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ABSTRACT

Let e™* L,(x) serve as the kernel function for a linear integral
transformation, where Lp(x) is the Laguerre polynomial of n®l degree., Oper-
ational properties, including a convolution property, are derived here,
Transforms of particular functions as well as a few examples and applications

are given,
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TECHNICAL REPORT NO. 3
NEW OPERATIONAL MATHEMATICS

THE OPERATIONAL CALCULUS OF LAGUERRE TRANSFORMS

CHAPTER I

INTRODUCTION

1. Integral Transforms

When the function K(a,x) is a known function of the two variables
a and x and the integral

(1) I(a) = fc F(x) K(a,x) ax
b

is convergent, then the equation (1) defines a function of the variable a,
This function is called the integral transform of the function F(x) by the
kernel K(a,x)., One of the better known examples of such a kernel is

(2) K(a,x) = e™8%

which leads to the Laplace transform, ZExamples of other transforms can be
found in Sneddon[14] and Tranter [17].

It follows immediately from the definition (1) that, if F(x) and
G(x) are two functions which possess integral transforms by the kernel K{a,x)
then the integral transform of their sum is

c

(3) ch [F(x) + G(x)] K(a,x) dx = Jf F(x) K(a,x) dx +\jﬁc G(x) K(a,x) dx.
b b b
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If d is a scalar,

(4) fc d F(x) K(a,x) dx = dfc F(x) K(a,x) dx,
b b

Equations (3) and (4) express the fact that the integral transform is a linear
operator,

We will direct our attention in what follows to a particular choice
of the constants b, ¢, and the kernel function K(a,x) in the definition (1),
We will choose b = O, ¢ = ©, and the kernel will involve a Laguerre polynomial,

2, Properties of Laguerre Polynomials

We list here from the literature various properties of the Laguerre
polynomials which will be of use to us later,

Following Szegd [16] we define the Laguerre polynomials Lp(x) by
the following conditions of orthogonality:

© 0 if m % n
(5) f e™X Ly(x) Ly(x) dx =
0

1 if m=n,

We note here that Courant and Hilbert [5] denote by Lp(x) a func-
tion which is the same as n! Ly(x) in our notation. Laguerre uses the nota-
tion Fp(x) = n! Ly(-x).

We have the differential equations

xy" + (1-x) y' +ny = O, y = Ln(x),
(6) xz" + (L4x) 2+ (n+l) z = O, z = e X Ly(x),
and - X
xw" +u o+ (- u = 0, u = e? Ly(x).
2 L
The Rodriques! formula for Laguerre polynomials is
X n
e d -
(7) Ip(x) = = L (xPe),
n} dx
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Other properties which will be of interest are as follows:

(8) xLi(x) = nLy(x) - aLy_,(x),
(9) Ly(x) = Ly (%) - Ly_(x),
and -]
(10) Ly(x) = ‘i L (%)

k=0

It follows immediately from the relation

= nl (-x)k
(11) Ly(x) = .
(n-k)! (k)%
k=0
that the first few polynomials are
3
Lo(x) = 1, La(x) = 1-3% + 2 x2 - 36‘. ,
(12) Li(x) = 1l-x,
4
La(x) = 1-2x +%, Ly(x) = 1-hx + 3x2- . %3 + %‘
2

The Laguerre polynomials possess the following generating functions:

(13) et 5 (2Vxt) - i L, (x) ij ,

n=0

where Jo(2Nxt) is the zero order Bessel function

o0

(14) -1—3-—‘:0- exp (i%) = an(x) 1, lt] < 1.

n=0

Of particular interest in connection with the convolution property
of the Laguerre transforms will be the addition property

)
(15) wly(x) Ly(y) = f e"[;‘-;’ cos © cos (Wxy sin ) Ln(x+y-2\/;c;r cos 9,46,
0
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Relation (13) can be found in Rainville [13], the addition property
(15) follows from a property on Sonine polynomials in Bateman [1], and the
remaining properties can be found in Szegd [16] or Erdelyi [6].

3. Laguerre Kernels

A kernel function K(a,x) will be called a Laguerre kermel if it in-
volves a Laguerre polynomial, We will consider the three possible choices
e™X L (x), e"2 L,(x), and Ly(x) as Laguerre kernel functions,

In this section we will attempt to show how the need for knowledge
of properties of an integral transformation based on such a kernel function
as one of the above might arise.

Suppose one desired to obtain an advantageous resolution of the
differential form

(16) LIF(x)] = xF"(x) + (1-x) F'(x)

into a simpler form, The variable x will be allowed to range over the
semi-infinite interval from zero to infinity.

We will now follow a procedure outlined by R, V., Churchill in 1950
in some unpublished notes.

We will assume that the function F(x) has a continuous derivative
of the second order with respect to x, x 2 0, and F(x) is @1erx), r<1, as
x tends to infinity.

We shall determine a kernel K(a,x) such that the linear integral
transformation

(17) MF(x)] = £ F(x) K(a,x) dx

resolves the differential form L[F(x)] in terms of the transform T[F(x)].

Let us also assume that K(a,x) has a continuous derivative of the
second order with respect to x, on the range x 2 0.

We assume the following form of the resolution:

(18) T{L[F(x)]} = A(a) T[F(x)].
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We will consider the self adjoint form of the differential form
L[F(x)]. To do this we write

(19) r(x) = exp [fl_;sdx], p(x) = e%;

then

LIF] = eX[xe* F" 4+ (1-x) e X F'] = eX(xe X F')',
We now write the kernel in terms of a new function M,
K(a,x) = e* M(a,x).
The equation (17) now becomes

o]

(20) T[F(x)] = f e™X F(x) M(a,x) dx.
Jo

We see that for F(x) of the order CQerx), r < 1 that the integral (20) will
exist as long as M(a,x) does not become infinite of an order higher than a
positive power of X,

By successive integration by parts we can write

T{L[F]} = foo (xe™X F')t M(a,x) dx
0

00

Jf (xe™* M')'F dx + M(a,x) xe ™ F'(x)
0

0
(o]
- M'xe X F .
0
In view of form (18) for Tf{ L[F]% it follows tnat
0 o] 00
(21)f [(xe™X M')" -A(a) e XM Fdx = MxeXF | -M*xF .
0 0 0
If we assume that
MF| < My 5% My constant , s < las x> ,
IMF'I < Mo etx s Mp constant , t< l,as x +» ,

then the right hand side of equation (20) will be equal to zero,  Since the
functions M(a,x), xe™*, and A are independent of F it follows that
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(22) [xe™® M'(ayx)]" - Afa) e™* M(a,x) = O (0<x<w

The equation (22) along with the conditions that M(ax) is bounded at the
origin and does not become infinite of an order higher than a positive power
of x make up a Sturm- Liouville system, The values of N for which this
system has solutions that are not identically zero are the characteristic

numbers [see the first one of equations (6)]

of this system. Courant‘and Hilbert [5] show that the characteristic numbers
here are the negative integers A = -n, The characteristic functions corres-

ponding to these values of A\ are the so-called Laguerre polynomials, This
family of characteristic functions is our kernel,

The integral transformation (20) becomes

(23) T[F(x)] = fm e~X Ly(xJF(x) dxF(n) (n=0, 1, 2,+++);
JvO

we shall call it the Laguerre transformation and f(n) represents the Laguerre
transform of F(x), In view of equation (18) this transformation resolves
the.form (16) as follows:

(2k) T {L[F(X)]} = -n f(n) , (n=0, 1, 2, ««»).
If we would have considered above the differential form [see egs.(6)]

(25) LIF] = (xF')'-g,F

instead of the form (16) we would have arrived at the integral transformation

(26) E[F] = fm e—g Ln(x) F(x) dx = f(n) (n=0, 1, 2, +=+) ,
o -
This transformation is seen to resolve the form [25] as follows:
(27) T{LF} = -+ TIF , (=0, 1, 2,00).
Application of the above process to the form|see equations (6)]
(28) I*F] = xF" 4 (1+x) F!' + F

leads to the integral transformation

0

(29) T#[F] = f Lo(x) F(x) ax.
0
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The transformation (29) resolves the form (28) as follows:
(30) % B{r} = -nf(n) , (n=0, 1, 2,+4¢.).

We notice in the three integral transformations (23), (26), and
(29) that the function F(x) will have to satisfy different order properties
in order for the transformation integral to exist,

We will now abandon this approach and proceed by centering our
attention on the kernel function e ® Ly,(x) and we will derive various pro-
perties for a linear integral transformation built on this kernel function,
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CHAPTER IT

LAGUERRE TRANSFORMS

1« The Transform

The sequence of numbers f(n) defined by the equation

(51) £(n) = f°° F(x) eX In(x) dx (0 =0, 1, 2,eee),
0

where Ln(x) denotes the Laguerre polynomial of degree n, is the Laguerre
transform of the transform F(x). The integral transformation here will

be denoted by T{F(x)}.

_ The Laguerre transform of a function F(x) exists if F(x) is sec-
tionally continuous in every finite interval in the range x 2 O and if the
funetion is M(e®X), a < 1 as x tends to infinity. Under the conditions stated,
the integrand of the Laguerre integral is integrable over the finite interval
0Sx€< Xo for every positive number xo, and since Lp(x) does not become in-
finite of an order higher than a finite power of x :

le=x F(x) In(x)| <Me-bx , b>0,

where M is some constant, The integral of the function on the right exists,
Hence the Laguerre integral converges absolutely when a < 1,

The inverse of this transformation is represented here by the ex-~
pansion of F(x) in a series of the laguerre polynomials, The inversion
process here can be thought of as an expansion in an infinite series in terms
of the eigenfunctions ILn(x). This differs from the case of continuous spectra
where a Fourier integral theorem would replace the eigenfunction expansion,

The inverse of the Laguerre transformation is then

(32)  F(x) = Z £(n) Ly(x) = T {f(n)} (0O<x<w),

n=0
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Uspensky [18] gives the following conditions which will guarantee the con-
vergence of the Laguerre series: let

(o]

(1) JF e-X [F(x)]% dx exist for a certain constant a,
a
b _1
(2) JF x"7 |F(x)| dx exist for a certain value of b,
0

(3) F(x) be of bounded variation in a certain interval x-d, x+d,
and absolutely integrable in any finite interval; then

o0

i{F(x+O) - F(x-0)] = }:an Lp(x),

n=0

where o
ay = L/\ e X Ly(x) F(x) dx.
0

It is the necessity of taking into account the infinite values
of the variable that constitutes the essential difficulty of the problem of
the development of arbitrary functions in series of Laguerre polynomials,
The first two conditions above take care of the difficulties brought into
the problem in such a way, The summability of the series has been discussed
by E, Hille [7] and G. Szegd [16]. The Parseval theorem for the series has
been investigated by S. Wigert [19].

Wigert [19] states the following theorem: "If the function F(x)

is continuous for x 2 0, and the integral

wa e~@X |F(x)| dax
0
1

converges for a >»§, one has for x 2 0

[o)0]

1im \ f(n) Ip(x) r® = F(x)."
r+l 22;

i P
Wigert shows that the hypotheses given on F(x) imply limﬂny(n)l <1
which condition must be satisfied 1if

is to be convergent. Wigert demonstrates that the integra% condition is
necessary by considering the function F(x) = ebx, 1>b> 5 He shows the

9
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Laguerre series does not converge. This illustrates a situation which
occurs in other linear integral transformations. The function F(x) = eP¥,
1>Db>21, has a transform, namely:

2 n
7 {eP*] - %%—(fﬂn(l>b>§,

but its Laguerre series does not converge. In other words conditions on a
function insuring the inverse process are more severe than conditions neces=
sary for the existence of the transform.

It follows from the inequality

%
e"Z |Ln(x)| < 1,

o]
Szegd [16], that ii‘}jlf%n)| converges, then

Zf(n) L, (x)

n=0

n=0

will converge and will represent the inverse transformation. That this
condition is sufficient and not necéssary can be seen from the expansion

L eg = '(-l)n L (x)
L

The above expansion is given in Wigert [19].

2. The Basic Qperational Property

Let L[F] denote the differential form
(33) eX [xe X F']'.

When the integral T { L[F]} is integrated successively by parts and -nLj(x)
is substituted for L[Lp(x)] in accordance with Laguerre's differential equa-
tion, the following result is easily obtained.

Theorem 1: Let F(x) denote a function that satisfies these con-
ditions: F'(x) is continuous and F"(x) is sectionally continuous over each
finite interval contained in the range x 2 0; F(x) and F'(x) are #(e2X), a < 1,

10
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as x tends to infinity. Then T {L[F(x)]} exists and
(5"") T {L[F(X)]] = —nf(n) (n_—_o’ l’ 2}...).

Formula (34) represents the first basic operational property of
the Laguerre transformation T under which the differential operation L[F]
defined by equation (33) is replaced by the algebraic operation -nf(n).

We note here that in deriving the first basic operational pro-
pérty we have in a sense reversed the procedure used in section 3 when we
were establishing the form of the kernel which would annihilate form (33).

Relations (6) exhibited three forms of Laguerre's differential
equation. We have seen in Theorem 1 the result of applying the Laguerre
transform to the first of the three forms. In section 3 we obtained the
kernels of integral transformations which would annihilate parts of the
remaining forms in equation (6). “We will now investigate the result of
applying the Laguerre transform to the second and third equations in ex-
pression (6).

Let R[F] denote the differential form
(35) e X [xeX F']'.

Then by integration by parts we can write

0

T{R[F]} = ‘jP“;~2x Lp(x) [xeX F']' dx = 1/1 xF' e™® Lj ., (x) ax
0 0

00

+‘jp e X xL,(x) F' dx;
0 v

here we have used property (9) of Laguerre polynomials to write the first
integral on the right. Integrating by parts again gives

00

T {R[F]f = \/qm[xe"X Ll (x)1 F(x) dx +']p e~X xLn(x) F'(x) dx.
0 0

We can replace the expression [xe™ Lp,7(x)]' by -(n+l) Lyy1(x) in the first
integral on the right. In order to complete the derivation we must now find
T {XF? . By integration by parts we can write

T {XF'} = \/;m'e'x xLp(x) F'(x) dx = 2/;we'x[xLﬁ(x) + (1-x) Lp(x)] F(x) dx.

11
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Use of properties (8) and (9) leadsto the following:
xLh(x) - xLp(x) = (n41) L,5(x) = (n+l) Lp(x).

Hence ©
T {xF1} = f e=x [(n+l) In41(x) - nLy(x)] F(x) ax
0

i}

- (n+l) f(n+l) + nf(n).
We can now write T {R[F]E as féllows:

T {RIFI{ = -2(n+l) f(n+l) + nf(n).
We summarize the aﬁove in the following theorems.

Theorem 2: Let F(x) denote a function that satisfies these con-
ditions: F'(x) is sectionally continuous over each finite interval in the
range x 2 0, F(x) is 0(e®%X), a < 1, as x tends to infinity. Then T {xF'}
exists and

(36) T {xF'} = -(n+l) f(n+l) + nf(n)} (n=0, 1, 2,+++).

Theorem 3: Let F(x) denote a function that satisfies the conditions
of Theorem 1. Then T {RiF]} exists and

(37) T{RIF]} = -2(nsl) £(n+l) + £(n)  (0=0, 1, 2,-+-).

We note in equations (36) and (37) that we are led to difference
expressions in the transform.

Formula (37) will be called the second basic operational property
of the Laguerre transform.

Let S[F] denote the differential form
(38) (xF*)T.

When the integral T {S[F]} is integrated successively by parts and L£+l(x)
is substituted for Li(x) - Ly(x) in accordance with property (9) the follow-
ing result is readily obtained. '

Theorem 4: ILet F(x) denote a function that satisfies the conditions
of Theorem 1. Then T {S[F]} exists and

(39) T {S[F]] =. -(n+1) £(n+l) (n=0, 1, 2,---).

Formula (39) will be called the third basic operational property of

. the Laguerre transformation T under which the differential operation S[F] has
been replaced by the algebraic operaf%on -(n+l) £(n+l)
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CHAPTER III

OPERATIONAL PROPERTIES

1. The Iterated Operator

We note here that the differential form of the fourth order L2[F(x)]
is also resolved by the Laguerre transform. If each of the functions L[F(x)]
and F(x) satisfy the sufficient conditions for the validity of formula (34)
then the transform of the iterated differential form L[L[F]] can be written as

(40) T {12[F(x)]} = n2f(n)  (n=0, 1, 2,--+).
The process can be carried on in a similar fashion for iterations of higher

order.

2, Differentiation and Indefinite Integration

The operational properties which arise from considering the effect
of the Laguerre transform on differentiation and indefinite integration will
be given here.

Let F(x) be a continuous function whose first order derivative is
bounded and integrable on each finite interval in the range x 2 0. ILet F(x)
be Oe®%), a < 1, as x tends to infinity. One integration by parts of the
integral

[+}

Jf e ® Ly(x) Fr(x) dx,
0]

and use of property (10) leads at once to the formula
n

(1) T{F(x)} = Z £(k) - F(0).

k=0

Formula (L41) exhibits the image under the Laguerre transform T of
the operation of differentiation.

13
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In looking for a property in connection with indefinite integration
we would desire a relation which would give the transform of the integral

fox F(t) dtv

in terms of the transform of F(x). Let F(x) be a sectionally continuous
function over every finite interval in range x > O, and let G(x) denote the
continuous function

a(x) = fx F(t) dat.
0

Then - | -
f(n) = ‘/; e X @' (x) Lp(x) dx = L/g e X L!.,(x) G(x) dx

and it follows from relation (9) for L,(x) that

(42) f(n-1) - £(n) = -fme'x G(x)[Ips1(x) - Li(x)] dx = -g(n) (n=1,2,3,)
0

also, ' ©
£(0) =f e~X g1 (x) dx
0
= e"X g(x) + b/\ e™ G(x) dx
0 JO
= g(0),
and I

1}
[}
i
>
—
-
1
>
~—
(]
>
g

G(x) dx
= g(o) + g(1).
We have used in the above that Ly(x) = 1 and that Lj(x) = l-x.

From the difference equation (42) for g(n) and f(n) we have the
following conclusion:

Theorem 5: If F(x) is sectionally continuous on each finite inter-
val over the range O < x < w, and 0(e®¥), a < 1, as x tends to infinity, then

14
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(43) 1 [*r@)at) = £(n) - £(n-1) (n=l, 2, 3,-++),
[, 7

and for n = 0, g(0) = £(0).

In the above derivation we have used the fact that G(x) is 0(e8X), a < 1, as
x tends to infinity. Since F(x) has the desired order property it follows
by the use of simple properties of the Riemann integral that G(x) does have

the aforementioned order property.

Solution of the difference equation (42) for f(n) leads to the
conclusion:

Theorem 6: If G(x) is continuous and G'(x) sectionally continuous,
and if G(O) = 0 and G(x) and G'(x) are #(edX), a < 1, as x tends to infinity,
then '

(bh) T {6 (x)} = g(0) +g(1) +g(2) + -« +gn) (nsl, 2, -,

= g(o) (n = 0).

It is interesting now to compare formula (Lk4) with formula (L41).
We see that we have arrived at the same expression for the transform of a
derivative as we had previously with the exception that the term G(Q) does
not appear here.

3, The Inverse Operator

—

We will consider now the transform of the function L™1[F], where
L™! is the inverse of the differential operator L. Let Y(x) denote the
function L-1[F(x)]; then Y(x) is a solution of the differential equation

(15 HY(x)] = F(x).

Suppase that F(x) is a function which is sectionally continuous in every
finite interval in the range x 2 O, and that

00

(46) f X F(x) ax = 0
0]

that is, that the zero transform of F(x) is zero. It follows from equation
(45) that

(47) xe ¥ Yt (x) = fx F(t) e~ at
0

15
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is then a continuous function of x and has the limit zero as x tends to in~-
finity, Hence Y'(x) is continuous and @(e®X), a < 1, as x tends to infinity.
The second integral can be written

‘ X y /
(48) v(x) = ev F(t) et at dy + ¢ = L7I[F],
b5 )

where C is an arbitrary constant, The function (48) is continuous and can
be shown to have the necessary order property as x tends to infinity and
hence T{Y} exists,

According to Theorem 1 and equation (45) then

T{L[Y]} = -n TiY} = f(n);
thus
(h9) T{L-J’[F]} = = _f:_é_]:l__)_ (n:l,- 2, 3,1;-)‘

The value of the transform of L1[F] at n = O is given by

(50) TL-L[Fy = fw e‘XfXEX fyF(t) et dt dy dx + C .
0 o v Jo

The operational property concerning L-* can be stated as follows:

Theorem 7: Let F(x) denote a function which is sectionally con-
tinuous in every finite interval in the range x 2 O, and let £(0) = 0; also
let F(x) satisfy a certain order condition, Then f(n) exists and for each
constant C,

(51) T'I{'fr(ln)} = L[F(x)] = fx E}_'fy F(t) et at dy + C (n=1,2,+=s)
| o yJo

k., Miscellaneous Remarks

Theorem 2 gave us the transform of xF', We will now, for the sake
of completeness, derive the transform of xF. Suppose that F(x) is a function

16
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which satisfies sufficient conditions for its Laguerre transform to exist.
The integral

o0
f e Ln(x)[xF(x)] dx
0
can be written as

JF” =X [=(m+l) Lpsq(x) + (2041) Ly(x) = nly.1(x)] F(x) dx
0

by means of properties (8) and (9) of Lp(x). Hence

(52)  T{xF¢ ~(n+1) f(n+l) + (2n+4l) f(n) - nf(n-1) (n=1, 2, 3,*+),

3

(2]

Jf' xe=X F(x) dax (n = 0).
0

I

Subtraction of equation (36) from (52) leads one immediately to
the following operational property:

(53) T{x(F-F')} = (n41) £(n) - nf(n-1) (n=l, 2, 3,+-).
Equations (52)and (53) are noted to be difference relations.
The following theorem follows from the linearity of T:
Theorem 8: If T{F(x)} and T {G(x)} exist, then

(54) T{Cy F(x) + C2 G(x)} = C1 F(n) + Cz g(n),

where Cy and Cs are constants.

When G(x) = 1, then g(n) = 0 for n # 0 and g(0) = 1; according to
equation (54) then, if C is a constant,

It

(55) T {F(x) + C} £(n) when n =1y 2, v+ov ,

£(0) + C wvhen n = 0 .

i
i

The convolution property will be discussed in the next chapter. In
a later chapter on Sonine transforms +a . property will be_given which
relates Laguerre transforms to Sonine transforms.

17
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CHAPTER IV

THE LAGUERRE CONVOLUTION

;. Introduction

The convolution property of the transformation is one that ex-
presses the inverse transform of the product of two transforms in terms of
the two obJject funetions without use of the inversion formula. We quote
now from Churchill and Dolph [L4].

"As in the operational calculus based upon Fourier and Laplace transforms)
the convolution property makes possible a substantial extension of the tables
of transforms and it leads to alternate forms, even closed forms of solutions
of many boundary value problems.”

Let F(x) and G(x) be two functions which are sectionally continuous
over each finite interval in the range x 2 0, and ®(e®%), a < 1, as x tends
to infinity, and let

f(n) = L{F(x)}, &) = L{cx}.
Then,

(56) f(n) g(n)

it

]“emLMMFW)uj“eWLﬂwGW)w
Jv0O 0

"

f‘” eX F(x) fm e G(y) In(x) In(y) dy dx.
0 JO

It will be our aim to write equation (56) in the form

- (57) ﬂmgm>=;[”vt%w>mwnan
JO

The function H(t) will be the so-called convolution of the functions F(x)
and G(x).

18




— ENGINEERING RESEARCH INSTITUTE -« UNIVERSITY OF MICHIGAN —

2. The Addition Property

We see in equation (56) that 4if we could express the product Ly(x)e
Ly(y) in terms of a single Laguerre polynomial, we would then have a means
of obtaining the form (57).
With the aid of the following addition formula from Bateman [1]:
1 m T
(58) 2 M (mn+l) (1) [2(-xy)Z K]" Th(2i x k) Tg(21 y k) =

2n L ir R L
f exp [2(=xy)2 ke~ - 'imr] To[2ik(x+y) - 4(-xy)2 k cos¢] d¥
JO

we will establish the convolution property.
Let us now simplify equation (58). Since

n n 1 Lm (

(59) Tu(x) = (-1) -y x)

we can write relation (58) in terms of Laguerre polynomials. We will also
make the following substitution:
2ixk = x' , 2iyk = y'.
Expression (58) now becomes

(60) 2n Lp(x) Ly(y) = fgﬂ exp (\/;3; el Lp(x+y - 2\/;3; cos?) df,,
JO

where we have. dropped the primes.

We now assert that the imaginary part of the integral in expression
(60) is zero. Since

(61) el - cosr+isiny

the imaginary part of eguation (60) can be written as

(62) i [fx e\/-x-‘:’; coslrsin (\[E sin¥) Lp(x+y - EJ—xa_r cos¥) 4 ¥
J O

21

+f2_n e cosd sin Nxy sin¥) Ly (x+y - 2@ cos¥) :'

U
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In the second integral in the brackets make the following substitutiocn: let
2n ~ ¢ = ¢ . Then the second integral becomes

.f“ e‘/;‘;" cos § i Nxy sin @) L(x+y - 2Nxy cos @) af,
0

and the imaginary part of equation (60) is zero. We now have

(63) Lp(x) Lp(y) = %fﬁ e“/x—y €087, 05 Wxy sin¥) Ly(x+y - 24xy cosy) dY.
Jo

The form (63) follows by writing the real part of equation (60) in two parts
and letting @ = 2x -b’ in the integral with limits from x to 2r.

Equation (63) is the final form of the addition property as we
shall use it in obtaining the convolution property of the Laguerre transforms.

Since x «[x—y cosd

f e cos Wxy siny) a¥ = Ty
0

and Lo(x)

= 1 and L,(x) = 1-x we see that the above property will check for
= 0 and n =

l. When n. O we have

£

1 = }-\/ﬂ[ e@'cos'xcos(@ siny) d¥.
0

When n = 1 we have

(1-x) (1-y) * xy c08¥eos Wxy siny)[1-(x+y) + 2xy cosy] a¥

I
A
o

& e\/-37 cos¥, g (ﬂ sing) a¥

1l
A
S

T

(X+Y) f.lt e\/;y- COSXCOS(\/;;Y‘ SiIltY) dy
_\/—‘ f cos?( osWNxy sin¥) cosral.

This expression leads to the identity

(1-x)(1=y) = 1 - (x+y) + xy.

20
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3. The Convolution Property

In light of equation (57) we will now write the product (63) in
a form where the Laguerre polynomial will have an argument of a single vari=-
able. Egquation (63) will be transformed into

1
x+y+2'J§y e1g(x+y~t) coséf[hxy.(x+y+t)2]§z

64) =L (x = 3 L,(t) dt
(>numw‘LM&y Ty~ (xry 2 )2 ]2 o(t) at
by letting

t = Xty - 2\/x—y-»cos¥,

The product ( now takes the following form:
2exy .

(65) x2(n) g(n) ‘ﬁ[fm et Ln(t) F(x) 6(y) Higyt) at dy ax,

x+y-2~f——
where 1 ﬁ]

§(x+y-t ges%'[hx ~(x+y-t)2 12

[hxy - (x+y-t) ]%'

We will now proceed to interchange the order of integration in
equation (65) since we are aiming for a form similar to equation (57).

We see from Figure 1 that the interchange of the order of integra=-
tion with respect to y and t affects the inner two integrals as follows:

X+ +2 -
j”j‘y e Ly(t) F(x) G(y) H(x,y,t) dat dy =
x#y-2 \xy

f fx+t+2n =t Lo(t) F(x) G(y) H(x,y,t) dy dt.
+t2 N xt
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We can complete the picture now by interchanging the order of in-
tegration with respect to x and t. The product (57) can now be written in
the following form:

x+t+2'J_%
(66) «f(n) g(n) = (x) G(y) H(x,y,t)dy &Xj| dt
' fo [[ v./;c+t-2ﬂ :
where e'%(X+Y“t)coaé {[hxy (x+y-t)2]2 L}
- ny-(xw-t)a]z

The expression in the square brackets in the product (66) is &
function N(t) whose Laguerre transform iz the product =f(n) g(n). In this
sense N(t) is the convolution F(x) *G(x) of the functions F(x) and G(x).

The product (66) is not in a convenient form for checking our
result. With this end in mind we will attempt a simplification in the form
of the function N(t).

Consider the region of integration for N(t) as shown in Figure 2.

Figure 2.

In the integral

1

& . X+t42 \/'};t ‘é e %1[)_‘_ _( _3;)2]_2'!7
(67) N(t) = [ F(x) (x4y-t) COS )Ly~ {x+y- G(y)dy ax.
\/; x/;+t~2'J;% ) [hxy - (x+y-t)2]§f P

We will make the change of variable

(68) hxy '---(x+y-t)2 = hy*z ¥ y' > 0.

22
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Then,
(x=y+t) dy = lhy' dy* .

It follows from equation (68) that

(y-x-t)2 = L(tx-y'®),
or
yx=t = toNtx-y'Z,
Hence if
y>x+t then y-x-t = 2~th-y’2 s
and if |
y<x+t then y-x-t = tx-y12 ,

It is easily seen that tx ~ y'2 > 0. We consider
btx - by'® = Utx - bxy + (y#x-t)® = (x4y)2 - 2t(x+y) + t% - bxy + bxt

(y-x)® + t2 - 2ty + 2tx

(x-y+t)% > 0 .

i}

In light of the above we write the inner integral in equation (67) as follows:

o [ i) sl ool o
x+6-2 N xt [hxy - (x+y~t)2]Z

x+t42 Vxt B (xty-t) cosz {[ by - (X*Y"tU l G(y) dy -
ot [hxy - (x+y-t)3]%

In the expression (69) we 'will now make the change of variable indicated by
equation (68). The resulting integral is

(70) e™® EM Y2 (x4t Ntx-y'2) dy’
N
JO tx-y'2

0 —— v
+e-Jf e-Ntx-y'2 _CO8 ¥ q(xst+2 N tx-y'2) dy'
Nxt -

tx-y'2

23
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Combining the two integrals in expression (70) we obtain

Nxt —
(71) e“xf ¥ cos y! |} X-y'2 6 (xat-2 NEx-y2) +
JO \‘ 'tx_yfz .

e NIX-Y'2 G (xit42 'th-y’zil dy' .
We can now write a second form of the Laguerre convolution, namely,

n = i et ? o=x Xt cog tx-y2 «
(72) =f(n) g(n) 'fo Ly(t) fo e F(x)v i __;Lyz_ [e*'

G(x+t-2 N tx-y2) + e~ VIX-¥2 ¢ (x4t42 th-yz)J dy dx } dt .
In the above expression we have dropped the primes on the variable y.

In the inner integral in equation (72) we will make the following
trigonometric substitution:

y = +xt sin o,

then, '
dy = \/;1; cos 6 do ,

The inner integral now assumes the form

b

(73) f2 cos (J;c—‘&; sin ©) [e\/;c cos © G(x+t-2~/;c70 cos ©) +
0 _

e™NXt cos © g(x4t+2 Nxt cos G] de .

The substitution @ = s - @ in the integral

T
fz cos («]xt sin O,,_e"“lx_t cos © G(x+’c+2~];c_t cos 0,40
0

leads to the form

x
(7h) f éJ;E €08 © o5 (Wxt sin 8) G(x+t-2 Nxt cos ©) A6
JO

for the integral (73).
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We can now write a third form for the product (57). Use of the
integral (74) leads to the form ‘

(75) xf(n) g(n) = fw.e"t Ln(’u)[foO e~X F(x)fe\jx_t co8 @ g (Nxt sin @)
JO

0 JO
G(x+t-2 Vxt cos 6) do dx] dt.
The foregoing can be sﬁmmarized in the following theorem.

Theorem 9: ILet F(x) and G(x) be sectionally continuous functions
in every finite interval in the range x 2 0, and ®(e®X), a < 1, as x tends
to infinity. Then the product f(n) g(n) of their Laguerre transforms is the
transform of the function H(t); that is,

(76) T-Hr(n) g(n)} = E(t)

where H(t) is given by the following formula:

(77) H(t) = fe~x F(x) fﬂ &/xt cos © cos (Wit sin 6) G(x+t-axteos6)dd dx,
Jo 0 , |

4., Remarks

Let us note what has taken place in the previous section., We
started by considering the form

(78) =f(n) g(n) = fe"’.‘ F(x) fo-oe"y G(y) fve"/;;’ cos © cos (Wxy sin 6,
Jo S Jo o
Ln(x+y~2~/;;\,-r cos ©) de dy dx .

After a moderate amount of manipulation we arrived at the form

(79) =f(n) g(n) = fw et Ly (t) fw e X F(x) ‘fﬂ e"/;& o8 © og («/_xt sin @)
vO JO 0

G(x+t-2 Nxt cos ©) 40 dx dt .

We now notice that we have obtained the form (79) from the product
(78) by an interchange of role of one of the functions F(x), G(x) and the
Laguerre polynomial involved. One might conjecture at this point that given
an addition formula of the type
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b4
Pp(x) Pu(y) = Cf& F(x,y,0) Pp(x,y,0) do,
O .

where C is a constant, for the kernel functions one could immediately write

a convolution property for a calculus based upon these particular kernel
functions. At the present the only two addition formulas known to the author
to have been used to arrive at a convolution property are the Laguerre in

the present paper and the Legendre by Churchill and Dolph [4]. The afore~
mentioned interchange has occurred in both places.

Churchill and Dolph [4] consider the following product:

f(n) g(n) = fﬂ.F(cos k) Pp(cos w) sin u duf
JO 0

G(eos A)Py(cos ApinAd\,

where Pn(x) is the Legendre polynomial of degree n. They use the addition
formula

T
P,(cos X) Pp(cos p) =- %kjj Py(cosa) dv,
0

cos & = cos A cos i + sin A\ sin p cos v,
to derive their convolution property.

If we rewrite the form of the product f(n) g(n) and take advantage

of the addition property we can by the above conjecture immediately write
the convolution for the calculus of the Legendre transform.

We have

f(n) g(n) = %‘/xﬂ Py(cosv) sinv [Jpn F(cosu) sinu‘/qn G(cosp cosv
J O 0 0

+ sin p sin v cos B) dp d%] av.

This is the form given by Churchill and Dolph [4] in expression (9) on page
96‘

One difficulty at the present time in pursuing this further is the
lack of such asddition properties in the literature.

To give confidence in the work of section 13 and to get acquainted
with the convolution property we will consider here a check of the property
in a few simple cases and then suggest a possible check in the general case.

Suppose first that both F(x) and G(x) are constant functions. In
this case H(t) should be a constant function, since f(n) g(n) will be different
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from zero only when n=0, When Fk)and G(x) are both constant, H(t) takes the
following form:

(80) H(t) = JF°° e=X My f" olxt cos © (o (Wxt sin 0) Ms do dx
0 0
x
= Mfw.e'xf' é/-x_t 08 8 405 (Wxt sin 6) de dx,
0 0
where

F(x) = My, G(x) = Mpand MiMp = M.,

Since

fﬂ Nxt cos 6 4o Wxt sin ) a6 = =
0

we have o
H(t) = sz eX dx = M .
0

Hence H(x) is a constant and will have a transform equal to zero for n # O
and a transform of Mx for n = 0. This result is seen to check with the pro-
duct nf(n) g(n) for F(x) and G(x) constant functions. The product would be

zero for n # O and «MyMz = 7M for n = O.

As a second example let us consider the case G(x) ® 1 and F(x)
arbitrary. H(t) again should turn out to be a constant function. For F(x)
and G(x) having the above forms

]

(81) H(t) fm e=X F(x) f“ olxt cos 0 0 Wxt sin 6) do dx
Jo 0

= i/\m e™X F(x) dx
JO

xf£(0).

i

Hence H(t) is a constant and also is the constant we would hope for since in
this case the product =f(n) g(n) has exactly the value =f(0).

Consider now the special case when F(x) is arbitrary but G(x) = Ly(x)
Then by property (15) we can write
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(82) f(n) g(n) = f et Ly(t) Ly(t) at f eV Ly(x) F(x) ax
JO Jo

0 if m#n

it

= f(m) if n =m.

On the other hand g(n) = O when n # m and g(m) = 1. Hence the
left-hand side of expressioh (82) is f(n) wvhen n =m, and O when n # m .

Let us assume that F(x) and G(x) are arbitrary functions in the
sense that their Laguerre transforms exist and

i @) i £(n) g(a)]

converge and |F(x)| SMe®X , a< 5 -

From the product (79) we consider the function G(x+t-2 Jxt cos e).
We write this function in terms of its series expansion

oo

(83) G(x+t-2\xt cos 6) = i [JF e~Y G(y) Lp(y) d}} Ly (x4t-2 Nxt cos ©).
o
m=0

Substitution of the expression (83) into the product (79) leads to
the product

B xt(a) gln) - -fo‘” et 1y (t) U“ ¥ F(x Z f eV G(y) In(y) @
| ‘ m=0

f éfxt o8 © ,og (\[x_t sin 0) Im(x-t-,y'-a'\/—:g cos@) de dx}dt,
JO

Here we have interchanged the order of integration with reispect to @ and
summation. This is legitimate since

T x
e"Z"ZT +xt cos o Ln(x+t-2~/;c¥ cos 6) cos Wxt sin 0) g(m) e t"’x |<e X|g(m) |,

00
1

which is independent of ©, and from the assumption on Ig )| this series of
constants converge. 2

We have used the inequality

X 4
e’z an(x)l <1, (n=0, 1, 24+, x_go),
28
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This inequality can be found in Szegd [16].

By the addition property (15) we can 31mplify the expression (8k4)
as follows:

(85) £(n) g(n) = f‘”e-t Ln(t) | f“’ F(x)-z f”e*y 6(y) Lu(y) dy
Jo | Jo 0

n=0

Lyp(x) dx-1 Ly(t) at.

We now wish to interch;nge the order of summation and integration
with respect to x. This can be done since

e F(x) g(m) In(x)| = e3 [Fx)|eZ |n(x)| ls@)| < Mlg()]

Hence

) g(n) f 2 et Ly(t) £(m) g(m) Ly(t) dt.

We can interchange the order of integration and summation here since
t L
672 Ly(t) e~z In(t) £(m) gm)| < [£(m) g(m)| .
The product (84) can now be written

(86) f(n) g(n) = Zf et Iy(t) Ly(t) dtj e=X F(x) Ly(x) dx
0 J O

m=0

fw e™Y G(y) Lm(y) dy.
0

By the orthogonality property (5) of Lp(x) we see that every term in the ex=
pansion is zero except when m = n. Hence

[oe 2]

(87) f(n) g(n) = f e X F(x) Ln(x) ax f e”Y G(y) Ln(y) dy .
0 0

Expression (87) is an identity by definition of the Laguerre transform.

The conditions here . could be weakened by using the fact that if the
series is multiplied by e it can be integrated term by term from zeroc to
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infinity and it is only necessary to check the resulting series for ordinary
convergence. In view of this we write expression (85) as

£(n) g(n) = f et Ln(t)Z g(m)f X F(x) Iy(x) dx In(t) at
J 0 0]

m=0

= f e~t Ln(t)_Z g(m) f(m) Ly(t) at .
0 m=0

Hence had we required %ﬁ ) f(m) to converge instead of gi-o lg(m) £(m)|
we would have had suffic ent behavior to integrate the series. The same
argument will hold for the remaining interchange of integration with respect
to t and summation.

The convolution integral can be gilven a geometric interpretation.

Consider Figure 3 in connection with a possible means of obtaining the in-
terpretation.

N e

Vi X

Figure 3.

In the integral

00

b4 -
(88) H(t) = Efe“x F(X)f &xt cos 6oos Wit 5100)C(xhbe2 Nt cos0) 222
0 Jo

let
Nx = r,
and
12 = r2 4+t -2rt cos 6
then
(89) ff F(r2) iG(L2) e-T? 'J— cos \FY

(Y>0)
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We can write equation (89)as

(T Remp2
(90) H(t) = 2eb ff a(L?) F(r2) e~ (T30 Wt ¥) a .
(Y>0)

Hence we have the integral over the upper half plane where X, Y are coordinates
of the point in question and r and L are distances from the origin and the
point GfE;O) for fixed t, respectively.

Since the finding of the convolution property has been so closely
tied up with the addition property for the Laguerre polynomials it seems
natural to consider the question concerning the possibility of obtaining

the addition property from the convolution formula.

Consider the product

nf(n) g(n) = ‘/;m et Ln(t)\j;w e=X F(x).‘/;ﬂ éJ;%’COS-g cos Wxt sin o)

G(x+t-2 Nxt cos @) d6 dx dt

when F(x) = Ly(x) and G(y) = Ly(y). The product then becomes

(1) nf(n) gln) = f‘” et Ly(t) f“’ e ¥ Ly (x) f" ot cos ®cos Wxt sin o)
JO o JO

L, (x+t-2 Nxt cos @) d6 dx dt .

The left~hand side of the expression (91) is 0 if n # m and is n if m = n.
Hence if we write

hi8 .
H(x,t) = f it cos 0 o Wxt sin 6) Ly(x+t-2Nxt cos 6) do
0

the product (91) can be written

(92) ::fm e-‘f Ly(t) Ly(t] at = fm et 1,(%) [fﬁ e™® Lp(x) H{xst) dx:\ at .
JO Jo 0

We conclude from the expression (92) that

Ly (t) = f Y e In(x) H(x,) dt.
0
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If we assume the uniqueness of the Laguerre transform we can immediastely
conclude that :

ZH(xt) = Ly(x) Ly(t),
since this form of H(xt) will have the Laguerre transform Ly (t).

In light of the above we have obtained the additiom property (15)
of the Laguerre polynomials. That is :

ﬂim(t) Ly(x) = ,]Pm éJ;% cos © cosWxt sin 0) Lm(x+t~2'J;% cos ©) de.
0

shown that the function

f ¥ o™X Iy(x) H(xt) ax
0

has a convergent expansion,thenwe are justified in using the uniqueness
property.

The polynomial Ly(t) has an expansion, a finite one, and if it canbe
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CHAPTER V

TRANSFORMS OF PARTICULAR FUNCTIONS

1. Simple Transforms

It follows at once from the orthogonality property of the Laguerre
polynomials that when F(x) = K, K a constant, then

(93) fn) = 0 (n #0)
f(0) = K

The orthogonality property also shows that when F(x) = KLy(x),
(m=0, 1, 2.-.), K a constant, then

(o) f(n) = O (n # m)
f(m) = X

The following integral

° )" (=)
(95) . '/(; e~(1-t)x Lp(x) dx = 1t (.]—_—-—‘t-) » (n=0, 1, 2,*+*),
where 0 < t < 1,1leads to the transform
n n
' ~1 t
(96) T fetx] - ﬁI:%_ (;:ﬁ) 3 (n=0, 1, 2+«-).
Since
(97) [Fam e i) ax = (2 Bw @2,
0
= 0 (m <n) ,

m an integer, we can write the transform of xM,
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Since for x 2

convergent expansion

O and A\ any real number > O, we have the absolutely

e}

A .
(98) X =\ (1n (M)
['n +1) Z < )
n=0
we have
(99) TiM = (DT ) (A

Expressions (95), (97), and (98) can be found in Wigert [19].

2. Generating Functions and Laguerre Transforms

From the uniformly convergent power series
[o0]

(100) 2 exp <—5‘1> - ZLH(X) o, (lt] <1),

1-t 1-t
n=0

it follows that

(101) fm e~X Lp(x) I:Il_t exp (%ﬂ dax = tB([t] <1) .
0 - -

From the generating function

o0
(102) et Jo(ext) = ZLD(X) -;9;
n=0
it follows that
o 40

(103) f e Lp(x) [e¥ Jo(2Wxt)lax = = |
0

nl

From Erdelyi [6] we have the generating function

1~z 1=z

L 0
poh) L exp (-0 22 Io[e ﬁ—Y—L] - § 0 1) (lale).

n=0

It follows from equation (10)4) that

(105) J[q)e‘x Ln(X)Z/I%; exp (-z %;Z) I, [% (xyz)%]- dx = Ln(y) zn (|z <L)
JO
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3. Produects 9_1_‘_ Transforms

According to the convolution property (75) we can write some new
transforms. From properties (96) and (98) we find

(106) T{fo’o e=X xmfﬁ e"/-xt €08 © oo Wxt sin @) ef (x+t-2 Jxt cos 0)gq dx}
0 JO

= 0 when (n>m),

l-r \l-r Ler

x {=1)P+0n <rr)m( n ) (n < m).

l-r 1= m-n

and

From properties (96) and (101) it follows that

(107){T j:o e~X l;.l.%; e@(ﬁ):l jon elxt cos 0 ¢oq Wxt sin o)

eT (x+t-2 Nxt cos ©) ae dx}

pen

_—_—(l-r)n‘*l ’ (lr| < 1).

it
—~
3
'_J
—
]
)

This method can be used to write other transforms; however, the in-
tegrals will be in many cases diffiecult to evaluate.
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I,  TABLE OF LAGUERRE TRANSFORMS
f(n) (n=0, 1, 2,+¢+) F(x) (0<x<w)
1. 1 if n=m, O ifnfm L (x) (m =0, 1, 2,°++)
2. X if n=0, 0O ifn #0 X (constant)
. n n
5, (-1)” <_.’°_) etx (1<t<0)
1-t \1-t
L, 0 if a>m X0
(-1)"m! ifn=m
(=1)" m! (mzf.ln) ifan<m
1 -xt\
5 = exp (.m) (lt] <1)
tn
n 1 \=
7. Ly(y) t L exp (-t zﬁz) I, |20zl (1] < 1)
| -t Tt 1-t
oo b1
8. 0 ifn>m f et tmf e\/;: cos _9 cosWxt sin )
o 0 Jo 0 |
. r .
ucomaiigy R f I =
1o (l-—r) 1 o r(x+t-2 Nxt cos 0)gg at
n+m
o oL ( mn)
l r)m+l
when n < m
9. (-)" 2D ? o=t |- e@-‘(ﬂ) x e*fxt cos ©
(L)l 0 Lr \=r/lJo
cos (.J?C sin 0) er(x-{—t-zx&_% cos ©)
de dt
(|rl< 1)
10, (-1)% P(Ml)(;"\) » ,(x20, A>0a real number)
36




— ENGINEERING RESEARCH INSTITUTE + UNIVERSITY OF MICHIGAN —

5. TABLE OF OPERATIONAL PROPERTIES

F(x) £(n)
1.  F(x) fo e~ Lp(x) F(x) dx
2, F(x) + C, cl a constant f(n) (n=1, 2, 3,***)

flo) + C (n=0)
3. F(x) + Ly(x) igi; . in#m) (o)
L, Fr(x) if(k) - F(0)
k=0

5. J;x F(t) dt ﬁgﬁg - 2(n1) Ezé; 2, Byue)
6. xF"(x) + (l-x) F'(x) -nf(n) (n=0, 1, 2,+++)
7. xF(x) -(n+l) £(n+l) + (2n4l) f(n) - nf(n=-l)
8. xF'(x) -(n+l) f(n+l) + nf(n) |
9. x[F(x) -~ F'(x)] (n+l) f(n) - nf(n-1)
10. [xFr(x)]*¥ ~(n+l) f(n+l)
11. e=X [xe®* Ft(x)]' -2(n+1) f(n+i) + nf(n)

12, fw e™X F(x) f’t e&f cos @ :r‘f(.n) g(n)
0 0

cos Wxt sin @)

G(x+t-2 Vxt cos 6) a6 dx
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CHAPTER VI

EXAMPLES AND APPLICATIONS

1. Introduction

In this chapter we will indicate possible uses of the Laguerre
transform. It was for a while thought that the Laplacian operator in para-
loidal coordinates would lead to a natural application of the Laguerre
transform. Up to this time, however, nothing promising has resulted.

2. The Transform and Laguerre's Equation

Consider the differential equation with the parameter A\
(108) xF"(x) + (1-x) F'(x) + AF(x) = O.
The Laguerre transform applied to equation (108) gives
(109) (A=n) £(n) = O.

From equation (109) we see that for A # n f(n) = O for all n. Hence there
is no function F(x) satisfying equation (109) and the conditions under which
the first basic operational property is valid. For A = n the equation has
the polynomial solutions known as Laguerre polynomials. '

The transformation, when applied to the following differential
equation:

(110) X" (x) + (1-x) V' (x) + AV(x) = F(x)
gives rise to

: f(n :

v(n) = —L—l ; (n=0, 1, 2,"**).
A=-n :

If N = n we see that f(n) = 0 for all n. Thils is connected with a theorem

from differentisl equations to the effect that if \ = ny n an integer, then

the system (5) can have a solution only if F(x) is orthogonal to the solution
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of the homogeneous case. In this case F(x) would have to be orthogonal to
all the ILp(x). The Laguerre polynomials are complete, however,:and hence
F(x) = O. ‘

For N # n we can appeal to the expansion theorem to find V(x).
Hence

v = N I ).

A=
n=0

- The third basic operational property offers an example which leads
to a known generating function for the Laguerre polynomials. We can con-
sider here that the Laguerre transform can be used to establish that a par-
ticular differential equation is a form of Bessel's equation of index zero.

The Laguerre transform applied to the differential equation
(111) XV (x) + V' (x) + AV(x) = O
immediately gives

(112) ~(n+l) v(n+l) = -kv(n) y (=0, 1, 2,°++).

We note here that if A = n we would obtain

vintl) _ _n_

v(n) n+l
and Yenee v(n) = O for (n=1, 2, 3,¢++). Hence the only possible choice
of V(x) would be a constant function. The only possible choice of v(0) = C
which would satisfy the equation would be C = O.

When N £ n we obtain,

(113) v(o#l) . A (n=0, 1, 2,°+*).
v(n) n+l

From the difference equation (11%) we see that

v(n) = X v(0).
nt
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Hence appealing to the inversion formula we write

- (x) = V() i‘*n (x)

Vix) = V(0 = Lp(x),
' n! '
n=0

but n
Tfex Jo (2/—&)} = L ‘

Hence
M = e7‘~ Jo (2“[}\.-—}() .
v(0)

If the equation (111) is solved by series method one will obtain
Rainville's Case II [12]. The nonlogarithmic solution will be

(115) V(x) = ag Z (-1)® (%?)2 e
n=0
but z (-1 00 o g (2).
. (n!)2,
=

Hence for ag = eh and v(0) = 1 we have a previous result obtained from the
generating function of the Laguerre polynomials.

For ag = eM and v(Q) = 1 we have

[o9]
f- e=X eh Jo (2Nx\) dx = 1
o .
or

ekfme’x»Jo (V) ax = 1
0

or

oo

eX Jo (2VxN) dx = e-M .
Jo

We note here that if one makes the change of independent variable,
in equation (111), 2\hx = z, equation (111) will reduce to Bessel's equation
of index zero.

Lo
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Application of property (8) in the Table of Operational Properties
to the simple differential equation

(116) XF'(x) =F = 0

will serve to illustrate the use of another property which involves dif-
ference relations in the transforms.

The transformed problem becomes

(117) -(n+l) f(n+l) + nf(n) - f(n) = 0 ,
or
fotl) = 2L f(n) .
n+l

Hence f(0) is arbitrary and for

n = 03 £(1) = -£(0)

n=1: £f(2) = O

an 2: f(n) = 0.
Hence ©

F(x) = Z £(n) Ly(x)

n=0

£(0) + f£(1) (1-x)

£(0) - £(0) (1-x)

£(0) x ,

B

and the general solution of equation(116)is an arbitrary constant times x.
We note here that the equation
XF¥(x) + F(x) = 0

can not be solved by use of the Laguerre transform. Here we, would obtain
f(n) = £(0) for all n, and £(0) arbitrary. The series f(O)ﬁE% Ly(x) does
not comerge. The solution of this equation is F(x) = £ which is not bounded
at the origin.

The use of properties which introduce difference relations seem
possibly to be of use in considering problems in ordinary differential equa~
‘tions but the use of such properties when considering partial differential
equations does not appear promising.

L1
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3. Partial Differential Equations and the Laguerre Transform

We will apply the Laguerre transform to the following problem:

(119) Pu o, x P, (1) X - oo,
3y2 %2 o
(120) u(x,0) = F(x) lim u(x,y) = O,
y o+
(121) lu(o,y)| < M lu(xy)| < M e®%, a<l, as x + =,

where F(x) is a function such that its Laguerre series converges and

o]

" e £t

n='

converges.

Let u(n,y) = T {u(xy}+ The transformed problem becomes

(122) 3% . 5 F(n,y) = O
dy2
(123) u(n,0) = f(n) lim G(n,y) = 0 .

Here we use the symbol for ordinary rather than partial dif-
ferentiation since n is involved in the new problem only as a parameter.
Differentiation cccurs only with respect to y. We have used the conditions
(121) already in writing the transformed problem.

The general solution of equation (122) is

Cle‘ny+02e"/;}-’,

(12%) u(n,y) =
where C; and Cz may be functions of n.

In obtaining equations (123) we have interchanged the order of
taking the limit as y + « and integration with respect to x. If we verify
our final result, we need not be concerned with conditions under which these
processes may be interchanged. The simplest conditions under which this

k2
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interchange of order of operations is valid, as well as the one above con=
cerning partial differentiation with respect to y, involve the uniform con-
vergence with respect to y of the Laguerre integrals and the continuity of
the integrals with respect to the two variables x and y.

We see from the transformed boundary conditions above that we must
take Cz = O. The first condition sbove will give C;. Since W(n,0) = C; we
have Cy = f(n), and thus

(125) (n,y) = f(n) e</ny .
We can appeal to the inversion formule to write
(126) alxy) - i [£(n) eBY] Ln(x) .
n=0

Our aim now is to show that the series (126) found sbove represents
a function u(xft) which satisfies all the conditions of the boundary value
problem.

The above representation of u(x:’) is seen to satisfy the boundary
conditions. If y =0

which converges to F(x), and

lim u(xy) = Z [0] In(x) .

y -+ 0 n=o

We will for the present assume the interchange of two infinite
processes, namely differentiation and summation. We will see under this
interchange that u(xy) satisfies the differential equation. Consider the
following derivativesst

*u

52 =\ [n f(n) e‘f;;] Lp(x)

n=0

b3
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u i [£(n) em] 11 (x)

Hence the differential equation becomes

Z [n(f }’] Ly(x) + Z [f(n "‘/—:;’] X L" +i [f(n) “/—y](l-x)L‘( )y
n=0 n=0 n=0

or

i[f(n) e'*ﬁ"?][x Lp(x) + (1-x) Li(x) + n Ly(x)] .
=0

But since XLj (x) (1-x) L'( )+ nlyj(x)=01is Laguerre's differential equation
we see that the function

00

u(xy) = 2 [£(n) e VW] Ly(x)
n=0
satisfies the differential equation.

In order to justify the above operations we must show uniform
convergence of the derived series.

We first consider the series

(127) E'[n £(n) e] 1(x)

1=0

This series must converge uniformly with respect to y. We have by assumption
on F(x) that for each fixed x > 0, the series

00

(128) Zn £(n) Ly(x)
_ A=

L
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converges. According to Abel's test, the new series formed by multiplying
the terms of a convergent series by the corresponding members of a bounded
sequence of functions of y, such as e ny’ whose functions never inerease in
value with n, converges uniformly with respect to y. Series (127) therefore
converges uniformly with respect to y.

The terms of (127) are continuous functions of y, hence the func-
tion d2u(xy)/dy2 represented by that series is continuous with respect to y.

We next consider the series

(129) Z[f(n) e@] Ly (x),

n=0

and o0
) tete e (x)
n=0

X
Since |L,(x)] 5 e§ for all n and all x we have for x < Xy, where Xy is some

fixed valpe of X,

|£(n) LA(x)| < |n £(n)| M

we have

|e«~/_ny f(n) L;l(x)] < 'st.'é'“j;;f'

and hence the series (129) converges uniformly with respect to x, O < x < Xg.
This same statement holds for series (130). Hence the procedure used to show
that u(x;y) satisfied the differential equation was justified.

Let us consider a possible physical interpretation of the preceding
problem.

Write equation (119) in the form

o %3-’<e.x' %;%) ' %:? ‘(xe‘x %%) 0.

Thus we hawve a problem in steady state temperatures with conductivity
Ky = e ¥ in the y direction and Kz = xe™* in the x direction.

k5
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CHAPTER VII

SONINE TRANSFORMS

1. Introduction

In this chapter we will introduce a generalized Laguerre transform
which we will call the Sonine Transform. We will derive a few properties
and then show how the Laguerre transform and Sonine transform are connected
through a property on transforms of derivatives.

2, Sonine Transforms

The sequence of numbers fg(n) defined by the equation

(122)  fg(n) = fw e x® In(x) F(x) dx (n=0, 1, 2,*++) ,
0

where 13(x) denotes the generalized Laguerre polynomial of degree n, is the
Sonine transform of the function F(x). The integral transformation here will

be represented by the symbol T {F(x)].
For functions satisfying fairly general conditions, Uspensky [1§],

on the interval 0 < x < « the inverse of this transformation is represented
by the expansion of F(x) in a series of the generalized Laguerre polynomials

00

F =\ 8t  pp)1d = 711 {r,(n){(0< ).
(133) F(x) nzommﬂ) (n) Lg(x) {fa(n){(0< x < =)

3. Properties of Sonine Polynomials

The following list of properties of Sonine polynomials will be

useful.
(134) fm e x® 18(x) 18(x) d&x = M (n=m),
0 e
= 0 (n = m),

L6
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(135) I2(x) = 1 13(x) = atl=x
(136) 12(x) = V' (mee) ()

; o -3 )

L

(137) (n+1) 1,7 (x) - (2nta+l-x) LE(x) + (n+a) Lg.1(x) = O.
(138) xy" + (a4l-x)y' +ny = O y = L&(x).
(139) 13(0) ='£Pﬁa) .
(1k0) L1 = Ih @ .
(141) 8 (x) = (n+atl) L3(x) - (n4l) L, (x)

(142) 2 l(x) = 18(x) - 12 (x) .

4. Operational Properties

Let R [F] denote the differential form

(143) R [F(x)] = E; Bl X pr(x)]' .
X

When the integral T{R[F]§is integrated successively by parts and -n L2(x) is
substituted for R[L3(x)] in accordance with the differential equation (138),
the following result is obtained.

Theorem 10: Let F(x) denote a function that satisfies these
éonditions: F'(x) 1s continmous and F"(x) is sectionally continuous over
each finite interval in the range x 2 0, F(x) and F'(x) are 0(e?%), a < 1,
as x tends to infinity.

Then T{R [F(x)]? exists and
(144) TR [F(x)]} = -n fgy(n) (n=0, 1, 2,*++) .

We note here that the basie operational property for the Sonine
transform is the same as the first basic operational property for the
Laguerre transform.

b7
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The differential form of the fourth order RZ[F(x)] obtained by
applying the operator

: 2
R = x %;g + (atl-x) %E

to R[F(x)] is also resolved by the Sonine transform T F(x). The resolution
can be written at once as

(145) TfR2[F]} = -nT{RIFI} = n3f,(n), (=0, 1, 2,+**).

The addition property (58) is not appropriate for use in finding
a Sonine convolution property since the polynomial under the integral sign
will turn out to be a Laguerre polynomial and hence if we multiply two Sonine
transforms of the same order together we will find the function which has
this product as its nth Laguerre transform.

Let us suppose now that F(x) is contingous and F'(x) bounded and
integrable. We also assume F(x) is 0(e®X), a < 1, as x tends to infinity.

Integration by parts of the integral
00
(146) | f F(x) e=X x® 1&(x) dx
0

will lead to a property of the Sonine transform which involves derivatives.

Let Ft(x) dx = dv and e=X x2 I18(x) = u. This leads to

00

(147) TfF' ()] = ¥ x® Ii(x) F(x)

0

f (mse) e* 21 187 (x) P(x) ax
),

+7 eX ¥ 18(x) F(x) dx,
fo a
or
(148)  T{F'(x)} = f,(n) - (n+a) £,_q(n), (n=0, 1, 2,+++).

In obtaining equation (148) we have used properties (140), (141),
and (1k42).

Since d/dx Ip(x) = <L ;(x) we have

(149) Tn{F = -F(0) + fi(n-l), (n=1, 2, 3,***),

where fy(n-1) is the n-l Sonine transform with a = 1. When n = 0

TfFt (x)} = F(Q) - £{0)

48
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