

Formation of N-phase and Phase Relationships in MgO-Si₂N₂O-Al₂O₃ System

Zhen-Kun Huang, Steve D. Nunn,* Irene Peterson, and Tseng-Ying Tien*

Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109

Formation of N-phase in the system Mg,Si,Al/N,O was studied. Its composition was confirmed to be MgAl₂Si₄O₆N₄ (2Si₂N₂O·MgAl₂O₄). Subsolidus phase relationships in the MgO-Si₂N₂O-Al₂O₃ system were determined. The results are discussed by comparing with two similar systems, CaOand Y_2O_3 -Si₂N₂O-Al₂O₃.

I. Introduction

REW et al.¹ reported a compound "N-phase" with a proposed composition of Mg₂AlSiO₄N. These authors described this compound as a nitrogen-containing petalite having an orthorhombic structure with a = 5.6282, b = 14.331, and c = 4.9682 Å.

Nunn et al.^{2,3} found a phase in the system Mg,Si,Al/N,O with an X-ray diffraction pattern very similar to the one reported for N-phase by Drew. The compound found by Nunn lies on the join MgAl₂O₄-Si₂N₂O in the system Mg,Si,Al/N,O. Nunn et al.^{2,3} reported that this nitrogen-containing compound has a composition of 2Si₂N₂O·MgAl₂O₄ (MgAl₂Si₄O₆N₄). This compound crystallizes in an orthorhombic structure with a =14.1213, b = 4.9387, and c = 5.5746 Å. The thermal expansion coefficient of the compound was also characterized with high-temperature X-ray diffraction equipment in the range from room temperature up to 1200°C. The thermal expansion coefficients along the a, b, and c axes were reported as 1.46×10^{-6} , 3.39×10^{-6} , and 2.08×10^{-6} , respectively. Table I lists the X-ray data from both Nunn and Drew for comparison. Both Nunn and Drew designated this phase as N-phase.

It should be indicated that the compositions reported by Nunn and Drew are quite different, even though they have very similar X-ray diffraction patterns. Therefore, there is need for further work to clarify the composition of this phase. Like cordierite, N-phase has a very low linear thermal expansion coefficient, 2.31×10^{-6} , low melting temperature, 1450°C (incongruently), and is compatible with Si₃N₄.³ This implies the possibility of using N-phase as the second phase in a silicon nitride composite for lowering the sintering temperature and strengthening the combination between matrix and second phase. For this reason, an understanding of the compatible relationships of N-phase and neighboring phases is necessary. The present work studied the formation of N-phase and the phase relationships in the MgO-Si₂N₂O-Al₂O₃ system.

II. Experimental Procedure

Two compositions, $MgAl_2Si_4O_6N_4$ (NN, proposed by Nunn^{2,3}) and Mg₂AlSiO₄N (ND, proposed by Drew¹), were prepared and studied. Starting powders used were MgO (99.9%,

Baikowski International), Al₂O₃ (Sumitomo, AKP-50), SiO₂ (99.9%), Si_3N_4 (Ube, SN-E10, N > 38.0 wt%, O = 1.4 wt%), and AlN (Starck, N 33.5%). Powders were weighed and mixed in an agate mortar under isoprenyl for 1.5 h. The mixtures were dried and then isostatically pressed into a pellet (5 mm \times 10 mm in diameter) under pressure of 300 MPa. Solid-state reaction was carried out by firing the pellets embedded in BN powder for 2 h. Some pellets were also fired for 2 h in a BN powder bed under 1.5 MPa nitrogen pressure (GPS) at 1640°C. Some of the compositions were hot pressed in a BN-lined graphite die for 1 h in flowing nitrogen under a pressure of 35 MPa at temperatures 1400° or 1550°C. After firing, some melted samples were annealed at 1300°C for 20 h to crystallize the crystal phase. The samples with weight loss <4 wt% after firing and <2 wt% after hot pressing were used for analysis. The X-ray diffraction technique was used for phase identification. The N-phase composition was also verified using electron probe microanalysis (EPMA).

III. Results and Discussion

(1) Formation of N-phase

Table II lists the firing conditions and phase compositions analyzed by X-ray diffraction. For the NN composition, the sample after firing at 1450°C started to produce liquid. This NN composition melted at 1650°C. Reaction at <1450°C formed only a medium amount of N-phase even under hot-pressing conditions. Nearly single-phase material could be obtained by firing for 2 h at >1450°C or by annealing the melted samples for 20 h at 1300°C. It seems that the formation reaction of N-phase occurs rapidly when liquid emerges. Some neighboring compositions also showed the existence of N-phase. Table III lists the EPMA results from the NN samples fired under nitrogen overpressure after crystallization, showing a composition close to that of MgAl₂Si₄O₆N₄ for N-phase.

For the ND composition, two different batches of starting powder mixtures with and without AlN (Table II) were prepared and studied. This ND composition melted at 1600°C. Under all firing conditions or after crystallization from melted samples, no N-phase was observed, but a multiphase assemblage composed of forsterite (Mg₂SiO₄), spinel (MgAl₂O₄), 12 H'-polytypoid, and a trace of magnesia was obtained. The existence of the phase 12H' $(Mg_{2,3}AI_{0,7}Si_3O_{2,3}N_{4,7} \text{ or } 2.3MgO \cdot 0.7AIN \cdot Si_3N_4)$ had been reported by Kuang *et al.*⁴ in the MgO-Si₃N₄-AlN system.

These results support the composition MgAl₂Si₄O₆N₄ for N-phase, instead of Mg₂AlSiO₄N. The composition Mg₂Al-SiO₄N reported by Drew was located in a four-phase region, Mg₂SiO₄, MgAl₂O₄, 12H'-polytypoid, and MgO.

Phase Relationships (2)

Nunn et al.^{2,3} has established the subsolidus phase relationships in an oxygen-rich region of the Mg-Al-Si-O-N system bound by the compounds SiO₂, Mg₂SiO₄, MgAl₂O₄, Al₂O₃, and β' -SiAION. The N-phase can be compatible with Si₃N₄, Si₂N₂O, Mg₂SiO₄, MgAl₂O₄, 2MgO·2Al₂O₃·5SiO₂ (cordierite), and X_1 phase. The present work checked some compositions

T. Ekstrom-contributing editor

Manuscript No. 193494. Received June 15, 1994: approved September 20, 1994. Supported by the Ceramic Technology Project, DOE Office of Transportation Technologies under Contract No. DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

^{*}Member, American Ceramic Society.

a = 1	$MgAl_2Si_4O_6N_4$ a = 14.1213, b = 4.9387, c = 5.5764					$Mg_2AISiO_4N^*$ a = 5.6282, b = 14.331, c = 4.9682			
d (calc)	d (obsv)	I/I1	h k l	d (calc)	d (obsv)	I (obsv) [†]	h k l		
7.0606	7.0548	3	200	7.164	7.192	vvw	020		
5.1866	5.1820	5	101	5.239	5.232	vw	110		
3.5970	3.5973	85	301	3.642	3.648	ms	130		
3.5766	3.5739	80	111	3.605	3.606	8	111		
3.5303	3.5298	100	400	3.582	3.586	ms	040		
2.9075	2.9068	40	311	2.937	2.941	m	131		
2.7882	2.7867	9	$0\ 0\ 2$	2.814	2.817	W	200		
2.7354	2.7395	3	102						
2.5933	2.5916	4	202						
2.5195	2.5189	4	501						
2.4694	2.4695	39	020	2.484	2.486	m	002		
2.4280	2.4275	41	012	2.449	2.451	m	201		
2.3989	2.3995	4	302						
2.3929	2.3928	6	112		0.054				
2.3309	2.3321	8	220	2.347	2.351	vw	022		
2.2960	2.2957	10	212	2.317	2.316	mw	221		
2.2443	2.2441	4	511	2.271	2.270	VW	151		
2.0358	2.0363	20	321	2.052	2.054	m	132		
2.0005	2.0005	4	412	2.022	2.023	W	241		
1.8970	1.8975	18	/01	1.924	1.923	m	$\frac{1}{0}$		
1.8480	1.0400	10	711	1.005	1.605	W	202/310		
1.7709	1.7711	10	521	1./94	1.795	ШW	1 / 1/0 8 0		
1 7289	1 7285	22	303	1 746	1 746	m	330		
1.7207	1.7205	22	322	1.740	1.740	111	550		
1 7037	1 7045	$\frac{2}{2}$	620						
1.6318	1 6317	3	313						
1.6293	1.6294	2	621						
1.5104	1.5101	2	901						
1.5043	1.5046	9	721	1.521	1.522	mw	172		
1.4969	1.4973	14	331	1.508	1.508	w	133		
1.4914	1.4913	3	802						
1.4851	1.4857	2	023						
1.4812	1.4810	3	513						
1.4769	1.4768	6	123	1.489	1.488	vw	312		
1.4443	1.4440	4	911						
1.4360	1.4361	4	820	1.453	1.453	vvw	082		
1.4277	1.4282	9	812	1.446	1.445	vw	281		
1.4176	1.4172	23	032						
1.4121	1.4117	10	1000						
1.3941	1.3948	7	004						
1.3898	1.3897	3	232						
1.3670	1.3000	14	703						
1.3029	1.3623	2	1010						
1.3377	1.3379	0	014						
1.3417	1.3413	3 4	214						
1 3155	1 3151	ā	214						
1 2967	1 2969	4	404						
1 2433	1.2434	9	731						
1.2207	1.2211	5	1012						
1.2140	1.2137	3	024						
1.2011	1.2011	1	141						
		_							

Table I. Comparative X-ray Data of N-phase

*Private communication. $^{\dagger}v = very$, w = weak, m = medium, s = strong.

around the N-phase and studied the compositions located in the MgO-rich region of MgO–Si $_2N_2O$ –Al $_2O_3$ system (Fig. 1).

As for the results, combining them with those reported previously by other authors,⁵⁻⁸ the subsolidus phase relationships of MgO–Si₂N₂O–Al₂O₃ system are presented in Fig. 2, in which 12H'-polytypoid is located at the MgO–Si₃N₄–AlN section. Kuang *et al.*⁴ reported the subsolidus phase relationships of the MgO–Si₃N₄–AlN system. Within this system, there exists only one phase, 12H', which is compatible with three members of the system. This 12H'-polytypoid is still compatible with forsterite, spinel, MgO, or N-phase, forming two compatible tetrahedra, F–Sp–12H'–MgO and F–Sp–12H'–N-phase. Cao *et al.*^{9,10} had reported the phase relationships of two systems, CaO–Si₂N₂O–Al₂O₃ and Y₂O₃–Si₂N₂O–Al₂O₃. For comparison, these two phase diagrams are presented in Figs. 3 and 4. The decomposition reaction of Si₂N₂O with CaO or Y₂O₃ occurring in the Si₂N₂O-rich side of binary subsystems Si₂N₂O–CaO or $-Y_2O_3$ had been described. Similarly, the decomposition reaction of Si₂N₂O with MgO in the present system occurred as follows:

$$2Si_2N_2O + 2MgO \rightarrow Mg_2SiO_4 + Si_3N_2$$

It seems that MgO reacts only with SiO_2 , but not with Si_3N_4 under subsolidus conditions, when SiO_2 and Si_3N_4 are used as starting powders instead of Si_2N_2O .

		Т	able II.	Firing Conditions and Phase Analysis by X-ray for Two N-compositions							
		Compo (mole r	sitions atios)			Firing conditions (in flowing N_2)		Phase compositions* (X-ray diffraction)			Melting
	MgO	Al_2O_3	SiO ₂	Si ₃ N ₄	AIN	Temp (°C)	Time (h)	Main	Medium	Little	behavior
NN	1	1	1	1		1400(Hp)	1	Sp,α	N	<u>-</u>	
						1500	2	Ň		a,Sp	Little pore
						1550	2				Bubble
						1600	2				Bubble
						1650	2				Melted
						+1300	20	Ν		α,β	
						1640(GPS)	2			β	Melted
						+1300	20	Ν		β	
ND	8	2	1	1		1500	2	F,12H',Sp			
						1550	2	F.8H',Sp			
						1550(Hp)	1	F.12H	Sp	MgO	
						1600	2	·	•	U	Melted
						1650	1				Melted
						+1300	20	F,12H',Sp		MgO	
						1640(GPS)	2	· · · · ·		F,12H'	Melted
						+1300	20	F	12H′		
	2		1		1	1550(Hp)	1	F	12H'.Sp		
						1650	1				Melted
						+1300	20	F,Sp	12H'		

*N: MgAl₂Si₄O₆N₄; Sp: MgAl₂O₄ (spinel); α or β : Si₃N₄; F: Mg₂SiO₄ (forsterite); 12H': Mg₂₃Al₀₇Si₃O₂₃N₄₇(12H'-polytypoid); ⁴8H: Mg₃₂₉Si_{1,89}Al_{2,82}O₄₄₁N₄₅₉ (8H-polytypoid).¹¹

Table III. EPMA Results on N-phase

Elements	Atomic fraction	Ratio	NN
Mg	0.06	1.0	1
Aľ	0.10	1.7	2
Si	0.23	3.8	4
0	0.38	6.3	6
N (by difference)	0.23	3.8	4

Fig. 1. Mg-Si-Al-N-O system prism.

It is well known that Ca (1.0 Å) and Y (0.9) ions have bigger radii and require high coordinations, so they cannot enter into structural tetrahedra forming polytypoid in SiAlON systems. For much smaller Mg (0.57), many Mg-polytypoids in the Mg–SiAlON system have been reported.¹¹ Their compositions would be located in the nitrogen-rich regions of the Mg-SiAlON system prism. They would also be compatible with other neighboring phases, forming some compatible tetrahedra.

Fig. 2. Subsolidus phase relationships in the MgO-Si₂N₂O-Al₂O₃ system.

Fig. 3. Subsolidus phase relationships in the CaO-Si_2N_2O-Al_2O_3 system.9

Fig. 4. Subsolidus phase relationships in the $Y_2O_3\text{--}Si_2N_2O\text{--}Al_2O_3$ system. 10

F-Sp-12H'-MgO and F-Sp-12N'-N-phase tetrahedra established in this present work are two types of such compatible tetrahedra.

Quinary phases consisted of the quinary solid solutions, J-phase ss (i.e., $2Y_2O_3 \cdot Si_2N_2O-2Y_2O_3 \cdot Al_2O_3$ solid solution), Z-phase ss (i.e., $3CaO \cdot Si_2N_2O-3CaO \cdot Al_2O_3$ solid solution), and α' -SiAlON reported in M-Si-Al-O-N (M = Y, Ca, or Mg) systems. Besides, two quinary phases, Y_2SiAlO_5N (B-phase)¹² and $2CaO \cdot Si_3N_4 \cdot AlN^{13}$ with more or less metastability had also been reported in Y-SiAlON and Ca-SiAlON systems, respectively. They formed at lower temperatures or by crystallizing from melt. Therefore, it is unlikely that they would be compatible with neighboring high-temperature phases under subsolidus conditions. N-phase might be the only quinary compound so far reported in the Mg-SiAlON system, except for Mg-polytypoids or possibly Mg- α' -SiAlON. N-phase forms more easily in the presence of liquid and should be more stable than B-phase and $2CaO \cdot Si_3N_4 \cdot 4AIN$.

IV. Conclusions

The composition of N-phase was confirmed to be $MgAl_2$ -Si₄O₆N₄ instead of Mg_2AlSiO_4N , which forms a four-phase assemblage. Subsolidus phase relationships of the MgO-Si₂N₂O-Al₂O₃ system were presented. Within this system, two compatible tetrahedra, F-Sp-12H'-MgO and F-Sp-12H'-Nphase, were constructed.

References

¹R. A. L. Drew, S. Hampshire, and K. H. Jack, "Nitrogen Glasses and Glass Ceramics"; p. 394 in *Proceedings of the First International Symposium on Ceramic Compounds for Engine*. Edited by S. Somiya, E. Kanai, and K. Ando. KTK Scientific Publishers, Tokyo, Japan, 1983.

²S. D. Nunn, H. Hohnke, L. J. Gauckler, and T. Y. Tien, "Subsolidus Phase Relations in Part of the System Si-Al-Mg/N-O," *Am. Ceram. Soc. Bull.*, **57**, 320 (1978).

 3 S. D. Nunn, "Processing and Properties of SiC Whisker Reinforced Si₃N₄ Ceramic Matrix Composites"; Ph.D. Thesis. The University of Michigan, Ann Arbor, MI, 1991.

⁴S. F. Kuang, Z. K. Huang, W. Y. Sun, and T. S. Yen, "Phase Relationships in the System MgO–Si₃N₄–AlN," *J. Mater. Sci. Lett.*, **9**, 69–71 (1990).

 5 Y. Inomata, Y. Hasegawa, and T. Matsuyama, "Reaction between Si_3N_4 and MgO Added as a Hot-Pressing Aid," Yogyo Kyokaishi, **85**, 31 (1977).

⁶K. H. Jack, "The Fabrication of Dense Nitrogen Ceramics"; p. 561 in *Processing of Crystalline Ceramics*. Edited by H. Palmour III, R. F. Davis, and T. M. Hare. Plenum Press, New York, 1978.

 7 F. F. Lange, "Phase Relations in System Si₃N₄–SiO₂–MgO and Their Interrelation with Strength and Oxidation," *J. Am. Ceram. Soc.*, **61**, 53 (1978).

⁸R. Muller, E. E. Hucke, T. Y. Tien, and G. Petzow, "The System Si₃N₄-SiO₂-Mg₃N₂-MgO," *Am. Ceram. Soc. Bull.*, **58**, 885 (1979).

⁹G. Z. Cao, Z. K. Huang, X. R. Fu, and T. S. Yen, "Phase Equilibrium Studies in Si₂N₂O-Containing Systems: II. Phase Relations in Si₂N₂O-Al₂O₃-La₂O₃ and Si₂N₂O-Al₂O₃-CaO Systems," *Int. J. High Technol. Ceram.*, **2**, 115 (1986).

¹⁰G. Z. Cao, Z. K. Huang, X. R. Fu, and T. S. Yen, "Phase Equilibrium Studies in Si₂N₂O–Containing Systems: I. Phase Relations in the Si₂N₂O–Al₂O₃–Y₂O₃ System," *Int. J. High Technol. Ceram.*, **1**, 119 (1985).

¹¹D. P. Thompson, P. Korgul, and A. Hendry, "The Structural Characterization of Sialon Polytypoids"; pp. 61–74 in *Progress in Nitrogen Ceramics*. Edited by F. L. Riley. NATO ASI Series, Series E: Applied Sciences, No. 65, 1983.

¹²D. P. Thompson, private communication.

¹³Z. K. Huang, W. Y. Sun, and D. S. Yan, "Phase Relations of the Si_3N_4 -AIN-CaO System," *J. Mater. Sci. Lett.*, **4**, 255–59 (1985).