

Chapter 4
Computing With Strings

Charles Severance

Textbook: Python Programming: An Introduction to Computer Science, John Zelle

String Data Type
• A string is a sequence of

characters

• A string literal uses quotes ‘Hello’
or “Hello”

• For strings, + means “concatenate”

• When a string contains numbers, it
is still a string

• We can convert numbers in a
string into a number using int()

>>> str1 = "Hello“
>>> str2 = 'there‘
>>> bob = str1 + str2
>>> print bobHellothere
>>> str3 = '123‘
>>> str3 = str3 + 1
Traceback (most recent call last):
File "<stdin>", line 1, in
<module>TypeError: cannot
concatenate 'str' and 'int' objects
>>> x = int(str3) + 1
>>> print x
124
>>> Z-78 Z-98

Input() is kind of useless

• When using input(“Prompt”)
it is actually looking for an
expression from input

• We use this just to prompt
for numbers for simple
programs

• We use raw_input(“Prompt”)
for non-trivial programs

>>> x = input("Enter ")
Enter hello
Traceback (most recent call last):
 File "<stdin>", line 1, in <module> File
"<string>", line 1, in <module>NameError:
name 'hello' is not defined
>>> x = input("Enter ")
Enter 2 + 5
>>> print x
7
>>>

Z-78

Real Programs
Use String Input

• We prefer to read data in
using strings and then parse
and convert the data as we
need

• This gives us more control
over error situations
and/or bad user input

• Raw input numbers must
be converted from strings

>>> name = raw_input("Enter:")
Enter:Chuck
>>> print name
Chuck
>>> apple = raw_input("Enter:")
Enter:100
>>> x = apple – 10
Traceback (most recent call last):
 File "<stdin>", line 1, in
<module>TypeError: unsupported operand
type(s) for -: 'str' and 'int‘
>>> x = int(apple) – 10
>>> print x
90

Z-79

What Kind of
Thing?

• We have a way to see what
kind of data is in a
variable

• We use a special function
called type() to look at the
kind of data is in a variable

>>> x = "Hello"
>>> print x
Hello
>>> print type(x)
<type 'str'>
>>> y = "Bob"
>>> print y
Bob
>>> print type(y)
<type 'str'>
>>> z = 45
>>> print z
45
>>> print type(z)
<type 'int'>
>>>

Looking Inside Strings

• We can get at every single
character in a string using an
index specifed in square
brackets

• The index value can be an
expression that is computed

• The index value must be an
integer

Z-80

Slicing Strings
• We can also look at any

continuous section of a string
using a colon

• The second number is one
beyond the end of the slice -
“up to but not including”

• If a number is omitted it is
assumed to be the the
beginning or end

>>> greet = "Hello Bob“
>>> greet[0:3]
'Hel‘
>>> greet[5:9]
' Bob‘
>>> greet[:5]
'Hello‘
>>> greet[5:]
' Bob‘
>>> greet[:]
'Hello Bob' Z-81

String indexes from the right

• Negative index numbers
in a string start from the
right (or end) of the
string and work
backwards

>>> greet = "Hello Bob“
>>> greet[-1]
'b‘
>>> greet[-3]
'B'

-1-2-3-4-5-6-7-8-9

Z-80

A Character too Far

• You will get a python error if you
attempt to index beyond the end
of a string.

• So be careful when constructing
index values and slices

>>> zot = "abc“
>>> print zot[5]
Traceback (most recent call last):
File "<stdin>", line 1, in
<module>IndexError: string index
out of range
>>>

String Operators

• We do a lot of work with
strings and Python has a
lot of support for strings

• With respect to strings,
Python is a “smooth
operator”

Z-82

How Long is a String?

• The len() function takes a string as
a parameter and returns the
number of characters in the string

• Actually len() tells us the number
of elements of any set or sequence

>>> greet = "Hello Bob“
>>> print len(greet)
9
>>> x = [1, 2, "fred", 99]
>>> print len(x)
4
>>>

Z-82

Len Function
>>> greet = "Hello Bob“
>>> x = len(greet)
>>> print x
9

len()len()
functionfunction

“Hello Bob”
(a string)

9
(a number)

A function is some stored
code that we use. A

function takes some input
and produces an output.

Guido wrote this code

Len Function
>>> greet = "Hello Bob“
>>> x = len(greet)
>>> print x
9

def len(inp):def len(inp):
 blahblah
 blahblah
 for x in y:for x in y:
 blahblah
 blahblah

“Hello Bob”
(a string)

9
(a number)

A function is some stored
code that we use. A

function takes some input
and produces an output.

Multiplying Strings?

• While it is seldom useful, the
asterisk operator applies to
strings

>>> zig = "Hi“
>>> zag = zig * 3
>>> print zag
HiHiHi
>>> x = “ “*80

Z-81

Looping Through a String

• A string is a sequence (ordered
set) of characters

• The for loop iterates through a
sequence, with the iteration
variable taking successive values
from the sequence each time
the loop body is run

>>> zap = "Fred“
>>> for xyz in zap:
... print xyz
...
F
r
e
d
>>>

Z-96

String Library

String Library
• Python has a number of

string operations which are
in the string library

• We use these library
operations quite often when
we are pulling apart input
data

• To use these, we import the
string library

>>> import string
>>> greet = "Hello Bob“
>>> zap =string.lower(greet)
>>> print zap
hello bob
>>>

Z-96

What is a
Library?

• Some super developers
in the Python world
write the libraries for us
to use

• import string

• Somewhere there is a
fle string.py with a
bunch of def statements

string.py

def split(inp):
 blah
 blah

def upper(inp):
 for i in blah:
 blah

def find(inp):
 blah
 blah

Z-96http://docs.python.org/lib/string-methods.html

Searching a String

• We use the fnd() function
to search for a substring
within another string

• fnd() fnds the frst
occurance of the substring

• If the substring is not found,
fnd() returns -1

• Remember that string
position starts at zero

>>> import string
>>> greet = "Hello Bob"
>>> pos = string.find(greet,"o")
>>> print pos
4
>>> aa = string.find(greet,"z")
>>> print aa
-1

Z-94-95

Making everything UPPER CASE

• You can make a copy of a string in
lower case or upper case

• Often when we are searching for a
string using fnd() - we frst convert
the string to lower case so we can
fnd a string regardless of case

>>> import string
>>> greet = "Hello Bob"
>>> nnn = string.upper(greet)
>>> print nnn
HELLO BOB
>>> lll = string.lower(greet)
>>> print lll
hello bob
>>>

Z-94-95

Search and Replace

• The replace() function
is like a “search and
replace” operation in
a word processor

• It replaces all
occurrences of the
search string with the
replacement string

>>> import string
>>> greet = "Hello Bob"
>>> nstr = string.replace(greet,"Bob","Jane")
>>> print nstr
Hello Jane
>>> greet = "Hello Bob“
>>> nstr = string.replace(greet,"o","X")
>>> print nstrHellX BXb
>>>

Z-94-95

Stripping Whitespace
• Sometimes we want to take

a string and remove
whitespace at the beginning
and/or end

• lstrip() and rstrip() to the
left and right only

• strip() Removes both begin
and ending whitespace

>>> import string
>>> greet = " Hello Bob "
>>> string.lstrip(greet)
'Hello Bob '
>>> string.rstrip(greet)
' Hello Bob'
>>> string.strip(greet)
'Hello Bob'
>>>

Z-94-95

Breaking Strings into Parts

• We are often presented with input that we need to break into pieces

• We use the split() function to break a string into a sequence of strings

>>> import string
>>> abc = "With three words“
>>> stuff = string.split(abc)
>>> print stuff
['With', 'three', 'words']
>>>

Z-92, Z-96

>>> import string
>>> abc = "With three words“
>>> stuff = string.split(abc)
>>> print stuff
['With', 'three', 'words']
>>> print len(stuff)
3
>>> print stuff[1]
three

Z-92, Z-96

>>> print stuff
['With', 'three', 'words']
>>> for w in stuff:
... print w
...
With
three
words
>>>

Split breaks a string into parts produces a list of strings. We think
of these as words. We can access a particular word or loop through

all the words.

>>> import string
>>> line = "first,second,third“
>>> thing = string.split(line)
>>> print thing
['first,second,third']
>>> print len(thing)
1
>>> thing = string.split(line,",")
>>> print thing
['first', 'second', 'third']
>>>

Z-92, Z-96

>>> line = "A lot of spaces“
>>> etc = line.split()
>>> print etc
['A', 'lot', 'of', 'spaces']
>>>

You can specify what delimiter
character to use in the splitting.
Also when you do not specify a

delimiter, multiple spaces is thought
of as “one” delimiter.

You can also just add .split() to the
end of a string variable.

File Processing

File Processing

• A text fle can be thought of as a sequence of lines

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008
Return-Path: <postmaster@collab.sakaiproject.org>
Date: Sat, 5 Jan 2008 09:12:18 -0500To: source@collab.sakaiproject.orgFrom:
stephen.marquard@uct.ac.zaSubject: [sakai] svn commit: r39772 -
content/branches/Details: http://source.sakaiproject.org/viewsvn/?
view=rev&rev=39772

Z-107

Opening a File

• Before we can read the contents of the fle we must tell Python which
fle we are going to work with and what we will be doing with the fle

• This is done with the open() function

• open() returns a “fle handle” - a variable used to perform operations
on the fle

• Kind of like “File -> Open” in a Word Processor

Z-108

Using open()

• handle = open(flename, mode)

• returns a handle use to manipulate the fle

• flename is a string

• mode is “r” if we are planning reading the fle and “w” if we are going
to write to the fle.

http://docs.python.org/lib/built-in-funcs.html

fhand = open("mbox.txt", "r")

Z-108

File Handle as a Sequence

• A fle handle open for read can be
treated as a sequence of strings
where each line in the fle is a string
in the sequence

• We can use the for statement to
iterate through a sequence

• Remember - a sequence is an
ordered set

xfile = open("mbox.txt", "r")

for cheese in xfile:
 print cheese

Counting Lines in a File

• Open a fle read-only

• Use a for loop to read each
line

• Count the lines and print out
the number of lines

pizza = open("mbox.txt", "r")

howmany = 0
for slice in pizza:
 howmany = howmany + 1

print howmany

Z-107, Z-110

Summary
• String Data Type

• input() and raw_input()

• Indexing strings

• Slicing strings

• String operators

• String len() function

• Looping through a string

• String Library

• Searching strings

• Changing Case

• Removing Whitespace

• Splitting a string into parts

• File Processing

• Opening a File

• Looping through a file

	Slide 1
	Chapter 4 Computing With Strings
	String Data Type
	Input() is kind of useless
	Real Programs Use String Input
	What Kind of Thing?
	Looking Inside Strings
	Slicing Strings
	String indexes from the right
	A Character too Far
	String Operators
	How Long is a String?
	Len Function
	Slide 14
	Multiplying Strings?
	Looping Through a String
	String Library
	Slide 18
	What is a Library?
	Slide 20
	Searching a String
	Making everything UPPER CASE
	Search and Replace
	Stripping Whitespace
	Breaking Strings into Parts
	Slide 26
	Slide 27
	File Processing
	Slide 29
	Opening a File
	Using open()
	File Handle as a Sequence
	Counting Lines in a File
	Summary

