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SUMMARY. In a randomized clinical trial, a statistic that measures the proportion of treatment effect on
the primary clinical outcome that is explained by the treatment effect on a surrogate outcome is a useful
concept. We investigate whether a statistic proposed to estimate this proportion can be given a causal
interpretation as defined by models of counterfactual variables. For the situation of binary surrogate and
outcome variables, two counterfactual models are considered, both of which include the concept of the
proportion of the treatment effect, which acts through the surrogate. In general, the statistic does not equal
either of the two proportions from the counterfactual models, and can be substantially different. Conditions
are given for which the statistic does equal the counterfactual model proportions. A randomized clinical
trial with potential surrogate endpoints is undertaken in a scientific context; this context will naturally
place constraints on the parameters of the counterfactual model. We conducted a simulation experiment
to investigate what impact these constraints had on the relationship between the proportion explained
(PE) statistic and the counterfactual model proportions. We found that observable constraints had very
little impact on the agreement between the statistic and the counterfactual model proportions, whereas
unobservable constraints could lead to more agreement.
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1. Introduction

Clinical trials with rare primary endpoints or long duration
times often require large sample sizes and extensive periods
of follow-up. Because of this, there has been increasing inter-
est in using surrogate endpoints in lieu of the primary end-
points in these situations. A number of statistical articles con-
cerned with evaluating surrogate markers have been written
(Prentice, 1989; Freedman, Graubard, and Schatzkin, 1992;
Daniels and Hughes, 1997; Buyse et al., 2000; Li, Meredith,
and Hoseyni, 2001; Wang and Taylor, 2002; Ditlevsen et al.,
2005). Surrogate endpoints are usually intermediate biomark-
ers in disease development, which can be assessed earlier and
more easily. They are generally proposed based on the bio-
logical process of a disease and their strong associations with
the primary endpoint.

Prentice (1989) proposed a formal definition of surrogate
endpoints and gave general operational criteria for validation
of surrogate endpoints. Prentice’s criteria leads to considera-
tion of a model for the treatment effect on the primary end-
point adjusting for the surrogate marker and statistical tests
for 7,95, =0, where 7,4, is the adjusted treatment effect in the
model. Prentice’s criteria, which requires a surrogate endpoint
to fully capture the treatment effect on the primary endpoint,
is rather too stringent. In practice, it is more likely that a sur-
rogate endpoint may explain part but not all the treatment

effect. Thus, a quantitative measure of the proportion of the
treatment effect that is explained by the surrogate marker
was proposed by Freedman et al. (1992). This measure was
given by P = (Tunadj. — Tadj.)/(Tunadj.), where Tynag;. is the
treatment effect on the primary outcome without adjusting
for the marker. The properties of this statistic are reviewed
in Wang and Taylor (2002) and two alternative statistics F
and F' for assessing the proportion of the treatment effect
explained were proposed.

We use the following notation: 7" and S denote the pri-
mary endpoint and surrogate marker, respectively. They are
assumed to be binary. Z is the treatment variable, with Z =
1 for treatment (or new treatment) and Z = 0 for placebo (or
standard treatment). We assume a positive effect of the treat-
ment, with 7" =1 and S = 1 representing better outcomes. In
a randomized clinical trial, a perfect surrogate occurs when S
captures all the dependence of T on Z, that is, P(T'| Z, S) =
P(T|S). A useless surrogate can occur when, conditional on
the treatment, the surrogate is independent of the primary
endpoint, that is, P(T'|Z, S) = P(T'| Z), or when S is inde-
pendent of the treatment group, that is, P(S|Z) = P(S).

An alternative approach to the consideration of surrogate
markers is through models of counterfactual variables. Such
models are frequently used in the statistical literature on
causal inference. The general idea of a counterfactual model
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is to postulate all the values for both the surrogate S and the
primary outcome T for a subject under the different possible
interventions Z. Thus, for example, one postulates what the
two values of S would be if either Z = 0 or Z = 1, even though
only one of these could be observed for each subject. These
two values are denoted by the pair (Sy, S1). In the counterfac-
tual framework the population is partitioned into subgroups,
such that within each subgroup everyone would have the same
both observed and counterfactual outcomes. The proportions
of the population in each of these subgroups are parameters
in the model. Two counterfactual frameworks have been sug-
gested that are relevant to surrogate markers. The work of
Robins and Greenland (1992) considered the problem of sep-
arating the direct effects of an exposure or treatment from the
indirect effects relayed through an intermediate or surrogate
variable. The ratio of the indirect effect to the total effect can
be interpreted as the proportion of the treatment effect on
the primary outcome explained by the surrogate. Using ideas
from counterfactual models, Frangakis and Rubin (2002) pro-
posed the concept of principal surrogacy and that the effects
of treatment on the primary outcome can be considered as
either associated with or disassociated from the effect of the
treatment on the surrogate. In this approach, the ratio of the
associative effect to the total treatment effect could be viewed
as a measure of the proportion of treatment effect explained
by the surrogate. The aim of this article is to investigate the
link between the two previously proposed statistics F and F”
and the proportions from these two counterfactual models.
Because results and conclusions are similar for F' and F’, we
present here only the results for F. We have changed the no-
tation for this article: what was previously (Wang and Taylor,
2002) denoted by F is denoted by PE (proportion explained)
in the current article.

In practice, data are collected in a scientific context from
which there might be a considerable amount of a priori knowl-
edge. For example, it will almost certainly be known that
the primary and surrogate outcomes are correlated. Further-
more, we would not be contemplating evaluating whether §
is a good surrogate unless there was a treatment effect on
both S and T. These types of restrictions will imply con-
straints on the parameters in the counterfactual model. An
aim of this article is to investigate the relationship between
the PE statistic and the analogous measures from the coun-
terfactual model, and how this relationship is impacted by
subject-matter constraints. Because PE is easy to estimate,
an important question is whether it can be given a causal
interpretation as defined from the counterfactual models or
whether it approximates the analogous proportion from the
counterfactual models under certain conditions.

Throughout this article we will use a simple HIV clinical
trial evaluating the efficacy of a new antiretroviral treatment
to illustrate the models and statistics. The trial has two arms,
a standard treatment (Z = 0) and a new treatment (Z = 1).
The patients have CD4 counts measured at baseline and at 16
weeks in the trial. The change in CD4 count from baseline is a
possible surrogate endpoint, for use in future trials, to replace
the primary clinical endpoint. For this illustration, the change
in CD4 count is considered as binary, with a decrease in CD4
considered as bad (S = 0) and an increase as good (S =
1). The primary clinical endpoint is whether the patient is
alive (T'= 1) or dead (T" = 0) at 2 years. Assume the results
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of the trial were in the expected direction, that is, the new
treatment gave a higher percentage with increasing CD4 and
higher percentage alive at 2 years. Although we present this
hypothetical trial for the purpose of illustrating the ideas, it
is quite similar to some large randomized trials for which the
role of early CD4 counts as a surrogate has been investigated
(Delta, 1996; Aboulker et al., 1999; Hughes, 2000), and the
present evaluation of antiretroviral therapy in HIV clinical
trials is most often based on CD4 count and plasma HIV
RNA (Lazzarin et al., 2003).

In Section 2, we describe the statistic PE, as proposed in
Wang and Taylor (2002). In Section 3, we describe the coun-
terfactual model and investigate algebraic relationships be-
tween PE and the counterfactual proportions. In Section 4,
we discuss possible contextual restrictions. In Section 5, we
present the results of a simulation experiment to compare PE
with the counterfactual analogues.

2. A Measure for the Proportion of Effect Explained
Motivated by Tsiatis, De Gruttola, and Wulfsohn (1995),
Wang and Taylor (2002) proposed a measure PE for the pro-
portion of treatment effect explained, defined by

PE = (My — M) /(M — M,)

where

My=P(T=1|Z=0)

=S P(T=1|S=52=0P(S=s|Z=0),
M, =P(T=1|Z=1)

=N P(T=1|S=s,Z=1)P(S=s|Z=1),
My =3 P(T=1|S=s2=0)P(S=s|Z=1).

Here, My measures what the probability of being alive in
the standard treatment group would be if the values of the
surrogate are distributed as those in the new treatment group.
Hence, My — M, can be interpreted as the change in the
probability of being alive that is due to the new treatment
induced effect on the surrogate marker in the standard treat-
ment group. Thus, PE can be interpreted as a measure for
the proportion of treatment effect on the survival at 2 years
being explained by the change in CD4 values at 16 weeks.

Wang and Taylor (2002) gave sufficient conditions for PE
to be between 0 and 1. These conditions reduce to

Rl: P(S=1|Z=1)>P(S=1|Z=0)
R2: P(T=1|S =1, Z = z) >

z) P(T = 1|5=0,Z==2)
for all z
R3: P(T'=1|S=s, Z = 1) > P(T = 1|S=s, Z=0)
for all s.

Conditions R1 and R2 are very natural and one would ex-
pect to be always true; while R3, although quite plausible, is
less likely to be universally true; it says that the direction of
the association between T and Z is not altered by knowing S.

For the HIV clinical trial R1 says more people in the new
treatment group tend to have increasing CD4 values than in
the standard treatment group. R2 says that within each treat-
ment group, the percentage alive at 2 years is higher if the
CD4 increased compared to if it decreased. R3 says among
those with increasing CD4 the new treatment group still gives
a higher percentage alive than the standard treatment group,
and the same applies for those with decreasing CD4. The
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results in Tsiatis et al. (1995) suggest that R3 is likely to be
satisfied.
It is easy to show that PE can be reexpressed as:

PE = 6vo/7 (1)
where,
6 =Pr(S —1\Z—1)7Pr(S: | Z = 0),
T=Pr(T'=1|Z=1) - Pr(T'=1|Z = 0), and
Y =Pr(T'=1|Z=0,S=1)-Pr(T'=1|Z=0,5=0).

Note that PE incorporates three aspects, the treatment ef-
fect (6) on S, the treatment effect (7) on T, and the association
(7o) between S and T.

3. Causal Inference Models

3.1 Counterfactual Characterization of Direct
and Indirect Effects

The concept of proportion of treatment effect explained im-
plies that the overall causal effect of treatment consists of two
parts—direct and indirect effects. Indirect effect refers to the
part that is mediated through the surrogate marker. Direct
effect refers to the part that does not involve the surrogate
marker. The ratio of the indirect effect to the overall effect
gives the proportion of treatment effect explained by S. If it is
possible to block the effect of S on T using some kind of inter-
vention, then randomization of such intervention within each
level of Z will allow estimation of these two effects. However,
S is usually affected by the treatment and not manipulatable.
In this case, causal models using the counterfactual concept
provide a way to state clearly what the direct and indirect
causal effects are.

Robins and Greenland (1992) developed such a coun-
terfactual model. They assumed 12 types of subjects and
their associated proportions in the population as shown in
Table 1.

In the table the numbers in parentheses represent those
that are never observable unless one can manipulate S. For
example, for a type 1 person, S would have the same value 1
whatever Z, and the value of T'would be 1 whatever the value
of Z; however, if you could manipulate the value of S to be 0
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then T would change to 0 for both treatment groups. In terms
of the HIV/AIDS example, for a type 1 person, both standard
and new treatments result in an increase in CD4, and under
both treatments the person is alive at 2 years. However, if you
were able to block the increase of CD4 the person would be
dead at 2 years in either treatment arm.

Robins and Greenland characterize the direct and indirect
effects. For subjects of types 3, 5, and 7, Z would be a direct
cause of positive T, because T' = 1 occurs only when Z = 1,
and any manipulation of S given Z would not change the re-
sult of T. For type 4, Z would be an indirect cause of positive
T, because for these subjects T' = 1 only when Z = 1, and
modification of S results in a modification of 7. For types 2,
4,5, and 9, Z would be a cause of positive S, as seen from the
first two columns in the table. Hence, the excess of the good
outcome for T due to direct effect of Zis p3 + ps + pr and
the excess of the good outcome for T due to indirect effect
through S'is p,, thus the total overall effect is (p3 + ps + p7 +
p4), and the proportion of treatment effect explained by S is
given by py/ps + ps + pr + ps. We denote this by proportion
indirect (PI). This and other important quantities are sum-
marized in Table 2.

There are 11 free parameters in this model, but they cannot
be individually estimated. However, certain functions of the
parameters are estimable. The four conditional probabilities
R, =P(T=1|S = s, Z = z) and the two conditional prob-
abilities U, = P(S = 1| Z = z), or other quantities derived
from these six, are estimable. Which quantities are estimable
and their definition in terms of the 12 probabilities are given
in Table 2.

3.2. Ezchangeability Assumptions

Under this model, Robins and Greenland show that estima-

tion of the direct effect is not possible without further as-

sumptions. They propose “exchangeability assumptions” E1
and E2:

(E1) Probability (Ryy) of T' = 1 for subjects with Z = 1 and
S1 = 0 equals the probability (R;;5) of T' = 1 for subjects
with Z = 1 and S; = 1 would have had the treatment
effect through S been prevented.

Table 1
Counterfactual model; division of population into subtypes based on potential values of S and T.
The numbers in parentheses are the potential values of T when S is changed.
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Table 2
Definitions of important quantities
Quantity Definitions Algebraic expression Estimable

Treatment effect (1)
Surrogate effect (6)

Association (7yy) Ry — Ry

Association () Ry — Ry

Us PS=1|Z=0)

v, P(S=1]2=1)

Ry P(T=1|Z=1,8=1)

Indirect effect
Direct effect
Associative effect
Dissociative effect

PE 6 Yo/ T

PI Indirect/treatment

PA Associative/treatment

Rooa P(r=1|Z=0,5=(0—1))
Ripa PT=11Z=1,5=(0—1))
Roip PIT=1|Z=0,5=(1—0))
Riip Pr=11Z=1,5=(1-0))

PT=1|Z=1)—-P(T=1|Z=0)
P(S=1|Z=1)-P(S=1|2Z=0)

P3s + Py + ps + pr
D2 + P4+ D5 + Dy

po +p1 +p3 + Ps
Do+ p1+ P2+ D3+ Py + P+ DPs+ Py
P2+P6
P2tP4+P5+P6+P7+PITP10TPIL
PotP1
pPo+p1+p3+ps
pP6+Pp7
Pe+P7TtP10TPIL
Potp1+p2+p3+pitps
Po+P1+P2+P3+P4+P5+Ps+PY

s

P3 + D5 + pr
P4+ D5

Dp3 + D7

p1/(p3s + ps + D5 + pr)
(ps + ps5)/(p3 + ps + ps + pr)

P2+P6+PitPio

P2tP4+P5+P6+P7HP P10 TPIL
P6+P7TTPI0
Pe+P7+P10+P1L
Do

Po+P1+P3+Ps

Po+p2+p3+ps
PotP1+P2+P3+Pe+P5+Ps+PY

Z 22 22 2K2Z22Z22Z K <K K K KKK

(E2) Probability (Ry) of T' = 1 for subjects with Z = 0 and
So = 0 equals the probability (Ry;5) of T =1 for subjects
with Z = 0 and S; = 1 would have had the treatment
effect through S been prevented, and state that unless
these are satisfied, direct and indirect effects are con-
founded and not separately identifiable when only the
treatment is randomized (Robins and Greenland, 1992).
The estimated treatment effect obtained using the con-
ventional adjustment, as proposed in Freedman et al.
(1992), is a biased estimate of the direct effect.

3.3 Conditions for PE to Estimate the PI
The measures PE is derived from the quantities M, M1, and
My, . It can be shown that

My = po+p1 + p2 + pes

My = ps+ps+ps+po+p1+ps+ s+,
(po +p1)(1 — ps — pr — pro — pu)

po+p1+ps+ps
n (p2 + p6) (ps + p7 + Pro +p11).

(1 =po—p1 —ps — ps)

The sum of direct (p3 + ps + p7) and indirect effects (p4)
equals the overall treatment effect (M, — M), and it is hoped
that My — M, would estimate the indirect effect, while M,
— M, would estimate the direct effect. From

M, — My = (E[T|Sy=1,Z=1]-E[T| S, =1,Z =0])

Moy =

XP(S=1]Z=1)
+(E[T|S=0,Z=1-E[T|S =0,Z=0)])

X P(S,=0|Z=1),

we can see that M; — Mg, is a weighted sum of the adjusted
effect (the underlined quantities) within each level of observed
S.

Robins and Greenland (1992) state that, if E1 and E2 are
satisfied, then

E[T|S8=1,Z=1-E[T|S =1,2Z=0]
=E[T|S5 =0,Z=1—-E[T|S =0,Z=0]
= p3 + p; + pr = direct effect.

However, we think two additional complementary exchange-
ability conditions should be satisfied for this to be true. These
extra conditions are E3 and E4:

(E3) Probability(R;;) of T = 1 for subjects with Z = 1 and
S1 =1 equals the probability (R 4) of T' = 1 for subjects
with Z = 1 and S; = 0 would have had the treatment
effect through S been added.

(E4) Probability(Ry) of T = 1 for subjects with Z = 0 and
So = 1 equals the probability(Rga) of T = 1 subjects
with Z = 0 and Sy = 0 would have had the treatment
effect through S been added.

For the HIV trial illustration, E3 says that the probability
of being alive at 2 years is equal for two groups of people.
The first group is those who receive the new antiretroviral
treatment and show an increase in CD4. The second group is
those who receive the new antiretroviral treatment and had a
decrease in CD4, but who would have had an increase in CD4
if they were given some other immunostimulating agent that
is targeted at CD4 and caused it to increase.
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The complete set of exchangeability conditions are:

(E1) Ruug = R,
(E2) Ryip = R,
(E3) Ripa = Ru1,
(E4) Ryoa = R,

where the subscripts A and B refer to adding and blocking of
the surrogate effects, and the expression in terms of the 12
proportions are given in Table 2.

Ry is the incidence of T' = 1 that subjects with Z = 1,
S = 1 would have had if the effect mediated through S is
blocked, requiring this to equal Ry, which is the incidence of
T =1 for subjects with Z = 1, S = 0, is not unreasonable. A
similar logic is used to justify Ry1p = Rgy, Rioa = Ri1, and
Ryoa = Ror-

It can be shown that if E1 — E4 are satisfied, PE = p,/(p3 +
p1 + ps + pr).

3.4 Principal Stratification Approach

Frangakis and Rubin (2002) proposed a different counterfac-
tual framework for assessing surrogacy. This framework dif-
fered from that of Robins and Greenland (1992) because it
did not include manipulation of S. They proposed a concept
of principal stratification based on which principal causal ef-
fect is defined. The principal strata are constructed based
on the pair (S;, S;i1), the values of which would not change
even though the treatment may have an effect on S such that
Sio #8541 For the counterfactual model in Table 1, there are
three principal strata, those for which (Sy, S;) = (0, 0) con-
sisting of types 6, 7, 10, and 11, those for which (Sy, S;) =
(0, 1) consisting of types 2, 4, 5, and 9, and those for which
(So, S1) = (1, 1) consisting of types 0, 1, 3, and 8. The three
principal strata are the three rows in Table 3, labeled PS =
(0, 0), PS = (0, 1), and PS = (1, 1).

With this stratification, the principal causal effect always
has a causal interpretation because it compares potential out-
comes for a common set of subjects. Frangakis and Rubin
(2002) proposed to evaluate surrogacy of S through the ef-
fects of treatment on T that are associative and dissociative
with effects on S. The effect on T from the comparison be-
tween {TiI: Sil = SZO} and {Tigl Sil = Slg} is defined as
dissociative with respect to the effect on S, because any dif-
ference between T'; and T is not accompanied by a difference
between S; and Sy. The effect on T from the comparison be-
tween {Til: Sil # Sw} and {Ti(): S“ # Szo} is defined to be
associative with respect to the effect on S, that is, the differ-
ence between T and T is associative when (S, S1) = (0, 1).
In other words, information about the direct effect is obtained
by comparing subjects with Sy = S;. Considering the scenario
illustrated in Table 3, the treatment difference corresponding
to the dissociative effect are p; + p3 and the treatment dif-
ference corresponding to the associative effect are p, + ps.
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We define PA = (py + ps)/(ps + ps + ps + p7), denoting the
proportion associative.

For the HIV trial illustration the people who have an asso-
ciative effect are those who would be alive at 2 years if given
the new treatment but dead if given the standard treatment,
and would have an increase in CD4 if given the new treatment
and a decrease if given the standard treatment. The dissocia-
tive effect comes from those who would be alive at 2 years
if given the new treatment but dead if given the standard
treatment, and would have an increase in CD4 under both
treatment arms or a decrease in CD4 under both treatment
arms.

3.5 Conditions for PE to Estimate the Associative Proportion
The following two conditions will result in PE = PA.

A: (py + ps + p5)/(p2 + 1+ p5s + po) = (po + p1)/(po +
p1 + ps + ps)
B: (ps)/(ps + pr + pro + pu1) = (p2)/(p2 + ps + 5 + po).

Each of these ratios is a conditional probability of T' =
1 given a specific treatment within one of the three prin-
cipal strata in Table 3. With these equalities calculation of
PE within each principal strata gives appropriately PE = 0
in PS = (0, 0) and PS = (1, 1). Calculation of PE within
PS = (0, 1) requires defining P(T'=1|S = 1, Z = 0) which
is nonexistent for this stratum. Substituting in this probabil-
ity from PS = (1, 1) leads to the desired result that PE =
1 in PS = (0, 1). Other than this we do not see an obvious
natural interpretation of conditions A and B.

4. Contextual Restrictions

In the general counterfactual model given by Table 1, the
only restriction on the parameters is that the 12 values of p
add to 1. However, in a clinical trial there will very likely be
a considerable amount of scientific subject-matter knowledge
that makes some set of parameter values much less likely than
others. We consider two types of restrictions, those that are
empirically observable and those that are not observable. Only
the first type could be verified from data. The second type
would need to rely on knowledge of the underlying biological
mechanism or intuition of subject-matter specialists.

4.1. Empirical Restrictions

4.1.1 Association restrictions. In any clinical trial a marker
S would not even be considered for a surrogate unless it had
been previously observed to be associated with T and most
probably to also have a plausible biological mechanism as to
why it is in the pathway for the occurrence of T. Thus, we
might expect the values of v, and ;, which measure the as-
sociation between S and T given Z = 0 and Z = 1, respec-
tively, to be large but not excessively large. Also we might
also expect the association not to be too different between

Table 3
Classification of population into subtypes by possible values of (Sy, S1) and (T, T1)

Principal strata (So, S1) (Ty, T1) = (0, 0) (To, Th) = (0, 1) (Ty, Th) = (1, 1)
PS = (0,0) (0,0) type = 10,11 type = 7 type = 6

PS = (0,1) (0,1) type = 9 type = 4,5 type = 2

PS = (1,1) (1,1) type = 8 type = 3 type = 0,1
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the two groups. In terms of py to p;;, the parameters v, and
71 are defined in Table 2.

4.1.2. Effect size on primary outcome. We would not be
considering S as a possible surrogate in the trial unless there
was a real treatment effect on T, but not too large that one
would not be interested in a surrogate. Thus we may restrict
PT=1[Z=1)-P(T =1|Z=0)=ps +ps + ps + pr
to a given range of values. Also we expect P(T =1|Z = 1)
to be bounded away from 1, because otherwise there would
not be a need to think about surrogate endpoints. Another
possible restriction may bound P(T' = 1| Z = 0) away from 0,
because randomized trials do not tend to be performed when
standard treatment is totally ineffective.

4.1.8. Effect size on surrogate. If S is going to be use-
ful as a surrogate it has to be affected by treatment. We
would probably expect the effect on the surrogate to be
quite strong, because it is frequently chosen to be some-
thing that is known to be altered by the treatment, thus
we restrict P(S = 1|Z = 1) — P(S = 1|Z = 0) =
P2 + Py + ps + py to a range appropriate to the context.

4.1.4. Fin [0,1]. The conditions R1, R2, and R3 given for
PE to lie between 0 and 1 can be regarded as empirical re-
strictions. Condition R2 is satisfied if Ryy < Ry and Ry <
RH and R3 is true if RUO S Rw and RU] S RH.

Condition R1 is always true for any set of (py,...,p11). R2
is something we would require to be true, so this represents a
restriction on the set (po,...,p11). R3 is an example of a re-
striction for which there is often, but not always, a reasonable
rationale.

4.2 Unobservable Restrictions

4.2.1 Exchangeability restrictions. The conditions for ex-
changeability described in Section 3 are an example of an un-
observable restriction. They cannot be verified from data, but
they do have plausibility associated with them at least as an
approximation. Thus, we might restrict the difference between
each pair, Ri1p — R, Rup — Roo, Rioa — Rui, Rowa — Ro
to be not excessively far from 0.

4.2.2 Frailty restrictions. In clinical research the con-
cept of frailty is quite plausible, that is, there are some
people who will always respond to anything and oth-
ers who will never respond to anything. For the out-
come S this means that P(S; = s, Sy = s) >
P(S1 = s) * P(Sy = s), with a similar restriction for 7. By the
construction of the 12 subgroups in Table 1 these are always
satisfied.

4.2.8 Frailty association restrictions. We can consider the
three pairs (Sl = 07 S() = 0), (Sl = 1, S() = 0), (Sl = 1, S[] = 1)
as an ordered classification of the people from least responsive
to most responsive with respect to S. The three pairs (T =
0, Ty=0), (T =1,Ty =0),and (T, = 1, Ty = 1) have an
analogous ordering. Together these give a 3 x 3 contingency
table with ordered categories as shown in Table 3. Association
between S and T would imply positive association in 2 x 2
subtables of the 3 x 3 table. In terms of the 12 parameters
this could be expressed as a set of inequalities

ps/(Ps + pr + P + P11) < P2/ (P2 + ps + p5s + po) < (po +
p1)/ (o + p1 + p3 + Ds)

1107

(p10 + p11)/(Ps + p7 + P10 + P11) = Do/ (P2 + D1 + D5 + po) >
ps/(Po + p1 + ps + ps)

ps/(Po + P1 + P2+ p6) < p7/(Ps + Py + ps + pr) < (P +
pu)/(ps + P9 + P10 + pP11)

(o + p1)/(po + P1 + P2 + p6) > p3/(Ps + ps + p5 + p1) >
ps/(ps + P9 + P10 + P11)-

One interpretation of the association in the 3 x 3 table
is that it is due to unmeasured confounders, for example, a
genetic factor that influences both S and T. It is certainly
plausible that there are such unmeasured or unknown factors;
it is also unlikely that such a factor would have an excessively
large impact on the associations between S and T. Thus, we
could place further restrictions on the 12 proportions listed
above.

5. Simulation Experiment

The relationship between PE, the indirect proportion PI, and
the associative proportion PA was investigated in a simula-
tion study. The set of parameters p, to p;; were simulated
1,000,000 times and for each set the values of PE, PI, and
PA were calculated. Then as measures of the link between PE
and PI and between PE and PA we calculated the Spearman’s
correlation coefficient and the proportion of times they were
different by less than 0.2. Values of py, . .., p11 were generated
from an exponential distribution, then rescaled to make them
add to one, to give uniform coverage over the high dimensional
space of possible values of p.

To assess the impact of the observable constraints we di-
vided the simulated sets into categories based on the mag-
nitude of the treatment effect on T, the treatment effect on
S, and the association between S and T. We restricted the
set of p’s to the 537,028 sets where PE was between 0 and
1. Figure 1 shows graphs of the correlation between PE and
PI and between PE and PA as the treatment effect (1) on 7,
the treatment effect (6) on S, and the association (vyy) of S
and T increase. We see that the average correlation between
PE and PI is quite low, around 0.23, whereas the average cor-
relation between PE and PA is higher, around 0.45. As the
treatment effect increases there is a modest increase in the
correlation between PE and PI, and a more pronounced in-
crease in the correlation between PE and PA. As the effect
of Z on S increases there is a clear decrease in the correlation
between PE and the other indices. As the association between
S and T increases there is not much impact on the correlation
between PE and PI or between PE and PA. Overall, these
results suggest that observable restrictions, suggested by the
context of a randomized trial, are likely to lead to less close
links between the PE statistic and the proportions from the
counterfactual model.

The joint impact of the observable restrictions was assessed.
Table 4 shows a summary of the values of PE, PI, and PA
before and after restrictions were applied. The restrictions
that were applied were based on a broad range of observable
quantities. Comparing the second row with the first row shows
that in combination the likely observable restrictions lead to
a weaker link between PE and the other two measures.

The impact of the closeness to exchangeability on the cor-
relations in the empirically restricted sample is illustrated in
Figure 2a and 2b. The horizontal axis represents the difference
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PE and PA (b, d, f) according to observable effects.
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Table 4
Results of simulation experiment: impact of applying empirical and unobservable
restrictions on the relationship between PE measures
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Median values Correlations % agree |A| < 0.2
Restrictions n PE PI PA p(PE, PI) p(PE, PA) (PE, PI) (PE, PA)
None, PE in [0,1] 537,028 27 .22 .53 .23 .45 60 45
Empirical® 23,452 42 .25 .58 .09 21 45 53
Unobservable?, empirical
Exchangeability 4077 .26 .26 .58 44 .28 69 38
Frailty association 3009 .56 .22 .46 .19 .49 28 75
All restrictions 313 .45 .27 .45 .45 A7 56 7

IP(T=1|Z=1)—P(T=1|Z=0)in (1,7, P(S=1|Z=1) - P(S=1|Z=0)in (2, 8), P(T =1|Z=1)< .9, P(T =1|Z = 0) > .1,
o and 1 in (.2, .8), |v0 — 1] < .2.
2|RiiB — Riol, |[RoiB — Rool, |[Rioa — Ruil, and |Ropa — Roi] all < .2, frailty association ratios all > 1.0.
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Figure 2. Impact of unobservable effects on correlation between PE measures. Association between PE and PI (a, ¢) and

between PE and PA (b, d) according to the exchangeability conditions (a, b) and frailty association (c, d) in empirically

restricted sample.
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in proportion between the two ratios in each of the four con-
ditions E1 to E4. Thus, for example, the point above 0.2 has
all four of the differences in probability less than 0.2. We
see that as the conditions of exchangeability become closer
to being satisfied, the correlation between PE and PI be-
comes closer to 1, and the correlation between PE and PA also
increases.

Figure 2¢ and 2d show the impact of the magnitude of the
frailty association in the empirically restricted sample. This
is a cumulative plot, with increasing strength of association
between S and T represented by large values on the horizontal
axis. Thus the point above 1.2 represents all sets of p’s that
have all of the eight frailty association inequalities satisfied by
a factor of at least 1.2. From the left-hand end of the plot we
see that eliminating scenarios where the frailty association
is substantially less than 1 has an effect of increasing the
correlation between PE and PA, but less of an effect on the
correlation between PE and PI.

Lastly, we considered the joint impact of all the observ-
able and unobservable contextual restrictions. The unobserv-
able restrictions are chosen to be fairly conservative, that is,
only eliminating scenarios where the exchangeability condi-
tions are far from being satisfied or frailty association is neg-
ative. Table 4 shows the impact of adding the unobservable
restrictions. The results show a modest increase in the link
between PE and both the other two measures when the ex-
changeability and frailty association restrictions are applied.
Despite this stronger link there still are cases where PE is
close to 1 and either PI or PA is close to 0, or vice versa.
It is also worth noting that even though the restrictions were
chosen to be fairly mild, they do substantially reduce the num-
ber of sets of p’s to a minute fraction of all possible p’s. This
nicely illustrates how general the counterfactual model is, and
one should not assume that any set of p’s from a counterfac-
tual model are plausible even before data are collected, and
in fact the majority may not be. The model for simulating
the p’s together with the restrictions could be considered as a
prior distribution if a Bayesian approach to analyzing a data
set is being considered.

6. Discussion

Different approaches for assessing the surrogacy for a
biomarker in clinical trials are proposed in the literature.
Daniels and Hughes (1997) and Buyse et al. (2000) considered
the setting of multiple trials. Ditlevsen et al. (2005) developed
the concept of the mediation proportion, based on a latent
multivariate normal distribution. Prentice (1989) suggests a
strict validation criteria; Freedman et al. (1992), Wang and
Taylor (2002), and Li et al. (2001) investigate the concept
of the proportion explained. In previous work we suggested
a statistic PE to represent the proportion explained and in-
vestigated its statistical properties. In the current article we
investigate to what extent PE can be given a causal interpre-
tation, as defined by a counterfactual model.

The quantity PE can be estimated from data, whereas PI
and PA cannot be estimated without untestable assumptions.
The most ideal result of this work would have been finding
regions of the parameter space, defined by observable quan-
tities, for which the link between PE and either PI or PA
was strong. We were unable to find such regions. We did find
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restrictions, based on unobservable quantities, most notably
exchangeability but also to a lesser extent frailty association,
for which there was a stronger link between PE and PA or
PI. Thus in the context of the trial under consideration, if
these conditions seem plausible, it does give some assurance
that PE can be used and will tend to have at least approxi-
mately a causal interpretation as defined by a counterfactual
model.

Although the principles that motivate PI and PA are dif-
ferent, the algebraic formulas are quite similar and only differ
by the extra term p; in the numerator of PA, thus they will
be quite correlated with each other, but PA will always be
larger than PI. As the name suggests, the proportion associ-
ated (PA) potentially incorporates the concept of association,
particularly frailty association in the 3 x 3 table (Table 3).
Thus it is not surprising that PA and PE are closer when the
frailty association is high.

The exchangeability conditions essentially require the out-
come to depend on the final value of the surrogate and not
whether it was manipulated to arrive at this final value. Under
such conditions it is expected that the PE statistics, which is
motivated by considering what the outcome would be if the
distribution of the surrogate in the placebo group was changed
to that of the treatment group, would equal the PI. However,
when exchangeability is not satisfied then the outcome will
depend on whether the final surrogate value was arrived at
by manipulation or not, thus the statistics PE, which can be
estimated from data in which manipulation did not occur,
will differ from PI. As we showed in Figure 2, the closeness of
PE and PI is directly determined by the degree to which the
exchangeability conditions are a good approximation.

The practical implications of the results in this article are
that of the three measures, PE is the only one that can be
estimated from the data, but may not have a causal inter-
pretation as defined by a counterfactual model, the degree
to which it has an approximate causal interpretation will de-
pend on the scientific context, and the degree to which one is
willing to make untestable assumptions.

We have considered only the situation of a binary end-
point and a binary surrogate. The calculation of PE in more
complex situations such as continuous or longitudinal S and
continuous or censored T is certainly possible. The extent to
which PE can be given causal interpretations in such settings
will need to be investigated.
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