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SUMMARY. In a quantal response study, there may be insufficient knowledge of the response relationship 
for the stimulus (or dose) levels to be chosen properly. Information from such a study can be scanty or 
even unreliable. A two-stage design is proposed for such studies, which can determine whether and how a 
follow-up (i.e., second-stage) study should be conducted to select additional stimulus levels to compensate 
for the scarcity of information in the initial study. These levels are determined by using optimal design 
theory and are based on the fitted model from the data in the initial study. Its advantages are demonstrated 
using a fishery study. 

KEY WORDS: Binary data; c-optimality; D-optimality; 8‘-optimality; Logit; Phase I1 trials; Probit 

1. Introduction 
In a quantal response study, a subject is given a stimulus at 
level z and exhibits a response or nonresponse with probabil- 
ity p ( z )  or 1 --p(z). In medical or animal studies, 3: may be the 
dosage of a new formulation or drug and the response a pos- 
itive reaction to the treatment; in sensitivity testing, z may 
be the pressure applied to explosives or other devices and the 
response an explosion; in economic valuation of recreational 
activities studies, z may be a dollar amount offered and the 
response an indication of willingness to pay this amount more 
for access to the activity. This type of study arises in a wide 
variety of scientific investigations. A central goal in such stud- 
ies is to estimate some aspects of the quantal response curve 
p ( z ) ,  a function of z. Quite commonly, the pth percentile L, 
or several percentiles are of interest to the investigator, where 
L, satisfies p ( L p )  = p.  Alternatively, if a parametric model for 
p ( z )  is assumed, interest may focus on the estimation of the 
parameters in the model, which leads to various optimality 
criteria. 

Though many of the ideas throughout this paper hold more 
generally, for the purpose of illustration, we will restrict at- 
tention to a simple but commonly used class of models. We 
assume a parametric model p ( z )  = H [ P ( z - p ) ]  for the quantal 
response curve, where p and p are unknown parameters and 
H ( . )  a specified distribution function. A number ni of inde- 
pendent observations of this type are taken at k stimulus lev- 
els, 2 1 ,  . . . , zk, and the number of responses at each stimulus 
level, T I , .  . . , Tk, are observed. Thus, T I , .  . . , 9-k are mutually 

independent binomial random variables, T ,  N bin(n,, p(z , ) ) ,  
with log-likelihood 

k 

P )  CTZ Iogp(z,) + (nz - 9-21 logdz,) .  
2 = 1  

The maximum likelihood estimators (MLE) fi and ,8 can then 
be found for p and p. 

The Fisher information matrix for (ii, $), under this model 
is 

where 
k 

k 

k 2 

s o  = C,=l b ( 4 ,  
s1 = C,=l &%W(zz) ,  

sz = C,=l +,), 
zz = P(zz - P I ,  

X2 = n Z l n ,  
n = C, nZ, 

and w(t)  = { H ’ ( t ) } 2 / [ H ( t ) { l  - H ( t ) } ] .  For many of the most 
commonly used models, H’(.)  is symmetric about zero and 
therefore the median stimulus level LO 5 = p. 

A commonly used approach to these studies is what we call 
unistage designs. The basic framework of unistage designs for 
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quantal response experiments consists of choosing the number 
of stimulus levels k ,  the set of stimulus levels {~,},k,~, and the 
number of subjects at each level {n,},"=, . This is done before 
the experiment, and then the entire experiment is run. 

Optimal design focuses entirely on the precision of esti- 
mates, which in most applications is measured by the asymp- 
totic variance-covariance matrix of ( f i ,  &, 

AV(b> 6) = +(P,  P). 
Depending on the interest of the experimenter, different func- 
tions of this matrix may be used as the basis for comparing 
the precision of competing designs. Unfortunately, I ( p ,  p)  de- 
pends on p and p, which are unknown at the design stage. 
I t  is usually assumed that the experimenter has some a PTZ- 

or i  knowledge of the response curve, and good initial values 
po and Po are chosen based on this knowledge. These might 
be available from some previous related experiment(s), some 
preliminary dose-ranging study, or pretesting of some kind. 
Since po and Po are obtained from previous experimentation, 
one might argue correctly that unistage designs are in fact 
the second stage of a less formal multistage experiment. We 
distinguish this from what we term a two-stage experiment 
by the assumption that the related prior information is vague 
or unrelated enough that it is only useful in roughly charac- 
terizing the response curve and does not consist of raw data 
that can be grouped with the results of the second stage in a 
combined analysis. 

If a percentile of H is of particular interest, a natural design 
criterion, called c-optimality, is to minimize the asymptotic 
variance of the percentile estimate AV(L ) - cT1-'(p,f?)c, 
where L p  D + Y P / ~ ,  c = (1 ,  { P - Y P } / P )  I and YP = H -  (P) 
(Wu, 1988). Alternatively, one can use the length of a Fieller 
interval as a design criterion (Finney, 1971, Chapter 8; Sitter 
and Wu, 1993; Sitter and Fainaru, 1997). If estimation of p 
and p are of equal interest, various optimality criteria based 
on 1(p, p) have been suggested. The most common example is 
D-optimality, which entails choosing the design to minimize 
the determinant of I - ' ( p ,  p) and amounts to maximizing D = 
SoS2 - Sf (Sitter and Wu, 1993; Sitter and Fainaru, 1997). 
These criteria all yield one-, two-, or three-point designs. 

There are a number of major concerns with strictly adopt- 
ing this approach to designing experiments: (a) often, good 
initial estimates of p and are not available, and these 1-3- 
point designs are not robust to poor initial values; (b) 1-3- 
point designs may not allow adequate model checking; and 
(c) the choice of optimal design depends on the assumed 
model, which may be incorrect. To address points (a) and 
(b), attempts have been made to incorporate the initial lack 
of knowledge about the parameters into the unistage design 
framework. Two of these are (i) Bayesian techniques (Chaloner 
and Larntz, 1989) and (ii) a minimax approach (Sitter, 1992). 
In the first, prior distributions are assumed on p and P and 
computer intensive techniques are used to generate Bayesian 
designs. In the second, initial values po and Po are assumed 
to be the best guesses and the design is chosen to be robust 
over some region containing this point. These robust criteria 
tend to spread out the support to protect against different 
possible parameter values. Unfortunately, they usually do not 
perform much better even if the best initial guesses of the 

3 - 

parameters are perfectly correct since the design is forced to 
protect against other possibilities. 

A remedial measure is to conduct a follow-up study. If 
the response y (or nonresponse 1 - y) can be observed in 
a short time, then a fully sequential design can be imple- 
mented, which determines the next dose level zt+l based on 
the information in yi and xi, i = 1 , .  . . , t (Wu, 1985; Young 
and Easterling, 1994). Note that, in studies like sensitivity 
testing, education testing, or psychophysical research, a short 
response may be obtainable. But in many other quantal re- 
sponse studies, this is simply unrealistic. For example, in most 
clinical trials, the patient's response will take days to weeks 
to be observed. A compromise between efficiency and time is 
t o  conduct a two-stage (or multistage) design, which can take 
advantage of the information from the initial study to design 
a follow-up study and still not unduly prolong the study's 
duration. The purpose of this paper is to propose one such 
strategy. 

One motivation for the present research is to improve the 
conduct of phase I1 trials. Insufficient knowledge about a new 
therapeutic substance may lead to the choice of a poor dosage 
regimen for a phase I1 trial. Since the doses in the follow-up 
phase I11 trial are influenced by these results, it may be dis- 
covered only after an expensive and time-consuming phase I11 
trial has been started that the doses are improperly chosen 
and a phase I1 trial has to be repeated. This would result in 
wasted resources and delay approval times (McDonald, 1993). 
In this scenario, a better approach, as we advocate in this pa- 
per, is to design a two-stage study that uses the best knowl- 
edge available to design the first-stage study, analyzes its data, 
and then decides whether there is sufficient information in the 
data to proceed to a phase I11 trial. If not, a second-stage 
study that was already planned will be implemented so that 
more useful information on effective dosage can be obtained. 
The second stage is an option the investigator may forego if 
there is sufficient information in the first-stage study. So the 
proposed two-stage approach includes the traditional unistage 
approach as a special case. We should point out that the two- 
stage methodology is not limited to the conduct of phase I1 
trials. Any study that shares the same features as described 
above may benefit from adopting this approach. One promi- 
nent example is animal studies with expensive subjects like 
monkeys. Another is economic valuation studies such as the 
one described subsequently. 

Two-stage or multistage designs are not new. In linear mod- 
els, it is a key aspect of response surface methodology and is 
often used to  break confounding in fractional factorial de- 
signs (Box, Hunter, and Hunter, 1978). In nonlinear models, 
the situation is more complex since the information matrix 
depends on the unknown parameters. [See Minkin (1987) and 
Abdelbasit and Plackett (1983) for further discussion.] 

The paper is organized as follows. The next section de- 
scribes a 4-month study on tidal sport fishing that was re- 
designed after 2 months because the original design was poor. 
Section 3 proposes a two-stage procedure. In Section 4, this 
procedure is illustrated by considering gains that might have 
been made if it had been used in the sport fishing study. Ad- 
vantages and disadvantages of the proposed methodology are 
discussed in the concluding section. 
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2. A Fishery Study 
To attempt to value the tidal sport fishery in the Canadian 
province of British Columbia (BC) for use in making pub- 
lic policy decisions, the Department of Fisheries and Oceans 
(DFO) contracted the DPA Group Inc. to perform a large- 
scale study (“Economic Valuation of the BC Tidal Sport Fish- 
ery,” prepared by the DPA Group Inc. for DFO in March 
1985). Fishermen were interviewed as they returned to launch 
sites in four areas of the south coast of BC (Victoria, Port Al- 
berni, Campbell River, and Sechelt) from July to October 
1984. One of the primary questions that each fisherman was 
asked is: 

16. Now imagine that the cost of fishing in 
BC tidal waters increased. If the cost 
of your fishing trip had been dol- 
lars higher today, would you still have 
gone fishing? 
No __ Yes ~. 

This question was asked for various values of z and the 
number of yes and no responses was recorded. Thus, z is the 
stimulus level and the response is binary. Logistic regression 
was used for analysis with the main focus being estimation of 
the ED50. This estimate was then multiplied by an estimate 
of the number of angler days in a year to estimate the total 
value of the sport fishery. 

DFO specified the same design for each region and pretested 
the questionaires. The original design consisted of 30 differ- 
ent dose levels ranging from $1 to $50 with an approximately 
equal number of subjects at each dose level. However, “[a]s 
the survey progressed, it became apparent that at the upper 
range of the dollar amounts, a substantial number of people 
. . . would still have gone fishing at the increased fishing cost 
amount (Question 16). Consequently, effective September 1, 
1984, the range of offer amounts was expanded to . . . $1 to 
$100. . . .” This was done by replacing 10 of the existing 30 
dose levels by 10 new higher dose levels. Table 1 gives the 
orginal design, the revised design, and responses for the Vic- 
toria and Port Alberni areas. 

This is not an example of a preplanned two-stage designed 
experiment. However, this survey exemplifies a situation 
where the proposed two-stage (or multistage) design strat- 
egy would have been ideal. Operational considerations driven 
by the large number of sites and interviewers spread over a 
large geographical region and considerations of randomization 
precluded the possibility of a fully sequential approach. But 
it is clear that performing the study in stages was quite fea- 
sible. Also, having decided to redesign on the basis of data 
analyzed up to that time, the investigators could have used 
the strategy that we will propose subsequently to choose the 
second-stage design. 

Suppose we are in the position that the Stage I design has 
been run as in Table 1 with resulting data therein, and a 
second-stage design was to be chosen. Let us analyze the in- 
formation that would be available for each region. We use 
logistic regression, as was done in the study. The parameter 
estimates and their respective estimated 95% confidence in- 
tervals are given in Table 2. We should note that, in both 
cases, comparing the deviance to a chi-squared distribution 
yielded a pvalue between 0.05 and 0.1, suggesting that the 
model fit the data only marginally well. The estimated re- 

Table 1 
BC tzdal sport fishery data 

Victoria Port Alberni 

Stage I Stage I1 Stage I Stage I1 

x, n, r2 n, r, 72, rz n2 r, 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
46 
50 
55 
60 
65 
70 
75 
80 
90 

100 

13 
14 
16 
12 
15 
13 
18 
12 
11 
12 
14 
16 
13 
9 

13 
17 
11 
13 
15 
15 
9 

13 
15 
10 
12 
14 
13 
13 
16 

4 

0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
2 
5 
4 
2 
4 
8 
5 
7 
7 
9 
5 

12 
11 
6 
9 

10 
11 
9 

15 

4 

17 
17 

15 
1 

14 

12 

13 
1 

16 

18 

12 
1 

12 
15 
14 
17 
16 
11 
17 
17 
15 

16 
1 

16 
15 
17 
16 
16 
10 
13 
14 
12 
15 
13 

0 
1 

0 
0 
1 

0 

5 
0 
7 

9 

8 
0 

10 
8 
8 

12 
10 
9 

16 
14 
12 

14 
1 

14 
12 
17 
15 
15 
9 

13 
13 
12 
15 
13 

35 
35 
36 
27 
32 
34 
37 
33 
31 
41 
33 
27 
32 
33 
32 
39 
35 
38 
39 
37 
37 
35 
27 
34 
31 
34 
34 
30 
35 

11 

2 
1 
0 
0 
1 
0 
0 
0 
1 
0 
0 
4 
2 
0 
0 
2 
3 
4 
6 
4 
3 
3 
4 

11 
7 

12 
7 

12 
10 

6 

34 
29 
3 

29 
4 

32 

33 
7 

28 
5 

31 
4 

28 
2 

31 
3 

31 
30 
35 
31 
35 
39 
28 
32 
31 
3 

33 
3 

32 
28 
30 
29 
31 
29 
28 
28 
29 
29 
31 

0 
1 
0 
0 
0 
3 

2 
1 
1 
0 
3 
0 
2 
0 
1 
0 
4 
6 
8 
5 
3 
4 
3 
5 
5 
0 
5 
1 

12 
9 

11 
6 

11 
7 

13 
17 
14 
16 
19 

sponse curves $(s) from Stage I for both Victoria and Port 
Alberni are given in Figure 1. For Victoria, the p ( q )  are 
(0.042,0.049, . . . ,0.91,0.93,0.98), where x ~ i  refers to the Stage 
I design points, with 20 of the 30 dose levels representing 257 
of 391 observations in the moderate range (0.1, 0.9) of the es- 
timated response curve. Of these 20 dose levels, 7 were above 
the estimated ED50, @I, and 13 below. For Port Alberni, the 
? j ( q i )  are (0.015,0.016,0.018,. . . ,0.34,0.38,0.61), with only 
10 of the 30 dose levels representing 308 of 994 observations 
in the moderate range (0.1,O.g) of the response curve. Of these 
10 dose levels, only the last, corresponding to 11 observations, 
was above the estimated ED50. One might presume that this 
poor coverage of the response curve and the resulting diffi- 
culties in checking the model were the reasons for redesigning 
this study. The question is how a redesign should be done. 
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Table 2 
Stage I parameter estimates and 95% confidence intervals 

Region PI 95% CI for p 61 95% CI for 0 
Victoria 22.11 (20.21, 24.01) 0.15 (0.12, 0.18) 
Port Alberni 45.23 (40.91, 49.55) 0.10 (0.08, 0.11) 

3. A Two-Stage Design Procedure 
We will now present a two-stage design procedure. The basic 
philosophy i s  that one should use two (and possibly three) 
stages in many experiments of this type. Noting that a uni- 
stage experiment is a special case of a two-stage experiment 
with zero observations in the second stage, any sound method- 
ology for two-stage experimentation should allow the exper- 
imenter to evaluate the necessity of a second stage after the 
completion of the first-stage analysis. Also, if the first-stage 
data indicates that a different model is more appropriate, the 
second stage can be designed using this new model. This ad- 
dresses point (c) given in Section 1. 

Stage I .  (1) Choose a robust design 

~ 1 1 , .  . . , xIki design points 
d1={ 7211, . . . , nIk, sample sizes 

using only part of available resources. Use a design with three 
to five points depending on the anticipated model and amount 
of prior information from subject knowledge and results from 
previous related experiments. For example, under a logit 
model, one could use a kk-design based on the minimax crite- 
rion chosen from Tables 1-3 of Sitter (1992, pp. 1149-1151). 

(2) Perform the first stage of experimentation and fit a 
model to obtain estimates PI and PI, estimated confidence 
intervals or regions, and estimated probabilities of response 
at the first-stage design points $(q~), . . . , j , i ( q k , ) .  

Stage II. Now one must consider the cost versus gain of vari- 
ous second-stage designs, including the option of not perform- 

ing a second-stage experiment at all. We will take the view 
that the experimenter’s goal is to obtain estimates ji and 6 
(or some function of them) that are within c units of the truth 
with high confidence. 

(1) Most important at this point is to ascertain the level 
of reliance that should be placed on first-stage estimates j i 1  

and 61. One must realize that simply considering estimated 
confidence intervals or regions might be misleading since they 
themselves depend on PI and 61. 

w e  suggest first considering $ ( s I~ ) ,  . . . , $ ( q k , )  and the cor- 
responding n11, . . . , q k , .  The better the first-stage design ap- 
pears to have covered the moderate portion (0.1 5 p 5 0.9) of 
the response curve, the more reliance one should place on /;I 
and 61. There are two aspects to this: the number of moderate 
$(q) and the total number of observations these points rep- 
resent. It is also important to consider the balance of these 
points over the moderate portion of the curve, with ideally 
some points in both the upper and lower range. Few mod- 
erate $(qi), a small amount of data at these points, or a 
lack of balance indicate a high probability that ,GI and 61 are 
poor estimates despite any indication to the contrary from 
estimated confidence intervals. This is demonstrated through 
simulation in Sitter and Wu (1998). In such cases, the exper- 
imenter should take a very conservative approach in steps 2 
and 3 below by choosing a more robust second-stage design 
with more support points and should forgo step 4 below in 
favor of using all resources that were held back for use in 
Stage 11. 

If the first-stage design appears to have covered the re- 
sponse curve well, then not only is more reliance on j i ~  and 
61 warranted but confidence intervals and/or regions based 
on them yield reliable measures of their precision and can 
be used to aid in decisions regarding the sample size nII to 
be used in the second-stage design. This will entail repeating 
steps 2 and 3 below for a few values of nII between zero and 
the maximum number allowable given resources. 

0 20 40 80 80 

Figure 1. 
I design points. 

Estimated response curves from Stage I, with x’s denoting the Stage 
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(2) For fixed n11, use an optimality criterion to obtain an 
optimal second-stage design 

~ 1 1 1 ,  . . . , q I k I I  

q 1 1 ,  . . . , q I k I I  

design points 
sample sizes. { 4 1  = 

Include the first-stage design points as fixed. For example, for 
the D-criterion, obtain dI1 by 

" c t y W I , b I  I dI,dII)> (2) 

where ( f i ~ ,  B I )  are estimates based on di and the correspond- 
ing rt values and det I is the determinant of the information 
matrix I in (1). 

This optimization can be easily implemented in some com- 
mon situations. The D-criterion is appropriate if some pre- 
cision requirement on the parametric curve H [ P ( .  - p ) ]  is 
of interest. According to the theoretical results in Sitter and 
Forbes (1997) for the logit and probit models, we need only 
consider second-stage designs with two points (i.e., kI1  = 2) 
of the form (A,z), (1 - A, - z )  for some 0 5 X 5 1 and z > 0. 
Note that if X = 0 or 1, this collapses to a one-point design. 
This reduces the problem to choosing 

if (I - E)/Z < 0, 

if (1 - E )  > 1, 
A = h ( z )  = (1 - < ) / a  if 0 5 (1 - <)/2 5 1, ( 3 )  {: 

where [ = tS!/{(l - E ) z w ( z ) }  and E = nI/n,  and maximizing 

D ( z )  = [€Sh + (1 - t ) W ( z ) ] [ t s a  + (1 - € ) z 2 W ( z ) ]  

- [ESi + (1 - €)(2h(Z) - 1)zW(z)]2 (4) 

over 0 < z < 00. If z* is the resulting maximizing value, the 
optimal second-stage design becomes { ( A * ,  z * ) ,  (1-A*, - z * ) } ,  
where A* = h(z*). 

It is interesting to consider h(z ) .  First, assuming that the 
true values of ( p , p )  are ( f i ~ , p ~ ) ,  one can see that, if the 
first-stage design is symmetric about PI ,  i.e., Si = 0, the 
D-optimal second-stage design will also be symmetric about 
f i ~ .  If the first-stage design is skewed left (right), i.e., S{ < 0 
(> 0), then X = h(z* )  > 1/2 (< 1/2), which implies a skewed 
right (left) second-stage design to compensate for the lesser 
information on the right (left). This parallels intuition. 

Sitter and Forbes (1997) show that for the logit and probit 
models and any of the most commonly used criteria, i.e., A,  c ,  
D ,  E ,  F ,  G, the optimal second-stage design has two points. 
They also obtain a characterization of the resulting design 
similar to the above for the A,  c, and E criteria. 

(3) The number k11 of dose levels in optimal second-stage 
designs will usually be small (Sitter and Forbes, 1997). One 
may wish to increase k11 

if there is a perception that one cannot rely on j i1 and 
PI (see step 1). 
if there is concern about the fit of the model. Then 
the experimenter may wish to ensure that the resulting 
combined design has enough points in the moderate 
range of the response curve to  allow adequate model 
checking. 
after considering how the second-stage design changes 
when FI and 61 are purturbed over some region. Then 
one may wish to choose the second-stage design as a 

compromise among the various optimal second-stage 
designs for each perturbation to protect against poor 
first-stage estimates. 

(4) If it is felt that f i1 and ,& are reasonably reliable (see 
step 11, one may also choose 7211 = C, n11i considering the po- 
tential increase in accuracy and its resulting gains versus the 
additional cost of a second stage of experimentation. For*ex- 
ample, if a particular function 6 = g(p, p) is of interest, 61 = 
g( f i I ,  B I )  is its first-stage estimate and LEN1_,(6, d) denotes 
the length of a 1 - (Y confidence interval for 6 basedA on design 
d, n11 can be determined by comparing LEN;-,(BI, dI) (us- 
ing only the 1st stage) with LEN1-,(61, dI, dII )  (using both 
stages) for various values of 7211, where dII is obtained using 
steps 2 and 3 .  

A point that has not been discussed is the possibility of 
a stage effect due to performing the experiment at different 
times. One would hope that, by designing for two stages at 
the outset of an experiment, the possibility of inducing a stage 
effect can be minimized. If after the first stage there is concern 
that a stage effect may exist, one should consider this in choos- 
ing the second-stage design. In principle, a stage effect could 
be included in the model as a nuissance parameter and the 
second-stage design could be chosen based on some optimal- 
ity criterion applied to the asymptotic variance-covariance 
matrix of p and p only. Unfortunately, this would typically 
require prior knowledge of the size of the stage effect, which 
is not likely to be available. More informally, one should try 
to avoid a situation where dI and dII have no overlap in their 
coverage of the design space. If this is so, it becomes difficult 
to distinguish between a situation where each stage can be 
represented by the same functional form of model H with a 
stage effect present and the situation where the data has been 
generated by a different functional form for the model H .  

4. An Illustration Using the Fishery Study 
In order to do step 2, we must decide on n11. For this exper- 
iment we may not have full control over this value as it is 
a function of the number of fishermen returning to the sites 
per unit time versus workload on an interviewer. However, 
since the redesign occurred near the middle of the planned 
duration of the survey, assuming no information on month- 
to-month fishing rates, we would assume that, if the number 
of interviewers in each region remained the same, nl1 would 
be approximately equal to n ~ .  The actual n~ and n11 values 
turned out to be nI = 391, nII = 445 in Victoria region and 
n~ = 994, n11 = 958 in Port Alberni region. We will assume 
that the primary goal is to obtain an estimate of the ED50 
that we are quite confident is within $ 1.50 of the truth. That 
is an estimated confidence interval we can rely on that has 
length less than 3.0. We choose this value arbitrarily to aid 
in our illustration of the technique. Since more general infor- 
mation on the response curve is also desired, the D-criterion 
will be used. 

Victoria. (1) Examining the $ (z I~ ) ,  we see that the design 
did reasonably well in covering the moderate portion of the 
response curve with fair balance above and below the esti- 
mated ED50. This suggests that we can place a reasonably 
high level of reliance on f i ~  and ,& and the estimated confi- 
dence intervals in Table 2 ,  and we may wish to proceed with 
step 4. 
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(2) For this illustration, we will first use n11 = 445, the 
actual observed value, to aid comparisons to the design that 
was actually used. In practice, we would likely have used 7211 

approximately equal to n ~ ,  i.e., t = 0.5 in Section 3, but 
since the above choice yields E = 0.51, the results would be 
similar. Using the D-criterion and equations (3) and (4), we 
get the D-optimal Stage I1 design d I I :  (n7,nz) = (167,278) 
and (zT,x;)  = (11.5,32.7). 

(3) We will take the position that we are sure enough of 
f i ~  and and that we feel the resulting combined design will 
have enough design points for adequate model checking if we 
use the recommended D-optimal design. If one is concerned 
with the fact that the logit model fits only moderately well 
and that the upper part of the response curve has fewer design 
points, one may decide to split the n; = 278 observations 
among two or three points around xz = 33 chosen to ensure 
high efficiency to the optimal design. 

(4) Note that the estimated 95% confidence interval for 
p in Table 2 has a length of approximately $4. Thus, if we 
chose not to perform a Stage 11, we would not have attained 
our stated goal. The initial design allocated two interviewers 
to each region. One obvious question is, “Can we attain our 
stated goal with only one interviewer in Stage II?” If this is 
so, it may be possible to increase the number of interviewers 
in another region. It is this kind of option that may require 
planning of a two-stage study at the outset because one can 
build this aspect into the hiring of interviewers. If one has 
committed to hiring the interviewers in their specific regions 
for the entire duration, this option may not exist. With only 
one interviewer, we might anticipate nII to be halved to 223, 
which implies E = 0.64. If we redo step 2 with this choice, 
we obtain a D-optimal design df,: (n7,n;) = (56,167) and 
(zT,x;) = (11.4,32.8). The expected length of a 95% confi- 
dence interval using dII is $2.45 and using df, is $2.87. Thus, 
we can likely attain our goal using only one interviewer in the 
Victoria region for the remainder of the study. This will be 
especially important in light of the results t o  follow for Port 
Alberni. We should note that the combined design used in the 
actual study had 65% efficiency in terms of the D-criterion 
relative to d I I .  

Port Alberni. (1) Examining the $(z~i), we see that the de- 
sign did very poorly in covering the moderate portion of the 
response curve and was highly unbalanced above and below 
the estimated ED50. This suggests that we cannot rely on 
f i ~  and f l ~  and the estimated confidence intervals in Table 
2. Thus, we should be very conservative and use all the re- 
sources available. Given the results for Victoria, the exper- 
imenter might even consider having only one interviewer in 
that region while increasing to three interviewers in Port Al- 
berni. Also, we should not use step 4. 

(2) For this illustration, we will again use the actual ob- 
served value n11 = 958, which yields E = 0.47. The D-optimal 
Stage I1 design is dII: (nI,n;) = (168,790) and (z7,z;) = 
(30.5,59.9). 

(3) A simple way to consider the effect on the second-stage 
design if the first-stage parameter estimates are jncorrect is to 
repeat step 2 for different hypothetical PI and /31. If one tries 
ranging $1 from 35 to 55 and from 0.07 to 0.12, the optimal 
design points range from 11 to 47 for the lower point and from 
48 to 74 for the upper point with the weight on the lower point 

between 0.12 and 0.34. The ranges for f i r  and Br were chosen 
to extend beyond the estimated 95% confidence bounds. One 
could then try various designs with, say, about 20% of the 
available observations spread over a few points in the lower 
range and the remaining spread over a few points in the up- 
per range. For example, d;I: { n ~ ~ i }  = (64,64,64,255,255,256) 
and z ~ ~ i  = (20,30,40,50,60,70). The resulting combined de- 
sign has 91% efficiency in terms of the D-criterion (D-efficien- 
cy) relative to the optimal design. One could instead use a 
more formal approach along the lines of Sitter (1992). The 
combined design in Table 1, which was used in the study, 
has a D-efficiency of only about 50% relative to the optimal 
design. 

We have presented the above illustration using only infor- 
mation available after Stage I. We can now use the actual 
results from the second stage to emphasize some of the ad- 
vantages and inherent difficulties with choosing a second-stage 
design in nonlinear situations. To do this, we fit a logistic re- 
gression model to the combined first- and second-stage data in 
Table 1. This is the model used in the original analysis. Since 
this is merely for illustration, we did not attempt any further 
model fitting. T+ estimated parameter values were Victoria, 
4 = 21.11 and /3 = 0.12; and Port Alberni, j i  = 73.18 and 
/3 = 0.042. Let us assume that these are in fact the true pa- 
rameter values and that a logistic model is correct. We can 
now reevaluate the expected performance of the above designs 
to see how they would likely have done. For Victoria, the 61 
and values were close enough to the truth that the expected 
performance would be similar to that presented above. For 
Port Alberni, this is not the case. For example, consider the 
length of 95% confidence intervals for p. If we had ignored 
the warning signs and trusted the estimates from Stage I, the 
expected lengths of 95% confidence intervals for p based on 
the first-stage data from dII in step 2 and df, in step 3 would 
have been $2.70 and $2.73, respectively. Their true expected 
lengths using p = 73.18 and /3 = 0.042 would have been $9.22 
and $9.59. Thus, we could have been mislead into believing a 
second stage was unnecessary when in fact this was far from 
the case. In fact, in this case, if the stated goal of a 95% con- 
fidence interval of length 3.0 is truly to be achieved, it will 
likely be necessary to perform a third stage. To choose a third 
stage, one can merely treat the combined first- and second- 
stage data as Stage I and reuse the procedure of Section 3. 

5.  Conclusion 
It is common to use a unistage approach to design quanta1 re- 
sponse studies. While these designs are simple to administer, 
they may not be effective if prior knowledge is poor. In this 
paper, we have proposed a two-stage design strategy that has 
the following advantages: the second stage can “fix” mistakes 
made at the first stage by choosing stimulus levels to compen- 
sate for the lack of information afforded by the initial design; 
the two-stage approach can allocate more (less) resources to 
the first-stage design if there is less (more) confidence in the 
initial design choice; if the first stage is sufficiently informa- 
tive, the second stage does not need to be invoked, thus the 
unistage design approach is included as a special case; by bor- 
rowing strength from data in both stages, the precision of es- 
timates is enhanced; with the same resources, it can study 
more stimulus levels and achieve better quantification of the 
response curve. The performance of the two-stage procedure 
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relative to unistage strategies was investigated through sim- 
ulation in Sitter and Wu (1998). The two-stage procedure 
performed better in terms of the relative bias and stability 
of the parameter estimates and the coverage and length of 
resulting confidence intervals. 

A disadvantage is the possible time required between the 
two stages for amending protocol and securing investigators’ 
commitments. Since the second stage is only invoked if it is 
determined from the data that there is insufficient informa- 
tion in the first-stage study, the time required for a second 
stage should not be viewed as a disadvantage. For example, 
as argued in Section 1, if such a study is not conducted in a 
Stage I1 trial, its downstream loss can be much more severe. 
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RESUME 

Les connaissances nkcessaires pour un choix adkquat des doses 
d’un essai par tout ou rien peuvent faire dkfaut. L’information 
obtenue avec de telles ktudes peut 6tre insuffisante, voire dou- 
teuse. On propose ici une mkthode en deux ktapes qui peut 
d’abord determiner si il faut complkter une premikre expk- 
rience insuffisamment informative. La mkthode indique en- 
suite comment prkciser les niveaux additionnels de stimulus 
B sklectionner. On utilise pour cela la thkorie des dispositifs 
optimaux appliquke aux rksultats du modhle ajustk sur les 
donnkes de la premiere ktude. Les avantages de la mkthode 
sont illustrks par une application B des donnkes de pgcherie. 
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