J. Am. Ceram. Soc., 69 [10] C-241-C-242 (1986)

Subsolidus Phase Relationships in Si₃N₄-AlN-Rare-Earth Oxide Systems

ZHEN-KUN HUANG,*,* TSENG-YING TIEN,*,* AND TUNG-SHENG YEN*,*

Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109, and Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China

The subsolidus phase relationships in Si_3N_4 -AlN-rare-earth oxide (Me₂O₃ where Me = Nd, Sm, Gd, Dy, Er, and Yb) systems were studied. Solid-solution regions with the α -Si₃N₄ structure were delineated along the Si₃N₄-"Me₂O₃:9AlN" joins for all of the rare-earth oxide systems studied. The solubility limits of these solid solutions increased with decreasing size of the rare-earth ions.

THE EXISTENCE of silicon nitride solid solutions with the α structure (α -sialon) has been reported by Jack and his associates.^{1,2} This series of solid solutions can be regarded as the stuffed derivatives of α -Si₃N₄ which is analogous to that of the stuffed derivatives of the SiO₂ structure.³ The concept of stuffed derivatives of the SiO_2 structure can be described as Al^{3+} ion substitution for Si⁴⁺ ions in the SiO₂ structure; the charge deficiencies are compensated by locating large alkaline or alkaline-earth ions in the interstitial sites of the silica structure.

Single-phase α -Si₃N₄ solid-solution compositions should be located in the composition triangle between sialon compositions (Si_{6-x}Al_xN_{8-x}O_x where x=0 to 4) and the composition point "MeN: 3AlN"

65 Ceramic Drive, Columbus, OH 43214.

Shanghai Institute of Ceramics.
⁴Herman Starck Co., West Berlin, West Germany.
[§]Morton Thiokol Co., Danvers, MA.

Available both from University Microfilms, Ann Arbor, MI 48106, and from the Data Depository Service (ACSD-201), The American Ceramic Society, (where Me is a trivalent rare-earth ion) in the system Si₃N₄-SiO₂-AlN-Al₂O₃-MeN-Me₂O₃ as shown in Fig. 1. The compositions on the binary join Si₃N₄ and the composition point Me₂O₃:9AlN in the triangle Si₃N₄-AlN-Me₂O₃ contain compositions of α -Si₃N₄ solid solutions $Me_x(Si, Al)_{12}(N, O)_{16}$. This composition line is the intercept of the triangle Si_3N_4 -AlN-Me₂O₃ and the triangle sialon-"MeN: 3AlN." These relationships are illustrated in Fig. 1.

The relative size of the rare-earth ions and the size of the interstitial sites in the α -silicon nitride structure should be a factor determining the solubility limit of the α -sialon solid solutions in systems containing different rare-earth ions. The α -Si₃N₄ solid solutions on the join Si₃N₄- Me_2O_3 :9AlN containing Y_2O_3 have been reported previously by one of the authors.4 This paper will discuss the results in Si₃N₄-AlN-Me₂O₃ systems where "Me" is Nd, Sm, Gd, Dy, Er, and Yb.

SAMPLE PREPARATION

The starting powders used were Si₃N₄ (LC10),[‡] AlN,[§] and rare-earth oxides. Since both the silicon nitride and the aluminum nitride powders contained oxygen as an impurity, the compositions studied should be regarded as richer in oxygen than the compositions on the plane Si₃N₄-AlN-Me₂O₃. The purities of the rare-earth oxides were 99.9% or better. Powders of silicon nitride, aluminum nitride, and rare-earth oxides were weighed and mixed in an agate jar under absolute ethyl alcohol on a rotating mill for 2 h. Dried mixtures were hot-pressed at 1700°C under a pressure of 30 MPa in BN-coated graphite dies in a graphite resistance furnace under a mild flow of nitrogen. After hot-pressing, the furnace was cooled at a rate of $\approx 200^{\circ}$ C/min in the hightemperature region. Average weight loss was lower than 2% for all of the runs. Temperature and time used for hot-pressing are given in Table 1.[¶]

End points for hot-pressing were obtained where no further phase change was observed when specimens were heated for longer times.

RESULTS

Subsolidus Phase Relationships

Hot-pressed specimens were examined using X-ray diffraction with monochromated $CuK\alpha$ radiation. The results used to construct the subsolidus phase relationships are given in Table I. In these systems, the following compatibility triangles were observed for Si₃N₄-AlN- Me_2O_3 systems where Me=Gd, Dy, Er, and Yb: three-phase regions — (1) α - $Si_3N_4(s.s.) - \beta - Si_3N_4 - AlN$, (2) α - $\operatorname{Si}_{3}\operatorname{N}_{4}(s.s.) - \beta - \operatorname{Si}_{3}\operatorname{N}_{4} - \operatorname{Si}_{3}\operatorname{N}_{4} \cdot \operatorname{Me}_{2}\operatorname{O}_{3}$ (3) α -Si₃N₄(s.s.)-AlN-Si₃N₄·Me₂O₃, (4) Si_3N_4 ·Me₂O₃-AlN-Si₂N₂O·2Me₂O₃, (5) $Si_2N_2O\cdot 2Me_2O_3$ -AlN-Me₂O₃; twophase regions — (1) α' -Si₃N₄(s.s.)-AlN, (2) $\alpha' - Si_3N_4(s.s.) - Si_3N_4 \cdot Me_2O_3$. The above subsolidus phase relationships are the same as reported in the system Si₃N₄--AlN-Y₂O₃.⁴ The subsolidus phase relationships of these systems are plotted in Fig. 2. It should be noted that the compound Si₂N₂O·2Me₂O₃ does not lie in the plane sialon-MeN: 3AlN.

For Si_3N_4 -AlN-Me₂O₃ systems where Me=Nd and Sm, an additional compound (AlN·Me₂O₃ or Me₂AlO₃N) has

The system Si_3N_4 -SiO₂-AlN-Al₂O₃-MeN-Me₂O₃ (Me=Yb, Fig. 1. Er, Dy, Gd, Sm, and Nd).

Fig. 2. The system Si₃N₄-AlN-Yb₂O₃. (Note: Systems with Er_2O_3 , Dy_2O_3 , or Gd_2O_3 have the same behavior.)

CONTRIBUTING EDITOR - K. G. FRASE

Received February 18, 1986; revised copy received

May 13, 1986; approved June 9, 1986, topproved June 9, 1986. Supported by the National Science Foundation (U.S.A.) under the U.S.-China Cooperative Research *Member, the American Ceramic Society. *University of Michigan.

The system Si₃N₄-AlN-Nd₂O₃. (Note: The system with Fig. 3. Sm₂O₃ has similar behavior.)

Fig. 4. Solid solubility limit of α -Si₃N₄ solid solutions $Me_x(Si, Al)_{12}(N, O)_{16}$.

been observed. The X-ray patterns of these compounds are given in Table II.¹ The subsolidus phase relationships in these two systems are similar to those of the other systems. However, in addition to the threephase and two-phase regions given above, the subternary system Si₂N₂O·2Me₂O₃-Me₂O₃-AlN was divided into two subternary systems: Si₂N₂O·2Me₂O₃-AlN-AlN· Me₂O₃ and Si₂N₂O·2Me₂O₃-AlN·Me₂O₃-

Me₂O₃. The subsolidus phase diagrams of these systems are given in Fig. 3.

α -Si₃N₄ Solid Solutions

The α -Si₃N₄ solid solutions investigated in this study can be considered as solid solutions formed between Si₃N₄ and the composition "Me₂O₃·9AlN" or "Me_{2/3}(Al₃N₃O)" as mentioned in the previous section. Therefore, the solid solution

Table III. Compositions and Unit-Cell Dimensions of α' -Sialons with the Most Extensive Solubility

Compositions	a (nm)	c (nm)	c/a
$\begin{array}{c} Nd_{0.6}Si_{8.5}Al_{3.5}O_{1.7}N_{14.3}\\ Sm_{0.6}Si_{9.2}Al_{2.8}ON_{15}\\ Gd_{0.6}Si_{9.2}Al_{2.8}ON_{15}\\ Dy_{0.67}Si_{9.4}Al_{3}ON_{15}\\ Er_{0.75}Si_{8.5}Al_{3.5}O_{1.25}N_{14.75}\\ YbSi_{7}Al_{5}O_{2}N_{14} \end{array}$	0.785 0.785 0.785 0.786 0.786 0.787 0.789	0.572 0.572 0.572 0.573 0.574 0.575	0.729 0.729 0.729 0.729 0.729 0.729 0.729

of the α -Si₃N₄ structure in these systems can be written as $Me_x(Si_{12-4.5x}Al_{4.5x})$ - $(N_{16-1.5x}O_{1.5x})$, i.e., $Me_x(Si, Al)_{12}(N, O)_{16}$. As shown in Fig. 4, the lower limits of the solid solutions for all rare-earth ions started at x=0.33 with the same hexagonal lattice parameter of a=7.80 Å and c=5.69 Å. The upper limit of the α -Si₃N₄(s.s.) region increased as the size of the rare-earth ions became smaller. The values of x are plotted as a function of size of the rare-earth ions in Fig. 4. The lattice parameters of the solid solutions at their upper solubility limits are given in Table III. It shows that the lattice parameters of the limiting compositions are almost the same for compositions containing different amounts of different rare-earth ions. These results indicated that the α -silicon nitride structure can only tolerate a certain amount of distortion. Figure 4 can be used to extrapolate solid solubilities for other rare-earth ions. However, it is not known whether this curve can be used to predict the solubility of alkaline-earth and alkaline metal ions in α -Si₃N₄ solid solutions.

References

'S. Hampshire, H. K. Park, D. P. Thompson, and K. H. Jack, "α'-SIALON Ceramics," *Nature (London)*,

¹S. Hampsine, 11.4.1.1.4. K. H. Jack, "α'-SIALON Ceramics," *Nature (Lonaon)*, 274 [5674] 880-82 (1978). ²H. K. Park, D. P. Thompson, and K. H. Jack, "a'-SIALON Ceramics," *Sci. Ceram.*, **10**, 251 (1980). ³K. H. Jack, "The Characterization of a'-SIALONS and the α'-β' Relationships in SIALONs and Silicon Nitride": pp. 45–60 in Progress in Nitrogen Ceramics. Edited by F. L. Riley. Martinus Nijhoff Pub-lishers. The Hague, The Netherlands, 1983. ⁴Z. -K. Huang, P. Greil, and G. Petzow, "Formation of α'si₃A₄ Solid Solutions in the System Si₃N₄-AIN-Y₂O₃," J. Am. Ceram. Soc., **66** [6] C-96-C-97 (1983). ⁵M. R. Marchand, "Oxynitrides a Structure K₂NiF₄, Les Composes Ln₂AIO₃N," C. R. Hebd.

 K_2NiF_4 , Les Composes Ln_2AIO_3N ," C.R. He Seances Acad. Sci., Ser. C, **282**, 329–31 (1976).