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CHAPTER I

INTRODUCTION

The macroscopic behavior of neutrons in a system is governed

by the linearized Boltzmann or transport equation

+ vV A+ v a(T,v) (v, t)

A )X

=1

! ! rog (3 !
V(v ) (v ) d gy, t) (1)
where the notation is that of Reference 1. It will be assumed that
all neutrons, on the average, are of one speed and that the medium is

homogeneous. With these assumptions, the time-independent equation 1is

av (L0 = cfﬂ—_(_z’-»@) ¥ (o, dyda (1.2)

where distances are measured in units of mean free paths and c¢ is the
mean number of secondaries per collision. The scattering function

f(Q' 5 Q) is defined so that f£(Q' - @)AQ is the probability that
a neutron scattered from direction Q' will have velocity direction

in dQ@ about O after the collision. For an isotropic medium

£(Q' - Q) = £(Q' - Q) and we write

(- n) =Z b, P, (02"-0) (1.3)
y3

truncating the expansion after N terms. Assuming a one-dimensional

geometry and symmetry in the azimuthal direction about the x-axis and



applying the spherical harmonics addition theorem,(l) the transport

equation becomes

N |
5 [ #00) = 5) W B[ By g
£=0 -l

For various problems, the angular density at any position x and angle
cos”lp s w(x,u) , will be obtained from this equation.

Various exact methods have been used to solve the above inte-
grodifferential equation. Chandrasekhar,(z) with a method developed

(3)

by Ambarzumian, hes used Equation (1.4) to study photon transfer
ignoring polarization. The method is based upon recognizing physical
principles of invariance which the angular density must obey. These
invariance principles and the transport equation lead to solutions
for the outgoing densities from slabs of finite or infinite width
under appropriate boundary conditions. An extension of the approach
used by Ambarzumian and Chandrasekhar to inhomogeneous regions was
made by Bellman and Kalaba.(u) The method of solving the transport
equation by use of invariance concepts is known as the method of in-
variant imbedding.

Another exact approach used to solve Equation (1.4) is the

(5,6)

Wiener-Hopf method of Fourier transforms. The transport equation

is first transformed into an integral equation and solutions are then
obtained for various boundary conditions,

(1)

Case has obtained exact solutions of Equation (1.4) for

isotropic scattering of neutrons by still another method. The technique
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consists of expanding the angular density in terms of the eigenfunctions
of the homogeneous transport equation. The expansion coefficients are
determined by applying boundary conditions; the method of solution is
thus analogous to the eigenfunction expansions used to solve other
partial differential equations of physics. Case's treatment of the
transport equation has an advantage over the method of invariant imbed-
ding since the angular density is given for any arbitrary distance
inside the plane-parallel medium and may also be used to give the sur-
face quantities obtainable from the older method. The great virtue of
the Case method is that it requires the difficult mathematics, for a
given class of problems, to be done only once; the solutions for various
physical applications can then be found immediately.

Case used his method to solve full-space and half-space pro-
blems with isotropic scattering and briefly discussed the extension to
problems in a two adjacent half-space geometry. Explicit solutions to
problems in the latter geometry were obtained by Mendelson and

(8)

Summerfield. The method has also been used to attack problems which

have no known closed form solutions. Mitsis(g) obtained a solution

for the critical slaeb problem and results for special problems in other

(10)

than slab geometry, while Mendelson examined various reflected

(11)

slabs. References 12 to 1k also deal with problems of this type,

but explicit results were not obtained.
The method of Case has also been used to examine energy-

(15-18) (7,19,20) yut we

dependent problems and time-dependent problems,

shall not be concerned with problems of this type here., Our main



concern will be with problems where the neutrons can be scattered in
an anisotropic manner in the laboratory coordinate system. Mika(gl)
extended the completeness theorem of Case to consider problems with
N'th order anisotropic scattering and Shure and Natelson(zg) later showed
how certain explicit results can be obtained.

In addition to the above problems in neutron and photon
transport theory, a similar eigenfunction expansion technique has been

(25’24) The method has also been

used to study plasma oscillations.
used in gas dynamics to obtain solutions to the slip-flow problem.(zs)
The generality of the approach to problems in linear transport theory
has been discussed in Reference 26,

It is the purpose of this thesis to solve some of the simpler
problems in one-speed transport theory by the method of Case. When
some of these problems have been solved, it is felt that Case's method,
with its inherent advantages, can then be used to solve more difficult
problems not readily amenable to attack by the older methods.

Chapter II is devoted to a review of Case's method in situa-
tions were the scattering is isotropic or linearly anisotropic. Here,
results are first derived for the partial-range case where a < p <B .
Although these relations have no known physical application at present,
they conveniently tie together the full-range (o = 1, B = 1) and half-
range (a = 0, p = 1) cases.

Chapter III contains the derivation of general orthogonality

relations which may be used to solve problems in half-space and full-

space geometries when the scattering is isotropic or linearly anisotropic.



The orthogonality relations in the full-range case are simply those
obtained previously by Case(7) and Mika(21> for isotropic and linearly
anisotropic scattering, respectively, and will not be considered further.

Since the isotropic scattering relations for the half-range
case yield answers to half-space problems which were previously ob-
tained,(7) no half-space applications for isotropic scattering will be
explicitly exhibited. Chapter IV, however, contains the solutions to
the half-space Milne,(ee) albedo, constant isotropic source, and
Green's function problems when the scattering is linearly anisotropic.
Also included are simplified expressions for the emergent angular dis-
tributions and for the densities and net currents on the surface of
the half-space, All equations in this chapter may be specialized to
give the results for isotropic scattering.

In Chapter V, orthogonality relations are used to attack
the slab albedo problem. Because the solution obtained is not in
closed form and is consequently more involved, we will restrict our
attention to the case of isotropic scattering in this chapter. 1In an
appendix, some of the results of this chapter are used to derive new
integral expressions for the X- and Y-functions of Chandrasekhar,(Z)
which appear in the application of invariant imbedding techniques to
slab problems. In another appendix, some results are used to consider
the slab albedo problem for a slab surrounded on one side by a vacuum
and on the other side by a specularly and diffusely reflecting face.

In Chapter VI, we examine a very specific problem in aniso-

tropic scattering, namely a medium which conservatively scatters
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neutrons in a quadratically anisotropic manner (i.e., N=2and c =1).
Although this problem is not of much interest in neutron transport
theory, it has been extensively investigated in the past with regard
to photon transport theory. It is of some interest to us, however,
since it provides additional insight into the nature of the half-space
orthogonality relations in a situation which is no more complicated
than that covered in Chapter IV where N =1 and c <1 . The Milne(22)
and albedo problems are then explicitly solved.

Chapter VII contains a speculative approach for obtaining
the orthogonality relations for general-order anisotropic scattering

with c<1l.



CHAPTER II

REVIEW OF CASE'S METHOD

A, Isotropic Scattering

If the medium is assumed to scatter neutrons isotropically

in the laboratory system, the homogeneous transport equation is

P = 5 Py e

Separation of variables may be achieved through the ansatz

-X%/Y
V(o0 =e (M) (2.2)
with the allowed values of the constant v to be determined. Because
the transport equation is homogeneous, the eigenfunctions may be
normelized in an arbitrary manner and the normalization condition is

selected such that*

f@pﬁ)c//ﬂ = | (2.3)

For -1

IN

v <1, this leads to the eigenfunctions

B =pubr) = % P wACIEben) e

m
o

* This is permissible except for the trivial solution ¢v(u)
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where A(v) is determined from (2.3) and (2.4) as

ey d -1
ANv)=1— 5P V/; = | ~cVhh vV, 14V,

(2.5)
=l
8(v-p) 1is the Dirac d-function, The symbol P is a reminder that
we must take the Cauchy principal value of any integral over v or u
For ¢ <1, the argument principle(27> shows that there
are also two real eigenvalues + v, outside of the interval -1<v <1

with corresponding eigenfunctions @, (u) given by

C 7/0
2

Px () = P (om) = PR (2.6)

The eigenvalues + v, are determined from the normalization condition

and are roots of the equation

A(x,) =0 (2.7)

where

Az == F| o = ez ik’

A
z - (2.8)
-l

The function A(z) is analytic in the complex plane excluding a cut

from -1 to 1 on the real axis. For large z ,

|

M/\(z)=/\(m)=/__2c_z,‘m e oo (29

2> 2o ) | = MV2
|
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For ¢ =1, the two roots coelesce at v, = » and it is

easy to verify that two linearly independent solutions of the transport
equation are wl(x,u) = % and wé(x,u) = %(x-u) . In this case,

ZlEF'w ng(z) = - % . For c¢ > 1, there are again two discrete

roots + v but in this case is imaginary.

o VO

The Plemelj formulae* are of fundamental importance in the

solution of the neutron transport equation by Case's method. Consider

the function F(z) defined by

e
| _fmdde (2.10)
me /\‘\-—Z'
A

F(z) =3

F(z) 1is analytic in the entire complex plane, cut along the real axis
from oo to B . For 2z approaching v where a < v <p ,** the
boundary values of F(z) as z approaches v from above/below are

denoted Dby

FE(9) = Lm F(¥ % Le) (2.11)

e— ot

and may be calculated from

e
Fi{V)zE?'rTP fﬂ@jﬁ i—zl-j(/V), (2.12)
A

These are the Plemelj formulas. They may also be written as

*Reference 28, page L2,
**The behavior of F(z) in the neighborhood of the endpoints «,B
is discussed in Reference 28, Chapter 4,
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[F ) + F (V) Pf fméu

(2.13)
[F*(v) - F’/V)] = F(v) . (2.14)
These equations may be used to relate A(v) to the boundary values
of A(z) . Use of Equation (2.12) gives
ANw) = Alv) % L”ZW (2.15)
and addition of the two equations in (2,15) gives
A=) = £ At e (2.16)

Case'T) has shown that the functions (2.4) and (2.6) form

complete set of functions of p for p in the interval [-l,l] .

The solution to (2.1) is therefore given by the expansion

~X/Vy X, [ %
%("/“)'-_- q,JQV)e +a_{ (me +fA(V),€,9“)e dv. (2.

=1
Through the application of boundary conditions of a specific problem

to (2,17), one ultimately arrives as an equation of the type

€
(?V,(/")—‘=<I+%V)+q_§0_jﬂ) +fA(v))fO7/(/«)d7/ (2.

17)

18)
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where -1<a<pB<l, pue [o,Bp] . Case has also proved this more
general "partial-range" completeness property of the eigenfunctions
¢v(p) by directly solving the singular integral Equation (2,18).
A sufficient assumption in the proof of completeness is that W(p)
satisfy the Holder condition(za) I@(pl) - v(ug)l <M ,”1 - uzlp
with 0<p<1l for a<p<p and vary as Ml - a|/X or My - 5|K ,
-1 <K< 0, at the endpoints.* In the proof of the completeness of
the expansion in (2.18), a general X-function, denoted here by Xg(z),
is constructed such that:
1) it is analytic in the complex plane cut from o to B
2) it is non-vanishing in the finite cut plane

3) it obeys the ratio condition

X () A v)
b S -— < 7J <
Xy (v) Ay) - ° (2.19)

4) it varies as |z - ¥ end |z -B|X as zoa amd B,
respectively, where =1 < K <0 ,%*
One function, denoted by Xgo(z) , which has properties 1-3

is

® [ A=A A
— ’ S
X%o (2) = 2P 2m | M- 2

(2.20)

* The proof is immediately extendible to the case where w(u) is any
distribution (for example & &-function) which is the weak 1limit of
a sequence of functions satisfying the HOolder condition (Case,private
communication),

**The function is permitted to have a week singularity at the endpoints,
o and B, of the cut. It may not have a zero at the endpoints, however,
because of the manner in which the X-function is used in the construc-
tive proof of completeness of the eigenfunction expansion.



This may also be written as

e
X90(2)=W ”i[/i(/_—«lz% (2.21)
«

where 6(p) = arg A*(u) . From (2.5) and (2.15),

Tem

9/0«) = j;m—' ,ﬁiwy ' (2.22)

The function ©(p) is an odd function of u and has the approximate

appearance shown in Figure 2.1.

Figure 2,1, Behavior of ©(n) (approximate).

Another function which obviously has properties 1l-3 is

M , €>0, (2.23)
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since B - z 1is non-vanishing in the cut plane and conditions 1 and 2
are obviously satisfied. This function also satisfies* property 4

Ssince near the point z =8 ,

L L B

Xgol2)  2rp - = (B-2) (2.24)
6z -2

Likewise, the function

Xyo (2) 0

x0T (2.25)

has the properties 1-4, Any proper linear combination of (2.20), (2.23),
and (2,25) also satisfies the four conditions. This linear combination,

the general function Xg(z) , thus is given by

X?(z) = Xgo(z) S, + sihla) -5—2_A—(—€)— s F O (2.26)
Z -4 e~z s, O
)

where s; , 1 =0,1,2 are arbitrary constants. We have defined

h(x) by

hix) = ¢ (2.27)

The requirement that s; # O and s, # O in Equation (2.26) guarantees

that Xg(z) will have the proper behavior at the endpoints of the cut.

*Reference 28, Chapter k4,
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Define
’bﬁ(,’ (v) = czﬂ >/<\9:((:)) ) LV g (2.28)
where
oo (V) = Y i’f;iv)) X<V B (2.29)

is the particular function corresponding to Xgo(z) of (2,20). By

the use of the Cauchy integral formula, it is shown in Appendix A that

X, (2) = X, () __f_?__).di‘_ . (2.30)

For z=v, a<v<p, this equation gives (Appendix A)

AOICES SHCE [ LD | wcvee. (o)

Following Case,(Y) for the special case of o =0 and B =

arbitrarily define the half-range X-function, denoted by X(z) , as the

perticular linear combination of X (z) with s, =0 and sp =1 such
that

Xgo(2)
X(Z')E X? (2) = -‘—?-—'2——‘ . (2.32)
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The corresponding y-function is given by

_ o X _ o)
Y= 2w SR =5 0l e

°

52=I

From (2.32), X(z) ~ -1/z for large z and, therefore,

(2.30) is
X(z )—[——)—C’Z (2.34)

and (2,31) is

|

c d

Y@ AY) =T’/ P[;—@A y 0cvel . (2.35)
0
Also, since lim -zX(z) = 1,
l
(r)d

| = ;e::; '_:;)jzi_. fw/‘)‘f/* , (2.36)

(7)

Another identity of importance for the half-range case is

A\(z) (2.37)
(3,2 -2%) Ao

X(z)X(-2) =
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so that, from (2.33),
v

2
V — O <V<‘ . .
v 2_y2%) Nle) X(-¥) ’ (2.38)

The insertion of (2.38) into (2.34) results in the equation

|
v dv/ (2.39)

XG2) = 2/\(°°) (vf—vz) X(-v)(V +2)

and this can be used for numerical evaluation of the X(op) function.(l]

If o =-1 and B =1, then the full-range X-function, also
denoted by X(z),* was chosen by Case(T) as the particular linear

combination of X (z) with s, =0, s; =8p = % so that

X(z)= X, (¢)] = _Xgol2) , (2.40)
¢ o | - 2%
S, =S, = /2

Corresponding to this particuler function,

’X‘ (,/) {7/) ) -lcycl. (2.41)

)= X R

Z A/z/)

Se

- - |
s, = 5,7 V2

The following relations (similar to the half-range relations) hold:

|
X(z) = ——Q-‘—/—“-’/r“_): (2.42)
-

*No confusion will arise if the half-range and full-range X-functions
are both denoted by the same symbol since the full-range function is
used only as an intermediate step in the derivation of Chapter III
and no final answers are expressed in terms of it,
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l

d

Vo) = < p| LI v <]
~1

|

fm)ywo

-1

l

[ g =
-

Al(z)
(2,2 - 22) Nl)

X(z) =

c?

( = 2 - " 47/41.
re) (vt-w?) Ala)

B. Linearly Anisotropic Scattering

For this case, the homogeneous transport equation is

]

R —;—f[z # b | (i g

-

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

Separation of variasbles is obtained by use of the ansatz of (2.2) with

the result
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- = 2 (14 b 009

Multiplying (2.49) by du and integrating from -1 to 1 gives

(o9 = 097 g9

If the normalization condition is selected as

[ o9 -1,

the eigenfunctions for -1<v <1 are

By = Bylr) = FPED Ay

where

I [
A(V):[-%pri(m - /_wpfdy/«)cy

=l =1

and where d(vi) is defined by

dly) = | + b (I-c)um .

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)
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For ¢ <1, there are again two discrete roots,(zl) vy,
of the equation
A(Ev,) =0 (2.55)
where

d(zd '
_ [ _ cZ gmlam ez | deme 5 56
/\(z) / 2 Z'/" / Z 2‘7" ( -5 )
-1 -1
The corresponding discrete modes are
v
°© d(+yp)

—m - 2 4 (2.57)

y_—l://,\) ?; (/)— VDTF/V-

if ¢ % 1. For c¢c =1, two linearly independent eigenfunctions which
satisfy the transport equation are ¥;(x,u) = % and wg(x w) =

(x - éﬂ;—) and the two discrete roots again coelesce at infinity.

5..

The value of A(z) as z —» « will be needed later and

can be found from

|
Lo A2) = | = % Lim A (2.58)
2> z>®)_ l ‘;/7/2

The result is

Ne) = (I=-<)(1— Cl") (2.59)
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Also, the value of A(v) may again be related to the boundary values

of A(z) . Use of (2.12) gives

t cmedd :
AS () = Alw) & * @) (2.60)
2
Once again the solution of the transport equation may be
found by expanding the angular density in terms of the eigenfunctions
of the transport equation. Since there are only two discrete eigen-

functions, the angular density may be expressed as(zl)

X/Yy XY (] X/
+ a P (e + A(V),Qj(/")e dy) (2.61)
-1

¥ (xp) = a,ffrle
and the expansion coefficients will be found from an equation of the
form of (2,18).
For the general range of o <p <P, let Xg(z) again
denote a linear combination of functions analogous to (2.20), (2.23),

and (2.25):

) b hi-a) . Ghie)] B FO 0.62)
Xa(z) _Xgo(z) t, + —ZLT—;— + —;_—;— Lo (
)

For linearly anisotropic scattering, the constants t; , i =0,1,2,
may depend upon ¢ and by . This Xg(z) satisfies the following

identities:
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_ Yo () dur) I
X, (2) = X () f o (2.63)

A

Xa(?/);\(l/) X (0) = *27}— [ Tg/({jiy/)d/ﬂ) A<V B (2,64)
=S

For the half-range, O < W < 1, the X- and y-functions are

now defined by

X(Z) = X, (2) — i(i.?_(f_) (2.65)
3 t. =0 -2
t: =
and
_ </ X (v) _ Y30 (V) 2 (2.66)

1) 2 A(v) _IXZ(V) Y  Qewel.

t,=0

tz_:'

Also, since there is only one pair of roots, = v, , Equations (2.37)

and (2,38) remain true. Equations (2.63) and (2,64) are now written

as

|
d(pm) d
X(z) = 3;@ 29“/“)/* (2.67)

0

I
Vo) = o p TELL 0y (2.68)

0
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[
/ =fw>ay»/«)y : (2.69)

0
As was pointed out by Shure and Natelson,(ge) a technique which mini-
mizes the number of iterations when evaluating the X-function is to

use the identity

2
1R ,A_}
N(-z)= |- iZEf [7/0 A dﬁy‘)ﬂ‘ (2.70)
o (B ortIre) (k)
where
N (-2) = 4 + 2{X(-2) (2.71)

This equation could also be used instead of (2.39) for the isotropic
scattering case if by were set equal to zero,
Equations of the form of (2.40), (2.41), (2.46), and (2.47)

are valid for full-range applications. Additional full-range relations

]
X(z) =[ T/V:EJZV/“)J/“ (2,72)
=1
I
T)Av) = % P Wl) dyo-) g , Ve e (2.73)

=Y
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(2.74)
0
f lw) A0 g

(15)
/ .

| }c]/"‘ = r
[ W/“)J(//‘“ 5
/A



CHAPTIER III

ORTHOGONALITY RELATIONS

As was pointed out in Chapter II, the angular density is given
by (2.17) or (2.61); the solution of every problem of interest reduces

to the determination of the expansion coefficients from the equation

e
PO = )+ an g *f“”%ww,- “spzp . (239)

«
It is the purpose of this chapter to derive orthogonality relations
between the eigenfunctions ¢, (u) and ¢v(u) . Use of these rela-

tions will facilitate the determination of a; and A(v) .

A, TIsotropic Scattering

Case(7) has shown that the following orthogonality rela-

tions are true in the full-range case:
f PP G = NN ) E(V-77) (3.1)
f/‘ bu PV Gy 1) I = (3.2)

f/ﬂ//n);ﬂ_y)y =0 . (3.3)

Equation (%,1) is an abbreviation for the statement

| |
f/%ﬁ*)UAW’U%J/)dV’]J/A = Aw) YA )N (v), (.4

ol
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In the evaluation of Equation (3.1), there is the term

2y om "y AWy
+ P[ e [P[ 7 = 7" 32
=1

._'

The order of integration in this term may be interchanged by the use

(28)

/
of the Poincare~Bertrand formula

[t i
yom (V/")(z/

— F(v,v)

(3.6)

As was pointed out in Reference 29, a mnemonic form of (3.6) may be
written as

~

P P P P
Yy 7/’—/4/\“7/-2/"'7/"—/% V/A%W 8/% C%M ¥)(5.1

provided the integration over p 1is carried out first. The order of

integration in

[rar{fimarils
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may therefore be interchanged with the use of (3.7). We will use this
approach in the subsequent determination of the orthogonality rela-
tions.

The orthogonality conditions of interest are obtained by

observing that (2.31) may be rewritten in the form

é
.S.Z!)_Xg(m) _—_[ ﬁ/y)'x‘?y)y , A<V, (3.8)
«
From (2.4),

%’. = (V-p) B, () (3.9)

and use of (3.9) in (3.8) gives

e
(Vo) By ) Xy (=) = %V")%(/")é“') wedeg, (3.10)
o«

We now seek a weight function 7g(u) which will meke @ (p) and
¢v,(u) , a<v<p and a<v'<PB ; orthogonal over the range

@< u<pB. The orthogonality relation and the weight function for
the general-range case, 7s(u) , are derived in Appendix B or can
be observed by inspection of (3.,10). The proper weight function for
the half-range and full-range cases of interest may then be obtained
as in Appendix B where additional orthogonality properties are ob-
tained, The weight function for the half-range case may also be
directly obtained without first considering the general-range case

(see Reference 1).
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With our knowledge of the genersl-range weight function, we
therefore write Equation (3,10) for v and v' , multiply the first
by ¢v,(p)7g(u)dp and the second by ¢v(p)7g(u)du , and integrate over

M . Subtraction yields

(-]
(7/—7/')[%//\)%1/0««)79‘(/\)% = O) o(<7/<(5).«<7/'<@ (3.11)

provided

® (3.12)
Xa()yéO. 3

The normalization relation between @, (k) and @,1(n) , a<v<B

and o < v' < B, may now be found. Use of (3.7) gives

2% e’
Dy G = 5| T 4 = = 9,0

N PINP) E(m-7) § m=-v") | (3.13)

so that multiplication of (3.,13) by the weight function and integration

over pu yields

A LV<B

e
f &0 ,Mr)b‘g (PIgm = 'J%(V)/\’L(v)/\'(z/) §(v-v'), (3.1%)
A

PRy

where (3.8) has been used, The weight function 7g(u) for the gen-

eral range is still somewhat arbitrary since it is a linear combination
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of functions corresponding to those of (2.26), One can therefore select
a particular one which meets certain additional requirements (see
Appendix B),
For oo =0 and B =1, the eigenfunction ¢+(u) normally
occurs for problems where the medium of interest is the right half-
space, From (2.26) it is seen that for s, =1 and sp=v, -1,

a permissible Xg(z) function which satisfies (3.8) and (3.12) is

X\ (2) - ('Vo-Z)Xgo(z) (3.15)
¢ [- 2

which is simply (vo - z) times the X-function defined for the half-

space by Equation (2,32).* This would correspond to (v, - 1) times

the y(p) function of (2.33). Use of (3.8) and (3.14) and the half-

space weight function 7g(u) = (vy = u)7(p) , determined from Appendix

B, gives

~1
[ B0V G ) Fo Y () = (- YNNI E (v-2")  (5:16)

*One might wonder whether it would be simpler to fcrget about using
the half-space X~function used by Case (with sg = O and sp = 1) and
simply use the X ~function defined in (3,15) to obtain solutions to
half-space transport problems., The X -function varies like +1 as
z— o so Equation (2.30) would be

|

Xg,(z')-,: ’X‘()J .

0] '/M o
This equation yields no auxiliary equation of the form of (2,36) and
consequently the analysis might be somewhat easier because there would
be no simplifying identity to be used. A major disadvantage of the
use of Xg(z) would be that the limit of Xg(z) as ¢c—» 1 is infinite so
numerical values would be difficult to tabulate unless the function
Xg(z)/v, was considered. The particular half-range function of Case
will be retained here because of its general acceptance.
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f@ywﬂwm-/«)vmy =0 (3.17)

where 0<v<1l,0<v'<1l, With this choice of 7g(p) , Biu)
and ¢v(u) are mutually orthogonal over the range O < u <1,
Other formulas of interest follow in a straight-forward

menner and are shown below, for 0<v <1l and O<v'<1l:

[¢-V) Gy W) Ao B dp = AV X(-%5) P (V) (3.18)
' 2

‘/,@(/“)ﬁ(/*)(%y“)?”wd/ = ?(%}3) X(%v5) (3.19)

[%-//“) Qy(/‘)(’/"'?‘)w/‘)ﬁ/* = ﬁ%l/-" X(-2) (3.20)

;
[QVV)?y/ﬂ)(%r)WV)% = —Cg— {ﬂ_v(v')(v,,+y))((-z/) (3.21)
0

[%V) (% )T ) om = _C_ZZ.. (3.22)
0

f SIS YA = vy 4 70) )
0
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:

fﬂﬂ“)(vo P AP dp = L2e (3.24)

0

VR ARICSOL NS (5.25)
0

Note that ¢_v(u) contains no singularity. We have defined 7(i)

by

AR /«i i) Im (5.26)

where, for isotropic scattering,

IJ\(O) = | (3.27)

from (2,36). 1In general, for any range o to B , the integrated

moments of the ~function will be defined as

7g

» @ .
an (L) ¢
f? =j;/“ %V”/‘ -28)

The above half-range equations may also be used in problems
where there is no absorption if they are modified by dividing by vg

and letting ¢ -1 (v, » @) , Equations (3.16) to (3.25) then reduce

o

to the relstions:
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/ Py 1) G U = V@) A @A W) $(v-2) (3.29)
0

)
f{ﬂvy) Y e = 0 (3.30)
0

I
f/‘ %Q‘)@My = - "Zi (3.31)
0

l 1/'
[ 2pspripige = % g0 5.2
0

! 4
IQVW 1) g = 5 Xl-v) (5.53)
0
along with (3.26) and (3.27). We therefore see that the half-space
weight function when c¢ = 1 is simply y(p) . Using the relation(5)

. 2 /
/evm« ‘1/0 (I—c) = 3 ) (3.34)
c—>|
Equation (2.38) yields the result
dom W) = Zo— O imel, (5.35)

2 X(m)

c—l
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Equations (3.29) to (3.33) are sufficient to determine the expansion
coefficients completely since the discrete eigenfunctions are %’ and
1
‘E'(X"‘u)o

It is interesting to consider the full-range case as &
possible check on (3.1) to (3.3). From (2.26), with 5o =1 and

81 = 8p = %-(vo2 - 1) , a permissible Xg(z) which satisfies (3.8) is

_ (Ut —2?) X (@) (3.36)
X?(z) - 22 '

This is simply (vo2 - 2z°) times the X-function defined in (2.40) for

the full-range case. Therefore the full-range weight function

2 2)

(vo - p€)y(n) , derived in Appendix B, satisfies (3.8) and gives

f ) ) Gy )3 p2) ypl g = (- V) N ) K ) Sl —v)(3+3T)
f@W g, 1) (%z—/})?}%)d/ =0 (3.38)

f QW) Pty = 0 (5.59)

The other equation of interest is

|
f 011 s (/A)(Vol )T dp = F —G—Zﬁa X(tw,) (3.%0)
-\
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From (2,9) and (2.47) it is seen that

% )Y = T (3.41)

so Equations (3.1) to (3.3) are immediately obtained and (3.40) reduces

to

[/* (1) Pe(P)dp = 7 < (- X(£,)

3
= + < = — ! i 2
B Z l: 71/02'”‘ VOZ} ¢ (5'4 )

This last result was also obtained by Case.(7) A few other relations

for special problems are

!
[/«;ﬂ,,wd/« = J(I-¢) (3.13)
-

[/‘2%9“)9“ = v'(I-) (3.44)
-

Il

i ﬂo(l_c) (3-1*5)

f S g

I
[/Z% g = % (1-q) (5.46)
-1
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When c¢ — 1, the orthogonality relations of (3.1) to (3.3) and (3.43)

to (3,46) simply reduce to the identities

l
f P ISV bt = VN BN ) E(-7) (5247

|
f/%V)J/A = 0 (3.48)
-

|
[/%VW =0 (3.49)
f/“d/« = 0 (3.50)

-1

|
f/«zcy - —3'— (3.51)
-1

where (3,34) has been used. The weight function in the full-range
case thus appears the same for ¢ <1 and c¢c =1,

Both the half-range and full-range cases are special cases
of the "two-media" problem composed of two adjacent half-spaces of
scattering media with different values for the mean number of secon-

daries per collision, These results are exhibited in Reference 29.
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B. Linearly Anisotropic Scattering

In order to find orthogonality relations which parallel those
of the case of isotropic scattering, one observes that (2.64) may be

written as

e
VX () = | Ful) ) V) , <V B, (3.52)
2 J d(ym)

From Equation (2.52),

Lo () (3.53)

d(v )

Therefore,

X ( - Py i) — @/,0‘,) N (3.54)
?"") (Vom) ™ f 46 dfpum )T[/“)cl RAZE-D

In the same manner as before, one uses (3.54) to get

6
| ur) S AVl (3.55)
7 7’)[‘ dlym) dlym) BINI9 = ! x<v'<E

provided

X?(t») #+ 0 . (3.56)
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Notice that this equation is of no use to us in its present form, how-
ever, since an eigenfunction expansion of the form of (2.61) does not

contain functions of the type ¢V(u)e_x/v/d(vu) but of the type

g, (e

£ (3.56) is multiplied by the symmetric function d(v v') ,

however, and the identity

d(vv') dimm) = ym) d(vp) + b (I-c ) (Y om)(v-m') (3.57)

is used, then

6
(V’V/)[f H ) fpv’j“)%‘- (/A)J/A
”

e
+b,u-c>f (v1 W)< ﬁg{—y/%mu/«]-—- 0. G
A

Use of (3.53) gives

e
(V—V')U Bg9 Pty g b (1=0) F -g_ia;“’)} =0,
X

The first term in (3.59) has the form we desire., The extra term
suggests that Equation (5.59) may be a bi-orthogonality relation if

properly rewritten. That is, we expect that we will be able to write

/ ¢ <y ALV B
=) f%!/*)[%,w-rB'z‘] /‘4/*}“0 vevics
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with B a constant to be determined, B is obtained visa

[%/“)T (Mam = L b, (1- mr‘” (3.61)
Use of (2.64) and
) = dipp) +b, (1= ) (Vo) (5.62)
gives
f%!/“)'f P = [ (w)+b(4-c)1m] (3.63)
so Equation (3.61) becomes

(0)
B = b.("C)T?: ) (3‘&)

Xg(w) + b, (I ‘C)TZ'“)

Equations (3.60) and (3.64) combine to give a bi-orthogonality rela-
tion for the continuum eigenfunctions,

Using this form of the bi-orthogonality relation, consider
the normalization condition for the continuum eigenfunctions. Use of

(3.7) gives

!V,,}“))’Q, p) = ‘ [“/ dyw) @, () — 3% J(y/'«)%,(,«)]

FNPR P Spd) ). B
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Equation (3.65) can be used to give

8 | ] |
f 1[4 8L [ 9 = 5 IR S E7-v) 69
A
provided

e

e
— [ f A 0T, (P4 - ﬂazz%)yyw)%wﬂ
o

e
+Z Bf%f/*)?;f/)d/“ = 0. (3.67)
A

The relation

d(yw) = d(v¥') = b (I-c)V(¥'<m) (3.68)

and Equations (3.61) and (3.63) reduce (3.67) to

e
;.'7[‘ Zb “‘c)Vf (') P 1) B 1 9
i

1] p !
+ b “‘C)Vf(v/w%m; W’/*] +¢ L b,(:-cn;‘”’z 0(3-69)

«
Use of (3.53) reduces '3.69)to the identity 0 2 0 .

For the half-range case, Equation (2.62) yields

X (z) = Xpo(2) [t- + —’—El—] L #D, (3.70)

2
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where t, and t, are dependent upon c¢ and by . Since (3.56)

stipulates that Xg(w) #0, t, #0 and (3.70) becomes

Xﬁ,(z) = X(z)[to +t, -&oz]

where (2,65) has been used, Also, using (2.66),

i

L) =Tt -t,y] oevel.

(3.71)

(3.72)

We wish to find to and t2 such that the continuum eigenfunction

#,(u) is also bi-orthogonal to g.(n) , i.e., that

|
fﬂy)[%(/«wr 5 2] %= 0.
0

Using (3.71) and (3.72), (3.6L4) becomes

b (=) to+t,—to7]
toi-h(l-c)(fo+fz\i7

E3 = y A= (7) g = |

where we have defined

yo [ g
Y - ‘ET(/'\)A/A

and have used (2.69). Use of (3.72), (3.74) and the relation

Y =

d(#p)dyp) = d (%) dppr) — b (1-cX=p)(Vom)

(3.73)

(3.74)

(3.75)

(3.76)
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in (3.73) gives

|
2 d(,v) ’b‘(z/)Nz/)[f +t, W] cV P cl/y)[f +t, - ,,/«] Y(mdp
Vo=V (% M) (Vop)

{
, b=oltartt,d] [ degplterts -tor pam
Lot b (1-c)(t,tt,) 7 o VY, M

|
—b,(l-c)[xy)[tutz-t‘y«]d/« = 0, (3.77)
0

By inspection, we see that if t, =1 and tp =v, - 1 and if (2.68)
is used, (3.77) is the identity O 2 0 . The half-space weight function
7g(p) = (vo = u)y(n) is therefore identical to that for the isotropic

scattering case. Equation (3.74) can therefore be rewritten in the form

_ b (1-)(+%-7) L =0 = 1.
B d(v,7) ) €

(3.78)

For linearly anisotropic scattering, the relations of interest

are, for 0<v <1l amd O<v'<1l:

[ %!r)[ﬂ?,,, (#)+B %’]@4, PP dn = (- TN ING)S(v-7)(3.79)
0

f%,(")[ﬁ':/‘)‘*s ](z/ A VP)dn =0 (3.80)



-41-

I
f 9, /«)[ﬁ (%) + B ‘-’ﬂw-/a)m) du=0 (.81)

|
Al Lol %"\ (4 57) W) (E )
[éﬂ_ﬂ[@o«)wz]( AT = 32 e AT (3.

N

3.83)

f g ;») “IN+B “’] P WP dm = v X(-4) /M) d(%%,) d(-77)

d(,7) d(-v4,)

!
2 —
[l e g = Sk o) AT
0 (]

I
[oplap e rmpp= Loy e g oo
0
i

Jaf [%(/*H B?} Y = 5 Wﬁd:;w o
! y ==
. _ < V-

[Plere gy = gre 22] o

!
C‘Va (0) 0‘(7/07/0 d( )
[[4‘) M) +B= ] (%M Y Wdn = T T V)W (3.88)



oo

|
ol _ _ <y Ydlot)
fo/“[%’/‘)*B 2](% VP =3 1.5) (5.89)

Thus the solutions to half-range problems with linearly anisotropic
scattering will be in terms of the calculated functions X(-u) (or
y(u) ) and 7(1) , 1 =0,1, and the variables c¢ and by .

Since

Lim VB = b

c—>1 3

c—I [Q/V) +5 d] {ﬂyﬂ”‘)

[Q_/\)+B "‘/°] = —é—[[ + %] ) (3.90)

C—1

dividing Equations (3.79) to (3.89) by v, eand taking the limit as

c -1 gives

[%V> B (WP = TN I W) §(z-7") (3.91)

f%/“ T =0 (3.92)
f/‘ 0N TPIdp = - 2 5.5

/’Qy/‘)ﬁyl//”)aﬂf/")d/'\ = %IQ_V(V')X(-V) (3.94)
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fﬁ”-vﬂ“”(/‘)d/« = & X(-¥) (3.95)
0
=1, (3.96)

Notice that the form of these equations is identical to that of Equa-
tions (3.29) to (3.33) which were obtained for the case of isotropic
scattering with ¢ = 1 . The above results could also have been
obtained by examining (2.49) and (2.50) and observing that, for c =1,
the transport equations for linearly anisotropic scattering and iso-
tropic scattering are identical.

For the full-range case, 7g(u) = (vo2 - uz)y(u) is the
weight function and Xg(w) =1 from (3.36). The moments of the gamma

function are now given by 7g(i) = v027<i) - 7(i+2) so (3.64) becomes

_ bl 0- )]
[ +b (I _C)["}aa 70 ‘X(B)]

«=-l, g= I (3.97)

Use of (2.74) and (2.75) reduces (3.97) to

|
B'__ Qr‘O) _ J[‘1TQM)4/*
ST g
19

From Equation (2.47), 7(p) is an odd function of u so

A==1,8=1, (3.98)

(EVEN)

T =0, (3.99)



-

Therefore,

B:O}o‘:-l)@=|)

which means that the orthogonality form of Mika(21) is obtained.

relations are:

[/“ Gy Py pldp = YA W)N(v)(v-v")

f/‘ﬂ VGylrrdp =0

fM’/ by =0

f/« PP Prlropr = F wa @) X(£9,) d (voy)
=
=N = Ve dAG)
- Ni - _72{9' d(3%) d: 2

f/ﬂj/py/u)d = 2T dyu)- c)(/-c—b‘)
[/ ,@y)d/« = 9 (I‘C)(l“&j‘!)

4

f/‘%(/‘)d = £ ¥ (- (1- L)

(3.100)

(3.101)

(3.102)

(3.103)

(3.10k4)

(3.105)

(3.106)

(3.107)

(3.108)
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In the limit as ¢ — 1 , the above relations take the form of Equa-

tions (3.47) to (3.51). Using (2.56), A'(+ vo) in (3.104) is given by

EIE) +o) d(w,vg)[lﬂ/o?-(l-c)]_ cb (1-)d(-%¥,) (3.109)
dz |3-1y, dvore) L V7 (v,2-1) (v2-1) d(vsvo) | . 212




CHAPTER IV
HALF-SPACE APPLICATIONS WITH LINEARLY ANISOTROPIC SCATTERING

In this chapter, we shall obtain explicit solutions for four
common time-independent half-space problems. These problems are the
Milne, albedo, constant isotropic source, and Green's function problems.
The solution of the Milne problem gives the neutron distribution in a
source-free half-space with no incident distribution at the surface
and a source of neutrons at infinity. The problem was originally studied
by astrophysicists who were attempting to find the emergent photon dis-
tribution from the surface of a star which was approximated by plane
geometry and a large source at the star's center. The results for this
problem have been reported earlier by Shure and Natelson,(ez) who obtained
their answers without the use of the bi-orthogonality relations of
Chapter III,

For the albedo problem, we desire the angular density at
any position and direction due to an incoming distribution on the sur-
face of the half-space. This incident distribution will be assumed to
be azimuthally symmetric and expressible in terms of a Dirac delta
function, There are no other sources of neutrons for the system. Thus,
this problem is the half-space penetration problem,

The third problem concerns a constant isotropic source through-
out the half-space with the stipulation that there is no incoming dis-
tribution at the surface. This may be interpreted physically as a

half-space homogeneous reactor, surrounded by a vacuum, which 1s

L6 -
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subcritical but is operating in a steady-state condition due to its
internal source.

In the half-space Green's function problem, there is no
incident distribution on the surface and no source anywhere inside

the medium except for a single plane source at x = xg

emitting
neutrons in an arbitrary direction. The solution of this problem can
be used to obtain the solution for a half-space, with no incident dis-
tribution on the surface, containing an arbitrary source.

None of these four problems is ever encountered in reality,
but the solutions can be used as approximations to some physical situ-
ations. The solutions are particularly valuable, however, when used
as a means of checking the accuracy of the approximete methods used

to solve the transport equation.

The angular density, which satisfies Equation (2,48), is

-X/Vo x/Vo | "X/'t/
YouP = acfifple +a P e +[AB)g e dv )

If x>0 , the boundary conditions for the half-space a) Milne,
b) albedo, c) constant isotropic source, and d) Green's function

problems are given by
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T )y CFI, M20 c)*
\ 0 , M0 a) (k1)
and
X/,
glre , c#l a)*x

0 b)

x=>00 0 c)
0

a) . (k.2)

*The transport equation for the constant isotropic source problem is

& *']‘?(w =3 il[’*wl]q(x/)% T

where ¥(0,u) =0 , >0 , and Xl%g T(x,p) = Lo The transformation
%(x,u) = P(x,u ) + qo/ 1-c) gives the homogeneous transport equation
(2.48) for ¥(x,u) and the boundary conditions ¥(0O,u) = iﬂg , >0,

-C

and Xlig ¥(x,u) = 0 . Thus the constant isotropic source problem is
_9

reduced to the solution of the albedo problem with a constant incident
distribution on the surface of magnitude -qo/(l-c). We will calculate
the angular distribution J(x u) and not the total angular distribution

U(x,u) + qo/gzlg
** From Mika, we know that the asymptotic distribution far away from
a plane source varies as ¢+(p)e'x/vo . This means that the angular

density varies like ¢_(u)ex YO when approaching the source,
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An additional boundary condition which must be satisfied is

;0 a)
0 b)
Flxg p) = Plxg,p) =4
0 c)
\ ‘qﬁ: o) a) (4.3)

which takes into account the discontinuity introduced by the source
in the Green's function problem. Since boundary conditions (4.2) and
(k.%) are valid for all p , they are less restrictive than (4.1) and
will be considered first. Application of (4.2) and (4.3) to (2.61)

enables us to write (2.61) as

Pixp) = flxp) + ay ;&y«)e_X/%+fAIW)¢VV)e_Wc/7/ (b.4)
0
where
@ (1) ew", Y a)
0 b)
Flupm) =4 ; .

\ G(Xa)/"‘o "'9XI/V\) a) (4.5)
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The function G(xo,Hy - X,H) will be abbreviated by G(x,u)

and is

the solution to the infinite-medium Green's function problem for line-

arly anisotropic scattering.(gl) Applying (4,1) to (4.4) gives the

equation (for p > 0)

(PR E
| 8(p =mo)

N +£A(v)%l/w)dﬂ=< “Fo ¢
\ =GO

a) .

(4.6)

Use of the half-range bi-orthogonality relations from Chapter

IIT enables us to directly obtain the expansion coefficients a4 and

A(v)

from (4.6). The results are:

ay = R/ [_ (%")2 x(yz,,)awoz/o)]

AG)= S/ |t4=2) s )N )

A
i

7] 2 o Vo "D—
- (F) Xtw) dBBIACEE) g

(%) W,,)[@(/o) B '210] }

< d (77/"0) d{v, Vo)
2. Y d(v,7)

__(_Cl/p) %0 T(O)A(???)J(Vo?/q) ) C.#‘
z l‘C d{Vo;)

|
- f (0,55 B, +B ]
0

(%.7)

(4.8)

(4.9)
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c o) X (Vo) Y (¥)d (v, %) d (-v7)
d(2,7) d(-vv,)

)Ciél a)

Boor V| G+ B L) b)

(0) |5
__(_c__z_/_) 30 ¥ d(w7) d(+ors) A o)

2 l-c d(+,)

J
“fﬁtow) (vo-/Anr(/m)[goy(/«Heig—’}J/A a) . (h10)
0

Notice that Equations (4.9b) and (4.10b) illustrate explicitly
the form of the half-range bi-orthogonality relations used to obtain
them since the integration is over the function &(u-p,) . Thus, the
correct bi-orthogonal form for half-space problems may be obtained by
inspection if the discrete and continuum expansion coefficients for the
half-space albedo problem are already known. This is obviously true
for any type of isotropic or general-order anisotropic scattering. In
fact, it was this observation by Khééer which first led to his discovery
of the existence of orthogonal forms for half-space problems,

The solutions of the four problems are now complete since
the angular density is known from Equations (4.4), (4.5), and (4.7)

through (4,10)., The neutron densities and net currents, defined by

!
£x) =f (//(X/«) dm
-1

, I
™ =f N (SO (he2)
~l
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are easily obtained by integration of (4.4). Upon use of (2.51), one

finds that
' X 1
PO =Fxpmdm +are  +] Aw)e dy
- D
: | %Y [ %
3(x)= /Af("//"‘)d/A + (I-9)|a, e +[A)ve dY (4.12)
-1 0

The existence of the factor e-x/v in the integral term in
Equation (4.4) appears to make it impossible to evaluate the integral
analytically unless x = O ., The incoming distribution at the surface
1s specified by the boundary conditions and hence is completely known,
It is desirable, however, to examine the distribution emerging from
the surface since the results are very important and may be greatly
simplified. Using (4.4), the emerging angular distribution may be

written as

PO, = (05 +a, fLIW+[ABIP (MY , >0, (4.13)
0
where, with

Yir) = ¥Op) = Flop, (5.14)

the expansion coefficients are:
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a4 = __( 2 )2 v[oLIJO“I)[QF//A’)+BC_Z?‘°](V0-/«'))"V')CI/,«’

Vo X (%) d (%))

{ .
[l

Alv) (4,15)
(v-) V(v) AMY) A (v)

After simplification of the form of a, , we see that

l
S WV T
(Votm) d(%7) X(%)

| | el 1,
+[(ljp“l)(7/p-/"l)y{/“')U/ ¢-1/f/‘)[q)1/{/"‘)+5 ZJJ#:'C},)/A)O,(M']é)
0 (o)

Y(0) = F(gm) -

(%) ¥(w) AHY)NTY)

From Appendix C, however, we have the result

2l ) B | [dwv “B}
L () TW))A) | (G MIXER) St
%,
+ d('”n/“)d&""g) (4.17)

(o 5P ) 4 7) X
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Use of (4.17) in (4.16) yields, after some algebraic manipu-

lation,

) dipin')
Y (0,50) = F(0,50) + X() ‘//( WV)[/y,

d(%vp) d(pm'v
(Vi) d (¥p7)

}d/v\ /v~>0 (4,18)

This general result can now be specialized, by use of (L.1), (k4.5),

and (4.14%), to give the results

Ve X (o) d(vp¥,) ol ()

) CF | a)
(Voz'/"z) X(7“) d(+7)
L2 [ d(spgp) — B [imo)] .
(o4 (%t X(p) (1= ) (1 = 2) (Wt o)X ()

(@]
~—

% | ¥ d57) dm) ]
(0 -pm) = 22 — | £ |
(f )/A) \ - [X(-/*)(%-y\)a’/?/vfi) ) ©

)
G (0,77 - X,/fﬁ op [—M‘

d(v,v%)d(»'7) JCI/ a) . (¥.19)
(Votm) d (v,7)
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Equation (4,19a) was obtained earlier by Shure and Natelson, (22)
Equation (4.19b) agrees with the result of Chandrasekhar(z) when the
conversion equations of Appendix H are used.

The densities and net currents on the surfaces of the half-
space may be obtained from either (4.18) dr (4.19) after multiplication

by du and pdp and integration. The equations are

J |
7(0) =[ 1(0,/)9m +f‘f’(9 /)4
0 0

l {
- [ A ¥0p g - f 2410, ) o (.20
0 0

and (4,1) must be used, We will proceed by considering the general
equation in (4,18) and then specializing the results to obtain specific

answers to the four problems under consideration. Equations (4.18) and

(4.,20) combine to give

£10) = [ ’[ Flop) + £(0,59] 4
0

[“f’/)m)dy' ) fx/q/&/ )}

I
Jh/l/) ! d {
) din'D —dar 14 (k.21)
]% W) | 3l
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30 f A #0104

| |
| ) A )| | L2 ]d ’
[5“//* ) V*/)[ X |7

4 d(%7) I/"‘d/’* du’
*is [‘” W"’W’[ 0 X(yu)(/«‘r%)}/“'

Use of partial fractions shows that

[t =5t
o Xow) (w3m') X//) ) X

J/F'/A‘df‘ _4£: —-7{1(1 dm
, XM m ) o XA XMt )

The three integrals needed in (4.17) and (4.18) are evaluated in

Appendix C and are

A z(u-a)(t—%i‘)[_ ¥V dn) dp'7)
X(- ! c I
) () (pai) dip )
N VOZXIO)] _ /

- Ty dpw)

| b,
__JL__ = Z_(l‘C.)("‘?) [__'X(O)A(tvo_’-j) + %X(O)]

o XPUPE,) c

! ch
dm — Z(I—c)(l"?') 2 3 (o)_c/(
fo o (=203 xi0) - 75 dlogw)

(4,22)

(4.23)

(4.24)
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where, from (2.37) and (2.59), we know that
/2
| cb
B P ____;] (4.25)
X(0) ".[( -39

Equations (4.23) and (4.24) reduce (4.21) and (4.22) to

|
_ d(VoVs) X[ Vo)
£10) —[If/o,/«)d/» T T 0)

o [ W) B dpm ) (h.26)
¢ X(0) ] M

4(0) =[/«{(0/A)d/« %[‘/’/ Yy p)Jpd | e

Equation (4.15) was also used in the derivation of (4.26) and (C.15)

from Appendix C was used in the derivation of (4.27).

The specific results for the four half-space problems reduce to

/2
2v [(l (- "")] X-%)dv,)
2 ) ¢ £ a)
d(v,v)
f(0)=< Vo d{popo) d (Vo V) = Mo d(T0)d (Vo7s) b)

(1= 1= 2] Ko 9

\ ng | | I-c I/é )
(- ¢ ["T+cr‘°’dhﬁ)[ ] N’C# i

&b
- =3
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|
f(D) =‘[(7(0w) dn +a, d(¥pve) X(¥b)
-1

X(0)
I
_ 2 QLOM)F () dipm') dp a) (4.28)
cX/D)o !

297 (1- ) X(-3)

;- y e a)
YO d(v7)
Z(I—C)X{/‘o)(‘llo“/“o) - Mo b)
. ¥ dly,v) (Vo tp0) X omo) 32 d (4,77)
_ Z&O(Vo_-ﬁ) ) C#l C)
c c/(wgi7)

! !
\[ W G(0W)dpm — 2(l-c) GO M) ) Yp')dp @) . (B29)
_ ) o) I
j} l/‘ /A CX(O)J(VDV) A /A /A
-l

We have now obtained answers to all four problems which we
wanted to solve in this chapter. The solution to the half-space Green's
function problem, however, is not in its simplest form since it still

involves the solution<7) to the infinite-medium Green's function

problem. G(x,u) = G(xo,uo - x,u) and is given by
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=(x-Xo)/¥, 1 - (X=X )/
4,0 We  + [A(v)%y»)e dv ) X7 Xo
0
Glxpm) =
(X-xWVy [© =(X=Xo)/¥/
—a_@ (me —[A(V)%,y*)e dv | X< X (k.30)
-l

where
G(z (D)/“) =0

GXs) 2 = Gl p) = —&/—;%/”—")— : (4.51)

Using the second boundary condition and the full-range orthogonality

equations, (3.101) to (3.104), G(x,p) may be written as

F (X=X0)/?,

| FO-x)v"
G{X)/“) =+ ¢-_I- (}‘0) {V—g (/")e + ¢i‘l/l/‘°) ¢i“t/l!/‘")e dv (4.,32)
Ny v AU A~ () /
’ X 2 X,

where N, 1is given by (3.104) and (3,109),

For the half-space
Green's function problem with the source located in the right half-

space, we therefore have

‘Xo/'l{, | "Xo/ul
Glopy= — S le +f Bplobvple gy’

N, V! AV A (YY)
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Equation (4.33) may be used to reduce the Green's function results of

(4.9), (4.10) (4.19), (4.28), and (4.29) to the following forms:

= Xo/¥,
R= Ao dv)| % XU-Ve) d (%7) Pimo) e
4+ dw,y) N_

/

X dbr'D)e ! (b.30)
AT (VYN (V)
- Xo/%,
S — ¢y 'z X(‘ ¢— (7/)51’(1/7/,) d(’)’ﬂ) ﬁ.&‘a
N~ d(v,v)d(-v¥)
c 1 =X/
1 ly—v‘(/‘0)(7/0"'2/')X/'V')[Qz/’(y)"'az—i]e dv'’ (4.35)
z 2NN D)
~Xo/Y,
Vo) = — Febrole ,:C%ZX(’%)J(‘I{,VOJ('D/“)
: V- (%2=p2) XIm) d ()
[ @) X)X @i di')
XM), v A (')A (v) d(vm)
+ c‘z/l d{"l//'l/-) d(‘l/o'Vp) d'l/, (LI'-56)
2 (Y,em) d(3),7)
_)(o/-,/o
pl0) = - (e 2 XI-%) d(+%)
N_ X(0) d(v,v)
| ~Xo/¥'
¢-V'(/“\°) X(""')e * /7/ d(V’V')
X(0) o 7 ‘AN (YY)
-+ Vld(VoVo)Cl(‘Vlg) d'l/l (4.37)
Y d(4,7)
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- Xo/Vp
- — @ (Mo) e _ ZVOZ(I‘C)X/'VO)

N_ /X‘(O) d('l/o77)

4(0)

| ‘Xo/'i/' )
(I—C) p_-y'//‘o) (Vo+7jl)X(‘Vl)€ dv (4.38)

TOd,7)),  A)AW)

For isotropic source, the above expressions are simplified by integrat-
ing over du, which amounts to replacing @(n,) by 1 wherever it
appears, The preceeding equations were derived with the aid of (5.82)
through (3.85) plus the following identities valid for ¢ = v, or
v, 0<v'<1:
L, . (13
V) dprt) PosP)p’ 2
Mip

X(m)d(5) = X(-%)d (s )

unl

.-7&

wm

0

|
f WP = E- 520 - T9d,7)

0

|
W) A7) P (NI’ = _Ezi d(-7)X(-5) (4.39)
0
Another quantity of interest in neutron transport theory with
linearly anisotropic scattering is the Milne problem extrapolation
distance, z_  , defined as the distance from the surface of the half-
space at which the asymptotic neutron density vanishes. The asymptotic
contribution to the angular density comes from the discrete modes since
e"d/vO >> e-d/v for 0<v<1l. Inserting f(x,u) from (4.5) into

(%.12) and using (2.51) gives the Milne problem asymptotic density as
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X/'l}o ‘x/"/o
fuX)=e +ae (4.%0)
Therefore,
~20/%o 2o/7),
fol-2)=0=c¢e +aq.e (k.41)
or
Z'D= —_— -—-‘é—oj,n (—q.'.) , (ll».)-FQ)

Using (4.7) and (4.9a) in (L4.42) gives

z, -_-—&jm. _ X% dEwP) (4.43)
X(4) dlv,v) |

It is also interesting to obtain an integral form for Z,

which does not contain the X-function. From (2,21) and (2.65), the half-

space X-function is given by

[ f (ﬁ)d_M]
X(z) = (h.k4k4)
where, for linearly anisotropic scattering,
Olp) = arg NI)
JIrepm dW“)
_—_};,,,"'{ a ) (4.45)

|40 1= gmBonk - b (1-) 2
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Using (4.45), one may show that

do) _ _me 2 cgz ]

dmn o 2 AT MATM) [d W)[H [-p? |
#h (1= W d )| (1.46)

J

Following the analysis of Mitsis,(lo) write

l
X(‘Vo) — l""Vo — AZS 90'\)‘//"
X)) |+ i’ [ nj;/@_voz.]

|
=Y 2 d M"/«/Va] (b.47)
T+, W[Tffoeyu)[ “"/" d/\]

and integrate by parts. Since ©(0) =0 and (1) =« ,

X(-%) _ 1-v £ ,-'A _g@

X~ v [ f

— j; LYo ,tbn}:>W€$ ¢ —lifii——
"_W[_ i1% 0 A*wm[“” )

+b,(l—c)2/4?'cl(7“/“)]°'/‘}J | (4.18)

Using (4.43) and (4.48), the Milne problem extrapolation distance may

be written as
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'l/o d('Vov)
2, = — 22 4, 4Pl
0 7 A d(v,7)

' -1
<V M /’/7/0 dz c_/ttz
i AN S | -2 )

b (=) o4 d(pm)| dm (k:49)

The value of A+(p)A_(u) is given from (2.60) as
2
APIATR) = A4) + EL;Q‘A) (k.50)

where A(u) 1is given by (2.53).

In this chapter, we have yet to consider the numerical
evaluation of the quantities eppearing in the preceeding equations.
The value of y(n) , O <u <1, can be related to the value of X(-u)
by Equations (2.38) and (2.59). The value of A+(u)A_(u) is found

from (4,50) and the equation

Ap) = dW)[h/kM}'AJ - l>,(l-c)a/'\Z . (4.51)

Thus, all results may be expressed in terms of v, , X(+ v,) , X(-u)
for 0<p<1l, and 7(i) for i =0,1 . The first step is to evalu-
ate v, from (2.55) and (2.56). Then the values of X(+ Vo) and
X(-p) may be obtained by use of the integral equation (2.70). The

constants 7(1) can then be found.
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It is also possible to determine X(t v,) without the use

of the integral equation (2.70). From (2.38),

. Alz) - | dA(z)
{ T ¥o 7/0 = , = / k.52
A (@) X (=7 )X (%) j’kﬂ:v 2_z2 ¥ 27, dz (4.52)
-0 Z2=17,

where (3,109) gives the value of A’(i.vo) . From (4.43),

¥*
-2 o/7jo
X(_%) = —¢ : (4.53)

X(vb)

where the value of 1z, , defined by
Yo d(-%?) (4.54)
Z = -+ — - 4 .
) Zo 2 /e"b d (Vo 77) )
is given by the integral in (4.49). Combining (4.52) and (4.53) yiélds

the answer

235/16 2
v [ | -7, (l—c)}
_7/0 - €
X(-%) (20-2)1- _c?b,)]'/z{ d(m/,)[ %2 (7,2 -1)

|
ch(i-¢) d(-v,v,) /2 (4.55)
(¥,2-1) d(+?s) ]

For the case of isotropic scattering, this reduces to

l/z_ - 2o/
-zo/%[,, 251~ ¢) ] e (k.56)

—VO — -
X( ) e 27/02 (.‘/Ol__')U_C) [CJ/DZ K] /2

(5)

where K is tabulated in Case, et al.



CHAPTER V

SLAB AILBEDO PROBLEM FOR ISOTROPIC SCATTERING

The orthogonality relations presented in Chapter III enable
one to solve several one-medium half-space and full-space geometry
problems in closed form, Four specific half-space problems were solved
in Chapter IV. Unfortunately, this program can not be accomplished in
the case of a slab and, as will be shown, the expansion coefficients
in the solution for the angular density are in terms of a Fredholm
integral equation.

The problem of interest consists of a finite plane-parallel
medium surrounded by vacuum on both sides with neutrons incident upon
one face, The incident neutrons are assumed to be azimuthally symmetric
about the x-axis., As in the half-space applications, assume that c ,
the mean number of secondaries per collision, is < 1.

The problem requires the solution of the following equations:

l
PA%X_ H] W"/‘)={'[‘/’(x¢’)d/' ) D<x<d (2.1)
=l

where

T(0) = &fp o) , )220 (5.1)
‘-}/(dyu) = 0 <0 (5.2)

The coordinate system is shown in Figure 5.1.
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fa

cos “Hg 0 d

Figure 5.1, Coordinate System for Slab Geometry.

This problem has been studied by Halpern and Luneburg(BO)
who obtained an expression for the asymptotic density in thick slabs

(31)

by means of Laplace transform techniques. Later, Kugger also
obtained the asymptotic angular density, density, and net current for
a thick slab by appropriately combining the solutions of the half-
space Milne and albedo problems. More recently, Zelazny and Kuszell(15
used Case's method to consider a bare slab with arbitrary source dis-
tributions on each surface. Because of the generality of the problem,
however, explicit solutions were not obtained.

In the present analysis, the angular density is expanded
using (2.17) and the problem is reduced by use of the boundary condi-
tions and orthogonality conditions to solving two sets of two coupled

equations for appropriate linear combinations, b and B+(v) , of

+

the two discrete and two half-range continuum coefficients. One equa-

tion in each set is a nonhomogeneous Fredholm integral equation for
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B+(v) which is solved approximately by Neumann interation, This leads
to explicit solutions for the angular density, scalar density, and net
current in zeroth- and first-order approximations. The zeroth-order
. . W (31)
results are equivalent to those obtained by Kuscer.
Equation (2.17) may be written as

_X/Vo X/Vo

(f/(x//‘) =ay %9“) e +a_@ (me

! -x/Y ! X[y
+fA(v)%(/A)e dv +fA(-u)QV¢u)e dv/ (5.3)
0

0

where A(i v) are defined for O <v <1l and are the half-range
continuum mode expansion coefficients and a, are the discrete coef-
ficients, It should be noted that either ¢, (u) or g_,(n) is non-
singular, depending upon whether p 1is negative or positive.

Using (5.1) and (5.2) gives

59“—/"0) —q+¢+(/l‘) _a—.¢—{/A)

I |
—fA(-V) W_V(/)ch/ =fA(V)Q,y\)JV}/A>O (5.4)
0 0

and

~d/¥, d/v

—a,Y(Me - a @ (me

' ad : dfy
_[A(v)%!/‘)e dv _—_[A(-v)gp_v(/,.)e v peD, (59
0 0
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Changing varisbles in (5.5) from p to -p gives

-d/Y, d/Y,

—a Prle  -a Ppe

! -dfY ! 4/ ;
—[ AP (e 4V =[ AP, (e dY, pm>0, (5:6)
Y 0
We are now faced with the problem of trying to find the expan-
sion coefficients from two simultaneous singular integral equations for
B> 0 , Equations (5.4) and (5.6). The latter equation is not even in
the standard form as solved by Case because of the exponential term

ed/v

in the integral containing the singular eigenfunction ¢v(u) .
We therefore resort to adding and subtracting, respectively, (5.4) and

(5.6) to obtain

A

Sfp ;o) =by P F boe P [p)

! ~dfy /
?L[Bt(v)e Qy(/a)ch/ =[Bi(v);2/(/a)d7/}/4>0) (5.7)
(o) (4]

where we have defined our new expansion coefficients as

d/v,
b, = a, ta_e

df
By (i) = Ap) & Alm)e & (5.8)

Note that the right hand side of (5.7) is, formally at any rate, a half-

range expansion of the (unknown) left hand side. Indeed, the solution

will be obtained in terms of the half-range X-function.



-70-

Equation (5.7) may also be obtained by using (5.3) to consider
the angular densities ¥%(x,n) and ¥(d-x,-p) . Adding and subtracting
the two angular densities corresponds to finding twice the symmetric
density in the slab, denoted by ¥ (x,u) , and the non-symmetric density,

denoted by ¥_(x,u) , and gives

Vo lop) = ¥(xm 2y (d-x,-m)

-X/%, (x~d)/%,
=b, §(Me tb, g.pe
, o
' [ B, ()0, e - dv
o'_ (x-d)/¥
t| B, (v) QV(/A)Q dv (5.9)

0

The boundary conditions (5.1) and (5.2) combine to give

Yo (Op) = §propa) , 120 (5.10)

Applying (5.10) to (5.9) gives (5.7). Thus, b, and B,(v) may be
interpreted as the expansion coefficients for twice the symmetric an-
gular density and b_ and B_(v) may be interpreted as the expansion
coefficients for the non-symmetric angular density.

The orthogonality relations of Chapter III may be used to
obtain b, and B,(v) from (5.7). Multiplying (5.7) by
@.(u)(vg = u)y(n)dn , integrating over u from O to 1, and then

using (3.17), (3.19) and (3.20) gives
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-d/7,

bi[-X(ﬂo) te X("I/o)] = £ Y(mo)

c?,

! y ~d/Y
?th(V)—z/- e X~v)dv.
)

Use of the relationship(7’9)

-2%¢
XY‘Wﬁ) ® /%é

X(Vo)

gives

' -d/v
_ZC.. V(o) :,-_IOV B.t (v)e X(-v) dv

tT 7, xr-vo)[e“o/% ; ;“’/Vo]

o
|

(5.11)

(5.12)

(5.13)

Here, the Milne problem extrapolation distance, z_  , is defined by

o}

2, =

[
cﬂof' [I + IVAZ]M—‘/A/VO J/“
), AAT

(5.14)

and is tabulated.(5) Multiplication of (5.7) by ¢V(u)(vo-u)7(u)du

and integration over p from O to 1 gives, upon application of

(3.16), (3.17), (3.18), and (3.21):



B, (M @o-W)TWA WA = (55-p0) ¥ (o) § ()
-dfv,
Fhoe UV X))

l -d'
[B e “’¢ (V)Y )XV dy' (5.15)
0

Use of partiel fractions, (2.38), and (5.11) reduces (5.15) to

B, (W) = X/'/“)(%z-/z)(l-c) ZTZQ%ZQ
£ = S A s

~d/¥,

~by GYIX%) Fhye  LIMX-%

L
?th (v)e /VQ,,//A)X(-V)J:/} (5.16)
0

Equation (5.16) may also be obtained direetly; without the use of
partial fraetlons; by use of & special set of isotropie relations whieh
do not have @ (u) and ¢V(g) mutually orthogonal, The neceasary
relations are derived and applied to (5.7) in Appendix D,

The equations in (5.16) are nonhomogeneous Fredholm egub-
tieng for Bi(“) and can be solved by Neumanin iteration, provided the

resultant series converges, Defining

K (’J ),ﬁ - X )(Vg“i)w/e / X(“V) (5,17)
4 A ATR) (v 5) ‘
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and

(0) (o) (f c 27 °)¢(0)
By () = X(/«/)é;/:;) )[ (o) Pr i

em
s (5.18)
~by 4, (MX%) Fhye  PX) ) ,
Equation (5.16) becomes
|
By (1) = B, /“) J——""[Ki(z/)ﬁi(v)w ‘ (5.19)
0
(32)

Following Tricomi, since K (v,u) 1is square integrable,

the following relation must hold for the Neumenn series solution to

converge:
I Al ) 12
C(é%)[[[ K W)WJ/A] <l (5.20)
0“0
Since
X(-p) € X(0) = —me (5.21)

a conservative estimate of the above inequality is

i .
7 eIz gl -2




~7h-
Here we have used the fact that

l |
T . — (C, ) = ,
NI~ & T ot ) + ()2

where g(c,u) is a tabulated function.(B) For ¢ =0 , the inequality

(5.23)

is satisfied, From Reference 5,

4

?(cyz\)l ~ =3 (5.24)

MAX

for ¢ very small and non-zero so that the Neumann series for B+(u)

converges for

o -d
> £ ';é’"ze —0.ll3e (5.25)

Because g(c,u) is very sharply peaked near p =1 for small c ,
it is felt that the convergence is much better than the conservative
estimate shown above. For other values of c¢ , convergence is guar-

anteed if

c < 3'61 e , (5.26)
(c ),
'Yy
Although we have no proof, it is reasonable to surmise that the Neumann
series actually converges for all ¢ <1 and all d, Convergence is

rapid only for reasonably large d , say d % 3 .
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From (5.1%) and (5.19) the b, and B,(u) may be found
to arbitrary orders of approximation, The zeroth-order solutions,

b+(o) and B+(o)(u) , valid for large d , are obtained by noting

that the integral terms with e-d/v vanish more rapidly than terms

proportional to e-d/ Vo . For the n'th-order approximation, use the

B+(n-l)(u) to get the bifn) and then the bi(n)

and the first n+l
terms of the series solution of (5.19) to determine B+(n)(u) . Equa-

tion (5.8) may be used to find a+(n) and A(n)(i_u) . Notice that

this scheme gives zeroth-order results which contain a continuum
component, Diffusion theory results may always be obtained by ignoring
the integral terms as was done by Mitsis(g) for his lowest order approxi-
mation to the critical slab problem,

For the zeroth-order (thick slab) approximation, we use

(5.8) and (5.13) to find that

22,424/ d/%
o) e Tpo)e (5.27)

; T e X% sk [t

Equation (5.19) reduces to B, (n) =B (O)(u)

, which gives

A“’im _ XMW@ (1-¢) | 2T) Du (o)
NP N(m) M

(o) (0)
ay GIX) = ar @)
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-d/
Aw)(-/,«);_ e /AXIW)(ngy“Z)(l-c)[ 0 df%

N a_ e PIMXh)

(0) -d/vp

+a, e QV«}X{—V,)J

The first-order discrete coefficients are

(1)

at+ 220+d
= 19, e[ 25]
e
;(230+J»64 N
e Joo 11y * %1, M[TH

where Inm and Jhm are defined as

-d/fv

_ eli-o) 'Yhe L XE(w) v n= 02,3

hm 2 M A+ -/ )
, V)T NATY) om0

T =

hm

(:—c)f, e X N EAN Gy =10,
e N)NY) ) m= 0,1

The first-order continuum coefficients are

(5.28)

(5.29)

(5.30)
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(0%) Vol 1-¢) X(=m) (Vot-2*)
fr) + =5 AR A~ ) &

A) = A

-d/v,
(x)[a:)e Xt-%)[%I, 'IZI]

0y 4/%
va_e  Xw)nI, +IZ,]J

(1) (0%) '4ék (1= - 2 a2
AR = AT +e "’;‘,\i)(jfgj\‘_)o‘;; #2 (x
()
wla, X% I, +I,)
| - 2 °
where the A(o *)(i u) are given by (5.28) with the a+(o) coef-

(1)

ficients replaced by a,

The zeroth- and first-order solutions of the slab albedo
problem are now complete since all of the expansion coefficients in
. . l ' '
(5.3) have been determined. The density, p(x) = Il P(x,u)dp’ , and
1
the net current, j(x) = Il w'P(x,u')dp’ are easily obtained from

(5.3) upon use of the normalization condition (2.3). The equations

X/ Vo X/ Vo
f(x) = a,e +a_e
+[ lA(V)e- X/Vclu + [ A(-V)eX/VJy/
7j(x) = (l-i)[a+ v, e-)W" - af_'z/o e’wo
+[’A(v) Ve.-X/vdV ~[i4{-v)z/eX/VJVJ : (5-32)
D

o
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The expressions for the reflected and transmitted angular
densities on the slab surfaces may be simplified by the use of Cauchy's

integral formula. The results from Appendix E are (for u > 0):

| V(o)
Y(0,-») = X(y)[/“a:;* + a, {V_f/v\) X(v,)

l
ta_ 0, (W X(-%) j A(-V)gﬂ,,(/«)X(-V)JVJ

0

o -dfy, d/v,
Yidp) = W\[ﬂe {er/)X( V) +a_e  JMX)

b dfy
+fA(v)e_ {PVQA)X(-V)JV] ‘ (5.33)

0
In Appendix H, these results are used to correlate the X(-p) function
of Case with the X(p) and Y(p) functions of Chandrasekhar.(g)
Equation (5.33) was derived in a different manner in Reference 33,
When d 1is large, asymptotic expressions for the above

e-d/vO >> e-d/v and

angular densities can easily be obtained since
the integral terms may be ignored. Use of (5.12) and (5.27) in (5.33)

gives the results

0 /A)' w/m[ L shuthleasrd) - m J
Mo (vo" ‘/"‘l)

VYo Jlpo) (5.34)
e d (%% < %) X ) turbe [(229+d)/7/(>]

Yl p)| =
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The reflected angular density for the half-space albedo problem is

M (0 — ('Va’/“O)’w/“O)
5 107 = (Vo) o) X(z)

LMo
2 (5.35)

(o) Xlomo) (v o) (1=c) X(op) (v 4p)

and this agrees with the result for isotropic scattering obtained from
(%.19v),
Equation (5.33) can be used to find the scalar densities and

net currents on the slab surfaces. From Appendix E:

|
f£(0)= x'(o)[ Z;{/A J a, X(¥) +a_X(-%) -{ A/—v)xz-V)va
0
o]
| -df, d/v, Y,
f(“)Z X0 a e X(-V,)ta_e X(v,) 'i'/’A(I/)c. X(-v)dv
D

2
j(0)=—(l-c)[—24;;w +a, 9 X64) + asp X(-%)

|
+fA(—v) V2 Xl-v) JV}

0

0

: ~d/v, 4/,
j(d)——— ("‘C)[a,re J/VVZX(%) ta_e 7/,,2 WGA

-d
f Av)a 4 sz-vw] , (5.36)
0



-80-

Since X(0) = [voz(l-c)]‘]/e, use of (2.38), (5.12), and (5.27) gives

the asymptotic forms of the above equations (where the integral terms

are ignored):

f(0)| Yo — Mo Cb’dv[(?.zo'fd)/')/o]
lorgp d VI=C (V2= pus) X(-0)

f(d)' = Lo C‘Wp\[(Zz‘,ul)/w]
Lrgpd V= (77 pF) Xlomo)

(D) B /D[VOCO#-[(220+C/)/VD] ‘/"o]
¢ | gr 4 (%2 =m2) X(omo)

(5.37)

(d)] = el cach [ (220+d)/%,)
! I“”‘a“‘f (v, 15" ) X(0)

These results can be specialized to obtain the following half-space

albedo problem results:

S p(D) = '

d~»o f ) Vi-c  (¥,3M5) X(spm0)
o pd) =0

do>o

Mo
0
3( )= (%, tMo) X(sp0)

S (d) . (5.38)

d->o

d—o
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The results in (5.37) agree with those obtained by Kuscer. (31)
Kuscer observed that the neutron density in a thick slab could be
written as a combination of the asymptotic densities from the half-

space albedo and Milne problems, denoted by pa(x) and pm(x) , in

the forms

Pl = pd-Mp (x), x~0

Lange d
F| = Ng (d-x) , x~d (5.39)

where M and N are constants which must be determined. The values
of M and N are obtained by observing that the two equations are
equal somewhere in the interior of the slab. Using the half-space
results from Chapter IV with isotropic scattering (where d(pq) =1

and 7(0) =1 ) in conjunction with (5.12), we have

~220/7p -
2 ¥Ma)e 2o/7 X/,

CVy X(‘Vo)

“2zof\ X% X%
e -Ml(e T)e T+e

-22./, ~(d-x)/, (d-x)/+%
=N (' c e + e (5.40)

-
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Comparing the coefficients of e_X/VO and eX/VO yields the result

(2z,+d),
N=Me = L)
<7 X(-2) aink[(22,+4)/%)

= — . (5.41)
29, X(-%) (w2 ~m2)(1= <) X(opmo) senh (2204 d)/%)

One can immediately obtain the results of (5.37) for p(O)|large 4
A%

and p(d)llarge q using the isotropic forms of (5.28). Kuscer also

noted that analogous relations are valid for ¥(x,u) and j(x) . In

fact, the results of (5.34) and (5.37) are obtained by using (4.19),

(4.29), and the equations

j(d)l = -N?’m(o) , (5.42)

(The minus sign in the last equation is necessary to take the reversal
B - -y into account.)

The zeroth-order results are obtained from the "large 4"
results by the addition of the integral terms. Use of (5.28) and (5.30)

to evaluate the integral terms yields the answers
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}a(o){D) f( )' - 7202/\40100 MJu[iZzo+j)/7jo]
ﬁmn7z.d Vi-c )<(;A%Q (v, Mo )
[V T t%Leo ]
Mo ey 2 Gatd)/o,
77) = f(d)l . _ T, whhleetd)/n)
Lu?ed \/T:;?-Gé Mo ))(GPMO)
'(0)(0)— (D) 4 Lo 1, u«,l\,[(220+d)/-u]
y O=7¢ |

(V" pdt) X(Mo)

J, + 1
/40[ ! 30 ]
+ +v,1,, w#.[(ZZDM‘)/Vo]  (5.3)

) = 404)
4 1 \“”?‘4 (%" -mo”) X(spm0)

In order to estimate the correction terms in (5.43) due to
the integral terms, we need to asymptotically evaluate Ino and Jno .

Use of the identity

a = L [im
M/“"Z’é”,_f

and (5.23) enables us to use (5.30) to write

| -div
I = (- 2"e  Xw)dV =01 (5.44)
no 2 (- ¥ g, 1+¥)2 _ (me¥)2 "=90h2,3. ‘
(1- L 725)° +(757)
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For c¢=0or 1, InO = 0. For any c , the major contribution to

the integral occurs for v ~ 1 . Following closely the work of Case

et g;.,(S) set v = [l+:x:!'l and observe that

-d r® -d
I,, %<1 XZ(-I)ef e dx — (5.15)
o (1m54n%)"+(5)

This may be rewritten as

2(1-¢) AP d
I, 7~ =5 Xz(-l)e‘f = - 5, C#0, (5.46)

mé e d o |+ (7F‘4g”,:fi7)

-2/0

where x, = 2e . We therefore have

2(1-¢) &

~, 1=¢) w2y & .

L, 7S XH) —F(A) , ¢ #0, (5.47)
where

® Y d
/mr—f —— (5:48)
o 1+ (25)?

and A =1lnxgd = In 2d - 2/c . The function f£(A) is tabulated(>)

and its ultimate asymptotic behavior for all c is(S)

F() =

+ ool (5.49)

2 4 254
| L. d

(4n d)?
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Equations (5.47) and (5.49) may be combined to yield the asymptotic

result

(1-¢) e’ T -25¢ n=0,1,2,3
T o 2lddy? )= [+ &2 . |"FY%ha> (5.50)
o e )docm!)l[l bd c#0

'

The evaluation of J o may be achieved by using (2.4) and (5.30) to

obtain

~dfpmo
Jo =(-cps e 7 x (po) 52 pd)glepadipe) + S (5.51)

where

V(9™ T e 64 arew)
S _— C(I"'C— Pf e - (] 'V 9(CI-V JV ‘ (5.52>
0 7/'/"0

For ¢=0Qor1, S0, If g 1s small, the asymptotic evaluation
of (5.52) can be carried out in the same manner as before since the
integrand is not singular over the region where the major contribution

to the integral occurs. After setting v = (l+X)-l , we have

® -dx
(1-) A e dx %)
Sw & x“‘(-n)(#-i)e—f H0>%
mte 0 [l'}‘o(""x)][""(#’a“‘_;p)z] ’
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X
< 1, then

| ) | = Mo ~ €

| - (=)

‘j/“o(|+x)

SO

/Ma)VQP;Mﬁ)

[=Mo

-D
§ 2(l-¢) XZ("I)(VDZ—I) e'dfm e xe c40
we |- X )
c /“o . ‘_+ (;#‘XQ»‘;;)Z'
where
| ~ Mo
If D>> 1, the integral in (5.54%) equals % f(A) where
A =1n 2(d - Po ) - % One therefore has
L-pg
5 2(1=¢) X2(=1)(v"=1) e-J —2;-2.54
~ + vor
T ke D 4D }C*o'

If Ho

be written in a form convenient for numerical computation as

1
= 1Mo
f; VVbMollmn Mo f][- 2 __//40

W‘V) "WI/“O) J'[J

(5.54)

(5.55)

(5.56)

is such that the above restrictions are not satisfied, it may

(5.57)
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where
Wiv) = L2 " 2 ) o) 3(cy) . (5.58)

In addition to the previous results already derived in this
chapter, a few specialized answers may also be obtained from the
analysis. We will now proceed to the determination of:

1. The expansion coefficients for the half-space albedo

problem for isotropic scattering.

2. The transmission and reflection coefficients for a thick

slab.

%. The current through a slab when ¢ =1 .

4, The expansion coefficients for a bare slab with a con-

stant surface source (plane source) on one face.

1. In the limit as the slab thickness becomes infinite, all
approximations reduce to the zeroth-order approximation and, from (5.27)

and (5.28), the expansion coefficients are:

(
q_o): AlO)(yA)z 0
qw)z _ Z’x{/"o)
+ cVy X (o)

A(O)p"):- ﬁ'(/*o)[feu(/:o)"”.%o §0+(/“)]
Y ) AR Alp)

_ _(#z#0) T(po) Pmlo) (5.59)
(v o) XY N P) A ) '
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These results may also be obtained from Equations (h.?) to
(4.10).

2. The transmission coefficient for a slab is defined as

|
L Lrtes @
[ ropg

and the reflection coefficient (commonly called the "albedo" in half-

(5.60)

space problems) is given by

__Lrtore o
[+ #1004 &

The values of T and R may be found from (5.43) for a thick slab.

(5.61)

R

3. When c =1, the current is constant. From (5.27),

(5.28), and (5.32), we find that

ﬁv»:r\- a'm(x) = e , (5.62)
c>| (22,+d) X(=po)

This zeroth-order result for the current agrees with the answer ob-
wW
tained by Kuster(31) when Equation (H.5) of Appendix H is used, Using

(5.29) and (5.31), one obtains

Lo ’é'“)(x) = Lol1#K) (5.63)
co 1 (22,+d) X(-m5)
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where the correction term to the zeroth-order approximation is given by

KzL'JM%%M%MQHWHﬁMdu
> A*(v) A()

= In 2 Lo (5.64)
cj”-;T[I” K 5(Zzo+d)c(|-c)} ‘

4, The expansion coefficients for the bare slab with an
isotropic surface source on one face may be obtained from the previous

results by integration. Using the Equation (D.7), we observe that

' |
f 5/0«»(/“0)'3‘(/‘0)4 0 =fJ’om ’Xy‘o)d/uo =0, (5.65)
0

0
Also, from (2.36),

I
T‘°’=[W/AO)¢, =1, (5.66)
0

Integrating (5.27), (5.28), (5.29) and (5.31) over M, » one therefore

obtains

_ (o) (22 +2dY% o) ed/7/o

a, =—¢ a:_ =

+ CVDX(‘VO)M[(Z_ZD+A)/7/0]
70 Xm) (Vo 2o pm@)(1-¢) [ _10)

A= /le-//;) & g

+a" 2. X{'Vo)]
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_ e“"/“ X(op) (Vo= M2 (1-¢

() -d/4,

ta, e ﬂf/“) x('Vo):l

_(1)
% [+, ka[ 220+ ]

+

+e

IZD (]

3(22044)A,
T, T w22 |

() _ (0*) cty (1-c) X (M) (7/02"/‘1) (X)
A(p) = 2 A A )

_n -dA,
(x) [ﬂ+ e X('Vo)[Vqu _Iz.a]
N) d/’/o
salle X[, 01,

) (o%) -djn o (1-¢) X(om) (%5*- )
AP=A M e ng)w//\tm ~

x)

_0
(x)[q+' X(v,) [-Vo I,+ IZ‘]

b2l X-4)%,1,, - 12‘] ]

)_w
A¥m) A(m) [q’ A

(5.67)
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The analysis of the slab problem in this chapter can be used
for different boundary conditions. In Appendix F, other slab problems
are considered where there is an incident distribution on one face and

a specularly or diffusely reflecting boundary at the other face.



CHAPTER VI
QUADRATICALLY ANISOTROPIC SCATTERING IN
A NONABSORBING MEDIUM

As was mentioned in Chapter I, problems with this type of
scattering are not of much interest in neutron transport theory, but
are examined in photon transport theory because the scattering function
is a generalization of the Rayleigh scattering function.(e) Because
of our assumption that the transport equation and boundary conditions
possess azimuthal symmetry, however, we shall derive only the azimuthally-
independent part of the angular distribution, i.e., the part which is
obtained after averaging the complete solution over the azimuthal angle.
Some discussion of the transport equation subject to azimuthally-
dependent boundary conditions is found in Appendix F.

Using (1.4) with N=2 and c =1,

l
[/4% +(]‘i’(xw)=—2-’— [IHVA/«'+bzf’2y*)|3(/“‘)]¢f’/xw')9,\" (6.1)

-t
Once again we use the ansatz

%%
Yiop) = gy e (6.2)

to separate the variables in (6.1) and obtain

w2 el gy @
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Multiplying (6.3) by du and pdu and integrating shows that

|
M Pydm =0

—f'/“z%(/“)‘]/“ _ 0 (6.1)
|

and so

J

Therefore, (5.3) reduces to

|
ORI ==L gy €.
-

|
— '/ ! !
P Pt = 2 19 B9 €9
=1
where f(un) is defined by the equation
fip) = |- 22 RO (6.1
We again impose the normalization condition
I [
—1 -
which enables us t;'write (6.6) as
Z £
2
@,(m) =P ot V) S(V-p) (6.9)

The value of A(v) may be obtained from the two preceeding equations

and is

I
V) = |- %’.Pf Fmdm (6.10)
-
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Equation (6,10) may also be written as

+ -
NY) = N(v) + A (v) (6.11)

2

where

/\t(v)

A7) £ LEEV—&) ) —level (6.12)

and where A(z) is given by

1

Alz) = | - —;— _‘u ) . (6.13)
2_.
4 M
The equetion A(z) = 0 is satisfied only in the limit of large =z
since

2.2.

|
A = = 5[ A1 e £ o]
-1

: by
~ - .3;.2[,__5] | (6.14)

This means that there are two roots at v = «» in a manner similar to
the case of isotropic and linearly anisotropic scattering with c¢c =1 .
The two linearly independent discrete eigenfunctions of the trans-

port equation are found directly from the Boltzmann equation as

bl =7

LVZ(X,/“) =—£—[x - —54“——] ‘ (6.15)
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Since all the eigenfunctions of the homogeneous transport
(21)

equation are now determined, we can use the completeness theorem

to write the angular density of (6.1) as

|
Yixpu) = 3 + 3 (x-Z7)+| A1 g p)e v (6.16)
-

There is an additional difficulty encountered in the special case of
¢ = 1 which we have not previously considered. Substituting (6.15)
into (6.8) shows that the normalization condition is satisfied by
wl(x,u) but is not satisfied by Wg(x,u) . Therefore, we are still
lacking a normalization condition for wa(x,u) . From Shure and

(22)

Natelson, we realize that when ¢ =1 , the steady-state homo-

geneous transport equation satisfies the equation
|

?(X) =| mPxpdn = cONSTANT = T , (6.17)
-1
Thus, this is the normalization condition we seek. Using (6.16) and

(6.17) gives

| |
c 2ot 20

| Al [ (6.18)
+ [Ame U/«g,my«]au .
-1 ~1
By use of (6.4), this reduces to
J =— az ’ (6.19)
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Now re-examine Equation (6.1). It may be rewritten as

|
3 +1| W = | [1 + b Rtpaggp)| s g

2

It is necessary to make (6.20) a homogeneous equation. This may be

done by the substitution of

‘P(X/A).—_ ‘-I/'(x/») + l"gx (6.21)

which reduces (6,20) to

|
o+ 40 = 2 [ [1 bR Ylgpdge . (G0

ol
Therefore, the transport equation for quadratically anisotropic scatter-
ing with ¢ =1 and bl not necessarily zero may be reduced to the
same equation with by = 0 by the use of (6.21).
The two problems we will solve in this chapter are the half-
space a) Milne and b) albedo problems for gquadratically anisotropic
scattering with ¢ =1 and b; not necessarily equal to zero. The

boundary conditions for the angular density, W(x,u) , are

O )/pv70 a)

Y(Om =
W/ 5,(/"7"‘0) )/470 ») (6.23)
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"Z(X‘—S'B_Ab-) AS X —>oo a)¥
Y lyp) = |

FINITE AS X —> 00 b) (6.24)

where U(x,n) is given by (6.16). Applying (6.24) to (6,16) shows that

w(x,p) may be written as

! %%
Y= flupm + 5 +[ A)g (e dv (6.25)
0

where

|
—(x- 2
a (X 3-b| a)
flyp) =
b). (6.26)
The net currents are therefore given by
I
- 3'-b‘ a)
J = 6.27)
D D)%k | (6.27

*The slowest growing mode for large x is ¥,(x,p), arbitrarily normal-
ized by setting ap = 1.
**Perhaps the logical order of (6.24b) and (6.27b) should be reversed,
Indeed there is no a priori reason to demand that ¥ be finite as
X - o, On the other hand, since every neutron entering the medium
eventually leaves at the interface, there is indeed no net current.
The discrete mode wé is the only one which can contribute to the
current so the boundary condition on ¥ as x — « is selected to make
the net current vanish.
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If we consider the solution to the transport equation where

by =0 , Equation (6.22), the angular density is now given by

[ _ a ! % p

Y(xp = Flym) + 3 + A G, (me  dV (6.28)
0
The ¥'(x,n) is related to ¥(x,p) (for the case where b, is not
necessarily zero) by
b, x )
/ 2(3"'51)

LF(XI/A) =Y (x/‘) ) 0 b) (6.29)

where (6.21) and (6.27) have been used. Now that the two problems we
wish to solve have been formulated, we will proceed to the various
identities satisfied by the X-function and obtain the orthogonality

relations which will enable us to determine a

, and A(v) from the

equations

( 22— (??-E'))/no a)

Y10 ~Hlop)= S5 +| A, W) dv =
0

\ 5(/A7Mo) P70 b).(6.30)

When comparing the work of this chapter with that concerning
linearly anisotropic scattering in Chapters II and III, one observes
that the polynomial f(u) replaces the polynomials cd(vp) and

cd(uu) in the prior work., Therefore, in analogy to (2.67) to (2.69),
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the half-space X-function of Case (which has the properties attributed

to all X-functions in Chapter II and vanishes like z ! as z -« )
satisfies
|
X(#) =f YO Fp I (6.31)
//A"'f
0
|
_ M A am
(V) NY) =% P 0<v<| (6.32)
¥ ) 2 ] m=v /

|
0

where

¥9) = % _X__;Zi vl . (6.34)

Equation (6.9) may be used to rewrite (6.32) as

[ grmpgn=o. €.
0

Also by analogy, Equation (3.65) becomes

() Pyr () = [ FOR) Do (i) = ‘12/—7[}“) ¢,,9‘)]
+ AN Im) §[p-v) S(m-v') (6.36)

Since f(u) has no zeros in [0,1] , Equation (6.36) may be multiplied

by y(p)dp/f(p) and integrated over p to get
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|
T) A@)A- () §(v-v!) (6.37)
j{: Qu(/") By 7((/,.) CJ/A ~(¥)

where (6,35) has been used, This equation is the normalization rela-
tion, with weight function 7y(u)/f(n) between the continuum modes,
This is no guarantee, however, that the continuum eigenfunction

¢V(u) will be orthogonal to the eigenfunction WI(O,M) = % with
weight function y(u)/f(u) . 1In fact, by use of the identity

f) F(M) 3b
/A_y /A—L_'I/ + 2(/v~+v) (6.38)

it can be shown that

!
/ (1) 3b, ¥ (v+7) 7
[2 o0 E2 g = () 2D e
0

n (6.39), we have again used the definitions

O,l (6.40)

=
"
Nr
§
N
i

v = (6.41)
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Equation (6.39) may be rearranged to give

|
/ 3b, v F(M) (V+7) ’b”(/“)
fo ?[%‘/‘) P 5 ) ] i = (642

Use of (6.35) and (6.37) shows that

/
3by v F)(v's7)| AP 4
[D @‘/‘)[%'//‘“ 3f(v) ]fo«) P =

TN )N ) Elv-v)) (6.143)
£(v) '

In order to completely determine the continuum mode coefficient by use

of the above relations, one also needs the equation

|
M 3ba VA (w+7) | T 40 —
‘1;(' 2 )[?;’OM) + 8.f(v? ] }zwq 47*

__7/___[[3»(0)]1([_*% _ 3bz[7f“ :l (6.1)

Following the approach of Shure and Natelson,(22) the right
hand side of (6.44) may be simplified. The X-function under consider-

ation obeys the equation

X(2)X(-2) = Alz) X(0) (6.45)
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where

2 ' ’ -
K0) = b

2>

- %

1s obtained using (6.14%). The equation f(u) = O has roots
3b,

4

I+

r’

From (6.31),

[
+0) = - jif& + __3b 40y (0)
Xizo) = JUWW*-‘)"/“— b [0 7).

Using (6.45) through (6.47), we find that

3A(F) 3b, \ 012 .
- & -(%) [[WJ -(Z[W]?_]

Setting z =0 in (6.13) gives

|
3b
5 g =

~

AMa) = | -

so that (6,48) becomes

= [T - 2 o] 10

|- b
5

(6.46)

(6.47)

(6.48)

(6.49)

(6.50)
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Thus, Equation (6.44) becomes

I
M 3b, ZAM) (v+7)| ¥(P) _
fo ( J[%W 87 () ] 7R :

L4 , (6.51)
4 YO L) (1-b,/5)

and the four equations necessary to determine the expansion coefficients
in the half-space Milne and albedo problems are (6.35), (6.42), (6.43),
and (6.51). These expansion coefficients will be found in terms of b, ,
X(-p) or y(p) , and 7<i) for i = 0,1 . The function y(n) can be

related to X(-p) by use of (6.34), (6.45), and (6.46); the result is:

— s 0<m< |, .
W= omaoerm 0 6:52)

We now apply the orthogonality relations to Equation (6.30)

to obtain a; and A(v) . Using (6.35), (6.30) reduces to

37 2)
3-b,
a, =
2o b). (6.53)

\ X‘O)

Equations (6.42), (6.43), and (6.51) reduce (6.30) to
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[ X(-¥) a)
2(3-b) FON)INW)
Al) =¢
39 b, £(po)(v+9)| £¥)
[QIJVO) + 8 £(v) ] 7(//“0) ’XVAD) b) (6.5#)
\ V@) AH@) A ()

so the angular density w’(x,u) for quadratically anisotropic scatter-
ing with ¢ =1 and by =0 1is now completely specified. Equations
(6.28), (6.29), (6.5%), and (6.54) give the solutions to the half-
space a) Milne and b) albedo problems for quadratically anisotropic
scattering with ¢ =1 .

As was the case in Chapter IV, the integrals for the emergent
angular distribution from the half-space may be done explicitly., From

(6.28) and (6.29),
‘f"(O; ) = YIO-p) = F£10,50) + 3
I
+fA{v);0_V{/A)Jz/ ,M70, (6.55)
0

where, for

Yim) = YOM ~Flop (6.56)

the expansion coefficients are
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|

/
3 = 7a] WY

_ __fv) ol 3yba ) we9) | )
Av) YV M)A (V) D(V(" )[%{/‘ )+ 84(v) 7

Using (6.57) in (6.55) gives

I
(}/(0)—/0 = 7((0)7.\) + ';"”f L//(/A')'Zf//ﬂ‘)a/(i«'
0

| J
n A @y (#) F(¥)
+
[ W/«) M) [ fo Tv) AN &

39b, M) (v+7)

(x){%(/A'H 5 1) } Jv] cy\'}/wo.

From Appendix G,

du’ (6.57)

(6.58)
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3yb, FM) v +2)
f ) 7[(2/) Py m) + 8 £(v) ]CW —
Y(v) AHv)A () 70
M0
al ! [ 3bp — vy F(m) ,
—v‘fﬂ)[}% * 7{(;«')[‘4““(”7“) /A+/«'L ) 6297
and so (6,59) simplifies to
¥(0,-m) = £(0,-m)
f(}/( X{ 3b2{7/~)—- 494)/00 6.60)
Since
( %/“, a)
2(3-b))
V') = ¢
59‘4!_/‘40) b), (6.61)
\

the results of (6,60) can finally be reduced to
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2
>0 a)
[ 2(3-b) 7 X(=m)(1-b,/5) 4
F(0,4) =¢
b, 3b2 -
\ 3/"‘0[i+ %*’ 14—/7%— “Z Vo)

)70 v) (6.62)
2 (o) X(m) (1= by /5) X(zpo)
where (6.50) was used in the derivation of (6.62a) and (6.52) was used
to obtain (6.62b).

Equations (6.53%a), (6.54a) and (6.62a) were obtained in a
different manner by Shure and Natelson.* Equation (6.62b) agrees with
the result of Chandrasekhar(e) when the conversion equations of Appen-
dix H are used.

To find the surface densities and net currents, we can inte-
grate over (6.60) or (6.62). The net currents are already known by
(6.27), however. We will find the surface densities by integration

of (6.62)., From Appendix G, the integrals needed are

¥Shure and Natelsont22) normalized to J = -1/3 instead of J = -l/(5-b1>-
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|
dm 2(1-b,/5) e 3b27“0
fOX(yﬁ) R INIEA T4
3 3b, _
fl [+ 3 e - Ry
0

)(/;ﬁ‘)éf“fyMo)

by
2(1-b/5) [ _ Xopo) = X0
e Mo (1+b,/4) o)

IR s lxw]
Mol |+ b,/4)

The surface densities are given by

| -\
f(0) = f #0994 10,7 4m
(] 0

and, using (6.23) and (6.62), are found to be

- /[ 3 ] Bbz ()

a)
(3-b) ¥ (1 + bz/4‘)
£(0)=/
X(0) | 2 o[ X(0)-3 7] .
+ °
\ X(70) TO (1 +b,/4)

(6.63)

(6.64)

(6.65)
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For x # O , the density may be found by use of Equations
(6.8), (6.28), and (6.29). The result is

plx) =[7((xyu)d/vu + a, +fA/7/)e 47/
—| 1)

(_ b,X a)
3- b,

~

0 b). (6.66)



CHAPTER VII

GENERAL ANISOTROPIC SCATTERING

The transport problem for e medium which scatters neutrons
in an arbitrary menner wes considered by Mika,(el) who proved the
completeness theorem and derived full-range orthogonaelity relatioms,
For this case where the scattering is N'th-order, Equation (1.4) is to
be solved. 1In this chepter, we shall proceed in a manner similar to
that of Chapter III and attempt to determine a bil-orthogonal form which
makes an eigenfunction of the homogeneous Boltzmann operator orthogonal
t0 an adjoint function with respect to an appropriate weight function,
No conclusive results, however, are obtained. The calculations are
presented mainly to suggest a reasonable approach and to illustrate the
manner in which difficulties arise.

Using the ansatz of (2.2) in (1.4) and defining

4 0=[ B pg P9 =

one obtains

N
P gy = < Z by By ()5, () (7.2)
A=0

Multiplying both sides of (7.2) by (24+1) Pl(“> , integrating over u ,
and using the orthogonality and recurrence relations for Legendre poly-

nomials, we find that the gk(v) are themselves polyromials with the

recurrance relation
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(2+1)5,, #)-Vh, §,() + 4§, ¥) = 0, 47|

where

hﬁ =24 +| -'cék

Again we choose the normalization

5.0)=[ =1

One then obtains

§,(v) = hov =(I-)¥
§,0)=% (hhv*-1)

2

h, [
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2

(7.3)
)

2

(o-1)°

__;;'_'g;:{,,ﬁ _ {

o
%)= =g

2 2

154
hoh, hyh,

_{ =3
+ +
by b ba by

+
hoh,

+
h, h,

IR o (1‘3) (/(-I)

}7/2-2

hehsei

~ LA ()
hpogheshen by J) ’
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vy
where the general term has been given by Kuscer.(3u> The general term

may also be written as

[/Q/Z] (=1 Q-ZC*—Z}' ,
hoh,**h o- C 42 (4 +1)
§)= 2Dy )y ﬂ{ (|, (7.7)
' - , % "kl
=0 #:o k;z/*'

where I = 1 and where [4/2] 1is defined as the greatest integer in
E/E . The function gﬁ(v) is a polynomial of order £ and is a
generalization of the Legendre polynomial Pﬂ(u) to which it degenerates

if ¢ =0 . Using (7.6), one has

[12/2]
L-2,
gx(V) = /&?2 %4 ¢ (7.8)
=t
where
b, = ! (7.9)
and where, for £2> 1,
_ hoh, oo by
/ko,e - yz =
¢ 2* (2-1)%
£, = — + ot ,
12 ;\0‘7, h, ‘12_ I',/z_z h!_l /é(l( (7 lO)

and so on.
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For the general-order anisotropic scattering, define

N
D(# p) =Z by S WIB (M) (7.12)
A=0

The eigenfunctions for -1 <v <1 are

eV

- D(
%9«) = ;p_y(./@ =P __z__”'/‘_”_) + Alw) §(v-p) (7.12)
%
where
l
AY) = ,__%_7/_ Pf D;g:)d/“ ) —ledel, (7.13)

The discrete eigenfunctions are

—%'—D(tv., )
Puj o) = Pgelp) = < il (7.1)
9 7% INM

In Equation (7.14), the eigenvalues + Vs for j =0,1,...M are the

roots of

ANzy)y=0 (7.15)
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and where M <N °<8) Equation (7.16) is proved by showing that the

integral

Sq(z)- 51/)
L S A

vanishes. Since gﬂ(z) is a polynomial of order < £ in 1z , the

integral reduces to a sum of integrals of the form

y
[ Ay et
-1

which indeed vanish. The values of A(z) as =z approaches the cut

from above/below are

A= Aw) t L5y e (7.27)

The behavior of A(z) at infinity car be found by considering

2

The value of A(w) is finite and is given by

° | ] ho b
Aw) = h, - B;b' - ho;,;bl - ;’2?;5 ~o(N TermS)  (7.19)
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. . ., (:‘;

By induction, it may be proved that(3/f
N

Alw) =[] [—Z—t’-ﬁ—] , (7.20)

(=0

For the case of general anisotropic scattering where N is

finite, the solution to the Boltzmann equation becomes, by virtue of the

completeness theorem of Mika:(gl)
. -X/%; - X/ v,
L//(X//A) :Z q+3' %-5; (/“) e +Z a_a, ¢ ,{/») e
;.::D 9‘:0 4
! - X/
t ARG e dV (7.21)

-1

The function Xg(z) is again given by a linear combination of

functions analogous to the forms in Equations (2.26) and (2.62):

w, h(==) - woh(B)| w#0 (7.22)

(2) = X.o(2)| w,
Xa_ Z) 3,0 ?) w, + (Z“’()ﬂ (E‘Z)?z ) wE 0

where Xgo(z) has the form of (2.20) and where the constants Vi
i=0,1,2, depend upon c¢ and by , 1 =0 to N . The integer

constants p; and pp, are found from the relations
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0 L. N (4) = A(2)

|
Z“-\l- +?l <
In A*(8) —AnA"(B)
0¢ - zn(i ( +p, < | (7.23)

since
_[ In NH(4) -MA'M]
2mi
Ko 8 = (2= 5 2o
L At(B) = LnAB)
2me
Xga(i) "f‘(@—z) AS 2 . (7.2%)

These valve of p, anrd Dy , for the special cases of interest; are given

by:
o B 1%1 Po
-1 1l M+l M+l
0 1l 0 M+l
-1 0 M+l 0

Two equations of interest for the N'th-order anisotropic

scattering are

e
X (6) = X, () = | 2l Pl g (7.25)
'/ ¢ =2



¢
_ v/ _ Y/ .359M)|?9“y“)¢ﬂ
3%(1/)?\(7) —a—Xa(m)—- > P[ = R ZY-B
A
The particular relations in the half-range case, where Wy, =0 and
w2 =1, are:
f?f&“)DW«
VAY) = L f il
M= v
0
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[wavpprge=1.

The half-r

ange X-function satisfies the identity

X(2)Xlg) = — )
/\(w)ﬂ (z/ 2-23)
? =D
which means that
o/
T(v) = - L 0¢ve]
(-V)/\IOD)]MI' (7/ -v?)
3 =

written as

For a = -1 and B = 1 the full-range X-function may be

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)
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so that
e/
Yiv) = NZ\ , - level (7.33)
Alw) TT (v.2-v?Y)
9=° a

Other full-range relations corresponding to v, o= 0O and wy =wp =

=

are:

|
X(z) = _S0Dppd (7.34)

M- 2
-

YINY) = "‘/ /X(/“) D{y) dn RS2

v (7.35)

-l
1

Y Dpr pydpm = 0 (7.36)

=i

!
[/«?m«) Dfmmdem =1 (7.37)
=1

In the present form, the preliminary analysis indeed appears
formidable. It can be greatly simplified, however, by assuming that there
is only one pair of roots to the dispersion relation (7.15)., The

question of the number of discrete modes has received attention by

(2) (6) (36)

1A%
Chandrasekhar, Davison, and Kuscer. Although it is tempting

to argue that there are only two discrete roots for general anisotropic

(36)

Vv
scattering, Kuscer has shown that this is not necessarily true.
However, for scattering which is not too highly anisotropic, the assumption

of only one pair of roots should be permissible and we will therefore

make this simplification. This assumption
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is reasonable since, according to Davison,* it is true in "all practical
problems hitherto considered.”

In the full-range case, one verifies<21> directly from (7,2)
that the orthogonality relations (3.1) to (3.3) for isotropic scattering
remain valid. We proceed directly to the problem of finding orthogonality
relations for the half-space problems. From our experience in Chapter IIT,
we shall assume that the weight function for the half-range case is still
7g(u) = (vg-u) 7(u) . This assumption, however, is only a guess.

Following the approach used in the case of linearly anisotropic

scattering, one can prove that

I
; ACV<LB
(I/‘V') ¢70“) ¢7J V") )(’/_ )? ) — 0 (738)
o DM Dvp) Vil Tl " aev'<p
provided Xg (w) % 0 . The rearrangement of this equation into a

generalization of the useful bi-orthogonality relation developed before
is not as straight-forward since D(v,u) is not a symmetric function
except for the two cases previously considered (N =1 or N =2 with
c =1)., Thus it is much more difficult to:remove the polynomials
D(v,p) and D(v',u) from the denominator of (7.38). Instead, we will
approach the problem in a slightly different manner and examine a

"recipe" for finding a bi-orthogonal form for half-space problems.

From (7.12) or (7.14),

(vop) @, (p) = _CE‘.’. Dp) (7.39)

*
Reference 6, p. 242
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and writing the equation again for +v' and operating on the two equations

and subtracting gives

!
(v-v')f By 1) B, ) (3= p) W) =
0

f [-% Dy p) Q0 () — % D(y,'/A)yVV«)](VD-/«)’X‘(,“)J/M ) (7.40)

In order to obtain the desired bi-orthogonal form which will make the

right hand side of (7.40) vanish, add the term

(v- v)f ey B(mn; 7//« By ) (o M) E) A

to both sides., Here, the m in B(mn;v',u) denotes the mode of v in

(7.40): m=c for 0<v<1l and m=d for v = v, . The mode of

' 1is denoted by n and n=c¢ for 0<yv' <1l and n=4 for v' = Vo
Note that B(en;v',u) can not contain the variable of integration in the
eigenfunction expansion (7.21). However, B(mn; v',u) can be an explicit

function of v' and of u , as is denoted by the notation selected. One

oW has

J I
(7/-7/')1[ ¥, (/n)[gpy 1(m) +B(mn; 7/"/\) -Czl- (Vc,-/“)’)r‘pa)cl/a =0 (7.41)
0

provided B(mn;v',u) is constructed such that
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N

{
Z"c [—zz' ?e“’)f Pelp) 4,1 (p) (2o m) Y m)d
0

t=0

) {
- C_zv' gz(”')[ R im) fﬂy(/“)(%'/*)ﬁ“//“)"/‘]
0

\
' , !
+(V—y‘) C_é‘i.f B(mn,';///u) ﬂ/{,u)(%-/.\)a’p‘)y =0 . (7.42)
0
Equation (7.11) has been used in obtaining the above equation.
To simplify (7.42), define
! v
fﬁ-(/») %9“)(:/,—/«)2‘0.‘)% = ‘T KL’N(V) , CEN (7.43)
0

where Ki,N(V> is a polynomial in v of order <N (v may be either
a continuum or discrete mode). Equations(7.42) and (7.43) combine to

give

-czz%li EL[EL(V)KC,N (v') - EC(V') Ki,N (‘V)]

0

(

e
+(V-V'>%-f Blmnj 7, pm) 0, M) (%6 m) W = 0, (7.4)
0
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After dividing by v-v' , this may be written in the form

|
f B(mn V) B (M) () Wl = F- L (27) (7.5)
0
where
N
ZEL-[EL.(V:) KL-/N (v) - §: () K(,N(V')]
Ly(v') = <=2 , (7.46)

v-v'!

The function LN(V,V°) is a symmetric polynomial of order < (N-1)
in v and V' so therefore B(mn;v',u) must be a polynomial of order

< (N-1) in v' if (7.45) is to be valid. In order to simplify the

solution of (7.45), we will try to expand B(mn;v',u) in the form

N-1
B(mn; v)'/,\) -.;Z Qc(mnivl)ﬁ_f/ﬁ) (7.57)
(=0

=1
where 2 = 0 and where

Nl '

Q (mn;v) ;ZD %«L.a.(m)v‘" | (7.48)
9.‘.

Use of (7.47) reduces (7.45) to the equation

N-!
Z Qc('""fvl)KgN(V) =

(=0
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after (7.43) is used. From (7.47) and (7.48), the final form of

B(mn;v',u) (such that (7.41) is valid) may be written as

N-1 N-1 .
c Y 0
=0 j:o

where the values of q..(mn) may be determined from the equation
1J

N

-1 N-1 .
Z KC*NMZ %,L.?.(mn) () = L, (%v') (7.51)
o) ‘=0
?

(=

provided they exist.
Notice that no where have we proved the existence of the

qij(mn) which may depend only upon m and n , ¢ , Vg and 7(l>

and b; ,1=0 to N. We will merely assume that they may be found
from the above speculative analysis. In the solution for qij(mn), the

left and right hand sides of (7.51) may be grouped in terms multiplied
by v- and (vf)J, i, j =0 to N-1 . Equation (7.51) then dissolves

j(mn). Because of the symmetry on the

right hand side, however, we may Judiciously group the equations into

itself into N2 equations for qy

N systems of N equations each. Thus the values of qij(mn) may be
found after evaluating N'th-order determinants. The need for evaluating
N*th-order determinants when considering the transport equation with
N'th-order anisotropic scattering and arbitrary c¢ 1is not unique to
this particular method of solution; it was also encountered by Kuscer

in his work on the Milne problem for anisotropic scatteringo(3o>
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Using the bi-orthogonality relation formulated above, one can
now calculate the normalization condition for the continuum eigenfunctions

where 0 < vy <1l and 0 < ' <1 . An egquation analogous To (3.65) is

i

B i) = 57| - VP Pip) =5 Dl 0]

"‘A+(/"‘)/\-f/"‘) S&M—‘V) JQA-V’) ‘ (7.52)

Using (7.43) and (7.52),

.

j %V‘)[%,W* B(CL}Vﬁ/A)%](%yﬂ)W«)J/« =
0

(% -v) ¥lv) ) A(y) §(v-v') (7.53)

provided (7.50) is valid for m=c and n =c .
As can be seen from the above analysis, a first step in the
solution for qij(mn) is to determine a general expression for K.i’N(v)o

Using (7.11), (7.12), and (7.43),

.gZZ_. KL,NW) =P (v) v,-v) Y (V) Av)

+

|
o Polr) §,0) Po () ffu) ,  04¥4l (7.54)
) i Ff S 4
0

N
2 V- ) (¢N,
£=0 2
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In order to use (7.28) to eliminate the first term on the right hand side

\
of the above equation, we utilize (7.8) and also the expansion(37’

(/2] A -2k
PLip) = (H'.) (20 28){ f (7.55)
2' ! (c-k)!(c-24k)]
k=0
to obtain
SO PN _ SymPl) A gy L-20-1
IR SRty a"!"s s
Vo V-om Fhtv )Z% z <
3 s=0
SR ke
(2-(- -24)! tremtr v (7.56)
- (}: Vv
§¢ 2 B! (C-k)) (- ZA)’ZD /
-

-1
where 2L =0 . Use of the equation

YoM _ YooV
vom vom

+ |

and (7.54) and (7.56) gives the general form for Ki’N(v),

O<<v <1 :
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6= 200 1

N [1/2] £-2,-1
+ (v ‘?)[ﬂ-(x/)y&cy,ﬁ?, ;ﬁ S[P ») T ?f[/“) i
N [L/z] ok Z,é)/ (-2k-I .

oe¢evel
L<N.

Notice that (7.57) is also valid for v = Yo sinceé the result

3
Koy = [ P-4 D, , p) Y) (7.58)
0

is also obtained by use of (7.14%) and (7.43). This i3 a consequence
of the selection of the half-range weight functior as (vo—u) vy(w) .

Specific values of Ki,N(V) may be obtained from (7.57) and

are:
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! (Vo"V)[SXB)—IX“)]
”V) X” (v, - VX(O)*‘(DHVX(Z)

K:,L(V)“—‘ K, @) - _2;[33«43) - Z‘“’]['“ hoh, VDV]

)
+ % ('VD-V)[ 53’(2) _ X{D)]

3b, h, b h, % )
Kz,z_ V)= %[3?(11) X(o)] éh 7/ X“) ~ ._'“2_3‘

t ﬁgz—[hohl'i/z—l}[q ’X”)_é’a"“-)_,_ Y (o)]

S Gy P 4 s T

(7.
%i (VO*V)[AOA,—B][V(37(2)_3((0)) + (33”3)"{“))] 7.59)
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Because of the complexity of the K; N(v) » 1t is desirable
J
to determine a recursion relation to check the polynomials obtained by
use of (7.57). Using the recurrence relation for Legendre polynomials,

multiplying by ¢V(u)(v -u)y(u) , and integrating from O to 1 gives

(n+1) &£ = MN/V) zwt[/« (1) Bop) (Foop) Yl

(v) = 0 [<n¢N-I (7.60)

Using partial fractions, the middle term may be reduced to

</

—(2n+1)| & 5 Ko n ) — [ RO DOM) Compm) Bhp) 4

so the desired recurrence relation is

(r+1)K, ., = (zn+1) VK, \,(v) +nK

hI/V )

(7.61)

n
‘(2n+|)‘[l7,,(/h)l7/7{/»)(7/,7%)3"/ﬂ)d , 1€$ng V-1
0

Equation (7.61) is satisfied by the K N(v) of (7.59).
J

Up to now, we have only shown how to construct the q. (m) .

iJ

We have not yet said anything about which orthogonality relations must

be constructed. From (7.41), we see that for 0<wv <1 and O0<v' <1,



-129-

then

I
(V—V’J;@,(/A) @, 4m) +Blee v, p) G- (4 ) VP dp = O (7.62)
0

and the normalization condition is given by (7.53). In (7,ul), if v=v

and O < vy* <1 , then

! 1
[fﬁw %.yAHBuc;v,y)% (VoM W) dp = 0 . (7.63)
0
We hope that

B(ccj‘v/j/w) = B(dc/' 7//’/\) (7.64)

so that both the continuum and discrete eigenfunctions are orthogonal to
Wﬁvu(u) + B(me; v',u)%-‘—] ,m=c =4 . If the weight function (which
we assumed was given by (VO~H>7(H) ) is correct, then Equation (7.64)
will be valid. This would make the determination of the continuum mode
expansion coefficient for half-space problems trivial after the other
necessary relations were found. Even if (7.64) is not true, however,
the present analysis could be used to find B(cec; v', W) so that the

determination of the continuum mode coefficient using (7.53) might

still be possible after the integral

! I
f 0,09 8,4 + Blec v F |o T
0
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were evaluated. It must be noted that orthogonal forms are sometimes

useful even if the discrete eigenfunction is not orthogonal to an eigen-

function of the form ¢V,(p) + B(ce; v' H)E%_ . For an example of

this, see Appendix D.

Another useful bi-orthogonality equation could be obtained

from (7.41) by setting 0 < v <1l and v'= Vo to obtain the result

l
fﬂ»ff") g (M) +Blcdj7,p) ‘Z° (Vo) Ypram = O, (7.65)
0

The construction of B(cd; Vo s u) would permit the discrete expansion
coefficient in half-space problems to be determined after the other
necessary relations were derived. In general, since Ki,N(V) for
v = v, 1is an easier expression to work with than if O0<v <1,
B(cd; vy , ) will be more easily found than B(ccy; v, u) . The
asymptotic distribution in any half-space transport problem with gen-
eral anisotropic scattering, which is obtained from the discrete mode
expansion coefficients, is therefore more accessible to evaluation than
the non-asymptotic distribution,

One advantage of the present method of construction of the
bi-orthogonality relations (which could have been used in Part B of
Chapter III) over the construction which would have to be followed

using (7.38) and proceeding in a manner analogous to that of Chapter

IIT is the following result:



-131-

Theorem, If B(de; v , u) is constructed such that

|
f %(/‘)[%//“HB(JCM/A) %—](Vo-/unfwd/“ =0, (7.63)
o)
then
~ 1|
j ﬂ/f/“)[ﬂ//‘) +Bled;y,p) ‘Z“](vo—/«)m)% =0 . (7.65)
0

The converse is also true. The proof is trivial and consists of

showing that

%f Blde; %) s UM 4 =
0
i
2| Bled; 2,0 0, m) (35 1) W) (7.66)

(o)

Use of (7.50) and (7.43) reduces (7.66) to

N-1 N-|

) K@) g, (de)v? =

(=0 :;; d
N-I N~
ZKL,IN(V)Z %. . (cd)y3 (7.67)
(=0 3':0 3

Equation (7.51) can be used in (7.67) to give the equation

LN (4,,v) = LN Vv, . (7.68)
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But from its definition in (7.46), Iy(v,v') is a symmetric function
so the theorem is proved. An example of the theorem is seen in
Equations (3.80) and (3.81).

We have now formulated a "recipe" for finding bi-orthogonalit
relations of the form of Equation (7.41). 1In the analysis, however,
we have assumed that the qij(mn) , 1, =0 to N -1, exist and can
be found. Rather than proceeding to the existence proof, let us examin
the results for the special cases N =0,1,2 , For N =0, (7.50)

becomes B(mnj v s u) =0 . For N

1

1 , the following relations

are true:
B(cc,'vll/«) = 4,0(cc) =B
B(d°37//l/") = Gpp (de) =B

B(cd; 9, p) = % (d) =B (7.69)

where B is given in Equation (3.78). Note that it is only coinci-
dental that qoo(dc) = q.,(cd) for linearly anisotropic scattering
since the theorem in no way guarantees that B(de; v' , u) = B(ed; vg,n).
For N =2 , the analysis becomes quite involved and explicit answers
have not been obtained. Thus, even if the constants qij(mn) do exist
for general N , the computation required in order to find them is
indeed formidable,

It should also be remembered that only if (7.64) is valid

did we assume the proper weight function such that the eigenfunctions

¢, (u) , 0<v<1l,and @ (u) are necessarily both orthogonal to
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¢v,(p) + B(ce; v' u)E%L . It thus appears pointless to attempt
to prove the existence of the qij(mn) as presently defined if we
want both the continuum and discrete eigenfunctions orthogonal to the
same function.

With the ideas of the previous paragraph in mind, however,

it is easy to use the present analysis to formulate the proper func-

tion ¢v,(p) + B(ce; vt p)gé— such that

| 1
f B+ Bleci v L |ty 9 =
0

73 WIAT)A (V) 5(7/-1/') (7.70)

|
f {W/“)[%J/‘H B (dc; % p) %]?fgwd/« =0 (7.71)
0

[ | o0 + Bled %) %fi’]?faww =0 . (7.72)

One simply proceeds from Equation (7.39) writing everything in terms
of the unknown weight function 7g(u) . Since 7g(u) must reduce
to (v, - #)7(r) when N =0,1 Equation (7.39) can be used to write

the general form of 7g(u) as

_ ] Wy # 0 ,
UYRRR 0 LACREAR Yo (7.75)
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The existence of all the constants Eij(CC) and Eij(dC) for 1,j =0
to N - 1 must be verified and the values must be obtained. Then the

values of w, and Wy are determined by requiring that

E(LC,‘V,'/‘A) = B(clcﬁ/://«) , (7.7%)

The existence of B(cd; Vo s ) necessary to make (7.72) valid is
guaranteed by the theorem.

To summarize, we have attempted to determine a bi-orthogonal
form which makes an eigenfunction of the homogeneous Boltzmann operator
orthogonal to an adjoint function with respect to an appropriate weight
function. We have observed that by proceeding in a manner similar to
that of Chapter III, the determination of the bi-orthogonal form (if
it exists) is quite involved. Perhaps this problem could better be
attacked from a more abstract point of view using the properties of

the adjoint Boltzmann operator.



CHAPTER VIII

SUMMARY

The method developed by Case was used to consider several
time-independent problems of neutron transport theory for a homogeneous
medium in plane geometry. This method utilizes a direct expansion of
the neutron angular density in terms of the eigenfunctions of the homo-
geneous transport equation., The solutions to these problems were
greatly facilitated by the use of half-range orthogonality relations
(for 0 < p < 1 ) between the eigenfunctions of the transport equation.
Both the half-range orthogonality equations and the previously known
full-range equations (for -1 < p <1 ) were shown to be special cases
of a more general partial-range orthogonality equation.

These orthogonality relations were derived and were used to
obtain solutions for the following problems:

1. The half-space Milne, albedo, constant isotropic source,
and Green's function problems for linearly anisotropic
scattering (i.e., for a half-space medium which scatters
neutrons in such a manner that the scattering function
is linear in the cosine of the scattering angle).

2. The half-space Milne and albedo problems for quadratic-
ally anisotropic scattering when there is no absorption.

3, The albedo problem for isotropic scattering in a slab of
finite thickness.

In each case, simplified expressions were derived for the emerging

angular density and the density and net current on the surface(s).

_]_35..
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A speculative approach for finding the half-range orthogonality rela-
tions for general-order anisotropic scattering was also discussed,

Some of the results from the slab albedo problem were used
to determine new integral expressions for the X- and Y-functions of
Chandrasekhar, These yielded convenient asymptotic values valid for
large slab thicknesses. Also included was a generalization of the slab
albedo boundary conditions to the case of a slab bounded on one side
by a vacuum and on the other side by a specularly and diffusely

reflecting face.
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APPENDIX A

DERIVATION OF EQUATIONS (2.30) AND (2,31)

Extensive use will be made of the Cauchy integral formula,<27)
which states that if f(z) is analytic on an open region S in the
complex plane and if C 1is a closed curve such that C and its

interior region lie within § , then for every point =z inside of C ,

l dz'
£(z) = — fiz)dz (A.1)
L 2 -2
C

where éD denotes the positive orientation of C ,

Derivation of Equation (2.30)

The derivation of (2.30) for the function Xg(z) is similar
to the derivation for the half-space X(z) ,(7) The function
Xg(z) - Xg(m) is analytic everywhere in the entire complex plane
cut from o to B on the real axis and vanishes at infinity. One

can therefore use (A.1) to write

X, (2) =X () = —F [x, ) - Xyl a2 (8.2)
¢ ¢ me f 2'- 2

where C = Cl + C2 ig defined as the contour shown in Figure A,1:

-1%8-
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Figure A,1. The Path C for Equation (A.2).

If we deform the contour 02 to a very large circle and observe that
the integrand vanishes faster than 1/z , we find that there is no
contribution from the integral over C2 . (This reasoning will be
tacitly used throughout the remaining appendices.) If we also allow

C; to shrink and enclose the cut, we then have

: " _
X (2) = X. (@) = — [xagp) xgte] = [Xyt - X, ()
3 ? 2.1T L /\4 -2

«

b U+ -
— Xg (M) = Xg M)
Zird M-z 2 d/M (4.)

A

since there is no special contribution from the contour in the neighbor-

hood of the endpoints (in view of the fact that Xg(p) possesses at
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worst a weak singularity as W —-a , p ). From (2,28),

Y =7 ‘)j\gx AR

and this can be rewritten, using (2,15) and (2.19), a

A N =A(m) - Xg )

2mi A (m)
_ Xt = Xg () X << (A.L)
B 2me / 2L

Equations (A,3) and (A.4) combine to yield

e
(2) - Xq (o) =f Talr) o , (2.30)
.

g

Derivation of Equation (2.31)

For z=v , a<v<B, the use of (2.13) reduces (2.30) to

| e
21k * « - Yy () dp ‘
g[[ K'g(z})“xg(oo)] "&“[Xg(w)—xg(oo)] Jm Pd e _ (as)

Multiplication by %% gives

6
fi{w{X? (v) +X, (v)] - lx?(m) Z P,/, (AAE (4.6)
%
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Use of (2.15) changes the first term on the left hand side of (A.6) to

A+ - 3 | ATw) = A(w) -

7y [X? () +X3_ (7/)] —[ e ][X,*(v) + Xg (1/)] (A.7)

and use of (2,19) gives

T [ X v) +X ~(V)] - AW X;(’/) ~Av)Xg (9] (A.8)
4 d 3 4me ’

This may be rewritten as

[+ < [ A ] XS ) = X ) (8.9)
z [Xéi (v) + Xq (7/)] —{—_Z }[ P

Equations (2.15) and (A.4) reduce (A.9) to

[X;h/) + Xa'(v)] = NV)’?%(V) (A.10)

and (A.6) and (A,10) yield the result

ANY)Y, () - i’}—xa(oo) _ <Y p Ta () g ) ALVCB (2.31)




APPENDIX B

DETERMINATION OF THE GENERAL-RANGE, HALF-RANGE,
AND FULL-RANGE WEIGHT FUNCTICNS

Determination of the General-Range Weight Function

In the constructive proof of the general-range completeness

(7)

theorem, the function ¥(p) was expanded as

e
Yir) =f AW) @, () dY (.1)
A

where the value of the expansion coefficient, A(v) , was obtained

by using the set of e,»quations(7>
C.7j _ + -
- AlY) = NT() = N'(»)

Niz) = — T g (5.2)
Zmi Xg(z) . /e

Using the Plemelj formulas (2.13) and (2.14) and (B.2) gives

Lpy) = = | —— = ——|p * 0 U
2 2ve | XMw) X W) MY
¢ ¢ o(
| l [ :
+ 5 ?f‘?(*/) Yi) + , (8.3)

X; (v) Xg (v)
Use of (2,19) shows that the function (X(z))'l obeys the following

relations along the cut o < v < B8 1in the complex plane:
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_ D%
| ] ] - _ (Z ) )ALV <B
2| XS Xy () Ta (v) At )\ ()
_ . 24
A
L L S 2 A@) JALYCB, (B.4)
2 LG xm ] RNt AT)

These equations may be verified by using (2.19) to obtain

o ) v [mza)] o
Xt X(V) Xlr) AN '

and then using (2.15) and (2.28). Substituting the results of (B.k4)

into (B.3) yields the result

Alv) ?ra (V)N VA~ (v) =

cv

B
[?f‘a(/ﬂ L//VA)[—P /AZ_V + A(/«) 8(/”1/) dpm (3.6)

and this can be rewritten as

&
A(#)/Xé ()N )N\ (v) ::jo: }%(/v) %/{/M) (Pp")‘//"‘ . (B.7)

Use of (B.1) in (B.7) gives
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Alv ) VN YIATY) =

e
[ /“) ﬁ-‘/%)[[A(V')fyly")dV'] Cl/v\ . (B.8)
A

Equation (B,8) can also be written in the abbreviated form

f%/‘ 29 {/“)'X (Pdp = ?f (W) AT WIA () §(v-v') (.9)

to parallel the form of (3.1). This is exactly the equation we are
looking for since it shows that 7g(p) is the general-range weight
function which makes ¢V(u) and @, .(u) orthogonal over the range

a<u<p.

Determination of the Half-Range Weight Function

When we are considering o =0 and B =1 , we know that
I
T y)= S P /LS , 0<ve], (2.35)
‘ 2 Ja=v
0

This may be rewritten as

{
f B, T)gpm = 0, 0<wel (5.10)
0

and (B,10) may be written as
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B, W) (0 T W) =

|
ffpt(/“)%w)(%v)ywy =0 (.11)
0

The eigenfunction ¢v(u) is already orthogonal to ¢v,(u) by (B.9).

To make @,(1) also orthogonal to @, (u) , 0 <v <1, the weight
function for the half-range case must be 7g(u) = (vg - w)y(u) .*

(This weight function is the desired one for problems were the region
under consideration is in the right half-space because the discrete
coefficient a, 1s unknown. The weight function should be (vo + w)y(u)

if the region is located in the left half-space.)

Determination of the Full-Range Weight Function

For oo =-1 and B =1, we have the equation

Y)AY) = =— "’/ P[ W/AH/“ ,—leved (2.13)
ol

which may be rewritten as

(B.12)

Py ¥ P) 4o

Ip %
VDZ;/A 501/0“)(7/0 '-F/")?ﬁ“)d/“ = ( ) (B.13)

=1

¥Of course 7,(n) = K(vy-p)y(u) where K is any constant is also a satis-
factory weight function.
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In order to make both the @, (u) and ¢ (p) orthogonal to ¢V(u) ,

-l <v <1, we must use (2,44). Multiplying (2.43) by v and using

partial fractions and (2.4L) gives

MY )T = 0 . (B.14)

Therefore we also have the equation

cw£ |
[/“ @, 0m (Vow)'b”/ Ydp =0, (B.15)

Multiplying (B.13) by v, and adding/subtracting (B.15) gives
l

, (B.16)

% (/‘ ) (VO ) ?f{/M) d/'\
Therefore the full-range weight function is (vo2 - U
This weight function may be reduced to that obtained by

Case,(7> Multiplication of (B.16) by 2(l-c)/c and use of (2.9) and

(2.47) gives the result

[7 229 = 0 20

so the function u 1is also a weight function for the full-range case--

in agreement with Equations (3.1) to (3.3).



APPENDIX C

EVALUATION OF INTEGRALS NEEDED TO FIND THE
SURFACE DISTRIBUTIONS OF CHAPTER IV

Derivation of Equation (4,17)

The integral which must be evaluated in order to simplify the

emergent angular density is

[ Dyl ,WV/"')"'B_]A’/ (c.1)
) T NAND) |,
m!>0
Use of the identity
d(—y«n)d(v/\') = J(Wa') dvv) - b (- c.)(?/+/ﬁ)(7/74') (c.2)
and (2.52) gives
I =de [ % )
| zCV“ gf‘//M O:VMJ)-320M|)/\+0M1)/\]9u9
P (<2)* divv)do J
f (V4 /«)(v,, )@ T @)NINTY)
d(-um)
[ (2)%[B w2 - bil-o) dv -
(v- vm(w A(v) A7(v)

=147~
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-1
For linearly anisotropic scattering, the function (X(z))

has the following behavior on the cut 0 < v <1 in the complex plane:

) \2
l 0 (-21) d(vv) 0<ve|
2l | xt(y) X)) | () M) Aty )
o/
1 l ! _ ( 2 )7\{7) ) 0<vV<| ' (C.4)

, + =
2 | Xtw)  X~(w) Y(v) \t) A~ (v)

The derivation of (C.LL) is analogous to that used to obtain (B.M).
Using the results of (C.L4) as a guide, consider the function

[(z—u’)(vo—z)X(z)]_l which is analytic in the complex plane except

for a simple pole at =z = Vo and a simple pole at 2z = y' imbedded

in the cut from O to 1 . The function vanishes as z -« , Letting

C3 go to infinity in the contour shown,

Figure C.1l. The Path C for Equation (C.5).
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the use of the Cauchy integral formula gives

| { dz’
= (€.5)
@) -0 X)  2me %%Z (2'- 1) (vp-2") X(2') (2'-2)

Equations (2.12) and (C.5) can be used to obtain the result

! - Pf [X"’(V) X))
(20 )(7-2) Xz) o (Vo' - V) (v-2)

I ] |
3 Z[ XH(p' * X ‘(/v;”ff]
(! =2) (% om0)
+ J ' (c.6)
(Va‘/"') (Va'Z) X/Va)

Here, the sign of the second term on the right hand side is negative
because the contour is clockwise around the point z = u' . The third
term comes from the residue at z = v, . Use of (C.4) in (C.6) shows

that, for z = -,

\ . I

(poam’) (o pIXop) (') (4, 4m) Xi5)

Pfl %)2 e T —% ) (c.7)
0 Wor') (vo=V)[vgm) B () V)N 1) (/A'V)(%_/A‘) Y ININ)
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Use of the identity

dew) _ dva) -b(1-¢)¥
Vyx 7/+/~M

(c.8)

and Equation (C.7) reduces (C.3) to

- d(pup') o o dlper’)
f/‘*/“’””vVWV*) (365" ) (ot )X ()

B f " dvv) dv
(%- V) (vim) Y1) NV) A(v)

L bl [ (L) (b, 0-7)v + df, 7)) 4y (©9)
d(v,7) ]y -%) ¥(¥) Av)A(¥) ‘

Now consider the function [(vo-z)X(z)]’l . It is analytic
in the complex plane except for a simple pole at 2z = v, &nd the cut
from 0 to 1 and varies like +1 as 2z - o , The contour for the

Cauchy integrai formula is shown in Figure C.2,

[V
g
|
|

— e o s e

Figure C,2., The Path C Used to Obtain Equation (C,10),
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Again, the curve 05 is allowed to become large. The result obtained

when z = -p is

- | + | + |
(V+p) X(m) (Vo 4m) X(+))
[ ' (2)* divy) d¥ (c.10)
o (o=?) (VIM Y WA )

The last function to be considered is

b]“’c)ﬁé‘;)Z‘f d(,7)
d(zz) X(2)

It is analytic in the complex plane except for the simple poles at

+ ‘J—l/fblG:c)]E + o * and the cut from O to 1 and it behaves like

-(vo - ;) as z - o , The Cauchy formula then yields the following
result if z = Vo f

b (1-) (Yo -7) Yo+ d¥,7)
dl,,) X(,)

f*(%qﬁhuww%43V+dmﬁﬂdV
L (v) Y A A)

(v,-7) =

| [[b,(l—c)(V;i)G’ + d(%g)] [EI(I—C)(%';M—J(VJ)]] (c.11)

+2o‘b,(l—c) (-7, X(q) (Tt )X 0)

*No pole is imbedded in the cut since bi(l-c) is always > -1, If by
were less than -1, the scattering function would be negative for some
angles and this is not physically possible.
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The first term on the left hand side of (C.11) reduces to
-[X(vo)]—1 . To simplify the right hand side, one needs to know the
values of X(i o) . Following the approach of Shure and Natelson,(22)

one may write (2.67) as

l
X(x¢q) = b, (l-c)[’(m) [nt€)dm = b, (- (7). (C.12)
0

Using (2.37) and (C.12), it is evident that

o\ AL (2 2 2, _2
X(OX(-¢) = Ty bill-o) [7°] (77~ 6¢%)  (c.w)

and using the definition of + o gives the identity

(C.14)

From (2,56) it may be shown that A(c) = l-c so we have the identity

[»wo)] d(VZ/)c/(VV) — '_____,_‘ - (C.15)

where (2,59) has been used. After considerable algebraic manipulation,
one finds that the contribution in (C.11) from the residues at + o

and - o cancel, Thus, Equation (C.11) reduces to

[ (LY, (1-0)0- ) +d )] e
(v -9,) ¥(v) NHYIA(2) Xy
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Putting (C,10) and (C.16) into (C.9) eventually leads to the

result

T = l [d(y«/«\') _ B]
L () Xom) [ Mt

d=vpm) d(p' )
(VOVA) (Vo“/") d(v,v) X(+,)

+ (c.17)

Derivation of Equation (4.24)

In order to derive the equations in (4.24), we need the
following generalizations of Equations (A.L4) and (A.10) to the case

of linearly anisotropic scattering:

| ‘Cl/‘d(vv)
i + - _ 2
2my [X ) =X (V)] - (V}—VZ)(I-C)(I'%)X/"’)
= Y()dvv), 0<vel
7 [X’“(VHX’(V)] =5 ¥ A), 0evel (0.18)

We consider the function

(4,2 2%) X(2)
d(zz) (z - €)
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where € is a small negative number. The function vanishes as
Zz »o and is analytic in the entire complex plane except for simple
poles at z =¢ and z =+ 0 . It also has a cut from O to 1

because of the X-function. Using the Cauchy integral formula for

the region of Figure C.3 shows that

-0 1fbl<0

+0 ifbl<0

Figure C.3. The Path C Used to Obtain Equation (C.19).

wE-AXE) _ [ i) mT (X0 -x ) 4y
d(zz)(z - €) , dlvv)(v-¢)(v-2)

_ (%-€°) X(a) . (V2 - ¢*)X(-0)
b(1-)20 (T- €XT-2) b, (I-c)2q (T+€)(0+2)

_ (1/92- 62) X(&) (c.19)

d(ee)(e-2)
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Teking the limit as € -» O and using (C.12) and (C.18) reduces (C.19)

to

| dpm _2(t-9(1- -?) (1o%- 2%) X(z)
0 X(y,\)(/u-z) C z2d(zz2)

2 (0) .3
_ Y X0 YO h)d(-2v) (c.20)
2 d(zz) ‘

Letting 2z = -u' and 1z = :.Vo gives the first two equations of (4,24),
To evaluate the third integral in (4,24), consider the func-

tion

(Voz- 21) X/l)
d(z#)

and follow through a similar analysis to obtain

<b

prdm _ 2(1-c)(1-= ) 2 2
oM = - (vo?- 2%) X(2)

-7 d(%v,)(i-rz)] ) (c.21)

Setting z = 0 in (C.21) gives the last equation of (4.24),



APPENDIX D

MCDIFIED ORTHOGONALITY RELATIONS FOR ISOTRCPIC SCATTERING

In the derivation of relations (3.16) tc (3.25), the weight
function (vg-u)r(u) was used in order to make ¢ _(u) and ¢v(u) 5
O<v<il, orthogonalc- If the weight function (vo+u)7(p) were
used, then ¢_(u) and @, (i) would have been orthogonal over the
half-range of u ., With this in mind, the following generalities of

(3.16) through (3.21) may be obtained for 0 <v <1 and O0<v' <1:
}

[Bpapwsreps = b ol sey) e
]

[ PG 13 Y e = O (0.2)
o
JJC BRI e g = <37 X2 %) 1) 0.5)

|

9t n / }Q N
j'%;&/m\ ¥4 () /n‘?)’“‘ i/ A/““ "M/ fz ) X(t) (D4 )
St
2 |

D (W, )Y dp = g::;-_}:kf o
J/O Q090 (V3 Y pidn = 5=~ X(2) (0.5)
)< 7“%@?;’)’ - , Oy tviX-v) o (D.6)

Equations (D.2), (D.4), and (D.5) simplify to

]
[ G e g = @.7)
0

[{pi Tpldp = % e X(13,) (0.8)
D
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I
GNP = = N-v) (0.9)
)

Adding (D.2) and (D.3) gives

[ 0.0 8911919 = S xtzm00 .20
0

Adding both equations of (D.1) results in the answer

f%(/‘) fﬂvlf/")w/“)d/“ = Y@) AT (@) ATy) S(V-'z/’) (D.11)

and adding both equations of (D.6) yields

’ I
‘;O_V!/“) %r{/‘)?‘k)d/r—‘ CZV X(—V)QV(V‘) , (D.12)
0

From (D.10) it is seen that neither ¢ (n) nor @_(u) is
orthogonal to ¢V(H) , 0 <v <1, with respect to the weight function
y(w) . This is of no concern, however, in problems which do not have
solutions in closed form such as the slab problem. In fact, Equations
(5.11) and (5.16) are most easily obtained using the above relations.
Multiplying (5.7) by 7(u)dp and integrating over the half-range of
L gives (5.11) after Equations (D.7) through (D.9) are used. Use of
(D,10) through (D.12) gives (5.16) directly--without the partial frac-
tion decomposition which is needed if (3.16), (3.17), (3.18), and (3.21)

are used on Equation (5.7).



APPENDIX E

EVALUATION OF INTEGRALS NEEDED TO FIND THE
SURFACE DISTRIBUTIONS OF CHAPTER V

Derivation of Equation (5,33)

The reflected and transmitted angular densities at the sur-

faces may be written, for u >0 , as

{
V(0,4 = ay Qp) +a_@o(m +[A(~V) 9., () dv/
0

n
+f [B+(7/)Z+BJV)} 9, dv (E.1)
° ~d/v% i, ! ~dfv
‘f’(cl/«) = a, %V)e + a_ @_Q«)e +[A(V){VV//A)6 dv
0
i
+f |:B+(7/)Z— BJV)] g dv (E.2)
O

where (5,3) and (5.8) have been used, Use of (5.16) in the above

equations gives

{ cv
— Ly(r) 3 Pu(2)dv
0 -p) = -
7 }/A) a+[§ﬂ.(/") XHOJ; Y(v) NT)A(v) j,

/ cv
Dylp) 3§ (v)d
+a_[%//’*)"X{'VU£ V) A\Hy) A () }

! | ¢’
D (#)5 Py (v )y
g ) — X dv
+j;A(V)[¢V/“) X( VJ; 7‘(7") A{-(VI)/\'{V./) ]
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{
ﬂl;/b“) ¢Q/LW”» sz
+ o (E.3)

YI/“ )fo Y(V) A\Tv) A~ (v) ’

and

-4/,

I (34
3 v Q_VV‘)Zw_(ZI)JV
Y(dp) =ase [QJ/“) A V"i F) N A7) J

| cv
Pyir) 7= Patv)dy
V) ANH) A(v)

I df ’p ,/(/A) .Cll¢ (v)dy'
x| 22 Py |4y
',‘/()’A(V)e [79") X( V)O /X('V‘) /\+(_Vl) /\-/7//) :l (E.h)

-1
Consider first the function [(z-vo)X(z)] which is analytic
everywhere in the complex plane except for a simple pole at v, and
the cut from O to 1 . It behaves like -1 as z - » , Considering

the contour in Figure E.1 and using the Cauchy integral formula yields

LI dz (k.5)
(2-v,) X(2) i (2'-%) X(z')(2'-2)

C‘+Cz_



Figure E,1., The Path C for Equation (E.5).

after letting C; go to infinity. Use of (B.4) with z = -u ,

O<u<1l, gives

| (c¥\2
| | (%) dv \
tlm - ——— 4 (5.6
(Voim) Xp) VA X)) NG F) AN T)
A similar equation may be cbtained by letting Vg = Vg - Multiplying

- C
the equations by + _gg,x(i vo) gives the result

| <y
D yIr) 7 P+ (v)dv
_ - X(t, =
;91' 2 ( )0 TN @A ()

W:FV;()(;(;?)#O) T C.Zo X(i?/o) (E.7)
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-1
The second function to be considered is [(v+z)X(z)] .
It is analytic in the complex plane except for a simple pole at -v
and the cut from O to 1 and it behaves like -1 as z - ,

Proceeding in the same manner as above, one obtains

| | ()

_— b = —.— — - ’(E.B)
(V) X(om) omX) ) ) ) i) AV ) K1)
Multiplying by %; X(-v) and then adding the term %%fﬁ% Ap)d(p-v)
to each side allows us to write (E.8) as
9 L Py ) dy!
@{”) _ X(‘V) - - z - =
0 Yiv') AHY') A-(Y)
Pop ) XCV) | Yy oy (£.9)
X(-m) Z
The last function to be considered is [(z—po)X(z)]_l . It

is analytic everywhere except for a pole at by which is imbedded in

the cut from O to 1 . It also behaves like <1 as z —» o ,

Figure E,2, The Path C Used to Obtain Equation (E.10).
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The Cauchy integral formuls and Equation (2.12) give

R e ———— ——

1 I
[ . / Pf'[xwz/) - X'(z/)]d’/
0

(rapAMp) 2T (o) (V)
l [
2 /
- -+ (E.10)
/%p“[XWWQ X'Vﬁ]
after letting the outer contour go to infinity and setting z = -p .

Use of (B.4) and multiplication by -y(n,) reduces (E.10) to the form

¥ "Dyl Gyipo dv _ _ ¥po) - Y, (E.11)
V) TV NI A) (pipo) X(om) Ll

Equations (E.7), (E.9), and (E.11) reduce (E.3) to

“Y(po)
Mo

|
¥ f A=) Q) X-v) c’?/} = M) —a, ﬁz’ﬁ Xlv,)

o

+oay Q()X,) +a_ Py (m) X))

]
PO = X(w)[

+a 5 X)) +f (2) L Xtv) dv (E.12)
0

and (E,7) and (E,9) in (E.4) gives
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-d /v, d/%
[cu_e. G X%) +a_e @) Xiv)

q/(d)/"):'sa;)

! -dfv -d/v,
+f Alv) e V,,{/‘)X(—V)JV] +a,e i;—’ﬂ X(-V,)
0

d/vg y I -d/
-q e CZ° X{Vp) -I-fA(y)e C'TV. X{-V)Jﬂ ‘ (E.13)

o

Now examine Equations (5.4) and (5.6). Multiplication of

both equations by y(u)dp and integration over p from O to 1 gives

Tmo) +ay 2o X(%,) - a <22 X(-)

|
—fA(-V)—%}- X(-v)dv =0
o]

a/
Yo Niv) + a_e Lo X(y,)

2
: -dfv
—[A(V)e. _f-i?i X(-v)dv = 0 (E.1k4)
0

-d/VO c

where (D.7), (D.8), and (D.9) have been used. The reflected and trans-

mitted angular densities, for u > O , are therefore given by

$07) = 5| L+ 0y 2 00+ 0 g

|
+[A(-y) {Q,,f/")X(‘V)cIV
0 .



~164-

[ ~d/v, C‘/”/o
(}’(d)/A) = Xi) [a#e %/A X(¥%) +a_e Q/A X(+,)

Y,
+fA(v)e %//A)X(-V)JV] , (5.35)
o

The same equations can be derived in another manner(BE) by

use of results obtained in the constructive derivation of (5,11) and

(5.16).

Derivation of Equation (5.36)

Using (5.1), (5.2), and (5.33%), the surface densities and

net currents are

!
p10)= l”"f/@[ o ba, L X(vof dp

Xl )4 o) o XEM) %)
I
ca e x| A( “VIX(v) M—A}
I O /A-vo\ ) X(m)

‘&ﬁ£ ) d&é !
P = ~ae 2o Xtp)| L2 rae ey g
XA X

! -d/Y (W4
A(z/ X(-v) —4“ (E,15)
X(m)
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and

i |
UO) = g —Yimg)| 2P _ <t M
#O= o= Yo 7 XWD)OX(-/«)QAWD)

C'l/o _ VA
+a == X, - b
a3 X VJX(/«) o) Af v)X(v[[ :’

-df, l df, !
- - c -2 X(Va‘ AA"
&) Xompm) XA %)

b dpy
[A(v)e X(—V)[[ ]d-,/ , (E.16)

Using partial fractions, one can reduce the integrals in (E,l6) to

e o
xm;n ) [ Xxm °f xzw)(/«y«o)

o X /A)w £) f X ¥ xmwv

/" %V")d/"‘ - _
o XM X(/«) X(/A

(E.17)
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In order to evaluate the above integrals, consider the
function (vog-zz)X(z)(z—e)-l where € is a small negative number,
The function behaves like +1 as z — « and is analytic in the cut
plane except for a simple pole at 2z = € . Applying the Cauchy inte-
gral formula to the analytic region enclosed by the contour shown in

Figure E.3 gives

/ -
(=) Xe) | _ o) T D X e (g
=) rapea) o

Figure E,3, The Path C Used to Obtain Equation (E.18),

From (2.38) and (A.k4),

Zn [XW—XW] -
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Using this and taking the limit as € -0 in (E.18) yields

i 2
f dpm (:Cc){ -Zzz)xm o VOZX(D)] (5.2
, XA r-2)
As z = —ug, + Vo , and +u , one obtains

f‘ dpm _ Z(I-C)[_' N VOZX(O)]_ !
0 X('/")(/"“*‘/"o) ¢ Mo 'X,(/‘O)

o Xfy“)éﬁ‘i;ve) ¢

fl Pyir) dm — 2(1-¢) [C‘t) . c#OZX/D)J (E.21)

X(=p) ¢ ¢ 2

Equations (E.15), (E.16), (E.17), and (E.21) combine to give

_ 1 2% l
0) = ~Vp - - JU
f() X(O)[ Cf"o +q+X/VO)+a—X(V)+’£A(V)X/ V) ]

- i(i_'ﬁ’[mo) + 0,22 X04) —a_ <22 X1, [ Al=v)Xi-v) & JV}
0
| ~dfy, dfv, I _dfy
pld) = xo)[q e X)) tae %) +[A(-z/)e X/—V)Jz/J
0

~d/ dive N
_ Z(I-d[_ 2,e c o X[-) +a_e CZ%X(Va) ‘fA(V)e </ X(-V)ch/J
. 0

C
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. 2 !
3(0)=~(;-c)[§/“—°1“1‘-")+ A CALTRIN (2% +[ A(—zx)f}({-v)w]
0

!
2 dp
Bl Ay [

|
™ [m )+ 4y TR, - a_ 2 Ky - [ A0 <L xr-va
Q

. [ -df, dfy, b4
3(d)=(l-c\)lq+e VVDZX(‘V,,)M_e %ZXIVO)%(V)e ?/ZX(W)JVJ
0

a
) S
cX) J, Xtm)

-4y dy S
(x)[-q+e ﬁngX(~Vo\+a_e o X1 —[ Av)e <L X(—VMVJ (E.22)
2 2
0

and these results reduce to (5.3%6) when the equations in (E.14)

are used,



APPENDIX F

GENERALIZATION OF SLAB BOUNDARY CONDITIONS

Using the solution of the slab albedo problem obtained in
Chapter V, it is possible to write the solutions to related slab pro-
blems, For example, suppose we wish the solution to the albedo problem
for the slab which specularly reflects neutrons (or photons) at the
surface located at x =d . The boundary conditions on the angular

density, ¥.(x,u) , are:

l‘K,(O,/"‘) = 5{//“//\0) )/"\70
Vi = Y, (), tmsl (F.1)

Using an approach which is essentially the same as the method of
images in electrostatic theory, the result may be written down immedi-

ately. The angular density is given by

Y00 = (o) + ), O¢xed (5.2)

after the slab thickness in the expansion coefficients is doubled to
account for the image slab. Here, wa(x,u) is the solution of Chapter
V and wa'(x,u) = Wa(d-X,—u)

As another example, suppose that one desires to solve the
slab albedo problem under the condition that the face at x =d reflects

neutrons (photons) in a diffuse manner. The boundary conditions on

the angular density, ¥;(x,n) , are:
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lyd (O/‘) = 5{/’*7"0) W ARe 0

Lf/d (d,jﬁ) = S[fy“o)wal(d)y.«)d/« o )/'A>0 .

(F.3)

The function f(uo) is a function which prescribes the angular dis-

tribution of the diffusely reflected neutrons. The constant S

is to

be determined by the requirement that the number of neutrons leaving

the slab at x =d be equal to the number entering, i.e.,

|

0
*f/“ fo@plp =| 1 ¥, P9

0

or

5=ff%<a¢>44/«.

L
In (F.L4), we have chosen the normalization jO hoflugldug = 1 .

O

diffuse angular density is given by

!
P = G lp) + S f ¥,
0

and (F,4) and (F.5) combine to determine the value of S as

_ Lrteps
i l ! 1
[‘:j;,ﬂkgﬁtl;fﬂyﬂo)(ﬁL &tym)gyac>

(F.4)

The

(F.5)

(F.6)
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Equation (F.6) may also be written as

S= Lol
= [ po R Amlgne

where T and R are given by (5.43), (5.47), (5.60), and (5.61).

(F.7)

‘As a guide to the study of photon transport in the atmosphere,
the solutions to the slabs with specularly and diffusely reflecting
faces may be used. Assume that one desires to know the one-speed
steady-state photon distribution (ignoring polarization effects) in
a homogeneous atmosphere illuminated by an incident distribution from
the sun. Scattering in the atmosphere is assumed to be isotropic.
Photons striking the earth's surface, however, are permitted to be
either specularly or diffusely reflected back into the atmosphere or
absorbed. The angular density in the atmosphere, ¥(x,p) , is then

given by

‘P(x/\): M"”r(xw)+N‘~I/d(xw) (F.8)

where M and N are the coefficients of specular and diffuse reflec-
tion of the earth's surface, respectively. Clearly, M+ N 1.
If the diffuse reflection obeys Lambert's law, i.e., if the diffuse
reflection is isotropic, then f(po) = 2 and the problem is solved
once M and N are known.

A problem arises when one attempts to apply the above theory

to a model of the earth's atmosphere, however. When the scattering in
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the atmosphere is most nearly isotropic, the atmosphere is clear and
the mean free path thickness (dependent upon the photon energy) is
of the order of unity. For a slab thickness this small, a high order
of approximation is required for the solution of the Fredholm integral
equations containing the continuum expansion coefficients. This be-
comes quite unwieldly since even the first-order approximation involves
the numerical evaluation of the complicated integrals of (5,50). In
attempting to apply the zeroth- or first-order approximation to the
model of the earth's atmosphere for thicker slabs, one must be con-
cerned with the transfer of monoenergetic radiation through a cloudy
or foggy homogeneous atmosphere, This has the advantage that inside
the atmosphere, polarization effects may be ignored which make the
model more realistic, The primary failure of the above theory in this
case, however, is that a foggy medium scatters radiation in a highly
anisotropic manner.

Another important drawback to the present formulation of
the problem of photon scattering in an earth's atmosphere is that
azimuthal symmetry was assumed. If the angle of the sun's mono-
directional beam of incident radiation is such that pgy a1 , the
above model is satisfactory., For other values of u, , however, the
transport equation without azimuthal symmetry would have to be con-
sidered since the boundary condition for the sun's radiation is of

the form

P (0, ) 8) = 6fmpo) 8(-4,) | 70, (x.9)
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Ecuation {1.3) would then appear as

-

/A +lJLP(x/,d>)—4_ Lb[/fdﬁb ALIUALY,

&

(k-2)! o4, 2, Sy !
B elis s

N

(F.10)

which can be written more concisely as

3 &~
Vabwil R CCY O Zbki 2-§,) (k:ee?)/ (x)
4-0 L=0

ﬂ Z3 ,
X) @%J sz d/Af | d(G-¢ ) Voo ) dd | FID
- 5]

(2)

With the method of invariant imbedding, Chandrasekhar was
able to solve (F,11) with the boundary condition (F.9). After separat-
ing out the uncollided beam from the angular density, he transformed
(F.11) into an inhomogeneous equation for the angular density of the
radiation field which had suffered at least one scattering interaction.

He then expanded the angular density of the transport equation in a

finite Fourier cosine series in terms of the angle (¢ - ¢ )
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Because he had separated out the uncollided beam of particles, the solu-
tion eventually reduced to the solution of N azimuthally-independent
transport equations.

An identical approach could be followed using Case's method.
The solution to each azimuthally-independent, non-homogeneous transport

equation is found by solving the Green's function problem.



APPENDIX G

EVALUATION OF INTEGRALS NEEDED TO FIND THE
SURFACE DISTRIBUTIONS OF CHAPTER VI

Derivation of Equation (6.59)

The integral which must be evaluated is

l
— 40—7/(/“) JC(V) ’
‘ [0 V() A ) [%(’“ )

3v b, Fir'Nvsy)
B ) ]ch/ (G.1)
/M70
M0
Use of (6.9) gives
T = M FH ) Fpt) M)
2T Zp) AR A) )
F ) [ 2% Flw)dv
+ __L_Q_ Pf
+ o V)N (wvap) (v )
, 35#@);@»’){’ Vi ly+9) dv 62
l6 o TENFECIN ) (vip) |

The behavior of (X(z))_l on the cut 0<v <1l is given
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i - A%
. R N () 0 o
el | X() X0 | Y A A
- 1 2z
L [P ) A) , 0vel | (.3)
2 LX) X)) | PN A )

Now consider the function [(z—u’)X(z)]ml . It is analytic in the
complex plane except for a pole at p' imbedded in the cut from O
to 1 . The function behaves like -1 as z —»» ., The contour to
be used when applying the Cauchy integral formula is that of Figure
G.1l. Upon letting the contour C, Dbecome very large,

‘ l - | dz ) (G.4)

— —_ -
(2 op') X(z) 2 (2/-p') X(2')(2'-)
2

ot

Figure G.1. The Path C Used to Obtain Equation (G.L4).
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Using Equations (2.12), (G.3), and (G.4) gives, for z = -p ,

| _ ‘ ('::—)2. {(V)Chj
() X(m) o (Vo) ap) W) M) A ()

£ )
’X(/vl) /\+V') /\—{/“4)’0“_1_/“4)

(G.5)

We now consider the function (z+;)/[f(z)X(z)] . It behaves

like h/(5b2) as z - » and is analytic in the complex plane except
Sba

for simple poles at z = + \/(l + Ef) = =+0 and the cut from 0

to 1 . Applying the Cauchy integral formula gives the equation

[ [ _
z+7 _ _ 4% _ 1 | [X*(v) } X‘(z/)](wy)dy
f(z)X(z) 3b, 2mL Fv) (v-2)
4 (c+7)

3b, (20)(r=-2) X ()

4 (-c+7)

(G.6)
3p, (2¢) (c+2) X(-¢)

After setting z = -u and using (6.47), (6.50), and (G.3), one finds
that

2

[' (L) ) (v+7) dv _rT s
VT NN (V) vap)  FEM XM 36,

- & , (G.7)

3b, fom) ¥ 0




~178=-

Equations (G.5) and (G.7) reduce (G.2) to

X(-p) 4 Mim!
since f(-p) = £(u) .
Derivation of Equation (6.63)
The behavior of the X-function on the cut is given by
- [x*(v) —x‘(v)]:’r(v)f/v): 3 #(v) 0¢ve |, (6.8)

2L

= b2 x) !
2(1- 22)X)

Equation (G.8) and the Cauchy integral formula can be used to consider
the function X(z)/f(z) . This function is analytic everywhere except
at the poles z =+ ¢ and the cut from O to 1 . It vanishes for

large z . Using the Cauchy formula, one therefore obtains

Xa) [ _3pdn
Fl2) ], 2 (1- 52 (m-2) Xim)

F— [;((0: ¥ cr)i(:ﬂ] o
e - ‘
26 (3F)
Letting z = O and using (6.47) reduces (G.9) to
be |
| 2= = )
dro L F [.,\/-3—‘ . sz?f‘“] (6.65)
Xl-p) [, 2 | =by /4 4 ‘
o "M 3Ls+ Y
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To evaluate the second integral of (6.63), we consider the

function

e bt k) B

f(z)(z-¢€)

Q(z) =
and use the Cauchy formula to find that

if’ 257 ()] g

”)

ae) = Z(Ib/s)[ xz/w

[I+ Tt ifl/mr 3 v/«o+¢)] X(¢)

Zd‘( 34":‘1) (0‘—2)(¢—e)

(14 e B 7p o]y
26 ( 2k 3"1) (T +2)(T+€)

+ Q(€)

Letting € go to zero and setting z = -Hq gives

[ (1482 + 2b2 = 222 57 30)] g
0

X() 2 30)
b
2(1-by/5) [_ X(-po) . = X(0)
3 Mo (146, /4) 710

) [a+‘;§ 352 7 o) X(0)
(1 +-bZ/QF2/Mo

after Equations (6.47) and (6.50) are used.

(G.10)

(6.63)



APPENDIX H
RELATIONSHIP BETWEEN CHANDRASEKHAR AND CASE QUANTITIES
AND NEW INTEGRAL EXPRESSIONS FOR CHANDRASEKHAR'S
X~ AND Y-FUNCTIONS
Some of the emergent angular distributions obtained in
Chapters IV and VI were also obtained by‘Chandrasekhar(z) using the
method of invariant imbedding. This appendix contains the relations
needed to check the agreement with these results. These half-space
relations correlate the Chandrasekhar H-function with the Case X-
function and also the moments of the H-function with the moments of the
Case y-function, Also included in this appendix is a derivation of
new integral expressions for Chandrasekhar's X- and Y-functions for

slab problems using the results of the slab albedo problem of Chapter V.

Correlation Between Chandrasekhar and Case Formulations

One of the primary notational differences between results
obtained by using Case's method and those of Chandrasekhar arises

because of the differences in the coordinate systems used:

-1 -1
CoS “h,Mq COS T, My

0 T 0 a

Chandrasekhar : Case

Figure H.1l. Coordinate Systems Used in the Chandrasekhar
and Case Formulations,

~180~
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Another important difference is the fact that Chandrasekhar's
work evaluates only the emergent angular distributions I(O,u) and
I(d,-p) , of particles which have been scattered at least once whereas
the approach of Case evaluates the entire angular distribution, W(x,u) s
regardless of the past history of any particle. This means that
Chandrasekhar's law of diffuse reflection and transmission and the
slab albedo problem of our Chapter V, to which it corresponds, are

related by the equations

2I(0m  _ 10,0

F ) P20, poz0 (L)

] = dyp
ELOA) = ) - popde ) pr0,pz0
provided the scattering is isotropic.* If the scattering is aniso-

tropic, (H.1) and (H.2) relate the Case angular density to the azimuthally-
symmetric part of the Chandrasekhar intensity. This distinction arises
since the boundary conditionsof Chapters IV, V, and VI assumed azimuthal
symmetry whereas Chandrasekhar solved the problem without making this
assumption. In the limit as the slab thickness becomes infinite, (H,1)

can be used to correlate the emergent angular density for the half-space
albedo problem with the azimuthally symmetric part of Chandrasekhar's

solution to the problem of diffuse reflection.

*The quantity 2/F is a normalization factor.
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When attempting to correlate the results from Chandrasekhar's
constant net flux problem, which is the half-space Milne problem for
¢ =1 ,* Equation (H.1) again is valid, In fact, (H.1l) is valid for a
medium which scatters particles in an anisotropic manner since the
constant net flux problem has azimuthal symmetry.

The solutions to Chandrasekhar's half-space problems are
found in terms of the H-function, which is related to the Case X~

function by(ll)

| :
—_— = (Vo "'/")m X(y“) (H.3)
H(m)
in the case of isotropic scattering. By the use of (2.37) with z =0 ,

this may be written as

1 = « Aep) L)
ap = ) g -

This latter form is valid for arbitrary scattering law and conveniently

illustrates the behavior as c —» 1 (vo - o) ¢

(4.5)

|
j
[
I
o —

*Note that the Milne problem answers of Chapter IV can not be used if
¢ = 1 because the normalization was selected such that

po)=[ : opgm = |

and this normslization is not correct for the discrete eigenfunction
carrying the current, Wé(x,u). In Chapter VI, the normalization for
the Milne problem is given by Equation (6,27a3, The normalization

40)=[ A ¥Opp =~ |

must be selected for the solution by Case‘’s method in order for it
to agree exactly with the results of Chandrasekhar.
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From (2.37) and (3.34), we note that X(0) = 51/2 for isotropic
scattering and ¢ =1 . For the linearly anisotropic scattering

problems of Chapter IV, we have the result

I I

(H.6)
VA V(=) (1= cb,/3)

X(0) =

where we have used (2.37) and (2.59). For the quadratically aniso-
tropic scattering problems of Chapter VI where c¢ = 1 , Equation (6.46)

shows that

1z

X(0) = [—3-] . (5.7)

|- b,/5

Thus, the relation between the H-function and the X-functions of

Chapters IV and VI are

. W2
o -00- 5] Xm )
|
= I/2
Him) [(h%)/}] X(-p) v, (H.8)

The solutions of Chandrasekhar are in terms of the H-functions

and the moments of the H-function, defined by

I .
O(L:-_f/AL HVA)%}A L:_—_O)l FARRE ' (H.9)
o
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Thus in order to complete the correspondence between the notations,
we must relate o3 to the 7(i) of Case's formalism. For the

y-function of Chapter IV, Equations (2.38), (2.59), and (H.8) give

- c ey
[ A g gn= = [# g o
0 z (!-C)(ﬂ—-—B—' 0

SO

VST P e Al IOV AT

(-1)

The function 7y is obtained by setting z =0 in (2.67). 1In
particular, the specific relation needed to correlate the emergent

angular distributions is

—

I R T (H.12)

.

2- Wo $<z) d(Vo'l:)
In Chapter VI, Equations (6.52), (H.8), and (H.9) can be
combined to give the relation

A o= 4(1- by/5) y‘i’“g) (=12 . (H.13)

L 3 ' Vi

The only other relation needed is given by

2
3b, o, /6

+
4 (4 +b;) 3 (415;)

= | (H.14)
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and this is proved using (6.50). It should again be noted that the
source strength in the solution to the Milne problem is normalized by
Chandrasekhar to a net current of -1 instead of -l/(B-bl) as was

done in (6.27a).

New Integral Expressions for Chandrasekhar's X- and Y-Functions

The X- and Y-functions are defined by the coupled equations

R Xn') = Xp) D) di’
= [+ A% ,
i4 2 ) e

Y(r) = e'%'m + 'ﬂf’ RANE jxw Wl )
0 SN

for isotropic scattering., From Section 62,1 of Chandrasekhar's book,<2)

it is seen that his functions are related to the reflected and trans-
mitted angular intensities at the surfaces of a slab illuminated by
incident radiation from all directions Mo > 0 with magnitude propor-
tional to l/uO . Using (H.1) and (H.2), the relations for ZX(u)

and Y(u) are

= 1o B2

-d _ .
Y ) = . [‘Ww ; U o) o _—
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where ¥(0,-u) and ¥(d,u) are given by (5.33). Adding and sub-

tracting the above equations and using (5.8) and (5.33) gives

V(o)
MoTM

I
sYp)= |+ L] 2
Zplxxpp) =1+ X)), /“o[

-df
Fb X T e g pxen)
| ~d/Y
'.t[ Bt(V)e QJ%)X(—V)JV] d/Ao ) (H.17)
(0]
From (2.34),
!

X(0) = Xloldne (3.18)

Mo ’

0

Using partial fractions, (H.18), and (2.43), one can show that

/“ ! 3(‘(/“0) d/"o - X(O) n /

XM, Po(potr) X wVi—c X(m)

HTV‘O)Q«{/“D) d/‘o - G X(O): < (H.19)
) Mo z 2V I-c X{"/“) '

Using the above equations and (5.12), Equation (H.17) becomes

_X(0) X(v) [ 220/% _ -d/v,
Xim) ”xml pTe B g

xmf Bime X 0 0)dv (.20

Xpe) £ Y =
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where, using (5.13) and (5.16),

|
_ [ s dmo
%+ fo o

[ -dfY
2 Xio) ¥ f YQyWe X(-7)dy
- < 0 /‘ y (H.21)
7/0 X/‘Vo)[e. 220/ +e o]

and

CQ+ Ly) ‘j(-_Jiiizi_zfl.

_ X(¥)@tH (o) [xw)

NI A) e ek

-d/y, I -d/v'
+{Wz/)e ]ﬁ’t .T_je Qy/(v)X/‘V') (\)i(V')alz//] . (H.22)
0

The following identity may be proved:

e2zo/7/p:F ed/?/a _ .4 <?_zo+d) ol ( Zza'*c’ ) (H.2%)

Z}U/-Vo + \d/Vo 7’0
e —-@e

Use of (H.21) and (H.23) to eliminate gq, in Equations (H.20) and

(H.22) gives two equations of the form
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! ! 220 d
= = Yy = m ol (LRete
a4 o) X(y")(%z-/v?')['\/l—c{ / ( Yo )

| -4
t M@iid >} 17"] Qi (Ve /VX/-v) (x)
0
(x){(voz_/l)@ ) + _[/M 4, w’%( zzo+=/)

e M(%)]} ‘WJ (H.24)

-]

and

-V)(1-<)
8:l%)= A’wm /V)[r— {

22°+d
z/,+zfaﬁ3’\\ e )

+7/co«o¢\,<2h+cl fQ+ l)e X( V)(x)

(X){(VOZ“VZ)QV/(V) -+ %_[V"‘Vo wlh <_E‘Zo+d )

%

T 7, wch (i?ﬁii_)” AV’] | (H.25)



~187-

where, using (5.13) and (5.16),

|
_ [ by dro
%+ jo o

, 1 -dfY
< Xio) ;_]; VQi@e X-7)dy

= (H.21)
Y, X/~Vo)[e 220/% + e-d/7/°]

and
CQ+ tV) J/ﬁ B*-h/‘iMo

zz,,/,/,

_ X-2)(2-vR)(1-0) | x(0)
T At@IATY) [V FXCz [Q‘

~d/y, I -d/v’
w L ]?fi ?f € QV,IV)X/-V')@(V')JV’J | (H22)
0

The following identity may be proved:

eZio/Vo:F ed/Vo _ 4 <2.zo+d) ol < 220-&& ) (5.23)

22,/ . ~df7, Yo
e ~e

Use of (H.21) and (H.23) to eliminate q; in Equations (H.20) and

(H.22) gives two equations of the form
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! : 220 +d
t = Yy = o [ LRele
A= Tp X(-m) (v, 7%2)['\/"(- { a ( % )
23 +d ~dfy
+/vw.to£.( o . ﬁy/\‘[Q,r (Ve  X-v) (x)
(X){(‘VD )Q/VA + ___[/“ +, Wm< Z.Zo'l'c/)

T% M(_Z%i)]} J?/J (H.24)

and

_ Xv)(I-<) { wm 27,44
)= V/\W)/\/v)[‘/—— h +v ek (555)

vak Zlo'hl)} [Q+ l)e X( Z/)(x)

x){(Va VP V)+-i’i-[v+7/ w&(lmd)

%0

T 7, wch (i%oii_)]} a/,/’] | (H.25)
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Equations (H.24) and (H.25) correlate the X-function of Case
with the X- and Y-functions of Chandrasekhar, For large slab thick-
nesses, integral terms with e_d/v vanish more rapidly than terms
proportional to csch (EZO + d)/vo and can be ignored in the lowest-
order approximation. Ignoring the integral terms corresponds to ob-

taining the effect from the discrete modes, i.e., the asymptotic vari-

ation., Equation (H.24) then gives

—/“w/f/(,(ZMH) _/AW/A(ZzoﬁI)

+ (H.26)
) 2 1p) = Vice X(om) (%2-p?) -
so, for large 4 ,
K = 2 o (257)
Vi-e Xim)(y2om?)
(Zzo-}d)
T = L& Ve , (5.27)

The equations of (H.27) can be obtained more directly by using the
asymptotic forms of (H.20) and (H.21).

It will be noticed that the forms of (H.27) are familiar--
they are just the asymptotic emergent surface densities, p(0) and
o(d) , obtained from (5.37) with u, replaced by u . This corre-
spends to the alternative interpretation of the X- and Y-functions

given by Chandrasekhar.
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The results in (H.27), although only approximate, are useful
since the numerical work on the Chandrasekhar functions(58"uo) considers
d to be small., The integral equations of (H.16) are best for smaller
thicknesses and require more iterations as the thickness increases,

In the limit of infinite thickness, the equations in (H.27)

yield

I
X0 = = Xty W)
YVA) =0 (H.28)

where, in the first equation, (H.3) was used. This behavior was first

noted by Chandrasekhar,
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