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Abstract. We apply a one-dimensional (1D) optical lattice, formed by two
laser beams with a wavelength of 852nm, to a 3D %'Rb Bose-Einstein
condensate (BEC) in a shallow magnetic trap. We use Kapitza—Dirac scattering
to determine the depth of the optical lattice. A qualitative change in behavior
of the BEC is observed at a lattice depth of 30F,.., where the quantum gas
undergoes a reversible transition from a superfluid state to a state that lacks
well-to-well phase coherence. Our observations are consistent with a 1D Mott
insulator transition, but could also be explained by mean-field effects.
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1. Introduction

Bose—Einstein condensation (BEC) was first demonstrated in 1995, creating an explosion of
interest in previously unattainable many-body quantum phenomena [1]. Of particular interest is
the phase transition from superfluid to Mott insulator [2]. In the three-dimensional (3D) case,
this phase transition occurs when a 3D optical lattice is applied to a BEC. As the lattice depth is
increased, the BEC transitions from a superfluid state to a state with a definite number of atoms
in each lattice well. The Mott insulator transition has drawn the interest of both atomic and
condensed matter physicists, due to the possibilities it creates for simulating ideal, controlled
condensed matter systems. Under the correct circumstances the transition could be used to create
supersolids or other novel phases of matter [3]. Doping the Mott insulator with fermions can be
used to simulate a semiconductor [4]. One can use Feshbach resonances to create molecules
in a Mott insulator with two atoms per site [5], which could eventually lead to a molecular
BEC [6, 7]. The Mott insulator state could also provide a means to entangle neutral atoms and
form a quantum register for a quantum computer (for a review, see [8]). Several laboratories have
succeeded in producing the transition from a BEC to a 3D Mott insulator [2, 4, 5, 9]. In lower
dimensions, the Mott insulator transition has been achieved using 2D [10, 11] and 1D [12] Bose
gases. Attaining the Mott insulator transition requires a deep lattice, commonly achieved by
high laser power and narrowly focused beams. Demonstrating the transition from a BEC toa 1D
Mott insulator (a 3D BEC in a 1D lattice formed by two laser beams) is more difficult because a
deeper lattice is needed [13, 14]. Furthermore, characterizing the transition requires an accurate
determination of the lattice depth, which may be complicated due to uncertainties in the lattice
beam alignment. In this paper, we experimentally investigate the reversible loss of superfluidity
of'a 3D BEC in a 1D lattice using a robust method to calibrate the lattice depth [15]. In contrast
with [12], we use a 3D Bose gas, applying no transverse lattice potential>. Our observations are
consistent with a transition to a 1D Mott insulator.

2. Experimental setup and lattice calibration

In the experiment, we start with a ¥’Rb BEC of 5-8x10* atoms in a practically harmonic
magnetic trap. Our BEC apparatus is described in [16]. In the data presented, we use magnetic-
trap frequencies of 80 Hz and 200 Hz in the direction of the optical lattice (in the other two
directions, the trap frequencies are 20 Hz and 80 Hz or 40 Hz and 200 Hz, respectively). The
optical lattice is formed by a retro-reflected, far-off-resonance laser beam (wavelength 852 nm;
power up to 200 mW after passage through an optical fiber, which is employed to improve the
beam quality). The beam is focused into a spot with an intensity full-width at half-maximum of
80 um. The depth of the optical lattice is determined as follows.

When a standing wave is applied to cold atoms for a duration that is sufficiently short
that the atoms are stationary while the lattice is applied, the system is in the Kapitza—Dirac
scattering regime (analogous to the Raman—Nath regime in optics). The 1D optical lattice adds a
potential

V(x) = —Vo(l — cos(2kix)) (1)

to the atoms over the time interval At that the lattice is on. 2V} is the lattice depth, and ki is
the wavenumber of the lattice beams. Assuming an initial wavefunction 1 (x, t = 0) = 1, the

2 In our work, the parameter ¥, used in [12]is V| = 0.
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Figure 1. (a) TOF images of Kapitza—Dirac scattering as a function of lattice
duration A¢, in steps of 0.5 us, starting from 0.5 us. (b)—~(d) Scattering ratios
N,/Nr, as defined in the text, for the scattering orders n =0, 1 and 2,
respectively, as a function of lattice duration. The data in (b) are fit with JZ (a A?),
with best-fit parameter a=0.79 us~'. The lines in (b)—~(d) show J>(0.79 us™! At)
with respective values of n.

wavefunction after the lattice pulse is, neglecting a global phase factor,

St > 0) = exp (i VoAt cos(2ka)>

h
= Z 1" J, (%) exp(i2nkyx) . (2)

n=—00

The expression in the sum shows that the BEC breaks up into components with momenta that are
integer multiples of 272k, and with amplitudes given by Bessel functions [17, 18]. In particular,
the order n = 0 first vanishes at a time Af, for which V, = 2.4048% / Aty. The lattice depth 2V}
can thus be found by measuring the time At at which the n = 0 order first vanishes [15]. For an
atomic polarizability o and a single-beam lattice intensity /;, the lattice depth is also given by
2Vy = ali/(2cep). Using the above equations, the lattice depth can be experimentally calibrated
against arbitrary linear functions of /;, such as the measured beam power. The strength of this
method is that no geometrical measurements of the lattice beam size and position are necessary.
To induce Kapitza—Dirac scattering, the optical lattice is applied to the BEC for a few
microseconds. The lattice and the trap are then turned off simultaneously. The BEC is allowed
to expand freely for times of flight (TOF) of 16 ms or 12 ms, for the case of the 80 Hz or 200 Hz
traps, respectively. After the expansion, we take absorption images, shown in figure 1(a). Since
the BEC temperature depends on the trap frequency, different trap frequencies require different
TOFs to produce the best image. For each scattering order n, we measure the atom number
N, (Nt is the total atom number). In figure 1(b), we plot Ny/ Nt versus At and find the lattice
duration Af, where this ratio first approaches zero; the corresponding lattice depth is 4.817% / At,.
In this way, we can determine the proportionality constant relating the lattice-power reading to
the lattice depth. Typically, we find A#, ~ 3 us. For example, in figure 1, by fitting the N1/ N,
with JO2 (aAt), we find Aty = 3.02 us, with a fit error of ~1%. This is well within the validity
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range of the short-pulse approximation underlying the above treatment, as evidenced by the fits
in figure 1(b) which match the data well up to 6 us. In the measurements presented in this paper,
this calibration procedure is repeated frequently to account for small changes in the alignment
of the lattice beams. Furthermore, this procedure is used to initially align the lattice with respect
to the BEC: better overlap between the lattice and the BEC leads to a smaller Ag,.

Overall, we estimate our lattice depth uncertainty to be ~5%. Most of this uncertainty
is not intrinsic to the method used for calibration, but rather is due to slow drifts in lattice
alignment over the course of our measurements, post-calibration. We typically calibrate our
lattice depth once, or occasionally twice, per day, either at the beginning or the end of a data
run. The accuracy of the Kapitza—Dirac calibration method compares favorably to estimates
of the lattice depth based on measurements of the lattice beam profile, which rely on accurate
knowledge of the lattice beam alignment relative to the BEC. If the lattice beam alignment
is difficult to determine, as in our case, the beam profile method can lead to huge systematic
errors. Finally, we note that there are other lattice depth calibration methods based on parametric
heating [19, 20], wave-packet motion [21, 22], and BEC scattering outside the Kapitza—Dirac
regime [23]. In principle, all of these methods could yield calibrations of similar precision.
However, in our experiment, the calibration method based on Kapitza—Dirac scattering is the
easiest to implement.

3. Experimental observations

With the lattice depth calibrated using relatively fast optical lattice pulses, we investigate the
loss of well-to-well phase coherence of the BEC when the optical lattice is turned on slowly. We
use the amplitude modulation of an acousto-optic modulator to control the power of the lattice
beams. We ramp up the power of the lattice beam from zero to its final value over 10 ms, and
then hold it there for 5 ms. Then, we simultaneously turn off the lattice and the magnetic trap,
and take a TOF measurement. As can be seen in figure 2(b), for small lattice depths the BEC is
only slightly modulated by the lattice, corresponding to the appearance of only two weak side
peaks, at 24k . As the depth of the lattice is increased, well-to-well phase coherence is lost.
As a result, the side peaks disappear and the central peak broadens, reflecting the momentum
distribution of the localized wavefunction in a single lattice well. We associate the loss of well-
to-well phase coherence with a loss of superfluidity. Here, we find that the superfluidity is largely
lost for lattices deeper than about 30F ..

The loss of superfluidity in our system is fully reversible. To demonstrate this, we ramp
the lattice to 31 E . over 10 ms, hold it there for 5 ms, and then ramp back down over 10 ms. As
can be seen in figures 2(d) and (e), we obtain a modulated superfluid and BEC when we ramp
down to a weak lattice and no lattice, respectively. The BEC does not appear to have residual
momentum components at multiples of 27k after the lattice is ramped down.

In lattices deeper than about 30F..., the BEC can be thought of as a stack of phase-
uncorrelated pancake BECs. As can be seen in figure 2(c), the atoms expand much farther in the
direction of the lattice than in the transverse direction. This is largely due to the momentum
spread of the pancake BECs in the lattice-beam direction. Examining the TOF image in
figure 2(c), we find a velocity spread of Ap/myg, = 8 mms~!. Using the Heisenberg uncertainty
relation, AxAp > 7 /2, this corresponds to a localization Ax =46 nm, or 11% of the lattice
period. Neglecting mean-field effects and using the fact that the lattice wells are approximately
harmonic near their minima, we find an oscillation frequency of 27t x 35 kHz for a lattice with a
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Figure 2. Left: TOF images. Right: lattice depth as a function of time for (a) BEC
with no lattice, (b) modulated superfluid in a weak lattice, (c) loss of superfluidity
in a deep lattice, (d) modulated superfluidity recovered after the deep lattice is
ramped down, and (e) BEC with no lattice, recovered after the deep lattice is
ramped down.

depth of 30, and velocity and position uncertainties of 8.9 mms ~! and 41 nm, respectively,
for the ground state. These numbers match the values derived from figure 2(c) quite well,
showing that the expansion in the lattice-beam direction is mostly driven by the kinetic energy
of the pancake BECs in the optical-lattice wells.

A more subtle effect is that in the case of a deep lattice the expansion transverse to
the lattice-beam direction is considerably slower than in the lattice-free BEC: about 1.5 and
2.5mms~!, respectively. We attribute the difference to a variation in the manifestation of the
repulsive mean-field potential (estimated to be < 1 kHz for our BECs in 200 Hz magnetic traps).
Without the lattice, the BEC expansion is driven by a combination of the mean-field pressure and
the kinetic energy of the BEC in the magnetic trap, leading to a final expansion speed of about
2.5mms~! in all directions in figure 2(a). After application of the deep lattice in figure 2(c), the
expansion is mostly driven by the comparatively high kinetic energy of the BEC pancakes in
the optical-lattice wells, leading to a much faster expansion in the lattice direction. The faster
expansion leads to a reduction of the time over which a substantial mean-field pressure exists,
leading to a reduced final expansion speed transverse to the lattice, as observed.

To quantitatively characterize the loss of superfluidity, we examine TOF images as a
function of lattice depth. We use the visibility of the side peaks, v, to map out the transition:

Ny—N.
p=-—2_"5 3)
N4+ Np
where N, is the linear atom density of one side peak, and Nj is the linear atom density at the

minimum between the center peak and the side peak. The timing of the lattice application is
as described above. Examining the resulting TOF images, shown in figure 3(a), we take the
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Figure 3. (c) TOF images as a function of lattice depth for a 200 Hz magnetic
trap. (b) Linear atom density distribution for a BEC after 12 ms TOF, released
from a lattice with a depth of 9.3 F,.. and magnetic trap with 200 Hz frequency.
N4 1s the height of the side peak and Nj is the height of the valley. (¢) Visibility
as a function of lattice depth from a 80 Hz magnetic trap (circles) and a 200 Hz
trap (triangles).

linear atom density as a function of position in the lattice direction along the central strip of
each image, integrating over three pixels in height (a pixel in the image corresponds to 6.7 um).
For N4, we choose the local maximum at the side peak, if there is one, and for Ny we choose
the local minimum between the side peak and the central peak, as shown in the sample data in
figure 3(b). If there is no local side maximum, we designate v = 0. We calculate the visibility
separately for the side peaks on the left and right, and repeat the calculation for five separate
images at each lattice depth. We then average the ten resulting values to get the visibility plotted
in figure 3(c). As can be seen, the BEC starts to lose superfluidity around 10E ., where v first
reaches a value lower than its initial value. The BEC has fully lost its superfluidity by 30F .,
where v = 0. The loss of superfluidity happens under the same lattice conditions in the 80 Hz
trap and the 200 Hz trap, as can be seen by comparing the circles and triangles in figure 3(c).
This indicates that at both 80 Hz and 200 Hz the trap has no noticeable effect compared to the
lattice.

Ideally, the visibility should be unity as long as the system is fully in a superfluid state [24].
In the experiment, however, even a minute thermal background will lower the visibility, and will
disproportionately affect images with lower N4. As N4, Ng — 0, this will prevent the visibility
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Figure 4. (a) TOF images as a function of holding time in a lattice of 23 E .
depth in a 200 Hz magnetic trap. (b) Visibility as a function of holding time of
the lattice, for an 80 Hz magnetic trap (circles) and a 200 Hz trap (triangles).

in equation (3) from reaching unity. For these reasons, the first few data points in figure 3(c) not
only fail to approach unity, but are even lower than visibilities seen for lattice depths ~5E .
We are, however, confident that these issues do not affect our determination of where the loss
of superfluidity occurs, because the transition happens at a lattice depth where both N4 and Np
are large.

The drop in visibility that is used as an indicator for the reversible loss of well-to-well phase
coherence and superfluidity of the BEC (see figure 3) does not always appear instantaneously;
it can sometimes take an observable amount of time to develop. To study the dynamics of the
dephasing, we ramp the lattice to its final depth over 10 ms, leave the lattice on for a variable hold
time, and take TOF images as a function of the hold time, as shown in figure 4(a) for the case
of a final depth of 23 E\.. The visibilities in figure 4(b) are obtained as described earlier. When
the lattice is ramped to final depths less than about 10 E .., the BEC simply remains superfluid,
permanently maintaining a global phase across the individual lattice wells. If the final lattice
depth is larger than about 30E .., at the end of the lattice ramp the BEC immediately shows
the signatures of a complete loss of superfluidity. Thus, in this case the breakup of the BEC
into dephased pancake BECs in the individual lattice wells is already complete by the end of the
ramp, and there are no detectable dynamics after completion of the ramp. In contrast, if the BEC
is loaded into a moderately deep lattice (of the order of 20E.), it takes a measurable amount
of time for the pancake BECs to dephase with respect to each other and for the signatures of the
loss of superfluidity to appear. For the parameters in figure 4 it is found that the dephasing takes
of the order of 3 ms.

In many of the images where the BEC is in a deep lattice, irregular bright and dark
vertical stripes appear. These stripes can be seen in nearly all of the images after the loss of
superfluidity from the 80 Hz trap, and several, but not all, of those images from the 200 Hz
trap. For example, in figure 3(a), the stripes are visible in the images at 23 and 35F ... The
arrangement of the stripes appears random, with no repetition of the pattern from image to
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(a)

(b)

Figure 5. TOF images in a deep lattice and in magnetic traps with frequencies
(a) 80 Hz and (b) 200 Hz. The speckles vary from shot to shot, and are due to
interference during TOF of pancake BECs from different lattice wells.

image, but the characteristic size of the stripes remains the same for a given magnetic trap
frequency. We believe that these stripes represent interference between pancake BECs from
different lattice wells during the TOF. After the loss of superfluidity, each pancake BEC still has
a definite, but random phase. During the TOF, the pancakes all expand into each other, leading
to a characteristic interference speckle size. In figure 5, we show interference patterns in TOF
images for the two different magnetic trap depths. To find the characteristic speckle size, As,
in these images, we take fast Fourier transforms (FFT) of five images and average them for
each trap depth. The value of As is given by the inverse spatial frequency where the FFT signal
reaches the noise floor. We find As = 17 um for the 80 Hz trap and 27 um for the 200 Hz trap.
Using a straightforward analysis, we estimate that the number of interfering pancakes, P, is
related to As and the TOF, T, via P =2hT (m As A)~'. From this we find P =20 and 10
pancakes for the 80 and 200 Hz traps, respectively. These numbers agree reasonably well with
our measurements of the size of the BEC in the respective magnetic traps.

4. Discussion

An obvious interpretation of the results presented above is that when the BEC loses its
superfluidity it is undergoing a transition into a 1D Mott insulator state. The typical signature of
a Mott insulator transition in 3D is that the side peaks disappear and the central peak broadens,
reflecting the momentum distribution of the localized wavefunction in a single lattice well [2].
Our system, as seen in figures 2(a)—(c), follows this progression, with an appearance very similar
to that of the 3D Mott transition observed in [2, 9]. Furthermore, the Mott insulator transition
is a quantum phase transition, and thus is reversible. As seen in figures 2(d) and (e), the loss of
superfluidity in our system is also fully reversible. This indicates that the loss of superfluidity is
not due to a lattice-induced heating effect, providing support to the Mott insulator explanation
of the observed phenomenon.

We observe a complete loss of superfluidity at 30 ... Our system contrasts strongly with
that of a 1D Bose gas in a 1D lattice, where the Mott transition is complete around 10E .. [12].
For a 3D Bose gas in a 3D lattice, the Mott transition is complete around 20E .. [2]. Our
observations are in general accordance with the prediction in [13] that for a 3D Bose gas in
a 1D lattice the Mott transition requires a deeper lattice than in the case of a 3D Bose gas in
a 3D lattice. The specifics do not match, however, in that the lattice depth predicted in [13]
necessary for the Mott transition is upwards of 50F,.. for a system like ours with about 3000
atoms per lattice well.
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One concern in the interpretation of our results is adiabaticity. The transition from a
superfluid to a Mott insulator should require an adiabatic ramp of the optical lattice, where
adiabaticity is related to the timescale of the lattice ramp with respect to the tunneling time of
the atoms in the lattice and the energy gap of the insulator. There does not seem to be a strict
requirement, however; experiments demonstrating the transition to a 3D Mott insulator have
shown that the system only needs to be approximately adiabatic to achieve the transition. In [26],
it is observed, for example, that full adiabaticity for a 3D Mott transition requires a ramp time
of 100 ms, whereas in [9] it is observed that the Mott transition is achievable for any ramp time
larger than 1 ms. Since different lattice depths are required for the 1D Mott transition than for
the 3D Mott transition, a direct comparision of times cannot be made. Rather, we compare our
experiment to superficially similar experiments done using 1D lattices. Hadzibabic et al in [26],
performed experiments on a BEC in a 1D optical lattice where they ramp their lattice a factor of
approximately 40 times faster than we ramp ours (when measured on a timescale given by the
tunneling time); after 10 ms, they have a tunneling time of 7 s, compared to ours of 160 ms. They
observe regular interference between the pancake BECs in the different lattice wells. In contrast,
we observe random speckle patterns. Furthermore, this random speckle pattern is consistent with
the absence of definite phases in a Mott insulating state. Orzel ef a/ in [27], meanwhile, found
that if the lattice potential is turned on too quickly, the BEC permanently loses superfluidity,
even if the lattice potential is slowly ramped back down. We observe a complete return of
superfluidity in our system.

McKagan et al [28] present an alternate explanation for our results. McKagan et al
simulate a BEC in a 1D optical lattice using the Gross-Pitaevskii equation. Thus, their analysis
does not consider number-squeezing, which is a necessary part of the description of a Mott
insulator. Nonetheless, they find that they can simulate a reversible loss of phase coherence.
Their results, which they attribute to meanfield effects and a lack of complete adiabaticity, mimic
the expected signatures of a 1D Mott insulator. Interestingly, they observe in their simulations
that the deepest lattices should produce TOF results resembling our random speckle pattern.

There is little that can be used to distinguish between the two possible interpretations.
Qualitatively, the expected signatures of the Mott transition and a mean-field effect in a
nonadiabatic lattice ramp are the same. McKagan et a/ [28] observe, for the case of the mean-
field effect, that the visibility of the side peaks should oscillate as a function of lattice depth,
unlike the monotonic decrease to v = 0 expected for a Mott transition. We do not observe any
such oscillations. However, McKagan et al [28] suggest that these oscillations might not be
observable experimentally; rather, they might manifest as heating. We do observe some slight
heating when the lattice is ramped up to 30 £ .. and back down: the thermal halo around the BEC
is larger in figure 2(e), after the lattice ramp, than in figure 2(a), before it. McKagan et al further
hypothesize that the presence of number squeezing (insufficient for a true Mott transition) could
damp the oscillations. Thus, the observed lack of oscillations in the visibility function does not
allow us to distinguish between a Mott transition and a mean-field effect in a non-adiabatic
lattice ramp.

5. Conclusion

In conclusion, we have investigated the reversible loss of superfluidity of a BEC when a deep
1D optical lattice is applied. We used Kapitza—Dirac scattering as an accurate way to calibrate
our lattice depth. We examined TOF images of the BEC as a function of lattice depth, and
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found that the BEC fully loses its superfluidity at about 30E ..., and may require a certain time
to dephase. Furthermore, we observe random interference patterns in TOF images. Our results
are consistent with at least two explanations: most prominently a phase transition from a BEC
to a 1D Mott insulator, but also a meanfield effect in a deep lattice. Further research will be
required to resolve this ambiguity.

Acknowledgments

We acknowledge the support of the AFOSR grant FA9550-07-1-0412 and the FOCUS (NSF
grant PHY-0114336), as well as helpful discussions with Professor Luming Duan.

References

[1] Anglin J R and Ketterle W 2002 Nature 416 211
[2] Greiner M, Mandel O, Esslinger T, Hansch T W and Bloch I 2002 Nature 415 39
[3] Goral K, Santos L and Lewenstein M 2002 Phys. Rev. Lett. 88 170406
[4] Ospelkaus S, Ospelkaus C, Wille O, Succo M, Ernst P, Sengstock K and Bongs K 2006 Phys. Rev. Lett.
96 180403
[5] Rom T, Best T, Mandel O, Widera A, Greiner M, Hansch T W and Bloch 12004 Phys. Rev. Lett. 93 073002
[6] Jaksch D, Venturi V, Cirac J L, Williams C J and Zoller P 2002 Phys. Rev. Lett. 89 040402
[7] Moore M G and Sadeghpour H R 2003 Phys. Rev. A 67 041603
[8] Jaksch D 2004 Contemp. Phys. 45 367-81
[9] Xu K, Liu Y, Abo-Shaeer J R, Mukaiyama T, Chin J K, Miller D E, Ketterle W, Jones K M and Tiesinga E
2005 Phys. Rev. A 72 043604
[10] Spielman I B, Phillips W D and Porto J V 2007 Phys. Rev. Lett. 98 080404
[11] Kohl M, Moritz H, Stoferle T, Schori C and Esslinger T 2005 J. Low Temp. Phys. 138 635
[12] Stoferle T, Moritz H, Schori C, Kohl M and Esslinger T 2004 Phys. Rev. Lett. 92 130403
[13] LiJ, Yu'Y, Dudarev A M and Niu Q 2006 New J. Phys. 8 154
[14] van Oosten D, van der Straten P and Stoof H T C 2003 Phys. Rev. A 67 033606
[15] Behinaein G, Ramareddy V, Ahmadi P and Summy G S 2006 Phys. Rev. Lett. 97 244101
[16] Zhang R, Sapiro R E, Morrow N V, Mhaskar R R and Raithel G 2008 Phys. Rev. A 77 063615
[17] Bartell L S, Roskos R R and Thompson H B 1968 Phys. Rev. 166 1494
[18] Gould P L, Ruff G A and Pritchard D E 1986 Phys. Rev. Lett. 56 827
[19] Friebel S, D’ Andrea C, Walz J, Weitz M and Hansch T W 1998 Phys. Rev. A 57 R20
[20] Wu J, Newell R, Hausmann M, Vieira D J and Zhao X 2006 J. Appl. Phys. 100 054903
[21] Raithel G, Birkl G, Phillips W D and Rolston S L 1997 Phys. Rev. Lett. 78 2928
[22] Rudy P, Ejnisman R and Bigelow N P 1997 Phys. Rev. Lett. 78 4906
[23] Ovchinnikov Yu B, Miiller J H, Doery M R, Vredenbregt E J D, Helmerson K, Rolston S L and Phillips W D
1999 Phys. Rev. Lett. 83 284
[24] Diener R B, Zhou Q, Zhai H and Ho T-L 2007 Phys. Rev. Lett. 98 180404
[25] Gericke T, Gerbier F, Widera A, Folling S, Mandel O and Bloch 12007 J. Mod. Opt. 54 735
[26] Hadzibabic Z, Stock S, Battelier B, Bretin V and Dalibard J 2004 Phys. Rev. Lett. 93 180403
[27] Orzel C, Tuchman A K, Fenselau M L, Yasuda M and Kasevich M A Science 291 2386
[28] McKagan S B, Feder P L and Reinhardt W P 2006 Phys. Rev. A 74 013612

New Journal of Physics 11 (2009) 013013 (http://www.njp.org/)


http://dx.doi.org/10.1038/416211a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1103/PhysRevLett.88.170406
http://dx.doi.org/10.1103/PhysRevLett.96.180403
http://dx.doi.org/10.1103/PhysRevLett.93.073002
http://dx.doi.org/10.1103/PhysRevLett.89.040402
http://dx.doi.org/10.1103/PhysRevA.67.041603
http://dx.doi.org/10.1080/00107510410001705486
http://dx.doi.org/10.1103/PhysRevA.72.043604
http://dx.doi.org/10.1103/PhysRevLett.98.080404
http://dx.doi.org/10.1007/s10909-005-2273-4
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1088/1367-2630/8/8/154
http://dx.doi.org/10.1103/PhysRevA.67.033606
http://dx.doi.org/10.1103/PhysRevLett.97.244101
http://dx.doi.org/10.1103/PhysRevA.77.063615
http://dx.doi.org/10.1103/PhysRev.166.1494
http://dx.doi.org/10.1103/PhysRevLett.56.827
http://dx.doi.org/10.1103/PhysRevA.57.R20
http://dx.doi.org/10.1063/1.2266164
http://dx.doi.org/10.1103/PhysRevLett.78.2928
http://dx.doi.org/10.1103/PhysRevLett.78.4906
http://dx.doi.org/10.1103/PhysRevLett.83.284
http://dx.doi.org/10.1103/PhysRevLett.98.180404
http://dx.doi.org/10.1080/09500340600777730
http://dx.doi.org/10.1103/PhysRevLett.93.180403
http://dx.doi.org/10.1126/science.1058149
http://dx.doi.org/10.1103/PhysRevA.74.013612
http://www.njp.org/

	1. Introduction
	2. Experimental setup and lattice calibration
	3. Experimental observations
	4. Discussion
	5. Conclusion
	Acknowledgments
	References

