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These have the observational effects such as production of iso-curvature perturbations on
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1 Introduction

Recent observations, specially the five years Wilkinson Microwave Anisotropy Probe
(WMAP5) data [1] strongly support inflation as the theory of early Universe and structure
formation. In their simplest forms, models of inflation are constructed from a scalar field,
the inflaton field, which is minimally coupled to gravity. The potential is flat enough, so that
a period of slow-roll inflation is achieved. These simple models of inflation, not only solve
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the problems associated with the standard big bang cosmology such as the horizon problem,
the flatness problem and the monopole problem, but also generate quantum perturbations
which seed the structures in the Universe. The slow-roll models of inflation produce pertur-
bations on cosmic microwave background (CMB) which are almost scale-invariant, adiabatic
and Gaussian which are in very good agreement with the current data. Theoretically, on
the other hand, inflation still remains a paradigm and one can construct many inflationary
models compatible with the current data. There have been many attempts to embed inflation
in string theory, for a review see [2].

Theories of multi-field inflation, in which one deals with more than one scalar field,
have also been studied [3], for a review see [4]. In the multiple field inflationary models one
can perform a rotation in the field space of scalar fields where the inflaton field is evolving
along a trajectory while the remaining fields are orthogonal to it. These extra fields, like
the inflaton itself, have quantum fluctuations which once stretched to super-Hubble scales
can become classical and can therefore contribute to the power spectrum of iso-curvature
as well as curvature perturbations, the details of which depends on the post inflationary
dynamics and the reheating scenario. A specific possibility in the multi-field inflation is the
idea of assisted inflation [5]: while the potential is too steep for an individual field to support
inflation, the collective effect of a large number of scalar fields leads to enough number of
e-folds. Similar idea was exploited in N-flation [6] and Cascade inflation [7, 8] to obtain
inflation from several potentials that are individually too steep to sustain inflation. In these
models, although the “effective” inflaton field gets a super-Planckian field value for chaotic
m2φ2 and λφ4 inflationary scenarios, due to the large number of fields, each physical field
remains sub-Plankian. Moreover, for the case of the λφ4 inflationary theory this can be used
to resolve problem of unnaturally small coupling [9, 10]. Also following the Lyth bound [11],
due to the large excursions of the effective inflaton in comparison with MP , in these models
one expects to obtain a considerable amount of gravity waves.

In this work we take a different view and promote the inflaton fields to general N × N
hermitian matrices and hence these models will be called Matrix Inflation or M-flation for
short. In this sense M-flation is a special case of multi-field inflation. Working with matrices,
besides the simple products of the fields, we can also consider commutators of matrices. In our
class of M-flation models we consider three N ×N matrices, Φi, i = 1, 2, 3 and the potential
is taken to be quadratic in the Φi or in their commutator [Φi,Φj ]. Therefore, in the class
of models we consider the potential term for Φi can have three types of terms: Tr [Φi,Φj ]

2,
Tr ǫijkΦi [Φj,Φk] and Tr Φ2

i . As we will argue, this class of potentials is well-motivated from
string theory and brane dynamics.

As we will see despite the simple form of the potential constructed from these matrices
and their commutators our model has a rich dynamics. We argue that M-flation can solve
the fine-tunings associated with standard chaotic inflationary scenarios. Furthermore, like
any multi-field inflation model, there would be iso-curvature perturbations as well as the
usual adiabatic perturbations. This can have significant observational consequences for the
CMB observations [1, 12]. Moreover, we argue that our model has an embedded efficient
preheating mechanism.

The outline of the paper is as follows. In section 2, we provide the setup through
introducing the action and show that, with the appropriate initial conditions, for the sector in
which the Φi fields fall into irreducible N ×N representations of SU(2), the theory effectively
and at the classical level, behaves like a single field inflation. In section 3, we discuss simple
models of inflation such as chaotic, symmetry breaking and inflection point inflation which are
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constructed from our M-flation. In section 4, we work out the mass spectrum of the remaining
3N2 − 1 scalar fields, the iso-curvature modes, which are not classically turned on during
inflation (these fields will be generically called Ψ-modes). In sections 5 and 6 we consider
quantum mechanical excitations of Ψ-modes and their effects. In section 5, we compute the
power spectrum of fluctuations of the inflaton and the 3N2 − 1 iso-curvature modes. In
section 6, we focus on quantum mechanical creation of the sub-Hubble modes. This particle
creation takes energy away from the inflaton field. We show that our model naturally contains
this mechanism [13] which is the basis of the preheating scenarios [14, 15]. In section 7, we
give string theory motivations behind the M-flation models, arising from dynamics of multiple
D3-branes in specific flux compactifications. The last section is devoted to discussion and
outlook. In the appendix we have gathered some technical details of slow-roll inflation.

2 M-flation scenario, the setup

As explained before, we start with an inflationary setup in which the inflaton fields are taken
to be N × N non-commutative hermitian matrices. We start from the following action

S =

∫

d4x
√−g

(

M2
P

2
R − 1

2

∑

i

Tr (∂µΦi∂
µΦi) − V (Φi, [Φi,Φj ])

)

, (2.1)

where the reduced Planck mass is M−2
P = 8πG with G being the Newton constant and

the signature of the metric is (−,+,+,+). Note that the i-index counts the number of
matrices and is not denoting the matrix elements; the matrix element indices are suppressed
here. Also, V represents our potential constructed from the N × N matrices Φi and their
commutators [Φi,Φj]. The kinetic energy for Φi has the standard form and it is assumed
that the Φi matrices are minimally coupled to gravity.

As we will discuss in section 7, the potential V (Φi, [Φi,Φj ]) can be motivated from
dynamics of branes in string theory where up to leading terms in Φi and [Φi,Φj ], in specific
string theory backgrounds, the potential takes the form

V = Tr

(

−λ

4
[Φi,Φj ][Φi,Φj ] +

iκ

3
ǫjkl[Φk,Φl]Φj +

m2

2
Φ2
i

)

, (2.2)

where i = 1, 2, 3 and hence we are dealing with 3N2 real scalar fields. The Tr is over N ×N
matrices, and here and below the summation over repeated i, j indices is assumed. λ is a
dimensionless number while κ and m are constants with dimensions of mass. We take λ, κ
and m2 to be positive. Note that the potential (2.2) is quadratic in powers of [Φi,Φj ] and
Φi. The action (2.1) together with the potential (2.2) are invariant under U(N) (acting on
the matrices) and SU(2) (acting on i, j indices) which are both global symmetries.

Starting with an FRW background

ds2 = −dt2 + a(t)2dx 2 , (2.3)

the equation of motions are

H2 =
1

3M2
P

(

−1

2
Tr (∂µΦi∂

µΦi) + V (Φi, [Φi,Φj ])

)

(2.4a)

Φ̈l + 3HΦ̇l + λ [Φj , [Φl,Φj ] ] + i κ ǫljk[Φj ,Φk] + m2Φl = 0 , (2.4b)

Ḣ = − 1

2M2
P

∑

i

Tr∂µΦi∂
µΦi , (2.4c)
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where H = ȧ/a is the Hubble expansion rate.

2.1 Truncation to the SU(2) sector

As discussed, Φi are N×N matrices and we are hence dealing with 3N2 real scalar fields which
are generically coupled to each other. This makes the analysis of the model in the most general
form very difficult, if not impossible. Noting the specific form of the the potential (2.2) and
that i, j indices are running from 1 to 3, there is the possibility of consistently restricting the
classical dynamics to a sector in which we are effectively dealing with a single scalar field. This
sector, which will be called the SU(2) sector, is obtained for matrix configurations of the form

Φi = φ̂(t)Ji , i = 1, 2, 3, (2.5)

where Ji are the basis for the N dimensional irreducible representation of the SU(2) algebra

[Ji, Jj ] = i ǫijkJk , Tr(Ji Jj) =
N

12
(N2 − 1) δij . (2.6)

Since both Φi and Ji are hermitian, we conclude that φ̂ is a real scalar field.
Plugging these into the action (2.1), we obtain

S =

∫

d4x
√−g

[

M2
P

2
R + TrJ2

(

−1

2
∂µφ̂∂µφ̂ − λ

2
φ̂4 +

2κ

3
φ̂3 − m2

2
φ̂2

)]

, (2.7)

where TrJ2 =
∑3

i=1 Tr(J2
i ) = N(N2 − 1)/4.

Interestingly enough, this represents the action of chaotic inflationary models with a
non-standard kinetic energy. Upon the field redefinition

φ̂ =
(

TrJ2
)−1/2

φ =

[

N

4
(N2 − 1)

]−1/2

φ , (2.8)

the kinetic energy for the new field φ becomes standard, while the potential for it becomes

V0(φ) =
λeff

4
φ4 − 2κeff

3
φ3 +

m2

2
φ2 , (2.9)

where

λeff =
2λ

TrJ2
=

8λ

N(N2 − 1)
, κeff =

κ√
TrJ2

=
2κ

√

N(N2 − 1)
(2.10)

2.2 Consistency of the truncation to the SU(2) sector

The SU(2) sector seems to be a special sector of the M-flation action in which the theory
becomes tractable and very simple. However, we need to make sure that this truncation to
the SU(2) sector is indeed consistent with the classical dynamics of the model and that we
can consistently turn off the other 3N2 − 1 fields. In order to do this, we define

Ψi = Φi − φ̂Ji (2.11)

where, as before,

φ̂ =
4

N(N2 − 1)
Tr(ΦiJi) ,
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and hence Tr(ΨiJi) = 0. In other words, Ψi is defined such that it has no components along
Ji. Using [Ji, Jj ] = iǫijkJk, we may rewrite the potential (2.2) in terms of φ̂ and Ψi as

V = V0(φ̂) + V(2)(φ̂,Ψi) (2.12)

where V0, after the field re-definition (2.8), is given by (2.9).
Using (2.6), (2.11) and the fact that Tr(ΨiJi) = 0, one can show that V(2) does not have

any linear terms in Ψi, i.e.

V(2)(φ̂,Ψi = 0) = 0 ,

(

δV(2)

δΨi

)

Ψi=0

= 0. (2.13)

This leads to the important result that the φ field does not source the Ψi fields. Explicitly,
in the equations of motion (2.4b) if we start with the initial conditions Ψi = 0, Ψ̇i = 0 and
φ̂ 6= 0, Ψi will always remain zero and will hence not contribute to the classical background
inflationary dynamics at all. This means that we are consistent in considering φ as the
sole field driving the inflation. The remaining Ψi modes, however, as we shall see in next
sections, will be excited at the level of perturbations. So, we have 3N2 − 1 Ψ modes
besides the background φ inflationary field. In the language of [3] this corresponds to a
straight inflationary trajectory in the field space of 3N2 scalar fields, where the inflationary
trajectory is along the φ direction and there would be 3N2 − 1 iso-curvature perturbations
perpendicular to the adiabatic trajectory. We should stress that this result will not remain
valid if initially Ψi fields are also turned on.

One may wonder about the special role of the SU(2) generators Ji among other N ×N
matrices in our analysis and whether a similar reduction to a sector other than the SU(2) sec-
tor is also possible. Traces of the fact that SU(2) sector is special is already built in the initial
construction of the potential (2.2) with three Φi, i = 1, 2, 3 (3 is the dimension of the SU(2)
algebra) and that in the cubic term in the action the structure constant of SU(2) ǫijk appears.
To see this more explicitly, let us consider the more generic decomposition for Φi matrices

Φi = Υi + Ξi , (2.14)

such that Tr(ΥiΞi) = 0, we take both Υi and Ξi to be hermitian. The potential will again
have two parts, V = V0(Υi) + V(1)(Υ,Ξ), where V0(Υi) = V (Ξi = 0) and

V(1)(Υi,Ξi) = Tr

[(

−λ[Υi, [Υi,Υk]] + iκǫijk[Υi,Υj ]

)

Ξk

]

+ O(Ξ2) .

In order the Υ-sector to decouple, the above expression in the bracket should vanish for any
Ξi. As explained above, if Υi is proportional to Ji this condition obviously holds. In general,
however, this can happen if the Υ-dependent term in parenthesis is proportional to Υk.
This condition can be satisfied if [Υi,Υj] = fijkΥk for some functions fijk which means that
the three Υi matrices should form a Lie-algebra of dimension three. The only non-trivial
solution is then Υi forming an SU(2) algebra.1 Note, however, that the representation for
the SU(2) algebra is not fixed by this requirement and Υi could also form reducible N × N
representation of SU(2).

Motivated by this unique property of the SU(2) sector, from now on we assume that
the background inflationary trajectory is along the φ direction, while the other 3N2−1 fields
are only excited at the level of (quantum) perturbations.

1There is also the trivial choice of fijk = 0, corresponding to choosing three Abelian subgroups of U(N).
Working with commuting matrices, however, kills all the interesting inflationary dynamics.
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3 Various inflation models resulting from M-flation scenario

The SU(2) sector, which is governed by the potential (2.9), depending on the values of the
parameters λeff , κeff and m2, leads to different inflationary models. These models have been
studied in the literature, which we will review below. The important advantage of our M-
flation scenario, as we will show, is the scaling properties between the original parameters of
the model appearing in the action and the effective dressed parameters appearing in (2.9),
which allow us to remove the unnaturalness and fine-tuning of these parameters.

3.1 Chaotic inflation

If we set λ = κ = 0, we obtain the simple quadratic chaotic potential and in this case our
model is nothing but an N-flation model [6] with 3N2 fields. To fit the CMB observations
and obtain right number of e-foldings, one needs that m ∼ 1012 GeV and a super-Planckian
field variation for effective inflaton field φ during inflation, ∆φ ∼ 10MP . In the context of
effective field theory this may sound problematic. However, as in the N-flation model [6],
note that φ̂ is our physical field and ∆φ̂ ∼ ∆φ/N . For a sufficiently large value of N one can
arrange that ∆φ̂ ≪ MP and one can avoid the problem with super-Planckian field values.

On the other hand, if m = κ = 0, we obtain the quartic λeffφ4/4 chaotic inflation. To fit
the COBE normalization and obtain right number of e-folds, one requires λeff ∼ 10−14 and
∆φ & 10MP . In the context of a single scalar field, these are viewed as severe fine-tunings
in the model. In our case, however, we see that both of these can be relaxed. Assuming that
λ ∼ 1 dictated by the naturalness of the theory, to obtain the above value for λeff one needs
to have N ∼ 105. In the context of string theory studied in section 7, where N is viewed
as the number of coincident branes, this is easily achieved in light of recent developments
in the flux compactification. With this value of N for the physical field φ̂ one obtains
∆φ̂ ∼ 10−7MP and can hence safely bypass the problem of super-Planckian excursion of
the field. In both of these examples, inflation ends when φ̂(t) → 0 which means that the
matrices Φi commute with each other.

In both examples, and for next two examples below, due to super-Planckian value of
∆φ during inflation, a considerable amount of gravity waves can be produced which can be
detected in future gravity wave observations such as PLANCK [16, 17], CMBPOL [18] and
QUIET [19].

3.2 Symmetry breaking inflation

Now consider the general case where none of the coefficients in V0(φ) is zero. We study two
interesting example here. The first example is when V0(φ) is positive definite and has two
degenerate minima. This corresponds to κ = 3m

√
λ/2 and the potential has the form

V0 =
λeff

4
φ2 (φ − µ)2 (3.1)

where µ ≡
√

2m/
√

λeff . As mentioned, the potential has global minima at φ = 0 and
φ = µ. In the language of the brane construction (cf. section 7), the minimum at φ = µ
corresponds to super-symmetric vacua when N D3-branes blow up into a giant D5-brane in
the presence of background RR field C(6) which in our notation is represented by κ. The
minimum at φ = 0, on the other hand, corresponds to the trivial solution when matrices
become commutative. If we allow the field φ to take negative values, then the potential is
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symmetric under φ → −φ+µ and it represents the standard double well potential, justifying
the name “symmetry breaking” inflation.

Potential (3.1) is well studied in the literature and is in the form of symmetry breaking
potential and “hilltop inflation” [20, 21]. In appendix A we briefly look at the predictions
from this potential compared to WMAP5 data. It is assumed that inflation lasts for 60
number of e-folds, Ne = 60, and the scalar spectral index, ns = 0.96, from WMAP5 central
value. Furthermore, the COBE normalization is set to δH ≃ 2.41 × 10−5.

Depending on the initial value of the inflaton field, φi, the inflationary period is divided
in three categories.

(a) φi > µ

Suppose inflation starts when φi > µ. With Ne = 60, δH ≃ 2.41 × 10−5 and ns = 0.96,
one obtains

φi ≃ 43.57MP , φf ≃ 27.07MP , µ ≃ 26MP . (3.2)

and

λeff ≃ 4.91 × 10−14, m ≃ 4.07 × 10−6MP , κeff ≃ 9.57 × 10−13MP . (3.3)

(b) µ/2 < φi < µ This is an example of hill-top inflation when the inflaton field is between
the local maximum at φ = µ/2 and the “supersymmetric minimum” at φ = µ. To fit
the above observational constraints one obtains

φi ≃ 23.5MP , φf ≃ 35.03MP , µ ≃ 36MP . (3.4)

and

λeff ≃ 7.18 × 10−14, m ≃ 6.82 × 10−6MP , κeff ≃ 1.94 × 10−12MP . (3.5)

(c) 0 < φi < µ/2

Due to symmetry φ → −φ + µ this inflationary region has the same properties as
µ/2 < φi < µ above. If we allow for negative values of φ, then the inflationary
prediction for φ < 0 region is the same as in region 1 above.

In all these examples, to fit the COBE normalization, one obtains N ∼ 105 and ∆φ̂ ∼
10−7MP during inflation so the issues with super-Planckian field range is resolved.

3.3 Inflection point inflation

Another class of models widely studied in the literature coming from the potential (2.9) is
when the potential has an inflection point [22]. This happens when κ =

√
2λ m or equiva-

lently, κeff = m
√

λeff . Denoting the inflection point by φ0, the potential near φ0 is approxi-
mately given by

V (φ) ≃ V (φ0) +
1

3!
V ′′′(φ0)(φ − φ0)

3 (3.6)

where

V (φ0) =
m2

12
φ2

0, V ′′′(φ0) =
2m2

φ0
. (3.7)
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The CMB observables are given by [22]

ns ≃ 1 − 4

Ne
, δH ≃ 2

5π

λeffMP

m
N2
e . (3.8)

Choosing Ne = 60, one obtains ns ≃ 0.93 which is within 2σ error bar of WMAP5 but is
somewhat to its lower end. One may add small modification to the coefficient of potential [22]
such that the potential around the inflection point is slightly modified. This in turn can result
in a higher value of ns. On the other hand, from COBE normalization, one obtains

λeff ∼ 10−8 m

MP
. (3.9)

In a conservative limit that m . MP , this yields λeff . 10−8. Starting with λ ∼ 1, this
corresponds to N & 103.

If we look into the amplitude of the gravity wave, determined by quantity r which is the
ratio of gravitational perturbation amplitude to scalar perturbation amplitude, one obtains

r = 8M2
P

(

V ′

V

)2

=
2

9

(

m√
λeff

)6

N−4
e . (3.10)

Combining this with ns and δH , we obtain

λeff =

(

9 r

32

)1/3(5π

8
δH

)2

(1 − ns)
8/3 . (3.11)

The upper bound, r < 0.22, from WMAP5 implies that λeff . 10−13 and N & 105 which is
stronger than the bound above.

4 Mass spectrum of Ψi modes in M-flation

Having studied the SU(2) sector and the resulting inflationary models, we review our model,
noting that the other 3N2 −1 fields encoded in Ψi, although not contributing to the classical
inflationary dynamics, do have quantum fluctuations and will hence affect the cosmological
perturbation analysis. To compute these effects we need to have the mass spectrum of the
3N2 − 1 modes coming from the Ψi.

To this end, starting from (2.11) we expand the action up to the second order in Ψi.
Given the orthogonality condition, Tr(ΨiJi) = 0, the kinetic term readily takes the standard
form 1

2Tr(∂µΨi∂
µΨi). After a slightly lengthy but straightforward computation the potential

to second order in Ψi is obtained as

V(2) = Tr

[

λ

2
φ̂2 ΩiΩi +

m2

2
ΨiΨi +

(

−λ

2
φ̂2 + κφ̂

)

ΨiΩi

]

(4.1)

where

Ωk ≡ iǫijk[Ji,Ψj] . (4.2)

¿From the above form we see that if we have the eigenvectors (eigen-matrices) of the
Ωi we can compute the spectrum of Ψi in terms of φ̂-field (to be viewed as the inflaton).
Finding the eigenvectors of Ωi is mathematically the same problem as finding the vector

– 8 –
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spherical harmonics. (For a detailed discussion see e.g. [23], section 5.2.) If we denote the Ω
eigenvalues by ω, i.e.

Ωi = ωΨi , (4.3)

we obtain

V(2) =

(

λeff

4
φ2(ω2 − ω) + κeff ω φ +

m2

2

)

Tr ΨiΨi . (4.4)

If we have the possible values of ω we can read off the effective (φ-dependent) mass of the
Ψi modes

M2 =
λeff

2
φ2(ω2 − ω) + 2κeff ωφ + m2

= V ′′
0 (ω + 1)2 − V ′

0

φ
(4ω + 3)(ω + 2) +

6V0

φ2
(ω + 1)(ω + 2) ,

(4.5)

where V ′
0 and V ′′

0 denote the first and second derivatives of the potential V0 with respect to
the inflaton φ. For later convenience it is also useful to write the expression for the mass
during inflation in terms of the Hubble expansion rate and the slow-roll parameters ǫ and η

M2

3H2
=

[

η(ω + 1)2 − sgn(V ′
0)
√

2ǫ
MP

φ
(4ω + 3)(ω + 2) + 6

M2
P

φ2
(ω + 1)(ω + 2)

]

, (4.6)

where sgn(V ′
0) represents the sign of V ′

0 and as usual the slow-roll parameters are defined by

ǫ =
M2
P

2

(

V ′
0

V0

)2

, η = M2
P

V ′′
0

V0
. (4.7)

Following the analysis of [23], we find that ω can take three values:

• “ The zero modes” ω = −1. This happens for modes of the form

Ψi = [Ji,Λ],

with Λ being an arbitrary matrix. For these modes the expression for the mass
simplifies to

M2 =
V ′

0

φ
. (4.8)

Therefore, at the minimum values for φ where V ′
0 vanishes these modes become

massless. (This justifies the name “massless modes”.)

Noting that Λ is an arbitrary matrix there are N2 of such modes, all with the same mass.

• “The α modes”: ω = −(l + 1), l ∈ Z, 0 ≤ l < N , with the mass

M2
l =

λeff

2
(l + 1)(l + 2)φ2 − 2κeff (l + 1)φ + m2 . (4.9)

Each mode for a given l has a multiplicity of 2l+1. Therefore, there are N2 of α-modes.

• “The β modes”: ω = l, l ∈ Z, 0 < l < N , with the mass

M2
l =

λeff

2
l(l − 1)φ2 + 2κeff lφ + m2 . (4.10)

Each mode for a given l has a multiplicity of 2l + 1. Therefore, there are N2 − 1 of
β-modes.
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As expected, there are altogether 3N2 − 1 zero, α, and β modes. For the zero modes
where ω = −1, one observes that M2/3H2 ∼ √

ǫMP /φ ∼ 0.01. So there are N2 of such light
zero modes. For α and β modes, only those with l . ǫ−1/2, η−1/2 ∼ 10 are light, while the
modes with higher values of l are heavy.

5 Power spectra in the presence of Ψi modes

With the mass spectrum for Ψi modes computed in the previous section we can compute
the power spectra of the adiabatic and the iso-curvature perturbations. Here we are dealing
with a 3N2 real scalar field inflationary system. Our inflationary background is along the φ
direction. The remaining 3N2 − 1 scalars are frozen classically during inflation and are ex-
cited only quantum mechanically. Correspondingly, the modes are classified as the adiabatic
perturbation, the one which is tangential to the classical inflationary background, and the
iso-curvature modes, the 3N2 − 1 perturbations which are perpendicular to the background
inflationary trajectory. In this respect our model is similar to the model studied in [24] where
the potential has an O(N) symmetry such that the inflaton field is the radial direction while
the remaining N − 1 angular directions are iso-curvature perturbations.

The formalism to calculate the adiabatic and iso-curvature (entropy) power spectra
was systematically developed in [3]. Here we shall repeat those analysis for our system of
3N2 scalar fields.

5.1 Linear perturbations

The perturbed metric in the longitudinal gauge is

ds2 = −(1 + 2Φ)dt2 + a(t)2(1 − 2Φ)dx2 (5.1)

where Φ(t,x) is the gravitational potential and should not be mistaken with Φi which repre-
sents our matrix fields. Similarly, the linear perturbed scalar fields are δφ(t,x) and Ψi(t,x).

We find it is much easier to work with the Ψi modes with definite mass spectrum.
As discussed in the previous section, these fall into three classes denoted by Ψr,lm where
r = 0, α, β stand, respectively, for zero-mode, α-mode and β-mode and m is running from
one to Dr,l, the degeneracy factor of each Ψr,lm mode, with D0 = N2 and Dα,l = Dβ,l = 2l+1.
In this notation, the Lagrangian for the scalar fields with potential V = V0(φ) + V(2)(φ,Ψi)
from (4.4) is

L = −1

2
∂µφ∂µφ − 1

2
∂µΨ

⋆
r,lm∂µΨr,lm − V0(φ) − 1

2
M2
r,l(φ)Ψ⋆

r,lmΨr,lm , (5.2)

where summation over repeated r and l,m indices is assumed.
Define the gauge invariant Mukhanov-Sasaki variable Qφ

Qφ ≡ δφ +
φ̇

H
Φ . (5.3)

The perturbed Klein-Gordon equations for φ and Ψr,lm are

Q̈φ + 3HQ̇φ +
k2

a2
Qφ +

[

V0 ,φφ −
1

a3M2
P

(

a3

H
φ̇2

).]

Qφ = 0

Ψ̈r,lm + 3HΨ̇r,lm +

(

k2

a2
+ M2

r,l(φ)

)

Ψr,lm = 0 . (5.4)
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Here k is the momentum number in the Fourier space. One interesting aspect of these
equations is that the adiabatic and iso-curvature modes completely decouple and they do not
source each other. This is a result of our initial conditions in which Ψr,lm fields are turned off.
Because of this, the equation of motion for Ψr,lm is that of a scalar field in a homogeneous
and isotropic expanding background but with a time dependent mass.

These equations are accompanied by Einstein equations

3H(Φ̇ + HΦ) +

(

Ḣ +
k2

a2

)

Φ = − 1

2M2
P

[

φ̇ ˙δφ + V0 ,φδφ
]

Φ̇ + HΦ =
1

2M2
P

φ̇δφ . (5.5)

Interestingly enough, Ψr,lm fields do not show up in perturbed Einstein equations due to
our assumption that they are absent at the background dynamics. Physically, this means
that the modes Ψr,lm do not carry energy up to linear order in perturbation theory. Since
they do not couple to gravitational potential and the inflaton perturbations, they have no
gravitational effect, justifying the name iso-curvature perturbations.

Consider the normalized curvature perturbation R and the normalized iso-curvature
perturbations Sr,lm

R ≡ H

φ̇
Qφ, Sr,lm ≡ H

φ̇
Ψr,lm . (5.6)

Using the Einstein equations one can show

Ṙ =
H

Ḣ

k2

a2
Φ . (5.7)

This indicates that on arbitrary large scales where k → 0, the curvature perturbation is
conserved. This is similar to single field inflationary system.

Here we assume that initially δφ and Ψr,lm are random, Gaussian and adiabatic fields
which are excited quantum mechanically from vacuum and

〈Q⋆
φk

Qφk′〉 =
2π2

k3
PQφ

δ3(k − k′)

〈Ψ⋆
r,lm k Ψr′,l′m′ k′〉 =

2π2

k3
PΨr,l

δrr′ δll′δmm′ δ3(k − k′)

〈Q⋆
φkΨr,lm k′〉 = 0 , (5.8)

where PQφ
and PΨr,l

are the primordial power spectra of the scalar fields. We note that
the last equation above also holds during the inflationary stages, indicating that there is
no cross-correlation between adiabatic and iso-curvature modes. Physically, this means that
they do not source each other as can be seen from (5.4).

5.2 Power spectra from Hubble-crossing to end of inflation

As usual, it is instructive to express the Klein-Gordon equations (5.4) in terms of variables
u and vr,m defined by

u ≡ aQφ, vr,lm ≡ aΨr,lm .
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Going to conformal time d t = a dτ , (5.4) is transformed into Schrödinger equation form

d2u

dτ2
+

[

k2 − 2 − 3η + 9ǫ

τ2

]

u = 0 (5.9a)

d2vr,lm
dτ2

+

[

k2 − 2 − 3ηr,l + 3ǫ

τ2

]

vr,lm = 0 (5.9b)

where ηr,l = M2
r,l(φ)/3H2 given by (4.6).

The initial conditions deep inside the Hubble radius are given by the Bunch-Davies
vacua. We evolve equations in (5.9) till the time of horizon crossing τ∗ at which k = (aH)∗.
Here and below the subscript ∗ indicates that the quantities are calculated at the time of
Hubble crossing during inflation. Following the standard inflationary prescriptions e.g. [25],
up to the first order in slow-roll parameters one has

u =

√

π|τ |
2

ei(1+2νR)π/4 H(1)
νR

(k|τ |)

vr,lm =

√

π|τ |
2

e
i(1+2νSr,lm

)π/4
H(1)
νSr,lm

(k|τ |) (5.10)

where H(1)(x) is the Hankel function of the first kind and νR and νSr,lm
are given by

νR =
3

2
+ 3ǫ − η, νSr,lm

=
3

2
+ ǫ − ηr,l . (5.11)

Correspondingly, using (5.6), the power spectra of the scalar curvature perturbations and
iso-curvature perturbations, PR and PSr,lm

, at the time of Hubble exit are given by

PR|⋆ ≃
(

H2

2πφ̇

)2

⋆

[1 + (−2 + 6C)ǫ − 2Cη]⋆

PSr,lm
|⋆ ≃

(

H2

2πφ̇

)2

⋆

[1 + (−2 + 2C)ǫ − 2Cηr,l]⋆ . (5.12)

Here C = Γ′(3/2)/Γ(3/2) + ln 2 ≃ 0.7296 where Γ(x) is the Gamma function.
Few e-folds after the mode of interest has left the Hubble radius, one can neglect the

term k2/a2 in (5.4). Furthermore, it would be more instructive to use the number of e-
folds before the end of inflation, Ne, as the clock. Using the relation dNe = Hdt, (5.4) is
transformed into

dQφ

Qφ
≃ (2ǫ − η) dNe,

dΨr,lm

Ψr,lm
≃ −ηr,l dNe . (5.13)

To calculate the power spectra as a function of Ne, for R and Sr,lm defined as in (5.6), we
need to incorporate the evolution of the pre-factor H/φ̇ which is given by

d

dNe

(

H

φ̇

)

≃ −(2ǫ − η)

(

H

φ̇

)

. (5.14)

Combining equations (5.13) and (5.14) one obtains

PR(Ne) ≃ PR|∗ (5.15)

PSr,lm
(Ne) ≃ PSr,lm

|∗ exp

[

−2

∫ Ne

0
dN ′

eBr,l(N
′
e)

]

, (5.16)
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where Br,l(Ne) ≡ 2ǫ − η + ηr,l and using (4.6) one obtains

Br,l(Ne) ≃ 2ǫ + ω(2 + ω)η − sgn(V ′
0)

√
2ǫMP

φ
(4ω + 3)(ω + 2) +

6M2
P

φ2
(ω + 1)(ω + 2)

where ω takes values 0, −l − 1 and l respectively for zero, α and β modes (cf. section 4).

As explained previously, due to conservation of R on super-Hubble scales, PR remains
unchanged after Hubble exit as shown in (5.15). On the other hand, the evolution of power
spectra for the iso-curvature modes, PSr,lm

(Ne), as shown in (5.16), depends on the dynamics
of the inflationary background and the eigenvalues ω.

5.3 Iso-curvature vs. entropy perturbations

As we saw in the previous section, the Ψr,lm perturbations do not couple to the inflaton field
and the gravitational potential so they do not contribute to the primordial curvature per-
turbations during inflation which justify the name iso-curvature for these modes. Physically,
this means that up to the first order in perturbation theory, Ψr,lm fields do not carry energy
during inflation. As showed in section 2.2 this has the origin in our initial conditions for the
Ψr,lm fields that they are absent in classical background dynamics.

In the literature, the terminologies “iso-curvature perturbations” and “entropy pertur-
bations” are usually used interchangeably. However, one can easily check that Ψr,lm pertur-
bations do not induce entropy perturbations during inflation. To see this explicitly, let us
look at non-adiabatic components of pressure, δpnad, defined as [4]

δpnad = δp − ṗ

ρ̇
δρ , (5.17)

where ρ and p are the background energy density and pressure respectively and δρ and δp
represent their first order variations. Using Einstein equations (5.5) one can show that

δpnad ≃ −4M2
P

k2

a2
Φ , (5.18)

which is the same as the standard single-field inflation result. On super-Hubble scale one
observes that δpnad vanishes and there is no entropy perturbation. This is similar to our
earlier result (5.7) that Ṙ ≃ 0 on super-Hubble scale. In this work, in order to emphasis
that there is no entropy perturbations in our setup, we use the terminology iso-curvature
perturbations throughout.

In general multiple-field inflation, the iso-curvature perturbations perpendicular to the
classical inflationary trajectory do produce entropy perturbations and δpnad 6= 0. These
entropy perturbations source the adiabatic perturbation and have non-zro energy at the
linear order of perturbations so they also source the Einstein equations and contribute to the
primordial curvature perturbations. More specifically

Ṙ =
H

Ḣ

k2

a2
Φ + 2

∑

r, lm

θ̇r,lmSr,lm . (5.19)

The above equation is a generalization of the two-field result of [3], the sum in the last term
is over 3N2 − 1 entropy modes and θr,lm represent the angle between Ψr,lm and the inflaton
trajectory, φ in our case, in the space of 3N2 scalar fields. As discussed above, if we start with
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the initial conditions Ψi = 0, Ψ̇i = 0, φ behaves as the sole inflaton field and in the language
of [3], the background inflationary trajectory in φ − Ψi phase space is flat, i.e. θ̇r,lm = 0.
Therefore, these iso-curvature perturbations do not feed the curvature perturbation and
there is no cross-correlation between the iso-curvature and adiabatic perturbations.

However, if we start with an arbitrary initial condition in φ−Ψi field space, Ψi are not
frozen classically, the inflation trajectory is curved and the inflaton field has a component
along the Ψr,lm direction and θ̇r,lm 6= 0. This in turn produces entropy perturbations during
inflation which also source the cosmic perturbations.

Having this said, however, there are two mechanisms to create entropy perturbations
in our setup. The first way is to consider second order perturbation in Ψr,lm. In second
order perturbation theory, Ψr,lm carries energy [27] and couple to both Einstein equations
and the inflaton field perturbation δφ. This in turn leads to entropy perturbations during
inflation. However, the amplitude of these entropy perturbations are much smaller than the
first order adiabatic perturbations coming from δφ. The second mechanism to create entropy
perturbations from iso-curvature perturbations Ψr,lm can happen during preheating and/or
reheating era. Similar idea was used in [24] through asymmetric preheating.

5.4 Curvature and iso-curvature perturbations power spectra for specific exam-

ples

Using the general formulation presented in previous subsections we calculate the power
spectra at the end of inflation for chaotic, symmetry breaking and the inflection point
inflationary potentials.

5.4.1 Chaotic inflation m2

2 φ2

When λ = κ = 0, the action takes the form

S = −1

2
∂µφ∂µφ − 1

2
∂µΨ

⋆
r,lm∂µΨr,lm − 1

2
m2
[

φ2 + Ψ⋆
r,lmΨr,lm

]

. (5.20)

The 3N2 modes all have equal masses. Interestingly, this closely resembles the chaotic in-
flation studied in [24, 26]. The potential (5.20) has O(3N2) symmetry for the fields φ and
Ψr,lm. The background inflation field is φ and the number of e-folds in terms of the initial
value of the inflaton field φi is given by

Ne ≃
φ2
i

4M2
P

. (5.21)

Correspondingly, the amplitude of the adiabatic curvature perturbation is

PR ≃ 1

6π2

(

mNe

MP

)2

. (5.22)

For Ne = 60, to fit the WMAP5 normalization PR ≃ 2.41 × 10−9, one requires m ≃
6.304 × 10−6MP . For such values of m, we have calculated numerically the amplitudes of
3N2 − 1 iso-curvature spectra at the end of inflation, i.e. where ǫ = 1, which turns out to
be PSr,lm

≃ 8.426 × 10−14 at today’s Hubble scale. The spectral indices of adiabatic and
iso-curvature spectra at such scale, respectively, are nR ≃ 0.966 and nΨr,lm

≃ 0.9998, which
coincide with the analytic results of [24], see figure 1. One can lower the value of m —
which in turn lowers the amplitude of adiabatic perturbations — and generate the difference
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VHΦL=
m

2

2
Φ

2

nR~0.966

12.0 12.5 13.0 13.5 14.0
LogH

k

a0 H0

L

2.25´10-9

2.3´10-9

2.35´10-9

2.4´10-9

PR

VHΦL=
m

2

2
Φ

2

nΨ~0.9998

12.0 12.5 13.0 13.5 14.0
LogH

k

a0 H0

L

8.412´10-14

8.413´10-14

8.414´10-14

8.415´10-14

PS

Figure 1. Left and right graphs respectively show the curvature and isocurvature spectra for chaotic

inflation with potential m
2

2
φ2

by transforming the iso-curvature fluctuations to curvature ones through an asymmetric
mechanism of preheating [24]. The ratio PSr,lm

/PR for the mode that exit the horizon 60
e-folds before the end of inflation is graphed as a function of Ne, see figure 2. Note that as in
this case all the Ψr,lm modes have the same mass and hence ηr,l, PSr,lm

/PR are independent
of r and l,m. When the mode is inside the Hubble radius the spectra are almost equal and
the ratio is one. However, around the Hubble-exit, the iso-curvature mode starts to decay
following (5.16). For the mode that exits the Hubble radius 60 e-folds before the end of
inflation, k60 = e−60aeHe, according to (5.16) the ratio decays like

PSr,lm
(Ne)

PR|∗
≃ (1 − Ne/60)

2 , (5.23)

where Ne is the number of e-folds the mode spends outside the Hubble radius before the
end of inflation. As can be seen in figure 2, the analytic result is in a good agreement with
the numerical one.

For this model, the amplitude of tensor fluctuations of the adiabatic mode at today’s
Hubble scale is PT (k60) ≃ 3.1856 × 10−10. The corresponding tensor/scalar ratio, r, is
r ≃ 0.132. The tensor spectral index, nT ≡ d ln PT /d ln k, is nT ≃ −0.0165. Future CMB
probes such as PLANCK [16], or exclusive polarization probes such as CMBPOL [18] or
QUIET [19] should be able to test this scenario.

5.4.2 Chaotic inflation λeff

4 φ4

When m = κ = 0, the potential energy V = V0(φ) + V(2)(φ,Ψi) is

V =
λeff

4
φ4 +

λeff

4
(ω2 − ω)φ2 Ψ⋆

r,lmΨr,lm . (5.24)

To match the amplitude of adiabatic perturbations with WMAP result at horizon scale,
λeff ≃ 1.6315×10−13 . For such value of λeff , the scalar spectral index for the adiabatic mode
is nR ≃ 0.949.
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V=
m

2
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Φ

2

k= expH-60L aeHe
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Ne

0.2
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PR

V=
Λ

4
Φ

4

k= expH-60L aeHe
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0.6

0.8
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Figure 2. Left graph shows the ratio PSr,lm
(Ne)/PR|∗ vs. Ne for the mode that exit the Hubble

radius 60 e-folds before the end of chaotic inflation with V = 1

2
m2φ2. Right graph shows the evolution

of PSβ,1m
(Ne)/PR|∗ for l = 1 β−mode in λeff φ4/4 potential. Black and gray curves respectively

demonstrate the numerical and analytic results.

In λeffφ4/4 chaotic model, the masses of iso-curvature modes are different. The lowest
mass belongs to the l = 1 β−mode whose mass is equal to zero, M2

β,1(φ) = 0. The correspond-

ing iso-curvature spectrum amplitude at the end of inflation is equal to PSβ,1m
≃ 3.949×10−11

at today’s Hubble scale. The corresponding spectral index is nΨβ,1m
≃ 0.966. The rela-

tively larger value of iso-curvature perturbations could be attributed to the fact that the
iso-curvature spectrum for this mode decays linearly with the number of e-folds it spends
outside the horizon (see below).

The next modes in the tower of masses are the zero mode, l = 0 α−mode and l = 2
β−mode whose masses are equal to M2

β,2(φ) = λeffφ2. Their corresponding amplitudes are

PSβ,2m
≃ 4.449×10−13 at today’s horizon scale. Taking the multiplicity of α and β modes into

account, there are N2 + 6 iso-curvature modes with such an amplitude. The corresponding
spectral index is nΨβ,1m

≃ 0.9828.

For the l = 1 α−mode with the mass M2
β,3(φ) = 3λeffφ2, which is equal to the mass

of the l = 3 β−mode, the iso-curvature spectrum amplitude is PSβ,3m
≃ 3.967 × 10−18 at

today’s Hubble scale. The corresponding spectral index is equal to nΨβ,3m
≃ 1.016, which

indicates a blue spectrum.

In general mass of a l ≥ 1 α−mode is identical to the l+2 β−mode. Therefore, there are
4l+6 iso-curvature modes with identical spectra, all of which have a blue tilt. Increasing the
value of l for α−mode and β−mode, the amplitude of heavy iso-curvature modes decreases
quickly. This can be understood from (5.16), which yield

PSr,lm
(Ne)

PR|∗
≃ (1 − Ne/60)

1+ ω2
−ω
2 =











(1 − Ne/60)
2 zero modes

(1 − Ne/60)
(l2+3l+4)/2 α − modes

(1 − Ne/60)
(l2−l+2)/2 β − modes,

(5.25)

where again Ne is the number of e-folds the mode spends outside the Hubble radius before
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inflation ends. In particular, for l = 1 β-mode our analytic result indicates that the ratio
PSβ,1m

(Ne)/PR|∗ decreases linearly with Ne, which is verified numerically as shown in figure 2.

Besides a considerable iso-curvature/adiabatic ratio of 1.638% for l = 1 β−mode, an-
other signature of the model is its observable gravity waves. For this model the amplitude of
tensor spectrum for adiabatic perturbations at Hubble scale today is PT (k0) ≃ 6.3176×10−10 ,
i.e. r ≃ 0.26, whose spectral index is nT ≃ −0.033. This model is currently on the verge of
becoming ruled out.

5.4.3 Symmetry breaking inflation

We consider φ > µ and µ/2 < φ < µ cases separately.

(a) φ > µ

In this case neither of the parameters of the potential, λ, κ and m are zero. To match
the observational constraints from WMAP5, the above parameters have to take the
following values given in (3.3):

λeff ≃ 4.91 × 10−14, m ≃ 4.074 × 10−6MP , κeff ≃ 9.574 × 10−13MP .

The scalar spectral index for the adiabatic perturbations is nR ≃ 0.959.

The lowest masses in the tower of Ψr,lm iso-curvature modes belong to the zero mode
and the l = 0 α−mode, whose mass is M2

α,0(φ) = λeffφ2 − 2κeffφ+ m2. The amplitudes
and spectral indices of these two iso-curvature spectra are respectively PSα,0m

≃ 1.162×
10−11 and nΨα,0m

≃ 0.981.

Next in the tower of iso-curvature modes is the l = 1 α−mode whose mass is equal
to M2

α,1(φ) = 3λeffφ2 − 4κφ + m2. Its amplitude and index are, respectively, PSα,1m
≃

6.966 × 10−15 and nΨα,1m
≃ 1.01.

The l = 1 β−mode with mass equal to 2κeffφ+m2 stands next in the tower. The ampli-
tude of this mode is equal to PSβ,1m

≃ 8.842 × 10−18. The corresponding iso-curvature
spectrum for this mode has a blue tilt but an almost scale-invariant spectrum, with
nΨβ,1m

≃ 1.002. As before, the next iso-curvature modes have negligible amplitudes at
Hubble scale and therefore their contributions could be ignored.

The amplitude of tensor spectrum at Hubble scale is PT (k60) ≃ 4.84 × 10−10, r ≃ 0.2
with the spectral index nT ≃ −0.025. Planck [16] should be able to verify this model.

(b) µ/2 < φ < µ

Here to satisfy the constraints from the amplitude and spectral index from WMAP5,
one has to adjust the the parameters as in (3.5):

λeff ≃ 7.187 × 10−14, m ≃ 6.824 × 10−6MP , κeff ≃ 1.940 × 10−12MP .

The index of the adiabatic spectrum for such values of parameters is nR ≃ 0.961.

Again the least massive iso-curvature modes are the zero mode and the l = 0
α−mode. Their amplitude and spectral index are, respectively, PSα,0m

≃ 1.46 × 10−11

and nΨα,0m
≃ 0.987. The next biggest iso-curvature amplitude belongs to the

l = 1 α−mode whose amplitude and spectral index are PSα,1m
≃ 9.99 × 10−13 and

nΨα,1m
≃ 0.988, respectively. The l = 1 β−mode stands in the next rank with
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an amplitude of PSβ,1m
≃ 6.558 × 10−16 with nΨβ,1m

≃ 1.054. Next iso-curvature
modes have larger masses and therefore, as before, their amplitudes are negligible in
comparison with the adiabatic one.

The amplitude of tensor spectrum at Hubble scale is PT (k0) ≃ 1.307 × 10−11, i.e.
r ≃ 0.048 with the spectral index nT ≃ −0.006. Such gravity wave spectrum could be
detected by CMBPOL [18] or QUIET [19]. The tensor spectrum is very close to being
scale-invariant in this case.

5.4.4 Inflection point inflation

A possible parameter set that satisfies the observational constraints are:

λeff ≃ 4.8 × 10−14, m ≃ 10−6MP , κeff ≃ 1.94 × 10−12MP . (5.26)

For this parameter set the scalar spectral index is nR ≃ 0.93 which is within 2σ error bar of
WMAP5 but is somewhat to its lower end.

The lowest mass mode belongs to the l = 1 α−mode whose mass is M2
α,1(φ) = 3λeffφ2−

2κeffφ + m2. Its corresponding spectrum amplitude and spectral index are PSα,1m
≃ 1.38 ×

10−10 and nΨα,1m
≃ 0.932, at Hubble scales which is interestingly very close to the spectral

index of the adiabatic spectrum. This mode has the highest ratio of PSα,1m
(Ne)/PR|∗ ≃ 5.7%.

The next modes in the series are the zero mode and the l = 0 α−mode whose corresponding
amplitudes and spectral indices are respectively PSα,0m

≃ 1.7551 × 10−16 and nΨα,0m
≃

1.0012. Other iso-curvature modes have completely negligible spectra in comparison with
the adiabatic one.

The amplitude of the tensor spectral index is negligible for the above set of parameters
in this model, PT ≃ 1.168 × 10−13, which is scale-invariant with the precision of 10−6.

6 End of inflation and preheating

As discussed while the φ field is turned on during inflation, the other fields Ψr,lm are also
present. Although not turned on at the onset of inflation (by the choice of initial conditions)
and hence due to the specifics of the classical dynamics of our model remain zero during
inflation, the presence of Ψr,lm fields can be felt through quantum effects. These quantum
effects show up in two different contexts; one is of course through the power spectrum of
the quantum fluctuations of these fields at the super-horizon scales, the iso-curvature modes
which were discussed in some detail in the previous section. The other quantum effect is the
possibility of creation of the Ψr,lm particles, due to the coupling to the inflaton field φ. If the
pair creation mechanism is “efficient enough” this will eventually back react on the classical
dynamics of the system. This effect, if too efficient during inflation and before completion of
the needed 60 e-folds, can tamper the whole M-flation scenario.2 Recalling the large number
of Ψr,lm modes (3N2−1), their collective effect on the inflaton field could be very large ending
inflation too fast. While if activated only toward the end of inflation it will be a positive
feature of our model, providing us with a mechanism to end inflation while transferring the
potential energy of the inflaton field into the kinetic energy of the Ψr,lm fields, a preheating
scenario [14, 15, 25, 29].

2This “slow-down” effect via particle creation, although potentially harmful for the standard slow-roll in-
flation, can be used as the mechanism to render an otherwise fast-roll inflationary scenario which does not give
enough e-folds, to an effectively slow-roll inflation with enough number of e-folds. The recent publication [28]
discusses this possibility.
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In the first subsection, we first show that particle creation during slow-roll inflation is not
harmful to our M-flation model. In the next subsection we explore the possibility of the parti-
cle creation as the basis for a natural and inherent preheating scenario in our M-flation model.

6.1 Particle creation during slow-roll inflation is not harmful to M-flation

In this section we show that quantum production of Ψr,lm modes during inflation is not large
enough to derail the slow-roll M-flation. This is done at two steps, first we compute the
particle creation rate during inflation and then study the back reaction of the Ψr,lm modes
on the dynamics of the inflaton φ.

6.1.1 Quantum production of Ψr,lm modes during inflation

The Lagrangian governing the dynamics of our model, up to the second order in Ψr,lm fields,
and the corresponding equations of motion are given respectively by (5.2) and (5.4). As
explained before, the time-dependence in Mr,l(φ) leads to Ψr,lm particle creation from the
vacuum [13–15, 25, 29]. (Note that the expression (4.5) for M2

r,l(φ) depends on r and l as
well as the momentum number k.)

By replacing

χr,lm k = a3/2 Ψr,lm k , (6.1)

the equation of Ψr,lm field takes the form of

χ̈k + Ωk,rl(t)
2 χk = 0 , (6.2)

which is an oscillator with a time dependent frequency, Ω2
k,rl

Ω2
k,rl =

k2

a2
− 9

4
H2

(

1 − 2

3
ǫ

)

+ M2
r,l(φ) , (6.3)

where ǫ ≡ −Ḣ/H2 which in the slow-roll limit reduces to its conventional form (4.7).

During inflation and when Ω2 < 0 and χ is either the inflaton or iso-curvature pertur-
bations, χ modes have an imaginary frequency. As is well-known Ω2 < 0 during inflation
(e.g. see discussions and analysis of section 4) happens for the “super-horizon” modes. These
imaginary frequency modes are those which follow a classical dynamics and contribute to the
power spectrum of curvature or iso-curvature (entropy) modes.

For particle creation inside the horizon which is what we will be mainly concerned with
here and can happen if the time variation of Ω2 is not negligible, we should focus on the
Ω2 > 0 regime. Let us suppose that we have the solution to (6.2) for the Ω2 > 0 regime. Our
goal is to compute the number density of the χk particles produced during inflation and for
that we need to compare the solutions at t = −∞ (the onset of inflation) to t = +∞ (the
end of inflation). Denoting the former by χ−

k and the latter by χ+
k , one may expand

χ−
k = Akχ

+
k + Bkχ

∗
k
+ . (6.4)

The Ak and Bk coefficients maybe thought as the Bogoliubov transformation parameters.
The number density of χk mode produced is then equal to |Bk|2. For a detailed discussion
on this matter see [14] or appendix B of [38].

Except for some specific cases (e.g. see [25, 30]), however, it is not possible to solve (6.2)
and we are hence forced to use approximations. One of the approximations which is usually
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employed (e.g. see [15, 25, 29]) is the stationary phase approximation, which if (6.2) viewed
as the Schrodinger equation, it is the WKB approximation. This approximation is valid if

Ω̇k,rl . Ω2
k,rl , Ω2

k,rl > 0 . (6.5)

In this regime one may expand Ω2 around its minima as

Ω2
k,rl = Ω2

0k,rl + Γ2
k,rl(t − tk)

2 + O((t − tk)
3), Ω̇k,rl|t=tk = 0 . (6.6)

where tk is where Ω̇k,rl vanishes. Note that within our assumptions Ω2
0k,rl and Γ2

k,rl are both

positive. (If Ω2
k,rl has several minima one should sum over all of them.)

In the WKB approximation the number density of the particles produced for each
mode k is

〈χk|χk〉 = |Bk|2 = e
−π

Ω
2
0,k

Γk . (6.7)

As we see the particle creation is effective if
Ω2

0,k

Γk
is of order one and not large.

In order to be specific and to get a better theoretical understanding of the analysis we
shall focus on the specific λeffφ4/4 model for which κeff and m2 both vanish. In this case

M2 = νλeffφ2 , (6.8)

where ν = 1, 1
2 l(l + 1), 1

2 l(l − 1) respectively for zero, α and β modes. Moreover,

ǫ =
2

3
η = 8

(

MP

φ

)2

.

In the leading order in ǫ, η

k2

a2H2
=

1

2H4
Γ2
k,rl =

3

4
ǫ(3 − νǫ) ,

Ω2
0k,rl =

3

2
H2

(

νǫ − 3

2

)

.

(6.9)

The creation of particles can then happen in the window

3

2
< νǫ < 3 . (6.10)

That is, it is not possible for zero modes and for α and β modes with l less or of order 1/
√

ǫ.
Recalling the expression (6.7) and the exponential suppression by the factor of Ω2

0/Γ, the
particle creation is effective in the region

Ω2
0k,rl

Γk,rl
=

νǫ − 3
2

√

2ǫ(1 − νǫ
3 )

. 1 . (6.11)

The above can be satisfied if ν is close to its lower bound 3
2ǫ . However, recalling that ν is

integer-valued and that for large ν, ν ≃ l2/2, the number of allowed l’s is very limited and
as a result νǫ can be tuned around the center value 3/2 with accuracy of order

√
ǫ. That is,

for ν around

νǫ =
3

2
+ δ

√
ǫ , (6.12)
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with δ being an order one number, the particle creation is effective.
As the last step we compute the energy which is carried by the Ψr,lm particles in α

and β modes produced during inflation. For that we need to integrate over the number
density (6.7), explicitly

NΨ =
∑

r,l

Dr,l

∫

d3k

(2π)3
1

a3Ω0k,rl
e
−π

Ω
2
0k,rl

Γk,rl , (6.13)

where sum over r only runs over α and β modes and Dr,l is the degeneracy of the modes
which is equal to 2l + 1 for α and β modes. Recalling that the particle creation is effective
in the range,

k

a
= H

√

9

8
ǫ,

k∆k

a2
=

3

8
H2ǫ3/2 δ Ω0 = H

√

3

2
δ ǫ1/4,

and for νǫ = 3
2 , Dr,l is roughly 2

√

3/ǫ. Given the above one can perform the integral

NΨ ≃ 9

8π2
H2 ǫ5/4 δ1/2 · e−πδ . (6.14)

We would like to remark that as Ω2
0/Γ is of order unity one may still trust the WKB

approximation.

6.1.2 Back reaction on the inflationary dynamics

The created Ψ particles during slow-roll inflation will back react on the dynamics of the
inflaton φ. Their back reaction can be traced through their effect in the equation of motion
of the inflaton. Strictly speaking the back reaction effects we want to consider arise from the
one loop correction to the inflaton potential. Noting the action (5.2) and the form of the
potential V0, these corrections are

φ̈ + 3Hφ̇ + V ′
0 + ∆V ′ = 0 , (6.15)

where3

∆V ′ = 3λeffφ〈φ2〉 − 2κeff〈φ2〉 +
1

2

∑

r,lm

〈Ψ⋆
r,lmΨr,lm〉

dM2
r,l(φ)

dφ
(6.16)

where 〈Ψ⋆
r,lmΨr,lm〉 during inflation should be replaced with NΨ (6.14). The 〈φ2〉 during

slow-roll inflation where ǫ, η are very slowly varying (and are basically constant), is negligible
and can be dropped.4 This term, however, may become large toward the end of inflation

3Note that at the one loop level besides ∆V ′ terms one should consider the running of the coupling
constants λeff , κeff and m2. Since we are dealing with quadratic potentials which are renormalizable, one may
compute these loop corrections. Due to the large number of fields these one loop effects could be large. In
our case, however, we can just use the renormalized values for these parameters. We also note that among
the specific cases that we discussed, the λφ4 theory at one loop level will receive a contribution of the form
δm2φ2. The condition of having an inflection point, κ2

eff = m2λeff will not be preserved by the quantum
corrections (at one loop level). The symmetry breaking potential, however, will preserve its form. Besides the
renormalization of the couplings there is also the Coleman-Weinberg corrections. In our discussion, however,
we will not consider this. The symmetry breaking case can be viewed as the bosonic part of the potential in
a supersymmetric theory, for which the Coleman-Weinberg correction is absent.

4The 〈φ2〉 is essentially the same 〈ΨΨ〉 as the zero Ψ modes for which the ν factor, which causes the
enhancement in the α and β modes of Ψ, is absent. Therefore, the 〈φ2〉 is negligible compared to 〈Ψ2

r,lm〉 term.
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when both ǫ and ǫ̇/H can become order one. This is the regime we consider in the next
subsection. During the slow-roll inflation therefore, ∆V ′ = 1

2NΨdM2(φ)/dφ.

Let us focus on the λeffφ4/4 theory for which the computations of 6.1.1 was mainly
carried out. In this case the back-reaction equation of motion for the inflaton φ, is

φ̈ + 3Hφ̇ + λeffφ3 + νλeffNΨ φ = 0 . (6.17)

As the computation of NΨ was carried out assuming the slow-roll approximation is valid, we
stress that the above equation is hence only trustable during slow-roll inflation.

To check whether the last term is harmful to the (slow-roll) inflationary dynamics we
compare the last term to contribution of the main potential driving inflation:

λeff νφ · Nψ

λeffφ3
=

27

128π2

(

H

MP

)2

· ǫ5/4 δ1/2e−πδ . (6.18)

Recalling the WMAP bound H/MP < 10−4, the above expression is of course much smaller
than one during slow-roll inflation. We therefore conclude that the particle creation is not
going to destroy our M-flation model.

6.2 Particle creation and the preheat scenario

We argued that during the slow-roll inflation particle creation, and hence its back-reaction
on the dynamics of the φ field is not large. However, particle creation can become important
when ǫ, η are of order one. In this section we explore this region. The equations we employ
are of course the equation of motion for Ψr,lm modes (5.4) and the modified equation for
the inflaton field (6.15).

We follow the line of analysis performed in [30]. That is, in first step we ignore the ∆V
term in (6.15), i.e. we study classical dynamics of the inflaton field φ when ǫ is of order one and
then study the dynamics of the Ψr,lm fields using this solution for φ as background, and finally,
we include ∆V in the equation of φ. The inflaton potential we start with (2.9) is a generic
quartic potential and the analytic treatment of the equations is not possible for generic values
of parameters λeff , κeff , m2. The analysis for the chaotic case, i.e. when only λeff (or when
m2) is non-zero has been carried out in some detail in [15, 30–32]. In our model, however,
the case with only non-zero m2 does not have the quartic coupling to the preheat field(s)
and hence does not involve a preheating model. We therefore focus on the λφ4/4 theory.

For the λφ4/4 theory, the potential for the fields is

V (φ,Ψr,lm) =
1

4
λeffφ4 +

1

2
λeffφ2

∑

r,lm

1

2
(ω2 − ω)Ψ⋆

r,lmΨr,lm (6.19)

=
1

4
λeffφ4 +

1

2
λeffφ2

N2

∑

m=1

|Ψ0m|2

+
1

2
λeffφ2

[

N−1
∑

l=0

l(l + 1)

2

2l+1
∑

m=1

|Ψα, lm|2 +

N−1
∑

l=1

l(l − 1)

2

2l+1
∑

m=1

|Ψβ, lm|2
]

where in the second line we have decomposed Ψr,lm into zero, α and β modes for which ω
respectively takes values −1, −(l+1) and l. We remark that the potential (6.19) is an approx-
imation to the potential term we start with (2.1) (for the κ = 0, m2 = 0 case) to order Ψ2.
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As shown in [30], the φ equation of motion toward the end of inflation is an (anharmonic)
oscillator around φ = 0, the amplitude of the solution is decreasing as t−1/2. In this regime
the φ field is effectively living in a radiation dominated background with 1/H = 2t. It
appears that the equation for φ takes a simple form in the conformal time, with Jacobi
(elliptic) cosine function as its solution [30]. The equation for the Ψ modes, too, can be
solved explicitly in our case. In fact in the notations of [30], the equation for all three zero, α
and β modes is of the form of g2/λ = n(n + 1)/2 (with n = 1, l, l − 1 respectively for zero, α
and β modes) for which most of the calculations can be performed analytically. (Note that
g2/λ of [30] coincides with the parameter ν (6.8) in our model.) As discussed in [30] for these
specific values of g2/λ we have the significant property that there is an enhancement in the
parametric resonance leading to considerable creation of zero, α and β modes. As discussed
in [30] one can distinguish two even and odd n cases. For the odd n (i.e. for our zero modes,
odd l α-mode, and even l β-mode) the particle creation is peaked around zero momentum
k modes. For the even n modes, however, the particle creations is peaked around momenta

k2 = 3
2H2

infǫ
√

g2

2λ , where ǫ is the computed for the beginning of the slow-roll inflation and Hinf

is the Hubble during inflation. For low n, the Floquet index µk ∝ ln nk (nk is the number
density of the produced particles at momentum k) is around 0.15 for odd n and around 0.5
for even n. Therefore, among the low n modes the main contribution to preheating is coming
from odd n [30]. As discussed in [30] the bigger k is, the more energy can be transferred
from the inflationary sector to the Ψ sector and a more efficient preheat mechanism. This
means that α and β modes with large l, l of order N , make the biggest contribution, this
is despite the fact that the zero modes have a larger degeneracy (of order N2) compared
to the degeneracy of order N for the large l modes. All in all, due to the existence of the
large l modes, and for large N in our model we expect to have a very efficient preheating
model. The computations for the modes with large g2/λ has been carried out in [30] and
the only point which is different in our case is that their result should be multiplied with the
degeneracy factor 2l + 1.

As we argued we have an efficient preheat mechanism in our model. As a very crude
estimate of the preheat temperature in our M-flation setup we may hence use an instant
efficient preheating that all the energy of the inflaton field has gone to effectively massless
zero modes by the end of inflation, leading to

N2T 4 ∼ 3H2M2
P , (6.20)

where N2 estimates the number of species and T is the preheat temperature. As we see, this
is as if we have effectively an instant preheating model in which the maximum temperature
achieved is lowered by 1/

√
N . As a rough estimate taking H saturating its current bound

H ∼ 10−5MP and N ∼ 105 then the preheat temperature becomes of order T ∼ 1013 Gev.
Reducing the preheat temperature to below GUT scale is in principle a positive feature, as
it removes the problem with overproduction of gravitinos.

7 Motivation from string theory

Here we argue that our M-flation setup presented in section 2 with non-commutative matrices
and potential in the form of (2.2) is strongly motivated from string theory.

In the context of string theory, the world-volume theory of N coincident p-branes is
described by a (supersymmetric) U(N) gauge theory. In this system, the transverse positions
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of the branes, ΦI , I = p + 1, . . . , 9, which from the world-volume theory are scalars in the
adjoint representation of U(N), are hence N×N matrices. For the case of our interest, p = 3,
there are six such scalars. The DBI action for the system of N coincident D3-branes in the
background RR six form flux (sourced by a distribution of D5-branes) is given by (e.g. see [33])

S =
1

(2π)3l4sgs

∫

d4xSTr

(

1 −
√

−|gab|
√

|QI
J | +

igs
2 · 2πl2s

[XI ,XJ ]C
(6)
I J 0123

)

(7.1)

Here ls is the string scale and gs is the perturbative string coupling. The operator STr on
a product of matrices is the trace of their symmetrized product. The induced metric on
branes, gab, is given by gab = GMN∂aX

M∂bX
N , where XM indicates the ten-dimensional

positions of the branes and GMN is the ten dimensional background metric. Here the indices
I, J = 4, 5, . . . , 9 represent the coordinates perpendicular to the branes world-volume, the
indices a, b = 0, 1, 2, 3 represent the brane world-volume coordinates and the capital letters
M,N = 0, 1, . . . , 9 indicate the ten-dimensional coordinates. The matrix QI

J is due to
non-commutativity properties of the system given by

QIJ = δIJ +
i

2πl2s
[XI ,XJ ] , (7.2)

and C
(6)
I J 0123 is a rank-6 antisymmetric Ramond-Ramond (RR) field which has two legs

along the direction transverse to the D3-brane.

We consider the ten-dimensional IIB supergravity background

ds2 = −2dx+dx− − m̂2
3
∑

i=1

(xi)2(dx+)2 +

8
∑

I=1

dxIdxI

C+123ij =
2κ̂

3
ǫijkx

k

(7.3)

where i, j indices, which are ranging over 1, 2, 3, parameterize three out of six transverse
directions to D3-brane and xI include three spatial directions along the brane and five of
the transverse directions to D3-branes. With m̂2 = 4g2

s κ̂
2/9 the above background, with

constant dilaton, is a solution to supergravity equations of motion. This background is very
similar to the background of [34] (see also appendix D of [35] for a discussion on the Matrix
model on the above background).

If we turn-off fluctuations along the directions transverse to the branes and the xi

directions (this may be done if we compactify these three directions on a T 3 of very small
radius), fix the light-cone gauge on the D3-branes, expand the action and keep up to order
four in XI , we obtain

S =
1

(2π)3l4sgs

∫

d4x Tr

[−1

2
∂µXi∂

µXi − V (X)

]

(7.4)

V = − 1

4 · (2πl2s)
2

[Xi,Xj ][Xi,Xj ] +
igsκ̂

3 · 2πl2s
ǫijkXi[Xj ,Xk]Xi +

1

2
m̂2X2

i .

If we redefine

Xi =
√

(2π)3gs l2sΦi (7.5)
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and upon addition of the four-dimensional Einstein gravity, the above action takes the form
of (2.1) with the potential (2.2) once we identify the parameters as

λ = 2πgs , κ̂ =
κ

gs ·
√

2πgs
, m̂2 = m2 . (7.6)

Although from the brane theory viewpoint we need to choose m̂2 and κ̂ such that (7.3) is
a solution to supergravity, namely λm2 = 4κ2/9, since we presented the brane theory by the
way of motivation, at the level of M-flation action we may relax this condition and take λ, κ
and m2 as independent parameters. It is also worth noting that λm2 = 4κ2/9 corresponds
to the “symmetry breaking” inflation potential (3.1). Furthermore, the minimum φ = µ
for the potential (3.1) corresponds to the supersymmetric background where N D3-branes
blow-up into a giant D5-brane.

It is worth noting that in the brane theory setting the U(N) symmetry appears as a
gauge symmetry, while in our model we took it to be a global symmetry. Promoting U(N)
to a gauge symmetry does not change our analysis of the SU(2) sector and the corresponding
inflationary dynamics. Due to the gauge symmetry, however, not all the Ψi modes are
physical. Among them the zero modes can be removed by the gauge transformations and
hence in the theory where U(N) is gauged only we deal with α and β modes. Thus in the
gauge symmetry case, from the first N2 + 1 iso-curvature modes in the mass tower, only
one (l = 0 α−mode) remains, which has an amplitude of order few percent of curvature
spectrum. However this will not change the analysis of section 6.1, as the main contribution
were coming from α or β modes of l in the window (6.10) which are also present in the gauged
theory. The analysis of preheating mechanism of section 6 will remain valid because again
zero modes do not have the main contribution.

As a result of motion of D3-branes in the background C(6) flux, two of the directions
transverse to D3-branes blow-up into (fuzzy) two sphere, which in the large N limit behaves
as a D5-brane with world-volume R4 × S2 [33]. In this geometric picture our inflaton field
φ is nothing but the radius of this two-sphere. In this sense the effective inflaton field φ
in our M-flation scenario is closely related to the inflaton in the “giant inflaton” model
of [36] (see also [37]).

8 Discussion

In this work we have presented a new inflationary scenario, the M-flation, in which inflation
is driven by matrix valued scalar fields. M-flation, hence, falls into the general class of
multi-field inflation models and shares positive features of N-flation. Specifically, we used
M-flation to obtain a super-Planckian (large field) field variation during inflation. This leads
to a considerable amount of gravity waves which can be detected in future gravity wave
observations such as PLANCK [16, 17], CMPOL [18] and QUIET [19]. Moreover, as we
discussed, due to the scalings with powers of N , the dimension of the matrices, M-flation
bears a solution to the fine-tuning problem of the coupling in the λφ4/4 chaotic inflation.

Here we focused on a special class of M-flation scenarios with potentials of the form (2.2)
where the potential is quadratic in powers of Φi and their commutators. Within our three
parameter family of the potentials there are interesting special models of inflation which were
analyzed in section 3. One may, however, start with other forms for the potential. Specifically,
if one starts from the string theory realization of the scenario, then from action (7.1) one
obtains higher power corrections in terms of Φi and [Φi,Φj]. Furthermore, the kinetic energy
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may also have a non-trivial form and one may combine the idea of M-flation with a DBI
non-standard kinetic energy [39]. It would be interesting to see the spectrum of the adiabatic
and iso-curvature perturbations for this case of “DBI M-flation”.

One of the observable effects of multi-field inflation models is that besides the usual
power spectrum of the adiabatic fluctuations PR, we also have a non-zero power spectrum
for the iso-curvature perturbation, PSr,lm

. We analyzed the ratio PSr,lm
/PR for various in-

flationary models up to the end of inflation. Inside the Hubble radius this ratio is close to
unity but once the mode leaves the Hubble radius this ratio decays quickly towards the end
of inflation. As shown, our analytical estimates of PSr,lm

/PR are in good agreement with the
numerical results. In order to relate this ratio to the observed values from CMB, however,
we should also supplement our M-flation scenario with a reheating mechanism.

As we discussed in section 5.3, the iso-curvature perturbations Ψr,lm do not produce
entropy perturbations nor couple to curvature perturbations. This is due to our initial con-
ditions resulting in the fact that they are classically frozen during inflation. This in turn
implies that they do not carry energy up to leading order in perturbation theory. How-
ever, they can contribute to entropy perturbations at second order in perturbation theory or
through preheating mechanism. Via the same mechanisms, the iso-curvature perturbations
Ψr,lm can produce non-Gaussinities which are under intense observational investigations.

As was discussed in section 6 our model naturally contains a preheating sector (essen-
tially the Ψr,lm-modes) which due to the large number of these modes works very efficiently,
taking away the energy stored in the inflaton field. In order to complete our model, we need to
have a reheating model via which the energy of the Ψ-modes is transferred into the Standard
Model particles. This is postponed to future works. As a possibility for reheating mechanism
in string theory setup, where Φi represents the collective positions of N D3-branes, we may
imagine that the Standard Model of particle physics are confined to the branes in the forms

of open strings gauge fields A
(a)
µ . The question of reheating would be how to transfer energy

from the Φi fields, more precisely from the Ψr,lm modes, to the open string gauge fields A
(a)
µ .

In this work we have restricted the analysis to a particular solution where Ψr,lm fields are
absent in classical inflationary dynamics. The inflaton field φ is the projection of Φi along the
N×N irreducible representation of SU(2), the Ji matrices. In the field space of φ−Ψr,lm this
corresponds to a straight inflationary background. In general, one may consider an arbitrary
initial condition where Ψr,lm fields are turned on. In the field space of φ− Ψr,lm this gives a
complicated curved inflationary trajectory. One such possibility with a more controlled dy-
namics is to take Ji to form a reducible N ×N representation of SU(2) which consists of n ir-
reducible blocks. In this case the classical inflationary dynamics of our theory reduces to that
of n decoupled scalar fields, each with generic quartic potential. In this case the iso-curvature
perturbations would be non-adiabatic and a significant amount of entropy perturbations can
be created during inflation. Similarly, one expects a considerable amount of non-Gaussianities
to be produced in this case. It would be interesting to build an specific model of M-flation
where Ψr,lm fields are turned on during inflation and calculate non-Gaussianities and entropy
perturbations produced and compare them with the observational bounds.
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A Symmetry breaking inflation

Here we study inflation from the symmetry breaking potential in some details. Suppose
inflation starts when φi > µ. The total number of e-folds Ne is obtained by

M2
P Ne =

∫ φi

φf

dφV

V ′

=
1

8
(y − x) − µ2

32
ln

(

µ2 + 4y

µ2 + 4x

)

(A.1)

where φf is the endpoint of inflation and for later convenience we have defined x = φf (φf−µ)
and y = φi(φi − µ). As usual, define the slow-roll parameters

ǫ =
1

2
M2
P

(

V ′

V

)2

, η = M2
P

V ′′

V
. (A.2)

where ′ denotes derivative with respect to φ. Inflations ends when ǫ = 1, which is used to
fix x and φf

x = 4M2
P + MP

√

16M2
P + 2M2

Pµ2 (A.3)

The scalar spectral index at φi is nR − 1 = 2η − 6ǫ at φi which can be used to eliminate y

y

M2
P

=
12 +

√

144 + 8(1 − nR) µ2

M2

P

1 − nR
(A.4)

Plugging these values for x and y in (A.1), we find an equation for µ/MP . Solving this
equation numerically with Ne = 60 and ns = 0.96 from WMAP5 central value, one obtains
µ/MP ∼ 26. This in turn yields φi ≃ 44MP and φf ≃ 28MP .

The COBE normalization, can be used to fix the value of λeff

δH =
1√
75π

V 3/2

M3
PV ′

=
λ

1/2
eff

4
√

75π

φ2
i (φi − µ)2

(2φi − µ)M3
P

. (A.5)

Using δH ≃ 2 × 10−5 and the above values for φi and µ, one obtains λeff ≃ 10−14. This
corresponds to N ∼ 105 as in chaotic inflation case.

It it is also instructive to look into gravity wave amplitudes, determined by quantity r,
defined as the ratio of gravitational perturbation amplitude to scalar perturbation amplitude
at φi:

r =
8

3
(1 − nR) +

16

3
M2
P

V ′′

V

= 4(1 − nR) + 32
M2
P

y
. (A.6)

Using the above values for φi and µ, one obtains r . 0.2 which is consistent with the upper
bound r < 0.22 from WMAP5.

The analysis when inflation takes place in regions µ/2 < φi < µ and 0 < φi < µ/2 is
similar to the above.
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