

Computers and Programs
Zelle - Chapter 1
Charles Severance - www.dr-chuck.com

Textbook: Python Programming: An Introduction to Computer Science, John Zelle

Users .vs. Programmers

• Users see computers as a set of tools - word processor, spreadsheet

• Programmers have some tools that allow them to build new tools

• Programmers sometimes write tools for lots of users and sometimes
programmers write little widgets for themselves to automate a task

Why do we program?

• To get some task done - part of some non-programming job

• Clean up survey data

• To produce something for others to use - a real programming job

• Fix a performance problem in the Sakai software

Computer
Hardware + Software

Networks....

From a software creator’s point of view, we build the software. The end users
(stakeholders/actors) are our masters - who we want to please - often they pay
us money when they are pleased. But the data, information, and networks are

our problem to solve on their behalf. The hardware and software are our
friends and allies in this quest.

InformationData

User

Creators

(Screenshot) Source: ctools.umich.edu
(iPhone) CC BY: Johan Larsson (flickr)
http://creativecommons.org/license/by/2.0

What is Code? Software? A
Program?

• A set of stored instructions

• It is a little piece of our intelligence in the computer

• It is a little piece of our intelligence we can give to others - we fgure
something out and then we encode it and then give it to someone
else to save them the time and energy of fguring it out

• A piece of performance art

How Many Lines in a File?

• You could read and
understand

• Chapter 4 page 110

• Chapter 11 Page 341

• Appendix A Page 447

Or I could send you this in
E-Mail:

infile = open("mbox", "r")
print len(infile.readlines())

Hardware Architecture

 SoftwareSoftware

InputInput
DevicesDevices

CentralCentral
ProcessingProcessing

UnitUnit

MainMain
MemoryMemory

OutputOutput
DevicesDevices

SecondarySecondary
MemoryMemory

Generic
Computer

Z-5

Defnitions

• Input Devices: Keyboard, Mouse, Touch Screen

• Output Devices: Screen, Speakers, Printer, DVD Burner

• Central Processing Unit: Runs the Program - AKA The CPU is always
wondering “what to do next”? Not the brains exactly - very dumb but
very very fast

• Main Memory: Fast small temporary storage - lost on reboot - aka RAM

• Secondary Memory: Slower large permanent storage - lasts until deleted -
disk drive / memory stick

 HardwareHardware

 SoftwareSoftware

InputInput
DevicesDevices

CentralCentral
ProcessingProcessing

UnitUnit

MainMain
MemoryMemory

OutputOutput
DevicesDevices

SecondarySecondary
MemoryMemory

Network/Network/
InternetInternet

(iPhone) CC BY: Johan Larsson (flickr)
http://creativecommons.org/license/by/2.0

 HardwareHardware

 SoftwareSoftware

CentralCentral
ProcessingProcessing

UnitUnit

MainMain
MemoryMemory

SecondarySecondary
MemoryMemory

Network/Network/
InternetInternet

Web Server

A web server often
functions with no input or
output devices connected

to the system. It takes
incoming requests from
the network - does some
work with those requests

and send output back
across the network.

(Servers) CC BY: Jesse Wagstaff (flickr)
http://creativecommons.org/license/by/2.0

Network/Network/
InternetInternet

HardwareHardware

SoftwareSoftware

(Servers) CC BY: Jesse Wagstaff (flickr)
(Phone) CC BY: John Larsson (flickr)
http://creativecommons.org/license/by/2.0

Programmer Tools

Becoming a Programmer

• We use the computer - we just have to learn some programmer tools

• Compiler - Takes our code and makes it executable

• Interpreter - Reads our code and runs it

• Development Environment - Helps us write code

When a Program Runs...

• When a program runs it:

• Takes some input data

• Processes the data using a set
of instructions (a program)

• Produces some output

• Think of it as “value add”

An example program
takes a text file as its
input and counts the
lines in the file and

prints out the number
of lines in the file.

Z-8

Programmer Tools

• We use the computer - we just have some new tools

• Development Environment - A “Word Processor” or “Text Editor”
for Programmers - we write code in a development environment

• Compiler - Takes our code and makes an executable version of our
program

• Interpreter - Reads our code and runs it directly - Python is an
interpreted language - Python is an interpreter

Z-8

User

A programmer
develops a program.

If a compiler is used
the compiler

translated the source
to machine code for

distribution.

If an interpreter is
used, the

programmer simply
distributes the
source code.

Data

Programmer

Data

Data

Data User

Terms

• Source code - the programs we humans write - and read - written in a
programming language - source code is generally portable across
systems

• Machine code - what really runs on the machine - not very readible -
produced by a compiler - machine code is unique to hardware and
operating system.

^?
ELF^A^A^A^@^@^@^@^@^@^@^@^@^B^@^C^@^A^@^@^@\xa0\x82^D^H4^@^@^@\x90^]^@^@^@^@^@^@4^
@ ^@^G^@(^@$^@!
^@^F^@^@^@4^@^@^@4\x80^D^H4\x80^D^H\xe0^@^@^@\xe0^@^@^@^E^@^@^@^D^@^@^@^C^@^@^@^T^
A^@^@^T\x81^D^H^T\x81^D^H^S^@^@^@^S^@^@^@^D^@^@^@^A^@^@^@^A\^D^HQVhT\x83^D^H\xe8\x
b7\xff\xff\xff\xf4\x90\x90U\x89\xe5S\xe8^@^@^@^@[\x81\xc3_^R^@^@P\x8b\x83\xfc\xff\
xff\xff\x85\xc0t^B\xff\xd0\x8b]\xfc\xc9\xc3\x90\x90\x90\x90\x90\x90\x90\x90\x90\x9
0U\x89\xe5\x83\xec^H\x80=L\x95^D^H^@t^L\xeb^\\x83\xc0^D\xa3H\x95^D^H\xff\xd2\xa1H\
x95^D^H\x8b^P\x85\xd2u\xeb\xc6^EL\x95^D^H^A\xc9\xc3\x90U\x89\xe5\x83\xec^H\xa1\\x9
4^D^H\x85\xc0t!\xb8^@^@^@^@\x85\xc0t^X\xc7^D$\\x94^D^H\xe8\xbc|\xfb\xf7\x8d\xb6^@^
@^@^@\x8d\xbf^@^@^@^@\xc9\xc3\x90\x90U\x89\xe5\x

main() {
 printf("Hello world\n");
}

Your
Source
Code

Your
Machine

Code

The C Language
Compiler Reads
your source code

and produces your
machine code.

^@^@^@^@__DATA^@^@^@^@^@^@^@^@^@
^@^@^@0^@^@^@^@q^@^@
^@^@^@^@^B^@^@^@^@^@^@^@^@^@^@^@
^@^@^@^@^@^@^@^@^@__nl_symbol_pt
r^@__DATA^@^@^@^@^@^@^@^@^@^@^@^
@0t^@^@^@^P^@^@
t^@^@^@^B^@^@^@^@^@^@^@^@^@^@^@^
F^@^@^@^Q^@^@^@^@__la_symbol_ptr
^@__DATA^@^@^@^@^@^@^@^@^@^@^@^@
0<84>^@^@^@D^@^@@^A^@^@/usr/lib/
libmx.A.dylib^@^@^@^@^@^L^@^@^@4
^@^@^@^XC½m¥^@X^A^C^@^A^@^@/usr/
lib/libSy

è^@^@^Qp^@^@^@^B^@^@^@^@^@^@^@^@<80>^@^D^@^@^@^@^@^@^@^@^@__picsy
mbol_stub__TEXT^@^@^@^@^@^@^@^@^@^@^@^@,X^@^@^@^@^@^@^\X^@^@^@^B^
@^@^@^@^@^@^@^@<80>^@^@^H^@^@^@^@^@^@^@$__symbol_stub^@^@^@__TEXT
^@^@^@^@^@^@^@^@^@^@^@^@,X^@^@^@^@^@^@^\X^@^@^@^B^@^@^@^@^@^@^@^@
<80>^@^@^H^@^@^@^@^@^@^@^T__picsymbolstub1__TEXT^@^@^@^@^@^@^@^@^
@^@^@^@,`^@^@^B
^@^@^\`^@^@^@^E^@^@^@^@^@^@^@^@<80>^@^D^H^@^@^@^@^@^@^@
__cstring^@^@^@^@^@^@^@__TEXT^@^@^@^@^@^@^@^@^@^@^@^@.<80>^@^@^AX
^@^@^^<80>^@^@^@^B^@^@^@^@^@^@^@^@^@^@^@^B^@^@^@^@^@^@^@^@^@^@^@^
A^@^@^AÐ__DATA^@^@^@^@^@^@^@^@^@^@^@^@0^@^@^@^P^@^@^@
^@^@^@^P^@^@^@^@^G^@^@^@^C^@^@^@^F^@^@^@^@__data^@^@^@^@^@^@^@^@^
@^@__DATA^@^@^@^@^@^@^@^@^@^@^@^@0^@^@^@^@q^@^@
^@^@^@^@^B^@__nl_symbol_ptr
^@__DATA^@^@^@^@^@^@^@^@^@^@^@^@0t^@^@^@^P^@^@
t^@^@^@^B^@^@^@^@^@^@^@^@^@^@^@^F^@^@^@^Q^@^@^@^@__la_symbol_ptr^
@__DATA^@^@^@^@^@^@^@^@^@^@^@^@0<84>^@^@^@D^@^@
<84>^@^@^@^B^@^@^@^@^@^@^@^@^@^@^@^G^@^@^@^U^@^@^@^@__dyld^@^@^@^
@^@^@^@^@^@^@__DATA^@^@^@^@^@^@^@^@^@^@^@^@0È^@^@^@^\^@^@
È^@^@^@^B^@__bss^@^@^@^@^@^
@^@^@^@^@^@__DATA^@^@^@^@^@^@^@^@^@^@^@^@0ä^@^@^@^D^@^@^@^@^@^@^@
^B^@^@^@^@^@^@^@^@^@^@^@^A^@^@^@^@^@^@^@^@__common^@^@^@^@^@^@^@^
@__DATA^@^@^@^@^@^@^@^@^@^@^@^@0ð^@^@^@4^@^@^@^@^@^@^@^D^@^@^@^@^
@^@^@^@^@^@^@^A^@^@^@^@^@^@^@^@^@^@^@^A^@^@^@8__LINKEDIT^@^@^@^@^
@^@^@^@@^@^@^@^F^D^@^@0^@^@^@^F^D^@^@^@^G^@^@^@^A^@^@^@^@^@^@^@^D

Machine
Code

for the
Python

Interpreter

print “hello world”

Z-8

User

A programmer
develops a program.

If a compiler is used
the compiler

translated the source
to machine code for

distribution.

If an interpreter is
used, the

programmer simply
distributes the
source code.

Data

Programmer

Data

Data

Data User

Compiler .vs. Interpreter
• Only the programmer needs to have the compiler - once the compiler

is done - the executable program is self-contained

• The programmer keeps the source code and distributes the
executable - different executables are needed for Mac, PC, etc.

• Both the programmer and user need to have the Interpreter installed
on their system

• Generally the programmer distributes the source code of the
program

Python is an Interpreter

• To run Python programs, users must install Python on their computers

• Development is quick and easy - we simply make a change to our
program and run it again in a single step

• For data analysis - Python is just a tool that you keep on your desktop
or laptop

• Interpreters are more convenient when the user and programmer are
the same person

Running Python Interactively

Z-9

Python Interactive

• Since Python is interpreted we can just type programs directly into
Python

• See Also http://datamech.com/devan/trypython/trypython.py

x=1x=1
print xprint x
x = x + 1x = x + 1

csev$ python
Python 2.5 (r25:51918, Sep 19 2006, 08:49:13)
 [GCC 4.0.1 (Apple Computer, Inc. build 5341)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> x = 1
>>> print x
1
>>> x = x + 1
>>> print x
2
>>> exit()

This is a good test to make sure that you have
python correctly installed.

Syntax Errors

• The computer has a language where you an tell it what you want to do -
this is Python

• It seems unfair when you submit a program to the computer and it says
“syntax error” - given that it *knows* the language and you are just
learning it. It seems rude and cruel.

• You must remember that you are intelligent and *can* learn - the
computer is simple and very fast - but cannot learn - so it is easier for you
to learn Python than for the computer to learn English...

The Essence of Programming

 SoftwareSoftware

InputInput
DevicesDevices

CentralCentral
ProcessingProcessing

UnitUnit

MainMain
MemoryMemory

OutputOutput
DevicesDevices

SecondarySecondary
MemoryMemory

Generic
Computer

Z-5

Program Steps or Program Flow

• Like a recipe or installation instructions, a program is a sequence of
steps to be done in order

• Some steps are conditional - they may be skipped

• Sometimes a step or group of steps are to be repeated

• Sometimes we store a set of steps to be used over and over as
needed several places throughout the program

Z-14

Sequential Steps

Program:

x = 1
print x
x = x + 1
print x

Output:

1
2

x = 1x = 1

print xprint x

x = x + 1x = x + 1

print xprint x

When a program is running, it flows from one step to the next.
We as programmers set up “paths” for the program to follow.

Conditional Steps

Output:

Smaller
Finis

Program:

x = 5
if x < 10:
 print "Smaller“

if x > 20:
 print "Bigger"

print “Finis”

x = 5x = 5

X < 10 ?X < 10 ?

print “Smaller”print “Smaller”

X > 20 ?X > 20 ?

print “Bigger”print “Bigger”

Z-199

print “Finis”print “Finis”

Yes

Yes

Repeated Steps
Output:

0
1
2
3
4
Bye

Program:

for i in range(5) :
 print i

print “Bye”

ii = 0 .. 4 = 0 .. 4

print print ii

Z-233

Loops (repeated steps) have iteration variables that change each time through
a loop. Often these iteration variables go through a sequence of numbers.

Done

print “Bye”print “Bye”

Stored (and reused) Steps

Output:

Hello
Fun
Zip
Hello
Fun

Program:

def hello():
 print "Hello"
 print "Fun"

hello()
print “Zip
”hello()

defdef

print “Hello”print “Hello”
print “Fun”print “Fun”

hello()hello()

print “Zip”print “Zip”

We call these little stored chunks of code “subprograms” or “functions”.

hello():

hello()hello()

A Python Program

Z-14

def main():
 print "This program illustrates a chaotic function"
 x = input("Enter a number between 0 and 1: ")
 for i in range(10):
 x = 3.9 * x * (1 - x)
 print x

main()

$ python chaos.pyThis program illustrates a
chaotic functionEnter a number between 0
and 1: 0.6
0.936
0.2336256
0.698274248196
0.821680557759
0.571434313164
0.955098841721
0.16725167263
0.543186347468
0.96772626363
0.121805355011

def main():

 print "This program illustrates a chaotic function"
 x = input("Enter a number between 0 and 1: ")
 for i in range(10):
 x = 3.9 * x * (1 - x)
 print x

main()

Stored steps

Calling the stored steps

def main():

 print "This program illustrates a chaotic function"
 x = input("Enter a number between 0 and 1: ")
 for i in range(10):
 x = 3.9 * x * (1 - x)
 print x

main()

Output

Input

def main():

print "This program illustrates a chaotic function"
 x = input("Enter a number between 0 and 1: ")
 for i in range(10):
 x = 3.9 * x * (1 - x)
 print x

main()

Repeated Code

def main():

 print "This program illustrates a chaotic function"
 x = input("Enter a number between 0 and 1: ")
 for i in range(10):
 x = 3.9 * x * (1 - x)
 print x

main()

x = 3.9 * x * (1 - x)print x
x = 3.9 * x * (1 - x)print x
x = 3.9 * x * (1 - x)print x
x = 3.9 * x * (1 - x)print x
x = 3.9 * x * (1 - x)print x
x = 3.9 * x * (1 - x)print x
x = 3.9 * x * (1 - x)print x
x = 3.9 * x * (1 - x)print x
x = 3.9 * x * (1 - x)print x
x = 3.9 * x * (1 - x)print x

def main():

 print "This program illustrates a chaotic function"
 x = input("Enter a number between 0 and 1: ")
 for i in range(10):
 x = 3.9 * x * (1 - x)
 print x

main()

The colon (:) starts a block of indented code

Indented code
continues until a line
is encountered that

is less indented.

Start

End

def main():

 print "This program illustrates a chaotic function"
 x = input("Enter a number between 0 and 1: ")
 for i in range(10):
 x = 3.9 * x * (1 - x)
 print x

main()

The colon (:) starts a block of indented code

Indented code
continues until a line
is encountered that

is less indented.

Start

End

Variables and Assignment
Statements

Z-16

Variables and Assignments

• A variable is a scratch local to store some value such as a number or a
string

• An assignment statement consists of an expression on the right hand
side and a variable to store the result

x = 3.9 * x * (1 - x)

def main():

 print "This program illustrates a chaotic function"
 x = input("Enter a number between 0 and 1: ")
 for i in range(10):
 x = 3.9 * x * (1 - x)
 print x

main()

Assignment Statement into the variable named x

x = 3.9 * x * (1 - x)

0.60.6x

Left side is an expression. Once
expression is evaluated, the result is

placed in (assigned to) x.

0.6 0.6

0.4

0.93

A variable is a memory location
used to store a value (0.6).

x = 3.9 * x * (1 - x)

0.6 0.930.6 0.93x

Right side is an expression. Once
expression is evaluated, the result is
placed in (assigned to) the variable

on the left side (i.e. x).

0.93

A variable is a memory location
used to store a value. The value

stored in a variable can be updated
by replacing the old value (0.6)

with a new value (0.93).

Comments in Python

Z-14

Comments in Python

• Anything after a # is ignored by Python

• Why comment?

• Describe what is going to happen in a sequence of code

• Document who wrote the code or other ancillary information

• Turn off a line of code - perhaps temporarily

Z-14

File: chaos.py
A simple program illustrating chaotic behavior

def main():

 print "This program illustrates a chaotic function"
 x = input("Enter a number between 0 and 1: ")
 for i in range(10):
 # print i
 x = 3.9 * x * (1 - x)
 print x

main()

Comments can document
our programs.

Comments can also be
used to temporarily turn
off lines of code without

deleting those lines in case
we want them back later.

Z-14

Summary

• This is a quick overview of Chapter 1

• We will revisit these concepts throughout the course

• Focus on the big picture

	Slide 1
	Computers and Programs Zelle - Chapter 1
	Users .vs. Programmers
	Why do we program?
	Slide 5
	What is Code? Software? A Program?
	How Many Lines in a File?
	Hardware Architecture
	Slide 9
	Definitions
	Slide 11
	Slide 12
	Slide 13
	Programmer Tools
	Becoming a Programmer
	When a Program Runs...
	Slide 17
	Slide 18
	Terms
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Compiler .vs. Interpreter
	Python is an Interpreter
	Running Python Interactively
	Python Interactive
	Slide 28
	Syntax Errors
	The Essence of Programming
	Slide 31
	Program Steps or Program Flow
	Sequential Steps
	Conditional Steps
	Repeated Steps
	Stored (and reused) Steps
	A Python Program
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Variables and Assignment Statements
	Variables and Assignments
	Slide 47
	Slide 48
	Slide 49
	Comments in Python
	Slide 51
	Slide 52
	Summary

