
ANISOTROPIC DIFFUSION OF NEUTRAL
PARTICLES IN STOCHASTIC MEDIA

by

Richard Vasques

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Applied and Interdisciplinary Mathematics)

in The University of Michigan
2009

Doctoral Committee:

Professor Charles R. Doering, Co-Chair
Professor Edward W. Larsen, Co-Chair
Professor James Paul Holloway
Professor Peter S. Smereka



c© Richard Vasques 2009
All Rights Reserved



To my parents, Julio and Lourdes. For everything and forever.

ii



ACKNOWLEDGEMENTS
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CHAPTER I

Introduction

The term Transport Theory applies to the mathematical description of the transport of

small particles (neutrons, electrons, photons, etc.) through a background material. The

development of models for particle transport problems in stochastic mixtures consisting

of two (or more) materials is of particular interest; here, the term “stochastic” means that

the properties of the background material in which particles travel are known only in a

statistical sense. This particular branch of research, known as Stochastic Transport Theory,

is used in a vast range of applications: atmospheric physics [20, 21, 22, 23, 49, 50, 67, 75,

78, 81, 87, 94]; astrophysics [3, 9, 17]; reactor criticality problems [59, 61, 64, 88, 89];

nuclear medicine [56, 65, 66, 68, 69, 79]; etc.

The main goal in problems of this kind is to estimate the expected value of the par-

ticle intensity in phase space, and its higher moments (such as the variance) whenever

necessary. A direct way to do this is to generate a large number of physical realizations

of the problem, solve each realization deterministically, and then average the solutions

[1, 12, 13, 24, 44, 57, 77, 84, 85, 93]. However, most problems have an infinite number of

possible physical realizations, and to obtain a solution with zero statistical error one would

need to perform these calculations an infinite number of times. In practice, a large number

of such calculations is necessary to obtain an accurate estimate of the ensemble-averaged

1
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intensity. The complexity and cost of constructing different random realizations of the

system and solving the transport problem for each one of them makes this an undesirably

expensive method.

Different mathematical models have been developed in an attempt to accurately predict

the solution of such problems; the most notable (and widely used) one being the Atomic

Mix Model [24, 27, 44, 63, 84, 85]. The term “atomic mix” applies to mixtures of two or

more materials in which the “chunks” of the materials are so small that we can assume

mixing at atomic level. This notion appears to have been used in chemistry over 200 years

ago, to find rules for adding partial pressures of mixtures. Maxwell [52], in his attempt to

treat molecular diffusion coefficients, modeled atomic mixtures of certain ideal gases in

order to compute transport coefficients.

Nuclear engineering (as a distinct discipline of engineering) dates back to the 1940’s. It

is reasonable to assume that physicists who knew the concept of atomic mix adopted it to

model neutron transport problems. Much of the work that was done from the 1940’s to the

1960’s regarding particle transport in mixtures used the atomic mix approximation. The

atomic mix model is a widely-used homogenization technique, and is known to be accurate

when the system’s spatial heterogeneities occur on a length scale which is small compared

to a typical mean free path. (This assumption, however, is physically very restrictive.)

Moreover, if the locations of the scattering centers in the system are uncorrelated, then

it can be accurately modeled by a “homogeneous” system with volume-averaged cross

sections, with a vast gain in simplicity. As it happens, the atomix mix model inherently

assumes the distribution of chord lengths between scattering centers to be exponential.

However, this feature is not present when we focus on the transport of particles in

“nonclassical” systems. One way in which such an environment can occur was described

in [46]: consider a single “clump” of randomly-spaced (uncorrelated) scattering centers,



3

Figure 1.1: “Clump” of Randomly-Spaced (Uncorrelated) Scattering Centers

as shown in Figure 1.1. Particles in this clump will undergo many “classical” collisions be-

fore exiting. In a large system consisting of many clumps of the above type (separated by

a “void”), particles leaking out of a clump will travel relatively long distances to their next

collision, in a neighboring clump. Thus, relatively rare events (streaming between clumps)

will significantly affect the particle transport, and the probability distribution function for

distance-to-collision will not be exponential. In practice, the “nonclassical” system de-

scribed above resembles the interior of a Pebble-Bed Reactor (PBR) core.

The PBR concept, which originated in Germany in the 1950’s, is a graphite-moderated,

helium-cooled, very-high-temperature (generation IV) reactor. Due to its highly desir-

able characteristics (convenient long-term waste storage, meltdown-proof passive safety,

modular construction, on-line refueling, means to hydrogen production and desalination),

several countries are currently addressing different possible PBR designs, such as China

with the HTR-PM [92] (following the successful test reactor HTR-10 [91]), South Africa

with the PBMR [36], and the United States with the MPBR [35].

The fundamental PBR design is based on the use of spherical, same-sized (60 mm di-

ameter) fuel elements called pebbles. Each fuel pebble is made of pyrolytic graphite (the

moderator), containing ≈10,000 microscopic fuel Tristructural-Isotropic (TRISO) parti-

cles. Each TRISO particle (Figure 1.2) has a diameter of ≈0.92 mm, and consists of a 0.5



4

mm kernel of fissile material (such as uranium dioxide) surrounded by porous carbon, py-

rolitic carbon, and silicon carbide (SiC). The main functions of the various layers are: heat

Figure 1.2: Layers of a TRISO Particle

generation in the kernel, fission product retention in the porous layer, structural integrity

in both pyrolitic carbons, and fission product barrier in the SiC.

To achieve the desired reactivity, thousands of pebbles (≈500,000, varying according

to the design) are piled on top of one another in a “random” manner (influenced by gravity)

inside the cylindrical reactor core. They are dropped on top of this piling from charging

tubes located at the top of the core, and move downward through the system in a dense

granular flow. Once they reach the bottom of the core, they are discharged through another

tube and examined for structure integrity and fuel content; if the burn-up target for fuel has

not been reached, the pebble is re-circulated through the core. Due to this dynamic struc-

turing, the exact locations of the pebbles inside the core at any given time are unknown.

Some designs also have a dynamic central column of moderator pebbles, composed purely

of graphite; this preserves passive safety and improves the power output. An example of

such design is shown in Figure 1.3 [71].

Typically, the neutronic modeling of the geometrically “random” core is done by: (i)

developing self-shielded multigroup cross sections for the pebbles, (ii) volume-averaging
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Figure 1.3: Vertical Cross Section of a PBR Core with Fuel (White) and Moderator (Blue) Pebbles

these cross sections over the entire core, including the helium-filled region between the

pebbles (the atomic mix approximation), and (iii) introducing the spatially-homogenized

cross sections into a diffusion code. This procedure leads to two questions that we consider

in this work.

First, in the classic atomic mix model, the cross sections for a random heterogeneous

medium are approximated by volume-averaging over the constituent materials, weighted

by their respective volume fractions. This approximation is known [44, 85] to be accurate

only when the chunk sizes of the constituent materials are small compared to a mean

free path. However, the pebbles are O(1) mean free paths thick; this calls into question

the validity of the atomic mix approximation. In fact, it has been observed that neutron
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streaming in this type of system is strongly affected by the void spaces; to account for this

effect, experimental and mathematical approaches were used to develop corrections for

the diffusion coefficients obtained with atomic mix [5, 48].

The second question is related but subtly different: in a PBR core, does gravity affect

the distance-to-collision in a direction-dependent (anisotropic) manner? In other words,

the force of gravity (let us say it acts in the negative z direction) causes the pebbles to

arrange themselves in a certain manner, which is affected by the direction of this force. If

one considers a typical arrangement of pebbles in a PBR core, is the chord length prob-

ability distribution function different in the z direction than in the (x, y)-plane? If it is

different, neutron transport and diffusion will be affected in a way that is not modeled.

Currently, PBR cores are modeled using a diffusion approximation with an isotropic

diffusion tensor, in which neutrons diffuse equally in all spatial directions. However, if

the chord length probability distribution function is different in the z direction than in

the x and y directions, then the diffusion length in the z direction should be different

than in the x and y directions, and in this case one has an anisotropic diffusion tensor.

Previous research [51] has indicated that, for different 3-D crystal arrangements of a PBR

core, anisotropic diffusion effects can be found; however, little is known about this effect

in random structures. Moreover, although diffusion in the upper cavity of the reactor

(between the top of the piling and the reflector) was addressed in previous work [29], very

little has been done to formally address this issue close to the other boundaries. It stands

to reason to assume that the diffusion of particles near the wall of the core will differ from

the interior of the core, due to the differences in the orientations of the pebbles.

Bearing all of these issues in mind, this work extends an alternate theory for this kind of

problem, first introduced by Larsen in [45]. By dropping the assumption that the scattering

centers are uncorrelated, we have derived a generalized theory that accounts for the nonex-



7

ponential distribution of the distance-to-collision, and we have shown that this new theory

reduces to the classic expressions under the appropriate circumstances. The basic idea

behind this new theory is the use of a nonexponential ensemble-averaged probability dis-

tribution function to replace the true nonexponential probability distribution function for

the distance-to-collision. To investigate the gain in accuracy, we have developed Monte

Carlo simulations of both 2-D and 3-D model PBR cores, and compared the numerical

results with those obtained with the diffusion approximations of both the atomic mix and

the generalized theories. Overall, we find that the proposed generalized theory not only

yields more accurate results than atomic mix, but it also predicts anisotropic diffusion in

this kind of system - two highly desirable features.

The outline of this work is as follows:

• In Chapter II, we introduce the basic concepts needed to describe the interac-

tion of particles with matter, and then we use particle conservation to formulate the classic

linear Boltzmann equation in a nonstochastic medium. Next, we discuss the diffusion

equation and several formulations that arise from it. We present a derivation of the atomic

mix equation, and finish the chapter by introducing two correction models for the atomic

mix diffusion coefficient.

• In Chapter III, we develop the proposed generalized theory, starting with a

derivation for the generalized Boltzmann equation. We proceed to derive integral equa-

tions and a diffusion limit for this generalized theory, and to show that the resulting ex-

pressions reduce to the classic theory at the appropriate limits. We finish the chapter with

a discussion about the nonexponential probability distribution function for distance-to-

collision and how to obtain it.

• In Chapter IV, we consider the diffusion of particles in the interior of a model

2-D PBR core. We discuss the different packing structures (crystal and random), and



8

we obtain Monte Carlo estimates for both the diffusion coefficients and the kD diffusion

eigenvalue. We then compare these results with those obtained by the atomic mix model

and the proposed generalized theory.

• In Chapter V, we discuss the different packing structures (crystal and random)

in a model 3-D PBR core. To analyze the behavior of particles born in the interior of

the core, we obtain Monte Carlo results for both the diffusion coefficients and the kD

diffusion eigenvalue. We then compare these results with those obtained by the proposed

generalized theory and by the atomic mix model and its corrections. Then, we analyze

the behavior of particles that are born close to a boundary, and we compare the Monte

Carlo estimates for the mean square migration distances with theoretical approximations

obtained with the atomic mix model and the generalized theory.

• Chapter VI presents our conclusions regarding the work developed. We discuss

that the generalized theory yields results that are significantly more accurate than the ones

obtained with the atomic mix approximation and its correction models. We argue that

this result, as well as its ability of predicting anisotropic diffusion, makes the generalized

theory a more suitable method to deal with problems of this type, even though it requires

more work than atomic mix in order to be applied.



CHAPTER II

Background and Theoretical Considerations

2.1 Transport in a Known Medium

In this section, we introduce the basic concepts needed to describe the interaction of

particles with matter. (We refer the reader to [15, 16, 25, 26, 40] for a more detailed

description of these concepts.) We then proceed to use particle conservation to formulate

the classic integro-differential transport equation in a nonstochastic medium (an example

of integral formulation is also given, though we do not present its derivation here).

2.1.1 Basic Concepts

Let us consider neutral particles flowing through a background material and interacting

with it. Assuming that no forces act on these particles, they will travel in a straight line

at a constant speed between collisions. At any time t we use six variables to specify the

position of any particle in phase space: three position variables denoted by the vectorx, the

kinetic energy E, and a unit vector Ω, which indicates the direction in which the particle is

traveling. With these variables we can define the distribution function n(x, E,Ω, t), such

that

n(x, E,Ω, t)dV dEdΩ =

the number of particles in a differential volume
element dV at spatial point x, with energy in dE
about E, traveling in a solid angle element dΩ
about Ω, at time t.

(2.1)

9
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Figure 2.1: State of a Particle in a Coordinate System

Let the vector x be described by the Cartesian coordinates x, y, z, and the vector Ω

be described by a polar angle θ measured with respect to the z-axis and a corresponding

azimuthal angle ϕ (Figure 2.1). If we introduce µ = cos θ, then

dV = dxdydz ,(2.2a)

dΩ = sin θdθdϕ = dµdϕ .(2.2b)

A minus sign was omitted from Eq. (2.2b), since µ runs from 1 to -1 when θ runs from 0

to π. If v is the velocity vector, then Ω = v/|v|, and it is easy to see that the components

of the particle’s velocity in the Cartesian coordinates are given by

ẋ = vΩx ,(2.3a)

ẏ = vΩy ,(2.3b)

ż = vΩz ,(2.3c)
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where v is the particle’s speed in the nonrelativistic case; that is, v =
√

2E/mp, with mp

denoting the particle’s mass. The particle density is obtained by integrating the distribution

function over Ω and E:

(2.4) ñ(x, t) =

∫ ∞
0

∫
4π

n(x, E,Ω, t)dΩdE.

It is conventional in linear transport theory to introduce a new function, the angular

flux, given by

(2.5) ψ(x, E,Ω, t) = vn(x, E,Ω, t).

Integrating ψ over E and Ω, we obtain the scalar flux Φ:

(2.6) Φ(x, t) =

∫ ∞
0

∫
4π

ψ(x, E,Ω, t)dΩdE = vñ(x, t) .

Since particles are expected to interact with the background material through which

they are flowing, we will introduce the concepts of the two basic interactions between

particles and matter: absorption and scattering. As a particle travels through matter, there

is a probability that it will not scatter when undergoing an interaction. In this case, the

particle is said to have been absorbed. As examples of absorption we can mention radiative

capture and nuclear fission, common processes in reactor theory.

A basic assumption in the absorption processes is that, in traveling a distance ds, the

probability of absorption is proportional to ds, independent of the past history of the par-

ticle. The proportionality constant between the probability of absorption and the distance

ds is called the macroscopic absorption cross section, denoted by Σa(x, E,Ω, t). In gen-

eral, the absorption cross section depends upon the energy E of the particle as well as both

space and time, since the background material properties are (in general) functions of x

and t. Assuming that the matter is isotropic, the probability of absorption is independent
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of the direction of travel of the particle:

Σa(x, E, t)ds = probability of absorption.(2.7a)

Similarly to absorption, a particle can scatter when interacting with matter. In this case,

the particle does not disappear as in absorption, but it continues to exist with, in general, a

different energy and direction of travel. If there is no energy change upon scattering, the

scattering event is said to be coherent. We define the macroscopic scattering cross section

Σs(x, E, t) in analogy to the absorption cross section, such that for a particle at spatial

point x with energy E traveling a distance ds, we have

Σs(x, E, t)ds = probability of scattering.(2.7b)

The changing of the particle’s energy and direction E and Ω to a new energy and

direction E ′ and Ω′ leads to the definition of the macroscopic differential scattering cross

section Σs(x, E → E ′,Ω → Ω′, t), such that the probability that a particle traveling a

distance ds will scatter from E to dE ′ at E ′ and from Ω to dΩ′ at Ω′ is given by

(2.8) Σs(x, E → E ′,Ω→ Ω′, t)dE ′dΩ′ds.

When the scattering process is rotationally invariant, the probability that a particle will

scatter from direction Ω to direction Ω′ depends only on the scattering angle (the angle

between Ω and Ω′), or on µ0 = Ω · Ω′ = the cosine of this angle. In this case, Eq. (2.8)

becomes

(2.9) Σs(x, E → E ′,Ω ·Ω′, t)dE ′dΩ′ds,

and integrating this equation over all final energies and angles, we obtain the macroscopic

scattering cross section at the initial energy, as defined by Eq. (2.7b) [26]:

(2.10) Σs(x, E, t) =

∫ ∞
0

∫
4π

Σs(x, E → E ′,Ω ·Ω′, t)dΩ′dE ′.
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If in Eq. (2.9) the differential scattering cross section is independent of Ω·Ω′, the scattering

process is said to be isotropic. In this case, when a particle with direction Ω scatters, all

outgoing directions Ω′ are equally probable.

Finally, the macroscopic total cross section is defined as

(2.11) Σt(x, E, t) = Σa(x, E, t) + Σs(x, E, t),

such that for a particle at spatial point x with energy E traveling a distance ds,

Σt(x, E, t)ds = probability of undergoing an interaction.

At this point, it is important to remark that Eqs. (2.7) and (2.11) are based on the

assumptions that the probability that a particle will undergo a collision when traveling a

distance ds in the direction Ω is: (i) proportional to ds, and (ii) independent of Ω. These

assumptions carry with them the underlying premise that the positions of the scattering

centers are uncorrelated and independent upon direction. This is valid for introducing the

classical theory; in the subsequent chapters, however, it is dropped in order to better deal

with the problem being studied.

Consider a homogeneous medium, and let K(s) be the number of uncollided particles

at position s in a directed beam of radiation. In traversing an additional element of path

length ds along this beam, the value of K(s) will be decreased by the number of particles

that have interacted during this process. From the classical definition of the total cross

section we have −dK(s) = K(s)Σtds. This equation can be integrated with the result

K(s) = K0e
−Σts, which means that the K0 particles initially in the beam will decrease

exponentialy with distance. It should be noted that since K(s) refers to those particles

that have not interacted in traveling the distance s, the ratio K(s)/K0 = e−Σts is the

probability that a particle will move through this distance without interacting. Now, let

us define p(s)ds as the probability that a particle will have its first interaction in ds in

the neighborhood of s. This is equal to the probability that the particle reaches s without
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interacting times the probability that it does interact in the additional distance ds:

(2.12) p(s)ds = e−Σts × Σtds = Σte
−Σtsds.

The average distance between interactions is known as the mean free path, denoted by

s. This quantity is equal to the average distance of s (the distance traversed by a particle

without interaction):

(2.13) s =

∫ ∞
0

sp(s)ds = Σt

∫ ∞
0

se−Σtsds =
1

Σt

.

Therefore, in a classical homogeneous medium, the mean free path is just the inverse

of the total cross section. If the material properties are functions of space and time, the

mean free path will depend upon these variables. In this situation, Eq. (2.13) is taken as a

definition of the mean free path:

s = s(x, E, t) =
1

Σt(x, E, t)
.(2.14a)

By analogy, we can define absorption and scattering mean free paths as

sa(x, E, t) =
1

Σa(x, E, t)
,(2.14b)

ss(x, E, t) =
1

Σs(x, E, t)
,(2.14c)

and by Eq. (2.11), the inverse addition rule is satisfied:

(2.15)
1

s
=

1

sa
+

1

ss
.

2.1.2 The Classic Linear Boltzmann Equation

The transport equation was first introduced by Boltzmann in 1872, in the kinetic theory

of gases [10]. This equation describes the relationship between the mechanisms of loss

and gain of particles in any given volume of a phase space. Much neutral particle transport

work is based on this equation, or equations derived from it.
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Using [63] as a guide, let the vectors x and Ω be described by the representation in-

troduced earlier, in such way that Eqs. (2.2) and Figure 2.1 are satisfied. We consider a

six-dimensional volume (as a six-dimensional cube) fixed in space, of dimensions 4x,

4y,4z,4E,4µ,4ϕ. Then, by Eq. (2.1), the number of particles within this volume at

time t is

(2.16) n(x, E,Ω, t)4x4y4z4E4µ4ϕ = n(x, E,Ω, t)4β,

where all arguments of n are “average” arguments in the increment of six-dimensional

phase space4β. The number of particles in this cube changes with time:

(2.17) 4β ∂
∂t
n(x, E,Ω, t) = time rate of change of the number of

particles in the six-dimensional cube4β.

This time rate of change is due to five separate processes. One is the rate of streaming

of particles out of the volume through the boundaries. The others occur within the six-

dimensional “cube”: the rate of absorption; the rate of scattering from E, Ω to all other

energies and directions, known as outscattering; the rate of scattering into E, Ω from all

other energies and directions, known as inscattering; and the rate of production of particles

due to an internal source.

Now, let us consider the surfaces of the cube perpendicular to the x-axis. For the net

rate of particles leaving the cube through these two surfaces, we have

(2.18) (Streaming)x = ẋn(x, E,Ω, t) |x+4x
x 4y4z4E4µ4ϕ,

where ẋ is the x component of the particle velocity as defined by Eq. (2.3a), and

4y4z4E4µ4ϕ is the surface area. Letting 4x go to the differential dx, we rewrite

Eq. (2.18) as

(2.19) (Streaming)x = 4β ∂

∂x

[
ẋn(x, E,Ω, t)

]
.
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Using the same procedure for the flow from the cube in the other five “directions”, we

obtain

Streaming =

[
∂

∂x
(ẋn)+

∂

∂y
(ẏn) +

∂

∂z
(żn)(2.20)

+
∂

∂E
(Ėn) +

∂

∂µ
(µ̇n) +

∂

∂ϕ
(ϕ̇n)

]
4β,

where n = n(x, E,Ω, t).

The rate of absorption within the cube is the product of the number of particles in the

cube and the probability of absorption per particle per unit of time. This probability is

given by the product of the absorption cross section and the particle speed v. That is,

(2.21) Absorption = vΣa(x, E, t)n(x, E,Ω, t)4β.

Using similar arguments and the fact that we need to sum the scattering from (to) E, Ω to

(from) all other energies and directions E ′, Ω′, we find

Outscattering = 4β
∫ ∞

0

∫
4π

vΣs(x, E → E ′,Ω ·Ω′, t)n(x, E,Ω, t)dΩ′dE ′,(2.22a)

Inscattering = 4β
∫ ∞

0

∫
4π

v′Σs(x, E
′ → E,Ω′ ·Ω, t)n(x, E ′,Ω′, t)dΩ′dE ′,(2.22b)

where Σs(x, E
′ → E,Ω′ · Ω, t) is the macroscopic differential scattering cross section

as defined earlier. Since the distribution function in the integrand of Eq. (2.22a) is in-

dependent of the integration variables, using Eq. (2.10) we can rewrite Outscattering as

4βvΣs(x, E, t)n(x, E,Ω, t). Finally, we need to consider the internal source of parti-

cles. We quantify this source by introducing the function Q(x, E,Ω, t) such that the rate

of introduction of particles into the cube is given by

(2.23) Source = Q(x, E,Ω, t)4β.

In order to build the transport equation, we sum Eqs. (2.20-2.23), with appropriate signs

for loss and gain, to the overall rate given by Eq. (2.17). Letting4β approach a differential
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element and canceling it, we obtain

∂n

∂t
=−

[
∂(ẋn)

∂x
+
∂(ẏn)

∂y
+
∂(żn)

∂z
+
∂(Ėn)

∂E
+
∂(µ̇n)

∂µ
+
∂(ϕ̇n)

∂ϕ

]
(2.24)

− vΣa(x, E, t)n

+

∫ ∞
0

∫
4π

v′Σs(x, E
′ → E,Ω′ ·Ω, t)n(x, E ′,Ω′, t)dΩ′dE ′

−
∫ ∞

0

∫
4π

vΣs(x, E → E ′,Ω ·Ω′, t)n(x, E,Ω, t)dΩ′dE ′

+Q(x, E,Ω, t),

where n = n(x, E,Ω, t). Since particles travel in a straight line between collisions,

µ̇ = ϕ̇ = 0. Furthermore, Ė = 0 because particles stream with no change in energy.

Finally, performing the outscattering integral and using Eqs. (2.3) and (2.5), Eq. (2.24)

becomes

1

v

∂ψ

∂t
(x, E,Ω, t) + Ω ·∇ψ(x, E,Ω, t) + Σt(x, E, t)ψ(x, E,Ω, t)(2.25)

=

∫ ∞
0

∫
4π

Σs(x, E
′ → E,Ω′ ·Ω, t)ψ(x, E ′,Ω′, t)dΩ′dE ′ +Q(x, E,Ω, t).

Following [25], we can easily generalize this equation to include nuclear fission. To

do that, we must revisit our treatment of Σa; as we have mentioned, there are two main

processes responsible for the absorption of particles in the system: radiative capture and

nuclear fission. Now, we define

Σγ(x, E, t)ds = probability of capture(2.26a)

and

Σf (x, E, t)ds = probability of a fission event,(2.26b)

such that

Σa(x, E, t) = Σγ(x, E, t) + Σf (x, E, t) .(2.27)
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While a captured neutron is simply removed from the system, a neutron with energy

E that induces a fission event causes the target nucleus to split into two smaller daughter

nuclei, and

ν(E) = the mean number of fission neutrons that are released .(2.28)

Of this number, ν(E)[1−M(E)] are prompt fission neutrons (being emitted within 10−15

seconds of the fission event). These fission neutrons are emitted isotropically, with an

energy distribution given by the fission spectrum χp(E). Also, ν(E)M(E) delayed fission

neutrons (being released roughly 0.1 to 60 seconds after the fission event) are created; a

delayed neutron is produced when a radioactive daughter nucleus undergoes a radioactive

decay process in which a neutron is emitted.

Assuming (for simplicity) that the number of delayed neutrons emitted by fission is

very small [M(E) << 1], we can neglect the delayed neutron terms and rewrite Eq.

(2.25) as

1

v

∂ψ

∂t
(x, E,Ω, t) + Ω ·∇ψ(x, E,Ω, t) + Σt(x, E, t)ψ(x, E,Ω, t)(2.29)

=

∫ ∞
0

∫
4π

Σs(x, E
′ → E,Ω′ ·Ω, t)ψ(x, E ′,Ω′, t)dΩ′dE ′

+
χp(E)

4π

∫ ∞
0

∫
4π

ν(E ′)Σf (x, E
′, t)ψ(x, E ′,Ω′, t)dΩ′dE ′

+Q(x, E,Ω, t).

Equation (2.29) [as well as Eq. (2.25)] requires both spatial and temporal boundary

conditions. Assuming that the physical system of interest is nonreentrant (convex) and

characterized by a volume V , it is sufficient to specify the flux of particles at all points of

the bounding surface of the system in the incoming directions. This implies

ψ(xs, E,Ω, t) = ψb(xs, E,Ω, t) , n ·Ω < 0,(2.30a)
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where ψb is a specified function at the boundary, xs is a point on the surface, and n is

the unit outward normal vector at this point. In the time variable, we assume the range of

interest 0 ≤ t <∞ and specify the initial condition at t = 0, such that

ψ(x, E,Ω, 0) = ψi(x, E,Ω),(2.30b)

where ψi is a specified function. In particular, Eqs. (2.29) and (2.30) completely specify

the linear particle transport problem (without delayed fission neutrons).

It is common to make extra assumptions in order to obtain a simpler version of these

equations. For instance, in the case of time-independent, monoenergetic particle transport

in a homogeneous medium with a known interior isotropic source, Eq. (2.25) becomes

Ω ·∇ψ(x,Ω) + Σtψ(x,Ω) =

∫
4π

Σs(Ω
′ ·Ω)ψ(x,Ω′)dΩ′ +

Q(x)

4π
,(2.31)

and Eq. (2.29) becomes

Ω ·∇ψ(x,Ω) + Σtψ(x,Ω) =

∫
4π

Σs(Ω
′ ·Ω)ψ(x,Ω′)dΩ′(2.32)

+
νΣf

4π

∫
4π

ψ(x,Ω′)dΩ′ +
Q(x)

4π
.

Both the equations above need a spatial boundary condition, which is given by

ψ(xs,Ω) = ψb(xs,Ω) , n ·Ω < 0 .(2.33)

In steady-state reactor calculations, one often sees [25, 26, 40] a version of Eqs. (2.61b)

and (2.33) in which the inhomogeneous source Q(x) and the boundary source ψb(xs,Ω)

are set to zero, and the fission source is modified by a constant factor 1/k:

Ω ·∇ψ(x,Ω) + Σtψ(x,Ω) =

∫
4π

Σs(Ω
′ ·Ω)ψ(x,Ω′)dΩ′(2.34a)

+
νΣf

4πk

∫
4π

ψ(x,Ω′)dΩ′ ,

ψ(xs,Ω) = 0, n ·Ω < 0 .(2.34b)
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These equations always have the zero solution ψ = 0; the goal is to find the largest value

of k such that a nonzero solution ψ exists. The resulting k is called the criticality (or

criticality eigenvalue) of the system. If a system has a fissile region, it can be shown that

k always exists, and the corresponding (eigenfunction) ψ in unique and positive.

The eigenvalue k is a measure of the ability of a reactor to regenerate neutrons by

fission; namely, it is the average number of neutrons from one fission that cause another

fission. If k = 1, capture and leakage exactly balance fission, and a nonzero, steady-state

neutron flux is possible. In this case, the reactor is said to be critical. If k < 1, then

capture and leakage dominate fission, and the reactor is subcritical. On the other hand, if

k > 1, fission dominates capture and leakage, and the reactor is supercritical.

Finally, it is important to remark that an integral formulation for the Boltzmann equa-

tion can also be obtained. For instance, defining the inscattering rate density g(x,Ω) as

g(x,Ω) =

∫
4π

Σs(Ω
′ ·Ω)ψ(x,Ω′)dΩ′(2.35)

and solving the integral equation

g(x,Ω)(2.36a)

=

∫∫∫
Σs

(
x− x′

|x− x′|
·Ω
)[

g

(
x′,

x− x′

|x− x′|

)
+
Q(x′)

4π

]
e−Σt|x−x′|

|x− x′|2
dV ′

allows us to write an integral expression for the classic angular flux in terms of g(x,Ω):

ψ(x,Ω) =

∫ ∞
0

[
g(x− sΩ,Ω) +

Q
(
x− sΩ)

4π

]
e−Σts ds .(2.36b)

Equations (2.36) are the classic integral transport equations for the case modeled by

Eqs. (2.31) and (2.33). We refer to [16, 26, 63] for more details on this formulation.

2.2 The Diffusion Equation

The diffusion approximation is a classic model for particle transport in a physical sys-

tem in which absorption and sources are weak and the solution varies slowly over the
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distance of a mean free path. The diffusion equation has long been known to be an asymp-

totic limit of the transport equation [31, 42, 43].

For instance, in the case of time-independent, monoenergetic particle transport in a

homogeneous medium with a known interior isotropic source, Eqs. (2.31) and (2.61b)

become respectively [25]:

−D∇2Φ(x) + ΣaΦ(x) = Q(x) ,(2.37)

and

−D∇2Φ(x) + ΣaΦ(x) = νΣfΦ(x) +Q(x) ;(2.38)

where

D =
1

3(Σt − µ0Σs)
(2.39)

is the neutron diffusion coefficient, with µ0 representing the mean scattering cosine. These

equations share the boundary condition

D
2

n ·∇Φ(x) +
1

2
Φ(x) =

∫
n·Ω<0

|n ·Ω|ψ(xs,Ω)dΩ ,(2.40)

where xs is a point on the surface and n is the unit outward normal vector at this point.

2.2.1 On the kD Diffusion Eigenvalue

As mentioned in Section 2.1.2, one of the most important quantities in reactor physics

is the criticality eigenvalue k. The value of k determines how a nuclear chain reaction

proceeds, and even a very small difference on its estimate has a significant impact on the

overall problem, such that errors in the estimate of k on the order of 0.1% are significant.

Let x = (x, y, z), where x ∈ [0, X], y ∈ [0, Y ], and z ∈ [0, Z], and consider the

following eigenvalue problem based on a diffusion equation with a fission source [see
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Eq. (2.34a)]:

− Dx
∂2

∂x2
Φ(x)− Dy

∂2

∂y2
Φ(x)− Dz

∂2

∂z2
Φ(x) + ΣaΦ(x) =

νΣfΦ(x)

kD
,(2.41a)

Φ(0, y, z) = Φ(X, y, z) = 0 , ∀ y ∈ [0, Y ] , z ∈ [0, Z] ,(2.41b)

Φ(x, 0, z) = Φ(x, Y, z) = 0 , ∀ x ∈ [0, X] , z ∈ [0, Z] ,(2.41c)

Φ(x, y, 0) = Φ(x, y, Z) = 0 , ∀ x ∈ [0, X] , y ∈ [0, Y ] ;(2.41d)

where νΣf is the thermal neutron cross section [40]. Let

Φ(x) = sin
(πx
X

)
sin
(πy
Y

)
sin
(πz
Z

)
(2.42)

satisfy Eqs. (2.41); then the diffusion eigenvalue kD must be given by:

kD =
νΣf

Σa + π2
(

Dx

X2 + Dy

Y 2 + Dz

Z2

) .(2.43)

We wish to emphasize that the formula in Eq. (2.43) for the diffusion eigenvalue kD

applies to the diffusion problem defined by Eqs. (2.41). It does not apply to the eigenvalue

k defined by Eq. (2.34a), unless the transport problem is so diffusive in its nature that the

differences between transport and diffusion theory can be ignored.

It is clear from Eq. (2.43) that different estimates for the diffusion coefficients will

generate different results for kD. This fact will play an important role later in this work.

2.2.2 Theoretical Predictions of Σa and Mean Square Distances from Point of Birth

Consider the diffusion equation below, taking place in an infinite system with a point

source at the origin:

(2.44) −Dx
∂2

∂x2
Φ(x)− Dy

∂2

∂y2
Φ(x)− Dz

∂2

∂z2
Φ(x) + ΣaΦ(x) = Q(x)δ(x)δ(y)δ(z) .

Bearing in mind that Φ(x) → 0 and ∇Φ(x) → 0 as |x| → ∞, we can manipulate this

equation to obtain exact formulas for Σa and for the mean square distances of particles

from point of birth.
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Operating on Eq. (2.44) by ∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

(.)dxdydz ,(2.45)

we obtain the exact expression

Σa

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Φ(x)dxdydz = Q(0) .(2.46)

Using Eq. (2.6), we have:

ΦdV dt = v(ñdV )dt = (vdt)(ñdV )(2.47)

= [path length traveled by one neutron in time dt]
× [number of neutrons in dV about x]

= total path length traveled by neutrons
in dV about x during time increment dt ,

and dividing by dt we obtain a volume-based interpretation for Φ:

ΦdV = rate at which path length is generated by neutrons in dV about x .(2.48)

Operating on this equation by Eq. (2.45), we get:∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Φ(x)dxdydz = rate at which path length is
generated by neutrons in the system

(2.49)

= [number of neutrons in the system]
×[mean path length generated by one neutron]

=
[number of neutrons in the system]
×[mean number of collisions of a neutron]
×[mean free path of a neutron]

=[Q(0)]

[
1

1− c

]
[s] .

Introducing this result into Eq. (2.46) we obtain the exact expression

Σa =
1− c
s

.(2.50)
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Notice that for the classic case (in which Σt = 1/s) this expression reduces to the classic

expression Σa = (1− c)Σt.

Next, multiplying Eq. (2.44) by x2 and operating on it by Eq. (2.45), we obtain:

−Dx

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

x2 ∂
2

∂x2
Φ(x)dxdydz(2.51)

+ Σa

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

x2Φ(x)dxdydz = 0 .

Integrating the first term on this equation by parts we get

(2.52)
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

x2 ∂
2

∂x2
Φ(x)dxdydz = 2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Φ(x)dxdydz .

Therefore, Eq. (2.51) can be rewritten as

x2 =

∫∞
−∞

∫∞
−∞

∫∞
−∞ x

2Φ(x)dxdydz∫∞
−∞

∫∞
−∞

∫∞
−∞Φ(x)dxdydz

= 2
Dx

Σa

,(2.53a)

where x2 represents the mean square distance of a particle to its point of birth in the x-

direction. Similarly, the mean square distance of a particle to its point of birth in the

y-direction is given by:

y2 =

∫∞
−∞

∫∞
−∞

∫∞
−∞ y

2Φ(x)dxdydz∫∞
−∞

∫∞
−∞

∫∞
−∞Φ(x)dxdydz

= 2
Dy

Σa

;(2.53b)

the mean square distance of a particle to its point of birth in the z-direction is given by:

z2 =

∫∞
−∞

∫∞
−∞

∫∞
−∞ z

2Φ(x)dxdydz∫∞
−∞

∫∞
−∞

∫∞
−∞Φ(x)dxdydz

= 2
Dz

Σa

;(2.53c)

and therefore, the total mean square distance of a particle to its point of birth is given by:

ρ2 =

∫∞
−∞

∫∞
−∞

∫∞
−∞(x2 + y2 + z2)Φ(x)dxdydz∫∞

−∞

∫∞
−∞

∫∞
−∞Φ(x)dxdydz

=
2

Σa

(Dx + Dy + Dz) .(2.53d)

Finally, we define the notation:

x = |x| = mean distance of a particle to its point of birth in the x-direction ;(2.54a)

y = |y| = mean distance of a particle to its point of birth in the y-direction ;(2.54b)

z = |z| = mean distance of a particle to its point of birth in the z-direction ;(2.54c)

ρ =
(√

x2 + y2 + z2
)

= total mean distance of a particle to its point of birth .(2.54d)
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2.3 The Atomic Mix Equation

Let us consider the integro-differential transport equation given by

Eq. (2.25). In a deterministic medium, the total cross section Σt, the scattering kernel

Σs, and the source Q are known functions of their arguments. In order to find the angular

flux ψ, one must solve this equation subject to the boundary and initial conditions given

by Eqs. (2.30).

Figure 2.2: Particle Traversing the Mixture Along a Random Path

Now, we consider neutron transport in a heterogeneous volume V such that the bound-

ary ∂V of V is specified, but the interior structure of V is not. Specifically, we restrict our

attention to the case in which V consists of two random immiscible materials denoted by

an index i, with i ∈ {1, 2}. We can imagine V as a heterogeneous volume consisting of

randomly distributed chunks of random sizes and shapes of material 1 imbedded in mate-

rial 2. If we consider a particle traversing the mixture along a random path, it will pass

through alternating segments of these two materials, as shown in Figure 2.2.

The quantities Σt, Σs and Q are considered as discrete random variables. That is, in

the ith material these elements are denoted by Σti(x, E, t), Σsi(x, E
′ → E,Ω′ · Ω, t),

and Qi(x, E,Ω, t). The stochasticity of the problem is that we have only probabilistic
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knowledge about which material occupies the space point x at a time t. Therefore, since

we are considering Σt, Σs and Q as random variables, we must also consider the angular

flux ψ as a random variable. We want to find an expression for 〈ψ〉, the ensemble-averaged

angular flux (expected value) of ψ.

For convenience, let us consider the case of transport in a nonscattering medium.

Thinking about Ω ·∇ in Eq. (2.25) as a directional derivative, we can rewrite this equation

as

(2.55)
1

v

∂ψ(η, t)

∂t
+
∂ψ(η, t)

∂η
+ Σt(η, t)ψ(η, t) = Q(η, t),

where η denotes the spatial variable in the direction Ω. One must notice that Eq. (2.55)

describes particle transport at each energyE and direction Ω, which are omitted since they

are only parameters. We let 〈W 〉 denote the ensemble average of any random variable W ,

and define W̃ as the deviation of W from 〈W 〉. Then 〈W̃ 〉 = 0, and W = 〈W 〉 + W̃ .

Using this notation and following the work in [63], we ensemble-average Eq. (2.55) to

obtain

(2.56)
1

v

∂〈ψ〉
∂t

+
∂〈ψ〉
∂η

+ 〈Σt〉〈ψ〉+ 〈Σ̃tψ̃〉 = 〈Q〉.

The values of 〈Σt〉 and 〈Q〉 in this equation are defined in terms of the properties of mate-

rials 1 and 2. Defining p̂i(η, t) as the probability of presence of the material i at position η

at time t, then p̂1(η, t) + p̂2(η, t) = 1, and we can write

〈Σt(η, t)〉 = p̂1(η, t)Σt1(η, t) + p̂2(η, t)Σt2(η, t),(2.57a)

〈Q(η, t)〉 = p̂1(η, t)Q1(η, t) + p̂2(η, t)Q2(η, t).(2.57b)

Let us define the characteristic chord length for the chunks of material i as Λi. Assum-

ing that

(2.58) ΣtiΛi � 1, i = 1, 2,



27

a particle between collisions is likely to travel a distance that spans many chunks of ma-

terials 1 and 2. Recalling the relationship given by Eq. (2.14a), Eq. (2.58) means that

Λi is very small when compared with the mean free path si. On physical grounds, this

assumption appropriately describes vanishingly small chunks in the mixture, which can

be understood as if the two components of the system were mixed at the atomic level.

When Eq. (2.58) is satisfied, it is physically intuitive that the transport process will be

well-approximated by the process that holds when the chunk sizes are close to zero (the

atomic mix limit). Moreover, when the chunk sizes shrink the deviations in the angular

flux should also shrink, and ψ̃ will go to zero. Hence, the cross correlation term 〈Σ̃tψ̃〉 in

Eq. (2.56) can be neglected, and Eq. (2.56) becomes

(2.59)
1

v

∂〈ψ〉
∂t

+
∂〈ψ〉
∂η

+ 〈Σt〉〈ψ〉 = 〈Q〉,

which is closed for the ensemble-averaged angular flux 〈ψ〉. This equation represents the

atomic mix description of Eq. (2.55).

For instance, applying the same arguments above on Eq. (2.25), the atomic mix de-

scription of stochastic transport including scattering is given by

1

v

∂〈ψ(x, E,Ω, t)〉
∂t

+ Ω ·∇〈ψ(x, E,Ω, t)〉+ 〈Σt(x, E, t)〉〈ψ(x, E,Ω, t)〉(2.60a)

=

∫ ∞
0

∫
4π

〈Σs(x, E
′ → E,Ω′ ·Ω, t)〉〈ψ(x, E ′,Ω′, t)〉dΩ′dE ′

+ 〈Q(x, E,Ω, t)〉,

with boundary condition

〈ψ(xs, E,Ω, t)〉 = ψb(xs, E,Ω, t), n ·Ω < 0(2.60b)

and initial condition

〈ψ(x, E,Ω, 0)〉 = ψi(x, E,Ω).(2.60c)
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Here, 〈W 〉 = p̂1(x, t)W1 + p̂2(x, t)W2, where W stands for Σt, Σs and Q. The neglected

cross correlation terms are 〈Σ̃tψ̃〉 and 〈Σ̃sψ̃〉.

Similarly, the atomic mix description of Eqs. (2.31-2.33) is given by

Ω ·∇〈ψ(x,Ω)〉+ 〈Σt〉〈ψ(x,Ω)〉(2.61a)

=

∫
4π

〈Σs(Ω
′ ·Ω)〉〈ψ(x,Ω′)〉dΩ′ +

〈Q(x)〉
4π

,

Ω ·∇〈ψ(x,Ω)〉+ 〈Σt〉〈ψ(x,Ω)〉 =

∫
4π

〈Σs(Ω
′ ·Ω)〉〈ψ(x,Ω′)〉dΩ′(2.61b)

+
〈νΣf〉

4π

∫
4π

〈ψ(x,Ω′)〉dΩ′ +
〈Q(x)〉

4π
.

〈ψ(xs,Ω)〉 = ψb(xs,Ω) , n ·Ω < 0 .(2.61c)

For a formal derivation of this result using the multiscale expansion technique, we refer

the reader to the work in [27], or to a particular case of this work presented in [85].

Finally, applying this theory on Eqs. (2.37) and (2.38), we obtain the atomic mix diffu-

sion equations

−Dam∇2〈Φ(x)〉+ 〈Σa〉〈Φ(x)〉 = 〈Q(x)〉(2.62)

and

−Dam∇2〈Φ(x)〉+ 〈Σa〉〈Φ(x)〉 = 〈νΣf〉〈Φ(x)〉+ 〈Q(x)〉 ,(2.63)

where the atomic mix diffusion coefficient is simply given by

Dam =
1

3(〈Σt〉 − µ0〈Σs〉)
.(2.64)

2.4 Corrections for the Atomic Mix Diffusion Coefficient

In 1949, Behrens investigated the increase in the migration length of neutrons in a

reactor caused by the presence of “holes” in the reactor [5]. In that work, “holes” are
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primarily understood to be the coolant spaces, due to the low density of the substances

used as coolants. He also noticed that a small anisotropic effect occurred depending on the

shape of the holes. For the case of pebble beds in which rΣt << 1, he proposed that the

isotropic diffusion coefficient DB be given by

DB =

(
1 +

2

3

φ2

(1 + φ)2
rΣtQB

)
Dam ,(2.65)

where Σt is the total cross section of the solid material, r is the radius of a pebble, φ is the

hole/material volume ratio of the system, Dam is the diffusion constant in a homogeneous

model (the atomic mix diffusion coefficient), and QB is the quotient of the mean square

path length through the hole divided by the square of the mean path length through the

hole, estimated by

QB = 1 +
1

8φ2
.(2.66)

Later work [58, 73] emphasized the general validity of these equations for pebble-bed

problems, but although Eq. (2.65) was mostly applied for a long time, in his work Behrens

rather recommended the expression

DB =

[
1 +

φ2

(1 + φ)2

(
2

3
rΣtQB +

4
3
rΣt

exp
[

4
3
rΣt

]
− 1
− 1

)]
Dam(2.67)

for holes of any kind.

In 1980, Lieberoth & Stojadinović [48] revisited this theory. They developed a mock-

up model of a pebble-bed using steel balls and measured the coordinates of 3,024 sphere

centers so that Monte Carlo games for neutron diffusion could be established. Using these

results (as well as Monte Carlo calculations for crystal structures), they proposed an im-

proved expression for QB:

QL = 1.956 +
1

260φ2
,(2.68)
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which also more closely relates to the theoretical value Q = 2 obtained for randomly over-

lapping spheres [76]. Moreover, under the assumption that no correlation exists between

the passage lengths in the holes and in the balls, they developed the following formula for

the diffusion lengths:

DL =

{
1+

φ2

(1 + φ)2

[
2

3
rΣtQL(2.69)

+
4

3
rΣt

(
2r2Σ2

t

2r2Σ2
t − 1 + (1 + 2rΣt)e−2rΣt

− 1

)
− 1

]}
Dam .

This correction is still used when more accurate estimates of neutron streaming in pebble-

bed type reactors are required [7, 90].



CHAPTER III

The Proposed Generalized Theory

In the classical theory of time-independent linear particle transport, the incremental

probability dp that a particle at point x with energy E will experience an interaction while

traveling an incremental distance ds is given by dp = Σt(x, E)ds, where Σt (the cross

section) is independent of Ω and:

s = the path length traveled by the particle since
its previous interaction (birth or scattering) .

(3.1)

The assumption that Σt is independent of Ω and s is valid when the locations of the

scattering centers in the system are uncorrelated. Moreover, for homogeneous media,

Σt(x, E) = Σt(E) is independent of space, and the probability distribution function for

distance-to-collision is an exponential [as described in Eq. (2.12)].

In an inhomogeneous medium, Σt being independent of space holds only locally; that

is, if xi ∈ material i, then Σt(xi, E) = Σti(E). However, during their flight paths, par-

ticles travel through different materials with randomly-located interfaces. Hence, Σt will

depend upon space, and the probability distribution function for distance-to-collision will

not be an exponential.

For inhomogeneous systems such as a pebble-bed reactor (or an atmospheric cloud),

the physically correct mathematical theory for the transport of neutrons in the reactor (or

of photons in the cloud) is given by the linear Boltzmann equation (2.25), with highly

31
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space-dependent cross sections. Unfortunately, due to the statistical distribution of the

materials, it is impossible to specify the cross sections at any given point in these systems.

Thus, it is necessary to develop models that describe transport problems in this situation.

One such model is the atomic mix approximation, as described in section 2.3. It ho-

mogenizes the system by volume-averaging the parameters of the different materials (such

as the cross sections), which leads to an exponential probability ditribution function for

the distance-to-collision. Furthermore, the pebbles in a pebble-bed reactor are O(1) mean

free paths thick, and the atomic mix approximation can [84, 85] be inaccurate when the

chunk sizes of the constituent materials are not small when compared to a mean free path

(with very particular exceptions [44]).

Here, we present a new model to describe this type of transport problem. In a random

medium, where the material interfaces are unknown, we propose to replace the true non-

exponential probability distribution function for the distance-to-collision by its ensemble-

average. This ensemble-averaged probability distribution function is used at all points to

determine how far particles travel between collisions. When collisions between the parti-

cles and the scattering centers occur, the changes in energy and direction are determined

by the physically correct probability distribution functions.

The concept of a generalized Boltzmann equation was first introduced by Larsen [45],

with the assumption that the positions of the scattering centers are correlated but indepen-

dent of direction Ω; that is, Σt is independent of Ω but not s. Since then, we have extended

this approach to the case in which the incremental probability dp that a particle at point x

with energy E will experience an interaction while traveling an incremental distance ds in

a direction Ω is given by dp = Σt(x,Ω, s, E)ds [86]. This implies that Σt must depend

upon both s and Ω, since the locations of the scattering centers in the system are not only

correlated, but dependent upon direction as well.
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We will not consider the most general problem, but will instead follow the assumptions

presented in [45, 86] for simplicity. Namely, we will assume that

• The physical system is infinite and statistically homogeneous.

• Particle transport is monoenergetic. (However, the inclusion of
energy-dependence is straightforward.)

• Particle transport is driven by a known interior isotropic source
Q(x) satisfying Q→ 0 as |x| → ∞.

• Σt(Ω, s) is known. (We discuss how to obtain it in Section 3.6.)

•
The distribution function P (Ω ·Ω′) for scattering from Ω′ to Ω is independent
of s. (The correlation in positions of the scattering centers affects the probability

of collision, but not the scattering properties when scattering events occur.)

Based on these assumptions we shall now proceed to a formal derivation of the generalized

Boltzmann equation.

3.1 Derivation of the Generalized Boltzmann Equation

Using the notation x = (x, y, z) = position and Ω = (Ωx,Ωy,Ωz) = direction of flight

(with |Ω| = 1), and using Eq. (3.1) for s, we define:

n̂(x,Ω, s)dV dΩds = the number of particles in dV dΩds about (x,Ω, s) ,(3.2a)

v =
ds

dt
= the particle speed ,(3.2b)

ψ̂(x,Ω, s) = vn̂(x,Ω, s) = the angular flux ,(3.2c)

Σt(Ω, s)ds =

the probability that a particle that has traveled a
distance s in the direction Ω since its previous
interaction (birth as a source particle or scattering)
will experience its next interaction while traveling
a further distance ds,

(3.2d)

c = the probability that when a particle experiences a
collision, it will scatter (c is independent of s and Ω),

(3.2e)
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P (Ω′ ·Ω)dΩ =
the probability that when a particle with direction of
flight Ω′ scatters, its outgoing direction of flight will
lie in dΩ about Ω (P is independent of s),

(3.2f)

Q(x)dV = the rate at which source particles are isotropically
emitted by an internal source Q(x) in dV about x.

(3.2g)

Classic manipulations directly lead to:

∂

∂s
ψ̂(x,Ω, s)dV dΩds =

∂

v∂t
vn̂(x,Ω, s)dV dΩds(3.3a)

=
∂

∂t
n̂(x,Ω, s)dV dΩds

= the rate of change of the number of particles
in dV dΩds about (x,Ω, s) ,

|Ω · n|ψ̂(x,Ω, s)dSdΩds =
the rate at which particles in dΩds about (Ω, s)
flow through an incremental surface area dS
with unit normal vector n,

(3.3b)

Ω ·∇ψ̂(x,Ω, s)dV dΩds = the net rate at which particles in dΩds about
(Ω, s) flow (leak) out of dV about x,

(3.3c)

Σt(Ω, s)ψ̂(x,Ω, s)dV dΩds = Σt(Ω, s)
ds

dt
n̂(x,Ω, s)dV dΩds(3.3d)

=
1

dt
[Σt(Ω, s)ds][n̂(x,Ω, s)dV dΩds]

= the rate at which particles in dV dΩds about
(x,Ω, s) experience collisions.

The treatment of the inscattering and source terms requires extra care. From Eq. (3.3d),[∫ ∞
0

Σt(Ω
′, s′)ψ̂(x,Ω′, s′)ds′

]
dV dΩ′ = the rate at which particles in dV dΩ′

about (x,Ω′) experience collisions.

Multiplying this expression by cP (Ω ·Ω′)dΩ, we obtain:

cP (Ω ·Ω′)
[∫ ∞

0

Σt(Ω
′, s′)ψ̂(x,Ω′, s′)ds′

]
dV dΩ′dΩ =

= the rate at which particles in dV dΩ′ about
(x,Ω′) scatter into dV dΩ about (x,Ω).
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Integrating this expression over Ω′ ∈ 4π, we get:[
c

∫
4π

∫ ∞
0

P (Ω′ ·Ω)Σt(Ω
′, s′)ψ̂(x,Ω′, s′) ds′dΩ′

]
dV dΩ

= the rate at which particles scatter into dV dΩ about (x,Ω) .

Finally, when particles emerge from a scattering event their value of s is “reset” to s = 0.

Therefore, the path length spectrum of particles that emerge from scattering events is the

delta function δ(s). Multiplying the previous expression by δ(s)ds, we obtain:[
δ(s)c

∫
4π

∫ ∞
0

P (Ω′ ·Ω)Σt(Ω
′, s′)ψ̂(x,Ω′, s′) ds′dΩ′

]
dV dΩds(3.3e)

= the rate at which particles scatter into dV dΩds about (x,Ω, s) .

Also,

δ(s)
Q(x)

4π
dV dΩds = the rate at which source particles are

emitted into dV dΩds about (x,Ω, s).
(3.3f)

We now use the familiar conservation equation (in each of the following terms, the

phrase “of particles in dV dΩds about (x,Ω, s)” is omitted):

Rate of change = Rate of gain− Rate of loss(3.4)

=
(Inscatter rate + Source rate)

−(Net leakage rate + Collision rate).

Introducing Eqs. (3.3) into this expression and dividing by dV dΩds, we obtain the gener-

alized Boltzmann equation (GBE) for ψ̂(x,Ω, s):

∂ψ̂

∂s
(x,Ω, s) + Ω ·∇ψ̂(x,Ω, s) + Σt(Ω, s)ψ̂(x,Ω, s)(3.5)

= δ(s) c

∫
4π

∫ ∞
0

P (Ω′ ·Ω)Σt(Ω
′, s′)ψ̂(x,Ω′, s′) ds′dΩ′ + δ(s)

Q(x)

4π
.

To repeat, we have for simplicity assumed an infinite homogeneous system with a “local”

source Q(x); and we take ψ̂(x,Ω, s)→ 0 as |x| → ∞.



36

Equation (3.5) can be written in a mathematically equivalent way in which the delta

function is not present. We write Eq. (3.5) for s > 0:

(3.6a)
∂ψ̂

∂s
(x,Ω, s) + Ω ·∇ψ̂(x,Ω, s) + Σt(Ω, s)ψ̂(x,Ω, s) = 0 .

Then we operate on Eq. (3.5) by limε→0

∫ ε
−ε(·) ds and use ψ̂ = 0 for s < 0 to obtain:

ψ̂(x,Ω, 0) = c

∫
4π

∫ ∞
0

P (Ω′ ·Ω)Σt(Ω
′, s′)ψ̂(x,Ω′, s′) ds′dΩ′ +

Q(x)

4π
.(3.6b)

Equations (3.6) are mathematically equivalent to Eq. (3.5).

To establish the relationship between the present work and the classic number density

and angular flux, we integrate Eq. (3.2a) over s and obtain:[∫ ∞
0

n̂(x,Ω, s) ds

]
dV dΩ = the total number of particles

in dV dΩ about (x,Ω) .
(3.7)

Therefore,

n(x,Ω) =

∫ ∞
0

n̂(x,Ω, s) ds = classic number density,(3.8)

and

ψ(x,Ω) = vn(x,Ω) =

∫ ∞
0

ψ̂(x,Ω, s) ds = classic angular flux,(3.9)

as defined in Chapter II.

3.2 The Angular-Dependent Path Length and Equilibrium Path Lengh Distribu-
tions

Without loss of generality, let us consider a single particle released from an interaction

site at x = 0 in the direction Ω = i = direction of the positive x-axis. Eq. (3.6a) for this

particle becomes:

(3.10)
∂ψ̂

∂s
(x,Ω = i, s) +

∂ψ̂

∂x
(x,Ω = i, s) + Σt(Ω = i, s)ψ̂(x,Ω = i, s) = 0 .
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For this particle, we have x(s) = s and ψ̂(x(s), i, s) ≡ F (i, s). Therefore,

dF

ds
(i, s) =

∂ψ̂

∂x
(x(s), i, s)

(
dx

ds

)
+
∂ψ̂

∂s
(x(s), i, s)(3.11)

=
∂ψ̂

∂x
+
∂ψ̂

∂s
.

Equation (3.10) will then simplify to:

(3.12a)
dF

ds
(i, s) + Σt(i, s)F (i, s) = 0 .

We apply the initial condition

(3.12b) F (i, 0) = 1 ,

since we are considering a single particle. The solution of Eqs. (3.12) is:

F (Ω = i, s) = e−
∫ s
0 Σt(Ω=i,s′) ds′(3.13)

= the probability that the particle will travel the distance
s in the given direction Ω = i without interacting .

We can generalize this equation for all directions, which gives

F (Ω, s) = e−
∫ s
0 Σt(Ω,s′) ds′(3.14)

= the probability that the particle will travel the distance
s in a given direction Ω without interacting.

The probability of a collision between s and s+ ds in a given direction Ω is:

(3.15) Σt(Ω, s)F (Ω, s)ds = ps|Ω(s|Ω)ds ,

and therefore:

ps|Ω(s|Ω) = Σt(Ω, s)e
−
∫ s
0 Σt(Ω,s′) ds′(3.16)

= conditional distribution function for the distance-to-collision
in a given direction Ω.
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Let us define

(3.17) pΩ(Ω)dΩ = probability that a particle is traveling in dΩ about Ω;

and

(3.18) p(Ω, s)dΩds = probability that a particle traveling in dΩ about Ω will
experience a collision between s and s+ ds.

Then

p(Ω, s)dΩds = (prob. that a particle is traveling in dΩ about Ω)×(prob. of a
collision between s and s+ ds in a given direction Ω)

(3.19)

= (pΩ(Ω)dΩ)(ps|Ω(s|Ω)ds);

that is, p(Ω, s) is a joint distribution function [30].

Equation (3.16) expresses ps|Ω(s|Ω) in terms of Σt(Ω, s). To express Σt(Ω, s) in terms

of ps|Ω(s|Ω), we operate on Eq. (3.16) by
∫ s

0
(·)ds′ and get:∫ s

0

ps|Ω(s|Ω)ds′ = 1− e−
∫ s
0 Σt(Ω,s′) ds′ ,(3.20a)

or

e−
∫ s
0 Σt(Ω,s′) ds′ = 1−

∫ s

0

ps|Ω(s|Ω)ds′ .(3.20b)

Hence, ∫ s

0

Σt(Ω, s
′) ds′ = − ln

(
1−

∫ s

0

ps|Ω(s|Ω)ds′
)

.(3.20c)

Differentiating with respect to s, we obtain:

(3.21) Σt(Ω, s) =
ps|Ω(s|Ω)

1−
∫ s

0
ps|Ω(s|Ω)ds′

.

Equations (3.16) and (3.21) show that ps|Ω(s|Ω) is exponential if and only if Σt(Ω, s) is

independent of s.
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Moreover, for the case of an infinite medium with an “equilibrium” intensity having no

space dependence (but dependent on direction), Eq. (3.6a) for s > 0 reduces to:

(3.22)
∂ψ̂

∂s
(Ω, s) + Σt(Ω, s)ψ̂(Ω, s) = 0 ,

which has the solution

(3.23) ψ̂(Ω, s) = ψ̂(Ω, 0)e−
∫ s
0 Σt(Ω,s′) ds′ .

Normalizing this solution to have integral = unity, we obtain:

χ̂(Ω, s) =
e−

∫ s
0 Σt(Ω,s′) ds′∫∞

0
e−

∫ s′
0 Σt(Ω,s′′)ds′′ds′

(3.24)

= “equilibrium” spectrum of path length s in a given direction Ω .

From Eq. (3.16), the mean distance-to-collision (mean free path) in a given direction Ω

is:

sΩ(Ω) =

∫ ∞
0

sps|Ω(s|Ω) ds(3.25)

=

∫ ∞
0

s
[
Σt(Ω, s)e

−
∫ s
0 Σt(Ω,s′)ds′

]
ds

= s
[
−e−

∫ s
0 Σt(Ω,s′)ds′

]∞
0
−
∫ ∞

0

[
−e−

∫ s
0 Σt(Ω,s′)ds′

]
ds

=

∫ ∞
0

e−
∫ s
0 Σt(Ω,s′)ds′ ds .

Equation (3.24) can then be written:

(3.26) χ̂(Ω, s) =
e−

∫ s
0 Σt(Ω,s′)ds′

sΩ(Ω)
,

and by the Law of Total Expectation [8], the mean free path s is given by

(3.27) s =

∫
4π

∫ ∞
0

sp(Ω, s)dsdΩ =

∫
4π

pΩ(Ω)sΩ(Ω)dΩ .

Note: from now on we will assume that sΩ(Ω) is an even function of the direction of

flight Ω. This makes sense since, from the physical point of view, the mean free path of
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a particle traveling in the direction Ω must be equal to the mean free path of a particle

traveling in the direction −Ω.

3.3 Integral Equation Formulations of the Generalized Boltzmann Equation

Using the work in [45] as a guide, let us define:

f̂(x,Ω) =

∫ ∞
0

Σt(Ω, s)ψ̂(x,Ω, s) ds = collision rate density,(3.28)

and

ĝ(x,Ω) = c

∫
4π

P (Ω′ ·Ω)f̂(x,Ω′) dΩ′ = inscattering rate density.(3.29)

The definition (3.28) allows us to rewrite Eqs. (3.6) as:

∂ψ̂

∂s
(x,Ω, s) + Ω ·∇ψ̂(x,Ω, s) + Σt(Ω, s)ψ̂(x,Ω, s) = 0 ,(3.30a)

ψ̂(x,Ω, 0) = c

∫
4π

P (Ω′ ·Ω)f̂(x,Ω′) dΩ′ +
Q(x)

4π
.(3.30b)

Solving Eq. (3.30a) and using Eq. (3.30b), we obtain for s > 0

ψ̂(x,Ω, s) = ψ̂(x− sΩ,Ω, 0)e−
∫ s
0 Σt(Ω,s′)ds′(3.31)

=

[
c

∫
4π

P (Ω′ ·Ω)f̂(x− sΩ,Ω′) dΩ′ +
Q(x− sΩ)

4π

]
e−

∫ s
0 Σt(Ω,s′)ds′ .

Operating on this equation by
∫∞

0
Σt(Ω, s)(·)ds and using Eqs. (3.28) and (3.16), we get:

f̂(x,Ω)(3.32a)

=

∫ ∞
0

[
c

∫
4π

P (Ω′ ·Ω)f̂(x− sΩ,Ω′) dΩ′ +
Q(x− sΩ)

4π

]
ps|Ω(s|Ω) ds .

Also, operating on Eq. (3.31) by
∫∞

0
(·)ds and using Eq. (3.9), we obtain:

ψ(x,Ω)(3.32b)

=

∫ ∞
0

[
c

∫
4π

P (Ω′ ·Ω)f̂(x− sΩ,Ω′) dΩ′ +
Q(x− sΩ)

4π

]
e−

∫ s
0 Σt(Ω,s′)ds′ ds .
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Using definition (3.29), we can rewrite Eq. (3.32a) as:

(3.33) f̂(x,Ω) =

∫ ∞
0

[
ĝ(x− sΩ,Ω) +

Q(x− sΩ)

4π

]
ps|Ω(s|Ω)ds ,

and operating on this result by c
∫

4π
P (Ω ·Ω′)(·)dΩ we obtain:

(3.34) ĝ(x,Ω′) = c

∫
4π

P (Ω·Ω′)
∫ ∞

0

[
ĝ(x− sΩ,Ω) +

Q(x− sΩ)

4π

]
ps|Ω(s|Ω) dsdΩ .

Changing the spatial variables from the 3-D spherical (Ω, s) to the 3-D Cartesian x′ de-

fined by

(3.35) x′ = x− sΩ ,

we obtain

s = |x− x′| ,(3.36a)

Ω =
x− x′

|x− x′|
,(3.36b)

s2dsdΩ = dV ′ .(3.36c)

Now, we can rewrite Eq. (3.34) as:

ĝ(x,Ω)(3.37a)

= c

∫∫∫
P

(
x− x′

|x− x′|
·Ω
)[

ĝ

(
x′,

x− x′

|x− x′|

)
+
Q(x′)

4π

]
p̃(|x− x′|)
|x− x′|2

dV ′ ,

where p̃(|x − x′|)dV ′ is the conditional probability that, given the direction defined by

x − x′, a particle moving from a point x to a point lying in dV ′ about x′ will experience

a collision. Definition (3.29) allows us to rewrite Eq. (3.32b) as well:

(3.37b) ψ(x,Ω) =

∫ ∞
0

[
ĝ(x− sΩ,Ω) +

Q
(
x− sΩ)

4π

]
e−

∫ s
0 Σt(Ω,s′)ds′ ds .

Finally, for the case of isotropic scattering (in which P (Ω′ · Ω) = 1/4π), ĝ(x,Ω) in

Eq. (3.29) becomes isotropic:

(3.38a) ĝ(x) =
c

4π

∫
4π

f̂(x,Ω′)dΩ′ ≡ c

4π
F̂ (x) ,
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where

(3.38b) F̂ (x) =

∫
4π

f̂(x,Ω′)dΩ′ = scalar collision rate density.

Equation (3.37a) will then be reduced to

(3.39a) F̂ (x) =

∫∫∫ [
cF̂ (x′) +Q(x′)

] p̃(|x− x′|)
4π|x− x′|2

dV ′ ;

and using Eq. (3.38a), we write Eq. (3.37b) as:

(3.39b) ψ(x,Ω) =
1

4π

∫ ∞
0

[
cF̂ (x− sΩ) +Q(x− sΩ)

]
e−

∫ s
0 Σt(Ω,s′)ds′ds .

Operating on this equation by
∫

4π
(·)dΩ and using Eqs. (3.35) and (3.36), we obtain the

classic scalar flux Φ(x):

(3.39c) Φ(x) =

∫∫∫ [
cF̂ (x′) +Q(x′)

]e− ∫ |x−x′|
0 Σt

(
x−x′
|x−x′| ,s

′
)
ds′

4π|x− x′|2
dV ′ .

To summarize: for general anisotropic scattering, Eq. (3.32b) yields the classic angular

flux ψ(x,Ω) in terms of f̂(x,Ω), which is obtained by solving Eq. (3.32a). Moreover, one

can write an integral equation formulation of the GBE [Eqs. (3.37)] that does not contain

the pathlength variable s as an independent variable. Finally, if scattering is isotropic,

then the classic scalar flux can be obtained using Eqs. (3.39a) and (3.39c), in which the

direction variable Ω also does not occur as an independent variable.

3.4 Asymptotic Diffusion Limit of the Generalized Boltzmann Equation

To begin this discussion, we must first consider the Legendre polynomial expansion of

the distribution function P (Ω ·Ω′) = P (µ0) defined by Eq. (3.2f) [47]:

(3.40) P (µ0) =
∞∑
n=0

2n+ 1

4π
anPn(µ0) ,

where a0 = 1 and a1 = µ0 = mean scattering cosine. We define P ∗(µ0) by:

(3.41) P ∗(µ0) = cP (µ0) +
1− c
4π

,
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which has the Legendre polynomial expansion:

P ∗(µ0) =
∞∑
n=0

2n+ 1

4π
a∗nPn(µ0) ,(3.42a)

a∗n =

{
1 , n = 0

can , n ≥ 1
.(3.42b)

Using the work in [41] as a guide, we scale Σt = O(ε−1), 1 − c = O(ε2), Q = O(ε),

P ∗(µ0) is independent of ε, and ∂ψ̂/∂s = O(ε−1), with ε� 1. Equations (3.5) and (3.41)

yield, in this scaling,

1

ε

∂ψ̂

∂s
(x,Ω, s) + Ω ·∇ψ̂(x,Ω, s) +

Σt(Ω, s)

ε
ψ̂(x,Ω, s)(3.43)

= δ(s)

∫
4π

∫ ∞
0

[
P ∗(Ω ·Ω′)− ε2 1− c

4π

]
Σt(Ω

′, s′)

ε
ψ̂(x,Ω′, s′) ds′dΩ′

+ εδ(s)
Q(x)

4π
.

Let us define Ψ(x,Ω, s) by:

(3.44) ψ̂(x,Ω, s) ≡ Ψ(x,Ω, s)
e−

∫ s
0 Σt(Ω,s′)ds′

s
.

Then, using Eq. (3.16), Eq. (3.43) for ψ̂(x,Ω, s) becomes the following equation for

Ψ(x,Ω, s):

∂Ψ

∂s
(x,Ω, s) + εΩ ·∇Ψ(x,Ω, s)(3.45)

= δ(s)

∫
4π

∫ ∞
0

[
P ∗(Ω ·Ω′)− ε2 1− c

4π

]
ps|Ω(s′|Ω′)Ψ(x,Ω′, s′) ds′dΩ′

+ ε2δ(s)s
Q(x)

4π
.

This equation is mathematically equivalent to:

∂Ψ

∂s
(x,Ω, s) + εΩ ·∇Ψ(x,Ω, s) = 0 , s > 0 ,(3.46a)

Ψ(x,Ω, 0) =

∫
4π

[
P ∗(Ω ·Ω′)− ε2 1− c

4π

] ∫ ∞
0

ps|Ω(s′|Ω′)Ψ(x,Ω′, s′)ds′dΩ′(3.46b)

+ ε2s
Q(x)

4π
.
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Integrating Eq. (3.46a) over 0 < s′ < s, we obtain:

Ψ(x,Ω, s) = Ψ(x,Ω, 0)− εΩ ·∇
∫ s

0

Ψ(x,Ω, s′) ds′(3.47)

=

∫
4π

[
P ∗(Ω ·Ω′)− ε2 1− c

4π

] ∫ ∞
0

ps|Ω(s′|Ω′)Ψ(x,Ω′, s′)ds′dΩ′

+ ε2s
Q(x)

4π
− εΩ ·∇

∫ s

0

Ψ(x,Ω, s′) ds′ .

Introducing into this equation the ansatz

(3.48) Ψ(x,Ω, s) =
∞∑
n=0

εnΨ(n)(x,Ω, s)

and equating the coefficients of different powers of ε, we obtain for n ≥ 0:

Ψ(n)(x,Ω, s) =

∫
4π

P ∗(Ω ·Ω′)
∫ ∞

0

ps|Ω(s′|Ω′)Ψ(n)(x,Ω′, s′)ds′dΩ′(3.49)

−Ω ·∇
∫ s

0

Ψ(n−1)(x,Ω, s′) ds′

− 1− c
4π

∫
4π

∫ ∞
0

ps|Ω(s′|Ω′)Ψ(n−2)(x,Ω′, s′)ds′dΩ′

+ δn,2s
Q(x)

4π
.

We shall solve these equations recursively, using the Legendre polynomial expansion

(3.42) of P ∗(µ0).

Equation (3.49) with n = 0 is:

(3.50) Ψ(0)(x,Ω, s) =

∫
4π

P ∗(Ω ·Ω′)
∫ ∞

0

ps|Ω(s′|Ω′)Ψ(0)(x,Ω′, s′)ds′dΩ′ .

The general solution of this equation is:

(3.51) Ψ(0)(x,Ω, s) =
Φ(0)(x)

4π
,

where Φ(0)(x) is, at this point, undetermined.

Next, Eq. (3.49) with n = 1 is:

Ψ(1)(x,Ω, s) =

∫
4π

P ∗(Ω ·Ω′)
∫ ∞

0

ps|Ω(s′|Ω′)Ψ(1)(x,Ω′, s′)ds′dΩ′(3.52)

− sΩ ·∇Φ(0)(x)

4π
.
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This equation has a particular solution of the form:

(3.53) Ψ
(1)
part(x,Ω, s) = [τ (Ω)− sΩ] ·∇Φ(0)(x)

4π
,

where

τ (Ω) =

∫
4π

P ∗(Ω ·Ω′)τ (Ω′)dΩ′ + Ŝ(Ω) ,(3.54a)

Ŝ(Ω) = −
∫

4π

Ω′P ∗(Ω ·Ω′)sΩ(Ω′)dΩ′ .(3.54b)

As a Fredholm integral equation of the second kind, Eq. (3.54a) has the Liouville-Neumann

series solution [2]:

τ (Ω) = lim
N→∞

N∑
n=0

τn(Ω) ,(3.55)

where

τ0(Ω) = Ŝ(Ω) ,(3.56a)

τ1(Ω) =

∫
4π

P ∗(Ω ·Ω1)Ŝ(Ω1)dΩ1 ,(3.56b)

τ2(Ω) =

∫
4π

∫
4π

P ∗(Ω ·Ω1)P ∗(Ω1 ·Ω2)Ŝ(Ω2)dΩ2dΩ1 ,(3.56c)

·
·
·

τn(Ω) =

∫
4π

∫
4π

...

∫
4π

P ∗(Ω ·Ω1)P ∗(Ω1 ·Ω2) ...(3.56d)

... P ∗(Ωn−1 ·Ωn)Ŝ(Ωn)dΩn ... dΩ2dΩ1 .

Since sΩ(Ω) is an even function of Ω, we note that Ŝ(Ω) and τ (Ω) are odd functions of

Ω:
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Ŝ(−Ω) = −
∫

4π

Ω′P ∗(−Ω ·Ω′)sΩ(Ω′)dΩ′(3.57)

= −
∫

4π

−Ω′P ∗(−Ω · −Ω′)sΩ(−Ω′)dΩ′

=

∫
4π

Ω′P ∗(Ω ·Ω′)sΩ(Ω′)dΩ′

= −Ŝ(Ω) ,

and τn(−Ω) = −τn(Ω) ∀ n ≥ 0 follows with the same argument, by Eqs. (3.56). The

general solution of Eq. (3.52) is given by:

(3.58) Ψ(1)(x,Ω, s) =
Φ(1)(x)

4π
+ [τ (Ω)− sΩ] ·∇Φ(0)(x)

4π
,

where Φ(1)(x) is undetermined.

Equation (3.49) with n = 2 has a solvability condition, which is obtained by operating

on it by
∫

4π

∫∞
0
ps|Ω(s|Ω)(·)dsdΩ. Using Eqs. (3.51) and (3.58) to obtain:∫

4π

∫ ∞
0

ps|Ω(s′|Ω′)Ψ(0)(x,Ω′, s′) ds′dΩ′ = Φ(0)(x) ,(3.59a)

and: ∫ s

0

Ψ(1)(x,Ω, s′) ds′ = s
Φ(1)(x)

4π
+

(
sτ (Ω)− s2

2
Ω

)
·∇Φ(0)(x)

4π
,(3.59b)

the solvability condition becomes:

0 =
1

4π

∫
4π

∫ ∞
0

ps|Ω(s|Ω)

(
s2

2
[Ω ·∇]2 − s[τ (Ω) ·∇][Ω ·∇]

)
Φ(0)(x)dsdΩ(3.60)

− (1− c)
4π

∫
4π

∫ ∞
0

ps|Ω(s|Ω)Φ(0)(x) dsdΩ + sQ(x) .

Thus, using the fact that
∫∞

0
ps|Ω(s|Ω)ds = 1 and

∫∞
0
smps|Ω(s|Ω)ds = smΩ(Ω), we can

rewrite Eq. (3.60) as:

1

4πs

∫
4π

(
s2
Ω(Ω)

2
[Ω ·∇]2 − sΩ(Ω)[τ (Ω) ·∇][Ω ·∇]

)
Φ(0)(x) dΩ(3.61)

− (1− c)
s

Φ(0)(x) +Q(x) = 0 .
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If we write τ (Ω) = (τx(Ω), τy(Ω), τz(Ω)), this equation is equivalent to:

−
[

Dgt
xx

∂2

∂x2
+ Dgt

yy

∂2

∂y2
+ Dgt

zz

∂2

∂z2
(3.62)

+ Dgt
xy

∂2

∂x∂y
+ Dgt

xz

∂2

∂x∂z
+ Dgt

yz

∂2

∂y∂z

]
Φ(0)(x) +

1− c
s

Φ(0)(x) = Q(x) ,

where Dgt
xx, Dgt

yy, Dgt
zz, Dgt

xy, Dgt
xz, and Dgt

yz are the diffusion coefficients given by

Dgt
xx =

1

4πs

∫
4π

(
s2
Ω(Ω)

2
Ωx − sΩ(Ω)τx(Ω)

)
ΩxdΩ,(3.63a)

Dgt
yy =

1

4πs

∫
4π

(
s2
Ω(Ω)

2
Ωy − sΩ(Ω)τy(Ω)

)
ΩydΩ,(3.63b)

Dgt
zz =

1

4πs

∫
4π

(
s2
Ω(Ω)

2
Ωz − sΩ(Ω)τz(Ω)

)
ΩzdΩ,(3.63c)

Dgt
xy =

1

4πs

∫
4π

(
s2
Ω(Ω)ΩxΩy − sΩ(Ω)[τx(Ω)Ωy + τy(Ω)Ωx]

)
dΩ,(3.63d)

Dgt
xz =

1

4πs

∫
4π

(
s2
Ω(Ω)ΩxΩz − sΩ(Ω)[τx(Ω)Ωz + τz(Ω)Ωx]

)
dΩ,(3.63e)

Dgt
yz =

1

4πs

∫
4π

(
s2
Ω(Ω)ΩyΩz − sΩ(Ω)[τy(Ω)Ωz + τz(Ω)Ωy]

)
dΩ.(3.63f)

Summarizing: the solution ψ̂(x,Ω, s) of Eq. (3.43) satisfies:

(3.64) ψ̂(x,Ω, s) =
Φ(0)(x)

4π

e−
∫ s
0 Σt(Ω,s′)ds′

s
+O(ε) ,

where Φ(0)(x) satisfies Eq. (3.62). Integrating Eq. (3.64) over 0 < s < ∞ and using

equation (3.25), we obtain an expression to the classic angular flux (to leading order):

ψ(x,Ω) = Φ(0)(x)
sΩ(Ω)

4πs
.(3.65)

Special Case 1

Let us now examine what happens when the locations of the scattering centers are

correlated but independent upon direction. In this case, we can write Σt(Ω, s) = Σt(s),

and Eq. (3.16) yields ps|Ω(s|Ω) = Σt(s)e
−
∫ s
0 Σt(s′)ds′ . Introducing this result into Eq.
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(3.25), we see that sΩ(Ω) = sΩ is now independent of Ω, and we can use Eq. (3.27) to

obtain s = sΩ.
(
Similarly, s2

Ω(Ω) = s2
Ω = s2.

)
Therefore, operating on Eq. (3.65) by∫

4π
(·)dΩ, we obtain ∫

4π

ψ(x,Ω)dΩ = Φ(0)(x) ;(3.66)

that is, the solution Φ(0)(x) of Eq. (3.62) is the classic scalar flux (to leading order). Fur-

thermore, we notice that we can write

Ŝ(Ω) = −
∫

4π

Ω′P ∗(Ω ·Ω′)sΩ(Ω′)dΩ′ = −s
∫

4π

Ω′P ∗(Ω ·Ω′)dΩ′.(3.67a)

To evaluate this integral, let us choose our system of coordinates such that

Ω = (0, 0, 1) = ~k. Then, Ω ·Ω′ = µ′ and∫
4π

Ω′P ∗(Ω ·Ω′)dΩ′ = 2π~k

∫ 1

−1

µ′P ∗(µ′)dµ′ = 2πΩ

∫ 1

−1

µ′P ∗(µ′)dµ′.(3.67b)

We know [47] that P1(µ′) = µ′; thus, using Eqs. (3.42):∫ 1

−1

µ′P ∗(µ′)dµ′ =

∫ 1

−1

3

4π
a∗1µ

′2dµ′ =
a∗1
2π

=
ca1

2π
,(3.67c)

due to the orthogonality of the Legendre polynomials. Since a1 = µ0 (the mean scattering

cosine), Eqs. (3.67) yield the explicit expression

Ŝ(Ω) = −s
(

2πΩ
cµ0

2π

)
= −sΩ[cµ0] .(3.68)

Introducing this equation into Eqs. (3.56), we obtain τn(Ω) = −sΩ[cµ0]n+1 ∀ n ≥ 0; and

using Eq. (3.55):

τ (Ω) = − cµ0

1− cµ0

sΩ .(3.69)

In this case, the angular integrals in Eqs. (3.63) yield:

Diso = Dgt
xx = Dgt

yy = Dgt
zz =

1

3

(
s2

2s
+

cµ0

1− cµ0

s

)
,(3.70a)

Dgt
xy = Dgt

xz = Dgt
yz = 0 ,(3.70b)

which reduces Eq. (3.62) to the result obtained in [45].
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Special Case 2

Finally, in the case of isotropic scattering, P ∗(Ω ·Ω′) = 1/4π and

Ŝ(Ω) = − 1

4π

∫
4π

Ω′ sΩ(Ω′)dΩ′ = 0 ,(3.71)

since sΩ(Ω) is an even function of Ω (as noted in Section 3.2). Introducing this result into

Eqs. (3.56), we obtain τn(Ω) = 0 ∀ n ≥ 0. Hence, by Eq. (3.55), τ (Ω) = 0, and Eqs.

(3.63) can be writen as

Dgt
xx =

1

2s

(
1

4π

∫
4π

s2
Ω(Ω)Ω2

xdΩ

)
,(3.72a)

Dgt
yy =

1

2s

(
1

4π

∫
4π

s2
Ω(Ω)Ω2

ydΩ

)
,(3.72b)

Dgt
zz =

1

2s

(
1

4π

∫
4π

s2
Ω(Ω)Ω2

zdΩ

)
,(3.72c)

Dgt
xy =

1

s

(
1

4π

∫
4π

s2
Ω(Ω)ΩxΩydΩ

)
,(3.72d)

Dgt
xz =

1

s

(
1

4π

∫
4π

s2
Ω(Ω)ΩxΩzdΩ

)
,(3.72e)

Dgt
yz =

1

s

(
1

4π

∫
4π

s2
Ω(Ω)ΩyΩzdΩ

)
.(3.72f)

A general diffusion equation with no off-diagonal terms (that is, without diffusion coef-

ficients that depend on more than one direction) can be obtained in systems with azimuthal

symmetry (such as in PBR problems). In this case, the probability distribution function for

distance-to-collision is independent of the azimuthal angle ϕ; specifically, smΩ(Ω) = smΩ(µ)

depends only upon the polar angle µ. Then, Dgt
xy = Dgt

xz = Dgt
yz = 0, Dgt

xx = Dgt
yy, and we

obtain the following anisotropic diffusion equation for Φ(0)(x):

(3.73) −Dgt
xx

∂2

∂x2
Φ(0)(x)−Dgt

yy

∂2

∂y2
Φ(0)(x)−Dgt

zz

∂2

∂z2
Φ(0)(x) +

1− c
s

Φ(0)(x) = Q(x).

Thus, for problems with isotropic scattering and probability distribution function for

distance-to-collision independent of the azimuthal angleϕ, we obtain a standard anisotropic
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diffusion equation (without off-diagonal terms) with Dgt
xx = Dgt

yy. We believe that this will

also hold for problems with anisotropic scattering, but have not yet been able to prove it.

(Hereafter, for simplicity, we will use the notation Dgt
uu = Dgt

u , for u = {x, y, z}).

Note: if ps|Ω(s|Ω) were to decay algebraically as s −→∞ as:

ps|Ω(s|Ω) ≥ constant

s3
for s ≥ 1 ,(3.74)

then the asymptotic diffusion approximation developed here would be invalid, since this

would imply

s2
Ω(Ω) =

∫ ∞
0

s2ps|Ω(s|Ω)ds =∞ .(3.75)

However, for physical reasons, such a situation will not occur in the problem we want to

consider.

3.5 Reduction to the Classic Theory

We will now show that, with the classic assumption that the locations of the scattering

centers are uncorrelated and do not depend upon direction, the results obtained by the

generalized theory presented in this section reduce to the results of the classic theory.

In other words, we will now assume that

Σt(Ω, s) = Σt ≡ constant.(3.76)

In this case, Eq. (3.5) can be rewritten as

∂ψ̂

∂s
(x,Ω, s) + Ω ·∇ψ̂(x,Ω, s) + Σtψ̂(x,Ω, s)(3.77)

= δ(s) Σs

∫
4π

∫ ∞
0

P (Ω′ ·Ω)ψ̂(x,Ω′, s′) ds′dΩ′ + δ(s)
Q(x)

4π
,

where Σs = cΣt. Operating on this equation by
∫∞
−ε(·)ds and using Eq. (3.9), we obtain

ψ̂(x,Ω,∞)− ψ̂(x,Ω,−ε)+Ω ·∇ψ(x,Ω) + Σtψ(x,Ω)(3.78)

= Σs

∫
4π

P (Ω′ ·Ω)ψ(x,Ω′) dΩ′ +
Q(x)

4π
.
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Using the fact that ψ̂(x,Ω,∞) = ψ̂(x,Ω,−ε) = 0, we have

Ω ·∇ψ(x,Ω) + Σtψ(x,Ω) = Σs

∫
4π

P (Ω′ ·Ω)ψ(x,Ω′) dΩ′ +
Q(x)

4π
,(3.79)

which is, of course, the classic linear Boltzmann equation as described in Eq. (2.31) [since

ΣsP (Ω′ ·Ω) = Σs(Ω
′ ·Ω)].

Moreover, if Eq. (3.76) holds, then Eq. (3.16) yields

ps|Ω(s|Ω) = Σte
−Σts = p(s) ;(3.80)

that is, the probability distribution function for distance-to-collision is given by an expo-

nential, which is the classic result in Eq. (2.12). Introducing Eq. (3.80) into Eq. (3.25), we

can use Eq. (3.27) to obtain

s = sΩ(Ω) =
1

Σt

,(3.81a)

which is the classic mean free path given by Eq. (2.13). Also, the mean square free path is

given by:

s2 = s2
Ω(Ω) =

∫ ∞
0

s2p(s)ds =
2

Σ2
t

.(3.81b)

For the integral formulation, Eqs. (3.37) can now be easily reduced to their classic form

in Eqs. (2.36), since Eq. (3.76) allows us to write

p̃(|x− x′|) = p(|x− x′|) = Σte
−Σt|x−x′|(3.82)

in Eq. (3.37a). Furthermore, Eq. (3.28) yields

f̂(x,Ω) = Σt

∫ ∞
0

ψ̂(x,Ω, s) ds = Σtψ(x,Ω) ,(3.83)

and thus by Eq. (3.38b),

F̂ (x) = Σt

∫
4π

ψ(x,Ω′) dΩ′ = ΣtΦ(x) .(3.84)
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Using Eq. (3.82) and the previous result in Eqs. (3.39b) and (3.39c), we obtain:

(3.85a) ψ(x,Ω) =
1

4π

∫ ∞
0

[
ΣsΦ(x− sΩ) +Q(x− sΩ)

]
e−Σtsds ,

and

(3.85b) Φ(x) =

∫∫∫
[ΣsΦ(x′) +Q(x′)]

e−Σt|x−x′|

4π|x− x′|2
dV ′ .

Equation (3.85b) is the classic integral transport equation for the scalar flux Φ(x), and Eq.

(3.85a) is the classic expression for the angular flux ψ(x,Ω) in terms of Φ(x), for the case

of isotropic scattering.

For the theory involving the asymptotic diffusion limit, if Eq. (3.76) holds, then we can

use Eqs. (3.70) and (3.81) to reduce Eq. (3.62) to the classic diffusion expression in Eq.

(2.37):

(3.86) − 1

3Σt(1− cµ0)
∇2Φ(0)(x) + Σt(1− c)Φ(0)(x) = Q(x) .

In short, we have shown that when Eq. (3.76) holds, the generalized transport theory

reduces to the classic transport theory, as it must.

3.6 A Discussion on Σt(Ω, s)

In order to use the generalized Boltzmann equation developed in this chapter, we need

to know the function Σt(Ω, s) [as given by Eq. (3.21)]. This means that we need to know

ps|Ω(s|Ω), the conditional distribution function for the distance-to-collision in a given

direction Ω. Unfortunately, due to the statistical nature of the heterogeneous medium and

its effect on the transport of particles, there is generally no analytical expression that can

be used to obtain this value. Nevertheless, there is a logical and straightforward set of

steps that can be followed in order to numerically estimate this quantity.

As an example, let us examine a 3-D pebble-bed reactor type of problem. We assume

a system composed of solid fuel spheres immersed in a void background. If we consider a
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particle P that is born (or scatters) at a random point (x, y, z) inside the sphere S0, the total

distance ŝ that this particle will travel inside the spheres before experiencing a collision

can be sampled from the exponential distribution given in Eq. (3.80), where Σt is the total

cross section of the spheres.

Let ` be the line path starting at point (x, y, z) along which P travels, and let δSn be

the length of ` inside the sphere Sn. If δS0 < ŝ, P will leak out of the sphere S0 before

experiencing a collision. It will then travel a distance δV1 along ` in the vaccum before

entering a new sphere S1. If δS1 < ŝ − δS0 , the particle will leak out of S1 without

experiencing a collision and will travel some distance δV2 along ` in the vacuum before

entering another sphere (S2). Eventually, if the particle does not leak out of the system,

there will be a sphere SN in which δSN
≥ ŝ −

N∑
n=0

δSn , meaning that P will experience a

collision within SN (Figure 3.1). The distance travelled by this particle between birth and

collision will hence be given by

s = ŝ+
N∑
n=1

δVn .(3.87)

In a given realization of this system, we can find a homogenized estimate of ps|Ω(s|Ω)

for fixed Ω by using the following procedure:

• Randomly choose a sphere in the system

• Randomly choose a point inside this sphere

• Using Eq. (3.87), calculate and store the distance s this particle will travel in the

direction Ω before experiencing a collision

• Repeat this process for a large number of particles

By tallying the results obtained with this process for different values of s, one can

construct an approximation for ps|Ω(s|Ω) in the fixed direction Ω. This process can be
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Figure 3.1: Linepath of a Particle Between Collisions

repeated for as many different directions Ω as needed; for example, to solve the discrete

ordinates SN equations [25, 47] for this problem, this process has to be performed for

N different directions Ω. Moreover, for systems in which the locations of the scattering

centers do not depend on Ω, ps|Ω(s|Ω) = ps(s) is also independent of angle; in this case,

we have to estimate only one probability distribution function.

At this point, we must remark on a very important feature. Although the generalized

Boltzmann equation requires the estimates of different probability distribution functions,

which may become very time consuming, the generalized diffusion theory needs only

estimates for the mean and mean square values of the distance-to-collision. In the diffusion

problem, a simplified process is described below:

• Randomly choose a sphere in the system

• Randomly choose a point inside this sphere

• Using Eq. (3.87), calculate s and s2
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• Repeat this process for a large number of particles

Dividing
∑

s and
∑

s2 by the number of particles generated, we obtain sΩ(Ω) and

s2
Ω(Ω), the mean and mean square distance-to-collision in the fixed direction Ω. This

process can be repeated for as many different directions Ω as needed. Once more, for

systems in which the locations of the scattering centers do not depend on Ω, we have to

estimate only s and s2, independent of direction.



CHAPTER IV

A Model 2-D Pebble-Bed Reactor Core

This chapter contains some preliminary work, where we consider a 2-D “flatland” (neu-

tron transport occurs only in the (x, y)-plane) model of a pebble-bed reactor core. In this

case, x = (x, y) and Ω = (cosϕ, sinϕ), where 0 ≤ ϕ < 2π. The core consists of “fuel

discs” of radius r piled up inside a square box with side L; vacuum boundary conditions

are used. Hereafter, we use the term 2-D to describe this model. We have developed a

Monte Carlo computer code capable of deriving random realizations of the 2-D core; and

a second Monte Carlo code that performs 2-D neutron transport inside the heterogeneous

core. We apply this second Monte Carlo code to both stochastic and crystal-like pilings of

the discs. By comparing neutron transport Monte Carlo simulations in the heterogeneous

cores, we can determine (i) the accuracy of the atomic mix approximation, and (ii) whether

anisotropic effects occur.

4.1 2-D Packings

In this section we introduce the different approaches that we used to pack discs in the

2-D model of the reactor core. Section 4.1.1 describes the piling of crystal structures,

while Section 4.1.2 discusses the case of a random piling of discs.

56
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4.1.1 2-D Crystal Structures

Let d = 2r be the diameter of a fuel disc, and ε be the fixed distance between two discs

in the same horizontal layer. With these quantities in mind, we place J1 discs in the first

layer of the system (at the bottom of the box), such that the distance between the left wall

and the leftmost disc and the distance between the right wall and the rightmost disc are

the same. The second layer contains J2 = J1 − 1 discs, each one placed on top of two

discs of the first layer. The third and fourth layers will be identical to the first and second

layers shifted vertically, so that the third layer lays on top of the second layer. This process

is repeated until the box is filled. Notice that, starting with the third layer, we allow the

leftmost and rightmost discs of the odd layers to be unstable under gravity if they do not

touch a wall (they only rest upon one disc). Even though this is not physically correct, it

is a valid approximation of the infinite system when L is large. An example of this type of

piling is shown in Figure 4.1.

Figure 4.1: Example of a 2-D Crystal Structure (with ε = 0.25d) in a System with Side L = 20d

The height hi of the ith layer can be defined directly from the previous layers by

hi = hi−1 +

√
d2 −

(
d+ ε

2

)2

= h1 + (i− 1)

√
d2 −

(
d+ ε

2

)2

, ∀ i ≥ 1 .(4.1)
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We do not allow any disc to overlap another disc or the limits of the box. This implies that,

in order to maintain the crystal symmetry of the structure, ε must have a maximum:

εmax = d(
√

3− 1) .(4.2)

For ε = 0 and ε = εmax, the centers of adjacent discs form a hexagonal lattice (each disc

touches 6 neighbouring discs). In fact, the packing structure obtained for ε = εmax is

equivalent to the 90 degrees rotation of the one obtained with ε = 0. This is the classic

“honeycomb” lattice, proved to have the highest packing fraction of all possible circle

Figure 4.2: Diamond and Hexagonal Lattices in 2-D Crystal Structures with Different Values of ε

packings [19]. For the cases in which 0 < ε < εmax, each disc touches 4 neighbouring

discs, with their centers forming a diamond lattice (Figure 4.2). If ε > εmax, the piling
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Figure 4.3: Packing Fractions in 2-D Crystal Structures with Different Values of ε

will either lose its crystal diamond structure or allow overlapping discs.

For the 2-D model, we define the packing fraction Γ as the ratio between the total area

of the fuel discs and the area of the box. The graph in Figure 4.3 shows the packing

fraction Γ as a function of ε/d (in increments of 0.025).

4.1.2 2-D Random Structures

The random piling is built by a sequential release of discs of diameter d; the packing is

carried on using an adaptation of the ballistic deposition model presented in [54]. In this

Figure 4.4: Steps of a Random 2-D Packing Process
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Figure 4.5: Flow Diagram for the Dropping of a Disc in the 2-D System

model, each disc is released at a random point above the box. It then follows a steepest

descent trajectory until it reaches a position that is stable under gravity, in which case it

is frozen in place - once the position of the disc is locked, it can no longer move. Figure

4.4 contains snapshots of a packing performed with this process: (A) disc 1 descends

vertically to the bottom of the box, where it becomes locked in place; (B) disc 2 descends

until it touches the frozen disc 1; then it rolls down disc 1 until it touches the bottom of

the box, where it is locked in place; (C) disc 3 descends vertically to the bottom of the
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box; (D) disc 4 descends until it touches the frozen disc 3; then it rolls down disc 3 until

it touches disc 2; since discs 2 and 3 cannot move, disc 4 is stable and is locked in place.

Figure 4.5 contains a flux diagram for the addition of a new disc into the box.

Since frozen discs cannot move, the inclusion of a new disc will not cause the system

to rearrange; that is, cascading events (such as avalanches) will not happen. Moreover, no

velocity or friction coefficients are taken into account; the only restriction is that a disc

can never, at any point of its trajectory, overlap the limits of the box or another disc. Once

a disc has reached its final stable position, a new disc is released; this process is repeated

until the box is filled. An example of random piling is shown in Figure 4.6.

Figure 4.6: Example of a 2-D Random Structure in a System with Side L = 20d

For this work, we developed 100 different random packings in a 2-D system with

L = 300d. With Γ being the packing fraction of a single realization (as defined in the

previous section), we found the average packing fraction to be Γ = 0.817, with 0.00134

as the standard deviation.
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4.2 2-D Monte Carlo Results

For all 2-D problems in this work, the packing of discs of diameter d took place in a

square box with side L = 300d. We assumed the background material in which the discs

were piled to be vacuum; the parameters used for the material of the discs are given in

Table 4.1.

Table 4.1: 2-D parameters for discs with diameter d.
dΣt dΣs dΣa c = Σs/Σt P (Ω ·Ω′)
1.0 0.99 0.01 0.99 1/2π

Given a realization of the model core, we choose the disc closest to the center of the

system to be the one where particles will be born. In this approach we focus on the

transport of particles generated by this single fuel disc, since the particles generated by

different discs will have (on average) the same behavior. The particles’ histories within

the system are determined by a Monte Carlo transport code. The history of a single particle

is summarized in the flow diagram shown in Figure 4.7; the distance s traveled by a particle

between collisions is calculated using Eq. (3.87).

Figure 4.7: Flow Diagram for the History of a Particle



63

4.2.1 Monte Carlo in 2-D Crystal Structures

Monte Carlo (MC) numerical transport results for 2-D crystal systems are depicted in

Table 4.2. Using the Central Limit theorem [55], we found the statistical error to be (with

95% confidence) less than 0.038% for all values of s, x, and y, and less than 0.085% for

all values of s2, x2, and y2.

We notice the existence of an anisotropic effect in these systems. The different crystal

structures generated by different values of ε have a clear, albeit small, influence on the

Table 4.2: MC results for 2-D crystal structures with different values of ε in a system with side L = 300d.
The histories of 300,000 particles were simulated in each structure.

ε/d s/d s2/d2 x/d x2/d2 y/d y2/d2

0.000 1.10244 2.44410 7.79482 122.29243 7.79344 121.22575
0.025 1.12047 2.52776 7.92930 126.54002 7.91526 125.82595
0.050 1.13765 2.60955 8.04732 130.31563 8.04243 129.74593
0.075 1.15394 2.68889 8.16239 133.93388 8.16276 133.70556
0.100 1.16936 2.76587 8.27385 137.70277 8.28182 137.60788
0.125 1.18403 2.84029 8.38382 141.39732 8.39830 141.53241
0.150 1.19772 2.91117 8.48645 144.88046 8.50279 145.16813
0.175 1.21039 2.97788 8.57762 148.05934 8.60259 148.49665
0.200 1.22195 3.03960 8.66731 151.13043 8.68654 151.43461
0.225 1.23259 3.09780 8.74645 153.96186 8.77103 154.36769
0.250 1.24219 3.15069 8.82424 156.66775 8.84127 156.86334
0.275 1.25043 3.19685 8.89391 159.13655 8.90388 159.11226
0.300 1.25751 3.23740 8.95186 161.18709 8.96459 161.30808
0.325 1.26336 3.27091 8.99615 162.86061 9.00843 162.99574
0.350 1.26788 3.29743 9.03573 164.30590 9.03042 163.62808
0.375 1.27116 3.31524 9.05269 164.95272 9.04941 164.62668
0.400 1.27260 3.32532 9.08103 166.06989 9.06589 164.81296
0.425 1.27276 3.32627 9.08721 166.13262 9.06497 164.86495
0.450 1.27127 3.31716 9.07764 165.84179 9.04821 164.44010
0.475 1.26794 3.29768 9.05287 165.09427 9.01132 163.05926
0.500 1.26291 3.26842 9.01663 163.72652 8.97285 161.64332
0.525 1.25593 3.22831 8.96543 161.80768 8.91994 159.77961
0.550 1.24683 3.17666 8.89755 159.27108 8.84508 157.06033
0.575 1.23560 3.11401 8.81852 156.52926 8.75221 153.76830
0.600 1.22197 3.03946 8.71229 152.63346 8.64451 150.02422
0.625 1.20592 2.95443 8.58650 148.52579 8.52299 145.71070
0.650 1.18693 2.85529 8.44626 143.67400 8.38250 141.00162
0.675 1.16510 2.74442 8.27471 137.75901 8.22431 135.72128
0.700 1.14000 2.62119 8.07621 131.25257 8.04472 129.89065
0.725 1.11125 2.48469 7.86459 124.43457 7.83701 123.25003
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Figure 4.8: Ratios Between Vertical and Horizontal Mean and Mean Square Distances of a Particle to its
Point of Birth in 2-D Crystal Structures with Different Values of ε

transport of particles (Figure 4.8). Further confirmation of this anisotropy is seen when

comparing the relative differences from the vertical direction, given by:

S1(Ω) =
sΩ(Ω)− sΩ(~j)

sΩ(~j)
,(4.3a)

S2(Ω) =
s2
Ω(Ω)− s2

Ω(~j)

s2
Ω(~j)

;(4.3b)

and:

U1(Ω) =
ρ(Ω)− ρ(~j)

ρ(~j)
,(4.4a)

U2(Ω) =
ρ2(Ω)− ρ2(~j)

ρ2(~j)
;(4.4b)

where ρ(Ω) and ρ2(Ω) represent the mean and mean square distances of a particle to

its point of birth in the direction Ω, and ~j = (0, 1) is the unit vector in the y-direction.

These quantities are depicted as percent functions of |Ωy| = | cosϕ| in Figure 4.9, for two

different crystal structures.

The first thing to notice is that S2, U1, and U2 clearly show that the behavior of the par-

ticles depend upon direction. While sΩ remains close to a constant troughout the system,

s2
Ω varies by more than 3.5% in both systems - this is a clear indication that the diffusion
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Figure 4.9: Percent Relative Differences from the Vertical Direction [as defined in Eqs. (4.3) and (4.4)] as
Functions of |Ωy| = | cosϕ| in Two Distinct 2-D Crystal Structures

coefficients must be different for the x and y directions, since s2
Ω plays an important role

in their derivation [see Eq. (3.72)].

The valleys in the graphs of U1 and U2 are not unexpected; they appear near the an-

gles formed between the centers of a disc and the centers of the adjacent discs. These

angles satisfy | cosϕ| = 0.5875 and | cosϕ| = 0.8125 for ε = 0.175d and ε = 0.625d,

respectively.

4.2.2 Monte Carlo in 2-D Random Structures

For each realization of the random system, we have calculated the histories of 20,000

particles; the statistical error in each given realization was found to be (with 97.5% confi-

dence) less than 0.052% for all values of s, x, and y, and less than 0.116% for all values of

s2, x2, and y2. We have developed 100 different realizations (adding to a total of 2,000,000

particles); the average Monte Carlo results and the statistical error bounds (with 95% con-
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Table 4.3: Ensemble-averaged MC results for 2-D random structures in a system with side L = 300d. A
total of 100 different random realizations were generated; the histories of 20,000 particles were
simulated in each realization.

s/d s2/d2 x/d x2/d2 y/d y2/d2

Ensemble
Average 1.21941 3.03092 8.65893 150.58600 8.69107 151.78946

Statistical
Error 0.145% 0.308% 0.181% 0.373% 0.158% 0.339%

fidence) are given in Table 4.3.

Once more, we observe a small - but consistent - anisotropic effect. We found y > x

and y2 > x2 for every realization of the system; in particular, the ensemble-averaged val-

ues yield y/x = 1.00371 and y2/x2 = 1.00799. Further confirmation of this anisotropy

can again be seen with the expressions given by Eqs. (4.3) and (4.4), this time using the

ensemble-averaged values of sΩ(Ω), s2
Ω(Ω), ρ(Ω), and ρ2(Ω). The percent relative dif-

ferences are shown in Figure 4.10 as functions of |Ωy| = | cosϕ|.

4.3 Theoretical and Monte Carlo Estimates

In this section, we compare the values of the diffusion coefficients (and kD) obtained

numerically through Monte Carlo with those estimated by atomic mix and the proposed

generalized theory.

4.3.1 Results in 2-D Crystal Structures

Introducing the numerically obtained results for s (as shown in Table 4.2) into Eq.

(2.50), we obtain a Monte Carlo estimate for the absorption cross section, denoted Σmc
a .

Using this estimate and the numerical results x2 and y2 shown in Table 4.2, Eqs. (2.53a)
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Figure 4.10: Percent Relative Differences from the Vertical Direction [as defined in Eqs. (4.3) and (4.4)] as
Functions of |Ωy| = | cosϕ| in the 2-D Random System

and (2.53b) yield the 2-D numerical diffusion coefficients

Dmc
x = x2

Σmc
a

2
,(4.5a)

Dmc
y = y2

Σmc
a

2
,(4.5b)

for 2-D crystal structures.

The 2-D atomic mix diffusion coefficient [see Eq. (2.64)] for crystal structures is given

by:

Dam =
1

2

(
1

ΓΣt

)
,(4.6)

where Γ is the packing fraction of the system and Σt is given by Table 4.1.

Assuming the locations of the scattering centers to be independent of direction, the 2-D

isotropic diffusion coefficient obtained by the generalized theory [see Eq. (3.70)] is given
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Table 4.4: Numerical (MC) and theoretical estimates for the diffusion coefficients in 2-D crystal structures
with different values of ε.

ε/d Dmcx /d Dmcy /d Dam/d Diso/d Dgtx /d Dgty /d

0.000 0.55465 0.54981 0.55290 0.55425 0.55436 0.55414
0.025 0.56467 0.56149 0.56319 0.56400 0.56465 0.56334
0.050 0.57274 0.57024 0.57213 0.57345 0.57472 0.57218
0.075 0.58033 0.57934 0.57952 0.58254 0.58426 0.58083
0.100 0.58879 0.58839 0.58784 0.59132 0.59349 0.58915
0.125 0.59710 0.59767 0.59614 0.59971 0.59713 0.60228
0.150 0.60482 0.60602 0.60326 0.60765 0.60476 0.61053
0.175 0.61162 0.61343 0.60846 0.61507 0.61198 0.61815
0.200 0.61840 0.61964 0.61402 0.62187 0.61869 0.62506
0.225 0.62455 0.62619 0.61830 0.62831 0.62510 0.63152
0.250 0.63061 0.63140 0.62300 0.63410 0.63095 0.63725
0.275 0.63633 0.63623 0.62810 0.63915 0.63629 0.64201
0.300 0.64090 0.64138 0.63364 0.64361 0.64109 0.64613
0.325 0.64455 0.64509 0.63521 0.64726 0.64511 0.64942
0.350 0.64796 0.64528 0.63712 0.65019 0.65190 0.64847
0.375 0.64883 0.64754 0.63939 0.65201 0.65316 0.65086
0.400 0.65248 0.64754 0.64048 0.65325 0.65380 0.65270
0.425 0.65265 0.64767 0.64048 0.65336 0.65348 0.65324
0.450 0.65227 0.64675 0.63784 0.65233 0.65308 0.65158
0.475 0.65103 0.64301 0.63869 0.65020 0.65152 0.64889
0.500 0.64821 0.63996 0.63399 0.64700 0.64888 0.64512
0.525 0.64417 0.63610 0.62976 0.64261 0.64492 0.64031
0.550 0.63870 0.62984 0.62793 0.63694 0.63959 0.63430
0.575 0.63341 0.62224 0.62212 0.63006 0.63295 0.62717
0.600 0.62454 0.61386 0.61566 0.62183 0.62465 0.61902
0.625 0.61582 0.60415 0.60535 0.61249 0.61524 0.60973
0.650 0.60523 0.59398 0.59562 0.60140 0.60375 0.59906
0.675 0.59119 0.58244 0.58574 0.58888 0.59065 0.58710
0.700 0.57567 0.56969 0.57477 0.57482 0.57582 0.57382
0.725 0.55988 0.55455 0.55877 0.55898 0.55912 0.55885

by the following expression:

(4.7) Diso =
1

2

(
s2

2s

)
,

where s and s2 are the numerical values shown in Table 4.2.

We note that, since diffusion occurs only in a plane, the diffusion coefficients in Eqs.

(4.6) and (4.7) contain a factor of 1/2 instead of the classic 3-D factor 1/3. This comes

from 1
2π

∫ 2π

0
cos2(ϕ) dϕ = 1

2π

∫ 2π

0
sin2(ϕ) dϕ = 1/2.

Finally, since scattering is isotropic, the 2-D (anisotropic) diffusion coefficients ob-
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tained by the generalized theory are given by [see Eqs. (3.72)]:

Dgt
x =

1

2s

(
1

2π

∫ 2π

0

s2
Ω(Ω) cos2(ϕ) dϕ

)
,(4.8a)

Dgt
y =

1

2s

(
1

2π

∫ 2π

0

s2
Ω(Ω) sin2(ϕ) dϕ

)
,(4.8b)

where Ω = (cosϕ, sinϕ), s is given by the numerical values shown in Table 4.2, and

s2
Ω(Ω) is also numerically calculated for each system. All values of the diffusion coeffi-

cients are shown in Table 4.4.

We define the percent differences between the theoretical and the Monte Carlo esti-

Figure 4.11: Percent Differences Between Theoretical and Monte Carlo Estimates for the Diffusion Coeffi-
cients in 2-D Crystal Structures with Different Values of ε
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mates for the diffusion coefficients as:

diffamx = 100
|Dam − Dmc

x |
Dmc
x

, diffamy = 100
|Dam − Dmc

y |
Dmc
y

,(4.9a)

diffisox = 100
|Diso − Dmc

x |
Dmc
x

, diffisoy = 100
|Diso − Dmc

y |
Dmc
y

,(4.9b)

diffgtx = 100
|Dgt

x − Dmc
x |

Dmc
x

, diffgty = 100
|Dgt

y − Dmc
y |

Dmc
y

;(4.9c)

these differences are depicted in Figure 4.11 as functions of ε/d.

As expected, the atomic mix model presents small errors when the packing fraction is

high. For ε ≤ 0.075d and ε ≥ 0.6d, the estimate Dam is accurate enough to fall in between

the Monte Carlo results Dmc
x and Dmc

y . However, as the packing fraction decreases (and s

increases), atomic mix consistently underestimates the diffusion coefficients, differing by

as much as 2.23% and 1.53% from Dmc
x and Dmc

y , respectively.

The generalized theory has maximum errors differences of 0.8% and 1.38% for Dx and

Dy. However, apart from systems with very high packing fractions, it seems to have a

better performance than atomic mix. Since the anisotropic effect in these systems is very

small, the anisotropic estimates Dgt and the isotropic estimate Diso are very close. Never-

theless, at least for the prediction of Dx, we can argue that Dgt
x is generally a better choice

than Diso. Moreover, with one single exception (ε = 0.275d), Dgt correctly predicted the

general anisotropic behavior of all the systems; that is, Dgt
x > Dgt

y when Dmc
x > Dmc

y and

Dgt
x < Dgt

y when Dmc
x < Dmc

y for all but one of the systems simulated.

Table 4.5: Parameters applied in Eq. (2.43) to calculate the different estimates of kD in 2-D systems.
Isotropic Anisotropic

Monte Atomic Generalized Generalized
Carlo Mix Theory Theory

Dx Eq. (4.5a) Eq. (4.6) Eq. (4.7) Eq. (4.8a)
Dy Eq. (4.5b) Eq. (4.6) Eq. (4.7) Eq. (4.8b)

Σa
1− c
s

〈Σa〉 = ΓΣa
1− c
s

1− c
s
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To discuss the magnitude of the differences between predictions made by the atomic

mix model and the generalized theory, we consider estimates for kD. Assuming dimen-

sions for the 2-D model reactor core that are comparable to those of the MPBR design

[35] (width X = 58.33d and height Y = 166.67d), we adapt Eq. (2.43) for the different

methods presented (as summarized in Table 4.5). The resulting values of kD are shown in

Table 4.6, as calculated by:

kmcD
νΣf

=

[
Σmc
a + π2

(
Dmc
x

X2
+

Dmc
y

Y 2

)]−1

,(4.10a)

kamD
νΣf

=

[
ΓΣa + π2

(
1

X2
+

1

Y 2

)
Dam

]−1

,(4.10b)

kisoD
νΣf

=

[
Σmc
a + π2

(
1

X2
+

1

Y 2

)
Diso

]−1

,(4.10c)

kgtD
νΣf

=

[
Σmc
a + π2

(
Dgt
x

X2
+

Dgt
y

Y 2

)]−1

;(4.10d)

where Γ is the packing fraction and s is shown in Table 4.2.

We define the percent differences between the theoretical and Monte Carlo estimates

for kD as:

diffamk = 100
|kamD − kmcD |

kmcD
,(4.11a)

diffisok = 100
|kisoD − kmcD |

kmcD
,(4.11b)

diffgtk = 100
|kgtD − kmcD |

kmcD
;(4.11c)

these differences are depicted in Figure 4.12 as functions of ε/d.

We emphasize again that kD is the eigenvalue of the problem described by Eqs. (2.41),

not the eigenvalue of the problem described by Eqs. (2.34). The problem (2.41) is simpler

than the problem (2.34) in two ways: (i) it is a diffusion problem, not a transport problem;

and (ii) it has been homogenized (its coefficients are spatially constant). We expect that

for the problem considered, kD ≈ k, but we cannot be sure of the difference between
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Table 4.6: Numerical (MC) and theoretical estimates for kD (assuming MPBR-like 2-D core dimensions:
X = 58.33d and Y = 166.67d) in 2-D crystal structures with different values of ε.

ε/d kmcD /(νΣf ) kamD /(νΣf ) kisoD /(νΣf ) kgtD/(νΣf )

0.000 91.95481 92.22298 91.95118 91.94879
0.025 92.91822 93.35687 92.92751 92.91309
0.050 93.86249 94.32233 93.83424 93.80579
0.075 94.74185 95.10556 94.67407 94.63504
0.100 95.52472 95.97272 95.44844 95.39819
0.125 96.24715 96.82265 96.17045 96.23118
0.150 96.91120 97.53837 96.82870 96.89759
0.175 97.52523 98.05410 97.42465 97.49921
0.200 98.06378 98.59805 97.95934 98.03728
0.225 98.55189 99.01299 98.43866 98.51787
0.250 98.97360 99.46240 98.86520 98.94356
0.275 99.31516 99.94530 99.22426 99.29593
0.300 99.61180 100.46333 99.52585 99.58952
0.325 99.85916 100.60847 99.77316 99.82786
0.350 100.04165 100.78508 99.95952 99.91586
0.375 100.21257 100.99327 100.10404 100.07463
0.400 100.19536 101.09323 100.15259 100.13854
0.425 100.19988 101.09323 100.15889 100.15577
0.450 100.12210 100.85096 100.10036 100.08121
0.475 99.96474 100.92927 99.96323 99.92980
0.500 99.74379 100.49520 99.75385 99.70617
0.525 99.43713 100.10152 99.45904 99.40106
0.550 99.04304 99.92976 99.06826 99.00214
0.575 98.50751 99.37920 98.57502 98.50369
0.600 97.91397 98.75755 97.96199 97.89327
0.625 97.15093 97.74637 97.21431 97.14817
0.650 96.23153 96.76985 96.31008 96.25480
0.675 95.19647 95.75558 95.23648 95.19552
0.700 93.94949 94.60383 93.95512 93.93276
0.725 92.42304 92.87259 92.43192 92.42903

these two eigenvalues. Our purpose in presenting various estimates of kD is to illustrate

the magnitude of the expected changes in quantities that are important to potential users

of pebble-bed reactors, due to the changes in the definitions of the homogenized cross

sections and diffusion coefficients.

The first thing to notice from Figure 4.12 is the significant difference between the es-

timates of the atomic mix and the generalized theory (we emphasize that differences on

the order of 0.1% in kD are significant). As we expected, the accuracy of the atomic mix
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Figure 4.12: Percent Differences Between Theoretical and Monte Carlo Estimates for kD (assuming MPBR-
like 2-D core dimensions) in 2-D Crystal Structures with Different Values of ε

model deteriorates as the packing fraction decreases. The generalized theory is clearly

an improvement over atomic mix in all cases: the maximum difference obtained with the

generalized theory was 0.138%, while the minimum difference obtained with the atomic

mix model was 0.292%. Both the anisotropic and the isotropic estimates present better

accuracy (up to 0.93%) than the atomic mix estimates, being at least 0.27% more accurate

in all simulated systems.

4.3.2 Results in 2-D Random Structures

To obtain estimates for the diffusion coefficients in a 2-D random system we use the

same procedure presented for the crystal structures, together with the ensemble-averaged

results in Table 4.2 and the ensemble-averaged packing fraction Γ = 0.817. The estimates

and the percent differences between theoretical and Monte Carlo estimates are shown in

Tables 4.7 and 4.8.

We can see that, while the atomic mix model yields small errors in its estimate of

the diffusion coefficient, the results obtained with the generalized theory are much more
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Table 4.7: Numerical (MC) and theoretical estimates for the diffusion coefficients in the 2-D random system.

Dmcx /d Dmcy /d Dam/d Diso/d Dgtx /d Dgty /d

0.61745 0.62239 0.61199 0.62139 0.61991 0.62287

Table 4.8: Percent differences between theoretical and Monte Carlo estimates for the diffusion coefficients
in the 2-D random system.

diffamx diffamy diffisox diffisoy diffgtx diffgty

0.88428 1.67011 0.63759 0.16031 0.39843 0.07775

accurate. Once more, the atomic mix results underestimate the diffusion coefficients,

while the isotropic estimate Diso falls in betwen the values of Dmc
x and Dmc

y . More-

over, the anisotropic estimates Dgt correctly predict the diffusion behavior (larger in the

y-direction).

We can also obtain estimates for kD, with a similar procedure to the one applied to

the crystal structures; the results are shown in Tables 4.9 and 4.10. As expected, the

Table 4.9: Numerical (MC) and theoretical estimates for kD in the 2-D random system (assuming MPBR-
like 2-D core dimensions: X = 58.33d and Y = 166.67d).

kmcD /(νΣf ) kamD /(νΣf ) kisoD /(νΣf ) kgtD/(νΣf )

97.91738 98.40062 97.81141 97.84737

Table 4.10: Percent differences between theoretical and Monte Carlo estimates for kD in the 2-D random
system (assuming MPBR-like 2-D core dimensions).

diffamk diffisok diffgtk

0.49352 0.10822 0.07150

generalized theory is significantly more accurate than the atomic mix model. The estimates

kisoD and kgtD are more than 0.38% and 0.42% more accurate than the atomic mix estimate

kamD (a performance more than four times better in both cases).

In this chapter we have calculated (using Monte Carlo) the “true” values of the diffu-
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sion coefficients for different 2-D models of pebble-bed reactor cores. We have shown

that, when compared to these values, the generalized theory is (in general) significantly

more accurate than the atomic mix model. Moreover, the generalized theory successfully

predicts even very small anisotropic effects in the estimates of the diffusion coefficients.

Estimates of the diffusion eigenvalue kD show that the generalized theory is more ac-

curate than atomic mix (by up to 0.93%). However, we have not directly shown that the

estimate of k [the mean eigenvalue of the heterogeneous-medium transport problem de-

scribed by Eqs. (2.34)] obtained with the generalized theory is more accurate than the

atomic mix estimate. Nevertheless, because the generalized theory is consistently more

accurate than atomic mix for quantities that have been estimated by Monte Carlo, it is

reasonable to expect that the difference between the accuracy of these methods in estimat-

ing kD will translate to the estimation of k. In other words, the estimates of k obtained

with the generalized theory should be more accurate than the atomic mix estimates of k

by approximately the same amount observed in the diffusion case.



CHAPTER V

A Model 3-D Pebble-Bed Reactor Core

This chapter presents the applications of the proposed generalized diffusion theory to

3-D pebble-bed reactor cores. For simplicity, we do not simulate the actual cylindrical

geometry of a pebble-bed core, but rather the simpler geometry of hard spheres of radius r

packed inside a cubic box with side L. Once more, we have developed a Monte Carlo com-

puter code capable of deriving random realizations of the 3-D system; and a second Monte

Carlo code that performs 3-D neutron transport inside the heterogeneous core. We apply

this second Monte Carlo code to both stochastic and crystal-like pilings of the spheres.

Comparisons between the numerical Monte Carlo results and the results obtained with the

proposed generalized theory are presented, as well as comparisons with the atomic mix

theory and its corrections. We close the chapter with a discussion regarding the behavior

of particles generated by spheres located close to the edges of the system, where packing

fractions are rather different than in the middle of the system.

5.1 3-D Packings

In this section we introduce the different approaches we used to pack hard spheres in

the 3-D system. Section 5.1.1 describes the piling of crystal structures, while Section 5.1.2

discusses the case of a random piling of spheres.

76
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5.1.1 3-D Crystal Structures

There are several possible ways of piling identical hard spheres in a crystal-like struc-

ture. For the study of the pebble-bed problem, structures that are worth mentioning

are the simple cubic (with packing fraction Γ ≈ 0.52), the BCC: body-centered cubic

(Γ ≈ 0.68), the HCP: hexagonal close-packed (Γ ≈ 0.74), and the FCC: face-centered

cubic (Γ ≈ 0.74). In fact, the problem of determining the packing fraction of identical

spheres in a container has been under study for a long time. The maximum packing frac-

tion of π/
√

18 ≈ 0.74048 was first conjectured by Kepler in 1611 [80] in his work Strena

Figure 5.1: Sequential Construction of FCC Structures
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seu de nive sexangula (On the Six-Cornered Snowflake), and only recently it was shown to

be correct [32].

To achieve this maxium packing fraction, we have to start with a first layer (A) of

spheres with centers arranged in a hexagonal lattice (similar to the cases ε = 0 and

ε = εmax shown in Figure 4.2). A second layer (also arranged in a hexagonal lattice)

is then positioned on top of the first, with each sphere centered above the gaps between

spheres on the first layer. Notice that there are two possible positionings (B and C) for this

second layer. Every sequence of A, B, and C without immediate repetition of the same

one is possible and yields the same packing fraction. In particular, the sequence where

every other layer is the same (ABABAB... or ACACAC...) is the HCP structure; and the

sequence where every third layer is the same (ABCABC... or ACBACB...) is the FCC

structure (Figure 5.1).

Figure 5.2: Example of Vertical “Shaft” in a HCP Structure

In this work we have opted for face-centered systems, since they are capable of yielding

the highest packing fractions. Although HCP structures yield the same packing fractions

as the FCC, they generate vertical “shafts” in the system (Figure 5.2) that would allow
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very long streaming paths and bias the transport in that direction. Hence, we discarded

the option of simulating systems with HCP-like layers. We describe the packing of the

simulated structures next.

Figure 5.3: Arrangement of Spheres in a Layer with a Given Distance ε

Let d = 2r be the diameter of a fuel sphere, and ε be the fixed distance between spheres

in the same layer, as shown in Figure 5.3. Bearing in mind that we do not allow spheres to

overlap the limits of the cubic box in which they are packed, we place the first layer (A)

of spheres in the system, at the bottom of the box - and then lock them in place. We then

proceed to fill the system in a face-centered fashion; that is, positioning the second (B) and

third (C) layers and sequentially repeating this structure. The height hi of the ith layer can

be defined directly from the previous layers by

hi = hi−1 +

√
d2 − 1

3
(d+ ε)2 = h1 + (i− 1)

√
d2 − 1

3
(d+ ε)2 , ∀ i ≥ 1 .(5.1)

Notice that these structures allow spheres at the edges of the packing to be unstable under

gravity if they do not touch a wall (they only rest upon two other spheres). As in the 2-D
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case, this is a valid approximation of the infinite system when L is large. An example of

this type of piling is shown in Figure 5.4.

Figure 5.4: Example of a 3-D Crystal Structure (FCC: ε = 0) in a System with Side L = 10d

For ε = 0, this packing method yields the classic FCC structure, with coordination

number (number of spheres contacted by a given sphere) 12; that is, each sphere inside the

system touches 12 other spheres. For instance, a typical sphere in layer i touches 3 spheres

in layer i− 1, 3 spheres in layer i+ 1, and 6 spheres in layer i itself (Figure 5.5).

Figure 5.5: Arrangement of Spheres in a 3-D Crystal Structure with ε = 0
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For the cases with ε > 0, however, the “cubic” feature of these face-centered systems

is lost; the structure resembles that of a face-centered orthorhombic. Moreover, since we

do not allow spheres to overlap each other, ε must not exceed a maximum value, in order

to maintain the crystal-like structure of the packing:

εmax = d

(
2

3

√
6− 1

)
.(5.2)

The packing structures generated with 0 < ε < εmax have coordination number 6; a

typical sphere in layer i touches 3 spheres in layer i − 1 and 3 spheres in layer i + 1, as

depicted in Figure 5.6.

Figure 5.6: Arrangement of Spheres in a 3-D Crystal Structure with 0 < ε < εmax

Contrary to what happens in the case of the 2-D crystal structures presented in the

previous chapter, the 3-D packing generated with ε = εmax is not a rotation of the one

generated with ε = 0. It is rather a geometrically different structure, with coordination

number 8; a typical sphere in layer i touches three spheres in layer i− 1, three spheres in

layer i+ 1, one sphere in layer i− 3, and one sphere in layer i+ 3 (Figure 5.7).
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Figure 5.7: Arrangement of Spheres in a 3-D Crystal Structure with ε = εmax

We define the packing fraction Γ as the ratio between the total volume of the fuel

spheres and the volume of the box. The graph in Figure 5.8 shows the packing fraction Γ

as a function of ε/d (in increments of 0.025).

Figure 5.8: Packing Fractions in 3-D Crystal Structures with Different Values of ε



83

5.1.2 3-D Random Structures

Random close packing, and in particular random close packing of hard spheres, has

been the subject of several studies, due to its many applications. As summarized in [95],

exhaustive experimental work has lead to believe that randomly packed spheres of the

same diameter cannot have a packing fraction larger than ≈ 0.64; in fact, recent analytical

work yields the same results [74]. It has also been argued, however, that the definition of

random packing itself is not well-defined [82, 83].

For the problem of pebble-bed cores, the most accepted average packing fraction ranges

from 0.60 to 0.62, values that were experimentally validated by El Wakil [28]. However,

the probability of occurrence of any single packing structure is not quantified, and as

pointed out by Ougouag & Terry [59], there exists neither experimental evidence nor the-

oretical proof to support the assertion that other packing arrangements within the core are

impossible. In fact, it has been shown [18] that changes in the friction coefficients have a

significant influence on the structuring of the pebbles; under certain loading circumstances,

packing fractions of 0.59 are possible.

A large variety of methods have been used to model pebble-bed cores. High-fidelity

methods, modeling the dynamic behavior of spheres, have been the subject of recent re-

search [18, 60, 61, 70, 71]. These methods must be used when keeping track of pebble

position history is necessary; for the problem we are to approach, however, the path his-

tory of pebbles is not relevant. Since we are only interested in the final resting positions

of the spheres, a low-fidelity method (which does not model the dynamic behavior of the

spheres) was used.

Low-fidelity methods based on sequential models were summarized in [34]. In that

work, every model starts with a first layer in which the horizontal projections of the cen-

ters of spheres form a square lattice, with lattice spacing equal to the sphere diameter.
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Then, this first layer is randomly disordered from a purely horizontal plane by adding

random vertical displacements to the coordinates of all the spheres. The ballistic deposi-

tion method [33, 53] was found to have the second highest packing fraction amongst the

methods analyzed; a variation of the Bennett procedure [6] was found to reach the highest

packing fraction. However, this procedure is entirely deterministic; that is, the randomness

of the packings comes only from the randomness originally put in the first layer. We find

that this is an undesirable feature for our packing structures, since one of our interests is to

find how much the effect of gravity in the randomness of the system affects the transport

of particles. Thus, in this work, we chose to develop a variation of the ballistic deposition

method.

In our ballistic algorithm, each sphere is released at a random point above the box. It

then follows a steepest descent trajectory until it reaches a position that is stable under

gravity, in which case it has its coordinates stored. This method is the exact 3-D analogy

of the 2-D algorithm described in Chapter IV. Figure 5.10 contains a flux diagram for the

dropping of a new sphere into the box. Given a (incomplete) realization of the system,

we randomly drop and store the coordinates of 20 different tentative spheres; we then

choose the one with the lowest z-coordinate to be added to the system, and discard the 19

remaining ones. Once a sphere is added to the system, its position is locked; that is, the

sphere is frozen in place.

As in the 2-D case, rearrangement of spheres and/or cascading events cannot happen.

No velocity or friction coefficients are taken into account; the only restriction is that a

sphere can never, at any point of its trajectory, overlap the limits of the box or another

sphere. Once the tentative sphere with the lowest z-coordinate is added to the system, the

process is repeated; spheres continue to be added until the box is filled. An example of a

random piling obtained with this procedure is shown in Figure 5.9.
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Figure 5.9: Example of a 3-D Random Structure in a System with Side L = 40d

We have developed 25 different random packings in a 3-D system with L = 40d. With

Γ being the packing fraction of a single realization (as defined in the previous section),

we found the average packing fraction to be Γ = 0.58083, with a standard deviation of

0.00096. In other words, the average number of spheres in these 3-D random systems is

≈ 70, 995.

5.2 3-D Monte Carlo Results in the Interior of the System

For all 3-D problems in this work, we assumed the background material in which the

spheres were piled to be vacuum; the parameters used for the material of the spheres are

given in Table 5.1.

Table 5.1: 3-D parametes for spheres with diameter d.
dΣt dΣs dΣa c = Σs/Σt P (Ω ·Ω′)
1.0 0.99 0.01 0.99 1/4π

The particle histories within the system are determined by 3-D generalizations of the

Monte Carlo transport code used in Section 4.2; however, the algorithm developed for
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Figure 5.10: Flow diagram for the Dropping of a Sphere in the 3-D System
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the 3-D crystal structures is slightly different from the one developed for the 3-D random

system.

We remark that, for any given 3-D system (crystal or random), a realization containing

N spheres with coordinates (xn, yn, zn) and a realization containing N spheres with coor-

dinates (yn, xn, zn), where 1 ≤ n ≤ N , have the same probability of occurring. Therefore,

when investigating the behavior of particles born in a fuel sphere in the middle of the sys-

tem, we can assume without loss of generality that:

hor = x = y ,(5.3a)

hor2 = x2 = y2 .(5.3b)

5.2.1 Monte Carlo in 3-D Crystal Structures

For all 3-D crystal problems in this work, the packing of spheres of diameter d took

place in a cubic box with side L = 290d; vacuum boundary conditions were used. Simi-

larly to the 2-d case, we choose the sphere closest to the center of the system to be the one

in which particles are born. The history of a single particle follows the same flow diagram

shown in Figure 4.7, only adapted to 3-D transport (with spheres instead of discs). The

Figure 5.11: Ratios Between Vertical and Horizontal Mean and Mean Square Distances of a Particle to its
Point of Birth in 3-D Crystal Structures with Different Values of ε
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Table 5.2: MC results for 3-D crystal structures with different values of ε in a system with side L = 290d.
The histories of 300,000 particles were simulated in each structure.

ε/d s/d s2/d2 hor/d hor2/d2 z/d z2/d2

0.000 1.34966 3.76028 7.86774 124.40169 7.87782 125.37097
0.025 1.40024 4.06739 8.20709 135.29977 8.20095 135.68256
0.050 1.44980 4.38396 8.49519 145.23597 8.51642 146.78897
0.075 1.49796 4.70532 8.78978 155.60595 8.85481 159.00754
0.100 1.54468 5.03165 9.08917 167.19589 9.13705 168.31550
0.125 1.59095 5.36910 9.38276 177.53969 9.47071 181.15697
0.150 1.63490 5.70310 9.66450 188.17203 9.75241 191.97140
0.175 1.67669 6.03321 9.94300 199.51534 10.04338 203.48092
0.200 1.71637 6.35806 10.17061 208.77255 10.28980 213.91024
0.225 1.75333 6.67078 10.43792 220.07136 10.53453 224.10086
0.250 1.78767 6.97721 10.67728 229.26777 10.76313 234.35732
0.275 1.81922 7.26247 10.89470 239.98549 11.00032 244.80900
0.300 1.84612 7.51579 11.09692 248.90336 11.15294 252.24146
0.325 1.86840 7.72747 11.24028 256.31604 11.30485 258.80532
0.350 1.88661 7.91195 11.35309 260.50649 11.46512 266.16833
0.375 1.90147 8.04712 11.45959 266.35971 11.47376 267.35975
0.400 1.90747 8.11751 11.53704 269.08663 11.53866 269.06003
0.425 1.90740 8.12093 11.50078 267.91521 11.54000 270.20440
0.450 1.90172 8.05849 11.54538 269.95565 11.51047 267.14227
0.475 1.88544 7.89289 11.44029 264.99021 11.26061 255.59326
0.500 1.86102 7.65323 11.24693 256.23253 11.15866 251.19675
0.525 1.82224 7.28018 11.01100 245.47882 10.86749 238.06746
0.550 1.77235 6.82467 10.64469 228.85540 10.49701 222.15935
0.575 1.70621 6.25848 10.18627 209.76425 10.08509 204.88036
0.600 1.62085 5.57871 9.60916 186.40456 9.54723 183.30478
0.625 1.51135 4.78760 8.88388 158.85279 8.87763 159.14278

maximum number of particles that leaked out of any given system is 129 out of 300,000

(for the system with ε = 0.425d); the average number of leaking particles is ≈ 49.

Monte Carlo (MC) transport numerical results for 3-D crystal systems are depicted in

Table 5.2. The statistical error (with 95% confidence) is less than 0.043% for all values of

s, hor, and z, and less than 0.094% for all values of s2, hor2, and z2.

As expected, we detect an anisotropic effect in these systems that is even larger than the

one found in the 2-D crystal structure (Figure 5.11). Further confirmation is easily seen
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Figure 5.12: Percent Relative Differences from the Vertical Direction [as defined in Eqs. (5.4) and (5.5)] as
Functions of |Ωz| = |µ| in Two Distinct 3-D Crystal Structures

when comparing the relative differences from the vertical direction given by:

S1(Ω) =
sΩ(Ω)− sΩ(~k)

sΩ(~k)
,(5.4a)

S2(Ω) =
s2
Ω(Ω)− s2

Ω(~k)

s2
Ω(~k)

;(5.4b)

and:

U1(Ω) =
ρ(Ω)− ρ(~k)

ρ(~k)
,(5.5a)

U2(Ω) =
ρ2(Ω)− ρ2(~k)

ρ2(~k)
.(5.5b)

Here, ρ(Ω) and ρ2(Ω) again represent the mean and mean square distances of a particle to

its point of birth in the direction Ω, and ~k = (0, 0, 1) is the unit vector in the z-direction.

These quantities are depicted as percent functions of |Ωz| = | cos θ| = |µ| in Figure 5.12,

for two different crystal structures.
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Once again, S2, U1, andU2 clearly show a direction-dependent behavior of the particles.

While sΩ remains close to a constant troughout the system, s2
Ω varies by more than 11.0%

in one system and twice that in another, indicating that the diffusion coefficients must be

different for the vertical and horizontal directions.

As in the 2-D case, there are valleys in the graphs of U1 and U2 near the angles formed

between the centers of a sphere and the centers of the adjacent spheres. These angles

satisfy |µ| = 0.7211 and |µ| = 0.5242 for ε = 0.200d and ε = 0.475d, respectively.

5.2.2 Monte Carlo in 3-D Random Structures

For all 3-D random systems in this work, the packing of spheres of diameter d took

place in a cubic box with side L = 40d. For the case described in this section, in which

we choose the sphere closest to the center of the packing structure to be the one where

particles are born, vacuum boundary conditions were used.

However, the system in which particles travel is not composed by all the spheres in the

packing. Since at this point we are interested in the behavior of particles in the interior

of the system, we want to minimize the effect of the boundaries of the box (walls, top,

bottom). According to the work in [4], we need to consider spheres that are three to five

diameters off-walls in order to have a packing structure that is not influenced by the walls

and by the bottom.

Let us draw an imaginary box with side L∗(ω) = L− 2ωd inside the system, such that

its walls are a distance ωd away from the walls of the box. We define the packing fraction

Γ∗(ω) as the ratio between the total volume of spheres inside this imaginary box (including

partial spheres) and the volume of the imaginary box. For each of the simulated systems,

we found that the fluctuations in Γ∗(ω) ceased being significant around ω = 2d, as was the

case in the experiment performed in [48]. Nevertheless, for the sake of accuracy, we allow

particles to travel only inside the imaginary box with side L∗(3) (Figure 5.13). For the
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Figure 5.13: Imaginary Box with Side L∗(3) = 34d Positioned Inside a 3-D Random Realization of a
System with Side L = 40d

25 simulated random packings, we found Γ∗ = Γ∗(3) = 0.59524 as the average packing

fraction, with a standard deviation of 0.00126. In other words, the average total volume of

spheres inside the imaginary box is approximately the volume of 44,682 spheres.

The difference in the algorithm is in dealing with particles that leak out of this imagi-

nary box. Let the center of the box be at the origin, and let us assume that a particle P that

had its last collision at point (x0, y0, z0) inside a sphere Sa leaks out of the imaginary box

through the plane x = −(L− 3d)/2. First, defining the coordinates of the center of Sa as

(xa, ya, za), we locate the sphere Sb with the closest center to the point (−xa − d, ya, za).

Then, we reinsert P into the system at the point (xb + x0− xa, yb + y0− ya, zb + z0− za),

where (xb, yb, zb) are the coordinates of the center of Sb (Figure 5.14). Finally, we shift

the whole system so that now the coordinates of the center of the box are (x0, 0, 0), and

proceed with the history of the particle. A similar process is used if the particle leaks

through any of the other walls; we repeat this reinsertion and shifting procedure as many

times as necessary. In other words, particles are traveling in an infinite “quasi-periodic”
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Figure 5.14: Reinsertion of a Particle in the Imaginary Box

structure; here, we use the term “quasi-periodic” because the system is not always shifted

by the same values in a given direction.

For each realization of the random system, we have calculated the histories of 100,000

particles; the statistical error in each given realization was found to be (with 97.5% confi-

dence) less than 0.078% for all values of s, hor, and z, and less than 0.177% for all values

of s2, hor2, and z2. As we mentioned, we have developed 25 different realizations (adding

to a total of 2,500,000 particles); the average Monte Carlo results and the statistical errors

bounds (with 95% confidence) are given in Table 5.3.

Although each single realization presents a small (generally less than 1%) anisotropic

effect (Figure 5.15), we observe that they are not consistent; in fact, the ensemble-averaged

Table 5.3: Ensemble-averaged MC results for 3-D random structures in a “quasi-periodic” infinite system.
A total of 25 different random realizations were generated; the histories of 100,000 particles were
simulated in each realization.

s/d s2/d2 hor/d hor2/d2 z/d z2/d2

Ensemble
Average 1.76450 6.77858 10.52172 226.01146 10.52960 226.59695

Statistical
Error 0.206% 0.452% 0.269% 0.543% 0.296% 0.607%
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Figure 5.15: Ratios Between Vertical and Horizontal Mean and Mean Square Distances of a Particle to its
Point of Birth in 3-D Random Realizations of the System

values yield z/hor = 1.00075 and z2/hor2 = 1.00259, which represent an average

anisotropy that is smaller than the small one observed in the 2-D case. Using the ensemble-

averaged values of sΩ(Ω), s2
Ω(Ω), ρ(Ω), and ρ2(Ω) with the expressions given by Eqs.

(5.4) and (5.5), we see no indication that particles should travel further in any one direction

(Figure 5.16).

We remark that we are working with a packing fraction of 59.5%, which is about 2%

smaller than the generally assumed average packing fraction in a pebble-bed core (60%-

62%). Nevertheless, there is no reason to believe that higher packing fractions in physical

random structures of pebble-beds will introduce diffusion anisotropy in the system; if

anything, the small anisotropic effects in each realization should be even smaller, since the

void fraction of the system decreases.

We believe that, if enough realizations of the system are simulated, one should find that

z/hor and z2/hor2 approach a value of ≈1. This indicates that, at least for fuel spheres in

the interior of the system, it should not be necessary to worry about anisotropic diffusion.

However, the diffusion of particles that are born in spheres positioned close to the walls

will be anisotropic; we discuss this case in Section 5.4.
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Figure 5.16: Percent Relative Differences from the Vertical Direction [as defined in Eqs. (5.4) and (5.5)] as
Functions of |Ωz| = |µ| in the 3-D Random System

5.3 Theoretical and Monte Carlo Estimates in the Interior of a 3-D System

5.3.1 Results in 3-D Crystal Structures

Introducing the numerically obtained results for s (as shown in Table 5.2) into Eq.

(2.50), we obtain (as in the 2-D case) a Monte Carlo estimate for the absorption cross

section, denoted Σmc
a . Using this estimate and the numerical results hor2 and z2 shown in

Table 5.2, Eqs. (2.53) yield the 3-D numerical diffusion coefficients

Dmc
hor = hor2

Σmc
a

2
,(5.6a)

Dmc
z = z2

Σmc
a

2
,(5.6b)

for 3-D crystal structures.
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The atomic mix diffusion coefficient for crystal structures is given by [see Eq. (2.64)]:

Dam =
1

3

(
1

ΓΣt

)
,(5.7)

where Γ is the packing fraction of the system and Σt is shown in Table 5.1. Using this

result, we calculate the diffusion corrections proposed by Behrens [see Eq. (2.67)] and

Lieberoth [see Eq. (2.69)]:

DB =

[
1 +

φ2

(1 + φ)2

(
2

3
rΣtQB +

4
3
rΣt

exp
[

4
3
rΣt

]
− 1
− 1

)]
Dam ;(5.8)

DL =

{
1 +

φ2

(1 + φ)2

[
2

3
rΣtQL(5.9)

+
4

3
rΣt

(
2r2Σ2

t

2r2Σ2
t − 1 + (1 + 2rΣt)e−2rΣt

− 1

)
− 1

]}
Dam ,

where Σt is shown in Table 5.1, r = d/2 is the radius of the spheres, QB and QL are given

by Eqs. (2.66) and (2.68), and for each packing fraction Γ:

φ =
1− Γ

Γ
.(5.10)

Using the numerical values for s and s2 shown in Table 5.2, the isotropic diffusion

coefficient obtained by the generalized theory (assuming the locations of the scattering

centers to be independent of direction) is given by [see Eq. (3.70)]:

(5.11) Diso =
1

3

(
s2

2s

)
.

Finally, since scattering is isotropic, the anisotropic diffusion coefficients obtained by the

generalized theory are given by [see Eqs. (3.72)]:

Dgt
hor =

1

2s

(
1

4π

∫
4π

s2
Ω(Ω)Ω2

x dΩ

)
=

1

2s

(
1

4π

∫
4π

s2
Ω(Ω)Ω2

y dΩ

)
,(5.12a)

Dgt
z =

1

2s

(
1

4π

∫
4π

s2
Ω(Ω)Ω2

z dΩ

)
,(5.12b)

where Ω = (
√

1− µ2 cosϕ,
√

1− µ2 sinϕ, µ), s is given by the numerical values shown

in Table 5.2, and s2
Ω(Ω) is also numerically calculated for each system. All estimates
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Table 5.4: Numerical (MC) and theoretical estimates for the diffusion coefficients in 3-D crystal structures
with different values of ε.

ε/d Dmchor/d Dmcz /d Dam/d DB/d DL/d Diso/d Dgthor/d Dgtz /d

0.000 0.46086 0.46445 0.45191 0.46330 0.46465 0.46435 0.46433 0.46439
0.025 0.48313 0.48450 0.46917 0.48048 0.48517 0.48413 0.48358 0.48524
0.050 0.50088 0.50624 0.48521 0.49650 0.50448 0.50397 0.50272 0.50648
0.075 0.51939 0.53075 0.50193 0.51324 0.52482 0.52353 0.52173 0.52712
0.100 0.54120 0.54482 0.51777 0.52913 0.54427 0.54290 0.54100 0.54671
0.125 0.55797 0.56933 0.53304 0.54447 0.56317 0.56246 0.55977 0.56784
0.150 0.57548 0.58710 0.54777 0.55930 0.58154 0.58139 0.57812 0.58793
0.175 0.59497 0.60679 0.56183 0.57349 0.59918 0.59971 0.59656 0.60601
0.200 0.60818 0.62315 0.57514 0.58693 0.61597 0.61739 0.61390 0.62438
0.225 0.62758 0.63907 0.58758 0.59950 0.63174 0.63410 0.63061 0.64110
0.250 0.64125 0.65548 0.59830 0.61035 0.64538 0.65049 0.64696 0.65756
0.275 0.65958 0.67284 0.60862 0.62081 0.65856 0.66534 0.66239 0.67125
0.300 0.67412 0.68316 0.61770 0.63001 0.67020 0.67852 0.67567 0.68422
0.325 0.68593 0.69259 0.62538 0.63780 0.68006 0.68931 0.68673 0.69448
0.350 0.69041 0.70541 0.63235 0.64487 0.68903 0.69896 0.69675 0.70336
0.375 0.70040 0.70303 0.63586 0.64843 0.69354 0.70534 0.70385 0.70832
0.400 0.70535 0.70528 0.63912 0.65174 0.69775 0.70927 0.70929 0.70923
0.425 0.70230 0.70830 0.63927 0.65190 0.69794 0.70960 0.70959 0.70961
0.450 0.70977 0.70237 0.63689 0.64948 0.69487 0.70625 0.70769 0.70336
0.475 0.70279 0.67781 0.63163 0.64414 0.68810 0.69771 0.69954 0.69403
0.500 0.68842 0.67489 0.62307 0.63546 0.67709 0.68540 0.68841 0.67937
0.525 0.67356 0.65323 0.60977 0.62197 0.66003 0.66587 0.66954 0.65851
0.550 0.64563 0.62674 0.59386 0.605853 0.63972 0.64177 0.64567 0.63397
0.575 0.61471 0.60040 0.57079 0.58254 0.61048 0.61134 0.61463 0.60477
0.600 0.57502 0.56546 0.54306 0.55456 0.57566 0.57364 0.57596 0.56901
0.625 0.52553 0.52649 0.50628 0.51760 0.53015 0.52796 0.52864 0.52660

for the diffusion coefficients are shown in Table 5.4. We define the percent differences

between the theoretical and Monte Carlo estimates for the diffusion coefficients as:

diffamhor = 100
|Dam − Dmc

hor|
Dmc
hor

, diffamz = 100
|Dam − Dmc

z |
Dmc
z

,(5.13a)

diffBhor = 100
|DB − Dmc

hor|
Dmc
hor

, diffBz = 100
|DB − Dmc

z |
Dmc
z

,(5.13b)

diffLhor = 100
|DL − Dmc

hor|
Dmc
hor

, diffLz = 100
|DL − Dmc

z |
Dmc
z

,(5.13c)

diffisohor = 100
|Diso − Dmc

hor|
Dmc
hor

, diffisoz = 100
|Diso − Dmc

z |
Dmc
z

,(5.13d)

diffgthor = 100
|Dgt

hor − Dmc
hor|

Dmc
hor

, diffgtz = 100
|Dgt

z − Dmc
z |

Dmc
z

;(5.13e)
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Figure 5.17: Percent Differences Between Theoretical and Monte Carlo Estimates for the Diffusion Coeffi-
cients in 3-D Crystal Structures with Different Values of ε

these differences are depicted in Figure 5.17 as functions of ε/d.

In general, the results obtained with classic atomic mix and the correction proposed by

Behrens differ from the numerical results by large amounts; they consistently underesti-

mate the diffusion coefficients in both directions. The correction presented by Lieberoth

yields much smaller differences, even though it also tends to underestimate the diffusion

coefficients.

The isotropic version of the generalized theory has maximum differences in its esti-

mates of the diffusion coefficients (compared to Monte Carlo) of 1.52% and 2.94% in the

horizontal and vertical directions, respectively; its average differences, however, are about
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0.75% in the horizontal direction and about 0.97% in the vertical direction. These are

smaller than the average differences obtained with the Lieberoth correction, namely about

0.91% in the horizontal direction and about 1.20% in the vertical direction. In general, the

isotropic version of the generalized theory seems to be an improvement over the Lieberoth

correction, albeit a small one.

On the other hand, it is clear from the graphs that the anisotropic estimates Dgt are

an improvement over both Diso and DL, with average differences (compared to Monte

Carlo) of about 0.42% in the horizontal direction and about 0.44% in the vertical direc-

tion. Moreover, with one single exception (ε = 0.625d), Dgt correctly predicted the gen-

eral anisotropic behavior of all the systems; that is, Dgt
hor > Dgt

z when Dmc
hor > Dmc

z and

Dgt
hor < Dgt

z when Dmc
hor < Dmc

z for all but one of the systems simulated.

To further examine the general improvement introduced by the proposed generalized

theory, we shall once more consider the estimates for kD. Assuming dimensions for the

3-D model reactor core that are comparable to those of the MPBR design [35] (width and

length X = Y = 58.33d and height Z = 166.67d), we adapt Eq. (2.43) for the different

methods presented (as summarized in Table 5.5). The resulting estimates for kD are shown

Table 5.5: Parameters applied in Eq. (2.43) to calculate the different estimates of kD in 3-D systems.
Isotropic Anisotropic

Monte Atomic Behrens Lieberoth Generalized Generalized
Carlo Mix Correction Correction Theory Theory

Dhor Eq. (5.6a) Eq. (5.7) Eq. (5.8) Eq. (5.9) Eq. (5.11) Eq. (5.12a)
Dz Eq. (5.6b) Eq. (5.7) Eq. (5.8) Eq. (5.9) Eq. (5.11) Eq. (5.12b)

Σa
1− c
s

〈Σa〉 = ΓΣa 〈Σa〉 = ΓΣa 〈Σa〉 = ΓΣa
1− c
s

1− c
s
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in Table 5.6, as calculated by:

kmcD
νΣf

=

[
Σmc
a + π2

(
Dmc
hor

X2
+

Dmc
hor

Y 2
+

Dmc
z

Z2

)]−1

,(5.14a)

kamD
νΣf

=

[
ΓΣa + π2

(
1

X2
+

1

Y 2
+

1

Z2
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,(5.14b)
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]−1
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kgtD
νΣf

=

[
Σmc
a + π2

(
Dgt
hor

X2
+

Dgt
hor

Y 2
+

Dgt
z

Z2

)]−1

;(5.14f)

where Γ is the packing fraction and s is shown in Table 5.2.

We define the percent differences between the theoretical and Monte Carlo estimates

for kD as:

diffamk = 100
|kamD − kmcD |

kmcD
,(5.15a)

diffBk = 100
|kBD − kmcD |

kmcD
,(5.15b)

diffLk = 100
|kLD − kmcD |

kmcD
,(5.15c)

diffisok = 100
|kisoD − kmcD |

kmcD
,(5.15d)

diffgtk = 100
|kgtD − kmcD |

kmcD
;(5.15e)

these differences are depicted in Figure 5.18 as functions of ε/d.

As expected, the estimates obtained with classic atomic mix and the correction pro-

posed by Behrens present large differences from the numerical results. The correction

presented by Lieberoth yields very good results for about half of the simulated systems,

with a tendency to overestimate kD. Its average difference is about 0.41%, with a maxi-

mum difference of 1.2%.
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Table 5.6: Numerical (MC) and theoretical estimates for kD (assuming MPBR-like core dimensions: X =
Y = 58.33d and Z = 166.67d) in 3-D crystal structures with different values of ε.

ε/d kmcD /(νΣf ) kamD /(νΣf ) kBD/(νΣf ) kLD/(νΣf ) kisoD /(νΣf ) kgtD/(νΣf )

0.000 97.58288 98.44325 97.76846 97.68922 97.39104 97.39204
0.025 98.84931 100.06906 99.37643 99.09216 98.79396 98.82156
0.050 100.17096 101.45132 100.74101 100.24476 99.99948 100.06342
0.075 101.24252 102.76434 102.03454 101.29732 101.02358 101.11708
0.100 101.96950 103.89202 103.14283 102.16037 101.87404 101.97479
0.125 102.83270 104.87715 104.10844 102.87550 102.58342 102.72761
0.150 103.48212 105.73625 104.94804 103.46190 103.13813 103.31560
0.175 103.83053 106.47656 105.66914 103.93190 103.56153 103.73373
0.200 104.43167 107.10790 106.28184 104.29975 103.87406 104.06619
0.225 104.48197 107.63967 106.79584 104.57936 104.08955 104.28288
0.250 104.74960 108.05413 107.19474 104.77277 104.18357 104.37921
0.275 104.57970 108.41679 107.54220 104.91949 104.24430 104.40789
0.300 104.49298 108.70694 107.81885 105.01771 104.23325 104.39115
0.325 104.41399 108.93180 108.03221 105.07908 104.21271 104.35572
0.350 104.64459 109.12010 108.21001 105.11817 104.12932 104.25107
0.375 104.47299 109.20910 108.29372 105.13200 104.15245 104.23472
0.400 104.33200 109.28884 108.36851 105.14148 104.06941 104.06832
0.425 104.51070 109.29248 108.37191 105.14184 104.04565 104.04594
0.450 103.89318 109.23469 108.31774 105.13536 104.09922 104.01967
0.475 103.93815 109.10130 108.19230 105.11485 104.17707 104.07569
0.500 104.09478 108.86604 107.96992 105.06265 104.24449 104.07818
0.525 103.87292 108.45490 107.57862 104.93346 104.30821 104.10498
0.550 104.05663 107.88718 107.03426 104.69781 104.24121 104.02590
0.575 103.73273 106.90901 106.08909 104.18764 103.90122 103.72091
0.600 103.02719 105.47138 104.68946 103.28534 103.08139 102.95631
0.625 101.49969 103.08484 102.34981 101.54685 101.34941 101.31383

The isotropic version of the generalized theory yields a small improvement over the

Lieberoth correction, as predicted before. In comparison to the numerical estimates, kisoD

is more accurate than kLD in 15 out of the 26 cases analyzed; its average difference is about

0.26%, with maximum difference of 0.54%.

Finally, we can see a systematic improvement introduced by the anisotropic generalized

theory; its average difference is about 0.16%, with maximum difference of 0.44%. In

comparison to the numerical estimates, kgtD is more accurate than kLD in 17 out of the 26

cases analyzed, being at least twice as accurate in 14 of these cases, and at least 10 times

as accurate in 6 of these cases.
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Figure 5.18: Percent Differences Between Theoretical and Monte Carlo Estimates for kD (assuming MPBR-
like core dimensions) in 3-D Crystal Structures with Different Values of ε

5.3.2 Results in 3-D Random Structures

To obtain estimates for the diffusion coefficients in the 3-D random system we use the

same procedure presented for the crystal structures, together with the ensemble-averaged

results in Table 5.2 and the ensemble-averaged packing fraction Γ∗ = 0.59524. The esti-

mates and the percent relative differences are shown in Tables 5.7 and 5.8.

Table 5.7: Numerical (MC) and theoretical estimates for the diffusion coefficients in the 3-D random system.

Dmchor/d Dmcz /d Dam/d DB/d DL/d Diso/d Dgthor/d Dgtz /d

0.64044 0.64210 0.56000 0.57164 0.59688 0.64027 0.63954 0.64173

Table 5.8: Percent differences between theoretical and Monte Carlo estimates for the diffusion coefficients
in the 3-D random system.

diffamhor diffBhor diffLhor diffisohor diffgthor

12.56027 10.74273 6.80179 0.02595 0.13971

diffamz diffBz diffLz diffisoz diffgtz

12.78620 10.97335 7.04259 0.28427 0.05735
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We should remark that the ratios DB/Dam = 1.02079 and DL/Dam = 1.06586 obtained

here are similar to the ratios presented by Lieberoth [48] in a similar situation: for pebbles

with total cross section dΣt ≈ 1.05182 piled in an experimental random structure with

packing fraction 0.6308, he obtained DB/Dam = 1.023 and DL/Dam = 1.058.

The results in Tables 5.7 and 5.8 are a clear indication of the superiority of the gen-

eralized theory over the classic atomic mix and its corrections; the estimates for the dif-

fusion coefficients in both the isotropic and anisotropic versions of the new theory are

more than 20 times more accurate than the classic methods when compared to the numer-

ical estimates. Moreover, the results of Dgt correctly recognize even the small anisotropic

behavior of the diffusion, yielding a larger coefficient in the vertical direction.

We can also obtain estimates for kD, with a similar procedure to the one applied to the

crystal structures; the results are shown in Tables 5.9 and 5.10.

Table 5.9: Numerical (MC) and theoretical estimates for kD in the 3-D random system (assuming MPBR-
like core dimensions: X = Y = 58.33d and Z = 166.67d).

kmcD /(νΣf ) kamD /(νΣf ) kBD/(νΣf ) kLD/(νΣf ) kisoD /(νΣf ) kgtD/(νΣf )

104.05192 106.38445 105.57956 103.87550 104.06939 104.10957

Table 5.10: Percent differences between theoretical and Monte Carlo estimates for kD in the 3-D random
system (assuming MPBR-like core dimensions).

diffamk diffBk diffLk diffisok diffgtk

2.24169 1.46815 0.16955 0.01678 0.05540

The differences for the classic atomic mix and the Behrens correction are large, as

expected. The generalized theory yields very accurate results; also, kisoD and kgtD are very

similar, which is not surprising since the anisotropic effect is very small. However, given

its poor performance in predicting the diffusion coefficients, the accuracy of the Lieberoth

correction in predicting kD is unexpected, even though it is still more than 0.1% less
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accurate than the results obtained with the generalized theory. It turns out that this apparent

accuracy comes from a lucky choice of parameters X , Y , and Z in the estimate of kD.

Table 5.11: Numerical (MC) and theoretical estimates for kD in the 3-D random system (assuming PBMR-
like core dimensions: X = Y = 61.67d and Z = 150d).

kmcD /(νΣf ) kamD /(νΣf ) kBD/(νΣf ) kLD/(νΣf ) kisoD /(νΣf ) kgtD/(νΣf )

107.83624 109.83164 109.04683 107.38308 107.85559 107.8921566

Table 5.12: Percent differences between theoretical and Monte Carlo estimates for kD in the 3-D random
system (assuming PBMR-like core dimensions).

diffamk diffBk diffLk diffisok diffgtk

1.85040 1.12262 0.42023 0.01794 0.05185

For instance, by slightly changing the core dimensions so that now they resemble those

of the PBMR design of a reactor core [36] (X = Y = 61.67d and Z = 150d), diffLk

increases by about 148.0%, while diffisok and diffgtk change by less than 7.0%. For this

choice of parameters, the generalized theory estimates for kD yield results that are more

than 0.4% (and about one order of magnitude) more accurate than the ones obtained with

the atomic mix and its corrections (Tables 5.11 and 5.12). In fact, due to their lack of

accuracy on estimating the coefficients D, the term
(

1
X2 + 1

Y 2 + 1
Z2

)
D in the expressions

of kamD , kBD, and kLD will make them very sensitive to changes in the parameters X , Y , and

Z. Another example of this fact can be seen when we use core dimensions resembling

those of the HTR-PM design of a reactor core [92] (X = Y = 66.67d and Z = 183.33d);

the results of this choice of dimensions are shown in Tables 5.13 and 5.14. Once more,

the generalized theory maintains the same excellent level of accuracy, while the accuracy

of the atomic mix model and of both the Behrens and the Lieberoth corrections present a

large variation.

In this section we have shown that, for 3-D models of pebble-bed reactor cores, the
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Table 5.13: Numerical (MC) and theoretical estimates for kD in the 3-D random system (assuming HTR-
PM-like core dimensions: X = Y = 66.67d and Z = 183.33d).

kmcD /(νΣf ) kamD /(νΣf ) kBD/(νΣf ) kLD/(νΣf ) kisoD /(νΣf ) kgtD/(νΣf )

114.93912 116.22541 115.48561 113.91345 114.95596 114.99307

Table 5.14: Percent differences between theoretical and Monte Carlo estimates for kD in the 3-D random
system (assuming HTR-PM-like core dimensions).

diffamk diffBk diffLk diffisok diffgtk

1.11910 0.47546 0.89236 0.01465 0.04694

atomic mix model and the Behrens correction yield very inaccurate results. The correc-

tion proposed by Lieberoth performs a good improvement in the estimates of the diffusion

coefficients for the crystal structures, but it fails to do the same in the case of random

packings. We have also shown that the proposed generalized theory: (i) is generally more

accurate than the atomic mix model and its corrections in crystal structures, and signif-

icantly more accurate in random structures; and (ii) successfully reproduces even very

small anisotropic effects in the estimates of the diffusion coefficients.

We have also concluded that, in the case of diffusion in the interior of the 3-D system,

one should not have to worry about anisotropic diffusion. The anisotropic effect was found

to be very small (and inconsistent) for the tested packing fraction, and it is likely to be even

smaller for higher packing fractions, as is the accepted case in pebble-beds. Nevertheless,

diffusion will be anisotropic for particles that are born in pebbles close to the walls; we

discuss this in the next section.

5.4 Boundary Layers of the 3-D Model Core

This section presents an investigation of the anisotropic behavior of particles generated

by pebbles that are located close to the boundary walls of a random system, where the

packing fraction is (in general) significantly smaller than in the middle of the system.
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Due to the effect of the walls on the packing structure, it is only natural to expect that

the transport of particles will be affected. We use the Monte Carlo code described in

Section 5.1.2 to pack spheres of radius r in a cubic box with side L. An adaptation of the

Monte Carlo code presented in Section 5.2.2 is presented in Section 5.4.1, to perform 3-D

neutron transport in this heterogeneous structure. We close the section by showing that,

to some extent, this anisotropic behavior can be approximated with the generalized theory

presented in Chapter III, while atomic mix and its corrections fail to do the same.

5.4.1 Monte Carlo Results in a Boundary of the 3-D System

Once again, the packing of spheres of diameter d takes place in a cubic box with side

L = 40d. Here, however, particles are born in a pebble positioned close to a wall, instead

of at the center of the system; reflective boundary conditions were used. In this case, the

system in which particles travel differs slightly from the one described in Section 5.2.2.

Let us assume that the system with side L in which the pebbles are packed has its center

at the origin; in other words, the coordinates of the system satisfy −L/2 ≤ x ≤ L/2,

−L/2 ≤ y ≤ L/2, and −L/2 ≤ z ≤ L/2. We focus on the histories of particles that are

born in pebbles whose centers have coordinates Cξ that are a (small) distance ξ away from

the wall positioned at the plane x = −L/2.

If a particle P traveling with direction Ω = (Ωx,Ωy,Ωz) collides against the wall at

x = −L/2, it will be reflected into the system with direction Ω′ = (−Ωx,Ωy,Ωz). Apart

from this case, however, particles are not allowed to travel within a distance ω = 3d to the

other walls; the “reinsertion and shifting” procedure described in Section 5.2.2 is applied.

In other words, particles are now travelling in a semi-infinite “quasi-periodic” structure,

with a (left) boundary at the plane x = −L/2.

Since the packing fraction close to the boundary walls is smaller than in the interior of

the system, we predict that particles will travel smaller distances in the direction normal to
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Table 5.15: MC results for particles born in pebbles centered at a distance ξ from the boundary wall.

ξ/d s/d s2/d2 ρ/d ρ2/d2 y2/x2 z2/x2

Results for the 3-D Random Packing Structure P-I
0.5 1.78545 6.97070 21.36191 690.71789 1.02877 1.02343
≈1.5 1.78253 6.94344 21.33145 689.81624 1.02088 1.01877
≈2.5 1.78028 6.92283 21.31240 690.38114 1.02586 1.02151
≈3.5 1.77874 6.91236 21.32874 689.59039 1.03422 1.02169
≈4.5 1.77776 6.90049 21.29395 691.20843 1.01422 1.00291
≈5.5 1.77645 6.88687 21.29016 691.97071 1.00838 1.00172

Results for the 3-D Random Packing Structure P-II
0.5 1.78124 6.93019 21.36768 690.31560 1.03969 1.03792
≈1.5 1.77973 6.91639 21.34016 691.97697 1.04399 1.03692
≈2.5 1.77562 6.88624 21.24827 687.14057 1.01676 1.02763
≈3.5 1.77191 6.85770 21.20520 684.18691 1.01017 0.99079
≈4.5 1.77265 6.86074 21.19400 684.01374 1.00388 1.00752
≈5.5 1.77107 6.84641 21.18157 684.65500 0.99773 0.99802

Results for the 3-D Random Packing Structure P-III
0.5 1.78863 6.99390 21.49490 701.01234 1.00103 1.02955
≈1.5 1.78437 6.96283 21.35406 690.49666 1.01902 1.02471
≈2.5 1.78205 6.93889 21.29538 687.13363 0.99899 1.00639
≈3.5 1.78063 6.92687 21.25170 685.45438 0.99803 1.00607
≈4.5 1.77847 6.90744 21.26572 690.03643 0.99468 1.00722
≈5.5 1.77722 6.89719 21.28677 691.51940 0.98344 1.00643

the wall. That is, for the semi-infinite system we are simulating, we expect that x2 will be

consistently smaller than both y2 and z2 (similarly, we expect x to be smaller than y and

z).

We have investigated a total of 18 cases: for six different choices of ξ, we examined

the behavior of particles being born in pebbles with centers Cξ in three different random

packing structures (P-I, P-II, and P-III). The histories of 100,000 particles were simulated

in each of these cases; Table 5.15 presents the Monte Carlo results for s and s2.

We must bear in mind that we are now working with a problem in which the diffusion

coefficients depend on space; therefore, the derivation of the expressions in Eqs. (2.53)

can no longer be performed. However, Eqs. (2.53) are exact expressions when diffusion is
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Figure 5.19: Ensemble-Averages (within 1 Standard Deviation) of the Ratios for Mean and Mean Square
Distances to Point of Birth of Particles Born in a Pebble with Center Cξ

independent of space; this indicates that the mean square distances of particles from their

point of birth play an important role in the values of the diffusion coefficients. For this

reason, Table 5.15 also shows the results for ρ2 and for the ratios y2/x2 and z2/x2, where

we can clearly observe the predicted anisotropic effect. In each of the 18 cases simulated,

the statistical error was found to be (with 95% confidence) less than 0.069% for all values

of s, x, y, and z; and less than 0.159% for all values of s2, x2, y2, and z2.

The ensemble-averaged values for the ratios y/x, z/x, y2/x2, and z2/x2 are depicted

in Figure 5.19. The most remarkable feature observed is that, as predicted, particles

born in pebbles positioned close to the wall have mean square migration distances in the

x-direction (normal to the wall) that are about 3% smaller than in the other directions.
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5.4.2 Theoretical Estimates in a Boundary of the 3-D System

We can use the numerical values for s, s2, sΩ, and s2
Ω to obtain estimates for Diso, Dgt

x ,

Dgt
y , and Dgt

z . As we mentioned, Eqs. (2.53) are not accurate anymore; nevertheless, we

will use them to obtain the following approximations:

ρ2
gt ≈

2

Σmc
a

(Dgt
x + Dgt

y + Dgt
z ) =

2

Σmc
a

(3Diso) ,(5.16a)

y2
gt

x2
gt

≈
Dgt
y

Dgt
x

,(5.16b)

z2
gt

x2
gt

≈ Dgt
z

Dgt
x

.(5.16c)

For the values of ρ2 shown in Table 5.15, we define the percent difference between the

generalized theory and the Monte Carlo estimates as:

diffgtρ = 100
|ρ2
gt − ρ2|
ρ2

.(5.17)

The results and comparisons can be seen in Table 5.16.

Table 5.16: Generalized theory approximations for the behavior of particles born in pebbles centered at a
distance ξ from the boundary wall; comparisons with MC results are shown.

ξ/d
ρ2
gt

d2 diffgtρ
y2
gt

x2
gt

y2
gt

x2
gt

− y2

x2

z2
gt

x2
gt

z2
gt

x2
gt

− z2

x2

0.5 696.49308 0.35702 1.02551 0.00234 1.02831 -0.00199
≈1.5 694.08863 0.48140 1.02674 -0.00122 1.02479 -0.00202
≈2.5 691.59869 0.49119 1.01143 -0.00244 1.01496 -0.00355
≈3.5 689.89783 0.50804 1.01311 -0.00103 1.00932 0.00314
≈4.5 688.95554 0.07786 1.00304 -0.00122 1.00325 -0.00264
≈5.5 687.68201 0.24655 0.99563 -0.00088 1.00272 0.00066

Even though we are making use of Eqs. (2.53) as an approximation, we can see that

the generalized theory yields very accurate predictions of ρ2. Even more remarkable is the

accuracy obtained in the prediction of the anisotropic behavior, as can be seen from the

small differences it yields when compared with the Monte Carlo estimates of the ratios of

the mean square migration distances of particles.
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It is not clear if a similar procedure can be used with atomic mix; nevertheless, while

such a procedure would not yield an anisotropic result, it might be able to approximate

ρ2. The underlining question is: what value should be chosen for the average packing

fraction? There is a sharp transition in the packing fraction as one moves away from the

wall; within a distance of three diameters from the wall, the average packing fraction varies

from 0.49626 near the wall to 0.59527 in the interior of the system (it remains very close

to 0.59527 for distances larger than three diameters). This agrees with the results obtained

in [71], in which the results of a high-fidelity method found that the packing fraction varies

from 0.5 to 0.6 near the boundary regions of a cylindrical pebble-bed model core .

We calculate the estimate for the atomic mix diffusion coefficient Dam
i for three differ-

ent packing fractions Γi, namely: the lowest found value Γ1 = 0.49626, an intermediary

value Γ2 = 0.54577, and the average packing fraction Γ3 = 0.59527, obtained away from

the wall. We use the approximation

ρ2
am

i ≈
2

ΓiΣa

(3Dam
i )(5.18)

and define the percent differences between this estimate and the Monte Carlo values as:

diffamρ (i) = 100
|ρ2

am

i − ρ2|
ρ2

.(5.19)

The results obtained with these approximations are shown in Table 5.17. We can see that,

Table 5.17: Percent differences between MC results and atomic mix approximations for ρ2 (the mean square
distance of a particle to its point of birth) of particles born in pebbles centered at a distance ξ
from the boundary wall.

ξ/d 0.5 ≈1.5 ≈2.5 ≈3.5 ≈4.5 ≈5.5

diffamρ (1) 17.01374 17.56462 17.99933 18.31013 17.96487 17.80023
diffamρ (2) 3.25208 2.79661 2.43718 2.18021 2.46567 2.60180
diffamρ (3) 18.67333 18.29046 17.98832 17.77232 18.01228 18.12671

in this case, atomic mix seems to work best when we choose an intermediary packing
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fraction, between the minimum value found near the wall and the average value found in

the interior of the system. Nonetheless, even in this case its accuracy fails to match the

accuracy demonstrated by the generalized theory for this problem. Moreover, the theory

behind the corrections for the atomic mix model do not apply in this case; in fact, they

yield meaningless results, even more inaccurate than the ones obtained with the classic

atomic mix.

Obviously, a convenient choice for Γ will improve the accuracy obtained with this

model. Given ρ2, we can even calculate the best choice by solving Eq. (5.18) for Γ - but

this would ruin the purpose of the problem, which is to estimate ρ2. In actuality, for this

type of problem, there is not an available procedure to make this choice in a nonartificial

way; in practice, the value Γ3 = 0.59527 would be chosen.

We have shown that, for 3-D models of pebble-bed reactor cores, there exists an

anisotropic effect near the walls of the system; this effect will cause particles that are born

close to a boundary wall to travel smaller distances in the direction normal to this wall.

We have also shown that, although we cannot use the generalized theory to find an exact

expression of the migration distances of particles, we can still get accurate predictions of

the anisotropic effect. Moreover, both versions of the generalized theory (isotropic and

anisotropic) yield very accurate predictions of ρ2, the mean square distance of particles to

their points of birth. Finally, we have discussed that a similar (but inaccurate) process can

be performed with the atomic mix model; however, it will require an artificial choice for

the value of the packing fraction of the structure.

In this chapter, we have calculated (using Monte Carlo) the “true” values of the dif-

fusion coefficients for different 3-D models of pebble-bed reactor cores. We have shown

that, when compared to these values, the generalized theory is significantly more accurate

than the atomic mix model and the results obtained with the Behrens correction. In crystal
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structures, the generalized theory yields better accuracy than the correction proposed by

Lieberoth (in general), but not by large amounts. However, for 3-D random structures, the

estimates for the diffusion coefficients obtained by the generalized theory are more than

20 times more accurate than the estimates yielded by the Lieberoth correction. Once more,

the generalized theory successfully reproduces even very small anisotropic effects in the

estimates of the diffusion coefficients.

Estimates of the diffusion eigenvalue kD show that the generalized theory is signif-

icantly more accurate than the atomic mix approach and its correction models. As we

discussed in the last chapter, it is reasonable to expect that the difference between the ac-

curacy of these methods in estimating kD will translate to the estimation of k, the actual

eigenvalue of the heterogeneous transport problem.



CHAPTER VI

Conclusions

Due to the rising costs of fossil fuels (and the environmental impact induced by them),

a worldwide effort is underway to develop more economical, efficient, and clean ways of

generating electricity. This effort has driven the current “nuclear renaissance”, which has

the High-Temperature Gas-Cooled Reactor concept as the forefront candidate to a new

generation of nuclear plants. In particular, the Pebble-Bed Reactor (PBR) stands out as

the most promising design to be pursued, due to its three main features: its several safety

advantages over other reactor designs, its high thermal efficiency (45%-50%), and its ca-

pability of attaining high temperatures useful for hydrogen production. Unfortunately, due

to the high complexity of its heterogeneous dynamic design, the understanding of neutron

behavior inside its core is far from that of more conventional reactors.

The behavior of neutrons inside the PBR core is generally modeled by a diffusion ap-

proximation. In practice, this approximation uses spatially-homogenized cross sections,

obtained by volume-averaging over the constituent materials, weighted by their respective

volume fractions. Once this (atomic mix) procedure is completed, mathematical correc-

tions can be applied to the diffusion coefficients to reduce the error produced by the “neu-

tron streaming” effect; this effect is produced by the optically thin, helium-filled portions

of the core. The main advantage of this method is in its simplicity: the only information

112
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needed to apply it is the values of the cross sections and the volume fractions of each

material in the core.

There are several difficulties with this approach. This method inherently assumes that

the probability distribution function for distance-to-collision is exponential; we show that,

due to the neutron streaming effect outside the pebbles, this assumption is not valid. More-

over, the accuracy of the atomic mix model is linked to the mean size of each “chunk” of

the system’s constituent materials; the smaller each chunk is compared to a mean free path,

the more accurate is the atomic mix approximation. However, the pebbles are O(1) mean

free paths thick; this is not considered small, and therefore the accuracy of this model must

be called into question.

In this work, we present a new approach called generalized theory, in which we propose

to replace the true nonexponential probability distribution function for the distance-to-

collision by its ensemble average. This ensemble-averaged probability distribution func-

tion is then used at all points to determine how far particles travel between collisions.

This causes the cross sections of the homogenized system to be functions of both angle

(Ω) and distance-to-collision (s); the angular dependence can be dropped by assuming the

locations of the scattering centers to be independent of direction.

With this method, we obtain a generalized Boltzmann equation that preserves all rele-

vant asymptotic limits, reducing to the classic Boltzmann equation in the case of a homo-

geneous system. The disadvantage is that there is no simple way to obtain expressions for

these s-dependent cross sections; they need to be numerically estimated. Nevertheless, we

use this result to develop a generalized diffusion equation (GDE), which do not depend

upon the variable s, but rather on its mean and mean square values s and s2. The GDE

also preserves all relevant limits, reducing to classic diffusion in homogeneous systems.

Moreover, it yields anisotropic diffusion coefficients when the locations of the scattering
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centers depend upon direction. More work is required than in the atomic mix approach; to

apply the GDE, one must obtain estimates for s and s2. This information is all microscopic

in nature, and a simple Monte Carlo code can generate accurate estimates.

We initially developed a Monte Carlo code to simulate the transport of neutrons inside

model 2-D PBR cores. Different versions of these model cores were created: crystal

packings were sequentially built, and a version of the ballistic deposition algorithm was

developed to generate random realizations. Overall, when compared to the Monte Carlo

results, we have shown that the generalized theory yields more accurate results for the

diffusion coefficients than the atomic mix approach, and even the small anisotropic effects

detected in these simulations were successfully predicted. Furthermore, for the case of

random structures, we showed that these small differences in the diffusion coefficients

yield differences on the order of 0.4% in the estimates of the kD eigenvalue (assuming

core dimensions comparable to those of the MPBR design). As we have mentioned, k

plays an important role in the nuclear chain reaction, and errors on the order of 0.1% in its

estimate are significant.

With the promising 2-D results, we proceeded to work on the 3-D case, where pack-

ing fractions are smaller (which increases the neutron streaming effect). We adapted our

Monte Carlo code to simulate transport in these 3-D systems, and we used both crys-

tal (face-centered) and random structures. The random structures were generated using

a more complex ballistic algorithm to build random packings of ≈71,000 spheres, which

were then extended to an infinite system in a “quasi-periodic” fashion. When compared to

the Monte Carlo results, we have shown that both atomic mix and the correction proposed

by Behrens generally fail to estimate the diffusion coefficients in a reasonable way; nev-

ertheless, for crystal structures, the correction proposed by Lieberoth yields results that

are comparable in accuracy to those obtained with the generalized theory. However, for
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3-D random structures, the diffusion coefficients obtained with the correction proposed by

Lieberoth differ from those obtained with Monte Carlo by ≈7.0%, while the generalized

theory yields results that are less than 0.3% apart from the Monte Carlo results.

This difference in the estimates of the diffusion coefficients has a significant impact in

the estimates of the kD eigenvalue. When compared to Monte Carlo, the generalized theory

estimates of kD are very accurate for any reasonable choice of the core dimensions, while

the estimates obtained with the Lieberoth correction are very sensitive to changes in these

dimensions. Assuming different core dimensions, the difference between the Monte Carlo

and the generalized theory estimates of kD remained below 0.056%. On the other hand,

the difference between the Lieberoth correction and the Monte Carlo estimates jumped

from 0.17% (for the MPBR-like dimensions) to 0.42% (for the PBMR-like dimensions)

and to 0.89% (for the HTR-PM-like dimensions).

We finished the 3-D study with an investigation of the behavior of particles that are born

close to the walls of the core; specifically, we focused on the mean square distances of a

particle to its point of birth. We found that there is a clear anisotropic effect, which was ex-

pected due to the fundamental differences between the packing structures in the interior of

the system and close to the walls. The generalized theory yields very good predictions for

this anisotropic effect, even though we made use of a mathematically innacurate expres-

sion to obtain these approximations. On the other hand, we discussed that using the atomic

mix model in a similar approach would only yield meaningful results under an artificial

choice of packing fractions, which would be meaningless for practical purposes. In future

work, we intend to develop accurate numerical space-dependent diffusion coefficients for

particles born close to the wall, in order to (i) test the accuracy of the generalized theory in

predicting space-dependent diffusion coefficients in these regions, and (ii) analyzing the

global effect caused by this anisotropic effect.
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It is important to remark that none of our assumptions restrain the generalized theory

introduced in this work to applications in reactor cores. In fact, we know of at least one

other important application: it has recently been shown that the locations of the scattering

centers (water droplets) in clouds are correlated in ways that measurably affect radiative

transfer within the cloud [11, 14, 22, 37, 38, 39, 62, 72]. In such cases, if one models

the cloud by taking the water droplets to be randomly-positioned scattering centers, then

the positions of the scattering centers are correlated, and the theory developed here would

apply.

To summarize, we have proposed a new theory to model particle transport in stochastic

heterogeneous media. This theory requires more information about a random system than

the atomic mix method; if a random system is diffusive, then only s and s2 need to be

estimated (for anisotropic diffusion, they will depend on Ω). This extra information is all

microscopic in nature; it is not a closure relation, as in the Levermore-Pomraning method

[63, 85]. The theory uses this microscopic data in a generalized Boltzmann equation or in

a generalized diffusion equation to determine approximate mean macroscopic quantities.

We have numerically shown that, at least for problems of the pebble-bed kind, this new

approach is significantly more accurate than the classic approaches currently in use.

In the future, we intend to extend the present work for problems with anisotropic scat-

tering, as well as for energy-dependent systems. Although it is computationally expensive,

the algorithm to obtain Σt(Ω, s) is straightforward; we intend to use it to generate results

that can be applied to the generalized Boltzmann equation in order to estimate k. Monte

Carlo benchmark results for k in this heterogeneous system will need to be developed; we

also intend to do this. Finally, having developed a theory for the mean flux of particles,

the next logical step from the theoretical point of view is to try to develop a similar theory

that is capable of calculating variance; this is one of our goals.



BIBLIOGRAPHY

117



118

BIBLIOGRAPHY

[1] Adams, M.L., Larsen, E.W., and Pomraning, G.C. Benchmark Results for Particle Transport
in a Binary Markov Statistical Medium. J. Quant. Spectrosc. Radiat. Transfer 42, 253 (1989).

[2] Arfken, G. Mathematical Methods for Physicists. Academic Press, Orlando, 1985.

[3] Audic, S. and Frisch, H. Monte Carlo Simulation of a Radiative Transfer Problem in a Ran-
dom Medium - Application to a Binary Mixture. J. Quant. Spectrosc. Radiat. Transfer 50, 127
(1993).

[4] Bedenig, D. Probleme des Kugelhaufens und Körniger Schüttungen. Proc. THTR Symposium.
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