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- PRELIMINARY REPORT

HERMITE AND LAGUERRE INTEGRAL TRANSFORMS

INTRODUCTION

When a function K(a,x) is a known function of two variasbles a and
X, and the integral

is convergent, then Ip(a) defines a function of the variable a. This func-
tion is called the integral transform of the function f(x) with kernel K(a,x).
When the limits b, c are both finite we speak of Ip(a) as being a finite
transform of f(x).

We are going to consider two possible choices of the kernel K(a,x).
They are as follows:

O, 1, 2’ s e 9

0

2
K (nx) = e H (x), n

O, l, 2, LA N ]

L}

and K, (n,x)

n

e™™ L (x), n

where H, (x) is the Hermite polynomial and L, (x) is the simple Laguerre poly-
nomial.

The literature contains more than one definition for the Hermite
polynomials., We will give two of the most common here. In [1] the Hermite
polynomial of degree n is defined by

2 gn 2
= (21)ReXT L X
(1) Ho (x) = (-1)"e — e .
In [2] the Hermite polynomial of degree n is defined by
2 n 2
(2) H, (x) e (-1)™ . — e .

In this paper we will consider (1) as defining the Hermite polynomiasl. Form-
ulas such as (1) and (2) are often referred to as Rodriguez formulas,

1
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Following the definition (1) the first few polynomials are!

By (x) = 1,

Hy (x) = 2x,

(3) Hy (x) = k-2,

j

Ha (%) 8x> - 12x ’

n

Hy (x) = 16x%-L48x% + 12 .,

In what follows we shall be interested in some particular properties
of the Hermite polynomials. Among these the Hermite differential equation and
two differential recurrence relations, namely:

(%) Hy" (x) - 2xHy' (x) +2n Hy (x) = O,
(5) B (x) = 2 E_, (x)
(6) xH, (x) - Hy' (x) = Hppq (x) n = 0,1,2, oo

The differential recurrence relations (5) and (6) can be used to ar-
rive at the differential equstion (L4). To see how one might arrive at rela-
tions (5) and (6) let us consider another definition of the Hermite polynomial
of degree n.

Consider the expansion in powers of t of the function exp (2xt - tz),
Since exp (2xt - t2) = exp (2xt) exp (-t2), the coefficients of the powers of
t in the expansion will be polynomials in x. We will define Hy (x) by

e

(1) o (@t - 4%) = Y (s L

. ~ n=0
The polynamials H, (x) will be Hermite polynomials. From (7) we can readily
obtain the result

[n/2]

(8) Ho(x) = (-1)% n1 (2x)B-2K

ki (n - 2k)!

k=0
where [n/2] is the greastest integer in (n/2). The relation (7) is valid for
8ll x and t in the finite t plane.

‘By differentiating both sides of (7) with respect to x one can ar-
rive at (5) and the relations
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(9) ' (x) = 0,
(5) H' (x) = 2n Hyy (%), n = 1,2,3,.c. .

If, on the other hand, one differentiates both sides of (7) with
respect to t, uses known expansions, and compares coefficients, one arrives

at relation (6).

The Hermite polynomials are orthogonal over the interval (-o,),
The weight function is e~*2 and

T e 4 oA
(10) e Hy (x) (x) &x =
éL\ : o J& 2l n! P) L = 1
We define In (x) as \
- = ni (-X)k .
(11) Ly (%) z;; (n - k)! (k!)2
k=

We shall be interested in the Laguerre differential equation
(12) xLy" (x) + (1 - x) In" (%) + nlpn (x) = O.

Other properties which will be of interest are as follows:

(13) xL,' (x) = nlp (x) - nlp-y (x) ,
(14) Ly' (x) = Lhey (%) = Lpo,y (%),
=1
(15) Ly' (x) = = Lk (x) ’
k=0
(16) L, (x) = &Xdf (xPe-X),
n! dxi
) S0 if o m # n .
(17) [e™ L, (x) Iy (x) ax =
OL/ 1l if m = n .

From (17) we see that the Laguerre polynomials are orthogonal over
the interval (0,»). The weight function is e~X,
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I. HERMITE TRANSFORMS

1. The Transform

We will define the Hermite transformation of the function F(x) to be

(1.1) T, {F (x)} - fF (x) {e'xz H, (x')} ax .

00O
We would, of course, expect some restrictions on the function F (x) since, by
definition, the integral must necessarily be convergent. More will be said
later as to the character of F (x).

~ For an integral transformation, it would be desirable to have for an
inversion process a Tauberlan theorem, however, in our case we will settle.for
an Abelian theorem.

Since we are dealing with & set of orthogonal polyncmials we are led |
to consider the expansion of an "srbitrary" function in &n infinite series of
these polynomials as a possible means of obtaining an inversion formula.

-If we assume
(o]
(1.2) F(x) = Zanﬁn(x): w<xgw,

we can find the coefficients ay. If we assume the interchange of integration
and summation and take advantage of orthogonality property (10) of Hermite
polynomials we will have

T F
(1.3) o - il

We therefore have an inversion formulsa.

(o]

1

(1.4) F(x) = z et {F} Ho (x) .

1n=0
The fundamental problem here is seen to be the determination of the
conditions which will assure the convergence of the series




~ ENGINEERING RESEARCH INSTITUTE - UNIVERSITY OF MICHIGAN —
Z ay Hy (x)

n=0
to F (x). In answer to this question, much has been written. Probably the
most éomplete work being done in Chapter 9 of Szego [3]. (More work is to
be done later in order to obtain a workable set of conditions on F (x).)

2. The Basic Operational Property

The ‘Hermite polynomial is known to satisfy the differential equa-
tion (4). This leads us to try our transformetion on the expression

(1.5) L[Vl = V' (x) - 2xV' (x) .

We will assufie’in what follows that V (x), V' (x) are continuous and that

V" (x) is bounded and integrable on each finite interval. We also assume

V (x) and V' (x) are such that |V (x)] < Me®%*® ang |Vt (x)| < Me8%% for large
‘values of x and where a < 1/2.

Successive integration by parts of the integral

[o]

(1.6) JF L [V] eX% H, (x) dx

-~00

along with the informetion from (4) that

(1.7) [e-%2 Hy' (x)]' = -e~*% 2nH; (x)

will lead to the fundamental property of the Hermite transform
0 ¥ n = 0 y

(1.8) m, L) -
=2n Tn {V} 3 n o= l, 2, 5, e v

For a modification of formula (1,8)'Suppose V' (x) has an ordinary

discontinuity at x = x5, A process gimilar to the one followed in arriving
at formula (1.8) gives

((1,9) Ty {L [Vi} =
e%0% [V (x, +0) = V' (x,-0)], n = O,

e~%0% Ho (%) [V (x,+0) - V' (x
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. 3+ Effect of Hermite Transform on Derivatives

We mssume in the following that F (x) has continuous derivatives
p(m-1) (x) and a sectionally continuous derivative p(m) (x). We will assume
F (x) and its continuous F(m-1) (x) derivatives &ll are such that |F (x)[ <
Me®X for large values of x and @ < 1/2. One integration by parts of the in-
tegral

00

(1.10) | f X P (x) H (x) dx

-0

and the use of property (6) leads to

(La) T, o} o= T, P}, no= 0,12, ...

Now, applying (1.11) to F' we have

Ty {F" (x)} = Tpyy {F' (x} = Tpyp {E‘(X} .

Continued inductively, this process gives the property

(1.12) Ty {F(m) (X’)} = Thim {F (X)} »ono= 0,1,2, vu.,

L. The Transform of xT

It is known that when r is a fixed integer the following expression

is true.
(11 | r. = K £t Bk (),
+13) = ogr k! (r - 2k)!
' k=0

where [r/2] indicates the greatest integer in (r/2).

Now let us consider Tp Exr} for possible choices of r and n (r fixed
While ns= O, l, 2”‘...)Q

00 ['I‘/E] r! H.. (x)

. 1 “x2 . r-2k \*/

(L) 1, & - o f e™ Hy (x) 2 Kt (r - 2k)!
oo k=0

Since n > r we see that in the finite sum no Hg (x) can occur with an index
equal to n. Hence by property (10) we have the following formula:
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(1.15) T &) = 0, n>r .
Case 2. n=rx.
From (1.14) we see that
T {xn} = Nxnl, n o= r.
Case 3. n<r.
We see from equation (1.1L4) that in order to obtain a contribution,

n = r =2k or

When n = r - 2k
k = 0, 1,2, vu.., [r/2],
n = 0,1, 2, «es,
n<r.,

equation (l.1k) gives
20T 11 /x

(1.16 T, &) = ,
) ) [(r - n)/2]:

for n = O, l, 2, ey

n < r,

n r "‘2k.q

If, however, n = r - 2k - 1 there will be no contribution and we will have
(1.17) T Q(r} = 0, 'n = 0;1,2, ...

mn < T,

where k = 0, 1, 2, ... [r/2] -

5. Tables

The remaining pages of Chapter I contain tables of some simple trans-
forms and of simple operations which have already been considered or will be
considered in Chapter II.
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Table of Transforms

o

f (n) = \/p e“xé E, (x) F (x)dx

«00

£f(n) - F(x)
[ 0 n # 0
(1) ‘ (1) 1
J; n = 0
(2) Kf (n) (2) KF (x)
[ 0 P n > r
'\/; r! Py n = r
Jﬁxl (28T noS Ty r
: (5) [(I‘ _n)/a]: b4 n - pee Pk (5) X
0 , ST
n = r-2k-1
_vhere k=0, 1,2, ... [r/2]
r =
o , 2p ,
= 0,1,2..
(3) (4) ‘sin kx
(ul)Pkne'(kg/h) Ni,n = 2p+1
(,“l’)pknﬂe-(ﬁ/h)\gr, n = 2p
(5){ 0 | . n = 2p+ 1} (5) cos kx
where p = 0, 1, 25 ...
L
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‘Table of Transforms (cont.)

£ (n) F(x)
(6) qn «a®/4 \x , no= 0, 1,.2,.J (6) e
(7;) -2nel/+ \x , no= 0,1, 2,.f(7) X (1-2x)
#
(8) (-1)?*1‘32ne1/4~/§r , n o= 0,1, 2,./(8) &% (1+ 2x)
r
'(-l)p.'-:“\21’11{1&4'-l e-(k2/4) Ne,n = 2p
(9)4 “" (9) 2kx sin kx « k2 cos kx
0 s, n o= 2p+ 1
where p = 0, 1, 2, «eo- .
-
r
0 n = 2p
(10){ (1Pt o o~ (K%/4) Ni, n = 2p+1 [(10) ~(k® sin kx + 2kx cos kx)
where p = 05 1, 25 cev =

Table of

Operations

T )
1) F @ (1) fe*‘xg By (x) F (x) x
(2) F' (x) (2) f (n+ 1) n = 0,1, 2.,
(3) ﬁ% f‘(x) (3) £ (n+m) , n = 0, 1,2,.
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Table of Operations (cont.)

o

f(n-1) ’ n=1,2,3, ...,
b4 00 > X
(%) f F (t) 4t (%) fe“x f-F (t) dttdx, n = O
o 0
0 .
| £ (n) , n=1,2,3,
(5) F (x)+K , K& constant (5)

f (n) 2 n = 0,2,3, ¥
(6) F (x) + kx , K'a constant (6)

f (n) + K N P n=1

f (n) ; n#m
(7) F (x)+ Hy (x) (T) |
' n f (n) + 2%niWr, n=m

2n f (n) -, n=1,2,3, ...
(8) F" (x) -2x F' (x) (8%

0 ’ n=0

*This is (1.8), See condltlons on F, d/dx (F), d2/dxZ (F)there.

10
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II. FURTHER PROPERTTES AND EXAMPLES

OF HERMITE TRANSFORMS

1+
L]

X
Example: Find Tn+, f Y (®)at

0
y We will sssume V (t) continuous snd |V (t)l < Me8t® for large t and
g <1l/2.

(2.1) F (x) - f v (

‘Then F (x) is continuyous and sinee V (t) has the desired order property it is
eaglly seen, by the use of sinmple properties of the Riema:rm integral, that
F (x)] < MeBX® for large xand 8 < 1/2. Also F' (x) =V (x). Then T {F‘(x}
=T, {V (x)}, but since F' (x) is continuous and F' (x) posisesses the correct
arder property we ‘¢can use property ( 1.12) on transforms of derivatives and
write
X

Ty f F(tyat, = T, {F (xﬂ , n o= 1, 2, 3 vee-s
0
(2.2)
X | © X |
Te f F(t) dt} = f X f V{t)atdax, n = 0.
o . ~00 0

2, Inverse Operstor

We ‘consider now the opeérator L [V] given by (1,5) where V (x) and
V' (x) are continuous and |V (x)| < MeBXZ [y (%)) < NebXZ $or layge vélues of
x and &, b < 1/2. Also V"' (x) is bounded and integrsble on.esich finlte inter-
val.

We are now interested in considering Tp {L"l [V‘]}: « Proceeding form-
-ally we have

LVl = F (%) or VvV = L[F].
Hence

(2.3) F* (x) -2x F' (x) = V (x) .

11
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We now spply the Hermite Transform to equation (2.3). If F, F' and
I possess the neeessary properties we can apply (1.8) and write

«2n £ (n) = V (n)
ar

(2.4) r@ = Tl a1,

For the case n = O we have 0 = v (0).

In ‘other words,. the zero transform of V (x) must be zero. We mee
then that if we are to be able to use (1.8), V (x) must be sueh that

0

(2.5) fﬂe"XZV(x)‘dx = 0.,

00
We will encounter equation (2.5) sgain when we investigate the order property
of F' (x). It will be seen that unless equation (2.5) is trie no furietion F(x)
will exist for -equation (2.3) such that F' (x) will have the necessary order
property g8 x > o,

3. Qrder and Conmtimulty Properties of ¥, F', and F"

We will obtain F (x) from the differentisl equation
@ . ux2
(2.6) [ F' (=x)]' = V (x) e™* .

It now follows that

X )
(2.7) X% (x) = f v (t) e~t% at + ¢y,

0
vhere C, 1s a constant of integration.

‘We see that 1f F' (x) 1s to have the correct order property as
X > 40,

(2.8) Fo(x) = X f vV (t)e~t? at .

X
From equation (2.8) we arrive st
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(2.9) F(x) = - f elY2 fV (t)‘e“tz at dx + C.
? = - R : 't ) o
Q ¥y

where C, is & constant of integration.,

It ie egsily seéen from -equation (2.8) that F' (x) has the correct
| order property #8 x - +w, When x + <w we have '

(2.10) e X Ft (x) + K # 0O

and hence F' (x) does not possess the desired order property when X + =« unless
(2‘-‘5) is true.

| That F (x) has the correct order propérty follows immedistely from
‘the brder property of F' (x).

‘Continulty properties of F, and F' follow from properties of V (t)
‘and of the Riemann integral. Hence we have the following result.

Theorem 1. If V (x), V' (x) are continuous and V" (x) is bounded
‘and integrable on esch finite interval, snd if

.' fm e XV (x) dx = 0
o0
gnd 1f _
[V (x)] <M, pax® , M,, & constants,
V! (x)] < Mp gbX” , Mo, b constants

for x + +oand &, b < 1/2 then

n - l, 2, 3’ ew e &

-

(2.11)
' x s X 22 2
T {:L“l [V]} " -f e=X f &y f v (t) e*t” at 4y ax ,
O ’
o0 0 Y
e X 2 > 2
where "t [V] = - f e f V (t) et dt ay .
0 y

13
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L. Example: V (x) = =xT in Equation (2.3)

We see that only when r is an odd integer will the differential equa~-
tion have solutions with the desired properties necegsary for the use of form~
ula (1.8). To see that this is true it is only necessary to consider the inté-
‘gral '

% n-V@-3@-5)..1,7

2 > i1
(2.12) f e-t3R at = /2
0

=00

, neven
, nodd .
Hence, using transform (3) in the Table of Transforms and formula

| (2.11) from the previous seetion, we ¢an write some new transforms. For -equa-
| tion (2.3)'with V (x) = =x* we find

. A2
(2.13) F(x) = f »ey‘?f et 4T at ay + C, ,
0 y

where C, is & constant of integration. From transform (3) of the Table of
Transforms we find

Th {F (x» = 0 n>r
\/_:t, r!
Ty [F(xj - , n=r
(2.14) T n<r,
o [(r -n)/2] ! n=r.«-2k,
n=r -2k <1,
where n = 1, 2, 3, ...., r 18 an odd integer, &and .
k = O, l, 2,- de 9 [r/E]i
hy 2 X 2 X .2 N 2
(2.15) TO{F (x):} = f eX f ey f €7 4T gt dy ax + 02f e~X dx,
=00 20) y =00
where Cgvf e ax = Cg'\/_ "
-00

1h
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From (5):of the Table of Operstions; page 9 we see that we have here
an infinity of functions whiech will have the same trensform &t n = 1y 25 35 ees

‘Henee when n # O we can take C» @8 z&ro.

5+ "Some Simple Transforms

Let F (x) =1, == <x <+w, Since Hy (x) = 1 we use the orthogonal~
-1ty property of Hermite pquﬁomials to srrive at:

L 0, n 74 0,
(2.16) T, {1 =
Since T, 1s & linear trgnsformation we c¢an write the transform of a constant X,
nfed ==
‘and using formuls (2.\..16‘)
O AN n ‘% O;’

(2.17) Ty {K} = K\/; n = 0.,

6+ A Possible Use of Some Previous Results

Using formula (1.12), we find

(2.18) Com {cos x] = oy, {sin%

and ‘ ' '

(2.19) =Tp {s‘in vx} = Tpiy @QSJ% o

Combining equations (2.18) 'and (2.19) we obtain

(2.20) T, {ms ) = - Tneo {aosx} , nom 0, 1,2, e,
-and

(2,21) T, i8in x} = =T {sin .x} 5 » n o= 0,1, 25 guu &

We algo obtain, using property (1.12),

15
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(2!22) Tn {ex:} .= Tn+1 %x} s n -8 Q’ l, 2’ ceee Ty
which tells us that T, EeX] is constant . Similarly,
(2.23) =Tn "Ei‘v‘) = Tpyy {e’%
and _
(2d)  wT (e a, {xr -eaX} - Th, {xrea% .
Since
> 2
(2.25) f eX ginkxdx = O,
=00
(2.26) f e X% gin kx 2x dx = ke~(X%/8)m, [u]
w00
00
(2.27) f X cog kx 2x dx = O
=00

we can write the actual transforms for sin kx and cos kx:

Tn {Sin k-}c.} = O fOI‘ n = 2P 12 P = O, l, 2,' s e 9
(2&28) 5

Tn {sin kx} = (-1)P kB e~ (k%) x , n o= 20+ 1

Tn [CO'S k_x} = (a...]_)p’ K+l e'(kz/‘l") \/;t , no= 2p

Tn {GOB k.X} = O oy n = 2p+ l 3 p = O’ l’ 2’ ves "o
Since o

J exPrax ax = o(0¥/a)Nx, (4]

=00

we ‘can obtain the trensforms of %X and e~

(2.30) T, {sq)? = ’qn-e(qz/‘*)x/?: , n o= 0,1,2, .....

16
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III, APPLICATIONS

‘_];_'a Problem

In this section we shall discuss & type of boundary value problém for
which it might be advantageous to use the Hérmite transform.

/Ly
a8
i( { . x
0
O<y<=a
wo < x < oo
Fig. 1.

‘Gonslder the steady-state, two-dimensional case of the heat eguation

P (x),

I A ek

where the thermgl sonductivity K is proportional to X% gnd P (x) is a eontin-
UOUS SOUrce of heat within the solid. We shall conglder the case in which

P (x) = eX° ¢ (x), where |¢ (x)| < Me®XZ for large x and a < 1/2.

In 1light of the precegding equation, (3.l) becomes

(3:2) ‘ng"Ex‘)E +“)"—2U = @ (x),

9xZ Jx v

vhere |U (x,7) < MeP*Z for large x, b < 1/2. We will assume boundary condi-
tlons

(3.3) U (x,0) = 0, U (x;8) = 0.

‘The transformed problem becomes

17
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(3.4) wy (B,y) - 20w (ny) = gln)

and

(3+5) u (n,0) = 0 L u (n,8) = 0,
Then |

Cl e-y \/—211.*- 62 ey 42_11 - = l} 2, 55 L ™

1
1

u (n,y) =

'Using conditions (3.5) we find

¢, = 8£.(n) 1_¢-a oy
Cq 21 [:L 2 ginh (aJ?‘_n)}

3
(3.6) |
c. = & (n) 1= e‘a \/—2E
° 2n 2 ginh (a Jgn
Therefore,
(3.1 u(ay) = EE ['yr
2n
for n = 1’ 2-, 5, e
uyy (0,7) = & (0)
and X
n (0,y) = .é. g (0) y2 Oy +0Cs .

Again using econditions (3.5) we find
(3.8) u (0,y) "*é’ g () [y® ~-ay], n o= 0.
Henee,

(3.9) U (x,y) = T“ (0,¥) Tl'z ~u () By (3)

| U (x,y) = f—; [y (v -8)] f £7%% g (x) dx
(3.10) o
+Z\/;t gn ni Qﬁ [N (n:y)} Hp (x) ,

18
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‘ginh a N2n

| where N (n,y) = [}'Y Jon + (1 -e8 211) - {l

2. Remarks

The Laplace transformation process 1s not suited to the above problem
‘becguse the partigl differential equation involves the transform of & second
derivative and this transform involves the initial values of both the function
and its derivative. TFor separation of variables we would need P (x) = O.

We note here the expression [g(n)/2n] oceurring. . If we would demand

‘00

f fe"‘sz‘(x)';dx = 0

w0

we might then be sble to use (2.11) in our inversion process.

Thig problem #lso points out the need of having & -convolution prop=
erty [5]. More is to be done with this. ,

As the work in obtaining (5.10) was formal, & verifieation of the so-
lution would now be necessary. It can emsily be seen that the boundary condi-
tions are satisfied. Also if we sllow differentistion of infinite series,

U (x,y) will satisfy the differential equation.

We would, however, like to have some conditions on u (n,y) i»zhich
would ensure the existence of U (x,y). At present we can offer a necessary con-
dition -on u (n,y):

(3.11)

'This follows from
(5.12) e (o] < B o/ o7

C '8 constant, for all values of x and n [6]. More is to be done toward finding
~gonditions on u (n,y).

19
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IV. LAGUERRE TRANSFORMS

1. The Transform

We will define the Laguerre Transform -of the function F (x) to be
00

f F (x)e™* L, (x) dx .

| 0

Again ‘s in the case of the Hermite transform, we are faced with the necessity

of having some kind of an inversion process. We will proceed as hefore and

‘eonsider the possibility of the expansion of an "arbitrary" function in an in-
finite series of Laguerre polynomizls.

(k1) T {F ) -

If we assune

(4.2) F(x) = Zan L, (%), 0gx<w,
n=0
where
(4.3) an = f F (x) e Iy (x) dx ,
0

our inversion formuls for the transform is

(tyl) F(x) = i T, ) I, ()

n=0
This is arrived at by a process analogous to the one used for Hermite polyno-.
mials.

We seem sgain to have the following fundamental problem: What con-
ditions assure the convergence of the series

ian%n (x)

n=0
to the funetion F (x)? We again refer to [3].

20
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2. The Basic Operational Property

Consider the self-adjoint form
(4.5) L[V] = [xe=X V' (x)]' &% .

_ The Laguerre polynomial is known to satisfy the differential equation
(12) which can glso be written

(4.6) (xe=* L (x)]" + ne=x L (x) = 0.
Hence it is natural to try our transform on L [V].

We will assume in what follows that V (x), V' (x) are continuous and
that V" (x) is bounded and integrable on each finite interval. We assume V (x)
and V' (x) are such that |V (x)| < Me®* and |V' (x)| < Me®X for x large and
a < 1/2.

Successive integration by parts of the integral

0

(4. 7) f (xe™ V')' Ly (x) dx

0
‘as well as the use of equation (4.6) leads to

n = 0,

0 ’
(&.8) Ty {L [vﬂ . r {v (x)] ’ o= 1,2, 3 .. .

A modification of (4.8) is obtained if V' (x) is permitted to have an ordinary

disecontinuity at x = Xt

BN [i.v (%0 + o.)-%v (% = 0)] , n=0,
(9) T, fr v} -
\

Xg €701, (xo) [d—i{' V (x5 + 0) ';;;V (%5 - 0)] "nTn"{V(x%’

3. laguerre Transforms and Derivatives

We will assume F (x) continuous and F' (x) bounded and integrable.
Also we assume |F (x)| < Me®¥ for large x and a < 1/2. One integration by
parts of the integral
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o]

(%.10) f F'o(x) e Iy (x) ax

. Q
and the use of property (15) lesds to the followlng formula:

(4.11) T {E* (x.‘)} = i T @ - F(0) .
k=0

22
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Y. THE INVERSE OPERATOR AND THE LAGUERRE TRANSFORM

1. The Inverse Operator

We consider here the operatoi'
(5.1) LIV] = xV" (x)+ (L-x) V' (%),

-where V, V' are continuous, V" (x) bounded and integrable on each finite inter-
val, and
(5.2)
|71 < M, eP%

for M; and Mp constant, &, b < 1/2, and x + +o. In section 2 of Chapter IV
it has been shown that

L) = an {f , a
To {L[v]} = 0 s n

I

l, 2, 3’ “ace
(4.8)

I3

0.
We are now interested in eonsidering
(5.3) T, {1:1 [‘v}:} ,
Proceeding formally, we obtain the differentisl equation
! ‘
(5.4) XF (x)+ (Lex)F (x) = V (x),
where F(x) = L' [v].
We "apply the laguerre Transform &nd obtain
(5+5) T, {L [F]} = T, {Y} .
If F (x) and F' (x) 'are contimous, F" (x) bounded and integrable on each fin-
-ite interval and F and F' satisfy property (5.2), we can use property (L4.8) and
‘write :
(5.6) =nf (n) = v (n), n o= 1,2, 3 «os s

For the case n = O we obtain v (0) = 0, which indicates that the zero transform
of V (x) must be zero in order that such & funetion F (x) exist.

23
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‘2. Properties of F (x)
| We ecan ‘obtein F (x) from the differential equation
(5:7) (xe™X F')' = Ve=X ,

It follows from equation (5.7) that

o]

(5.8) xe X P = ,f V (t) et at w0,

X
where C, is & constant of integration. We see that C; mst be zero if F' is to
satisfy & property similar to property (5.2). When x + O we see that

(5.9) f V (t)etat = 0.
; |

Equation (5.9) is the condition on the zero transform of V (x) which we noted
in seetion 1 of this chapter. That F (x) and F' (x) have the correct order
‘property (5.2) is & ¢onseguence of the order property of V (x) and gimple prop-
‘erties of the Riemsnn integral. The contimmity properties follow ms & conse-
quence of elementary properties of the Rbemarn integral.

If V (x), V' (x) are continuous, V" (x) bounded and integrable on

esch finite interval, if
0

f—'e"‘xV(x)’d.x = 0,

o
and V (x) #nd V' (x) satisfy property (5.2), then

(5.10) o < o
%@ﬂWB*“J?if%fv“mﬁﬁwﬁ“
0 0 y

‘where

X [oe]
rwwg.n[gfku*&@,

0 y
oL
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