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Abstract: We study a multi-item capacitated lot-sizing problem with setup times and pricing (CLSTP) over a finite and discrete
planning horizon. In this class of problems, the demand for each independent item in each time period is affected by pricing decisions.
The corresponding demands are then satisfied through production in a single capacitated facility or from inventory, and the goal
is to set prices and determine a production plan that maximizes total profit. In contrast with many traditional lot-sizing problems
with fixed demands, we cannot, without loss of generality, restrict ourselves to instances without initial inventories, which greatly
complicates the analysis of the CLSTP. We develop two alternative Dantzig–Wolfe decomposition formulations of the problem, and
propose to solve their relaxations using column generation and the overall problem using branch-and-price. The associated pricing
problem is studied under both dynamic and static pricing strategies. Through a computational study, we analyze both the efficacy
of our algorithms and the benefits of allowing item prices to vary over time. © 2009 Wiley Periodicals, Inc. Naval Research Logistics
57: 172–187, 2010
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1. INTRODUCTION

We consider the capacitated lot-sizing problem with setup
times and pricing decisions (CLSTP). This problem gener-
alizes the well-known capacitated lot-sizing problem with
setup times (CLST) by incorporating pricing decisions for
all items, thereby making demand endogenous to the model
rather than exogenous. In the CLST, demands for multiple
items over a finite and discrete planning horizon are given
in advance and they are satisfied by producing in a single
common facility with limited available resource time. The
problem is to find the production plan that minimizes total
costs of production and inventory carriage to satisfy the given
demands. In contrast, in the CLSTP demands are not given;
however, through pricing decisions, the demand levels to sat-
isfy for each item in each period can effectively be chosen.
Since the demand levels influence both revenues and costs,
the goal becomes to maximize profit, which is defined to
be total revenues minus total cost of satisfying the resulting
demands.

Single-item uncapacitated lot-sizing problems were first
studied in the seminal work of Wagner and Whitin [17].
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Thomas [14] was the first to incorporate pricing decisions
in an uncapacitated lot-sizing model, assuming a dynamic
pricing strategy (i.e., prices can vary over time). Kunreuther
and Schrage [11] developed a heuristic approach to solve this
problem for the case, where a constant price should be set for
the item over the planning horizon by restricting the form
of the demand or revenue functions. Gilbert [7] and van den
Heuvel and Wagelmans [9] developed exact algorithms for
this problem; these algorithms run in polynomial time under
further restricted demand functions. Single-item lot-sizing
problems with finite but stationary production capacities
under constant and dynamic pricing strategies were studied
by Geunes et al. [5,6]. Finally, Gilbert [8] considered a mul-
tiproduct planning problem with constant- priced goods that
share procurement capacity under linear procurement cost
functions.

Much research has been done to reduce the integrality
gap of a traditional formulation of the CLST using contin-
uous production and inventory, and binary setup variables.
Lagrangean relaxation and Dantzig–Wolfe decomposition
are two of the techniques that have been studied to find
improved lower bounds. The two methods are equivalent in
that one is the dual of the other and they both exploit the
structure of the problem such that when the capacity
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constraints, which tie the different items, are removed, we are
left with independent single item lot-size problems. Trigeiro
et al. [15] and Hindi et al. [10] contain two examples of heuris-
tic solution techniques that rely on the Lagrangean relax-
ation and subgradient optimization of the problem obtained
by relaxing the capacity constraints. An alternative, and
more successful, approach for this problem is Dantzig–Wolfe
decomposition. Early attempts were made by Manne [13] and
Dzielinski and Gomory [4]. Although the relaxation of their
formulation provides a lower bound to the optimal solution
value of the CLST, the corresponding integer programming
formulation is not equivalent to the CLST in the sense that
they may yield solutions that are suboptimal for the CLST.
Recently, however, Degraeve and Jans [3] developed a cor-
rect Dantzig–Wolfe formulation of the CLST along with a
corresponding branch-and-price algorithm.

In this article, we extend the CLST to account for pric-
ing opportunities, and develop two alternative Dantzig–Wolfe
decomposition formulations for the CLSTP along with cor-
responding branch-and-price algorithms. The column gen-
eration approach that is used to solve a relaxation of the
problem formulation at each node of the branch-and-bound
tree requires the solution of a pricing problem, which is shown
to decompose into appropriate uncapacitated single-item lot-
sizing problems with pricing decisions. As mentioned earlier,
efficient algorithms to solve such problems to optimality exist
in the absence of initial inventories. However, they become
more challenging when initial inventories are present, and we
develop effective polynomial-time algorithms for these prob-
lems that may also be of independent interest for solving
uncapacitated single-item lot-sizing problems with pricing
decisions.

The remainder of the article is organized as follows. In
Section 2, we state our assumptions and present the for-
mulation of the CLSTP. In Section 3, we develop our two
Dantzig–Wolfe formulations and the associated column gen-
eration methods. In Section 4, we discuss algorithms for
solving the resulting pricing problems under dynamic and
static pricing strategies. In Section 5, we provide implemen-
tation details of our branch-and-price algorithm. We present
computational results in Section 6 and conclude the article in
Section 7.

2. THE CLSTP MODEL AND ASSUMPTIONS

We will formally describe the CLSTP and review earlier
work on this problem. Assume there are N items whose
(price-dependent) demands should be satisfied over a plan-
ning horizon of T periods. The amount of resource time
available in the production facility in period t is Ct . (In the
remainder of this article, we will assume that Ct > 0 for
t = 1, . . . , T . If this is not the case, we reduce the model

by eliminating the corresponding setup and production vari-
ables and capacity constraints from the model.) Production
for an item i in period t can only take place after a setup
is performed, which incurs a fixed cost Sit and consumes a
fixed amount of the available resource time bit . In addition,
for each unit item produced a variable production cost cit is
incurred and variable resource time ait is consumed. Let xit

be the amount of production for item i in period t . Moreover,
let the setup indicator variable yit equal 1 if a setup takes
place for item i in period t and 0 otherwise. Inventory for
item i at the end of period t , Iit , is carried to the next period
incurring a cost of hit per unit carried, and no back-orders
are allowed.

Letpit be the price set for item i in period t and suppose that
demand dit changes with price pit according to the relation
dit = Dit (pit ) = αit − βit�it (pit ), where αit and βit > 0
are parameters and πit ≡ �it (pit ) is a price-dependent para-
meter that is called the price effect on demand. Note that
we could of course simply set αit = 0, βit = −1, and
�it (pit ) = Dit (pit ). However, as we will see later, the more
general representation allows us to more effectively study,
and develop efficient algorithms for, models that incorporate
constraints on price patterns (such as the constraint that prices
should be constant over the time horizon) while still allow-
ing for a broad class of demand relations. We assume that the
functions �it are strictly increasing, continuous, and convex.
Notice that with these assumptions, �it has an inverse func-
tion Pit and there exists a one to one relationship between pit

and πit given by

Pit (πit ) = �−1
it (πit ) = pit or, equivalently,

�it (pit ) = P −1
it (pit ) = πit .

Therefore, throughout the article, when we are referring
to a certain price effect πit we will be implicitly referring to
a certain price pit . This allows us to formulate the CLSTP
in terms of πit instead of pit . We will represent the set of
vectors of feasible prices for item i by �i and assume that it
is a nonempty polytope. We next define the revenue for item
i in period t , Rit , as a function of the price effect πit as

Rit (πit ) = pitdit = Pi(πit )(αit − βitπit ).

Given the assumptions on �it , it is easy to show that the
revenue function Rit is continuous and concave. We further
assume that this concave revenue function has no more than J

points at which it is nondifferentiable and achieves its supre-
mum at a finite value π ′

it ≡ arg max
πit

Rit (πit ). We can now

formulate the CLSTP as follows:

maximize
N∑

i=1

T∑
t=1

(
Rit (πit ) − Sityit − citxit − hit Iit

)
(1)
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subject to

N∑
i=1

(bityit + aitxit ) ≤ Ct t = 1, . . . , T (2)

Ii,t−1 + xit = αit − βitπit + Iit

t = 1, . . . , T ; i = 1, . . . , N (3)

xit ≤ Mityit t = 1, . . . , T ; i = 1, . . . , N
(4)

{πi1, . . . , πiT } ∈ �i i = 1, . . . , N (5)

yit ∈ {0, 1} t = 1, . . . , T ; i = 1, . . . , N
(6)

Iit , xit ≥ 0 t = 1, . . . , T ; i = 1, . . . , N (7)

Ii0 = Īi0 i = 1, . . . , N . (8)

The objective function (1) maximizes the difference between
the total revenues and the total costs. Constraints (2) are the
capacity constraints; constraints (3) are the flow balance con-
straints; constraints (4) are the setup forcing constraints; and
constraints (6) and (7) ensure integrality and non-negativity
of the decision variables. In contrast with the CLST and other
traditional lot-sizing problems, we cannot assume without
loss of generality that the item inventories are equal to zero
at the start of the planning period; we therefore assume that
initial inventories are given by Īi0 ≥ 0 and enforced by con-
straints (8). Note that Mit in constraint (4) should be an upper
bound on the quantity of item i produced in period t that is
satisfied without loss of optimality. In particular, we may
set Mit = min{∑T

s=t (αis − βisπ
L
it ), (Ct − bit )/ait }, where

πL
it is any valid lower bound on the price effect of item i in

period t , so that the first term in the minimum is an the upper
bound on the demand for item i in periods t , . . . , T . Later, we
will identify such valid lower bounds under different pricing
strategies.

The set �i in constraint (5) represents the desired pricing
strategy, and in this article, we study two particular pricing
strategies in detail: A dynamic and a constant pricing strat-
egy. The first strategy is one where the price of an item can
vary from period to period. In that case, �i is defined by lower
and upper bound constraints only:

{
(πi1, . . . , πit ) : πL

it ≤ πit ≤ πU
it , t = 1, . . . , T

}

where we may choose πL
it = �−1

it (0) to ensure that the
price of an item is always non-negative, and πU

it = αit/βit

to ensure that the resulting demand is always non-negative.
In fact, in the absence of initial inventories (i.e., Īi0 = 0),
we can potentially tighten the lower bound constraints by
recalling that the revenue function attains its maximum at
π ′

it , and that demands are nonincreasing in the price effect.
This means that any demands resulting from a price effect
below π ′

it would not be profitable. Therefore, we can set

πL
it = max{�−1

it (0), π ′
it }. (Note that, in the presence of ini-

tial inventories, higher demands could be profitable since the
initial inventories are essentially procured costlessly.) In the
second pricing strategy that we consider, the price of an item
should be constant over the planning horizon. We follow ear-
lier studies that consider this pricing strategy by restricting
ourselves to demand functions for which the functions �it are
stationary, i.e., �it = �i for t = 1, . . . , T and i = 1, . . . , N .
In that case, �i is given by:

{
(πi1, . . . , πit ) : πit = πi1, t = 2, . . . , T ; πL

i1 ≤ πi1 ≤ πU
i1

}

where, similarly to the dynamic pricing case, we may set
πL

i1 = �−1
i (0) to ensure that the price of an item is always

non-negative; and πU
i1 = min

1≤t≤T
{αit/βit } to ensure that the

resulting demands are non-negative in each period. Inter-
estingly, under this strategy and demand relation, we have
that πit = πi1 for t = 2, . . . , T , so that we may have that,
in the optimal solution, πit < π ′

it in one or more peri-
ods t even when there are no initial inventories. However,
when there are no initial inventories for item i, we can still
find a potentially tighter lower bound on πi1 by considering
the total revenue curve Ri = ∑T

t=1 Rit . Since each of the
revenue functions Rit attains its maximum at a finite price
effect π ′

it , the function Ri will attain its maximum at a finite
value π ′

i ≡ arg maxπi
Ri(πi) as well. This means that this

value provides a lower bound on πL
i1 provided it is no larger

than πU
i1 . Therefore, without loss of optimality, we can set

πL
i1 = max{�−1

i (0), min{π ′
i , π

U
i1 }}.

3. DANTZIG–WOLFE DECOMPOSITIONS OF
THE CLSTP

3.1. Framework Development

The idea behind applying Dantzig-Wolfe decomposition of
multi-item capacitated lot-sizing problem is to write feasible
solutions as a convex combination of extreme points of con-
vex hulls of judiciously defined subproblems. For the CLSTP,
these subproblems are single-item lot-sizing problems with
pricing, in analogy with the CLST where these subprob-
lems are single-item lot-sizing problems (see Manne [13]
and Degraeve and Jans [3]). In both cases, the relaxation of
such a reformulation is tighter than the relaxation of the tra-
ditional formulation since the traditional formulation of the
subproblems does not have the so-called integrality property.
In this section, we will develop two alternative Dantzig-Wolfe
decompositions of the CLSTP.

As in the traditional CLST, the capacity constraints (2) are
the constraints that tie the different items; if they are removed,
the problem reduces to a collection of independent uncapac-
itated single item lot-sizing problems with pricing decisions
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for each item i. Now let Xi be the region defined by con-
straints (3)–(8) for item i. Note that since �i is bounded,
Xi is a polytope as well. We can therefore build a Dantzig-
Wolfe decomposition formulation of the CLSTP by writing
any feasible solution to the problem as a convex combina-
tion of the finite set of extreme points Ei of conv(Xi). For
ease of exposition, we will refer to a typical element of Ei

as either (y
j

i1, . . . , yj

iT , xj

i1, . . . , xj

iT , I j

i1, . . . , I j

iT , πj

i1, . . . , πj

iT )

or, for short, j , with associated cost κ
j

i = ∑T
t=1(Sity

j

it +
citx

j

it + hit I
j

it ) and capacity consumption ρ
j

it = aity
j

it +
bitx

j

it . Letting the decision variable λ
j

i represent the weight
of production and demand plan j ∈ Ei in the convex
combination, we obtain the following formulation of the
CLSTP:

maximize
N∑

i=1

T∑
t=1

Rit


∑

j∈Ei

π
j

itλ
j

i


 −

N∑
i=1

∑
j∈Ei

κ
j

i λ
j

i

subject to

N∑
i=1

∑
j∈Ei

ρ
j

itλ
j

i ≤ Ct t = 1, . . . , T (9)

∑
j∈Ei

y
j

itλ
j

i ∈ {0, 1} i = 1, . . . , N ; t = 1, . . . , T (10)

∑
j∈Ei

λ
j

i − 1 = 0 i = 1, . . . , N (11)

−λ
j

i ≤ 0 j ∈ Ei ; i = 1, . . . , N . (12)

Constraints (9) ensure that the weighted average of the
capacity requirements of the extreme plans in period t should
not exceed the available capacity in that period, whereas
constraints (10) relate to the original binary setup indica-
tor variables yit and state that the weighted averages of the
extreme point setup variables should represent a valid pro-
duction plan and therefore be binary. Constraints (11) and
(12) ensure that we indeed consider convex combinations
of extreme point plans only. This reformulation leads to a
branch-and-price algorithm in which we use the continuous
relaxation of this formulation to determine upper bounds.
This continuous relaxation itself will be solved through a
column generation approach in which we repeatedly solve a
so-called restricted master problem containing only a (rel-
atively small) subset of the decision variables (columns)
and determine whether additional columns should be added
through an associated pricing problem. Since the aforemen-
tions formulation of the CLSTP contains only a finite number
of decision variables, this column generation algorithm will
converge finitely. We will therefore refer to this formulation
as the Finite Formulation.

Although the finiteness of the formulation is certainly a
major advantage, this approach suffers from a major draw-
back as well: The master problems to be solved in the
column generation phases are concave maximization prob-
lems. While effective algorithms for solving such nonlinear
optimization problems exist, it is nevertheless questionable
whether the need to repeatedly solve such a problem will
yield an effective solution approach to the CLSTP. Our alter-
native approach is based on the following reformulation of
the CLSTP:

maximize
N∑

i=1

T∑
t=1

(rit − Sityit − citxit − hit Iit ) (13)

subject to

N∑
i=1

(
bityit + aitxit

) ≤ Ct t = 1, . . . , T (14)

rit ≤ Rit (πit ) t = 1, . . . , T ;

i = 1, . . . , N (15)

(xi , yi , Ii , πi) ∈ Xi i = 1, . . . , N (16)

where we note that, without loss of optimality, constraints
(15) will be satisfied at equality. Letting X̂i be the region
defined by constraints (15)–(16) for item i, it is not hard to
see that any optimal solution to the CLSTP can be expressed
as a convex combination of a finite number of extreme points
of conv(X̂i). However, this set of extreme points, say Êi , may
contain an uncountably infinite number of points (i.e., we
cannot enumerate its elements and index them by the natural
numbers), making a direct analogon of the earlier approach
impossible since the full master problem would then con-
tain an uncountably infinite number of decision variables.
However, any finite subset of points from Êi would define a
restricted master problem whose continuous relaxation is a
linear program. We will show that this leads to a branch-and-
price algorithm in which we solve a continuous relaxation
of the CLSTP using column generation, where the restricted
master problems are linear programs. However, the price we
have to pay for this is that the column generation phases
may not terminate finitely. We will therefore refer to this
formulation as the Infinite Formulation.

In the remainder of this section, we will develop pricing
problems that are used to generate promising columns in
the column generation phase of both the finite and infinite
formulations.

3.2. Pricing Problem

3.2.1. Finite Formulation

Although we have not yet explicitly characterized the set of
extreme points Ei , we are now able to derive the general form
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of the pricing problem that, in the column generation phase of
our algorithm, identifies one or more additional columns that
should be added to the master problem. To this end, consider
the continuous relaxation of the binary constraints (10):

∑
j∈Ei

y
j

itλ
j

i ≤ 1 i = 1, . . . , N ; t = 1, . . . , T .

Since in any production schedule j ∈ Ei , we have that
y

j

it ∈ {0, 1} for all t = 1, . . . , T , constraints (11) and (12)
imply that this constraint is redundant and we may remove
it from the problem to obtain a continuous relaxation of the
CLSTP. Since the objective function is concave and the feasi-
ble region is a polytope, a feasible solution vector λ̄ is optimal
to the relaxation problem if and only if there exists a solu-
tion to the following KKT conditions (in generalized form,
to account for revenue functions that are not everywhere
differentiable), where the dual variables θt are associated
with constraints (9), φi with constraints (11), and γ

j

i with
constraints (12):

−
T∑

t=1

∂Rit


∑

j∈Ei

π
j

it λ̄
j

i


 + κ

j

i

+
T∑

t=1

θtρ
j

it − γ
j

i + φi � 0 j ∈ Ei ; i = 1, . . . , N

θt




N∑
i=1

∑
j∈Ei

ρ
j

it λ̄
j

i − Ct


 = 0 t = 1, . . . , T

φi


∑

j∈Ei

λ̄
j

i − 1


 = 0 i = 1, . . . , N

−λ̄
j

i γ
j

i = 0 j ∈ Ei ; i = 1, . . . , N

γ
j

i ≥ 0 j ∈ Ei ; i = 1, . . . , N

θt ≥ 0 t = 1, . . . , T .

Using the definitions of κ
j

i and ρ
j

it , the first set of KKT
conditions is equivalent to

−
T∑

t=1

uitπ
j

it +
T∑

t=1

(
S ′

it y
j

it + c′
it x

j

it + hit I
j

it

) + φi

= γ
j

i ≥ 0 j ∈ Ei (17)

where

ūit ∈ ∂Rit


∑

j∈Ei

π
j

it λ̄
j

i


 t = 1, . . . , T ; i = 1, . . . , N

S ′
it = Sit + θtbit t = 1, . . . , T ; i = 1, . . . , N

and

c′
it = cit + θtait t = 1, . . . , T ; i = 1, . . . , N .

Now suppose that λ̄ is actually the optimal solution to a
restricted relaxed master problem with only a subset of the
extreme points inEi (i = 1, . . . , N ) along with a dual solution
(θ̄ , φ̄, γ̄ ). If (17) happens to be satisfied then we can conclude
that we have found the optimal solution to the relaxation.
Otherwise, we can add to the master problem any extreme
plans j ∈ Ei for which (17) is violated. In particular, we may
choose to add, for each item i, the extreme plan for which
(17) is most violated (if any). We can find that plan by find-
ing an extreme point optimal solution to the following pricing
problem for each item i:

maximize
T∑

t=1

ūitπit −
T∑

t=1

(
S̄ ′

it yit + c̄′
it xit + hit Iit

) − φ̄i

subject to (PP-F)

(xi , yi , Ii , πi) ∈ Xi

where S̄ ′
it = Sit + θ̄t bit and c̄′

it = cit + θ̄t ait (t =
1, . . . , T ; i = 1, . . . , N ). Clearly, if the optimal solution to
this problem is negative, the optimal solution corresponds to
the constraint in (17) that is most violated. Now (PP-F) is
an uncapacitated single-item lot-sizing problem with pricing
decisions, linear revenue functions, and initial inventories,
and we will focus on solution approaches to this problem in
Section 4.

3.2.2. Infinite Formulation

As mentioned earlier, the finiteness of the approach devel-
oped in Section 3.2.1 comes at the expense of a master
problem that is a concave optimization problem. We could
address this fact by restricting ourselves to piecewise-linear
revenue functions, which would allow for the reformulation
of the relaxation of the finite formulation as a linear pro-
gramming problem. In general, however, we propose to use
a different approach which, as it will turn out, essentially
constructs a sequence of ever more accurate piecewise-linear
concave lower approximations to the revenue functions. In
light of the reformulation (13)–(16) of the CLSTP, intuition
suggests that the pricing problem for generating additional
columns should be

maximize
T∑

t=1

Rit (πit ) −
T∑

t=1

(
S̄ ′

it yit + c̄′
it xit + hit Iit

) − φ̄i

subject to (PP-I)

(xi , yi , Ii , πi) ∈ Xi .
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Now (PP-I) is an uncapacitated single-item lot-sizing prob-
lem with pricing decisions, concave revenue functions, and
initial inventories, and we will focus on solution approaches
to this problem in Section 4. It is clear that this approach
suffers from two potential complications: (i) The column
generation algorithm could potentially generate an infinite
number of columns and (ii) it is not obvious that the procedure
converges to an optimal solution to the relaxation.

However, the correctness of the aforementioned algorithm
follows from the fact that it is an application of the algo-
rithm proposed by Dantzig [2] for convex programming
problems. Dantzig [1] proved that this column generation
algorithm either finds the optimum in a finite number of iter-
ations or converges to the optimal solution as long as there
exists a nondegenerate basic solution to the master prob-
lem. (In Section 5, we will address the problem of finding
a nondegenerate basic solution to the master problem.) Since
each iteration of this algorithm adds a new breakpoint to a
piecewise-linear concave underapproximation to the concave
revenue functions, this algorithm is sometimes also called
grid linearization (see Lasdon [12]). This method for creat-
ing a piecewise-linear approximation is more efficacious than
creating a linear approximation to the function in advance
since, with this approach, we only introduce breakpoints as
needed and make an accurate approximation to the function
only in the neighborhood of promising solutions.

4. SOLVING THE PRICING PROBLEM

For both the finite and the infinite formulation, the pricing
problem for a given item is of the following generic form:

maximize
T∑

t=1

Rt(πt ) −
T∑

t=1

(
Styt + ctxt + htIt

)

subject to (PP)

It−1 + xt = αt − βtπt + It t = 1, . . . , T

xt ≤ Mtyt t = 1, . . . , T

{π1, . . . , πT } ∈ �

yt ∈ {0, 1} t = 1, . . . , T

It , xt ≥ 0 t = 1, . . . , T

I0 = Ī0. (18)

It will be convenient to eliminate the inventory variables
using the inventory balance constraints (18):

Iit = Īi0 +
t∑

j=1

xit −
t∑

j=1

(
αit − βitπit

)
t = 1, . . . , T .

Then, if we define

R̃t (πt ) = Rt(πt ) − πtβt

T∑
τ=t

hτ t = 1, . . . , T

c̃t = ct +
T∑

τ=t

hτ t = 1, . . . , T

we can formulate (PP) as

maximize
T∑

t=1

R̃t (πt ) −
T∑

t=1

(
Styt + c̃t xt

)

subject to

Ī0 +
t∑

s=1

xs −
t∑

s=1

(
αs − βsπs

) ≥ 0 t = 1, . . . , T

xt ≤ Myt t = 1, . . . , T

{π1, . . . , πT } ∈ �

yt ∈ {0, 1} t = 1, . . . , T

xt ≥ 0 t = 1, . . . , T

(where we have omitted the constant − ∑T
t=1 ht Ī0 from the

objective).

4.1. Dynamic Pricing Strategy

Recall that, under a dynamic pricing strategy, the set �

contains only bound constraints. For this case, Thomas [14]
proposes a dynamic programming algorithm that solves the
problem in O(T 2) time when no initial inventory is present
and the inverse of the derivative of the revenue functions
can be evaluated in constant time. This algorithm is based
on the observation that there exists an optimal production
and pricing plan that possesses the zero-inventory-ordering
(ZIO) property and can therefore, like for the standard eco-
nomic lot-sizing problem with fixed demands (see Wagner
and Whitin [17]), be decomposed into a sequence of regener-
ation intervals. (We will, with a slight abuse of notation, refer
to such solutions as extreme point solutions.) The problem
can then be solved by determining the optimal price effects
(or, equivalently, demands or prices) for the periods in each
regeneration interval. Letting f (s, t) be the maximum profit
obtainable in the regeneration interval (s, t) (i.e., in periods
s, . . . , t) and F(t) the maximum profit obtainable in periods 1
through t , the following backward dynamic recursion solves
the problem:

F(s) = max
t :t≥s

{
f (s, t) + F(t + 1)

}
s = 1, . . . , T

F(T + 1) = 0.
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To generalize this result to the case with initial inventory,
we go back to the underlying core observation that, for fixed
price effects (i.e., fixed demands) the resulting concave cost
minimization problem can be formulated as a shortest path
problem in a network with a demand node for each period,
in addition to two supply nodes corresponding to production
and initial inventory. It is well-known that there exists an opti-
mal solution to the problem in which the set of arcs carrying
positive flow is acyclic. If we then, similarly to the problem
without initial inventories, define a regeneration interval as
starting in either the first period or a period with no incoming
inventory, we can immediately conclude that we may again
limit ourselves to solutions that decompose into regenera-
tion intervals. Moreover, for any regeneration interval (s, t)
with s > 1, we can determine the associated optimal profit
f (s, t) in precisely the same way as for the problem with-
out initial inventories. For regeneration intervals of the form
(1, t), however, the situation is different. In the first regenera-
tion interval of an optimal extreme point solution, production
will take place in no more than one period, so that we should
consider two different situations: (i) No production period
and (ii) exactly one production period in {1, . . . , t}. For each
candidate first regeneration interval (1, t), we will therefore
consider both options and set f (1, t) to the largest corre-
sponding profit. Interestingly, since we know that there exists
an extreme point optimal solution to the overall problem, we
may ignore any nonnegativity constraints on the inventories
in the regeneration interval and discard any candidate solu-
tions in which these are violated. Next, we consider in more
detail the two situations mentioned earlier.

1. If there is no production in the regeneration interval
(1, t), the total demand satisfied in periods 1 through
t is equal to the initial inventory Ī0 if t < T and
will not exceed Ī0 if t = T . In other words, ignoring
the nonnegativity constraints on the inventory levels
as discussed earlier we should solve the following
optimization problem if the entire initial inventory is
used up in regeneration interval (1, t):

maximize
t∑

s=1

R̃s(πs)

subject to

t∑
s=1

(
αs − βsπs

) = Ī0

πL
s ≤ πs ≤ πU

s s = 1, . . . , t .

Appropriately redefining R̃ outside the bound con-
straints, we obtain that an optimal solution to this
problem is given by values of r and πt (t = 1, . . . , t)
such that

R̃′+
s (πs) ≤ r ≤ R̃′−

s (πs) s = 1, . . . , t (19)
s∑

t=1

(
αs − βsπs

) = Īi0

where R̃′+
s (πs) and R̃′−

s (πs) are, respectively, the
right and left derivatives of R̃s , respectively. (Note
that, due to the bound constraints, we set R̃′−

s (πL
s ) =

0 and R̃′+
s (πU

s ) = −∞.) Interestingly, this is exactly
the same setting studied in Geunes et al. [5] for
the lot-sizing problem with constant capacities and
dynamic pricing decisions in a regeneration interval,
where the first period is the only production period
and the production capacity is equal to Īi0. The results
in that article then imply that this subproblem can be
solved in O((J + 1 + R log ν)T ) time, where

ν = max
s=1,...,t

R̃′+
s

(
πU

s

) − min
s=1,...,t

R̃′−
s

(
πL

s

)

and O(R) is the time required to find a value of πs

satisfying (19) for some value of r .
In case t = T , we also have to account for

the possibility that some of the initial inventories
remain at the end of the planning horizon. This
will only happen if there is no marginal revenue
associated with satisfying any demand from these
remaining inventories. In other words, this solution
should satisfy R̃′+

s (πs) = 0 for s = 1, . . . , T and∑s
t=1(αs − βsπs) ≤ Īi0. It is easy to see that such a

solution, if one exists, can be found in O(RT ) time.
2. Next, suppose that production in regeneration inter-

val (1, t) takes place in period τ . We again ignore
the nonnegativity constraints on the inventory levels
as discussed earlier. Moreover, we will have that the
production quantity in period τ satisfies

xτ = Ī0 −
t∑

s=1

(
αs − βsπs

)

so that we should solve the following optimization
problem:

maximize
t∑

s=1

(
R̃s(πs) − c̃τ βsπs

)

subject to

πL
s ≤ πs ≤ πU

s s = 1, . . . , t

(where we have omitted the constant −Sτ − c̃τ Ī0 +
c̃τ

∑t
s=1 αs from the objective). It is easy to see that

an optimal solution to this subproblem satisfies

R̃′+
s (πs) ≤ c̃τ βs ≤ R̃′−

s (πs) s = 1, . . . , T
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and this solution can be found in O(RT ) time. This
result is consistent with a similar result in Geunes
et al. [5] for regeneration intervals with a single
fractional procurement period in the lot-sizing prob-
lem with constant capacities and dynamic pricing
decisions.

Now observe that there are O(T 2) regeneration intervals
with s > 1, and the profits of these can be found in O(RT 2)

time. Moreover, for the O(T ) initial regeneration intervals,
we can find the profit in case (i) in O((J + 1 + R log ν)T ),
and the profit in case (ii) for each of the O(T ) fixed pro-
duction periods in O(RT ) time. This means that (PP) under
a dynamic pricing strategy can be solved in O((J + 1 +
R log ν)T 2) time. In particular, this immediately implies that,
for the special case where the revenue functions are linear
(which is relevant in our algorithm for the Finite Formula-
tion), (PP) under a dynamic pricing strategy can be solved in
O((1 + log ν)T 2) time.

4.2. Constant Pricing Strategy

Under a constant pricing strategy, we add the constraints
πt = π1 for t = 2, . . . , T to the definition of the set �. For
convenience, we will in this section simply denote the single
price effect variable by π , and the corresponding bounds by
πL and πU . van den Heuvel and Wagelmans [9] study this
problem in the case of zero initial inventories and under the
assumption that period 1 is a production period and develop
an exact algorithm.

In general, suppose that τ is the first production period.
Noting that we will again restrict ourselves to extreme point
solutions, this production period is either (i) the first period
of the second regeneration interval (and demand in the first
regeneration interval is satisfied precisely by initial inventory
only) or (ii) in the first regeneration interval (and demand in
the first regeneration interval is satisfied by initial inventory
and production in period τ ). We will consider these two cases
separately (where, when appropriate, we will use the notation
from Section 4.1):

1. In this case, it is easy to see that this can only happen
if τ > 1 and

I0 =
τ−1∑
s=1

(αs − βsπ)

or, equivalently,

π = π(τ) ≡
∑τ−1

s=1 αs − I0∑τ−1
s=1 βs

.

If, in the latter case, π(τ) ∈ [πL, πU ] we can then
determine all demand levels and solve a standard

economic lot-sizing problem over periods τ , . . . , T
using the algorithm of Wagelmans et al. [16].

2. In this case, a particular price effect is only valid if
the initial inventories are sufficiently high to satisfy
all demands up to the first production period, so that
we should ensure that

I0 ≥
τ−1∑
s=1

(αs − βsπ)

or, equivalently, we should restrict ourselves to
values

π ∈ [
max{πL, π(τ)}, πU

]
.

We next follow van den Heuvel and Wagelmans [9]
and write the total lot-sizing costs as a function of
the price effect π for a given set S ⊆ {τ , . . . , T }
of production periods (with, of course, τ ∈ S).
Letting τt (S) denote the first production period in
S ∩ {t , . . . , T }, this cost function reads as follows:

C(τ ,S)(π)

=
∑
t∈S

St − c̃τ Ī0 +
T∑

t=τ

c̃τt (S)

(
αt − βtπ

)

=
∑
t∈S

St − c̃τ Ī0 +
T∑

t=τ

c̃τt (S)αt −
T∑

t=τ

c̃τt (S)βtπ

= A(τ ,S) − B(τ ,S)π

where A(τ ,S) and B(τ ,S) are defined appropriately.
This means that C(τ ,S) is piecewise-linear and con-
vex and, moreover, has the same structure as the cost
function in van den Heuvel and Wagelmans [9]. We
can therefore find the optimal price effect for this
case using their algortithm.

It is interesting to note that, for the special case where the
revenue functions are linear (which is relevant in our algo-
rithm for the Finite Formulation), we only need to consider
the O(T ) (valid) price effects in {πL, πU } ∪ {π(τ) : τ =
2, . . . , T }, yielding a much more efficient algorithm for solv-
ing the (PP) under a constant pricing strategy in this special
case.

5. BRANCH-AND-PRICE ALGORITHM

In this section, we discuss some implementation details of
our branch-and-price algorithm. In particular, we will address
how we guarantee convergence of the column generation pro-
cedure for solving the infinite formulation. However, before
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we proceed it is important to note that, since finite termi-
nation of the column generation algorithm for the infinite
formulation cannot be guaranteed, we have to allow for a
finite prespecified tolerance; in particular, we will consider
the problem solved as soon as we find a solution that is within
ε > 0 in value of the optimal solution.

5.1. Initial Columns and Convergence

To start the column generation process at a particular node
with either the finite or the infinite formulation, we need to
find an initial basic feasible solution to the master problem at
that node. When such a feasible solution can be found, con-
vergence with finite formulation is guaranteed because the
number of extreme points of the formulation is finite. How-
ever, to guarantee convergence with the infinite formulation
Dantzig [1,2] shows that at least one nondegenerate basic fea-
sible solution to the master problem at a node should exist.
In our implementation of this method, we will make sure that
we start the algorithm with an initial nondegenerate basic
feasible solution.

5.1.1. Dynamic Pricing Strategy

In the case of dynamic prices, we start with an initial solu-
tion in which no production takes place for any of the items.
Furthermore, in these production plans, we set the prices as
high as possible, i.e., πit = πU

it (t = 1, . . . , T ), so that the
demands in all periods are zero. This means that, if there are
positive initial inventories these are carried over to the end
of the planning horizon without being consumed. This solu-
tion can be represented through a column for each item, each
of which represents a “production plan” for the correspond-
ing item. A basis for this initial solution then consists of the
slack variables of the capacity constraints (9) and the λi vari-
ables corresponding to the initial production plans for items
i = 1, . . . , N . Since capacities are strictly positive this basis
is nondegenerate so that convergence of the column genera-
tion algorithm for both the finite and the infinite formulation
is guaranteed.

5.1.2. Constant Pricing Strategy

Under the assumption of a constant price for each item, it
may not be possible to find a feasible solution in which all
item demands are zero in each period. In particular, setting
the prices to their upper bounds, i.e., πi1 = πU

i1 = min
t

{ αit

βit
}

does not guarantee that the corresponding demands are all
equal to zero, so that positive production may be required
to satisfy these demands. In fact, finding a feasible integral
solution to the master problem with the prices that correspond
to the lowest possible demands (or recognizing that such a
solution does not exist) is NP-hard (since it is the feasibility

question for an instance of the CLST problem). We therefore
propose to use a two-phase column generation approach in
which we first find a (nondegenerate) basic feasible solution
to the problem (if one exists), and then solve our optimization
problem from this starting solution. With the prices at their
upper bounds as mentioned earlier, we start the first phase
by attempting to satisfy the corresponding demands through
initial inventories. If these initial inventories suffice to satisfy
all demands, then we have obtained an initial nondegenerate
basic feasible solution as in Section 5.1.1. However, if any
demands remain unsatisfied, we solve an auxiliary problem
where we relax the capacity constraints and maximize the
minimum amount of unused capacity (which may be neg-
ative!) over periods t = 1, . . . , T . If the optimal objective
function value of this problem is negative, we conclude that
there is no feasible solution to our problem (at the current
node in the branch-and-bound tree). Otherwise, if the optimal
objective function value is non-negative, the optimal solution
corresponds to a nondegenerate basic feasible solution which
can be used to start column generation at that node.

5.2. Bounding

At each iteration of the column generation process, we
calculate upper and lower bounds on the optimal objective
function value of the relaxed problem. Let vk

RMP be the opti-
mal value of the restricted master problem at iteration k.
Clearly, this provides a lower bound on the optimal solution
value of the relaxed master problem. Moreover, letting vk

SPi

be the reduced costs of the columns that we have generated
for items i = 1, . . . , N at iteration k of the column generation
process an upper bound on the optimal solution value of the
relaxed master problem is given by

vk
RMP +

N∑
i=1

vk
SPi

(see Dantzig [2] and Lasdon [12]). We stop whenever the dif-
ference between these upper and lower bounds is below the
tolerance ε > 0. (Note that, when using the Finite Formula-
tion, we could use a tolerance of ε = 0 if desired; however,
when using the Infinite Formulation finite termination can
only be guaranteed when a positive tolerance is used.)

5.3. Branching

When the column generation stops at the root node, we
check whether the binary constraints are satisfied for the yit

variables. If none of the yit variables are fractional, we con-
clude that we have found an integral solution at the root node
(that is within the desired tolerance). Otherwise, we branch on
one of the fractional yit variables, branching down by impos-
ing the constraint yit = 0 and branching up by imposing the
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Table 1. Comparison of branching strategies.

Formulation

Finite Infinite

# Items 10 20 30 10 20 30

Branching strategy
Closest to 0 3.80 4.20 4.00 0.70 0.30 0.26
Closest to 0.5 3.36 3.47 3.26 0.66 0.38 0.20
Closest to 1 3.33 3.43 3.20 0.63 0.34 0.20

constraint yit = 1 on the child nodes. To obtain a high-quality
and robust selection rule for branching, we performed prelim-
inary experiments on a subset of test instances. In particular,
we tested the following branching strategies on an indepen-
dent set of instances: (i) Branching on the variable closest to
0, (ii) branching on the variable closest to 0.5, and (iii) branch-
ing on the variable closest to 1. Table 1 above summarizes
the average error gap that we obtained with these branch-
ing strategies. Although there is no branching strategy that
uniformly dominates, branching on the variable closest to 1
resulted in lower error gaps in the majority of preliminary test
instances. Therefore, for the remainder of the computational
experiments, we focused on that branching strategy.

5.4. Search Strategy and Heuristics

We perform a hybrid depth-first search strategy where,
after the two child nodes of the current node are generated,
linear relaxations in both child nodes are solved to optimal-
ity. Then, we first investigate the child node with the higher
upper bound on the objective value of the relaxed problem.

After we complete the column generation process at a
node, we perform a simple rounding heuristic in an attempt to
find a feasible solution. We set a cutoff value between 0 and
1, and round yit variables that exceed the cutoff up to 1 and
down to 0 otherwise. We then solve for the optimal values of
the remaining decision variables to obtain an integer solution.
This procedure is repeated for different values of the cutoff
parameter: Increasing from 0.1 to 1 at 0.1 increments. Similar
to what was observed by Degraeve and Jans [3], we empiri-
cally find that the objective values obtained by this repeated
rounding heuristic appear to follow a unimodal pattern as the
cutoff value is increased. Therefore, we stop this heuristic as
soon as the objective value decreases.

6. COMPUTATIONAL RESULTS

6.1. Creating Problem Instances

For our computational tests, we modified a collection
of 540 widely used problem instances created by Trigeiro
et al. [15] for the CLST. These problem instances for the

CLST were generated using a full factorial design on five
problem characteristics: Number of items, coefficient of vari-
ation of demand across periods, time between orders, average
setup times, and capacity utilization, while the number of
periods was fixed to T = 20. In our problem instances, the
second characteristic was not used because we do not have a
fixed demand pattern. Instead, we created parameter values
for the demand functions as follows: αit fixed at 250 and βit

randomly generated from the uniform distribution on the set
{2.0, 2.5, 3.0}. This yields a range of demand values from 0 to
250. Furthermore, we chose �it (pit ) = pit , corresponding
to a commonly used linear relationship between demands and
prices. This, in turn, means that the revenue functions are qua-
dratic: Rit (πit ) = αitπit −βitπ

2
it , so that our instances of the

CLSTP are mixed-integer quadratic optimization problems.
Our problem instances have the following properties with

respect to the remaining four characteristics. First, we con-
sider instances for which the number of items is N ∈
{10, 20, 30}. With respect to the time between orders (TBO),
capacities, and setup times, we first solved all problem
instances without capacity constraints but with Trigeiro’s val-
ues for the setup times. For each instance, the ratio between
setup and holding costs determines the average TBO. We
then classified all instances according to an average TBO of
1 (low), 2 (medium), and 4 (high) periods. Next, the capac-
ity in each period was set to 50% (low), 60% (medium),
and 70% (high) of the average capacity consumption over
the planning horizon on the unconstrained solution. We then
further grouped all instances according to setup times con-
suming 10% (low) or 30% (high) of total capacity. Finally, we
randomly generated initial inventories for all items in such a
way that, on average, the initial inventory satisfies about half
of the time between setups. In particular, for instances with
high, medium, and low TBO we generated initial inventories
uniformly from the interval [0, 400], [0, 200], and [0, 100],
respectively.

6.2. Computational Tests

We tested both of our algorithms on each of the 540
problem instances under both dynamic and constant pric-
ing strategies (for a total of 1080 problem instances). The
linear and quadratic mixed-integer problems were all solved
using CPLEX 11.1. In addition, we solved the formulation
of the CLSTP from Section 2 of each instance directly using
CPLEX as well. All experiments were performed on a 3.4
Ghz Pentium IV System with 2 GB of RAM under Windows
XP. Because of the difficulty of solving especially large-scale
instances to optimality, we imposed a global upper bound on
the solution time of 1200 s for all instances and all solution
approaches.

We summarize our results by pricing strategy (constant,
dynamic), capacity values (low, medium, high), setup time
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Table 2. Average percent error gaps obtained with the Finite For-
mulation using its own upper bound (and using the upper bound
found with the Infinite Formulation).

Pricing strategy

Constant Dynamic

# Items 10 20 30 10 20 30

Capacity
Low 2.55 2.30 2.26 3.25 3.26 3.56

(1.89) (1.65) (1.68) (1.16) (1.17) (1.50)
Medium 1.98 1.69 1.56 2.41 2.27 2.60

(1.47) (1.22) (1.11) (0.85) (0.84) (1.18)
High 1.27 0.97 0.85 1.54 1.39 1.59

(0.97) (0.72) (0.61) (0.56) (0.51) (0.75)
Setup time

Low 1.35 1.07 1.05 1.76 1.74 1.89
(0.97) (0.72) (0.70) (0.59) (0.59) (0.77)

High 2.51 2.24 2.06 3.04 2.87 3.28
(1.92) (1.67) (1.57) (1.11) (1.10) (1.51)

TBO
Low 1.45 1.26 1.14 1.67 1.78 2.04

(1.10) (0.90) (0.79) (0.56) (0.67) (0.91)
Medium 1.82 1.56 1.47 2.34 2.25 2.50

(1.24) (1.05) (1.00) (0.79) (0.81) (1.09)
High 2.53 2.15 2.06 3.22 2.88 3.21

(1.99) (1.64) (1.61) (1.21) (1.05) (1.43)

values (low, high), and TBO (low, medium, high) to assess
the effect of the corresponding parameters on the algorithms’
performance. We define the error gap as (UB − LB)/LB,
where LB is a lower bound, i.e., the value of the best inte-
gral solution found by the algorithm within the given time
limit, and UB is the best upper bound on the optimal integer
solution value to the problem instance, i.e., the maximum of
all upper bounds at the leaf nodes of the branch-and-bound
tree upon termination. (We would like to remark here that
we have observed that the upper bound found at the root
node is generally tighter for the Infinite Formulation than for
the Finite Formulation; in particular, the upper bound for the
latter can be up to about 5% higher than that for the former.)
Tables 2 and 3 show the average percent error gaps using the
Finite and Infinite Formulation, respectively, whereas Table
4 shows the average percent error gap using CPLEX, where
in each case the best LB and UB found with the correspond-
ing method was used to determine the gap. We observed that,
consistently, the UB obtained by the Infinite Formulation was
tighter than that obtained with the other methods. We there-
fore also report an improved bound on the actual gap achieved
with the Finite Formulation and CPLEX that uses the best UB
found using the Infinite Formulation; these are provided in
parentheses in Tables 2 and 4).

From these tables, we may immediately conclude that the
performance of the Infinite Formulation is far superior to
that of the Finite Formulation and CPLEX in terms of solu-
tion quality obtained within the specified time limit. In fact,

Table 3. Average percent error gaps obtained with the Infinite
Formulation using its own upper bound.

Pricing strategy

Constant Dynamic

# Items 10 20 30 10 20 30

Capacity
Low 0.79 0.37 0.25 0.65 0.33 0.21
Medium 0.72 0.29 0.20 0.48 0.23 0.12
High 0.49 0.21 0.15 0.34 0.16 0.11

Setup time
Low 0.47 0.20 0.13 0.32 0.15 0.09
High 0.86 0.38 0.27 0.67 0.33 0.20

TBO
Low 0.44 0.21 0.14 0.24 0.13 0.10
Medium 0.61 0.27 0.19 0.43 0.21 0.12
High 0.95 0.40 0.27 0.81 0.38 0.23

CPLEX was able to find a better integral solution than the
Infinite Formulation in only 56 of the 540 instances with
a dynamic pricing strategy (all with 10 items) and none of
the 540 instances with a static pricing strategy. In contrast,
CPLEX was able to find a better integral solution than the
Finite Formulation in 490 of the 540 instances with a dynamic
pricing strategy and 352 of the 540 instances with a constant
pricing strategy.

Moreover, as already mentioned, the upper bound obtained
using the Infinite Formulation is superior to the one obtained

Table 4. Average percent error gaps obtained with CPLEX using
its own upper bounds (and using the upper bound found with the
Infinite Formulation).

Pricing strategy

Constant Dynamic

# Items 10 20 30 10 20 30

Capacity
Low 3.85 5.22 5.52 3.37 4.34 4.47

(1.14) (1.18) (1.28) (0.58) (0.68) (0.71)
Medium 3.75 4.46 4.66 3.29 3.83 3.89

(0.86) (0.89) (0.95) (0.52) (0.59) (0.59)

High 2.96 3.48 3.71 2.80 3.13 3.09
(0.62) (0.70) (0.84) (0.42) (0.46) (0.46)

Setup time
Low 2.41 3.00 3.15 2.37 2.78 2.84

(0.61) (0.63) (0.67) (0.37) (0.41) (0.44)
High 4.63 5.78 6.10 3.93 4.75 4.79

(1.14) (1.20) (1.36) (0.64) (0.74) (0.73)
TBO

Low 2.69 3.25 3.59 2.59 3.05 3.17
(0.58) (0.62) (0.83) (0.36) (0.38) (0.44)

Medium 3.50 4.12 4.36 3.17 3.66 3.67
(0.80) (0.82) (0.92) (0.48) (0.52) (0.52)

High 4.37 5.79 5.93 3.69 4.58 4.61
(1.24) (1.29) (1.27) (0.68) (0.83) (0.81)
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Figure 1. Comparison of branch-and-price and CPLEX performance on a representative set of test problems with 10 items, low TBO, and
constant pricing.

with the other methods, which has the additional advantage
that a much more accurate assessment of solution quality is
obtained. The error gap tends to decrease as the number of
items increases for the Infinite Formulation, as well as for the
Finite Formulation under constant prices, while the reverse
is true for the Finite Formulation under dynamic prices and
for CPLEX. The former result was observed for the CLST by
Degraeve and Jans [3] and Trigeiro et al. [15]. That result was
expected since Manne [13] showed that the linear relaxation
of the Dantzig-Wolfe formulation of this problem is a good
approximation to the integer problem, whenever the number
of items is large when compared with the number of capacity

constraints. It is interesting that this result, at least empiri-
cally, seems to extend to the branch-and-price approaches to
the CLSTP. A possible explanation for the seemingly contra-
dictory observation for the Finite Formulation under dynamic
prices is that, under that formulation, the master problem is a
nonlinear programming problem. Apparently, the increased
difficulty of the master problem outweights the benefits of
the increased tightness of the master problem for larger
problem instances (i.e., ones with larger number of items and
dynamic pricing). On the basis of our results, we conjecture
that the tightness of the continuous relaxation of the tradi-
tional formulation behaves in the opposite direction, which
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Figure 2. Comparison of branch-and-price and CPLEX performance on a representative set of test problems with 30 items, high TBO, and
constant pricing.

would explain the increased error gaps as the number of items
increases.

In general, the error gap increases as capacities get tighter,
average setup times increase, and TBO increases. We also
observe that the effects of capacity, setup time, and TBO are
more pronounced when the number of items is small. More-
over, it is interesting to note that the error gaps are lower under
dynamic prices than under constant prices when using the
Infinite Formulation while the reverse is true when using the
Finite Formulation. Finally, we observe that the advantage of
our branch-and-price algorithm with the Infinite Formulation
over CPLEX increases as problems become more difficult

to solve (i.e., as capacities get tighter, average setup times
increase, and TBO increases). This is particularly apparent
under a constant pricing strategy, high TBO values, and a
larger number of items.

The aforementioned results all used a fixed running time
of 1200 s. To assess the rate of convergence of our branch-
and-price algorithms and CPLEX, for several representative
instances, we create a plot that tracks the upper and lower
bounds found by the algorithms as time progresses. Figures
1–4 show the plots on a representative set of test instances
with 10 and 30 items, respectively. The test instances for the
figures were selected to show the behavior of the solution
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Figure 3. Comparison of branch-and-price and CPLEX performance on a representative set of test problems with 10 items, high TBO, and
dynamic pricing.

approaches on a range of combinations of TBO, setup time,
and capacity values. The caption with each table indicates
the number of items, low/high TBO, and the pricing strategy
used. Moreover, each figure is labeled with the remaining
problem characteristics; e.g., “low ST, high C” represents
an instance with low setup times and high capacities. In
all figures, the solid lines represent lower bounds and the
dashed lines upper bounds. The bounds for the branch-and-
price algorithm with the Infinite Formulation (IF) and the
Finite Formulation are drawn in black and grey bold lines,
respectively, whereas the bounds for CPLEX are drawn in a
thin line. We see from the figures that the branch-and-price

algorithm using the Infinite Formulation finds high-quality
integer solutions fast and dominates CPLEX in terms of lower
and upper bounds over time. These figures also suggest that
the branch-and-price algorithm based on the Infinite Formu-
lation performs much better than CPLEX on instances with
a larger number of items.

Finally, to quantify the effect of the choice of pricing strat-
egy on the optimal profit, we compared the lower bounds
obtained by the Infinite Formulation with both a constant and
a dynamic pricing strategy. In our test problems, the dynamic
pricing strategy enjoyed an overall average additional profit
of 3.54% over the profit obtained with a constant pricing
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Figure 4. Comparison of branch-and-price and CPLEX performance on a representative set of test problems with 30 items, low TBO, and
dynamic pricing.

strategy. Table 5 breaks this profit increase down by the dif-
ferent characteristics of the problem instances. In particular,
we conclude that the dynamic pricing strategy is particu-
larly profitable when capacities are low and setup times and
TBO are high. This corresponds with what one might intu-
itively expect: For any fixed demand vector, total costs tend
to be larger when setup times are larger because some of the
available limited capacity is used for setups. Moreover, the
resulting use of capacity for setup time reduces the number of
feasible production plans. A similar argument can be made for
the costliness of reduced capacities and larger TBO. In these
cases, the ability to control prices and hence affecting the

demands provides a great deal of flexibility to the producer. In
particular, dynamic prices can serve to better match demands
to variable and limited capacities. Since constant prices pro-
vide a smaller degree of flexibility the difference between the
profit under the different pricing strategies is amplified when
capacity is smaller and setup times and TBO are larger.

7. CONCLUSION AND FUTURE RESEARCH

In this article, we considered the capacitated lot-sizing
problem with setup times where we allow for demand flex-
ibility through pricing decisions, considering both dynamic
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Table 5. Percentage increase in profit when a dynamic pricing
strategy instead of a constant pricing strategy is used.

# Items 10 20 30

Capacity
Low 3.80 3.99 4.15
Medium 3.37 3.58 3.71
High 2.83 3.17 3.38

Setup time
Low 3.12 3.34 3.49
High 3.49 3.79 3.99

TBO
Low 2.94 3.27 3.54
Medium 3.35 3.49 3.68
High 3.62 3.93 3.99

and static pricing strategies. We developed two alternative
Dantzig-Wolfe formulations for the problem, each of which
leads to an exact branch-and-price algorithm. The Finite For-
mulation is guaranteed to terminate finitely, at the expense
of a convex master problem. The alternative Infinite For-
mulation only finds a solution to within a user-specified
tolerance in finite time, but has a linear master problem. In
both formulations, the pricing problem generates columns
by solving a single item lot-sizing subproblem with pricing
decisions. For problem instances without initial inventories,
efficient algorithms exist in the literature under both pricing
strategies. We have developed new algorithms for the more
general cases where nonzero initial inventories are present.
Results of extensive computational tests showed that the Infi-
nite Formulation outperforms both the Finite Formulation
and CPLEX, finding high-quality solutions and tight error
bounds in reasonable time.

Future research on the CLSTP could include a study of
other pricing strategies as well as a further study of static
pricing allowing for more general demand models. Finally,
it would be interesting to study the polyhedral properties of
the traditional formulation of the problem.
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