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Summary. Little and An (2004, Statistica Sinica 14, 949–968) proposed a penalized spline of propensity prediction (PSPP)
method of imputation of missing values that yields robust model-based inference under the missing at random assumption. The
propensity score for a missing variable is estimated and a regression model is fitted that includes the spline of the estimated
logit propensity score as a covariate. The predicted unconditional mean of the missing variable has a double robustness (DR)
property under misspecification of the imputation model. We show that a simplified version of PSPP, which does not center
other regressors prior to including them in the prediction model, also has the DR property. We also propose two extensions
of PSPP, namely, stratified PSPP and bivariate PSPP, that extend the DR property to inferences about conditional means.
These extended PSPP methods are compared with the PSPP method and simple alternatives in a simulation study and
applied to an online weight loss study conducted by Kaiser Permanente.
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1. Introduction
Missing data problems are common in many applications of
statistics. In this article, we consider univariate nonresponse,
where the missingness is confined to a single variable. Let (Y ,
X 1 , . . . , Xp) denote a (p + 1)-dimensional vector of variables
with Y subject to missing values and X 1 , . . . , Xp fully ob-
served covariates. We consider here the problem of estimating
the mean of Y, and the conditional mean of Y in subclasses
defined by a categorical X-variable, and the regression coeffi-
cient of Y on a continuous X-variable.

A simple approach to this missing-data problem is com-
plete case (CC) analysis, which deletes units with Y missing,
so information contained in the deleted cases is lost. In the
context of our problem, CC analysis yields a consistent esti-
mate of the overall mean of Y if missingness does not depend
on any of the variables, and a consistent estimate of the con-
ditional mean of Y given a covariate X 1 if the missing-data
mechanism depends on X 1, but does not depend on Y or
X 2 , . . . , Xp . Another approach is to fit a parametric model
relating Y to the X’s using the CCs, and impute the missing
Y’s with predictions from this model. For example, one might
fit a linear regression model

Yi = β0 +
p∑

j=1

βj Xij + εi , εi ∼ind N (0, σ2).

This approach is very efficient and yields consistent esti-
mates if the model assumptions are correct. However, poten-
tial sensitivity to model misspecification motivates the study
of robust estimation procedures.

Robins, Rotnitzky, and Zhao (1994, 1995) and Rotnitzky,
Robins, and Scharfstein (1998) developed a class of dou-
bly robust (DR) augmented orthogonal inverse probability-
weighted estimators in missing data models. Specifically, the
marginal mean of Y is estimated by adding the mean of the
weighted residuals to the predictions from a parametric or
semiparametric model. The DR property lies in the fact that
if either (a) the prediction model is correctly specified or (b)
the model for the probability of response on which the weight
is based is correctly specified, then the estimated marginal
mean of Y will be consistent. The DR property fails if both
the prediction and response model are misspecified. An alter-
native way to achieve DR is to include the weight as a lin-
ear term in the imputation model (Firth and Bennett, 1998;
Scharfstein, Rotnitzky, and Robins, 1999; Sarndal, Swensson,
and Wretman, 2003; Bang and Robins, 2005). More informa-
tion on this class of estimators can be found in Robins and
Rotnitzky (2001), Lunceford and Davidian (2004), and Yu
and Nan (2006).

Semiparametric and nonparametric modeling of the mean
structure is another approach to yield robustness, by
weakening assumptions about the relationship between the
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variables. In particular, with p = 1 and single covariate X, one
version of this approach is to base imputations on the penal-
ized spline model yi = s(xi ) + εi with a truncated polynomial
basis

s(x) = β0 + β1x + · · · + βq x
q +

K∑
k=1

βqk (x − κk )q
+, (1)

where 1, x , . . . , xq , (x − κ1)
q
+ , . . . , (x − κk )q

+ is known as
the truncated power basis of degree q; κ1 < · · · < κK

are selected fixed knots; and K is the total number of
knots (Eilers and Marx, 1996; Ruppert, Wand, and Car-
roll, 2003; Ngo and Wand, 2004). The penalized least-squares
estimator β̂ = (β̂0, . . . , β̂q , β̂q 1, . . . , β̂qK )T is obtained by
minimizing

n∑
i=1

{
yi − β0 −

q∑
j=1

βj x
j
i −

K∑
k=1

βqk (xi − κk )q
+

}2

+ λ2q βT Dβ,

where λ is a smoothing parameter and D = diag (0q+1, 1K ).
The fitted values are ŷ = X(XT X + λ2q D)−1XT y. With more
than one covariate, one might extend this approach by fitting
a multivariate spline. However, such models are subject to the
curse of dimensionality when p is large, which relates to the
difficulty of fitting nonparametric regression functions when
the regressor space has high dimension. The penalized spline
of propensity prediction (PSPP; Little and An, 2004) method
addresses this problem by restricting the spline to a partic-
ular function of covariates most sensitive to model misspec-
ification, namely, the propensity score. Little and An show
that PSPP method yields an estimate of the marginal mean
of the missing variable with a DR property, described below
in Section 2. We propose a simplification of the PSPP that
does not center the regressors prior to including them in the
prediction model.

Little and An (2004) did not consider whether PSPP yields
robust estimates for other parameters, such as conditional
means or regression coefficients. In Section 3, we provide ex-
amples to show that the PSPP method does not in general
yield estimates of these parameters with the DR property.
This motivates robust extensions of the PSPP method for es-
timating subgroup means and regression coefficients, which
are described in Sections 4 and 5. We apply the proposed
methods to an online weight loss study in Section 6, and Sec-
tion 7 presents concluding remarks.

2. Penalized Spline of Propensity Prediction
Let (Y , X 1 , . . . , Xp) denote a vector of variables with Y sub-
ject to missing values and X 1 , . . . , Xp fully observed covari-
ates. The missingness of Y depends only on X 1 , . . . , Xp , so the
missing data mechanism is missing at random (MAR; Rubin,
1976). Let M be an indicator variable with M = 1 when Y is
missing and M = 0 when Y is observed. Define the logit of
the propensity for Y to be observed as:

X∗= logit (Pr(M = 0 |X1, . . . , Xp )) . (2)

The key property of the propensity score is that, condition-
ing on the propensity score and assuming MAR, missingness
of Y does not depend on X 1 , . . . , Xp (Rosenbaum and Rubin,

1983). Thus, the mean of Y can be written as

μy = E[(1 − M )Y ] + E[M × E(Y |X∗)]. (3)

Because the true relationship of Y and the propensity
score is unknown, Little and An (2004) proposed to include
the propensity score in the imputation model nonparametri-
cally. This motivates PSPP, which is based on the following
model:

(X1, . . . , Xp |X∗) ∼ Np ((s1(X∗), . . . , sp (X∗)), Σ),
(Y |X∗, X1, . . . , Xp ; β) ∼ N

(
s(X∗)

+ g(X∗, X∗
1 , X

∗
2 , . . . X

∗
p ; β), σ2

)
, (4)

where Nk (μ, Σ) denotes the k-variate normal distribution with
mean μ and covariance matrix Σ, sj (Y ∗) = E(Xj |Y ∗); j =
1 , . . . , p, is a spline for the regression of Xj on X∗ of the
form (equation 1); X∗

j = Xj − sj (X∗) is the residual of the
spline model and represents the part in Xj not explained by
the propensity score; s(X∗) is a spline of Y on X∗ of the
form (equation 1); and g is a parametric function indexed
by unknown parameter β with g(X∗, 0 , . . . , 0; β) = 0 for
all β. In practice, variables included in the g-function should
be predictive of the outcome. In specifying the g-function in
equation (4), care is needed to avoid multicollinearity, because
X∗ is itself a function of (X∗

1, X∗
2 , . . . , X∗

p ); a simple way of
doing this is to leave out of the g-function the covariate that
is most highly correlated with X∗. Also note that in practice
X∗ involves unknown parameters, which need to be estimated
from the data, yielding an estimated logit propensity X̂∗.

The predicted mean of Y from model (4) has the following
DR property (Little and An, 2004). Let μ̂y be the prediction
estimator for equation (3) based on model (4), and assume
MAR. Then μ̂y is a consistent estimator of μy if either (a) the
mean of Y given (X∗, X 1 , . . . , Xp) in model (4) is correctly
specified, or (b1) the logit propensity X∗ is correctly speci-
fied, and (b2) E(Xj |X∗) = sj (X∗) for j = 1 , . . . , p and E(Y |
X∗) = s(X∗). The robustness feature derives from the fact
that the regression function g does not have to be correctly
specified.

The covariates X∗
1 , . . . , X∗

p from model (4) are centered by
regressing X 1 , . . . , Xp on splines of X∗ and taking residuals.
We now propose a simpler method that adds X 1 , . . . , Xp di-
rectly to the regression without centering and we show this
method also has the DR property:

Theorem 1. The PSPP method based on model (4) can be
simplified as follows:

(Y |X∗, X1, . . . , Xp ; β) ∼ N
(
s(X∗) + g(X∗, X1, . . . Xp ; β), σ2

)
,

(5)

that is, the covariates X 1 , . . . , Xp enter the parametric func-
tion g without centering. Let μ̂y be the prediction estimator
for equation (3) based on model (5), and assume MAR, then
μ̂y has the same DR property as that derived from model (4)
(see Web Appendix A for proof). For this reason, we focus on
the uncentered version of the PSPP method for the remainder
of the article.

The first step of fitting a PSPP model (5) estimates the
parameters in the logit propensity score X∗, for example
by a logistic regression model of M on X 1 , . . . , Xp , yielding
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the estimated logit propensity score X̂∗; in the second step,
the regression of Y on X̂∗ is fit as a spline model with the
other covariates included in the model parametrically in the
g-function. We use equally spaced fixed knots in this article
when fitting model (5). Let κ0 = the minimal value of the
data and d = (maximal value – minimal value)/(K + 1), we
derive the knots by the following formula: κi = κi−1 + d, i =
1 , . . . , K , where K is the total number of knots. We implement
the spline model using the Proc Mixed procedure in SAS with
a truncated linear basis and treat (X̂∗ − κ1)+, . . . , (X̂∗ − κK )+

as random effects and 1, X̂∗ and covariates in the g-function
as fixed effects. More information on implementation of
penalized spline models can be found in SAS (1992), Ngo and
Wand (2004), and Ruppert et al. (2003).

3. PSPP is Not Doubly Robust for Subgroup Means
The DR property of PSPP for estimating the marginal mean
of Y does not apply to estimates of conditional means, such as
means in subgroups defined by a categorical covariate X 1. The
next two examples illustrate this statement. The first example
illustrates the intuitively obvious fact that for estimating the
conditional mean of Y given X 1, the PSPP method needs to
include X 1 as a predictor in the model for Y. The second
example illustrates that inclusion of X 1 as a predictor in the
model for Y is not sufficient to avoid bias with the PSPP
method. This limitation is then addressed with the extended
versions of the method.

Example 1. PSPP for estimating a conditional mean: includ-
ing the subgroup variable in the model for Y is necessary. We
simulate 500 datasets with 500 subjects, with categorical co-
variate X 1, continuous covariate X 2, and continuous response
variable Y, where X 1, X 2 are independent with X 1 ∼ multi-
nomial (0.5, 0.3, 0.2), X 2 ∼ N (0, 1), and

Y |X1, X2 ∼ N (μ(X1, X2), 1),
μ(X1, X2) = I [X1 = 1] + 3 × I [X1 = 2]

+ 5 × I [X1 = 3] + 10X2,

where I[ ] denotes an indicator for the event in the parenthesis.
We create missing values of Y from the response propensity
model:

Table 1
Example 1: Empirical bias, empirical SE, and RMSE for various estimates of (A) marginal mean of Y and (B) conditional

mean of Y given X 1. Entries are multiplied by 100.

(A) Marginal mean (B) Conditional mean of Y given X 1

E(Y ) E(Y |X 1 = 1) E(Y |X 1 = 2) E(Y |X 1 = 3)

Methods Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE RSE

BD 0 45 35 −3 63 51 6 82 67 −1 98 77
CC Analysis 368 58 368 328 78 328 505 118 505 416 124 416
(a) Correct ANCOVA [X 1, X 2] 0 45 36 −3 64 51 7 83 68 −1 98 78
(b) Wrong ANCOVA [X 1] 398 58 398 328 78 328 505 118 505 416 124 416
(c) PSPP [s(X∗

correct)] −2 50 40 213 69 214 −271 111 271 −139 141 162
(d) PSPP [s(X∗

correct) + X 1] 0 45 36 −3 64 51 7 84 69 −1 99 78
(e) PSPP [s(X∗

wrong)] −20 47 41 43 65 63 −44 84 76 −145 107 154
(f) PSPP [s(X∗

wrong) + X 1] 0 45 36 −3 64 52 7 84 68 −1 99 78

Bias: empirical bias, the average of the deviation of estimates from the true value over the 500 replications.
SE: empirical standard error, the standard deviation of the estimates over the 500 replications.
RMSE: root mean square error, the average of the square root of the squared deviation of the estimates from the true value over the 500 replications.

logit(P (M = 0 |X1, X2))
= X2 + 0.5 ∗ I [X1 = 1] − 0.5 ∗ I [X1 = 2].

We impute the missing values of Y using predicted means
from the following methods:

(a) A correctly specified ANCOVA model of Y given X 1,
X 2, which we denote [X 1 + X 2].

(b) An incorrectly specified regression model for Y that
omits X 2, namely [X 1].

(c) The PSPP method with null g-function, which we de-
note [s(X∗

correct)]. The logit propensity score X∗
correct is

modeled as an additive function of X 1 and X 2 and
hence is correctly specified and conditions on X 1.

(d) Model (c) with X 1 included, namely [s(X∗
correct) + X 1].

This model correctly specifies the mean of Y given the
covariates, because it includes the main effects of X 1

and X 2.
(e) The PSPP method with null g-function and incor-

rectly specified propensity score, modeled as a linear
function of X 2 alone, which we denote [s(X∗

wrong)].
(f) Model (e) with X 1 included, namely [s(X∗

wrong) + X 1].
This model correctly specifies the mean of Y given the
covariates, because it includes the main effects of X 1

and X 2.

We choose 20 equally spaced fixed knots with a truncated
linear basis for the PSPP methods. We estimate the marginal
mean of Y and the conditional means of Y given X 1 as the
average of observed and imputed values from these methods.
For comparison purposes, we also show estimates from the
data before deletion (BD), obtained from the original simu-
lated data without deleting any values, and estimates based
on the CCs. Empirical bias, empirical standard error (SE),
and root mean square error (RMSE) are summarized in Table
1. CC analysis yields estimates with large biases and RMSEs.
The correctly specified ANCOVA model (a) yields unbiased
estimates close to the BD estimates. The incorrectly specified
ANCOVA model (b) yields biased parameter estimates, with
large biases and RMSEs. For the PSPP method, inclusion
of X 1 in the model is important for subgroup mean estima-
tion. Without X 1 in the model, the PSPP method (c) yields
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small empirical bias for the marginal mean estimate and a
large empirical bias for the conditional means of Y given X 1,
even though the propensity score model is correct and condi-
tions on both X 1 and X 2; including X 1 in the PSPP method
(d) yields estimates of the marginal mean of Y and condi-
tional means of Y given X 1 with small empirical biases, and
SEs and RMSEs very close to those of BD. When neither
the propensity score nor the mean function is correctly speci-
fied, the PSPP method (e) yields biased results; but the bias
is removed in model (f) by including X 1, because then the
regression is correctly specified.

Example 2. PSPP for estimating a conditional mean: includ-
ing the subgroup variable in the model for Y is not sufficient.
We now generate X 1 and X 2 as in Example 1; but the mean
of Y given X 1 and X 2 is simulated to include both a quadratic
term in X 2 and interactions between X 1 and X 2:

Y |X1, X2 ∼ N (μ(X1, X2), 1),
μ(X1, X2) = I [X1 = 1] + 3 × I [X1 = 2]

+ 5 × I [X1 = 3] + 10X2 + X2
2

− 1 + 4 × I [X1 = 1] × X2 − 10 × I [X1 = 2] × X2.

The logistic regression of M is additive in X 1, X 2 and a
quadratic function of X 2:

logit(P (M = 0 |X1, X2)) = 0.5 × I [X1 = 1] − 0.25 × I [X1 = 2]
+ 0.25 × X2

2 + 0.5 × X2 − 0.5.

We simulate 500 datasets with sample size of 1000 each. We
impute the missing Y as predicted means from the following
methods:

(a) A correctly specified regression model for Y, namely
[X 1 + X 2 + X 1 × X 2 + X2

2].
(b) The PSPP model with null g-function, namely [s(X∗)].

The logit propensity score X∗ is modeled as an addi-
tive function of X 1, X 2, and X2

2 and hence is correctly
specified.

(c) Model (b) with X 1 included, that is, [s(X∗) + X 1].
(d) Model (b) with X 2 and X2

2 included, that is, [s(X∗) +
X 2 + X2

2].

We compute empirical bias and RMSE as for Example 1. In
addition, we apply the above methods to 200 bootstrap sam-
ples for each dataset and derive bootstrap SEs σ̂BS and 95%
confidence intervals for the mean of the form μ̂ ± 1.96σ̂BS,
based on a normal approximation for the bootstrap distri-
butions. The coverage rate of this interval is estimated as
the percentage of the 500 samples with the 95% confidence
intervals covering the true value. The correctly specified AN-
COVA model yields estimates with small empirical bias and
RMSE and the coverage rate close to the 95% nominal level
(Table 2). CC analysis and the wrongly specified ANCOVA
model yield biased estimates and poor confidence coverage.
The PSPP methods (b)–(d) yield estimates for the marginal
mean of Y with small empirical bias, but are clearly biased
for the conditional means of Y given X 1 and Y given X 2.
In particular, unlike Example 1, adding X 1 to the g-function
does not correct the misspecification of the mean of Y given
X 1, because the estimates of the conditional means are still
biased.

In the second example, the PSPP method [s(X∗) + X 1]
assumes that for different levels of X 1, the splines of Y on
X∗ have the same shape; because the true model includes the
interaction between X 1 and X 2, this assumption is violated,
and it is this fact that leads to bias for the conditional means.
One solution is to include the interaction of estimated logit
propensity score and X 1 into the model, yielding a stratified
PSPP method discussed in the next section.

4. Stratified Penalized Spline Propensity Prediction
for Subgroup Means

Let Ic = 1 if X 1 = c; Ic = 0 if X 1 �=c, c = 1 , . . . , C , where C is
the number of categories of X 1. The stratified PSPP method
is based on the following model:

(Y |X∗, X1, . . . , Xp ; β)

∼ N

(
C∑

c=1

Ic sc (X∗) + g(X∗, X1, X2, . . . , Xp ; β), σ2

)
, (6)

where g is a parametric function indexed by unknown pa-
rameter β as before; Ic sc (X∗) = Ic (γ0c +

∑q

j=1 γj c (X∗)j +∑K

k=1 γqk c (X∗ − κk )q
+) is the fitted curve for the cth level of

X 1. Within each level of X 1,

E(Y |X∗, X1 = c, X2, . . . , Xp ; β) = sc (X∗)
+g(X∗, X1 = c, X2, . . . , Xp ; β).

Note that this method is not the same as applying PSPP
within strata defined by X 1, because the g-function does
not necessarily include the interactions of X 1 with the other
covariates. This method yields consistent estimates for the
conditional means of Y given X 1 (see Web Appendix B for
proof).

Example 2 continued. Row (e) in Table 2 shows the results
of applying stratified PSPP to the data in Example 2. The
empirical bias is small for the marginal mean of Y and the sub-
group means of Y given X 1, the RMSE for these parameters is
only slightly larger than for BD and the coverage rate is close
to the 95% nominal level. Thus the stratified PSPP has fixed
the bias for the subgroup means in the PSPP method. On
the other hand the empirical bias remains large for the coeffi-
cients of the regression of Y on X 2. For those parameters we
need another extension of PSPP, which we now describe.

5. A Bivariate PSPP for Estimating the Conditional
Mean of Y Given a Continuous Covariate

In this section, we consider estimating the conditional mean
of Y given a continuous variable X 2, based on a regression
model for Y given X 2. To estimate the regression coefficients
in this case we need to assume that the regression of Y on X 2 is
correctly specified; for concreteness we assume it is linear with
mean E(Y |X 2) = β 0 + β 1 X 2 + β 2 X2

2. To yield consistent
parameter estimates for the regression coefficients, we now
include the interaction of logit propensity score and X 2 in
the model for predicting the missing values of Y. Specifically,
we propose the following bivariate PSPP method, based on
the model:

(Y |X∗, X1, X2, . . . , Xp ; β)
∼ N

(
s(X∗, X2) + g(X∗, X1, X2, . . . , Xp ; β), σ2

)
,

(7)
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where g is a parametric function and s(X∗, X 2) is a bivariate
P-spline of X∗ and X 2. Estimation of the smoothing func-
tion s(X∗, X 2) requires bivariate basis functions, which can
be derived in several different ways. A natural extension of
the truncated linear basis for one dimension is to form all the
pairwise products of the basis functions. The resulting bivari-
ate basis is called the tensor product basis (Ruppert et al.,
2003). In this article, we choose five equally spaced knots for
each variable when fitting the bivariate splines using a tensor
product basis.

Example 2 continued. Row (f) in Table 2 shows estimates of
the parameters when missing values are imputed using the
bivariate PSPP method. This method yields estimates of the
coefficients of the regression of Y on X 2 with small empiri-
cal biases and RMSEs only slightly higher than those of BD
analysis.

The conditional means of Y given X 1 from bivariate PSPP
are biased. To get consistent estimates of both the conditional
means of Y given X 1 and conditional mean of Y given X 2,
a model is needed that includes the two-way interactions be-
tween the logit propensity score and X 1, and the logit propen-
sity score and X 2. This yields the following combination of the
stratified PSPP and bivariate PSPP models:

(Y |X∗, X1, . . . , Xp ; β)

∼ N

(
C∑

c=1

Ic sc (X∗) + s(X∗, X2) + g(X∗, X1, . . . , Xp ; β), σ2

)
,

where Icsc(X∗) and s(X∗, X 2) are defined as in Sections 4 and
5, respectively. When we applied this method to the second
simulation, a small number (8) of the 500 samples failed to
converge, but results for the other samples indicate that em-
pirical bias from this model is small for both the conditional
mean of Y given X 1 and the conditional mean of Y given X 2

(Table 2, row (g)).

6. An Example: Online Weight Loss Study
To illustrate our proposed approach, we consider data from
an online weight loss study conducted by Kaiser Permanente
(Couper et al., 2005). The study randomized approximately
4000 subjects to the treatment or the control group. For the
treatment group, the weight loss information provided online
was tailored to the subjects based on their answers to an
initial survey, which contained baseline measurements such
as baseline weight, motivation to weight loss, etc.; for the
control group, information provided online was the same for
all the subjects. At 3 months, a second survey was sent to all
of the participants, which collected follow-up measurements
such as current weight. Our goal is to compare the short-term
treatment effects; in particular, we compare the reduction of
the body mass index (BMI), defined as difference of 3-month
BMI and baseline BMI.

There were 2059 subjects in the treatment group and 1956
subjects in the control group at the baseline. At 3 months,
623 subjects in the treatment group and 611 subjects in the
control group responded to the second survey. Subjects in the
treatment group who remained in the study have much lower
baseline BMI than those who dropped out (P < 0.001), but
this difference is not seen in the control group (P = 0.47).

On the other hand, for the control group, subjects who re-
mained in the study have better baseline health, as measured
by the number of previous diseases, than those who dropped
out of the study (P < 0.01); this difference was not seen in
the treatment group (P = 0.56). These differences suggest
that interactions between treatment and baseline covariates
need to be included when estimating the propensity score.

We assume MAR in our analysis, and estimate the propen-
sity score by a logistic regression, with the inclusive crite-
rion of retaining all variables with P-values less than 0.20.
The MAR assumption is supported by the fact that we have
rich baseline information for characterizing the respondents
and nonrespondents, although it would be advisable to con-
duct a sensitivity analysis to assess the impact of viola-
tions from MAR, for example treating drop-outs as treatment
failures.

We apply the PSPP method and the stratified PSPP
method to the data as follows:

(a) PSPP method with null g-function, denoted as
[s(X∗)], where X∗ is the logit propensity score defined
in Section 2.

(b) Model (a) with treatment as a covariate, denoted as
[s(X∗) + treatment].

(c) Model (b) with baseline covariates, denoted as
[s(X∗) + treatment + g(baseline vars)].

(d) Stratified PSPP method with null g-function, denoted
as [

∑2
c=1 Ic sc (X∗)].

(e) Model (d) with baseline covariates, denoted as∑2
c=1 Ic sc (X∗) + g(baselinevars)].

Results are summarized in Table 3. SEs and the correspond-
ing confidence intervals are obtained from 200 bootstrap sam-
ples. The treatment group has a larger reduction of BMI after
3 months (−0.91 (0.09)) compared to the control group (−0.45
(0.10)) based on the CC analysis. The stratified PSPP method
(models (d) and (e)) and the PSPP method with the treat-
ment as a covariate (models (b) and (c)) yield similar results,
with the reduction of BMI ranging from −0.95 to −1.01 for
the treatment group and −0.40 to −0.46 in the control group.
The 95% confidence intervals for the treatment group do not
overlap with the control group suggesting a treatment effect
on the weight loss (models (b)–(e)). On the other hand, the
PSPP method without treatment as a covariate (model (a))
does not show the treatment effect (95% CI (−0.96, −0.65)
for the treatment; 95% CI (−0.76, −0.47) for the control).
Adding g-function into the model does not affect bias but
improves efficiency (models (c) and (e)).

In this study the stratified PSPP method (models (d) and
(e)) and the PSPP method with treatment as a covariate
(models (b) and (c)) yield similar results, a reflection of the
fact that the spline curves are almost parallel for the treat-
ment and control group. The slight departure from parallelism
is shown by the relatively larger differences of BMI reduction
between the two groups with the stratified PSPP method. In
practice, we recommend the stratified PSPP method for sub-
group means because it does not constrain the spline curves to
be parallel across the groups, and it retains the DR property.
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Table 3
BMI reduction within groups estimated by various methods

Treatment Control

Method Mean (SE) 95% CI Mean (SE) 95% CI

CC analysis −0.91 (0.09) (−1.09, −0.73) −0.45 (0.10) (−0.64, −0.25)
(a) PSPP [s(X∗)] −0.80 (0.08) (−0.96, −0.65) −0.61 (0.07) (−0.76, −0.47)
(b) PSPP [s(X∗) + treatment] −0.95 (0.11) (−1.16, −0.74) −0.46 (0.10) (−0.66, −0.26)
(c) PSPP [s(X∗) + treatment + g(baseline covariates)] −0.97 (0.10) (−1.16, −0.78) −0.46 (0.09) (−0.64, −0.27)
(d) Stratified PSPP [

∑2
c=1 Ic sc (X∗)] −1.01 (0.11) (−1.22, −0.79) −0.40 (0.10) (−0.59, −0.21)

(e) Stratified PSPP [
∑2

c=1 Ic sc (X∗) + g(baseline covariates)] −1.00 (0.10) (−1.20, −0.80) −0.42 (0.09) (−0.60, −0.23)

SE and 95% CI are based on 200 bootstrap samples.

7. Discussion
We have shown that the PSPP method yields an estimate of
the marginal mean of Y with a DR property, without the need
to center the covariates in the g-function. However, the PSPP
method lacks this property for conditional mean estimation.
We have proposed two extensions of PSPP that extend the DR
property to conditional means, namely, stratified PSPP for a
categorical predictor, and bivariate PSPP for a continuous
predictor. The key property of these extensions is that they
include in the prediction model the interaction of the logit
propensity score and the conditioning variable that defines the
estimand of interest. Simulations are presented as empirical
evidence of the robustness of these extensions.

We estimate the bivariate function s(X∗, X 2) using a P-
spline with a tensor product basis, but other spline-fitting
methods could also be applied. One choice is to use a thin
plate spline (Green and Silverman, 1994; Wood, 2003). It can
be fit using the tpspline procedure from SAS (SAS, 1992;
Wand, 2003; Ngo and Wand, 2004). We also fitted thin plate
splines for the simulation study in Section 5 but found some
samples failed to yield estimates due to negative variance es-
timates. For the other samples the results from the tpspline

procedure are comparable to those from a P-spline with a
tensor product basis.

More generally, a PSPP method that yields DR estimates
of the conditional mean of Y given a subset of the covariates
(X 1 , . . . , Xs), s < p, requires inclusion of the interactions
between the logit propensity score and (X 1 , . . . , Xs); clearly
the curse of dimensionality comes increasingly into play as
the size of s increases. A natural question is whether these
propensity score methods can be extended to yield robust es-
timates for the regression given the complete set of covariates
(X 1 , . . . , Xp). We note that in our setting the cases with Y
missing contribute no information to this regression, so there
is no gain in developing an imputation model. If it is the co-
variates rather than the outcome that have missing values,
however, then the incomplete cases do include information,
and it remains an open question whether propensity methods
can be used to increase the robustness of inference in such
situations. This question deserves future study.

We use a smoothing spline function to model the relation-
ship between Y and the logit propensity score, a method that
has a DR property. The DR property can also be achieved by
modeling the relationship parametrically using the augmented
orthogonal inverse probability-weighted estimators described

in the introduction. We are currently conducting extensive
simulations to compare the performance of these methods
with the PSPP method. In general, we find that the PSPP
method yields estimates with smaller RMSE and comparable
or better confidence coverages. These results will be reported
in a future paper.

To be reliable, PSPP depends on some degree of overlap
in the distributions of response propensities for respondent
and nonrespondents. In the extreme case where these distri-
butions do not overlap at all, the spline on the propensity is
being fitted to the range of propensities of respondents, and
then interpolated outside this range to the propensities for
nonrespondents. Such an interpolation is highly questionable,
as in any application of regression where the predictions are
to values of independent variables not seen in the data. No
method can be expected to work well in such situations, in-
cluding the inverse-probability weighted methods, for which
this situation leads to extreme or undefined weights. PSPP
may have the virtue of yielding more conservative (that is
larger) estimates of uncertainty than parametric models in
this setting, but sensitivity analysis may be a better option.

We apply the PSPP to data with univariate nonresponse
in this article. Extensions to monotone and general patterns
of missing data have been explored. We propose a stepwise
PSPP approach that preserves the DR property for the miss-
ing data in a monotone pattern and the part with least miss-
ing information is imputed first. More information for the
stepwise procedure can be found at Little and Zhang (2008).
For a general pattern of missing data, the sequential imputa-
tion methods of Raghunathan et al. (2001) can be extended
to provide PSPP imputations that condition on the spline of
the logit propensity that each variable is missing. An (2004)
discusses these extensions in detail.

8. Supplementary Materials
Web Appendices referenced in Sections 2 and 4 are available
under the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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