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SuMMARY. This article concerns item nonresponse adjustment for two-stage cluster samples. Specifically,
we focus on two types of nonignorable nonresponse: nonresponse depending on covariates and underly-
ing cluster characteristics, and depending on covariates and the missing outcome. In these circumstances,
standard weighting and imputation adjustments are liable to be biased. To obtain consistent estimates, we
extend the standard random-effects model by modeling these two types of missing data mechanism. We also
propose semiparametric approaches based on fitting a spline on the propensity score, to weaken assump-
tions about the relationship between the outcome and covariates. These new methods are compared with
existing approaches by simulation. The National Health and Nutrition Examination Survey data are used

to illustrate these approaches.

KEY worbDs: Cluster-specific nonignorable nonresponse; Item nonresponse; Outcome-specific nonignorable
nonresponse; Penalized spline of propensity prediction; T'wo-stage cluster sample.

1. Introduction

This article concerns estimation of finite population mean
for cluster samples with item nonresponse. For simplicity,
we restrict our attention to two-stage cluster samples. The
extension of our methodology to multistage cluster sam-
ples is straightforward. We consider a population of size M
consisting of N clusters with M; elements in the ith clus-
ter. Let Y denote the value of a survey outcome Y, and
Xij = (Xiijs ..., Xpi;) denote values of P covariates X =
(Xi,...,X,) for unit j in the cluster 4, fori = 1,...,N;j =
1,...,M;. Let T = le\il Z;Vill Y, and Y = T/M denote the
finite population total and mean, respectively. At the first
stage, a sample of n of the N clusters (primary sampling
units, PSU’s) is selected. At the second stage, m; of the M;
units (secondary sampling units, SSU’s) are selected in the
ith sampled cluster, but only r; of the m; sampled units re-
spond. We observe values of Y for r; respondents, and values
of X for both respondents and nonrespondents. This occurs in
particular when the outcome variable Y is a sensitive question
and has item nonresponse. We assume that selection proba-
bilities for sampled units, denoted by m;; for ¢ = 1,...,n and
j =1,...,m;, are known, and sampling is noninformative in
the sense that m;; is independent of Yj; after conditioning
on X. This assumption is often achieved by including among
X the design variables that define the selection probabilities
(Little, 2004). We consider estimates of the finite population
mean Y or total 7. We adopt a model-based approach to
multiply impute the missing values of Y, where Y;’s are clus-
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tered realizations from a super-population. Having created
multiply-imputed data sets, we apply standard design-based
complete-data methods, specifically the Horvitz—Thompson
estimate of the population mean and the design-based esti-
mate of variance, with multiple imputation combining rules
(Rubin, 1987) to incorporate imputation uncertainty. An al-
ternative approach is to use the model for the overall infer-
ence, which (in the Bayesian paradigm) is based on the pos-
terior predictive distribution of the population mean (e.g.,
Little, 2004). The choice between these two approaches in-
volves general issues of design versus model-based inference;
only the first approach is developed here in order to focus on
alternative treatments of the missing data.

We apply our proposed methods to data from the
Third National Health and Nutrition Examination Survey
(NHANES III), conducted by the National Center for Health
Statistics to assess the health of the U.S. population (National
Center for Health Statistics, 2006). Given the increasing
prevalence of overweight children and adolescents in the
United States and its serious consequences and implications
for public health (Ogden et al., 2002), a variable of great in-
terest is body mass index (BMI) for children and youths less
than 16 years old. We consider the problem of estimating
the population mean of this variable, using the NHANES TIII
youth data. This variable is subject to about 31% item nonre-
sponse, and nonresponse is potentially nonignorable, because
in health surveys the propensity to respond is often related to
health (Cohen and Duffy, 2002). Methods need to account for
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potential nonignorable nonresponse, and also need to account
for the stratified multistage probability design of NHANES
I11.

One common practical approach to estimating the finite
population mean Y in the presence of item nonresponse is to
use covariate information to impute the missing values of Y,
and then apply standard design-based methods to the filled-
in data, such as the Horvitz—Thompson estimator (Horvitz
and Thompson, 1952). This method requires a model for pre-
dicting the missing values of Y. A common approach is re-
gression (REG) imputation, where the imputed values §; are
predictions from a regression of Y on covariates z; = (21,5,
Z2ij, - -, Zpj), with coefficients estimated from the complete
data. These imputations ignore the clustering of the sample, a
defect that is addressed by including random effects for clus-
ters in the regression model, as follows:

P
[yi] |ai7/8075p70—277_2:| ~ N ai+ﬁ0+zﬁp$pij702 )

p=1

[ai |7_2] ~ N(Oa ,7_2)’ (1)

where N(-) denotes normal distribution. The value &; is now
included in the prediction of y;;. This model (denoted RE)
adds covariates to the random-effects model first proposed
for cluster samples by Scott and Smith (1969).

It is well known that RE yields a consistent estimate of
Y when nonresponse is missing at random (MAR), provid-
ing the regression equation is correctly specified (Little and
Rubin, 2002). Because the clusters are explicitly modeled via
random effects, one might assume that RE is also valid when
the missing-data mechanism depends on the clusters. How-
ever, that is not the case. When the nonresponse probability
of y; depends on the cluster-specific random effect «;, the
missing data mechanism is not MAR, because «;’s are not
observed (Little and Rubin, 2002, Example 6.24; Yuan and
Little, 2007). As in the latter paper for the case with no co-
variates, we use the term cluster-specific nonignorable (CNI)
nonresponse to describe the mechanism that probability of
response depends on underlying cluster effects «; and ob-
served covariates, but not on observed survey outcomes within
clusters.

We consider parametric models and semiparametric models
that include a spline of the response propensity (Little and
An, 2004) that are robust to misspecification of the mean
structure relating Y to the covariates. These extend models
previously proposed by Yuan and Little (2007) for the case of
unit nonresponse, and yield consistent estimates of the mean
under CNI nonresponse. We also consider variants of these
models for the outcome-specific nonignorable (ONI) nonre-
sponse, where missingness depends directly on the value of
the outcome variable Y. Table 1 spells out all the abbreva-
tions used in the article to label models and methods.

The next section describes our parametric and semipara-
metric models for estimating the finite population mean under
CNI and ONI nonresponse. Section 3 describes a simulation
study comparing these methods with the existing methods
described above. Section 4 illustrates the methods with the
NHANES IIT youth BMI data. Section 5 discusses our find-
ings and conclusions.
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Table 1

List of major abbreviations

Abbreviation

CNI Cluster-specific nonignorable

ONI Outcome-specific nonignorable

REG Design-based regression

RE Random-effects model

PCNI Parametric cluster-specific nonignorable
model

PONI Parametric outcome-specific nonignorable
model

PSPRE Penalized spline of propensity random-effects
model

PSPCNI Penalized spline of propensity cluster-specific
nonignorable model

PSPONI Penalized spline of propensity
outcome-specific nonignorable model

2. Models

2.1 Parametric Models for CNI and ONI Nonresponse

We first consider nonresponse adjustment for CNI nonre-
sponse. In our proposed models, we model nonresponse via
a normal latent variable Z, such that subject j in cluster
i responds (r; = 1) if z; is positive and fails to respond
(r4y = 0) if z; is negative. As noted above, RE leads to bi-
ased estimates under CNI nonresponse. To correct this bias,
we propose the following parametric cluster-specific nonignor-
able (PCNI) model:

P
[yij |ai7Xi767 BO»ﬂp:UQ] ~ N ai+6xi+ﬁo+ Zﬁpxpijyo'Q ,

p=1

P
[z | X4, 70, Yp) ~ N XiJr%ﬂLZ%mpijal s

p=1

ai,wz] ~ N(0,w?).
(2)

In this model-based approach, the survey design is taken into
account by including design variables or selection probabili-
ties as covariates. For example, if the selection probability m;;
depends on cluster sizes, and the value of Y also potentially
depends on cluster sizes, we may include M;’s as one of the
covariates. In the case that design variables (e.g., M;’s) are
unknown, we can simply include 7;; as a covariate to incor-
porate the selection probabilities in our model (Zheng and
Little, 2004). Random effects a; and x; model within-cluster
correlations, and are independent of design variables (e.g.,
M; and m;). The PCNI model asserts that conditional on y;,
y; and z;, thus y; and ry, are independent. This demon-
strates an important feature of CNI nonresponse: conditional
on clusters, the nonresponse probability does not depend on
the missing values. In (2), different covariates can be used to
model y;; and z;;, by setting some of the regression coefficients
{Bp} or {7,} equal to zero.

Inference for the finite population mean ¥ under the PCNI
model can be achieved by multiple imputation (Rubin, 1987;
Little and Rubin, 2002), which takes account of imputation

X'i77_2] ~ N(Oa 7—2)7 [Xz

e
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uncertainty. Specifically, we form K imputed data sets by fill-
ing in missing values of y with K independent draws from their
posterior distribution, based on the PCNI model, with non-
informative priors on the fixed parameters. These posterior
draws of missing values of y can be obtained by first draw-
ing parameters {, &, xi, Bo, - -, Bp, 0>} from their posterior
distributions, then drawing the missing values of y based on
the first equation of (2). For the kth imputed data set, Y is
estimated by Horvitz—Thompson estimator as follows:

n i m; Q(k) n o omy
o Yij ij —1
ey (S S ) S
i=1 \j=1 ¢ j=rg41 Y i=1 j=1
i b J=r; J
where g)f»jk) is the kth imputed value of y;;. Then, a consistent

estimate of Y is given by Y = % 25:1 Y, and its variance is
Var(Y) = Zle Vi + 25 Zliil(}_’k —Y)?, where V} is the
variance of Y, estimated from the kth imputed data set. Note
that the super-population model (2) is used to predict the
missing values of y. Once the missing data are filled in by
model predictions, the design-based weighting method is used
to estimate the finite population mean. This approach lim-
its the effects of model misspecification to the treatment of
the missing data. An alternative approach, potentially more
efficient because it makes fuller use of the super-population
model but also more vulnerable to model misspecification, is
to base the inferences on the posterior distribution of the pop-
ulation mean. We do not consider that approach here in order
to focus attention on the missing data adjustments.

The above model assumes a CNI mechanism, where 7; and
y; are independent within clusters (i.e., conditional on ;)
after conditioning on covariates x;. An ONI mechanism as-
sumes that missingness of y; depends directly on the value of
y; and observed covariates. Such a mechanism is modeled by
the following PONI model, where y; has a linear regression
on z; rather than the random effect x;:

P
Zij»aiv(svﬂ()vﬂp:o—?] ~ N ai+5zij+ﬁﬂ+26p:rpij702 )

I:ytj

p=1
2
25 [ Xi> 70, ¥p] ~ N [ Xi + 790 + vawm,I ;
p=1

[ai | XiaTQ:I ~ N(0,7%), [xi | ai,wz] = N(0,w?).

2.2 Propensity Spline Models

The foregoing models assume the correct parametric speci-
fication of E(y; |x;). A more robust approach is to model
E(y; | x;) nonparametrically, replacing the linear predic-
tor 25:1 Bpxpi; by an arbitrary nonparametric function
(@145, ..., Tp5). With a single covariate, h(-) can be easily
estimated by a kernel or spline regression. However, as the
number of covariates P becomes large, the estimation of h(-)
becomes difficult, the so-called “curse of dimensionality.” To
address this problem, Little and An (2004) proposed penalized
spline of propensity prediction (PSPP), which yields a doubly
robust estimate by focusing the spline on a particular func-
tion of the covariates most sensitive to model misspecification,
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namely the estimated propensity score. They studied the sit-
uation where observations are independent and the missing
data mechanism is ignorable. We extend the PSPP approach
to correlated two-stage cluster samples with ignorable, CNI,
or ONI nonresponse.

We first consider ignorable or MAR nonresponse where
missingness of y; only depends on the covariates x;. Let v;
denote the probit of the propensity score for the subject j
in the cluster ¢, and we assume for convenience the standard
probit model for nonresponse as follows:

vy = @ (Pr(ry = 1]zy)) =0 + n@uy + - +ypzpg.  (3)

Conditional on the propensity score, the missingness of y;
does not depend on z; (Rosenbaum and Rubin, 1983),
namely, Pr(r; = 1|y, v;) = Pr(r; = 1]v;). This fact mo-
tivates the following penalized spline of propensity random-
effects (PSPRE) model:

P-1
[yzj aiaﬂ;a97 02] ~ N (673 +S(Uij;9) + Zﬂ;x;i]’702 )
p=1
[o; [ 2] ~ N(0,7%), 4)

where S(v;;; 8) denotes a spline regression on v; with param-
eters 0, and xj,; is defined as the residual of z,; from the
following spline regression indexed by parameters 6,:

[2pij | Vi, 0p, 07 ~ N (Sp(vy56,), 7).
In this case, z;, is given by
Tpij = Tpi — E(xpij |vy)
= Zpij — Sp(vij; 0p), p=1,...,P—1 (5)

In the PSPRE model, the regression on {I;ij; p=1...,
P — 1} is not necessary for the consistency of the estimate,
but it improves efficiency if x; is a good predictor of y;. To
avoid multicolinearity, 27, is dropped from (4). In general, to
reduce colinearity, it is preferable to drop the residual of a
covariate that is highly correlated with the propensity model
to respond (3). To obtain an estimate of ¥, we can fit the
PSPRE model to multiply-impute missing values of Y, and
then apply MI procedures discussed in the Section 2.1.

For CNI nonresponse, we modify the parametric PCNI
model by including a spline on the propensity score to yield
the following penalized spline of propensity cluster-specific
nonignorable (PSPCNI) model:

I:yij | ai:xi767 97 ;70‘2}

P-1
~ N | o; + 0x; + S(vy;0) + Zﬁ;x;ij,UQ ,
p=1
- (6)
[z | Xi,70, %) ~ N | x: +70 + Z%xm’jal )
p=1

[ai |Xi77—2:| ~ N(OaT2)a l:Xl |ai7w2] ~ N(O,UJQ),

where v;; is the probit of the propensity score defined as (3).
Strictly, integrating out the latent variable z; in the PSPCNI
model (6) yields the probit of the propensity score of the form
vi; = Xxi + 7% + Mzu; + 0+ YPTRy, which includes the
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unobserved random effect x;. However, it is very difficult to fit
splines on vj; directly, and to simplify the estimation we model
with a spline the propensity score v; that omits the term x;.
We do not expect this modification to degrade the properties
of the method much, because the rationale behind the PSPP
method is to be parametric in the direction of covariate space
where respondents and nonrespondents are balanced in terms
of the covariate distributions. This conjecture is supported
by the simulation study in Section 3. In the above PSPCNI
model, z;, is the residual defined by (5) as before.

For ONI nonresponse, we add a spline to the PONI
model to obtain the following penalized spline of propensity
outcome-specific nonignorable model (PSPONTI):

[ylj ’ Zijy Qgy 67 95 /B;)? 02]

P-1
~N <a,. + 8z + S(vy; 0) + Z Bopis: ‘72>

P
(25 | Xi,70,7p) ~ N | xi +70 + Z%%ij» 1
p=1

ai,wQ] ~ N(0,w?).

Xi:TQ:I ~ N(Oa T2)7 [XZ

o

These PSPP models can be easily extended to situations
where some covariates are categorical. Unlike continuous co-
variates, categorical covariates are directly included in the
mean regression model of y (without taking residuals), i.e.,
regressing y on z,; instead of x,;.

2.3 Fitting the Semiparametric Models

A convenient approach to fitting the models described in
Sections 2.1 and 2.2 is to add noninformative priors for the
fixed parameters and simulate draws from the posterior dis-
tribution of the parameters. Given posterior draws of these
parameters, it is straightforward to draw the value of y
for nonrespondents from its posterior distribution to form
multiply-imputed data sets, and obtain the MI estimate of
the population mean. For reviews of the Bayesian approach
to sample surveys, see for example Little (2003, 2004). Es-
timates for the RE model are easily obtained by the Gibbs’
sampler discussed in Gelfand et al. (1990). Specifically, for
the RE model, we use noninformative priors for (,...,8p
and diffuse inverse gamma, priors for o2 and 72, namely:

[Bo, - B, 0?, 7] ox (%) (e /o (7)ot et/

with a; = by = as = by = 0.1, a value small enough that the
information in the data strongly dominates the information
in the prior distribution. For the PCNI and PONI models, we
assume priors for the fixed parameters of the form

[57/307' ©

o (0-2)*(a| +1) b1 /o? (7-2)*(a2+1)e*b2/7'2 (W?)*(a:ﬁrl)eszs/w2 ,

2 2 2
yYP,0 T ,UJ]

aﬁP?’yU:"'

with a; = by = as = by = a3 = b3 = 0.1, again so that the
information in the data strongly dominates the information in
the prior distribution. Computation via the Gibbs’ sampler is
straightforward, providing the latent values {z;} are included
as missing data.
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A convenient way to implement the spline regressions for
the PSPRE, PSPCNI, and PSPONI models is the penalized
spline method of Ruppert, Wand, and Carroll (2003). Let
K1i,...,kx denote prespecified K knots, and use linear spline
base functions, the spline S(v;) in PSPCNI or PSPONI can
be written as a random-effects model:

K
S(vy) = Bo+ Broy + Z b (v — KK+,
P (7)

[bk | 902] = N(07502)3

where (v; — Ki)+ equals v; — Kk, if v; — Kk, > 0, and 0 oth-
erwise. The tuning parameter ¢? is treated as a parameter
and estimated from the data. By plugging in the above ex-
pressions, PSPCNI and PSPONI models have similar forms
to PCNI and PONI, and can be fitted by the Gibbs’ sampler,
as outlined for the PSPONI model in Web Appendix A. The
linear spline is used here for simplicity, but other bases, such
as the cubic spline basis, are also possible. Because our goal is
prediction, the exact form of basis does not make much differ-
ence to the results, provided that the knots cover the range of
the data reasonably well (Ruppert et al., 2003). We monitor
convergence of the Gibbs’ chains by graphical inspection, and
by the method of Gelman and Rubin (1992) based on multi-
ple Gibbs’ chains with overdispersed starting points. Gelman
and Rubin’s method calculates the between-chain variance of
simulated draws from multiple Gibbs’ chains, and compares
this with the within-chain variance. If the ratio of these two
variances is near 1 (e.g., less than 1.2), we conclude that the
Gibbs’ sequences have converged.

3. Simulation Study

We now describe a simulation study to assess the perfor-
mance of the above methods. We construct 16 populations of
M = Zi\il M; = 40,492 units each, arranged in 200 clusters.
Cluster sizes {M;} are randomly generated from a uniform
distribution between 20 and 400. Two covariates z; and z,
are simulated as independent normal with mean 2 and stan-
dard deviation 1. The outcomes {y;;} and response indicators
{r;} are generated according to the model:

[yi] |sz7ai757Xi7 >\702]
~ N(ai + AB(z5 — xi) + Bxi + g1 (2135, fzij)702),
[zij | xi] ~ N(xi + g2(%145, ©2i5), 1),
Xi,TQ] ~ N(0,7%), [X,' ai,wﬂ ~ N(0,w?).

with (a) r; = 1if z; > 0, as above; (b) 0> =1, 72 =1
and w? = 4; (c) two choices of mean models, linear: g (z,
T3) = a + T + T and cubic: g;(x1, z2) = b + 0.523 + 0.5z3,
with a and b chosen so that the super-population mean is 20;
(d) two choices of propensity models, both with an overall
response rate of 0.6, namely linear: go(x1, 22) = @1 + 22 —
3.2, and cubic: ga(z1, T9) = 2.06 — 0.0523 — 0.05z3; (e) two
choices of 8, 8 = 0 for MAR nonresponse and = 10 for
non-MAR (NMAR) nonresponse; and (f) three choices of A,
A = 1, yielding an ONI mechanism where missingness of y;;
depends on y;;, 1 and 2»; A = 0, yielding a CNI mechanism
where missingness of y; depends on x;, x; and x; and A =
0.5, yielding a mixture of CNI and ONI nonresponse.

=
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Five hundred two-stage samples were selected from each
population, with n = 20 PSUs (or clusters), chosen randomly
with probability proportional to size, and m = 10 units ran-
domly selected from each sampled PSU, yielding a total sam-
ple size of 200 selected with equal selection probability. On
each sample we compute the mean of Y before deletion (BD)
and seven estimators of Y (REG, RE, PCNI, PONI, PSPRE,
PSPCNI, PSPONI) from the incomplete data. We choose 19
equally spaced knots over the estimated response propen-
sity for the spline regressions, and conduct K = 20 multiple
imputations.

3.1 Results

Table 2(a) to (d) shows various summary statistics of seven
approaches (REG, RE, PCNI, PONI, PSPRE, PSPCNI,
PSPONTI) over the 500 samples when missing data are MAR,
CNI, ONI, and mixture of CNI and ONI under the two mean
models and two propensity models. The summary statistics
include empirical bias, root mean square error (RMSE) and
95% confidence interval coverage rate (nominally, we expect
0.95). We denote the estimates of ¥ based on the seven mod-
els by Yrea, Yre, Ypent, and so on.

3.1.1 Missing at random nonresponse (f = XA = 0). In this
case, the missingness of y; only depends on covariates x;,
and the missing data mechanism is MAR. As shown in Table
2a, the performances of parametric approaches RE, PCNI,
PONI depend on the linearity in the relationship between y
and z. If the mean model is linear, these methods yield con-
sistent estimates; otherwise, they lead to biased estimates. In
contrast, the semiparametric approaches PSPRE, PSPCNI,
and PSPONI are robust to the nonlinearity in the relation-
ship between y and z, given the correctly specified propen-
sity model. For example, when the true mean model is quoic
and true propensity model is linear, empirical biases of Yyg
3:nd Ypent are —1.07 and —1.26, while the empirical biases of
Ypspre and Yospont are —0.17 and —0.2. If the mean model is
correctly specified, both parametric and semiparametric ap-
proaches show the robustness to the misspecification of the
propensity model. Specifically, the robustness of RE is due
to the fact that under MAR, RE yields consistent estimates
if the mean model is correctly specified. For PSPCNI and
PSPONI, because the propensity model is specified as a lin-
ear function of z, the regression on cluster-level random effects
Xi or the latent variable z in the mean model translates into
a linear regression on z, reflecting the true relationship be-
tween y and z. For semiparametric approaches, the robustness
may be because covariates enter the mean model linearly via
the propensity score, and as a result approximate models the
linear relationship between y and x. As one might expect, if
both the propensity model and the mean model are misspec-
ified, all the methods yield bias estimates.

When nonresponse is MAR, the efficiency loss of the mod-
els assuming ONI and CNI is rather minor. For the models
correctly assuming MAR, the semiparametric model PSPRE
has very similar efficiency to the parametric model RE when
both mean and propensity are correctly specified (i.e., linear).
The high efficiency of the semiparametric model is due to the
regression on residuals of covariates x};’s, which efficiently
picks up the information ignored by the spline on propensity.
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Actually, when the true mean model is linear, the linear re-
gression on z,’s in the semiparametric models is equivalent
to modeling the covariates parameterically, leading to highly
efficient estimates. We observed the similar high efficiency for
CNI and ONI semiparametric models as well.

3.1.2 Cluster-specific nonignorable nonresponse (8 = 10,
A = 0). In this case, nonresponse is associated with unob-

served cluster characteristics. In Table 2b, it is seen that ?RE

and Ypspre have noticeable empirical biases of 1.35 and 1.48
even though the mean model is correctly specified, because
they do not adjust for CNI nonresponse. In contrast, PCNI
and PSPCNI correct this problem, yielding small empirical bi-
ases and good confidence coverage when the model is correctly
specified. Again, we find that semiparametric model PSPCNI
has very similar efficiency to the parametric model PCNI.
These methods also do well when the propensity model is
misspecified but the mean model is correctly specified. How-
ever, PCNI is sensitive to the misspecification of the mean
model. PSPCNI addresses this problem, and is robust to the
nonlinearity of the mean structure. For example, when the
true mean model is cubic and the true propensity model is
linear, the empirical bias of Ypont (—1.09) is about four times
as large as that of Ypspent (—0.26). Even in the case where
both Ypent and Ypgpent are biased, such as when both the
mean model and the propensity model are misspecified, the
estimates based on PSPCNI still have a smaller bias and a bet-
ter coverage rate than PCNI. The two ONI methods, PONI
and PSPONI, generally lead to biased estimates for CNI non-
response, although PSPONI does better in terms of bias and
coverage.

3.1.3 Outcome-specific nonignorable nonresponse (B = 10,
A = 1). As shown in Table 2¢, REG, RE, PSPRE, PCNI,
PSPCNI in general lead to biased estimates and have poor
coverage rates because they all misspecify the missing data
mechanism. PONI and PSPONI yield consistent estimates
when both the mean model and the propensity model are cor-
rectly specified. However, if the relationship between y and z
is misspecified, PONI leads to biased estimates. PSPONTI cor-
rects the bias, provided that the propensity model is correctly
specified. Both PONI and PSPONI lead to slightly biased es-
timates when the mean model is correctly specified but the
propensity model is misspecified. When both the mean model
and the propensity model are misspecified, the biases of PONI
and PSPONT are surprisingly small, perhaps because effects
of the misspecification of mean model and propensity model
coincidentally canceled out.

3.1.4 Mixed outcome and cluster-specific nonignorable non-
response (B = 10, A\ = 0.5). This nonignorable missing data
mechanism is a mixture of the CNI and the ONI nonresponse.
None of the methods is satisfactory in terms of bias, RMSE,
and coverage, although PONI and PCNI do well in certain sit-
uations, such as when both mean and propensity are linear.
There is no single method that dominates the others consis-
tently over the simulation conditions.

4. Application

We apply our methods to the NHANES III youth data for
children and youths 2 months to 16 years of age. The sur-
vey design of NHANES is a stratified multistage probability



Parametric and Semiparametric Model-Based Estimates 1177

Table 2
Empirical bias (x100), RMSE (x100), and coverage rate (Cov) of 95% confidence intervals (%) for seven methods when
nonresponse is (a) MAR, (b) CNI, (¢) ONI, and (d) the mizture of CNI and ONI, under different mean and propensity models

Mean Propensity BD REG RE PSPRE PCNI PSPCNI PONI PSPONI
(a) MAR (B=X=0)
Linear Linear Bias -1 —4 -3 -3 —2 —2 0 —4
RMSE 25 29 28 28 30 30 37 43
Cov 95.4 95.0 95.6 95.6 95.4 96.2 96.4 95.8
Linear Cubic Bias -1 —6 -7 -7 —6 —6 -8 —14
RMSE 25 29 28 27 31 31 47 64
Cov 95.4 95.4 96.2 95.6 97.0 96.6 96.0 96.6
Cubic Linear Bias -1 —106 —107 —17 —126 —20 —393 —29
RMSE 90 151 153 99 179 110 505 144
Cov 96.4 84.4 89.0 97.6 86.0 97.6 46.8 96.6
Cubic Cubic Bias -1 —166 —172 —106 —213 —123 —475 —164
RMSE 90 189 194 138 231 152 522 202
Cov 96.4 54.8 39.8 71.0 34.2 71.0 18.0 70.8
(b) CNI (8 =10, A = 0)
Linear Linear Bias 13 1080 135 148 6 15 114 84
RMSE 429 1153 421 440 459 456 420 422
Cov 95.4 25.0 93.4 93.2 95.4 95.4 94.6 96.2
Linear Cubic Bias 13 1027 196 228 —15 -37 166 117
RMSE 429 1105 451 466 474 471 438 418
Cov 95.4 32.0 92.8 91.4 95.4 95.4 93.8 95.2
Cubic Linear Bias 13 977 148 211 —109 —26 —378 —172
RMSE 434 1069 450 466 491 468 654 525
Cov 95.2 44.0 93.4 93.8 93.6 95.4 86.8 92.6
Cubic Cubic Bias 13 867 151 213 —263 —173 —292 -2
RMSE 434 974 479 493 593 522 564 448
Cov 95.2 56.0 92.8 92.4 92.0 94.0 89.4 94.6
(¢) ONI (8 =10, A =1)
Linear Linear Bias 10 1385 779 784 499 503 —15 12
RMSE 450 1430 838 843 622 622 476 480
Cov 94.6 0.8 43.2 44.2 77.2 77.2 95.6 95.4
Linear Cubic Bias 12 1493 1088 1063 701 666 79 90
RMSE 450 1530 1128 1103 776 745 473 472
Cov 94.6 0.0 3.2 4.8 53.4 59.8 95.8 95.6
Cubic Linear Bias 10 1283 718 787 386 483 —261 —-81
RMSE 468 1344 800 855 574 629 621 549
Cov 94.6 9.4 60.6 52.2 87.6 79.0 93.2 94.6
Cubic Cubic Bias 12 1333 899 909 505 518 —77 —40
RMSE 439 1380 953 961 614 625 494 486
Cov 95.2 2.8 18.6 17.4 76.2 75.2 95.6 95.8
(d) Mixture of ONI and ONI (8 = 10, A = 0.5)
Linear Linear Bias 12 1232 463 466 249 249 48 52
RMSE 436 1288 582 587 472 474 435 438
Cov 95.0 8.4 81.8 81.4 92.0 92.4 94.6 95.2
Linear Cubic Bias 13 1260 683 668 328 314 137 141
RMSE 436 1312 770 756 510 501 441 441
Cov 94.6 5.8 55.4 58.6 88.0 89.2 95.2 95.6
Cubic Linear Bias 13 1625 1006 839 949 774 831 489
RMSE 471 1674 1072 920 1023 866 977 656
Cov 94.0 1.2 30.4 52.0 38.0 60.2 52.8 83.4
Cubic Cubic Bias 13 1100 508 540 133 180 —80 18
RMSE 433 1169 635 658 438 451 464 440

Cov 94.8 21.2 75.6 74.8 94.4 93.8 94.2 95.2
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Table 3
Estimates of the finite population mean of BMI, weight in kilograms divided by the square of height

in meters, for U.S. children and youths 2 months to 16 years of age. Y is the estimate of the BMI,

and SE(Y) is the estimate of the associated standard error.

Methods
Estimates REG RE PSPRE PCNI PSPCNI PONI PSPONI
SQ/ . 17.85 17.84 17.76 17.84 17.72 17.05 16.82
SE(Y) 0.34 0.33 0.34 0.33 0.33 0.31 0.32

sample of the civilian noninstitutionalized U.S. population
with counties as PSUs (National Center for Health Statistics,
1994). The sample was selected from households in 81 counties
across the United States during the period from October 1988
to October 1994. For confidentiality reasons, county identi-
fiers for counties with population less than 500,000 are sup-
pressed. As a result, the public use data we analyzed here
came from only the 35 largest counties with population at
least 500,000. In our analysis, we considered clustering at the
county level, although there may be a need to include cluster-
ing at the household level. Nandram, Han, and Choi (2002)
and Nandram and Choi (2005) reported that the clustering
at the household level is negligible and can be ignored as a
first approximation. Following their approach, we ignore the
clustering within households, i.e., approximating multilevel
clustering by two-level clustering.

The NHANES III consists of two components. The first
component is the interview of the sampled individuals by a
NHANES interviewer to collect personal information, such as
demographic variables. The second component is the health
examination of interviewed persons at a mobile examination
center or their home to collect health data. BMI data are
collected at the health examination.

Nonresponse occurs in both the interview and examina-
tion components of the survey. The interview nonresponse
arises when the sampled individuals did not respond for the
interview. The examination nonresponse arises when the in-
terviewed subjects failed to arrive at the mobile examina-
tion center for health examinations or missed examinations
at home, thereby missing all or part of the examinations. In
NHANES III youth data for children and youths 2 months to
16 years of age, BMI have 31% missing values. In contrast,
sex, race, age, years of education, household income, mother’s
BMI, and father’s BMI have much lower nonresponse rates,
and are used as covariates to predict the missing values of in-
come. Here we do not consider the small number of individuals

whose BMI values and the covariates are missing (i.e., unit
nonresponse), but only include individuals with complete co-
variates (i.e., complete cases and item nonresponse) in our
data analysis. All the covariates except sex and race are
treated as continuous variables in our models. Sex and race
(white or nonwhite) are binary variables. To improve the nor-
mality, a logarithm transformation is applied to BMI variables
and a cube root transformation is applied to household in-
come. Cohen and Duffy (2002) point out that “Health surveys
are a good example, where it seems plausible that propensity
to respond may be related to health.” The nonresponse of
BMI in NHANES III may not be random and are likely to be
nonignorable, motivating us to apply our methods.

Table 3 shows estimates of the finite population mean of
BMI for children and youths 2 months to 16 years of age and
associated standard errors under different models. In general,
all methods except the ONI models PONI and PSPONTI yield
similar results, that is, the average BMI is about 17.80, in
the unit of kilogram/meter® (kg/m?). The estimates of two
ONI models are slightly lower than the other models. The es-
timate of average BMI based on the POSNI is 17.05 kg/m?,
and the estimate of average BMI based on the PSPONI is
16.82 kg/m?. The similarity between the results from these
two ONI models may be partly due to the fact that the rela-
tionships between the BMI and the covariates do not severely
deviate from linearity. Nandram and Choi (2005) obtained
similar results when comparing a linear model and a spline
regression model for NHANES III BMI data, although they
emphasized small area estimation.

Table 4 displays estimates of selected parameters for differ-
ent models. Estimates of residual variance o2 based on PONI
and PSPONTI are significantly smaller than the other models,
suggesting that modeling ONI missing data mechanism sub-
stantially decreases the residual variance. However, estimates
of random intercept variance 72 are similar for all models. For
nonignorable models PCNI, PSPCNI, PONI, and PSPONI,

Table 4
Estimates of selected parameters under different models based on NHANES III youth BMI data
Models
Parameters REG RE PSPRE PCNI PSPCNI PONI PSPONI
o? 0.0222 0.0220 0.0207 0.0221 0.0220 0.0026 0.0023
72 N/A 0.0039 0.0036 0.0041 0.0040 0.0036 0.0031
é N/A N/A N/A 0.0302 0.0295 0.1655 0.1652
w? N/A N/A N/A 0.0301 0.0299 0.0257 0.0281
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giving the similar values of &%, the parameter ¢ is of partic-
ular interest because it determines the nonignorability. The
value ¢ are rather small for PCNI and PSPCNI, consistent

with the finding that Y based on PCNI and PSPCNI are
very similar to ignorable models. In contrast, 5 is relatively
much larger for PONI and PSPONI, suggesting substantial
nonignorability of the missing data, and also explaining the
difference between Y pont, Y pspont, and other models.

From the statistical point of view, there is no information to
identify the ONI nonresponse based on observed data. How-
ever, the comparison among ignorable, CNI, and ONI models
provides a form of sensitivity analysis for the missing data
mechanisms of nonresponse. For this particular data, we may
present the result as that the average BMI for youths less
than 16 years old is about 16.8 to 17.8 kg/m?. We note that
one reason for the nonresponse is that parents of very young
children (e.g., less than 2 years old) are often protective and
would not allow their children to leave home for a physical ex-
amination. Because the very young children are less likely to
be overweight, the nonresponse here may be ONI in the sense
that individuals with lower BMI are less likely to respond.
However, by conditioning on variables that are highly related
to BMI, the bias from ONI nonresponse may be substantially
reduced.

5. Conclusion

This article studies item nonresponse adjustment for two-
stage cluster samples. When nonresponse is MAR, the para-
metric approaches RE;, PCNI, and PONI yield consistent esti-
mates when the mean model is correctly specified. However, if
the mean model is misspecified, they lead to biased estimates.
Without imposing any parametric form on the mean struc-
ture, the semiparametric approaches PSPRE, PSPONI, and
PSPCNI are robust to the nonlinearity between the outcome
and covariates. When nonresponse is CNI, RE and PSPRE
lead to biased estimates because the MAR assumption is vi-
olated. PCNI takes account of CNI nonresponse and yields
consistent estimates if the mean structure is correctly spec-
ified, but otherwise is potentially biased. PSPCNI addresses
this problem, and yields consistent estimates under nonlin-
ear mean structures. Under CNI nonresponse, PONI and
PSPONI generally lead to biased estimates although PSPONI
does better in terms of bias and coverage than PONI, suggest-
ing that estimates based on PONI and PSPONI are sensi-
tive to the misspecification of the nonignorable missing data
mechanism. When nonresponse is ONI, all methods except
PONT and PSPONI are biased and have poor coverage rates.
PSPONTI is more robust than PONT in the sense that PSPONI
does not require the linearity between the outcome and co-
variates. When the nonresponse is a mixture of CNI and ONI,
none of the methods is satisfactory.

A natural and important question given these findings is if
we can determine whether nonresponse is CNI or ONI, and
which model should be used. Unfortunately, we cannot distin-
guish between these two types of nonignorable nonresponses
solely based on the observed data. Nevertheless, if auxiliary
variables for nonrespondents and respondents are available,
for example from census data, then we could compare the
residual distribution of auxiliary variables, obtained by re-
gressing on appropriate covariates, of nonrespondents with

1179

that of respondents within a cluster. If there is no systematic
difference, we might assume that nonresponse is more likely
to depend on underlying cluster-specific characteristics and
apply PCNI or PSPCNI; otherwise, we may consider PONI
or PSPONI. Because we do not have enough information to
distinguish between alternative nonignorable missing mecha-
nisms, it may be more appropriate to apply more than one
method and compare results. In addition, the cognitive and
social psychological theory of survey participation also pro-
vides an important way to understand and identify the nonig-
norable nonresponse mechanism (Groves and Couper, 1998).

We focus on two-stage cluster samples, but our models
can be readily extended to accommodate multistage cluster
samples. To reflect the design feature of multistage cluster
sampling, we can use multilevel hierarchical models where dif-
ferent levels within-cluster correlations are modeled by differ-
ent level random effects. The same latent variable approach
can be used to model the ONI missing data mechanism. CNI
nonresponse now may associate with random effects of differ-
ent levels. In principle, we could extend PCNI and PSPCNI
model to allow the mean of the outcome variable to depend
on random effects of all levels. However, because substantial
within-cluster correlation may only occur in certain levels, it
may be adequate to just model the relationship between the
outcome variables and the random effects of these levels.

In the propensity spline models discussed in Section 2.2,
the covariates z,; were replaced by centered versions 1z, as
in Eq. (5). Recent work in Zhang and Little (2005) suggests
that this centering is not necessary to yield robust estimates.
This simplifies the model.

This article concerns estimation of the finite population
means. In this case, it is more critical to correctly specify the
mean model rather than the propensity model. For this reason
and also for the sake of convenience, we assume the paramet-
ric linear probit model for nonresponse; that is, the mean of
the latent variable z; depends on covariates x;; linearly. Of
course, to obtain more robust approaches, we could model the
relationship between z; and x;; nonparametrically as well, for
example, using generalized additive models (Hastie and Tib-
shirani, 1990).
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