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SUMMARY. This paper outlines a multiple imputation method for handling missing data in designed lon- 
gitudinal studies. A random coefficients model is developed to accommodate incomplete multivariate con- 
tinuous longitudinal data. Multivariate repeated measures are jointly modeled; specifically, an i.i.d. normal 
model is assumed for time-independent variables and a hierarchical random coefficients model is assumed 
for time-dependent variables in a regression model conditional on the time-independent variables and time, 
with heterogeneous error variances across variables and time points. Gibbs sampling is used to draw model 
parameters and for imputations of missing observations. An application to data from a study of startle 
reactions illustrates the model. A simulation study compares the multiple imputation procedure to the 
weighting approach of Robins, Rotnitzky, and Zhao (1995, Journal of the American Statistical Association 
90, 106-121) that can be used to address similar data structures. 
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1. Background 
In designed longitudinal studies, missing data often occur be- 
cause subjects miss visits during the study, because some vari- 
ables may not be measured at particular visits, or because 
subjects drop out. The aim in such studies is frequently to re- 
late fixed covariates to the longitudinally measured response 
variables, to relate the response variables to each other, or to 
estimate the mean response at a certain time. The absence of 
complete data is a serious impediment to pursuing such aims. 

Methods for handling incomplete data can be classified 
based on the nature of assumptions made about a data model 
and about the missing-data mechanism. Methods can also be 
classified according to whether the statistical solution to the 
problem involves reweighting of observations or imputation 
of missing values. Maximum-likelihood strategies have been 
developed to handle certain types of missing data in longitu- 
dinal studies (Laird and Ware, 1982; Jennrich and Schluchter, 
1986) but not for the case of both missing response variables 
and missing covariates. 

Weighting approaches are commonly used in sampling 
methodology when there is unit nonresponse, i.e., when no 
outcome data is available on an individual. The contribution 
of such an individual to the analysis can be reflected by at- 
taching greater weight to an individual with observed out- 
comes who has similar covariate data to the nonrespondent. 
Robins et al. (1995) have developed weighting approaches to 
analyze incomplete longitudinal data to avoid having to rely 
on a multivariate model for the data. Their generalized esti- 

mating equations approach uses a model for the mechanism 
giving rise to nonresponse to determine weights. 

In contrast, imputation approaches involve filling in miss- 
ing items with plausible values given the observed data, where 
plausible values are obtained from either an explicit paramet- 
ric model or an implicit model, as with hot-deck imputation 
(Rubin, 1987), or in a partially parametric way (Schenker and 
Taylor, 1996). To account properly for uncertainty due to val- 
ues being missing, it is standard to produce multiple impu- 
tations and to obtain inferences about quantities of interest 
by combining estimates of within-imputation and between- 
imputation variability (Rubin, 1987), Imputation approaches 
have considerable flexibility because they can be used to ad- 
dress missing data at either the individual (unit) level or at 
the measurement (item) level. General purpose algorithms for 
imputation of missing values have been developed for cross- 
sectional data (Schafer, 1997). 

Multiple imputation is usually thought of as a model-based 
approach since imputed values are often produced from a 
model for the data. There are situations where a model might 
be used to produce imputations but where a less restrictive or 
an uncongenial model (Meng, 1994; Little and Yau, 1996) may 
be used to analyze the completed data. Despite the popular- 
ity of both weighting and multiple imputation schemes, little 
empirical work has been done on comparing their properties. 

The current paper develops a method for analyzing incom- 
plete multivariate longitudinal data assuming an ignorable 
nonresponse mechanism. Gibbs sampling is used to fit the 
model. The sequence of variables in the sampler include both 
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parameters and missing observations. Thus, the procedure can 
be used not only to draw inferences about model parameters 
but also to produce multiply imputed data sets for further 
analysis. We thus aim to accommodate both inference un- 
der a random coefficients model for longitudinal data and the 
distinct alternative of using such a model only for purposes 
of filling in missing values, thereby permitting flexibility at 
the later analysis stage. An experiment on children measur- 
ing startle reactions to a series of auditory stimuli provides 
a motivating example for the model. Two response variables 
were measured, one concerned with blinking and one related 
to  heart rate. A random effects model in which the intercept 
and slope of both response variables were considered as ran- 
dom is a reasonable choice for these data. Unfortunately, there 
was some missing data, particularly toward the end of each 
child’s sequence of responses. 

Section 2 describes the multivariate random coefficients 
model. Section 3 gives the conditional distributions of param- 
eters and missing data needed to implement Gibbs sampling. 
Section 4 describes an application to the startle reaction data. 
Section 5 summarizes the results of two simulation studies. 
Section 6 contains some discussion. 

2. Multivariate Model for Longitudinal Data 
2.1 Framework 
We assume an ignorable missing-data mechanism (Rubin, 
1976) so that the posterior predictive distribution of the 
missing data given the observed data can be used to multiply 
impute missing values without specifying a model for the 
process giving rise to the missing data. 

The multivariate hierarchical model we use is an extension 
of the popular two-stage hierarchical model for a single 
longitudinal outcome variable (Laird and Ware, 1982). The 
model is similar to that described in Schluchter et al. (1990) 
and Zucker, Zerbe, and Wu (1995), although we use the Gibbs 
sampling estimation method in contrast to their use of either 
the method of moments or maximum likelihood. 

2.2 Model Details and Notation 
The variables are partitioned into time-dependent and tirne- 
independent variables. Furthermore, there is a defined set of 
time points at which every time-dependent variable could be 
measured. Let Y i j k  be the observation, possibly missing, for 
the ith person of j t h  time-dependent variable at sampling 
time t k ,  i = 1,. . . ,n, j = 1,. . . , J, and k = 1,. . . , K .  Let Xiq 
be the observation of the 9th time-independent variables for 
the i th person, q = 1 ,2 , .  . . , Q. 

For the time-independent variables, let X i  = (Xi lXi2  . . . 
X ~ Q ) ’ ,  let Xi’) = ( X i l X i 2 . .  . X ~ Q ~ ) ’  be variables with po- 
tentially missing values, and let xi2) = (XiQ1+1XiQl+2. . . 

( 2 )  XQ)’  be variables that are always observed for all i. X i  
may contain some categorical variables. We only need to 
assume a distribution for XZ(’) conditional on X i 2 ) ,  which 
is multivariate normal, i.e., 

where the subscript f is used for the portion of the model 
where the variables are fixed in time. The parameters in 
this model are not the main interest but are introduced to 

complete the specification since they are required for the 
estimation procedure. 

Each time-dependent variable is assumed to be a linear 
growth curve, 

y . .  - z j k  - VOij + qlijtk + eijk, 

with individual random intercepts and slopes as follows: 
0 1  

VOij = poj + &xi1 + ‘ ‘ ’ + ,@jXiQ + aoij 

V l i j  = P:j + p:jxil  f ’ ’  ’ + PljXiQ + alij. Q 
(1) 

Let aij = (a~ i j cq~ j ) ’  and cy i  = ( C K ~ ~ C Y : ~  

i.i.d. assume ai N MVN(0, C,) and eijk - N(0, ajkI ) .  In many 
applications, a;, might be assumed to depend only on j. 

We use Yij to denote the vector of repeated measurements 
for the j t h  variable of the ith subject. Then 

y . .  - B.P. 
23 - 2 3 + waij + eij, 

where Pj” = (P:jp:j)’, P j  = (@’P,”. . .@’)’, Bi = (1XzlXi2 
. . .  X ~ Q )  @ w, w = ( w l w 2 . . . w x ) ’ ,  and W k  = (Itk)’. 
Concatenating the Y i j ’ s  into one vector Yi gives 

= ( I J  63 Bi)P + ( I J  @ w)ai + e .  2 -  - U.P 2 + Z a .  2 + e.  a r  (2) 

where Ui and Z are block diagonal, ei N MVN(0, &), and 
Ce is diagonal with elements ojk.  

We note that Z and w do not depend on i; this is a 
consequence of assuming the same set of potential time points 
for each person. The models and theory in this paper easily 
extend to other designs in which there is a different set of 
potential time points for each person. 

3. Model Fitting Using Gibbs Sampling 
Gibbs sampling in which the parameters and missing 
values are drawn iteratively from appropriate conditional 
distributions is used to obtain the joint posterior distribution 
of parameters and missing values given observed data. The 
Gibbs sampler is also used to produce the multiple imputes. 

3.1 Specification of Prior Distributions 
Let y = (Cf,pf,Pf,C,, ai,P,a2 ) denote the parameters. 
We use convenient priors so that it is easy to simulate from 
conditional distributions. Specifically, we use flat priors for 
p f ,  pf ,  and ,B and conjugate priors for other parameters. 
Conjugate priors for the covariance matrices Cf and C ,  
are inverse Wishart distributions CT’ - W(c,D) and 
C,’ N W(m, A), respectively. A conjugate prior for the scalar 
parameter ajk is an inverse gamma IG(ajk/2, bjk/2). Values 
for the hyperparameters c, D, m, A, aj:, and b .  can be based 
on prior knowledge or chosen to give diffuse priors. We follow 
Schafer (1995, 1997) in our choice of m = 25  + 1, A = I z j / m ,  
c = Q1 + 1, and D = IQ~/c,  where Id is the d x d identity 
matrix and, we choose large values for a j k  and b j k .  In practice, 
it is advisable to rerun the analysis with different priors to 
ensure that the results are not sensitive to the choice. 
3.2 Full Conditional Distributions 
Let [( 1 . ]  denote the full conditional distribution of a single 
component ( of y given all other components and the complete 
data. The full conditional distributions are 

3.k 

J ( c  
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N w ( n  + c - 1,K')  

[Pf I . I  

[Pf I . I  

n 

where 

i=l 
n 

and 

i=l 

for j = 1 , 2 , .  . . , J and k = 1 , 2 , .  . . , K and where the subscript 
k denotes the kth element of the given vector. 

In the model where we assume f f;k = m;, the required 
conditional distribution for cj" is 

3.3 Using the Model to Produce Multiply Imputed Data Sets 

As noted earlier, it may be desirable to use a multivariate 
model for the data only to fill in missing values, permitting 

more flexibility in subsequent analyses. For our model, all 
of the required conditional distributions to impute missing 
values given parameters and observed data are Gaussian. 

For missing time-dependent variables, if the lth component 
of Y ,  is missing, then [ y Z ( l )  I X i , p , a i ,  Ce] is a univariate 
normal distribution obtained as the Zth component of (Y,  I 
X i , p ,  ail C,) 'e' N(Ui.0 + Zai,  Ce) from equation (2). For 
time-independent variables for person i, we have 

Then to obtain the conditional distribution of the missing 
XZ(')'s, we use equation (3) and the standard result about 
conditional distributions from multivariate normals. 

After the Gibbs sampler converges, the samples of missing 
values will converge to the predictive distribution of [Y,i, 1 
Y&s], where Yobs denotes observed and Ymis denotes missing 
measurements. From this sequence, we can select M draws of 
missing values, with long lag times between iterations of the 
Gibbs sampler to avoid autocorrelation, to obtain A4 complete 
data sets for further analysis. 

4. Application to Startle Response Data 
The multivariate modeling can be used to draw inferences 
directly if the target quantities of interest are model 
parameters. Here we illustrate such an approach in analyzing 
data from an experiment on startle response (Ornitz et al., 
1996). The study collected data on individual differences in 
the blink responses to 40 sequential repetitive acoustic stimuli 
(trials) on 40 school-age boys. Besides the startle response, 
heart rate and various central nervous system measures were 
recorded. A major goal of the study was to determine to 
what extent individual variation in startle response can be 
explained by association with other measures. Some data 
were missing from the study because some trials were not 
usable due to fluctuations in background electromyography 
or subjects' spontaneous blinks had occurred just before 
the stimulus. The average number of rejected trials per 
subject was 3.35, giving 8.4% missingness in the data set. 
In a previous analysis of these data, the average of four 
consecutive trials was taken to construct one block, and block 
averages were analyzed to minimize the impact of missing 
data. Here we study a bivariate response consisting of the log 
transformed startle response (LOGAMP) and the heart rate 
just prior to the stimuli ( H R ) .  
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Table 1 
Gibbs sampling results for P, u2, and covariance 

parameters C, for LOGAMP and HR of the startle data 

Posterior Standard Two-sided 
Parameter mean deviation P-value 

Po1 
P11 
Po2 
P12 

CaJl 
c a . 2 2  

.$ 
a 2  

4.94 
-0.12 
74.81 
0.40 
0.13 

23.51 
0.78 
0.0048 

122.79 

0.30 
-0.013 

0.15 
0.015 
1.83 
0.15 
0.013 
2.22 
0.21 
0.0017 

32.23 
0.012 
0.15 

0.000 
0.000 
0.000 
0.006 
0.000 
0.000 
0.000 
0.004 
0.000 
0.289 
0.042 

We use Gibbs sampling to fit the random coefficient 
regression model, 

LOGAMPak = POI + Pllk + a o a l  i- a l t l k  + E t l k  

HRak = Po2 + P12k + a022 + alz2k + Et2kr 

with random effects C U , = ( C U O , ~ C Y ~ , ~ ~ O ~ ~ L Y ~ ~ ~ ) ’  N N(0, C a ) .  Of 
particular substantive interest is the covariance component 
estimate (E,,zd) for the association between the slopes of 
the startle response and the heart rate. Ten multiple Gibbs 
sampler sequences of 2000 iterations each were run, and 
convergence was checked by monitoring the potential scale 
reduction factor of Gelman and Rubin (1992). 

Table 1 shows the posterior means and standard deviations 
calculated from the last 1000 iterations of the first Gibbs 
sampler sequence. The results indicate that there are 
significant variations among individual sizes and rates of 
habituation of startle responses (LOGAMP) and those of H R  
(represented by Ca,1l, Ca,22, Ca,33, C,,44). But there are not 
significant associations between the slope of startle response 
and that of heart rate (represented by &,24). 

To accommodate inferences about target quantities that 
are not explicit parameters of the multivariate model, a 
straightforward strategy would be to analyze data in a 
multiple imputation framework by taking values from the last 
of each of the parallel Gibbs sampling sequences 

5. Simulation Studies 
Two studies were designed to evaluate multiple imputation 
inference based on the Gibbs sampling strategy. We used five 
imputations widely separated from a single converged Gibbs 
sampler chain. 

5.1 Comparzson wzth Complete-Case Anatyszs 
The first study compared our multivariate modeling frame- 
work with complete-case analysis in a setting with five 
repeated measurements on two time-dependent variables 
where missingness of the time-dependent variable depended 
strongly on a binary time-independent covariate. Not 
surprisingly, for the cross-sectional mean of one of the time- 
dependent variables at the last time point, complete-case 
analysis was severely biased with very poor coverage (only 
0.5% for a nominal 95% interval), while multiple imputation 

inference had minimal bias, 95.5% coverage, and efficiency 
comparable to estimation based on the originally generated 
data before deletion of missing values. For a comparison of 
the difference in outcomes between the levels of the binary 
variable driving the missing-data mechanism, complete-case 
analysis showed little bias and 93% coverage, but the multiple 
imputation approach, which had similar bias and coverage 
properties, was 40% more efficient. The reader is referred to 
Liu, Taylor, and Belin (1995) for a more complete description 
and additional results. 

5.2 Comparzson wzth Wezghted Estamatzng Equatzons 
Robins et al. (1995) describe a method for the analysis of 
longitudinal data containing missing values using semipara- 
metric regression models for missing repeated outcomes. The 
parameters of the regression models are estimated from a class 
of estimating equations that do not require full specification 
of the likelihood. The method requires the estimation of 
weights that are derived from a model for the missing-data 
mechanism. In a simulation study, the authors compared 
a number of estimation methods across seven nonresponse 
models with different combinations of covariates. Included in 
their study were some scenarios that were deliberately chosen 
to illustrate limitations of the method. Their simulation 
showed that correctly specified nonresponse models give 
results with little bias and good coverage properties, while 
deliberately misspecified nonresponse models can lead to some 
bias, somewhat worse coverage, and potentially tremendous 
variability in estimates of target quantities when the proposed 
weighted estimating equation approach is used. 

We assess our Gibbs-sampling/multiple-imputation me- 
thod using the same simulation study design. Two repeated- 
measures outcome variables with missing values, Y,t (called 
CD4) and Kt  (called WBC), were generated for t = 0,1,2,3 
and i = 1 , .  . . ,500 according to the following model: 

Y,t = 200 - 40t + doi (6  - t )  + ~ o i t  

K;.33 = 3,000 - loot + &(lo - t )  + E l i t .  

The random effects (dO,,dlz) were bivariate normal with 
mean zero, squared correlation coefficient p2 either .81 or 
.36, and variances (4.5’,1002). We note that this model 
has a nonstandard covariance structure since it requires 
only two random effects. The measurement errors were 
generated independently as follows: q z t  N N(0, 2002) for 
all t ,  EO%O N N(0,402), E O , ~  N N(0,352), E O , ~  N N(0,25’), 
~ 0 ~ 3  N N(0,102).  The missing data were generated based 
on the response probability X a t ,  which depended only on the 
population tercile of VL(t-l), with the conditional probability 
1 , t  of remaining on study at t being .9, .75, and .5 for the 
highest, middle, and lowest terciles of V,(t-l). The framework 
further assumes that, once individuals leave the study, they 
remain off the study from then on. 

The results for Po3, the average of Y’s  at t = 3, from the 
Robins et al. (1995) paper are reproduced here in Table 2. For 
later comparison with our own method, we have reexpressed 
the Monte Carlo variance as relative to the sample average 
case. The true value of Po3 is 80.0. We can see that, when the 
last tercile WBC was included in the nonresponse models, 
the weighted estimating equation approach showed little 
bias, provided good coverage, and the variance of the target 
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Table 2 
Results from Robins et al. (1995) simulation study at t = 3 for Po3 = E[yi3] = 80.0 

Monte Carlo 95% Actual 
Monte Carlo relative coverage 

average variance rate 

Method Nonresponse model p2(.81) (.36) p2(.81) (.36) p2(.81) (.36) 

Sample average 
Weighted Linear CD4 

Last tercile WBC 
Linear CD4, last tercile WBC 
Linear CD4, last WBC 
Linear CD4, last WBC, 

last tercile WBC 

quantity was moderate. When the last tercile of WBC was not 
included in the nonresponse model, there was some downward 
bias in the estimate of the target quantity and somewhat less 
than nominal coverage with a dramatic increase in the vari- 
ance of estimates of the target quantity in one case. 

Table 3 presents results applying our multiple imputation 
approach to datasets generated using the same model as 
Robins et al. (1995). We fit a model in which the variables 
Y and V1.33 have linear mean structure, random intercepts, 
random slopes, and heterogeneous error variances over time. 
We note that this model has the same mean structure as the 
model used to simulate the data but a different covariance 
structure. This model was used to create the multiple imputes 
for the missing Y ’ s  at time 3, and the results for standard mul- 
tiple imputation inference are shown in Table 3, labeled as the 
correct mean model. Values of the hyperparameters were cho- 
sen to correspond to proper but diffuse priors; specifically, for 
j = 0 , l  and t = 0, 1,2,3, ujt = 12 and bjt is 10 times the 
value of u3t used to generate the data. 

The results from Table 3 indicate that the multiple- 
imputation approach produces little bias and good coverage. 
Furthermore, the multivariate modeling method appears more 
efficient than the weighted estimating equation method: the 
relative variances of the estimates were 1.03 (p2 = 0.81) and 
1.14 (p2 = 0.36) for the multiple-imputation method and be- 
tween 1.3 and 1.5 using appropriately specified weighted esti- 
mating equations. 

86.4 84.2 1.00 1.00 0.0 4.0 
84.0 82.5 1.25 1.08 3.0 44.0 
80.0 80.0 1.50 1.50 94.5 96.0 
80.1 80.0 1.42 1.50 94.0 95.5 
74.8 76.3 30.25 19.08 90.0 91.0 

80.1 80.1 1.33 1.42 96.0 95.5 

Other simulations to investigate the effect of misspecifica- 
tion of mean and error structures for the imputation model 
were conducted. Results are shown in the last two rows of 
Table 3. Both models are based on a standard intercept and 
slope random effects model applied to the untransformed data 
Y and V. In the model labeled as the linear model, heteroge- 
neous ujt, we assume heterogeneous error variance (i.e., eight 
different values of u ; ~ ) ;  in the model labeled as the linear 
model, homogeneous uj , we assume homogeneous error vari- 
ance (i.e., two different values of u;). We see that incorrectly 
specifying the model does lead to some bias but much smaller 
bias compared with the sample average. The coverage rates 
are generally around 95%, although the specific example of 
87% would be considered too low. The efficiency for the het- 
erogeneous model is comparable to the correct model scenario. 
The efficiency in the homogeneous model case is much worse 
due to inappropriately large values of uj being used to impute 
the missing values at time 3. The structure of both these mod- 
els is such that it would be possible to ascertain from the ob- 
served data that the model is not adequate. This emphasizes 
that it is important to use a model that gives a good descrip- 
tion of the observations. A complex question is whether one 
could always find such a model in order to give sufficiently ac- 
curate inference using the multiple imputation approach. In 
simulations concerned with robustness to the measurement 
error distribution, we found (results not shown) that mis- 

Table 3 
Results for  comparing wzth Robins et al. (1995) simulation study 

for Po3 = E[Y,3] = 80.0; multiple imputation using model (2) 

Method 

All data 
Sample average 
Five imputations 

Correct mean model 
Linear model, heterogeneous ujt 
Linear model, homogeneous uj 

Monte Carlo 
average 

Monte Carlo 
relative 
variance 95% coverage 

p2(.81) (.36) 

80.03 80.01 
86.28 84.11 

79.83 80.23 
80.44 80.25 
79.93 80.23 

p2(.81) (.36) 

0.40 0.41 
1.00 1.00 

1.03 1.14 
1.09 1.13 
2.28 2.73 

p2(.81) (.36) 

96.5 96.0 
0.0 5.0 

94.5 93.0 
87.0 93.0 
92.0 94.0 
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specifying error distributions as normal when the underlying 
distribution is a Student’s t gives some loss of efficiency for pa- 
rameter estimation but does not result in substantially worse 
coverage. 

6. Discussion 
We have alluded to three approaches to handling missing data: 
(i) a formal Bayesian analysis with a full probability modkl for 
the data, (ii) a full probability model but only used to fill in 
missing data with subsequent analysis of the observed and im- 
puted data, and (iii) weighting methods. The issues associated 
with choosing an approach for handling missing data in multi- 
variate settings are complex. Robins et al. (1995) note that, by 
modeling nonresponse probabilities, one is able to  avoid para- 
metric assumptions about multivariate data. Schafer (1997, 
pp. 143-144) notes that multivariate models might need to 
be restricted because there might not be enough information 
in the observed data to provide stable estimates of all con- 
ceivably relevant parameters. Concerns also arise regarding 
robustness since there may be substantial reliance on model- 
ing assumptions when the percentage of missing data is high. 
Schafer (1997, pp. 211-212) describes research showing mul- 
tiple imputation is robust to modest departures from normal 
assumptions. Of the three approaches, we would expect the 
second approach to be more robust than the first because it 
has less reliance on the model (Schafer, 1997, p. 144), although 
it is possibly less efficient. 

The simplicity of the multiple imputation approach relies 
on the assumption of ignorable missing data as well as an 
appropriate model for the data. Because nonignorable effects 
are apt to be dependent on the context, it is hard to develop 
a general-purpose approach to nonignorable missingness. One 
recommendation in the literature is to base imputations on 
a model that includes as many relevant variables as possi- 
ble (Rubin, 1996), even though the ultimate analysis may be 
based on a smaller set of variables. It is possible for missing- 
ness to be nonignorable when conditioning on only a few co- 
variates, but additional covariates may account for the source 
of most of the nonignorability (e.g., David et al., 1986). 

Another limitation of the present approach is its focus on 
continuously scaled outcomes. Generalizing the procedure to 
mixed categorical and continuous longitudinal variables would 
be challenging because of the lack of convenient multivariate 
models for such a mix of outcomes. 

Our simulation results indicate that a model-based impu- 
tation strategy is a feasible and attractive methodology. The 
model-based approach produced more efficient estimates than 
the approach described in Robins et al. (1995) even though 
the covariance structure of the model-based approach was 
misspecified. A further difference is that separate estimating 
equations are needed for separate estimates, whereas Gibbs 
sampling can be implemented without regard to the quantity 
that will be estimated and can be used for a variety of es- 
timates provided one has a good probability model for the 
observations. 

Alternative weighted estimating equations similar to that 

suggests that these estimators are more efficient than the 
Robins et al. (1995) estimator and are consistent if either the 
model for the observations or the model for the missingness 
is correctly specified. Further work comparing the properties 
of model-based and efficient weighted estimating equation ap- 
proaches in moderate sized samples would be of interest. 

Some experience in data sets with large numbers of avail- 
able covariates suggests that the dimension of p can get quite 
large, even with a modest number of time-independent vari- 
ables (Belin et al., 1997). This happens because each addi- 
tional time-fixed covariate adds multiple components to p in 
expression (1). One possible extension is to allow different 
sets of covariates to predict intercepts and slopes for different 
time-dependent variables. There are other possible extensions 
to make it applicable to a wider range of data, e.g., to allow 
the categorical time-independent variables to be missing or 
the measurement error terms to be correlated or have non- 
normal distributions. Another issue worthy of investigation is 
misspecification of random effects. 

Not surprisingly, we see that certain violations of model- 
ing assumptions have only minor effects on bias and coverage 
of the multiple imputation method, while other violations of 
assumptions have more serious effects (e.g. , assuming homo- 
geneous errors in the linear model results in a substantial loss 
of efficiency, although the bias remains minor and the cov- 
erage remains good in this case). The current paper, with 
its empirical comparison, contributes some insights into the 
relative strengths of imputation modeling versus the use of 
weighted estimating equations, a challenging question that is 
apt to remain of continuing interest to applied statisticians. 

ACKNOWLEDGEMENT 
This work was supported by NIH grants AI07370, AI29196. 
MH58107, and MH57082. 

RBSUME 
Cet article dkcrit une mkthode d’imputation multiple pour le 
traitement des donnkes manquantes dans les ktudes longitu- 
dinales planifikes. Les observations manquantes sont prises en 
compte b l’aide d’un modkle b effets alkatoires pour donnkes 
multivarikes longitudinales continues qui traite conjointement 
les mesures rkpktkes multivarikes. Plus prkciskment , on sup- 
pose que les variables indkpendantes du temps sont distribukes 
indkpendamment et identiquement selon des lois normales 
et que les variables dkpendant du temps suivent un mod& 
de regression hikrarchique i% coefficients alkatoires, condition- 
nellement au temps et aux variables indkpendantes du temps, 
avec des variances rksiduelles qui fluctuent selon les variables 
et le temps. Le tirage des parametres du modhle et des im- 
putations remplaGant les valeurs manquantes sont effectukes 
b l’aide de l’kchantillonneur de Gibbs. Nous appliquons ce 
modde aux donnkes d’une ktude sur les rkactions d’alarme. 
Nous comparons la prockdure d’imputation multiple a l’ap- 
proche pondkrke de Robins Rotnitzky et Zhao kgalement ap- 
plicable a des observations de ce type. 
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