as shown using DNS from Iwamoto et al. [39] in Figure 5.1.

Finally, before proceeding to a full comparison of results from (5.8) with DNS, we can
get a sense of where nonlocal effects are important in the turbulent channel by considering
the parameter Ψ from (3.105) as a function of y+. Again using the DNS of Iwamoto et al.
[39], Figure 5.2 shows for four different values of Reτ that Ψ begins to increase and become
substantially non-zero at y+ ≈ 100. Here Tij in the definition of Ψ in (3.105) has been
calculated from (3.87) by retaining only the leading order n = 2 nonlocal Laplacian term,
consistent with the present truncated closure in (5.8). Figure 5.2 further shows that the
degree of nonlocality in the channel peaks at y+ ≈ 15 where Ψ ≈ 1.2. This thus indicates
that nonlocal effects due to variations in the mean strain are important in the turbulent
channel for 10 < y+ < 100, and that the present nonlocal anisotropy closure in (5.8) can be
expected to give improved predictions of the anisotropy compared to the local equilibrium
closure from (1.35) in this range.

5.3.2 Comparisons with DNS

Figure 5.3 compares the shear anisotropy a12 as a function of y+ predicted by the
truncated closure described in the previous section – here denoted the NKE model – with
results from DNS. Results from the standard k-ε (SKE) model from (1.35) and (1.36) with
Cµ = 0.09, and the realizable k-ε (RKE) model from (1.35) with Cµ given by (1.40) are also
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shown. For all Reynolds numbers, the SKE model shows good agreement with DNS in the
centerline of the channel, but dramatically over-predicts the anisotropy magnitude in the
near-wall region. The RKE model shows somewhat improved agreement in the near-wall
region due to the realizable Cµ in (1.40), which limits the anisotropy magnitude when Sk/ε

becomes large near the wall. However, the RKE model fails to capture the decrease in the
anisotropy magnitude as the wall is approached. By contrast, the NKE closure from (5.8)
agrees with the DNS results for all Reynolds numbers down to y+ ≈ 16, consistent with the
observed importance of nonlocal effects down to at least y+ ≈ 15 in Figure 5.2.

Below y+ ≈ 16 however, Figure 5.3 shows that the NKE closure over-predicts the
anisotropy magnitude, resulting in poor agreement with the DNS. This poor agreement
could be due to a number of factors, in particular the neglect of inhomogeneities in the
turbulence variables, the neglect of the anisotropy in the dissipation tensor εij (which can
become significant as the local Reynolds number decreases in the near-wall region), and
the increasingly two-dimensional nature of the turbulence near the wall. While the NKE
closure from (5.8) does not explicitly address any of these effects, which are nevertheless
discussed in more detail in Section 5.6, we can obtain a closure that agrees with DNS for
y+ < 16 by combining the present approach with prior anisotropy closures based on ad hoc
wall damping functions. Such wall-damped closures were previously discussed in Section
1.3.3, and are here written in general form as

a
(f)
ij = −2fµCµ

k

ε
Sij , (5.11)

where we have taken νT from the standard form in (1.36) and fµ is a damping function that
typically goes from fµ = 0 at y+ = 0 to fµ = 1 for large y+. The exact formulation for fµ is
usually determined and calibrated on an ad hoc basis from experimental or computational
measurements of the anisotropy in wall-bounded flows.

As shown in Figure 5.3, the emphasis on nonlocal effects in the present closure from
(5.8) gives good predictions of the anisotropy down to y+ ≈ 16. We can thus avoid the use
of the ad hoc closure in (5.11) for nearly the entire flow, and can obtain better agreement
for y+ < 16 by resorting to prior damping function formulations in the extreme near-wall
region only. Here we introduce the blending function φ, which is 1 for small y+ and 0 for
y+ greater than some cutoff value close to y+ ≈ 16, and write the anisotropy in blended
form using (5.11) as

a
(φ)
ij = φa

(f)
ij + (1− φ)aij , (5.12)

where aij on the right-hand side is given by the present closure in (5.8). The blending
function φ can take on any form that gives the desired transition from φ = 1 for small y+

to φ = 0 for large y+, and here we use the hyperbolic tangent function

φ =
1
2
− 1

2
tanh

[
a

(
y+ − b+

)]
. (5.13)
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The blended closure in (5.12) with (5.13) allows the present nonlocal closure in (5.8) to be
applied for y+ > b+ where φ = 0, with b+ set to a value close to y+ ≈ 16, while for y+ < b+

we obtain φ = 1 and the standard wall-damped formulation for the anisotropy in (5.11) is
used.

The damping function fµ in (5.11) can be given by any number of possible forms,
making it ideal for implementation in existing computational frameworks for solving (1.2)-
(1.4). However, for the present fully-developed channel flow tests we consider the relatively
simple van Driest form [19, 78] in (1.42), with A+ = 26. Noting from Figure 5.3 that the
present anisotropy closure begins to show disagreements with DNS in the range y+ ≈ 15−20,
we here set

a ≈ 0.4, b+ ≈ 18 , (5.14)

which gives a moderately sharp transition from φ = 0 to φ = 1 near the wall using (5.13).
The values of these constants are governed by the need to maintain a smooth transition
from the nonlocal aij in (5.8) to the wall-damped a

(f)
ij in (5.11), and have been chosen to

give good agreement with the channel flow and boundary layer cases considered herein. By
using a relatively small value for a and the more conservative cutoff for b+ (as opposed to
setting b+ = 16 for instance), it is expected that the blending function in (5.13) with the
constants in (5.14) will be accurate for a range of flows and a range of different formulations
for fµ.

Figure 5.3 shows that the present nonlocal closure can be smoothly blended with the
wall-damped anisotropy in (5.11) using (5.12)-(5.14) for all Reynolds numbers, giving good
agreement with DNS results down to y+ ≈ 3. For y+ < 3, the blended model shows poor
agreement with the DNS results due to the behavior of the damping function in (1.42), which
has been combined with the realizable Cµ in (1.40), near the wall. Improved agreement can
be obtained through the choice of a different formulation for fµ. A number of alternative
wall damping functions are summarized in Ref. [99] and the Speziale, Abid, and Anderson
[97] form for fµ will be used for the boundary layer tests in the next section. Nevertheless,
the primary purpose of the blended closure in (5.12) is to allow integration to viscous walls
in existing computational frameworks for solving (1.2)-(1.4), and Figure 5.3 shows that
even with the van Driest function in (1.42) the present blended closure closely agrees with
DNS for nearly the entire channel height, while only requiring an ad hoc treatment for the
anisotropy at locations very close to the wall.

Finally, Figure 5.4 compares the shear anisotropy a12 as a function of the nondimensional
shear parameter Sk/ε from the present NKE closure model and the SKE and RKE models
with corresponding results from DNS. The dependence of a12 on Sk/ε is of particular
importance because, as the DNS results in Figure 5.4 show, the relation between a12 and
Sk/ε becomes non-trivial near the wall, whereas the widely-used SKE model, based on the
local equilibrium closure in (1.35), incorrectly predicts a12 ∝ Sk/ε for all Sk/ε. Figure
5.4 shows that the RKE model limits the anisotropy magnitude for large Sk/ε, resulting
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in better agreement with the DNS than the SKE model. However, the correct functional
dependence of a12 on Sk/ε is still not accurately predicted. By contrast, the present NKE
closure from (5.8) shows good agreement with DNS even as Sk/ε increases, and substantial
departures from the DNS results only occur at y+ ≈ 16 where Sk/ε ≈ 12. Consistent
with the results in Figure 5.3, improved agreement is obtained using the blended anisotropy
closure in (5.12).

5.4 Computational Implementation of Present Anisotropy Closure

The turbulent channel flow tests in the preceding section have provided a direct evalu-
ation of the truncated closure in (5.8), revealing the importance of nonlocal effects on the
anisotropy in inhomogeneous (specifically wall bounded) flows. In the channel flow tests
S12, k, and ε were all obtained from the DNS databases, thereby allowing the closure in (5.8)
to be directly evaluated without complications due to the numerical solution of (1.2)-(1.4)
or the specific method by which k and, in particular, ε are modeled.

However, practical use of the present anisotropy closure for typical engineering problems
will, in nearly all cases, require implementation in a full computational fluid dynamics
(CFD) code for solving (1.2)-(1.4). By contrast to the DNS studies in the previous section,
Sij in such cases is obtained from the solution of (1.2)-(1.4) for the mean velocity field
ui, and k and ε are obtained from modeled transport equations such as those in (1.31)
and (1.32). It is thus of great interest to consider how the present closure performs when
implemented in a full computational framework for solving (1.2)-(1.4), where numerical
considerations such as convergence and stability are often as important as the physical
accuracy of the closure itself.

Details concerning the computational implementation of the present closure in ISAAC
(Integrated Solution Algorithm for Arbitrary Configurations) [66] are outlined in the fol-
lowing, with a view towards simulating the zero pressure gradient turbulent boundary layer
in Section 5.5. Consideration of this case allows relatively straightforward initial implemen-
tation and testing of the present closure, while nevertheless still providing an evaluation of
the closure accuracy and stability for simulations of practical turbulent flow problems.

5.4.1 Solver Details

ISAAC [66] is an upwind, structured grid, finite-volume CFD code that solves the Navier-
Stokes equations in Favre-averaged form. The code provides an ideal test-bed for new
turbulence modeling approaches, due primarily to its direct use of the full Reynolds stress
tensor u′iu

′
j in (1.2)-(1.4) and in the production term P ≡ u′iu

′
j Sij in the transport equations

for k and ε [e.g. (1.31) and (1.32)]. Due to its widespread popularity and favorable numerical
properties, the local equilibrium closure in (1.35) is often “hard-wired” into many solvers, in
particular on the right-hand side of (1.3). Thus, for example, implementation of nonlinear
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eddy viscosity models of the type noted in Section 1.3.2.1 can be complicated by the need to
introduce higher-order terms on the right-hand side of (1.3). Similarly, the formulation of
the present closure in (3.97), with the effective strain given by (3.110) or (3.123), introduces
additional nonlocal and nonequilibrium terms that significantly complicate implementation
in codes based on the local equilibrium closure. As a result, a code that evaluates and uses
the Reynolds stress tensor directly, such as ISAAC, is preferred for implementation of the
present closure.

Within ISAAC, primitive flow variables such as the pressure and mean velocities, de-
noted generally by qi,j , are defined at cell centers at interior locations in the computational
domain. For a grid with idim × jdim computational cell interfaces (including the outer
boundaries), qi,j is defined at cell centers on the range i = 2 : idim and j = 2 : jdim. The
exact location of qi,j near boundaries depends on the type of boundary condition, but for
viscous walls qi,j is defined on cell interfaces along the boundary itself. Thus, for a viscous
wall along the bottom boundary of the computational domain, qi,1 corresponds to the value
of q on the wall, which coincides with the south interface of the j = 2 cell. A schematic of
the computational domain including all variable locations is shown in Figure 5.5, where it
is clear that along the bottom viscous wall qi,1 corresponds to the value of q at the wall.

The metric terms ηy and ξx required to calculate the higher-order derivatives in gener-
alized coordinates are defined on cell interfaces for the entire domain. The ηy metrics are
defined on north-south cell interfaces over the range (i, j) = (2 : idim, 1 : jdim) and the
ξx metrics are defined on east-west interfaces on the range (i, j) = (1 : idim, 2 : jdim). At
boundaries such as viscous walls the location of the metrics is unchanged. Once again, the
location of the metrics is shown schematically in Figure 5.5.

As with the qi,j variables, the cell volumes, denoted by Vi,j , are defined at cell centers
for interior points in the computational domain. The location of Vi,j at boundaries once
again depends on the specific type of boundary, but for the bottom viscous wall in Figure
5.5, Vi,1 corresponds to the cell volume at the south cell interface, with Vi,j = 0 on viscous
walls.

5.4.2 Implementation of Present Closure for Thin-Shear Flows

Implementation of the present anisotropy closure given by (3.97) with the effective
strain in (3.110) or (3.123) requires the calculation of at least three derivatives of the
mean velocity field in order to obtain the leading-order nonequilibrium and nonlocal terms
DSij/Dt and ∇2Sij , respectively. As shown in Chapter IV and Section 5.3, retaining
even the first nonequilibrium and nonlocal correction terms gives substantially improved
agreement with computational and experimental results when compared to predictions from
the local equilibrium closure in (1.35). As a result, it is sufficient for initial computational
testing of the present closure to consider only the first nonlocal and nonequilibrium terms,
and consequently discretized derivatives of the velocity field up to third order are outlined
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in the next section.
For initial computational implementation and testing of the present closure we will

consider the zero pressure gradient turbulent boundary layer, a thin-shear flow that allows
certain simplifications to the implementation of the nonlocal and nonequilibrium terms.
Not only are nonequilibrium effects due to the DSij/Dt terms not large in thin-shear flows
– thus allowing the use of the nonlocal equilibrium formulation for aij in (5.3), or (5.8) in
truncated form – but the mean strain rate tensor is dominated by the shear term S12 due
to the two-dimensionality of the flow (resulting in w = 0 and ∂/∂z = 0) and the fact that
∂/∂y À ∂/∂x and u À v in thin-shear flows.

Working with the truncated nonlocal closure in (5.8), which was shown in Section 5.3 to
give good agreement with DNS results for the fully-developed turbulent channel flow, com-
putational implementation of the present closure for thin-shear flows requires the calculation
of ∇2S12, which can be approximated as

∇2S12 ≈ 1
2

∂3u

∂y3
. (5.15)

As a result, calculation of the first nonlocal term requires only the third derivative of the
mean streamwise velocity u with respect to the cross-stream direction y. The simplicity of
thin-shear flows also allows the use of cartesian grids, for which cross-derivative metric terms
in the derivative formulations can be neglected. Thus, defining the generalized coordinates
ξ = ξ(x) and η = η(y), it will be seen that formulating the derivatives in (5.15) requires
only the metric term ηy.

5.4.3 Calculation of Cell-Center Derivatives

The Reynolds stress tensor u′iu
′
j is required at cell centers for calculation of the tur-

bulence kinetic energy production term P , and at cell interfaces for calculation of the flux
terms on the right-hand side of (1.3). In the following we outline formulations for cell-center
derivatives up to third order, and provide formulations for the cell-interface derivatives in
Section 5.4.4.

We can define a general formula for the nth order cell-center derivatives as

(
∂nq

∂yn

)

i,j

=
1

Vi,j

[
(ηy)i,jQ

(n)
i,j − (ηy)i,j−1Q

(n)
i,j−1

]
, (5.16)

where once again qi,j and Vi,j are defined at cell centers and the metrics (ηy)i,j are defined at
north-south cell interfaces. In the following we consider only derivatives with respect to y,
consistent with the simplifications described in Section 5.4.2 for testing in thin-shear flows,
and it is understood that while qi,j denotes a general flow variable, initial implementation
of the present closure in ISAAC for the boundary layer case requires only derivatives of the
mean streamwise velocity u.
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The variables Q
(n)
i,j and Q

(n)
i,j−1 in (5.16) are defined at the north-south interfaces, and are

given by different formulations depending on the order n of the derivative on the left-hand
side of (5.16). In the following we outline the formulation of Q

(n)
i,j and Q

(n)
i,j−1 for n = 1− 3,

including values appropriate near viscous wall boundaries for j = jdim and j = 2. Since
initial testing of the present closure will focus on wall bounded flows, treatments of the
derivatives near other types of boundaries will not be considered herein.

5.4.3.1 First Derivative ∂q/∂y, n = 1

For the first derivative of q with respect to y we have

Q
(1)
i,j =

1
2

(qi,j+1 + qi,j) , (5.17)

Q
(1)
i,j−1 =

1
2

(qi,j + qi,j−1) . (5.18)

For j = jdim and j = 2, which are the cell center locations immediately adjacent to the
wall boundaries, we have

Q
(1)
i,j = qi,j+1 , for j = jdim , (5.19)

Q
(1)
i,j−1 = qi,j−1 , for j = 2 . (5.20)

5.4.3.2 Second Derivative ∂2q/∂y2, n = 2

For the second derivative of q with respect to y we have

Q
(2)
i,j =

2
(Vi,j + Vi,j+1)

(ηy)i,j [qi,j+1 − qi,j ] , (5.21)

Q
(2)
i,j−1 =

2
(Vi,j−1 + Vi,j)

(ηy)i,j−1 [qi,j − qi,j−1] . (5.22)

These formulations are also valid for j = jdim and j = 2 since qi,j (which is defined at cell-
centers for interior locations) is defined on the computational boundaries (cell interfaces)
for j = 1 and j = jdim + 1. As a result, the first derivatives given by (5.21) and (5.22)
become one-sided derivatives at j = 2 and j = jdim, respectively, where Vi,j = 0 on viscous
walls for j = 1 and j = jdim + 1.

5.4.3.3 Third Derivative ∂3q/∂y3, n = 3

For the third derivative of q with respect to y we have

Q
(3)
i,j =

1
2

[(
∂2q

∂y2

)

i,j+1

+
(

∂2q

∂y2

)

i,j

]
, (5.23)
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Q
(3)
i,j−1 =

1
2

[(
∂2q

∂y2

)

i,j

+
(

∂2q

∂y2

)

i,j−1

]
. (5.24)

All second derivatives on the right-hand sides of (5.23) and (5.24) are defined at cell cen-
ters. The derivative

(
∂2q/∂y2

)
i,j

which appears in both equations, has already been ob-
tained from (5.16) with (5.21)-(5.22) and does not need to be recalculated. The derivatives(
∂2q/∂y2

)
i,j+1

in (5.23) and
(
∂2q/∂y2

)
i,j−1

in (5.24) are straightforwardly calculated on
interior cells (i.e. for j = 3 : jdim − 1) using the equations in (5.16) for n = 2 with (5.21)
and (5.22).

For the cells adjacent to boundaries, namely for j = jdim and j = 2, the variables
Q

(3)
i,j and Q

(3)
i,j−1 are equal to the value of the second derivative of q on the cell boundary

interfaces. Thus, for j = jdim we have

Q
(3)
i,j =

2
(Vi,j + Vi,j+1)

(ηy)i,j

[
Q

(2)
i,j −

(
∂q

∂y

)

i,j

]
, for j = jdim , (5.25)

where Q
(2)
i,j is defined in (5.21) and (∂q/∂y)i,j has already been obtained from (5.16) with

(5.17)-(5.20) and does not need to be recalculated. Similarly, for j = 2 we have

Q
(3)
i,j−1 =

2
(Vi,j−1 + Vi,j)

(ηy)i,j−1

[(
∂q

∂y

)

i,j

−Q
(2)
i,j−1

]
, for j = 2 , (5.26)

where once again (∂q/∂y)i,j has already been obtained and Q
(2)
i,j−1 is defined in (5.22).

5.4.4 Calculation of Cell-Interface Derivatives

The general formula for the nth order cell-interface derivative is given by

(
∂nq

∂yn

)

i,j

=
2

(Vi,j + Vi,j+1)
(ηy)i,j

[
Q

(n)
i,j+1 −Q

(n)
i,j

]
, (5.27)

where the derivative on the left-hand side is defined at north-south cell interfaces and the
variables Q

(n)
i,j+1 and Q

(n)
i,j are defined at cell centers. In the following we outline formulations

for Q
(n)
i,j for n = 1 − 3. Note that by contrast to the cell center derivatives in the previous

section, which are defined on j = 2 : jdim, here we must obtain the derivatives on all cell
interfaces where j = 1 : jdim.

5.4.4.1 First Derivative ∂q/∂y, n = 1

For the first derivative of q with respect to y we have simply

Q
(1)
i,j+1 = qi,j+1 , (5.28)
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Q
(1)
i,j = qi,j . (5.29)

These relations are valid over the entire range j = 1 : jdim, since qi,jdim+1 and qi,1 are
defined on cell interfaces at the boundaries and the derivatives from (5.27) thus become
one-sided, with Vi,j = 0 at j = 1 and j = jdim + 1.

5.4.4.2 Second Derivative ∂2q/∂y2, n = 2

For the second derivative of q with respect to y we follow a similar approach to that
employed for the first and third cell center derivatives and define

Q
(2)
i,j+1 =

1
2

[(
∂q

∂y

)

i,j+1

+
(

∂q

∂y

)

i,j

]
, (5.30)

Q
(2)
i,j =

1
2

[(
∂q

∂y

)

i,j

+
(

∂q

∂y

)

i,j−1

]
, (5.31)

where now all first derivatives on the right-hand side of (5.30) and (5.31) are defined at
cell interfaces. The derivative (∂q/∂y)i,j has already been obtained using (5.27) with (5.28)
and (5.29) and does not need to be recalculated. At interior points (i.e. j = 2 : jdim −
1) the derivatives (∂q/∂y)i,j+1 and (∂q/∂y)i,j−1, which are defined on cell interfaces, are
straightforwardly calculated using the relations in (5.27)-(5.29) for n = 1.

On the boundary interfaces, for j = jdim and j = 1, we have

Q
(2)
i,j+1 =

(
∂q

∂y

)

i,j

, for j = jdim , (5.32)

Q
(2)
i,j =

(
∂q

∂y

)

i,j

, for j = 1 , (5.33)

where in both cases the derivative on the right-hand side has already been obtained from
(5.27)-(5.29) and does not need to be recalculated.

5.4.4.3 Third Derivative ∂3q/∂y3, n = 3

For the third derivative of q with respect to y, the variables Q
(3)
i,j are obtained from the

second derivative of q at cell centers. Cell center second derivatives have been defined in
(5.16) with (5.21) and (5.22), and from these relations we obtain

Q
(3)
i,j+1 =

1
Vi,j+1

[
(ηy)i,j+1

(
∂q

∂y

)

i,j+1

− (ηy)i,j

(
∂q

∂y

)

i,j

]
, (5.34)

Q
(3)
i,j =

1
Vi,j

[
(ηy)i,j

(
∂q

∂y

)

i,j

− (ηy)i,j−1

(
∂q

∂y

)

i,j−1

]
. (5.35)
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Once again, all derivatives on the right-hand side of (5.34) and (5.35) are defined at cell
interfaces. The derivative (∂q/∂y)i,j has already been obtained and does not need to be
recalculated, while the derivatives at (i, j+1) and (i, j−1) can be obtained from (5.27)-(5.29)
for interior points (i.e. j = 2 : jdim− 1).

On the boundary interfaces, for j = jdim and j = 1, we have

Q
(3)
i,j+1 =

(
∂2q

∂y2

)

i,j

, for j = jdim , (5.36)

Q
(3)
i,j =

(
∂2q

∂y2

)

i,j

, for j = 1 , (5.37)

where once again the second derivatives on the right-hand side have already been obtained
and do not need to be recalculated.

5.4.5 Validation of Derivative Formulas

We can assess the accuracy of the derivative formulas outlined in the preceding sections,
as well as their implementation in ISAAC, using the polynomial test function f(y) given by

f(y) = y + y2 + y3 + y4 . (5.38)

Analytical calculation of the derivatives dnf/dyn for n = 1 − 3 is straightforward, and
numerical derivatives of f(y) calculated using the formulas in Sections 5.4.3 and 5.4.4 can
be compared with the analytical results to validate the computational implementation of the
higher-order derivatives. In particular, derivatives of the function f(y) are calculated using
the ISAAC subroutines for the cell center and cell interface derivatives for both unstretched
and stretched grids (such as the 65 × 97 stretched grid, shown in Figure 5.6, used for the
boundary layer tests in the next section), using metric terms taken directly from ISAAC.
This thus allows a direct test of not only the accuracy of the derivative formulations in
Sections 5.4.3 and 5.4.4, but also the accuracy of their implementation in ISAAC.

Figure 5.7 shows results for unstretched and stretched grids, respectively, from the
cell-center and cell-interface derivative calculations, compared with exact analytical results
obtained from (5.38). It is clear from Figure 5.7(a) that for the unstretched grid, both the
cell-center and cell-interface derivatives are in very good agreement with the exact results
at interior points on the computational domain. At the boundaries however, the accuracy
of the numerical derivatives begins to deteriorate and for n = 3 both the cell-center and
cell-interface derivatives are in poor agreement with the analytical results.

Similar trends are seen in the stretched grid results in Figure 5.7(b), where once again
the numerical derivatives are in good agreement with the analytical results at interior loca-
tions but the agreement becomes relatively poor near the boundaries. There is an additional
small error for the third derivative on the stretched grid due primarily to errors introduced
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by the calculation of the metric terms within ISAAC, as well as errors due to the decreased
accuracy of the derivative formulations in Sections 5.4.3 and 5.4.4 for nonuniform cell spac-
ings. However, these errors result in only small departures from the exact analytical result,
and are not expected to pose problems for testing of the present closure in the boundary
layer case.

The results in Figure 5.7 thus indicate that the derivative formulas outlined in Sections
5.4.3 and 5.4.4 are not only accurate representations for the exact derivatives at interior
points on the computational domain, but have also been implemented correctly in ISAAC.
However, it is also clear from Figure 5.7 that more sophisticated representations for the
derivatives at cell boundaries are required. In particular, in obtaining the third derivatives
in Sections 5.4.3.3 and 5.4.4.3, first-order accurate one-sided derivatives were used several
times, resulting in substantially decreased accuracy at the boundaries. By increasing the
stencil size of the one-sided derivatives, the final order of accuracy of the third derivatives
may be increased.

It should be noted however, that the blended anisotropy formulation in (5.12) will be
used for the boundary layer tests in Section 5.5. Due to the behavior of the blending
function φ defined in (5.13), which effectively “de-activates” the present nonlocal closure
at locations very near the wall, calculation of ∇2Sij at viscous walls is not required for
the simulations of the boundary layer presented herein. As a result, the inaccuracies in
the higher-order derivatives near boundaries shown in Figure 5.7 are not a problem for the
initial implementation of the present closure approach.

5.4.6 Formulation of Present Closure in ISAAC

As with the channel flow tests in Section 5.3, the N = 2 truncated anisotropy closure
in (5.8) is implemented in ISAAC, with the C

(1)
2 and C

(2)
2 coefficients given by (3.118).

The corresponding nonlocal Laplacian term ∇2Sij is given from (5.15) using the derivatives
formulated in the previous section. In order to allow integration to the bottom wall for the
boundary layer case, the blended anisotropy formulation in (5.12) is used for implementation
of the present closure in ISAAC. Here however, the truncated closure in (5.8) is blended
with the two-equation k-ε model formulated by Speziale, Abid, and Anderson (SAA) [97],
where aij is given by the damped form in (5.11) with fµ now written as

fµ =
[
1 +

3.45√
ReT

]
tanh

(
y+

70

)
, (5.39)

where ReT ≡ k2/νε is the turbulent Reynolds number. The turbulence kinetic energy k

is obtained from the standard form in (1.31), but the dissipation ε in the SAA model is
obtained from

Dε

Dt
= Cε1P

ε

k
− Cε2f2

ε2

k
+

∂

∂xj

[(
ν +

νT

σε

)
∂ε

∂xj

]
, (5.40)
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where f2 is given by

f2 =
[
1− exp

(
− y+

4.9

)]2 [
1− 2

9
exp

(
−Re2

T

36

)]
. (5.41)

The blended anisotropy closure is obtained from (5.12), where a
(f)
ij is given by (5.11) with

(5.39), and the present aij is given by the N = 2 truncated form in (5.8).
Given the shear-dominated nature of the boundary layer case, the nonlocal term in (5.8)

is only included in the formulation for the shear anisotropy a12 = a21, and the remaining
components of aij are represented in the same manner as the underlying SAA model, namely
aij = a

(f)
ij . In the closure for a12, the eddy viscosity is again given by the standard form

in (1.36) using the realizable Cµ from (1.40). Here the turbulence integral scale Λ is given
from (3.36) and (3.39) as Λ = 0.23k3/2/ε, although the low-Reynolds formulation for Λ
in (5.9) may also be used in the future. The form for φ in (5.13) with the constants in
(5.14) is again used to obtain the blended aij from (5.12), despite the fact that fµ was
given by the van Driest form in (1.42) for the channel flow tests and is given here by
(5.39) from the SAA model. The independence of the formulation for φ on the choice of fµ

reflects, in part, the relatively ‘conservative’ values of the blending constants in (5.14). For
the specific representations for Λ and fµ used in the boundary layer case, it will be seen
that R/Λ ≈ 0.9, which is consistent with the value in (3.125), gives good agreement with
experimental results. As with the tests of the present closure outlined in Chapter IV and
Section 5.3, the closure implemented in ISAAC is herein denoted the NKE model.

5.5 Zero Pressure Gradient Turbulent Boundary Layer

In the zero pressure gradient boundary layer case, a turbulent boundary layer is allowed
to develop over a viscous wall at the bottom of the computational domain. Experimental
results for this case are available from Klebanoff [47], who measured the mean streamwise
velocity u and Reynolds stresses u′2, v′2, w′2, and u′v′ using hot-wire anemometry. As with
the fully-developed turbulent channel flow tests in Section 5.3, the turbulent boundary layer
is an essentially equilibrium flow where the anisotropy in the near-wall region is heavily
influenced by nonlocal effects. In addition to providing a fundamental numerical test of the
present closure in a full CFD framework, this case thus also tests the physical accuracy of
the present closure for predicting nonlocal effects on the anisotropy in turbulent flows.

The turbulent boundary layer simulated herein consists of turbulent flow over a viscous
wall of length 1.5L, where the Mach number is M = 0.2 and the Reynolds number based
on L and the incoming flow velocity U∞ is Re = 4.2×106. The incoming flow is introduced
a distance 0.5L upstream of the start of the plate, and the outflow condition is applied a
distance 0.5L past the location x = L, where all computational and experimental profiles
are measured. This thus gives an overall width of 2L for the computational domain. The
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height of the domain is 0.18L, which will be seen to be on the order of ten boundary layer
thicknesses at x = L. For all computations, the boundary layer flow is simulated by solving
the two-dimensional thin-shear layer equations in ISAAC.

In the following CFD tests, the NKE closure model will be compared with results from
“local equilibrium” and “realizable” anisotropy closures. In both these closures, the shear
anisotropy a12 is obtained from the blended form in (5.12), but the anisotropy away from
the wall is given by

a12 = −2 (0.09)
k

ε
S12 , (5.42)

in the local equilibrium closure, which is based on the classical closure in (1.35), and by

a12 = −2Cµ
k

ε
S12 , (5.43)

in the realizable closure, herein denoted the RKE model, where Cµ in (5.43) is taken from
the realizable Bradshaw hypothesis in (1.40). Comparison of results from the present NKE
closure model described in Section 5.4.6 with results from the local equilibrium and RKE
closures in (5.42) and (5.43), respectively, specifically allows the effect of the nonlocal Lapla-
cian term on the anisotropy to be assessed, independent from effects due to other common
aspects of the models, such as the blending function φ, the damping function fµ, or the
realizable Cµ used in the present closure and (5.43).

5.5.1 Computational Results

Computational results for the zero pressure gradient boundary layer are obtained using
the 65×97 computational grid shown in Figure 5.6. The grid is stretched in the y direction
up to 0.05L, and is evenly spaced in the y direction for 0.05L − 0.18L. The clustering of
grid points near the wall gives the first grid point at y+ ≈ 0.15. The grid is evenly spaced
in the x direction for the entire computational domain. A grid-convergence study, shown in
Figure 5.8, for the Reynolds shear stress −u′v′/u2

τ was carried out for two coarser grids and
one finer grid using the present NKE closure. It is clear from Figure 5.8 that results from
the 65× 97 grid are in very close agreement with those from the higher resolution 97× 129
grid, indicating that the 65 × 97 grid is sufficiently resolved for the boundary layer tests
presented in the following.

Figures 5.9-5.15 show results for the mean flow and turbulence statistics in the boundary
layer from the present NKE closure, the full SAA model, and the local equilibrium and RKE
blended closures in (5.42) and (5.43), respectively. Experimental results for u and u′v′ are
available for comparison from Klebanoff [47], but in general close agreement with results
from the SAA model can be taken as an indication of good model accuracy. This is because
the SAA model has been specifically calibrated to give good predictions of the turbulent
boundary layer [97], and in the absence of experimental results for k and a12, for example,
the SAA model can be taken as a relatively accurate predictor of these variables. It should
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be emphasized however, that agreement of either the NKE, local equilibrium, or RKE
closures with the SAA model for y+ > b+ [where b+ = 18 from (5.14)] is significant in
that the SAA model requires the damping function fµ in (5.39) for all y+ in order to give
accurate predictions of the anisotropy. Agreement between any of the closures tested herein
with the SAA model is evidence that the flow physics have been accurately captured in the
closure, thus removing the need for the ad hoc wall damping function for locations away
from the wall.

Figure 5.9 shows the mean streamwise velocity fields predicted by the SAA, local equi-
librium, and NKE models. All three models predict qualitatively similar fields, although
it can be seen that the local equilibrium model predicts a slightly larger boundary layer
thickness. The profile of u+ versus y+ in Figure 5.10 shows that the NKE model results are
in good agreement with the SAA model and experimental results for all y+, whereas the
local equilibrium and RKE models typically under-predict u+ at each y+ value. Moreover,
both the local equilibrium and RKE models incorrectly predict the wall friction velocity uτ ,
resulting in the under-prediction of u+ in the free-stream, as shown for large y+ in Figure
5.10.

Figure 5.11 shows contours of the shear stress u′v′/U2∞ for the SAA, local equilibrium,
and NKE models. The magnitude of the stresses for the local equilibrium model is in general
larger than the respective magnitudes from the SAA and NKE models, due to the absence
of nonlocal effects which act to decrease the shear anisotropy in the near-wall region. The
profile of −u′v′/u2

τ in Figure 5.12, measured at x = L, shows similar results, where both the
SAA and NKE models are in good agreement while the local equilibrium and RKE models
over-predict the shear stress magnitude for 18 < y+ < 100. Agreement with the available
experimental results is generally fairly good for all models, although it is clear that there
are substantial differences between the local equilibrium and RKE models compared to the
SAA and NKE models for y+ < 100, where experimental data is not available. Similar
trends are seen for the profile of the shear anisotropy −a12 in Figure 5.13, where once
again the SAA and NKE models are in good agreement while the local equilibrium and
RKE models significantly over-predict the anisotropy magnitude in the near-wall region.
The over-predicted anisotropy magnitude from the local equilibrium and RKE models is
consistent with the over-predicted anisotropy magnitude given by the SKE and RKE models
for the turbulent channel flow results in Figures 5.3 and 5.4.

The contour plots of the turbulence kinetic energy k in Figure 5.14 show that results
from the present closure are once again in qualitatively better agreement with the SAA
model results than results from the local equilibrium model in (5.42). Compared to the
SAA and NKE models, the local equilibrium model predicts slightly larger kinetic energy
magnitudes away the bottom wall and smaller magnitudes very near the wall. This is also
shown in the kinetic energy profiles in Figure 5.15, where results for k+ from the present
closure are in good agreement with results from the SAA model, while the local equilibrium
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and RKE models both under-predict the kinetic energy amplitude compared to the SAA
and NKE results in the near-wall region.

Finally, with respect to the stability and convergence properties of the present closure
approach, the nonlocal Laplacian term in the present closure generally imposes tighter re-
strictions on the time step used in the boundary layer simulations. A semi-implicit approx-
imate factorization routine was used to solve the boundary layer case in ISAAC, and it was
found that use of the present nonlocal closure typically required smaller Courant-Friedrichs-
Lewy (CFL) numbers to obtain converged solutions for the mean flow and turbulent fields.
However, for the same CFL number and grid resolution, it was observed that the conver-
gence rate of the present approach was similar to that for the SAA, local equilibrium, and
RKE models. In all cases, computational residuals at the last computational iteration were
reduced by eight orders of magnitude compared to their initial values.

5.6 Further Considerations of the Anisotropy in Wall-Bounded Flows

The channel flow and boundary layer results presented herein show that by address-
ing nonlocal effects due to spatial variations in the mean strain rate tensor, the present
anisotropy closure provides substantially improved predictions of the turbulence anisotropy
in wall bounded flows. As first noted in Section 5.3 however, the present approach begins
to over-predict the anisotropy magnitude in the extreme near-wall region of the turbulent
channel at y+ ≈ 16. While it was shown that a closure valid for all y+ could be obtained
through the use of the blended anisotropy formulation in (5.12), the inaccuracies below
y+ ≈ 16 reflect the importance of additional physical effects not accounted for by the
present approach in the near-wall region. These additional physical effects most notably
include low-Reynolds number and viscous effects, nonlocal effects due to inhomogeneities
in the turbulence variables, and nonlinear effects on the anisotropy.

The decreasing local Reynolds number for y+ < 20 poses perhaps the greatest issues for
the present closure in the near-wall region. As the local Reynolds number decreases, viscous
effects become increasingly important and many of the key assumptions used to obtain the
effective strain formulation in (3.110) or (3.123) become inaccurate. While some viscous
effects have been addressed by the formulation for Λ in (5.9), additional improvements in
the near-wall region may be achieved using the low-Reynolds number formulation for the
C

(n)
2 coefficients in (3.70). The decreasing local Reynolds number also affects the accuracy

of the high Reynolds number isotropic approximation for the dissipation tensor εij in (1.20),
since the anisotropic part of εij can become significant for low Reynolds numbers. Finally,
as viscous effects become increasingly dominant in the near-wall region, it may no longer
be appropriate to neglect the viscous diffusion term ν∇2aij in the Dij transport term in
(3.82). Retaining effects due to this term may provide improved anisotropy predictions in
the near-wall region.

In order to derive the nonlocal rapid pressure-strain correlation on which the present

170



anisotropy closure is based, the effect of inhomogeneities in the turbulence variables, includ-
ing Λ, were neglected. As discussed in Section 3.6.1, the nonlocal modification in (3.126)
proposed by Launder and Tselepidakis may account for the first-order nonlocal correction
due to turbulence inhomogeneities. Figure 3.8 provides a qualitative comparison of the
correction terms due to inhomogeneities in the turbulence and mean strain rate, and it is
clear that for y+ < 10 effects due to the turbulence inhomogeneities may become dominant
compared to nonlocal effects from spatial variations in the mean strain.

Finally, nonlinear effects on the anisotropy evolution can become important in instances
where P/ε is large, or the higher-order terms of the form ailSlj and ailW lj are large with
respect to the quasi-linear terms on the right-hand side of (3.84). Some nonlinear effects
have already been accounted for indirectly through the use of the realizable Cµ from (1.40),
which is motivated by the fact that Cµ scales as (P/ε)−1 and must therefore be limited in the
near-wall region where both P/ε and Sk/ε become large. However, additional higher-order
nonlinear terms have been neglected in obtaining the quasi-linear anisotropy equation in
(3.84) from the full transport equation in (3.82). As noted in Chapter I, explicit algebraic
stress models have been formulated to specifically address nonlinear effects due to these
missing terms, and many such models are calibrated using DNS or experimental results of
the anisotropy in wall bounded flows. Addressing nonlinearity in a similar fashion within the
current nonlocal and nonequilibrium closure approach may provide further improvements
to the predictions of the anisotropy in the near-wall region.

In conclusion, it is clear that the truncated anisotropy closure in (5.8), obtained from
the full nonlocal, nonequilibrium closure in (3.97) with the effective strain from (3.110) or
(3.123), is sufficient to give substantially improved predictions of the anisotropy down to
y+ ≈ 16 in wall bounded flows. Below this location however, additional physical effects be-
come important, and additional modifications to the closure are necessary in order to avoid
the use of the blended anisotropy formulation in (5.12). Nevertheless, each of these issues
can be addressed in a physically-meaningful and systematic fashion in future work, and it
is expected that blended models based on ad hoc wall-damping functions will eventually be
unnecessary.
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Figure 5.1: Nondimensional shear parameter Sk/ε as a function of y+ for fully developed
turbulent channel flow DNS from Iwamoto et al. [39].
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Figure 5.2: Nonlocal parameter Ψ defined in (3.105) as a function of y+ for fully developed
turbulent channel flow DNS from Iwamoto et al. [39].
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Figure 5.3: Shear anisotropy −a12 as a function of y+ for Reτ = 150 (a) – Reτ = 950 (h)
in fully-developed turbulent channel flow. Results from the standard (SKE)
and realizable (RKE) k-ε models, the present closure (NKE), and the blended
NKE closure in (5.12) are compared with DNS results from Iwamoto et al. [39]
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Results from the blended NKE closure model are compared for four different grid
resolutions, showing that the 65 × 97 grid in Figure 5.6 is sufficiently resolved
for the present boundary layer simulations. The vertical dash-dot line denotes
the transition point from the wall-damped aij to the present nonlocal aij at
y+ ≈ 18, and the inset shows convergence of the computational results near
this location as the grid resolution increases.
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Figure 5.9: Mean streamwise velocity u/U∞ for the zero pressure gradient boundary layer.
Results are shown from the Speziale, Abid, Anderson (SAA) model [97] (a),
the local equilibrium k-ε model in (5.42) (b), and the present blended closure
(NKE) (c).
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Results from the Speziale, Abid, Anderson (SAA) model [97], the local equilib-
rium k-ε model in (5.42), the realizable model in (5.43), and the present closure
(NKE) are compared with experimental results from Klebanoff [47]. The ver-
tical dash-dot line denotes the location y+ ≈ 18 at which the wall-damped aij

is blended with aij from the local equilibrium, RKE, and NKE models.
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Figure 5.14: Turbulence kinetic energy k/U2∞ for the zero pressure gradient boundary layer.
Results are shown from the Speziale, Abid, Anderson (SAA) model [97] (a),
the local equilibrium k-ε model in (5.42) (b), and the present blended closure
(NKE) (c).

183



10
0

10
1

10
2

10
3

0

1

2

3

4

k+

y+

SAA

Local Equilibrium k-ǫ

RKE

NKE

Figure 5.15: Profile of k+ ≡ k/u2
τ at x/L = 1 for the zero pressure gradient boundary

layer. Results are shown from the Speziale, Abid, Anderson (SAA) model
[97], the local equilibrium k-ε model in (5.42), the realizable model in (5.43),
and the present blended closure (NKE). The vertical dash-dot line denotes the
location y+ ≈ 18 at which the wall-damped aij is blended with aij from the
local equilibrium, RKE, and NKE models.

184



CHAPTER VI

Conclusions and Future Research

The present study has outlined the derivation and validation of a new anisotropy closure
for nonlocal and nonequilibrium effects in turbulent flows. This closure is motivated by
fundamental studies of the vorticity alignment in turbulent flows, which have revealed a
substantial nonlocal, quasi-linear aspect to the vorticity dynamics. This result suggests
that the anisotropy evolution may also be understood as a quasi-linear system, where the
anisotropy and vorticity are rigorously connected through the double Biot-Savart integral
in (2.2).

Nonlocal effects on the anisotropy evolution have been accounted for through the deriva-
tion of a new nonlocal formulation for the rapid pressure-strain correlation. Using this
formulation, a nonlocal transport equation for the anisotropy has been obtained, and a
quasi-linear solution of this equation gives the present nonlocal, nonequilibrium anisotropy
closure in (3.97). The anisotropy in (3.97) is written in an analogous form to the classical
equilibrium closure in (1.35), except that the mean strain Sij is replaced with the nonlocal,
nonequilibrium effective strain S̃ij defined in (3.96). Application of this new closure to a
range of nonlocal and nonequilibrium tests provides significantly improved agreement with
experimental and computational validation results than standard closure approaches. A
nonlocal equilibrium form of the present closure has also been successfully implemented in
a full computational framework for solving (1.2)-(1.4).

In the following a number of more detailed conclusions from the present work are out-
lined, followed by a brief discussion of future research directions.

6.1 Conclusions

(i) Through decomposition of the total strain rate tensor into its local and nonlocal
(background) constituents, it has been shown that there is a substantial nonlocal,
quasi-linear contribution to the vorticity dynamics in turbulent flows. Through
direct calculation of the local and nonlocal strain fields in high-resolution DNS
using their respective Biot-Savart integrals, it has been shown that the vorticity
preferentially aligns with the most extensional eigenvector of the background
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strain rate tensor. This result reflects the importance of locally two-dimensional
structures – such as Burgers vortex tubes and sheets – in turbulent flows, and is
in contrast to the previously observed preferential alignment of the vorticity with
the intermediate eigenvector of the total strain. Moreover, the alignment with
the most extensional background strain suggests that the vorticity responds in
a quasi-linear manner to the nonlocal strain field. Consideration of the nonlocal
to local vortex stretching magnitudes indicates that in much of the flow there
is a substantial nonlocal contribution to the vorticity dynamics, and this result
is used to motivate the quasi-linear solution for the anisotropy that forms the
basis of the present nonlocal, nonequilibrium closure outlined herein.

(ii) In addition to the direct approach for calculating the local and nonlocal strain
fields, a systematic and exact expansion has been developed in (2.45) that allows
the local and nonlocal contributions to the total strain to be disentangled. The
approach is based on a series expansion of the vorticity field in a local spherical
neighborhood of radius R centered at the point x. This allows the background
strain field to be determined via a series of increasingly higher-order Laplacians
applied to the total strain field. For the Burgers vortex test case, with increasing
radius R relative to the local gradient lengthscale λν and with increasing order
n, convergence of the resulting background strain tensor field to its theoretical
form has been demonstrated.

(iii) Consistent with the results for the Burgers vortex, when the background strain
expansion in (2.45) was used to determine the background strain in highly-
resolved DNS of homogeneous isotropic turbulence, the alignment between the
vorticity and the intermediate eigenvector of the total strain seen in previous
DNS and experimental studies was substantially reduced, consistent with results
obtained when calculating the background strain directly using a Biot-Savart
integral. As a result, it can be concluded that (2.45) allows the local background
strain to be determined in any flow.

(iv) Motivated by the importance of nonlocal effects on the vorticity dynamics, a
rigorous and complete formulation for the rapid pressure-strain correlation Π(r)

ij ,
including both local and nonlocal effects, has been obtained in (3.66) with (3.67)
for ReΛ À 1 or (3.70) for ReΛ → 0. Nonlocal effects are rigorously accounted
for through Taylor expansion of the mean velocity gradients appearing in the
exact integral relation for Π(r)

ij in (3.9). The derivation is based on the central

hypothesis that the nonlocality in Π(r)
ij is substantially due to spatial variations

in ∂uk/∂xl in (3.9), and that in order to address this effect all other factors in
(3.9) can be adequately represented by their homogeneous isotropic forms. The
resulting rapid pressure-strain correlation in (3.66) takes the form of an infinite

186



series of increasing-order Laplacians of the mean strain rate field Sij(x), with
the n = 1 term recovering the classical purely-local form in (3.19), and with
the remaining n ≥ 2 terms accounting for all nonlocal effects due to spatial
variations in the mean-flow velocity gradients ∂uk/∂xl.

(v) Using the new nonlocal formulation for Π(r)
ij in (3.66) with (3.67) or (3.70), a

nonlocal transport equation for the turbulence anisotropy has been obtained
in (3.82) and (3.83). This equation can be solved by any number of standard
methods, including full Reynolds stress transport or linear and nonlinear eddy
viscosity approaches. The nonlocal anisotropy equation is aimed at provid-
ing substantially improved accuracy in simulations of inhomogeneous turbulent
flows, including free-shear and wall-bounded flows, where strongly nonuniform
mean flow properties and significant large scale structures introduce substantial
nonlocal effects in the turbulence anisotropy.

(vi) Applying physical insights obtained from the fundamental studies of vorticity
alignment, a new anisotropy closure has been developed that includes both non-
local and nonequilibrium effects on aij , but that can be readily implemented
within existing computational frameworks based on the classical equilibrium clo-
sure in (1.35). Solution of a quasi-linear form of the nonlocal transport equation
in (3.84) gives the anisotropy as a convolution integral over the strain history
to which individual material elements have been subjected. The anisotropy is
then given by (3.97), which is written in an analogous form to the classical equi-
librium closure in (1.35) where the local instantaneous mean strain rate tensor
Sij appearing in the equilibrium closure is replaced with the nonlocal, nonequi-
librium effective strain rate tensor S̃ij defined in convolution integral form in
(3.96).

(vii) Careful attention has been paid to issues of practical model implementation,
and the convolution integral for the effective strain in (3.96) has been written
in equivalent time-local form in (3.110). This form for S̃ij allows increasingly
higher-order nonlocal and nonequilibrium effects to be included by retaining in-
creasingly higher-order terms in the resulting series. Practical use of the present
anisotropy closure will require truncations of (3.110), and it has been shown
in Section 3.5.2 how the coefficients in the series expansions are modified for
finite-order truncations of the expression for S̃ij in (3.110).

(viii) In Chapter IV the present closure from (3.97) with (3.96) was applied to a
range of substantially different nonequilibrium homogeneous test cases. In all
cases, results from the present closure showed dramatic improvements over the
classical equilibrium closure in (1.35). For impulsively strained turbulence the
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present closure captures the finite-time increase in the anisotropy magnitude im-
mediately after the straining is applied, and gives predictions of the turbulence
kinetic energy that are in better agreement with computational results than
predictions from the equilibrium closure. In unstrained decaying anisotropic
turbulence, the present closure predicts nonzero anisotropy for t > 0, whereas
the equilibrium closure incorrectly predicts aij = 0 whenever the applied strain
is zero. Additionally, the present closure produces much more accurate time
lags and anisotropy magnitudes than the equilibrium closure in the straining,
relaxation and destraining experiment of Chen, Meneveau and Katz [11] over
the entire cycle. For periodically-sheared turbulence, the present closure cor-
rectly predicts the reduction in anisotropy magnitude and increase in phase lag
with increasing straining frequency seen in the DNS results of Yu and Giri-
maji [115]. Moreover, the phase difference between the applied periodic shear
and the resulting anisotropy is correctly produced over all straining frequencies
from the equilibrium limit to the saturated nonequilibrium limit. In nearly all
cases, results from the present closure were comparable to results from the more
computationally intensive LRR [51] Reynolds stress transport model.

(ix ) The present closure has permitted a detailed parametric study of the dynamics
of initially-isotropic homogeneous turbulence subjected to periodic shear at any
shearing magnitude S and frequency ω. The present frequency response anal-
ysis indicates that at the critical frequency ωcr, defined in (4.45), periodically
sheared homogeneous turbulence abruptly enters a saturated nonequilibrium
limit that persists for all ω > ωcr. Moreover, for ω > ωcr the anisotropy ampli-
tude decays as ω−1, the phase difference between the anisotropy and the applied
shear reaches the frequency-independent value φ = π/2, the cycle average of P/ε

decays as ω−2, and the turbulence kinetic energy k asymptotically approaches
zero. This last result is in agreement with DNS [115], and indicates that tur-
bulence cannot be sustained for shearing frequencies greater than the critical
frequency ωcr.

(x ) The nonlocal behavior of the present closure has been evaluated using tests in
fully-developed turbulent channel flow in Chapter V. In the channel flow, the
present anisotropy closure was evaluated for eight different Reynolds number
cases, where Sij , k, and ε were obtained from DNS databases, allowing a direct
assessment of the present approach. For all Reynolds numbers, the present
closure approach shows good agreement with DNS results down to y+ ≈ 16,
and agreement down to y+ = 0 was obtained by blending the present closure
with prior closures based on ad hoc wall damping functions.

(xi) The present closure was successfully implemented in a CFD code for solving
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(1.2)-(1.4), and was used to simulate the zero pressure gradient boundary layer.
Consistent with results for the turbulent channel flow, the present closure pro-
vided improved anisotropy predictions for y+ < 100 in the boundary layer com-
pared to models based on the local equilibrium closure in (1.35). By account-
ing for nonlocal effects on the anisotropy in a physically-accurate manner, the
present closure could be integrated to y+ ≈ 18, and a wall-damping function
was only required for locations very close to the wall. This is a significant im-
provement over many existing computational models, which require an ad hoc
wall damping function for all y+ in order to obtain accurate predictions of the
anisotropy. While convergence of the present closure generally required smaller
CFL numbers than models based on the local equilibrium closure in (1.35),
the boundary layer results presented herein nevertheless show that the present
closure can be stably implemented in existing CFD codes for solving practical
turbulent flow problems.

(xii) With respect to the two current areas of turbulence modeling research noted in
Section 1.4.1, the present work has advanced both the physical representation
for the anisotropy as well the method by which the anisotropy is obtained from
this representation. Specifically, the present formulation for nonlocal effects
in the rapid pressure-strain correlation gives the nonlocal anisotropy transport
equation in (1.28), which accounts for nonlocal effects that essentially all prior
approaches neglect. This equation is then solved in such a way as to retain
nonequilibrium effects on the turbulence anisotropy, once again improving on
many popular prior approaches that specifically neglect these effects by making
equilibrium assumptions for the anisotropy dynamics.

6.2 Future Research

(i) The background strain expansion in (2.45) is based on a Taylor series expan-
sion of the vorticity within a spherical neighborhood of radius R around any
point x. Such an expansion inherently involves derivatives of the total strain
rate tensor field, which can lead to potential numerical limitations. If larger
R and correspondingly higher orders n are needed to obtain accurate evalua-
tions of background strain rate fields, then otherwise identical approaches based
on alternative expansions may be numerically advantageous. For instance, an
expansion in terms of orthonormal basis functions allows the coefficients to be
expressed as integrals over the vorticity field within r ≤ R, rather than as deriva-
tives evaluated at the center point x. (For example, wavelets have been used to
test alignment between the strain rate eigenvectors and the vorticity gradient in
two-dimensional turbulence [79].) This would allow a result analogous to (2.45)
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that can be carried to higher orders with less sensitivity to discretization error.

(ii) The double Biot-Savart integral in (2.2) relating the Reynolds stresses to the
two-point vorticity fluctuation correlation deserves deeper consideration. The
time dynamics of the Reynolds stresses from this relation are entirely determined
by the time dynamics of the two-point vorticity fluctuation correlation, and
this may allow a direct and rigorous connection between the anisotropy and
vorticity dynamics to be established. Nearly all prior approaches for obtaining
rigorous representations for the anisotropy have focused on the exact anisotropy
transport equation in (1.19) but, as noted in Chapter I, it has been difficult to
obtain a closure from this equation due to the presence of unclosed pressure-
strain, dissipation, and transport terms. Some progress may thus be made
through further examination of the double integral relation in (2.2), perhaps
using Taylor expansion techniques such as those employed in the derivation of
the background strain tensor and nonlocal rapid-pressure strain formulation.

(iii) Despite the inclusion of some nonlocal effects due to the rapid pressure-strain
correlation in the exact anisotropy transport equation in (1.19), research is still
required to obtain more accurate representations for the pressure-strain, dissi-
pation, and transport terms. In particular, additional nonlocal and anisotropic
effects on the slow and rapid pressure-strain correlations are important in a num-
ber of flows, including wall bounded flows. With respect to nonlocal effects due
to inhomogeneities in the turbulence, some progress may be achieved using the
modified longitudinal correlation outlined in Section 3.6.1. New representations
for the dissipation and transport terms were not addressed in the present work,
but additional improvements in predictions of the anisotropy may be gained
by accounting for additional physical effects in these terms. For instance, the
dissipation is typically represented by its high-Reynolds number isotropic form,
as discussed in Chapter I, but in locally low-Reynolds number regions, such as
near walls, more sophisticated anisotropic representations for the dissipation are
required.

(iv) It may be possible to derive more physically-accurate approaches for solving the
nonlocal anisotropy transport equation in (3.82). In the present work a nonlo-
cal, nonequilibrium representation for the anisotropy was obtained by solving
the quasi-linear equation in (3.84), but this required much of the nonlinearity
in (3.82) to be neglected. Following prior approaches for obtaining explicit al-
gebraic stress models, it may be possible to obtain a closure for the anisotropy
that accounts for nonlinear, nonlocal, and nonequilibrium effects in turbulent
flows. An outline of how some basic nonlinear effects may be retained in the
present closure approach is outlined in Appendix 6.2.
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(v) The continued implementation and testing of the present anisotropy closure in
full computational frameworks for solving (1.2)-(1.4) is perhaps the most impor-
tant direction for future research. Throughout this study, substantial attention
has been paid to how the present closure will be implemented in existing codes for
solving (1.2)-(1.4), and in Chapter V it was shown that the first nonlocal correc-
tion term, namely ∇2Sij , could be stably applied in simulations of the turbulent
boundary layer. Further work is required to implement additional higher-order
nonlocal terms, as well as include nonequilibrium effects due to the DnSij/Dtn

terms in (3.110) or (3.123). A more detailed study of the convergence and stabil-
ity properties of the present approach is also required. Ultimately, simulations
of complex turbulent flow problems of practical importance – where both non-
local and nonequilibrium effects on the anisotropy may be significant – are the
primary goal for future research involving the present closure approach.
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APPENDIX A

Nonlinear Eddy-Viscosity for Present Nonlocal,

Nonequilibrium Anisotropy Closure

The present closure in (3.97) with the effective strain S̃ij given by (3.96), (3.110), or
(3.123) accounts for nonlocal and nonequilibrium effects on the anisotropy in turbulent
flows. However, the present closure is fundamentally obtained from the solution of the
quasi-linear anisotropy transport equation in (3.84), and thus nearly all nonlinear effects on
the anisotropy evolution have been neglected. There are a number of possible approaches for
addressing at least some of this nonlinearity within the present nonlocal and nonequilibrium
closure, and in the following we outline a nonlinear representation for the eddy viscosity that
accounts for the dependence of Cµ, which is rigorously defined in (1.37), on the production-
to-dissipation ratio P/ε.

A.1 Formulation of Nonlinear Cµ

It is well known that the the constant eddy viscosity coefficient Cµ defined in (1.39) –
which is typically used with the representation for νT in (1.36) – is generally inaccurate
in flows where the production-to-dissipation ratio P/ε becomes large [23, 42]. This can be
seen explicitly by considering the representation for the eddy viscosity obtained from (1.36)
and (1.37) with the αi coefficients in (3.83), namely

νT = −
[

C
(1)
2 − 4/3

2(P/ε− 1 + C1)

]
k2

ε
. (A.1)

This form is rigorously connected to the nonlocal anisotropy equation in (3.82), where
C

(1)
2 is given by (3.67) or (3.70) and C1 is obtained from the choice of model for the slow

pressure-strain correlation Π(s)
ij .

The explicit dependence of νT on P/ε in (A.1) can be accounted for within the present
anisotropy closure for nonlocal and nonequilibrium effects by noting that P/ε is given from
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(1.18) as
P

ε
= 2

νT

ε
S̃ijSij , (A.2)

where the present closure in (3.97) has been used for the anisotropy aij . Substituting (A.2)
in (A.1) and rearranging yields a quadratic equation for νT as

4S̃ijSij

ε
ν2

T + 2(C1 − 1)νT +
(

C
(1)
2 − 4

3

)
k2

ε
= 0 . (A.3)

Defining the eddy viscosity as νT ≡ C̃µk2/ε we then obtain a corresponding quadratic
equation for C̃µ, namely

C̃2
µ +

(C1 − 1)
η2

C̃µ +

(
C

(1)
2 − 4/3

)

2η2
= 0 , (A.4)

which has the solution

C̃µ =
(1− C1)

2η2
+

1
2η2

[
(C1 − 1)2 − 2η2

(
C

(1)
2 − 4

3

)]1/2

for η 6= 0 , (A.5)

C̃µ =
C

(1)
2 − 4/3

2(1− C1)
for η = 0 , (A.6)

where
η ≡ k

ε

√
2S̃ijSij . (A.7)

The parameter η contains both nonlocal and nonequilibrium effects due to its dependence on
the effective strain S̃ij , in contrast to previous nonlinear approaches for the eddy viscosity
that depend only on Sij . Following a somewhat similar approach to that used to obtain
the realizable Cµ in (1.40), the value of C̃µ from (A.5)-(A.7) can be limited to values less
than the standard value C∗

µ = 0.09 in (1.39). This then gives Cµ as

Cµ = min
[
C̃µ, C∗

µ

]
. (A.8)

where the eddy viscosity is still given in the context of a k-ε model framework by (1.36).
Figure A.1 shows the dependence of Cµ from (A.5)-(A.8) on the parameter η, where

the LRR model [51] constants in (1.26) have been used to obtain C1, and C
(1)
2 is obtained

from (3.67). It is clear from Figure A.1 that at η ≈ 5.23 the value of Cµ begins to decrease
with increasing η. This is strongly reminiscent of realizable representations for Cµ such as
that in (1.40), where Cµ is reduced for large values of Sk/ε. Figure A.1 shows that the
current nonlinear Cµ is in qualitative agreement with the realizable Cµ from (1.40), where
the realizable Cµ has been plotted with respect to Sk/ε instead of η. The quantitative
differences between the two representations for Cµ are due in large part to the choice of

194



C1 from the LRR model in (1.26). Indeed, the present nonlinear Cµ has been rigorously
derived from the nonlocal anisotropy transport equation in (1.28), whereas the realizable
Cµ from (1.40) is empirically calibrated to give good agreement with turbulent channel flow
results. Nevertheless, the resulting closure for the anisotropy using the eddy viscosity in
(1.36) with Cµ from (A.5)-(A.8) and aij from (3.97) accounts for nonlinear, nonlocal, and
nonequilibrium effects on the turbulence anisotropy.

A.2 Nonlinear Cµ in Impulsively-Sheared Homogeneous Turbulence

The accuracy of the nonlinear Cµ from (A.5)-(A.8) is readily evaluated for impulsively-
sheared homogeneous turbulence, where the applied mean shear is given in (4.9). From
(4.7), the present closure based on the convolution effective strain rate in (3.96) yields

a12(t) = −Cµ
k

ε
S

[
1− e−t/Λm

]
. (A.9)

It has already been shown in Figures 4.1 and 4.2 using the constant Cµ from (1.39) that
the present closure provides better agreement with LES results [3] than the equilibrium
form in (4.5). When Cµ from (A.5)-(A.8) is used instead of (1.39) in (A.9), we obtain the
results for the kinetic energy evolution shown for four different values of the initial shear
parameter Sk0/ε0 in Figure A.2. As Sk0/ε0 increases, the equilibrium closure in (4.5) and
the nonequilibrium closure in (A.9) with constant Cµ = 0.09 significantly overpredict the
kinetic energy magnitude for all times when compared with LES and LRR model results. In
the sense that (A.9) with Cµ given by (A.5)-(A.8) is intended as an approximate solution to
the full modeled anisotropy transport equation in (1.28), we generally expect results using
the nonlinear Cµ to be in good agreement with the underlying model used to obtain C1,
which in this case is the LRR model. Indeed, Figure A.2 shows that the LRR and nonlinear
Cµ results are in good agreement for large shearing magnitudes in Figures A.2(a)-(c), and
the agreement begins to deteriorate only for the very large shear in Figure A.2(d). Further
improvements in the nonlinear model predictions require the P/ε dependence of CΛ to be
addressed as well as the inclusion of higher-order nonlinear terms in the closure.

A.3 Considerations of “Realizability” in Turbulence

In addition to the Bradshaw form for Cµ in (1.40), various other “realizable” turbulence
models have been formulated to deal with the effects of large P/ε or Sk/ε (see, for example,
the nonlinear realizable model developed by Shih et al. [93]). However, it is not clear
that explicit considerations of realizability are an appropriate tool for turbulence model
development [99]. It is of course important to ensure that the normal Reynolds stresses are
strictly positive, but closure approaches that have been forced to agree with various aspects
of the “Lumley triangle” [57] are not necessarily physically-accurate representations of real
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turbulent flows. As discussed in Chapter I, it is preferable instead to base all closure
approaches on the exact anisotropy transport equation in (1.19). As long as the models
for the unclosed terms in (1.19) are carefully constructed, and not too much of the physics
is neglected in obtaining a representation for the anisotropy (for example, the equilbrium
closure in (1.35) neglects essentially all of the anisotropy dynamics, whereas the present
closure retains important effects due to the Daij/Dt term), then the resulting model must,
by virtue of its physical accuracy, be “realizable.” By this reasoning, realizable models seek
simply to mitigate inaccuracies introduced by imperfect solutions of the exact transport
equation for aij , rather than addressing the underlying problem – namely missing physics –
at its source. Thus, here we simply note the similarity of the present nonequilibrium Cµ in
(A.5)-(A.8) to prior models that have been derived solely from considerations of realizability,
and claim that this connection is not surprising given that the current closure is inherently
more “realizable” due to the present attempt at physical rigor.

It should also be noted that (A.5)-(A.8) is by no means the first attempt to develop a
formulation for Cµ that accounts for nonequilibrium effects. Indeed, the various nonequi-
librium eddy viscosity models outlined at the end of Chapter III all attempt to account
for nonequilibrium effects on the anisotropy through new formulations for the eddy vis-
cosity. For example, from the Yoshizawa and Nisizima [113] model in (3.137), an effective
nonequilibrium coefficient C̃µ can be obtained as

C̃µ = Cµ

[
1− C(Cε2 − 2)

1 + CCµ(2− Cε1)
(

Sk
ε

)2

]
, (A.10)

where C = 1.3 and νT = C̃µk2/ε. It is clear from Figure A.1 that (A.10) is in qualitative, if
not quantitative, agreement with the realizable Cµ in (1.40) and the present form in (A.5)-
(A.8). However, it should also be noted that (A.10) is fundamentally not a nonequilibrium
formulation for νT , since it depends only on the local, instantaneous value of Sk/ε.

It is thus important to make a careful distinction between true nonequilibrium eddy
viscosity models that account for effects due to rapid changes in Sij , as in (A.5)-(A.8), and
“nonequilibrium” models of the type in (3.137), which are actually equilibrium models that
simply reduce the eddy viscosity for large values of Sk/ε. Taulbee [102] has developed a
nonequilibrium eddy viscosity of the former variety and showed that C̃µ could be given by
an expression of the basic form

C̃µ =
4/15

C1 + Cε2 − 2 + (2− Cε1)P/ε + (k/Sε)DS/Dt
. (A.11)

Once again C̃µ is limited for large values of Sk/ε, but in contrast to (A.10) the denominator
of (A.11) additionally accounts for first-order nonequilibrium effects via the (k/Sε)DS/Dt

term. As noted in Chapter III however, Taulbee ultimately developed a nonlinear eddy
viscosity model where, despite the nonequilibrium effects included in (A.11), the anisotropy
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is written as a tensorial expansion in terms of the local and instantaneous Sij and W ij .
The resulting model is thus unable to account for certain nonequilibrium effects, such as
the lag between the applied shear and the anisotropy for periodically-sheared turbulence in
Figure 4.20.

Finally, the formulation in (A.5)-(A.8) is closely related to prior algebraic stress models
for the anisotropy. In these approaches (e.g. [24, 27, 107]) an explicit algebraic expression for
the anisotropy is obtained from the modeled anisotropy transport equation. The resulting
closure is typically nonlinear in Sij and W ij , and is inherently linked to the Reynolds
stress transport model used to represent the pressure-strain correlation Πij in the modeled
equation for the anisotropy. Combination of (A.5)-(A.8) with the present closure in (3.97)
and (3.96) results in a type of nonlocal, nonequilibrium algebraic stress model that is tied
to the Reynolds stress transport model used to obtain C1 in (A.5) and (A.6). Extension
of the current closure for nonlocal and nonequilibrium effects to a full nonlinear algebraic
stress framework is left as a direction for future research, as noted in Chapter VI.
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Figure A.1: Eddy viscosity coefficient Cµ as a function of η or Sk/ε, as predicted by the
nonlinear, nonlocal, nonequilibrium model in (A.5)-(A.8) and the realizable
Bradshaw hypothesis in (1.40).

198



0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

k

k0

(a) Sk0/ǫ0 = 3.4

SKE

NKE, Cµ = 0.09

NKE, Nonlinear Cµ

LRR

LES

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

(b) Sk0/ǫ0 = 10

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

(c) Sk0/ǫ0 = 20

k

k0

S · t
0 2 4 6 8 10 12

0

5

10

15

20

25

30

(d) Sk0/ǫ0 = 50

S · t

Figure A.2: Kinetic energy evolution for initially-isotropic impulsively sheared turbulence
for initial shearing frequencies (a) Sk0/ε0 = 3.4, (b) Sk0/ε0 = 10, (c) Sk0/ε0 =
20, and (d) Sk0/ε0 = 50. Results from the standard k-ε model (SKE), the
nonequilibrium k-ε model (NKE) with Cµ = 0.09, and the nonequilibrium k-ε
model with nonlinear Cµ given by (A.5)-(A.8) are compared with results from
the LRR model [51]. LES results from Bardina et al. [3] are shown in (a).
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