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1 Introduction

While one of the major achievements of modern physics has been the development of

fundamental quantum field theories of matter, extending this to quantum gravity remains

a challenge. In particular, conventional quantization of the Einstein-Hilbert action leads to

a non-renormalizable theory. Nevertheless, both gravity and supergravity theories remain

viable as effective field theories describing the low-energy limit of a UV complete theory

such as string theory. Viewed in this light, it is then natural to explore higher derivative

corrections to the two-derivative action.

Independent of supergravity, many people have considered higher derivative gravity

theories such as f(R) gravity, curvature-square theories, and so on. In terms of a derivative

expansion, the first non-trivial terms enter at the R2 level

e−1L = R+ α1R
2 + α2RµνR

µν + α3RµνρσR
µνρσ + · · · . (1.1)

In general, these additional terms modify the graviton propagator and give rise to ghosts

(with the exception of the Gauss-Bonnet combination). While this was initially viewed

as an argument against higher derivative gravity, these pathologies only show up at the
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Planck scale, where traditional quantum gravity is already ill-defined due to its non-

renormalizability. Furthermore, from the modern effective field theory point of view, such

higher derivative terms are necessarily present, and carry information of the underlying

UV complete theory.

A natural place to explore higher derivative supergravity theories is in the context

of string theory, which gives rise to an effective low energy supergravity including higher

derivative corrections. For example, it has been long known from string theory that the

first curvature corrections to the Type II supergravity action appear at R4 order [1–3],

while corrections to heterotic supergravity first appear at R2 order [4, 5]. Of course, even

in the absence of stringy computations, supersymmetry itself puts strong constraints on the

form of the higher derivative terms. Thus the absence of R2 terms in Type II supergravity

may also be viewed as a consequence of maximal supersymmetry. In general, the use of

supersymmetry to constrain the form of the interactions is extremely powerful, and this is

simply another example of this phenomenon.

In this paper, we investigate black holes in higher-derivative corrected five-dimensional

N = 2 gauged supergravity. Our motivation is two-fold. Firstly, we are interested in

exploring the nature of stringy corrections to supergravity and in particular whether such

higher-order corrections may smooth out singular horizons of small black holes. Secondly,

five-dimensional gauged supergravity is a natural context in which to explore AdS/CFT,

and black holes are important thermal backgrounds for this duality. By working out these

gravity corrections, we may learn more about finite-coupling as well as 1/N effects in the

dual N = 1 super-Yang-Mills theory.

Because of the reduced supersymmetry, we expect the first corrections to N = 2

gauged supergravity to occur at R2 order. For this reason, we will limit our focus on

four-derivative terms in the effective supergravity action. While in principle these terms

may be derived directly from string theory, doing so would involve specific choices of

string compactifications down to five dimensions as well as the potential need to work out

contributions from the Ramond-Ramond sector. To avoid these issues, we instead make use

of supersymmetry, and in particular the result of [6], which worked out the supersymmetric

completion of the A∧TrR∧R term in N = 2 supergravity coupled to an arbitrary number

of vector multiplets using the superconformal tensor calculus methods developed in [7–12].

Although we are not aware of an actual uniqueness proof, we expect the four-derivative

terms constructed in [6] to be uniquely determined by supersymmetry (modulo field redef-

initions). The ungauged story is rather elegant, and may be tied to M-theory compactified

on a Calabi-Yau three-fold. In this case the higher derivative corrections are given by

e−1δL = 1
24c2I

[
1
16ǫµνρλσA

I µRνραβRλσ
αβ + · · ·

]
, (1.2)

where the ellipses denote the supersymmetric completion of the A∧TrR∧R Chern-Simons

term. Comparing this term with the Calabi-Yau reduction of the M5-brane anomaly term

demonstrates that the coefficients c2I are related to the second Chern class on the Calabi-

Yau manifold. The higher-derivative corrected action has recently been applied to the

study of five-dimensional black holes in string theory (see e.g. [13] and references therein).
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While much has already been made of the higher-derivative corrections to ungauged

supergravity, here we are mainly interested in the gauged supergravity case and resulting

applications to AdS/CFT. In this case, the natural setup would be to take IIB string theory

compactified on AdS5×Y 5 where Y 5 is Sasaki-Einstein, which is dual to N = 1 super-Yang-

Mills theory in four dimensions. While the four-derivative terms worked out in [6] apply

equally well to both gauged and ungauged supergravity, in this case their stringy origin is

less clear. However, the c2I coefficients governing the four-derivative terms may be related

to gauge theory data using holographic anomaly matching [14–18], as we will see below.

Before constructing the R-charged black holes in the higher-derivative corrected theory,

we first integrate out the auxiliary fields of the off-shell formulation (to linear order in c2I),

yielding an on-shell supergravity action. Throughout this paper, we furthermore work in

the truncation to minimal supergravity involving only the graviton multiplet (gµν , Aµ, ψµ).

While this on-shell action is implicit in the work of [6], we find it useful to have it written

out explicitly, as it facilitates comparison with other recent results. This is especially of

interest in providing a more rigorous supergravity understanding of the R2 corrections to

shear viscosity [19–21] and drag force [22, 23].

The outline of the paper is as follows. Section 2 is dedicated to obtaining the on-shell

supergravity action. In section 3 we relate the gravitational parameters κ2
5 and c2 (the coef-

ficients governing the four-derivative terms) to the central charges a, c of the dual CFT. In

section 4 we construct static stationary R-charged AdS black holes with spherical, flat and

hyperbolic (k = 1, 0,−1) horizons. These solutions, given to linear order in c2, extend the

well-known black hole solutions of the two-derivative theory [24, 25]. We also present a brief

discussion on the effects of the higher derivative corrections on the structure of the horizon.

Following this, in section 5 we study some basic thermodynamical properties of the black

holes, including their temperature and entropy. We conclude in section 6 with a discussion.

2 Higher derivative gauged supergravity

In this section we investigate five-dimensional N = 2 supergravity with the inclusion of

(stringy) higher-derivative corrections. We are mainly interested in the case of gauged

supergravity, which is the natural setting for the AdS/CFT setup. Because of the reduced

amount of supersymmetry, we expect the first corrections to this theory to occur at R2

order. For this reason, we will limit ourselves to four-derivative terms in the effective

supergravity action.

The conventional on-shell formulation of minimal N = 2 gauged supergravity [26, 27]

is given in terms of the graviton multiplet (gµν , Aµ, ψ
i
µ) where ψi

µ is a symplectic-Majorana

spinor with i = 1, 2 labeling the doublet of SU(2). The bosonic two-derivative Lagrangian

takes the form

e−1L0 = −R− 1
4F

2
µν + 1

12
√

3
ǫµνρλσFµνFρλAσ + 12g2, (2.1)

where g is the coupling constant of the gauged R-symmetry, and where we have followed the

sign conventions of [6].1 We are, of course, interested in obtaining four-derivative correc-

1We take [∇µ,∇ν ]vσ = Rµνρ
σ vρ and Rab = R c

ac b.
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tions to the above Lagrangian that are consistent with supersymmetry. Along with purely

gravitational corrections of the form (1.1), other possible four-derivative terms include F 4,

mixed RF 2 and parity violating ones. Given the large number of such terms, it would

appear to be a daunting task to work out the appropriate supersymmetric combinations.

Fortunately, however, it is possible to make use of manifest supersymmetry in the form of

superconformal tensor calculus to construct supersymmetric R2 terms. (See e.g. [28] for a

nice review, albeit focusing on four-dimensional N = 2 supergravity.)

The general idea of the superconformal approach2 is to develop an off-shell formulation

involving the Weyl multiplet that is locally gauge invariant under the superconformal group.

The resulting conformal supergravity may then be broken down to Poincaré supergravity

by introducing a conformal compensator in the hypermultiplet sector and introducing ex-

pectation values for some of its fields. One advantage of this method is that the off-shell

formulation admits a superconformal tensor calculus which enables one to construct super-

symmetric invariants of arbitrary order in curvature. This is in fact the approach taken

in [6], which worked out the supersymmetric completion of the A∧TrR∧R term in N = 2

supergravity coupled to an arbitrary number of vector multiplets.

The basic construction of [6] involves conformal supergravity (i.e. the Weyl multiplet)

coupled to a set of nV + 1 conformal vector multiplets and a single compensator hypermul-

tiplet. The resulting Lagrangian takes the form

L = L0 + L1 = L(V )
0 + L(H)

0 + L1, (2.2)

where L0 corresponds to the two-derivative terms and L1 the four-derivative terms. We

have further broken up L0 into contributions L(V )
0 from the vector multiplets and L(H)

0

from the hypermultiplet.

As formulated in [6], the full Lagrangian L contains a set of auxiliary fields which we

wish to eliminate in order to make direct comparison to the on-shell Lagrangian (2.1). To

do so, we simply integrate out the auxiliary fields using their equations of motion, and the

remainder of this section is devoted to this process. As an important shortcut, we note that

when working to linear order in the correction terms in L1, we only need to substitute in

the lowest order expressions for the auxiliary fields [33]. For this reason, we first examine

the two-derivative Lagrangian before turning to the four-derivative terms contained in L1.

2.1 The leading two-derivative action

We begin with the vector multiplet contribution to the two-derivative Lagrangian [6]

e−1L(V )
0 = N

(
1
2D − 1

4R+ 3v2
)

+ 2NIv
µνF I

µν + NIJ
1
4F

I
µνF

J µν + 1
24cIJKǫ

µνρλσAI
µF

J
νρF

K
λσ

−NIJ

(
1
2DµM IDµM

J + Y I
ijY

J ij
)
, (2.3)

where M I , AI
µ and Y I

ij (I, J = 1, 2, . . . , nv + 1) denote, respectively, the (real) scalar fields,

the gauge fields and the SU(2)-triplet auxiliary fields in the nv + 1 vector multiplets. In

addition, the scalar D and the two-form vµν are auxiliary fields coming from the Weyl

2The superconformal method has a long history, see for example [7–12, 29–32] and references therein.
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multiplet. The prepotential N and its functional derivatives are given by the standard

expressions

N = 1
6cIJKM

IMJMK , NI = 1
2cIJKM

JMK , NIJ = cIJKM
K . (2.4)

For future reference, we also note the useful relations

NIM
I = 3N , NIJM

J = 2NI . (2.5)

Turning next to the hypermultiplet Lagrangian, we have [6]

e−1L(H)
0 = 2

[
DµAᾱ

i DµAi
α+Aᾱ

i (gM)2 Ai
α+2gY ij

αβAᾱ
i Aβ

j

]
+A2

(
1
4D + 3

8R− 1
2v

2
)
. (2.6)

In general, Ai
α are a set of 4 × nH hypermatter scalars carrying both the SU(2) index i

and the index α = 1, 2, . . . , 2nH of USp(2nH). (We use the SU(2) index raising convention

Ai = ǫijAj and Ai = Ajǫji with ǫ12 = ǫ12 = 1). Note that we have gauged a subgroup G

of USp(2nH), so that the covariant derivative appearing above is given by

DµAα
i = ∂µAα

i − gAI
µtIAα

i + Aα
j V

j
µ i , (2.7)

where tI are the generators of the gauge symmetry and where V ij
µ is an additional auxiliary

field belonging to the Weyl multiplet. Finally, we have defined M ≡ M ItI , where M I are

the vector multiplet scalars.

For simplicity, we focus on a single compensator and choose the conventional gauging

of the diagonal U(1) in the SU(2) R-symmetry. In this case, the action of M on the

hyperscalars is given by

MAα
i = M ItIAα

i = M IPI

(
iσ3
)α
β
Aβ

i , (2.8)

while the covariant derivative becomes

DµAα
i = ∂µAα

i − gAI
µPI

(
iσ3
)α
β
Aβ

i + Aα
j V

j
µ i . (2.9)

Here PI denote the charges associated with the gauging. Furthermore, A2 ≡ Aᾱ
i Ai

α =

Aβ
i d

α
β Ai

α, where the metric d α
β is arranged to be a Kronecker delta symbol as appropriate

for a compensator [6].

Combining (2.3) with (2.6), the complete two-derivative action is given by

e−1L0 = 1
4D
(
2N + A2

)
+R

(
3
8 A2 − 1

4N
)

+ v2
(
3N − 1

2A2
)

+2NIv
µνF I

µν + NIJ

(
1
4F

I
µνF

J µν − 1
2DµM IDµM

J
)

+ 1
24cIJKǫ

µνρλσAI
µF

J
νρF

K
λσ

−NIJY
I
ijY

J ij + 2
[
DµAᾱ

i DµAi
α + Aᾱ

i (gM)2 Ai
α + 2gY ij

αβAᾱ
i Aβ

j

]
. (2.10)

At the two-derivative level, the auxiliary field D plays the role of a Lagrange multiplier,

yielding the constraint

2N + A2 = 0 . (2.11)
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Thus we can recover the standard very special geometry constraint N = 1 by setting

A2 = −2. (This fixing of the dilatational gauge transformation is in fact the purpose of

the conformal compensator). This then brings the Lagrangian to the following form:

L0 = 1
2D(N − 1) − 1

4R(N + 3) + v2(3N + 1) + 2NIv
µνF I

µν

+NIJ(1
4F

I
µνF

J µν − 1
2DµM IDµM

J) + 1
24 cIJKǫ

µνρλσAI
µF

J
νρF

K
λσ

−NIJY
I
ijY

J ij + 2
[
DµAᾱ

i DµAi
α + Aᾱ

i (gM)2 Ai
α + 2gY ij

αβAᾱ
i Aβ

j

]
. (2.12)

2.1.1 Integrating out the auxiliary fields

The action (2.12) can be written in a more familiar on-shell form by integrating out the

auxiliary fields. We will do this in two steps by first eliminating the fields Aα
i , V ij

µ and Y I
ij

and then eliminating D and vµν .

We start by fixing the SU(2) symmetry by taking Aα
i = δα

i , which identifies the indices

in the hypermultiplet scalar. The equation of motion for V ij
µ is then given by

V ij
µ = gPI

(
iσ3
)ij
AI

µ , (2.13)

which also results in DµAα
i = 0. Turning next to Y I

ij, we first note that

Y ij
αβ Aᾱ

i Aβ
j = gY I ijPI

(
iσ3
)
ij
. (2.14)

Varying (2.12) with respect to Y I
ij then gives us the equation of motion

Y I
ij = 2

(
N−1

)IJ
PJ

(
iσ3
)
ij
. (2.15)

Using the above to eliminate Aα
i , V ij

µ and Y I
ij from the two-derivative action (2.12),

we end up with

e−1L0 = 1
2D(N − 1) − 1

4R(N + 3) + v2(3N + 1) + 2NIv
µνF I

µν

+ NIJ

(
1
4F

I
µνF

J µν − 1
2∂

µM I∂µM
J
)

+ 1
24cIJKǫ

µνρλσAI
µF

J
νρF

K
λσ

+ 8g2
(
N−1

)IJ
PIPJ + 4g2

(
PIM

I
)2
, (2.16)

where the last line corresponds to the gauged supergravity potential

V = −4g2
[
2
(
N−1

)IJ
PIPJ +

(
PIM

I
)2]

. (2.17)

Note that, with abelian gauging, the covariant derivative acts trivially on the vector mul-

tiplet scalars, DµM
I = ∂µM

I .

To remove the remaining auxiliary fields D and vµν from (2.16) we must turn to the

equations of motion for this system. Varying the action with respect to D, vµν , M I and

AI
µ yields, respectively,

0 = 1
2(N − 1) , (2.18)

0 = 2(3N + 1)vµν + 2NIF
I
µν , (2.19)

0 = 1
2NI

(
D − 1

2R+ 6vµνv
µν
)

+ 2NIJF
J
µνv

µν + 1
4 cIJK F J

µνF
K µν + NIJ�MJ

+1
2 cIJK ∂µM

J∂µMK − δV

δM I
, (2.20)

0 = −∇ν
[
4NIvνµ + NIJF

J
νµ

]
+ 1

8CIJKǫµ
νρλσF J

νρF
K
λσ . (2.21)
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In addition, the Einstein equation is given by:

0 = 1
4(N + 3)

(
Rµν − 1

2gµνR
)

+ 1
4(N − 1)Dgµν − 1

4 (∇µ∇νN − gµν�N )

+1
2NIJ

(
∂µM

I∂νM
J − 1

2gµν∂λM
I∂λMJ

)
− 2(3N + 1)

(
vµλvν

λ − 1
4gµνvλσv

λσ
)

−4NI

(
F I

(µ
λvν)λ − 1

4gµνF
I
λσv

λσ
)
− 1

2NIJ

(
F I

µλF
J
ν

λ − 1
4gµνF

I
λσF

J λσ
)
− 1

2gµνV . (2.22)

We are now in a position to start solving for the auxiliary fields D and vµν . Inserting

the very special geometry constraint N = 1 (enforced by the equation of motion for D)

into (2.19) yields

vµν = −1
4NIF

I
µν . (2.23)

We may now eliminate N and vµν from the lowest order Maxwell and Einstein equations

to obtain

∇ν
[
(NINJ−NIJ)F J

νµ

]
= −1

8CIJKǫµ
νρλσF J

νρF
K
λσ ,

Rµν− 1
2gµνR = −1

2NIJ

(
∂µM

I∂νM
J− 1

2gµν∂λM
I∂λMJ

)

−1
2 (NINJ−NIJ)

(
F I

µλF
J
ν

λ− 1
4gµνF

I
λσF

J λσ
)

+ 1
2gµνV . (2.24)

Turning next to the scalar equations of motion, we note that the nv + 1 equations may

be decomposed into nv equations for the constrained scalars M I , along with one equation

for the Lagrange multiplier D. To solve for D, we multiply the scalar equation by M I

and obtain:

D − 1
2R+ 6vµνv

µν = −8
3NIF

I
µνv

µν − 1
6NIJF

I
µνF

J µν − 1
3NIJ∂µM

I∂µMJ

−4
3NI�M

I + 2
3M

I δV

δM I
. (2.25)

Substituting in R and vµν then allows us to express the auxiliary field D entirely in terms

of physical fields:

D = − 7
12NIJ∂µM

I∂µMJ − 4
3NI�M

I + 1
4

(
NINJ − 1

2NIJ

)
F I

µνF
J µν − 5

6V + 2
3M

I δV

δM I

= − 7
12NIJ∂µM

I∂µMJ − 4
3NI�M

I + 1
4

(
NINJ − 1

2NIJ

)
F I

µνF
J µν

+2g2
[
6PIPJ

(
N−1

)IJ − PIPJM
IMJ

]
. (2.26)

By using (2.25), the equation of motion for the constrained scalars (2.20) can be rewritten as

(
δJ
I −

NIM
J

3

)[
cJKL

(
∂µM

K∂µML+2MK
�ML

)

−
(
NJKNL− 1

2cJKL

)
FK

µνF
Lµν− δV

δMJ

]
= 0 . (2.27)

Note that the first term in parentheses acts as a projector, reenforcing the fact that the

nv + 1 scalars M I are constrained, so that there are only nv independent scalar degrees

of freedom.

– 7 –
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We now have all the ingredients we need to write down the on-shell two-derivative

Lagrangian:

e−1L = −R− 1
2NIJ∂µM

I∂µMJ − 1
4 (NINJ −NIJ)F I

µνF
J µν

+ 1
24 cIJK ǫµνρλσAI

µF
J
νρF

K
λσ + 4g2

[
2
(
N−1

)IJ
PIPJ +

(
PIM

I
)2]

, (2.28)

where now the M I are a set of constrained scalars satisfying the very special geometry

condition N = 1. Note that this Lagrangian may be brought into a more conventional

form by defining the scalar metric

GIJ = − 1

2

∂

∂M I

∂

∂MJ
N
∣∣∣∣
N=1

= −1

2
(NIJ −NINJ) , (2.29)

with inverse

GIJ =
(
G−1

)IJ
= M IMJ − 2

(
N−1

)IJ
. (2.30)

In this case, (2.28) takes the form

e−1L = −R− 1
2NIJ∂µM

I∂µMJ − 1
2GIJF

I
µνF

J µν − V + 1
24 cIJK ǫµνρλσAI

µF
J
νρF

K
λσ , (2.31)

where the potential is now given by

V = 4g2
(
GIJ − 2M IMJ

)
PIPJ . (2.32)

This Lagrangian perfectly matches the bosonic sector of the standard two-derivative N = 2

supergravity action coupled to nv vector multiplets [26, 27, 34]. The resulting equations of

motion are given by (2.24) and (2.27).

Here, we are mainly concerned with the truncation of (2.28) to the case of pure super-

gravity. This is accomplished by setting the scalars to constants3 and by defining a single

graviphoton Aµ according to4

M I = M̄ I , AI
µ = M̄ IAµ. (2.33)

While the constants M̄ I are arbitrary moduli in the ungauged case, in the gauged cause

they must lie at a critical point of the potential (2.17) given by solving

(
δJ
I − NIM

J

3

)
δV

δMJ
= 0. (2.34)

By demanding that the critical point is supersymmetric, we find that the constant scalars

satisfy:5

PIM̄
I =

3

2
,

(
N̄−1

)IJ
PIPJ =

3

8
. (2.35)

3Recall that the D = 5, N = 2 scalars MI are real. The barred notation M̄I is simply used to denote

the constant values of the scalars and related quantities at this order.
4Note that our definition differs by a factor of 1/3 from the conventional one where Aµ = AI

µNI .
5These expressions can be obtained by making use of the hyperino and gauging SUSY variations, as well

as the equation of motion for the auxiliary field Y I
ij . We refer the reader to [6] for more details.
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in which case the potential becomes V̄ = −12g2. The resulting Lagrangian for the bosonic

fields of the supergravity multiplet (gµν , Aµ) then reads

e−1L = −R− 3
4F

2
µν + 1

4ǫ
µνρλσAµFνρFλσ + 12g2 , (2.36)

which reproduces the conventional on-shell supergravity Lagrangian (2.1) once the

graviphoton is rescaled according to Aµ → Aµ/
√

3.

While this completes the analysis relevant to the leading, two-derivative action, we

note that the expression for D simplifies further in the case of constant scalars. Substitut-

ing (2.33) and (2.35) into the expression (2.26) for D yields the simple result

D = 1
4

(
N̄IN̄J − 1

2N̄IJ

)
F I

µνF
J µν = 3

2F
2
µν . (2.37)

By taking N = 1, we see that this explicit form of D does not play a role in the leading

expression for the two-derivative Lagrangian. However, it will become relevant in the

discussion of higher derivative corrections, which we turn to next.

2.2 Higher-derivative corrections in gauged SUGRA

We now turn to the four-derivative corrections to the action (2.2), which we parameterize

by L1. For convenience, we separate the contributions to L1 present in the ungauged

theory from those coming strictly from the gauging, L1 = Lungauged
1 + Lgauged

1 . The two

are given by:

e−1Lungauged
1 = 1

24c2I

[
1
16ǫµνρλσA

I µRνραβRλσ
αβ + 1

8M
ICµνρσC

µνρσ+ 1
12M

ID2+ 1
6F

I
µνv

µνD

−1
3M

ICµνρσv
µνvρσ− 1

2F
I µνCµνρσv

ρσ+ 8
3M

Ivµν∇ν∇ρv
µρ

−16
9 M

IvµρvρνR
ν
µ− 2

9M
Iv2R+ 4

3M
I∇µvνρ∇µvνρ+ 4

3M
I∇µvνρ∇νvρµ

−2
3M

Iǫµνρλσv
µνvρλ∇δv

σδ + 2
3F

I µνǫµνρλσv
ρδ∇δv

λσ+F I µνǫµνρλσv
ρ
δ∇λvσδ

−4
3F

I µνvµρv
ρλvλν− 1

3F
I µνvµνv

2+4M Ivµνv
νρvρλv

λµ−M I
(
v2
)2]

, (2.38)

e−1Lgauged
1 = 1

24c2I

[
− 1

12ǫµνρλσ A
I µRνρ ij(U)Rλσ

ij (U)

−1
3 M

IRµν ij(U)Rµν ij(U) − 4
3 Y

I
ijvµνR

µν ij(U)
]
, (2.39)

where

R ij
µν (U) = ∂µV

ij
ν − V i

µkV
kj
ν − (µ ↔ ν) . (2.40)

As we can see, the constants c2I parameterize the magnitude of these contributions.

Notice that the scalar D no longer acts as a Lagrange multiplier, since it now appears

quadratically in L1. In fact, by varying the full action L = L0 + L1 with respect to D,

with L0 as in (2.16), we obtain the modified very special geometry constraint

N = 1 − c2I

72

(
DM I + F I µνvµν

)
, (2.41)

which encodes information about how the scalars M I are affected by higher-derivative cor-

rections.
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2.2.1 Integrating out the auxiliary fields

As in the two-derivative case, in order to obtain a Lagrangian written solely in terms of

the physical fields of the theory we need to eliminate the auxiliary fields D, vµν , V i
µν and

Y I
ij from L = L0 +L1. In section 2.1 we solved for the auxiliary fields by neglecting higher

order corrections, and then integrated them out of the two-derivative action. It turns out

that the lowest order expressions for the auxiliary fields are sufficient when working to

linear order in the c2I [33]. This allows us to reuse the results of the previous section for

the auxiliary fields, which we summarize here:

V ij
µ = gPI

(
iσ3
)ij
AI

µ , (2.42)

Y I
ij = 2

(
N−1

)IJ
PJ

(
iσ3
)
ij
, (2.43)

vµν = −1
4NIF

I
µν , (2.44)

D = 1
4

(
NINJ − 1

2NIJ

)
F I

µνF
J µν . (2.45)

While it is valid to use these lowest order expressions, it is important to realize that

the scalar fields are modified because of (2.41). This modification leads to additional

contributions to the two-derivative on-shell action (2.28), which combines with L1 to yield

the complete action at linear order in c2I .

In principle, we may work with the full system of supergravity coupled to nV vector

multiplets. However, here we focus on the truncation to pure supergravity, where the

scalars M I are taken to be non-dynamical. Even so, they are not entirely trivial. While

at the two-derivative level, we may simply set them to constants according to (2.33), here

we must allow for the modification (2.41) by defining

M I = M̄ I + c2M̂
I , AI

µ = M̄ IAµ, c2 ≡ c2IM̄
I , (2.46)

where M̂ I are possible scalar fluctuations that enter at O(c2). Substituting this into the

expressions (2.44) and (2.45) for the auxiliary fields then yields

vµν = −3
4Fµν + O (c2) , D = 3

2F
2 + O (c2) , (2.47)

which match the lowest order expressions for constant scalars. The modified very special

geometry constraint (2.41) can now be simplified further, and becomes

N = 1 − c2
96
F 2 + O

(
c22
)
. (2.48)

The most general solution for the fluctuating scalars M̂ I ought to come from solving the

equations of motion. However, as a shortcut, we make the ansatz that M̂ I is proportional

to M̄ I . The modified constraint (2.48) is then enough to fix the correction to the scalars

to be

M I = M̄ I
[
1 − c2

288
F 2 + O

(
c22
)]
. (2.49)

Consistency of this ansatz with the equations of motion also demands an appropriate

relation between the various c2I coefficients. Finding this relation involves solving for the
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auxiliary field D to linear order in c2I . When applied to the M I equation of motion this

imposes the condition

c2I =
1

3
c2J M̄

JN̄I =
1

3
c2 N̄I . (2.50)

Although this appears to place a strong restriction on the form of the higher derivative

corrections, since we are only interested in the system where the vector multiplets are

truncated out, it makes no difference what the conditions were prior to truncation, so long

as the combination of parameters c2 given in (2.46) survives.

We are now ready to integrate out both the scalars M I and the auxiliary fields from

the two-derivative action L0 given in (2.12). By making use of the corrections6 to the

leading order scalar expressions (2.35)

PIM
I =

3

2

[
1 − c2

288
F 2
]
,

(
N−1

)IJ
PIPJ =

3

8

[
1 +

c2
288

F 2
]
, (2.51)

we find that the contribution coming from L0 yields the following terms:

e−1L0 = −R− 3

4
F 2 +

1

4
ǫµνρλσAµFνρFλσ + 12g2 +

c2
24

[
1

16
RF 2 +

1

64

(
F 2
)2 − 5

4
g2F 2

]
.

(2.52)

Turning next to the four-derivative contributions, we note that, since such terms are

already linear in c2, we may simply use the leading order solution for the scalars. The

gauging contribution (2.39) is then particularly simple

e−1Lgauged
1 = − c2

64
g2 ǫµνρλσA

µF νρF λσ . (2.53)

On the other hand, the contribution to Lungauged
1 is given by:

e−1Lungauged
1 =

c2
24

[ 1

16
ǫµνρλσA

µRνρδγRλσ
δγ +

1

8
C2

µνρσ +
3

16
CµνρλF

µνF ρλ − FµρFρνR
ν
µ

−1

8
RF 2 +

3

2
Fµν∇ν∇ρF

µρ +
3

4
∇µF νρ∇µFνρ +

3

4
∇µF νρ∇νFρµ

+
1

8
ǫµνρλσF

µν(3F ρλ∇δF
σδ + 4F ρδ∇δF

λσ + 6F ρ
δ∇λF σδ)

+
45

64
FµνF

νρFρλF
λµ − 45

256

(
F 2
)2]

. (2.54)

The full on-shell Lagrangian is thus given by

e−1L = −R− 3

4
F 2

(
1 +

5

72
c2g

2

)
+

1

4

(
1 − 1

16
c2g

2

)
ǫµνρλσAµFνρFλσ + 12g2

+
c2
24

[
1

16
RF 2 +

1

64

(
F 2
)2
]

+ Lungauged
1 . (2.55)

Finally, we may redefine Aµ to write the kinetic term in canonical form:

Afinal
µ =

√
3

(
1 +

5

144
c2g

2

)
Aold

µ . (2.56)

6These can be easily verified using PI = 1

4
N̄IJM̄J .
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The Lagrangian then becomes:

L = −R− 1

4
F 2 +

1

12
√

3

(
1 − 1

6
c2g

2

)
ǫµνρλσAµFνρFλσ + 12g2

+
c2
24

[
1

48
RF 2 +

1

576

(
F 2
)2
]

+ Lungauged
1 , (2.57)

with

e−1Lungauged
1 =

c2
24

[ 1

16
√

3
ǫµνρλσA

µRνρδγRλσ
δγ +

1

8
C2

µνρσ +
1

16
CµνρλF

µνF ρλ − 1

3
FµρFρνR

ν
µ

− 1

24
RF 2 +

1

2
Fµν∇ν∇ρF

µρ +
1

4
∇µF νρ∇µFνρ +

1

4
∇µF νρ∇νFρµ

+
1

32
√

3
ǫµνρλσF

µν
(

3F ρλ∇δF
σδ + 4F ρδ∇δF

λσ + 6F ρ
δ∇λF σδ

)

+
5

64
FµνF

νρFρλF
λµ − 5

256

(
F 2
)2]

. (2.58)

3 Anomaly matching and AdS/CFT

In the above section, we have written out the on-shell five-dimensional N = 2 gauged

supergravity Lagrangian up to four-derivative order. Restoring Newton’s constant, this

takes the form

e−1L =
1

16πG5

[
−R− 1

4
F 2 +

1

12
√

3
ǫµνρλσAµFνρFλσ + 12g2 +

c2
192

C2
µνρσ + · · ·

]
, (3.1)

where we have only written out a few noteworthy terms. Given this Lagrangian, it is

natural to make the appropriate AdS/CFT connection to N = 1 super-Yang Mills theory.

Before we do so, however, we present a brief review of the AdS/CFT dictionary in the case

of N = 4 super-Yang Mills.

The standard AdS/CFT setup relates IIB string theory on AdS5×S5 to N = 4 super-

Yang Mills with gauge group SU(N) and ’t Hooft coupling λ = g2
YMN . The standard

AdS/CFT dictionary then reads

L4

α′2 = 4πgsN = g2
YMN, (3.2)

where L is the ‘radius’ of AdS5. This duality may be approached more directly by reducing

IIB supergravity on S5, yielding N = 8 gauged supergravity in five dimensions. Just as in

the N = 2 case of (3.1), this theory is determined in terms of two gravity-side parameters,

G5 (Newton’s constant) and g (the gauged supergravity coupling constant). These are

related to the parameters of the AdS/CFT dictionary (3.2) according to

g =
1

L
, N2 =

πL3

2G5
. (3.3)

Since the range of N = 1 gauge theories is much richer than that of N = 4 SYM, it is

worth rewriting the above AdS/CFT relations in terms of more general invariants of the
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gauge theory. This may be elegantly done through anomaly matching, and in particular by

making a connection through the holographic Weyl anomaly [14]. Note that a discussion

of the N = 1 SCFT description of the higher derivative theory was already given in [6],

where special emphasis was placed on the technique of a-maximization. Here we wish to

provide a more complete discussion of the relation between the gravity parameters G5, g

and c2 and the gauge theory data.

3.1 The Weyl anomaly

For a four-dimensional field theory in a curved background, the Weyl anomaly may be

parameterized by two coefficients, commonly denoted a and c (or equivalently b and b′)

〈T µ
µ 〉 =

c

16π2
C − a

16π2
E, (3.4)

where

C = C2
µνρσ = R2

µνρσ − 2R2
µν + 1

3R
2 (3.5)

is the square of the four-dimensional Weyl tensor, and

E = R̃2
µνρσ = R2

µνρσ − 4R2
µν +R2 (3.6)

is the four-dimensional Euler invariant. At the two-derivative level, the holographic com-

putation of the N = 4 SYM Weyl anomaly gives a = c = N2/4 [14]. Combining this

with (3.3) then allows us to write

a = c =
πL3

8G5
, (3.7)

which has the advantage of being completely general, independent of the particular gauge

theory dual.

The prescription for obtaining the holographic Weyl anomaly for higher derivative

gravity was worked out in [16, 35], and later extended in [36] for general curvature squared

terms. The result is that, for an action of the form

e−1L =
1

2κ2

(
−R+ 12g2 + αR2 + βR2

µν + γR2
µνρσ + · · ·

)
, (3.8)

the holographic Weyl anomaly may be written as [36]

gµν〈T µν〉 =
2L

16πG5

[(
− L

24
+

5α

3
+
β

3
+
γ

3

)
R2+

(
L

8
−5α−β− 3γ

2

)
R2

µν +
γ

2
R2

µνρσ

]
, (3.9)

where L is related to g (to linear order) by

g =
1

L

[
1 − 1

6L2
(20α + 4β + 2γ)

]
. (3.10)

Comparison of (3.4) with (3.9) then gives the curvature-squared correction to (3.7)

a =
πL3

8G5

[
1 − 4

L2
(10α + 2β + γ)

]

c =
πL3

8G5

[
1 − 4

L2
(10α + 2β − γ)

]
. (3.11)
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Turning now to the N = 2 gauged supergravity Lagrangian of (3.1), we see that the

curvature-squared corrections are proportional to the square of the five-dimensional Weyl

tensor. This gives

(α, β, γ) =
c2

192

(
1

6
,−4

3
, 1

)
, (3.12)

so that

a =
πL3

8G5
, c =

πL3

8G5

(
1 +

c2
24L2

)
, g =

1

L
. (3.13)

Note that the AdS radius is unshifted from that of the lowest order theory. This is because

AdS is conformally flat, so that the Weyl-squared correction in (3.1) has no effect on the

background. Finally, we may solve for c2 to obtain

c2
24

=
c− a

ag2
. (3.14)

This is the key relation connecting the four-derivative terms in the gauged supergravity

Lagrangian to the N = 1 gauge theory data.

3.2 The R-current anomaly

A consistency check on the form of c2 comes from the gravitational contribution to the

anomalous divergence of the U(1)R current 〈∂µ(
√
gRµ)〉, since the latter is related by

supersymmetry to the conformal anomaly 〈T µ
µ 〉.

The CFT U(1) anomaly is given by

δI(Λ)ZCFT =

∫
ΛI

[
tr(GIGJGK)

24π2
F J ∧ FK +

trGI

192π2
Rab ∧Rab

]
, (3.15)

where GI is a global U(1)I generator, and the trace is taken to be a sum over all the fermion

loops. The AdS/CFT relation ZCFT = exp(−Ibulk) then connects this field theory anomaly

to the coefficients of the Chern-Simons terms in the bulk supergravity:

Ibulk = · · · +

∫ [
tr (GIGJGK)

24π2
AI ∧ F J ∧ FK +

trGI

192π2
AI ∧Rab ∧Rab

]
, (3.16)

where the ellipses denote the gauge invariant part of the action. Comparison to theA∧R∧R
term of (2.38) gives

trGI = −πc2I

8G5
. (3.17)

To relate c2 ≡ c2IM̄
I to the central charges, we can use the relation [37, 38]

a =
3

32

(
3trR3 − trR

)
, c =

1

32
(9trR3 − 5trR) , (3.18)

provided we can relate GI appropriately to the U(1) charges R. A few comments are

needed to explain how to identify the R-charge correctly. First of all, the R-charge is a

particular linear combination of the GI , proportional to M̄ IGI . Also, the supercharge Qα

should have R-charge one. The U(1) charges of Qα can be read off from the coupling
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between the gauge fields and the graviphoton in the gravity side, and the algebra is given

by [GI , Qα] = PIQα. This uniquely determines the R-charge as

R =
M̄ IGIL

PIM̄ I
→ trR = − 1

PIM̄ I

πc2L

8G5
. (3.19)

Recall that the combination PIM̄
I = 3/2 can be determined from the vacuum solu-

tion, (2.35). By plugging this equation into (3.18), we obtain

c2
24

=
8G5

πL
(c− a) . (3.20)

In addition, the gravitational constant also can be determined from the U(1) anomaly.

Eq. (3.16) implies

tr(GIGJGK) =
π

8G5

(
12cIJK − g2

3
c(IPJPK)

)
. (3.21)

By multiplying M̄ IM̄JM̄K on both sides, we obtain

27

8L3
trR3 =

π

8G5

(
12 − 3c2

4L2

)
. (3.22)

The formula for the central charges (3.18) and (3.20) then gives

1

16πG5
=

a

2π2L3
. (3.23)

Using this relation, (3.20) can be rewritten as

c2
24L2

=
c− a

a
. (3.24)

These results agree with those found through the holographic Weyl anomaly calculations,

as expected for consistency.

3.2.1 Extracting the R-current anomaly from the N = 2 case

Since the U(1) normalization may be somewhat obscure, we may perform an additional

check by making contact with the N = 2 SCFT literature. In fact, one can extract the c2
result (3.14) from the analysis of [39], which studied R-symmetry anomalies in the N = 2

SCFT dual to AdS5×S5/Z2. Of course, the appropriate supersymmetric CFT that is dual

to our bulk N = 2 AdS5 theory has N = 1 supersymmetry. Nevertheless, one can still

use the analysis of [39], after carefully rewriting it in the language of N = 1 anomalies.

Before doing so, we will need to make a few general comments on the connection between

the CFT R-current anomalies and the dual supergravity description.

The four-dimensional CFT R-current anomaly is sensitive to the amount of supersym-

metry, and is given by [15]:

∂µ(
√
gRµ)N=1 =

c− a

12π2
R̃R+

5a− 3c

9π2
F̃F , (3.25)

∂µ(
√
gRµ)N=2 =

c− a

4π2
R̃R+

3(c− a)

π2
F̃F , (3.26)
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where F is the flux associated with the R-symmetry. The R-symmetry of N = 2 SCFTs

is U(1)R × SU(2)R. The U(1)R symmetry of its N = 1 subalgebra is

RN=1 =
1

3
RN=2 +

4

3
I3, (3.27)

where I1, I2, I3 are SU(2)R generators. The factor of 1/3 in the relation above can also be

seen in the gravitational contributions to ∂µ(
√
gRµ) in (3.25) and (3.26). Recall that the

mixed U(1)-gravity-gravity anomaly ∂µ(
√
gRµ) ∝ R̃R is represented in the bulk by the

mixed gauge-gravity Chern-Simons interaction ∝
∫
AdS5

A ∧ tr(R ∧ R). Thus, the bulk CS

term associated to the N = 1 SCFT will be 1/3 of that corresponding to N = 2.

Furthermore, when using the results of [39], we will have to be careful with how the

U(1) gauge field is normalized. In the AdS/CFT dictionary, the normalization of the gauge

field kinetic term

SAdS5
=

∫
d4x dz

√−g FµνF
µν

4 g2
SG

(3.28)

can be extracted by looking at the two-point function of the dual CFT currents sourced by

the gauge field Aµ(~x) = Aµ(~x, z)|boundary . For a four-dimensional CFT, the general form

of the two point function of such currents is given by [40]:

〈Ji(x)Jj(y)〉 =
B

(2π)4
( �δij − ∂i∂j)

1

(x− y)4
, (3.29)

where B is a numerical coefficient which is related to the normalization of the gauge

kinetic term:

B ∝ 1

g2
SG

. (3.30)

For the N = 2 computation of [39] one finds B = 8, while for the case of N = 1 super-

symmetry [41] we read off B = 8/3. Notice that the two results are again off by a factor

of 3. We now have all the ingredients we need to apply the (N = 2 SCFT) analysis of [39]

to our case (N = 1 SCFT). We have seen that both the gauge kinetic term normalization

and the coefficient of the mixed gauge-gravity CS term will have to be adjusted.

The five-dimensional supergravity action of [39] takes the form

S =
N2

π2L3

∫ √−g F
2
R
4

+
N

16π2L

∫
AR ∧ tr(R ∧R)

=
N2

4π2L3

∫ [√−g F 2
R − L2

16N
ǫµνρλσA

µRνρδγRλσ
δγ

]
, (3.31)

where AR is the gauge field that couples canonically to the R-current. This was the effective

supergravity Lagrangian which was appropriate for comparison to the N = 2 SCFT. Since

we are interested in comparing to a CFT with N = 1 SUSY, we will need to rescale both

terms by appropriate factors of 1/3:

S → N2

4π2L3

∫ [√−g 1

3
F 2
R − L2

3 · 16N
ǫµνρλσA

µRνρδγRλσ
δγ

]
. (3.32)
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Finally, we rescale the graviphoton, AR = (
√

3/2)A, to obtain a canonical gauge kinetic

term:

S → N2

4π2L3

∫ [√−g F 2

4
− L2

32
√

3N
ǫµνρλσA

µRνρδγRλσ
δγ

]
. (3.33)

This is the action which should be compared to ours:

Sus =
N2

4π2L3

∫ √
g

[
−R− F 2

4
+

c2

24 · 16
√

3
ǫµνρλσ A

µRνρδγRλσ
δγ + . . .

]
, (3.34)

finally giving us

c2 =
12L2

N
= 24L2 c− a

a
, (3.35)

in agreement with (3.14) and (3.24).

4 R-charged solutions

The embedding of the lowest order five-dimensional N = 2 gauged U(1)3 supergravity into

IIB supergravity was done in [42]. If the three U(1) charges are taken to be equal, we

end up with the minimal supergravity system that we have considered above, (2.1). The

static stationary non-extremal solutions are well known, and were found in [25]. For the

truncation to minimal supergravity, they take the form

ds2 = H−2fdt2 −H
(
f−1dr2 + r2dΩ2

3,k

)

A =

√
3(kQ+ µ)

Q

(
1 − 1

H

)
dt, (4.1)

where the metric functions H and f are:

H(r) = 1 +
Q

r2
,

f(r) = k − µ

r2
+ g2r2H3 . (4.2)

Here µ is a non-extremality parameter and dΩ2
3,k for k = 1, 0, or −1 corresponds to the

unit metric of a spherical, flat, or hyperbolic 3-dimensional geometry, respectively.

4.1 Higher order corrected R-charged solutions

We wish to find corrections to the R-charged solutions (4.1) given the higher derivative

Lagrangian (2.57). To this end, as in [43] we treat c2 as a small parameter and expand the

metric and gauge field as follows:

H(r) = 1 +
Q

r2
+ c2h1(r) ,

f(r) = k − µ

r2
+ g2r2H3 + c2f1(r) ,

A =

√
3(kQ+ µ)

Q

(
1 − 1 + c2a1(r)

H

)
dt , (4.3)
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where h1, f1, and a1 parameterize the corrections to the background geometry. Solving the

equations of motion for the theory, we arrive at:

h1 = −Q(kQ+ µ)

72r6H2
0

,

f1 =
−5g2Q(kQ+ µ)

72r4
+

µ2

96r6H0
,

a1 =
Q

144r6H3
0

[
4(kQ+ µ) − 3µ− 3Qµ

r2

]
. (4.4)

The new corrected geometry is therefore given by

H(r) = H0(r) +
c2
24

[ −Q(kQ+ µ)

3r6H2
0

]
,

f(r) = f0(r) +
c2
24

[
−8g2Q(kQ+ µ)

3r4
+

µ2

4r6H0

]
,

At(r) = At 0(r) − c2
24

√
3Q(kQ+ µ)

2r8H4
0

[
2 (kQ+ µ) r2 − µr2H0

]
, (4.5)

where H0, f0, and A0 refer to the background solutions (4.1) and (4.2). Finally, we should

note that in the literature Q and µ are sometimes written in terms of a parameter β,

defined by sinh2 β = kQ/µ2.

We will state the k = 0 and k = 1 solutions explicitly, since they have several interesting

applications: the former to studies of the hydrodynamic regime of the theory, and the latter

to the issue of horizon formation for small black holes. For k = 0, the solution is given by

H(r) = H0(r) +
c2
24

[ −Qµ
3 r6H2

0

]
,

f(r) = f0(r) +
c2
24

[
−8g2µQ

3r4
+

µ2

4 r6H0

]
,

At(r) = At 0(r) − c2
24

[√
3Qµ

2r8H4
0

(
µr2 −Qµ

)]
. (4.6)

while for k = 1 it is given by

H(r) = H0(r) − c2
24

[
Q(Q+ µ)

3r2(r2 +Q)2

]
,

f(r) = f0(r) +
c2
24

[
−8g2Q(Q+ µ)

3r4
+

µ2

4r6H0

]
,

At(r) = At 0(r) − c2
24

[√
3Q(Q+ µ)

2r8H4
0

(
(2Q+ µ) r2 −Qµ

)
]
. (4.7)

4.2 Conditions for horizon formation

We would like to conclude this section with some comments on the structure of the horizon

for the solutions that we have found. In particular, we are interested in whether higher

derivative corrections will facilitate or hinder the formation of a horizon. In the standard
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two-derivative theory, the BPS-saturated limit (µ = 0) of the k = 1 solution (4.1)–(4.2)

describes a geometry with a naked singularity, the so-called superstar [44]. Furthermore,

even if the non-extremality parameter is turned on, one finds that a horizon develops only

given a certain critical amount, µ ≥ µc [25]. It is therefore natural to ask what happens

to such geometries once we start incorporating curvature corrections. For the superstar,

we would like to see hints of horizon formation. In the non-extremal case, on the other

hand, it would be nice to determine whether the inclusion of higher-derivative corrections

leads to a smaller (larger) critical value µc, increasing (decreasing) the parameter space

for the appearance of a horizon. However, one should keep in mind that our arguments

are only suggestive, since our analysis is perturbative, while the formation of a horizon is

a non-perturbative process. Moreover, given that even in the non-extremal case turning

on µ does not guarantee the presence of a horizon, it is not clear at all whether higher

derivative corrections can be enough to push the superstar to develop a horizon. A more

proper analysis would involve looking directly at the SUSY conditions, and asking whether

they are compatible with having a superstar solution with a finite horizon. In fact, there

are already studies which seem to indicate [45] that this may not be possible.

The spherically symmetric solutions presented in (4.7) are of the form:

ds2 = F1(r) dt2 − F2(r) dr2 − F3(r) dΩ2
3 . (4.8)

Horizons appear at zeroes of the function F1(r). One can make arguments about their

existence without having to solve explicitly for their exact location. Notice that F1(r) is a

positive function for large r. Thus, a sufficient condition for having at least one horizon is

F1(rmin) ≤ 0 , (4.9)

where rmin is a (positive) minimum of F1(r). This was the reasoning used in [25] to study

the properties of the horizon of the non-extremal solution.

For the corrected superstar solution we have, expanding in c2:

F1 ≡ f

H2
=
f0 + c2

(
f1 − 2f0h1H

−1
0

)

H2
0

+ O
(
c22
)
. (4.10)

It is easy to see that, to leading order, the numerator does not vanish. With the inclusion

of higher-derivative terms, however, it picks up a negative contribution, hinting at the

possibility of a horizon. Furthermore, the minimum of the function F ≡ f0 + c2(f1 −
2f0h1H

−1
0 ) will shift. Let’s see precisely how that happens. To lowest order, its minimum

is given by x
(0)
min = 2Q, which in turn gives us F (x

(0)
min) = 1 + 27g2Q/4. Including higher

order corrections, we find

xmin = x
(0)
min + c2x

(1)
min = 2Q− c2

81g2Q− 4

4374Qg2
. (4.11)

Now we have

F (xmin) = 1 + 27g2Q/4 + c2

(
1

972Q
− g2

48

)
, (4.12)
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which tells us that the minimum of the function will be slightly closer to zero as long as

g2Q > 4/81.

The analysis of the conditions for the existence of a horizon in the non-extremal case

(µ 6= 0) is significantly more involved. The expression for the corrected horizon radius in

terms of the original, two-derivative horizon radius r0 is:

rH = r0

(
1 +

c2
24

{
g4H4

0

(
3Q2 − 26Qr20 + 3r40

)
− 2g2H2

0

(
13Q− 3r20

)
+ 3

24H0r0
[
g2H2

0

(
Q− 2r20

)
− 1
]

})
. (4.13)

Notice that we traded µ in favor or r0 in the expression above by making use of f0(r0) = 0,

i.e. the relation µ/r20 = 1+ g2r20H
3
0 . As we mentioned above, in the two-derivative case one

finds a critical value µcrit above which a horizon will form. It would certainly be interesting

to explore for which parameter values rH decreases or increases, and more importantly, how

the (corrected) critical value of µ is affected by the curvature corrections. We leave this to

future studies.

5 Thermodynamics

We may now study some of the basic thermodynamic properties of the non-extremal so-

lutions constructed above. With an eye towards AdS/CFT in the Poincaré patch, we will

focus on the k = 0 solution (4.6), although the analysis may easily be carried out for the

other cases as well. We begin with the entropy, which for Einstein gravity is characterized

by the area of the event horizon. In the presence of higher derivative terms, however, this

relation is modified, and the entropy is no longer given by the area law. Instead, we may

turn to the Noether charge method developed in [46] (see also [47, 48]).

The original Noether charge method is only applicable to a theory with general covari-

ance, but has been extended to a theory with gravitational Chern-Simons terms in [49].

Our action includes a mixed Chern-Simons term of the form A ∧ R ∧ R. But as long as

we keep this term as it is, with a bare gauge potential, the general covariance is unbroken

and we can still use the original formulation. In the absence of covariant derivatives of the

Riemann tensor, the entropy formula is given by [46]

S = −2π

∫

Σ
dD−2x

√
−h δL

δRµνρσ
ǫµνǫρσ , (5.1)

where Σ denotes the horizon cross section, h is the induced metric on the it and ǫµν is the

binormal to the horizon cross section.

For the metric ansatz (4.1) the only non-vanishing component of the binormal ǫµν is

ǫtr = −ǫrt = H−1/2 . (5.2)

Applying the prescription (5.1) to the action (2.57), we obtain, to linear order in c2,

S=
A

8G5

[
−gµρgνσ +

c2
24

(
−1

4C
µνρσ− 1

32g
µρgνσF 2+ 5

12g
νσFµλF ρ

λ− 1
16F

µνF ρσ
)]
ǫµνǫρσ

∣∣∣∣
r=r+

=
A

4G5

[
1+c2

µ
(
Q+3r20

)

48
(
r20+Q

)3

]
, (5.3)
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where A =
∫ √

−h dΩ3,0 is the area of the horizon for the solution to the higher derivative

theory. Also, r+ denotes the radius of the event horizon for the corrected black brane

solution, while r0 is the horizon location for the original, two-derivative solution (4.2).

The former can be found by requiring that the gtt = f(r)/H(r)2 component of the cor-

rected metric vanishes.7 Similarly, r0 satisfies f0(r0) = 0. Notice that the non-extremality

parameter µ can be expressed entirely in terms of r0 and Q:

f0(r0) = 0 ⇒ µ =
g2(r20 +Q)3

r20
. (5.4)

We can therefore eliminate µ from (5.3), and write the entropy in the following form:

S =
A

4G5

[
1 + c2g

2Q+ 3r20
48 r20

]
. (5.5)

The first term above is simply the contribution coming from the area, while the remaining

O(c2) term is the expected deviation from the area law.

In order to arrive at the entropy density, we need one more ingredient, which is the

relation between the corrected and uncorrected horizon radii r+ and r0:

r+ = r0

(
1 +

c2
24

g2(r20 +Q)(3Q2 − 26Qr20 + 3r40)

24r40(Q− 2r20)

)
. (5.6)

This is because the area A appearing in (5.5) is computed using r+. This expression allows

us to write the entropy per unit three-brane spatial volume entirely in terms of r0 as well

as the physical parameters of the theory

s =
(r20 +Q)3/2

4G5L3

(
1 +

c2
24

g2(3Q2 − 14Qr20 − 21r40)

8r20(Q− 2r20)

)

=
2(r20 +Q)3/2

πL6

(
a+ (c− a)

3Q2 − 14Qr20 − 21r40
8r20(Q− 2r20)

)
. (5.7)

In the second line we have used the relations (3.13) to replace the gravitational quantities

G5 and c2 by the central charges of the dual CFT. Notice that the lowest order term above

matches the two-derivative entropy computation of [50].

While r0 is the coordinate location of the horizon in the lowest order computation,

it is not in itself a physically relevant parameter. Instead, it may be viewed as a proxy

for the Hawking temperature associated with the non-extremal solution. A simple way of

computing this temperature is to identify it with the inverse of the periodicity of Euclidean

time τ . The relevant components of the metric are given by

ds2 = H−2fdτ2 +Hf−1dr2 + · · · , (5.8)

and the horizon is located at f(r+) = 0. Expanding near the horizon and identifying the

proper period of τ to remove the conical singularity yields the temperature

TH =

(
r20 +Q

)1/2

2πL2

[
(2r20 −Q)

r20
+

c2
24L2

(
3Q3 + 4Q2r20 + 59Qr40 − 10r60

)

8r40
(
2r20 −Q

)
]
. (5.9)

7To linear order in the expansion parameter c2, this coincides with demanding that f(r) vanishes.
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In principle, we may invert this expression to obtain r0 as a function of temperature TH

and charge Q. This then allows us to rewrite the entropy density as a function of charge

and temperature, s = s(TH , Q). In practice, however, non-trivial R-charge introduces a

new scale, so that the entropy density/temperature relation no longer takes the simple

form s ∼ T 3 resulting from simple dimensional analysis.

6 Discussion

The main result of the previous section is the derivation of the entropy (5.7) of an R-

charged black brane including higher-derivative corrections, which are controlled by the

parameter c2. Furthermore, the identification of the gravitational parameters G5 and c2
in terms of the central charges a, c of the dual CFT has allowed us to express the entropy

in terms of microscopic, gauge theory data. In particular, the relation between c2, which

signals the contribution coming from R2 terms, and the CFT central charges is given by

c2 = 24L2(c− a)/a.

A non-trivial check on the corrections to the entropy can be done by considering the

zero R-charge (Q = 0) limit of (5.7), which should agree with the analysis of [19]. For a

Lagrangian of the form

L =
R

16πG5
− Λ + α1R

2 + α2R
2
µν + α3R

2
µνρσ , (6.1)

the authors of [19] showed that the entropy density of a 5D AdS black brane solution is

given by

s =
2π

L3z3
0

[
1

8πG5
− 18

L2
(5α1 + α2) +

12

L2
α3

]
, (6.2)

where L denotes the AdS curvature radius, L2 = −6/(8πG5Λ), and z0 is the leading order

horizon location in the coordinates used in [19]; in our notation, z0 = 1/r0. Comparing (6.1)

to our action, where the only curvature corrections that survive the Q = 0 limit come in

the form of C2
µνρσ = 1

6R
2 − 4

3R
2
µν +R2

µνρσ, we read off:

16πG5α1 =
1

48

c2
24
, 16πG5α2 = −1

6

c2
24
, 16πG5α3 =

1

8

c2
24
. (6.3)

Making use of these expressions, the entropy of [19] takes the form

s =
1

4L3z3
0G5

[
1 +

21

16

c− a

c

]
, (6.4)

matching nicely the Q = 0 limit of (5.7), as expected.

We should point out that a similar discussion has appeared very recently in [18], where

the authors considered the hydrodynamic regime of the CFT dual to the zero R-charge

black brane background of [19]. In [18], however, higher derivative corrections associated

with R2 and Rµν are eliminated via a field redefinition, making direct comparison to our

entropy less straightforward.

Our interest in studying higher order corrections to R-charged AdS5 black holes is also

motivated by our desire to investigate corrections to the hydrodynamic regime of the dual
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theory. It is natural to apply the results of this work to the calculation of η/s, the shear

viscosity to entropy ratio, which has recently received a great deal of attention. In partic-

ular, our present construction of higher-derivative corrected R-charged black holes allows

for a generalization of the finite coupling shear viscosity calculation to the case of finite

(R-charge) chemical potential. This is an avenue which we are currently exploring [51].

We would like to conclude with a few comments on the issue of horizon formation.

As we mentioned in section 3, the so-called superstar solution at the two-derivative level

has a naked singularity. With the inclusion of higher derivative contributions, it appears

that the corrected superstar may develop a horizon, provided that the charges are large

enough, g2Q > 4/81. However, we should note that our analysis is entirely perturbative,

while horizon formation is an intrinsically non-perturbative phenomenon. While our results

show that the first corrections to the geometry seem to push the superstar solution “in the

right direction,” increasing the chances of forming a horizon, a more rigorous analysis is

certainly needed to reach a conclusive result.
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